
Modelling the energy budget and prey choice of eider ducks

2 Alterra-rapport 839

A part of this study has been carried out with financial support from the Commission of the European
Communities, Agriculture and Fisheries (FAIR) specific RTD programme CT 98-4201 ESSENSE.
It does not necessarily reflect its views and in now way anticipates the Commission's future policy in this area.
The study was extended in the framework of the EVA-II study on the effects of shell fishery on nature values
in the Dutch Wadden Sea, ordered by the Ministry of Agriculture, Nature Management and Fisheries on
October 25th, 2001, ref. nr. TRCDWK/2001/3261 and on May 27th, 2002, ref. nr. LNV:OND/2002-1/5b/01

Modelling the energy budget and prey choice of eider ducks

A.G. Brinkman
B.J.Ens
R. Kats

Alterra-rapport 839

Alterra, Wageningen, 2003

4 Alterra-rapport 839

ABSTRACT

Brinkman, A.G., B.J.Ens & R. Kats, 2003. Modelling the energy budget and prey choice of eider ducks.
Wageningen, Alterra, Alterra-rapport 839. 134 pp. 35 figs.; 39 refs.

We developed an energy and heat budget model for eider ducks. All relevant processes have been
quantified. Food processing, diving costs, prey heating, the costs of crushing mussel shells, heat
losses during diving as well as during resting, and heat production as a result of muscle activity are
distinguished. In the report, blue mussels are regarded as food source, and we computed the
profitability of small to large sized mussels for a duck. Finally, the possibility for a duck to survive
winter conditions when feeding on a mussel population with a known size frequency distribution is
calculated during a simulation run. Conditions for four sites in The Netherlands, France, Denmark
and Sweden are regarded and there implications for the foraging behaviour of an eider duck are
computed. The implications of the presence of barnacle epibionts are briefly discussed.

Keywords: eider duck, energy budget, heat budget, simulation model, Wadden Sea, food uptake,
blue mussel.

Main cover photo: A. v/d Berg, Utrecht
Small cover photo’s: A.G. Brinkman

ISSN 1566-7197

This report can be ordered by paying € 30,- to bank account number 36 70 54 612 by name of
Alterra Wageningen, IBAN number NL 83 RABO 036 70 54 612, Swift number RABO2u nl.
Please refer to Alterra-rapport 839. This amount is including tax (where applicable) and
handling costs.

© 2003 Alterra
P.O. Box 47; 6700 AA Wageningen; The Netherlands
Phone: + 31 317 474700; fax: +31 317 419000; e-mail: info@alterra.nl

No part of this publication may be reproduced or published in any form or by any means, or stored
in a database or retrieval system without the written permission of Alterra.

Alterra assumes no liability for any losses resulting from the use of the research results or
recommendations in this report.

[Alterra-rapport 839/november/2003]

Contents

Summary 7

1 Introduction 9

2 Feeding habits of the Common Eider 11
2.1 Prey collection 11
2.2 Size selection 11
2.3 Feeding rates 12
2.4 Interference 12

3 Energetic considerations 15
3.1 Introduction 15
3.2 Heat and kinetic energy 15
3.3 Processes 15

4 Energy budget of an adult eider duck 17

5 Size and mass characteristics of eider ducks, mussel and cockle shells 21
5.1 Eider ducks 21
5.2 Shells 31

6 Specification of all energy terms 37
6.1 Heat loss of an eider duck through conductance 37
6.2 Heat loss of an animal through breathing 41
6.3 Heating the prey and losses through defecation 42
6.4 Crushing shells 43
6.5 Costs of digestion 46
6.6 Costs of diving 47
6.7 Swimming 56
6.8 Flying 56
6.9 Resting time or recovery 57
6.10 Handling time at bottom 57
6.11 Handling time above water 58
6.12 Dabbling 58
6.13 Salt excretion 58
6.14 Evaporation of body water 58
6.15 Energetic uptake 59
6.16 Maximum uptake rates 59
6.17 Basal metabolic rate 60
6.18 Faeces production 60

