Disease suppression in cropping systems

2-9-2015

Joeke Postma & Bert Evenhuis

Outline presentation:

- Disease suppressive soils
- Research: can we stimulate disease suppressiveness?
- Phytophthora cactorum in strawberry
 - Disease suppressive substrate
 - Plant resilience
 - Mycorrhiza
- Application potential in practice?

Disease suppressive soil:

Suppressive soil = Soil with limited or no damage in a sensitive crop even when the pathogen is present

Abiotic factors: pH, texture, ... Biotic factors: suppression is lost after sterilization

Mode of action? Which organisms ?

The Soil Food Web

•

(image USDA)

How can we stimulate the

indigenous beneficial microflora?

So that pathogens will have less

Aiming enhanced competition,

antagonism and parasitism.

Nematodes Root-feeders Fungi Mycorrhizal fungi Saprophytic fungi Plants Shoots and roots Organic Matter Waste, residue and

chance to infect the crop. And will this result in more suppressive soils?

First trophic level: Photosynthesizers

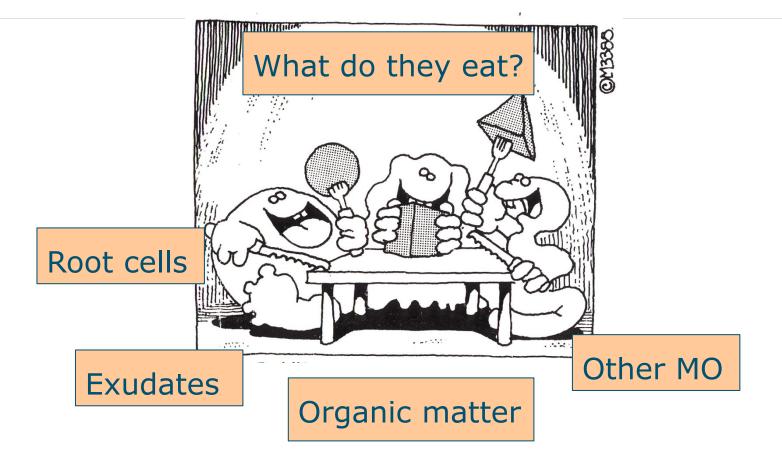
metabolites from

microbes.

plants, animals and

Second trophic level:

Decomposers Mutualists Pathogens, parasites Root-feeders


Bacteria

Third trophic level: Shredders Predators Grazers

Fourth trophic level: Higher level predators

Fifth and higher trophic levels: Higher level predators

Soil micro-organisms

Can we stimulate the beneficial part of the population?

Effect of organic matter

Disease suppressiveness with fresh and stable organic matter (OM):

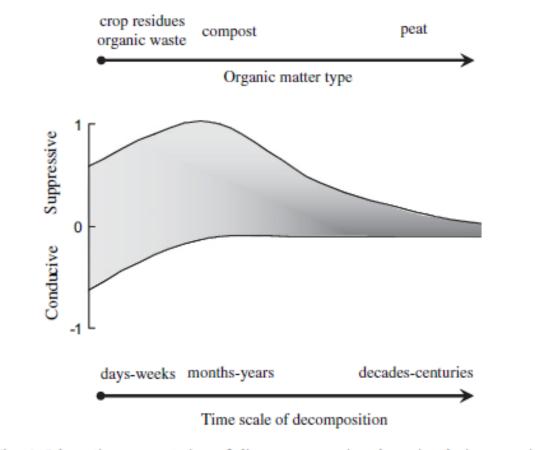


Fig. 4. Schematic representation of disease suppression dynamics during organic matter decomposition.

Meta-analysis by Bonanomi et al. 2010

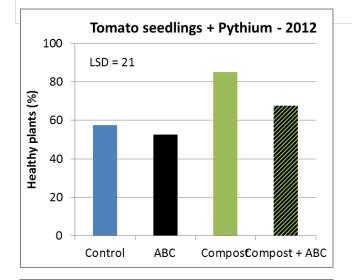
Effect of compost & biochar

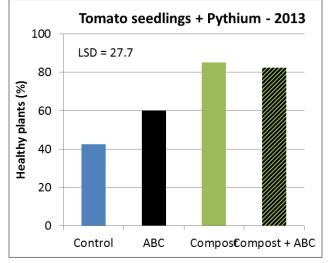
Greenhouse tomato assays (2012-2015)