7 Prey decision strategy 63
7.1 General 63
7.2 7Model 63
7.3 Food uptake per dive 64

6 Alterra-rapport 839

7.4 Kinetic plus potential energy and heat 64
7.5 Special case: more than one prey per dive 65

8 Simulation model 67

9 Air and water data 69

10 Characteristics of foraging areas 71

11 Results 73
11.1 Performed computations 73
11.2 Costs, flesh profits and number of dives 73
11.3 Prey choices 74
11.4 An energy budget 77

12 Final 81

References 83

Appendixes
A Description of bird sizes following a cone geometry 87
B Description of the effect of wind on conductive heat transfer from an

eider duck to the environment 89
C Effect of changing buoyancy during descent on diving costs 91
D Input data for the eider duck simulation model 93

Alterra-rapport 839 7

Summary

The aim of this report is to describe the energy budget of eider ducks and to
simulate the energy budget under various ecological conditions. By means of such an
energy budget, we intend to study which foraging areas are preferred by eider ducks,
and why they are preferred. As a third target, we want to find out why eider ducks
winter in areas like the Dutch Wadden Sea and not or hardly in the at first sight
suitabele areas Easter Scheldt (SW-Netherlands) or the Bay d’ Oléron (West France).

The project was partly carried out in the framework of the EU-ESSENSE project
(FAIR-RTD Programme CT 98-4201), and extended as Alterra project 11936-01
“food availability for birds”, sub-project "food demand of eider ducks”, plus as part
of the EVA-II study on the effects of shell fishery on nature values in the Dutch
Wadden Sea, both ordered by the Ministry of Agriculture, Nature Management and
Fisheries.
The major objectives were:
1. analysis of the impact of predation on mussels and mussel requirements of

birds,
2. to develop a simple distribution model for the eider duck,
3. to validate the distribution model with field data,
4. to perform scenario calculations on the effects of shellfishing and shellfish

culture on shellfish eating birds.

In the report, we distinguish six main sections:
♦ a brief description of foraging habits of eider ducks (ch 2),
♦ an overview of an energy budget for a duck (ch 3, 4),
♦ characteristics of eider ducks and of shells (ch 5),
♦ a detailed description of the eider duck energy budget and the prey decision

strategy as implemented in the model (ch 6, 7),
♦ a brief description of the model (ch 8),
♦ discussion of results, where we compare four sites in Sweden, Denmark, The

Netherlands and France, and describe the local energetic profits for a duck (ch
11).

Based on the model computations we conclude that:
♦ in summer eiderducks cannot profit from shells smaller than 20 mm. In winter

only shells larger than 30 mm are taken. In summer costs are lower (especially
heat losses are much lower) while the profits (meat content) per shell is higher.
Maybe, eider ducks prefer smaller shells , but have to take the larger ones in
winter because of energetic needs

♦ daily energetic expenditures (DEE) ranges from 2.9 106 J in winter to about 1.5
106 J in summer

♦ eider ducks are probably capable to remove a significant part of the subtidal
mussel stock the model can not yet be used to study the interaction between

8 Alterra-rapport 839

fishery activities and foraging of eider ducks.

Alterra-rapport 839 9

1 Introduction

An individual based energy budget model for the Common Eider (Somateria
mollissima) is developed to study the influence of availability and quality of prey on the
food demand and foraging behaviour of eider ducks in winter.

In North West Europe, the Common Eider breeds from the Dutch Wadden Sea to
the Northern Baltic Sea areas. The total population coupled to the North western
European flyway is about 3 million birds (LWVT/SOVON, 2002). At the end of
summer and the beginning of autumn, a proportion of the ducks from the northern
regions migrates in a south-west direction and spends the winter in the Dutch
(150.000 exx, LWVT/SOVON, 2002), German and Danish Wadden Sea and the
adjacent North Sea (250.000-300.000 eider ducks total) (Meltofte et al. 1994).