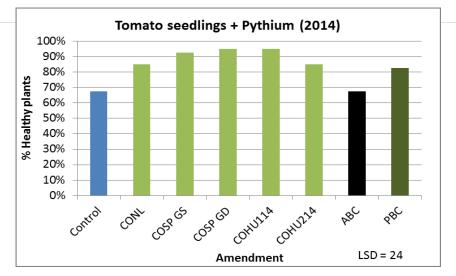
Effect of compost and biochar on:

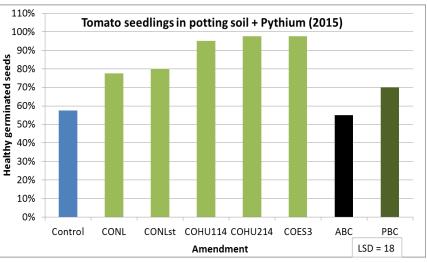
- Germination
- Plant growth
- N P K uptake
- Control of Pythium

All treatments were with and without *Pythium aphanidermatum*






20B



Pythium control by compost: 2012-2014

Enhancing Rhizoctonia disease suppression

- Chitin, feather & hoof meal etc. enhance Rhizoctonia suppression
- No effect with plant derived materials
- Effective in bioassays with sugar beet, cauliflower, lettuce, ..

Postma & Schilder, 2015

Stable organic matter - field experiment:

- Experiment at PPO-Lisse: dune sand: 0.7% OM
- Stable OM (peat) was added up to 1.4 and 3 %
- Sterilized & non-sterilized soil was tested for disease suppression in bioassays to test the role of soil biota

Topsoil – PPO Lisse

Gera van Os, PPO

	Disease suppression			
Pathogen	Organic matter	Soil biota		
Meloïdogyne	++	++		
Pratylenchus	+	+		
Pythium	+	++		
Rhizoctonia	-	+		

Dutch research program on soil quality

Thema's

Sectoren

BETER BODEMBEHEER

Beter Bodembeheer bundelt alle kennis uit het onderzoek over duurzaam bodembeheer in de landbouw op één plek

Partners en financiers

Bodemvisie en onderzoeksaanpak

Projecten

Publicaties

Links

Over ons

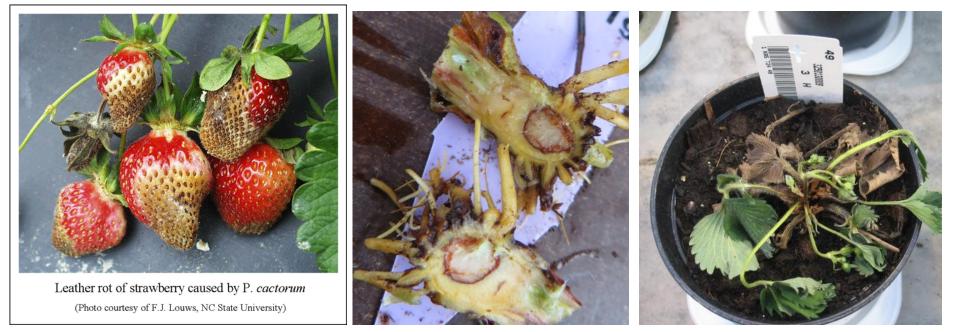
Thema's

Nieuws

Bodemvruchtbaarheid

Bodemweerbaarheid

Links


Integraal bodembeheer

Structuur en bewerking

Phytophthora cactorum in strawberry

Leather rot on fruitCrown rotWilt of plants

An increasing problem & extensive fungicide useDominant cultivars are (highly) susceptible

Compost for suppression in substrate against *Phytophthora* in strawberry?

We never had a positive effect!

Different results depending on plant-pathogen system

PPO - 2012

Standard area under the disease progress curve (stAUDPC) based on disease severity caused by *P. cactorum* in strawberry transplants

Treatment	<i>P. cactorum</i> – mixed in substrate	<i>P. cactorum</i> - bottom of pot	
Control	32.6 ab ¹	13.0 b	
Paraat	14.7 a	3.4 a	
FD Compost	49.8 bcd	13.1 b	
Chitin	46.1 bcd	14.4 b	
TrichodermaT22	57.2 d	13.5 b	
Acremonium	45.0 bcd	10.3 b	
Pseudomonas	54.0 cd	26.7 c	
Salicylic acid	36.0 bc	3.6 a	
Bacterial antagonist	44.0	3.4	

Elsanta

¹: Values within each column followed by the same letter are not significantly different (P=0.05)

PPO - 2013

Standard area under the disease progress curve (StAUDPC) based on disease severity caused by *P. cactorum* in strawberry transplants

Treatment	<i>P. cactorum –</i> mixed in substrate	<i>P. cactorum –</i> bottom of pot	
Control	35.8 c ¹	20.7 d	
Paraat	18.0 ab	14.3 bcd	
FD Compost	29.2 bc	18.6 cd	
Trichoderma T22	38.0 c	18.8 cd	
Acremonium	23.8 abc	11.0 abc	
Salicylic acid	38.1 c	2.5 a	
Lepidium	34.6 bc	4.4 a	
Bacterial antagonist	10.6 a	8.7 ab	

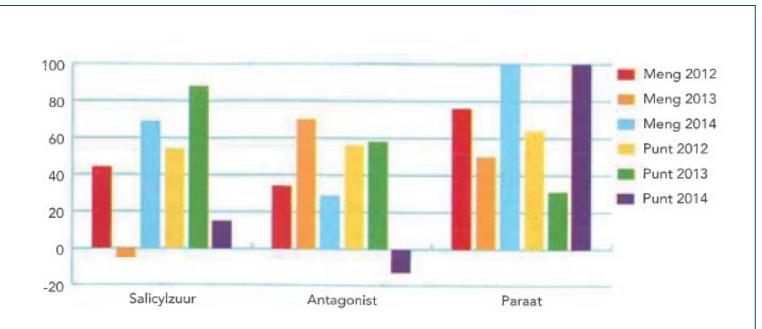
Sonata

¹: Values within each column followed by the same letter are not significantly different (P=0.05)

PPO - 2014

StAUDPC based on disease severity caused by *P. cactorum* in strawberry transplants

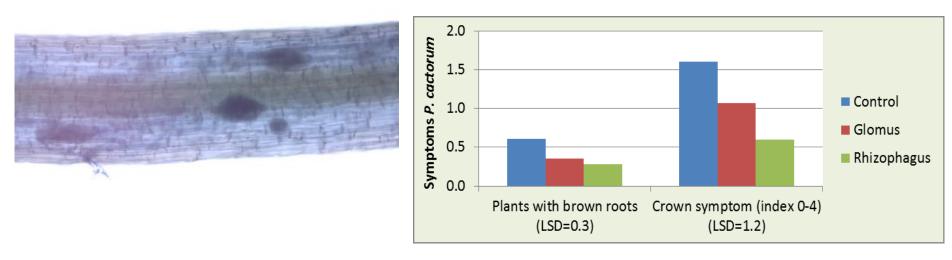
	Unrooted plants		A+ rooted plants	
Treatment	<i>P. cactorum –</i> mixed	<i>P. cactorum</i> – bottom	<i>P. cactorum</i> mixed	 <i>P. cactorum</i> bottom
Control	40.0 c	5.7 ab	1.6 bcd	0.0
Paraat	0.0 a	0.0 a	0.3 ab	0.0
Acremonium	31.5 c	5.2 ab	0.9 abc	0.0
Salicylic acid	11.3 b	4.9 ab	1.9 cd	0.3
Lepidium	36.9 c*	16.7 c*	0 a	0.5
Bacterial antagonist	26.3 c	6.4 bc	2.7 d	0.2


¹: Values within each column followed by the same letter are not significantly different (P=0.05)

*: too high density of *Lepidium*

Sonata

Most promising control methods:


De mate waarin de verschillende behandelingen de uitval van aardbeistek tegengingen. Het substraat was geïnoculeerd door Phytophthora erdoorheen te mengen (Meng) of onder in de tray aan te brengen (Punt). Bij 100 procent werd volledige bescherming verkregen; negatieve getallen geven aan dat de behandeling de uitval verergerde.

Groente & Fruit (2014) 52:38-39

And: Mycorrhiza tested in 2014

- Mycorrhiza are known for supporting P-uptake
- Strawberry is a good crop for mycorrhiza
- No mycorrhiza present in peat substrates
- Inoculation with Rhizophagus irregularis (LUH Henning)
 - ~50 % reduction of *Phytophthora cactorum*

Complexity

- Many different cropping systems
- Pathogen is difficult to control, even Paraat is not always effective
- Phytophthora infection route? Runner, root, crown?

Thank you for your attention

Research is co-funded by the European Union, Seventh Framework Programme under Grant Agreement number 289785 and the Dutch Ministry of Economic Affairs.