In the Wadden Sea, they predominantly feed upon blue mussels (Mytilus edulis),
partly occurring on wild mussel beds, and partly on mussel culture lots. The shells are
swallowed and crushed in the bird’s stomach. Other potential prey like crabs
(Carcinus meanas), starfish (Asterias rubens) and other shellfish like cockles
(Cerasteroderma edule), baltic tallins (Macoma balthica), and razor shells Ensis americanus
are also taken. Crabs are not considered as a valuable food source. Cockles have a
lower and less profitable flesh/shell mass ratio compared to mussels when shells of
the same size are considered, because the cockle shells are thicker, and probably
harder to crush.

During the last decade of the 20th century the eider ducks in the Netherlands
showed a shift in distribution to the North Sea. Here they are probably feeding on
shellfish species, such as Spisula subtruncata , Donax vittatus and Ensis americanus.

In the framework of the EU-ESSENSE (FAIR-RTD Programme CT 98-4201)
project, and the Alterra project 11936-01 “food availability for birds”, sub-project
"food demand of eider ducks”, carried out for Ministry of Agriculture, Nature
Management and Fisheries in The Netherlands, we intended to quantify the several
relevant eider duck energy and heat budget terms as accurate as possible. With such
budget models, one is able to check the consistency of the many separate
descriptions that can be found in literature. Thus, we hoped to collect additional
information on the prey selection mechanisms of eider ducks.
The results were applied in the EVA-II study on the effects of shell fishery on nature
values in the Dutch Wadden Sea, ordered by the Ministry of Agriculture, Nature
Management and Fisheries.

Alterra-rapport 839 11

2 Feeding habits of the Common Eider

2.1 Prey collection

Eider ducks feed on prey that is submerged most of the time. Depending on the
water level during the tidal cycle, eider ducks dive and catch their prey from and out
of the sediment; and sometimes they dabble in shallow waters.

Prey species attached on the sediment, like mussels in mussel beds, are collected
using a different feeding technique compared to shellfish species living in the
sediment. Mussels in mussel beds are attached to each other with byssus threads and
are collected in clumps depending on the size of the mussels in the clump. Large
mussels are expected to be collected one by one and with decreasing size the number
of mussels collected in the clumps during one dive will increase. Once a mussel or a
clump of mussels is taken to the surface, the mussels are handled before ingestion.
Large mussels are swallowed one by one and mussels in clumps depending on the
size of the mussels in the clump are swallowed in clumps. The same occurs when
feeding on crabs (Carcinus maenas) or starfish (Asterias rubens). After returning to the
surface, the ducks swallow small prey completely. Large crabs and starfish are shaken
so that legs fall off and then, the body is eaten. After the prey is swallowed the duck
may quickly dive again to catch the rests of the prey, or other shells from the clump
(Swennen 1976). Nehls (1995) assumed that eider ducks only take one mussel per
dive. Crop analysis (Kats et al, 2002), laboratory observations on captured birds
(Swennen 1976), and clump selection by other diving ducks (Leeuw 1997) show that
mussels are also collected in clumps and handled at the surface before swallowing.

In the Dutch Wadden Sea, cockles are taken by eiders ducks and can be in some
years almost as important as mussels (Swennen 1976), although prey availability,
predictability, quality and profitability may influence the bird’s choice. Cockles live in
the sediment, are not tied to each other and are found in cockle beds. The cockles
are mostly collected from high density cockle beds. In (very) shallow water, the
dabbling duck tramples a part of the sediment containing cockles and thus creates a
dish-like depression in the sediment with a diameter of about 30 to 40 cm. Thus, the
cockles become visible and can easily be selected and swallowed by the duck.

From mussel culture lots, where mussels occur more loose, the duck needs less time
to catch and handle a prey.

2.2 Size selection

Eider ducks are capable to feed upon a large size spectrum ranging from very small
prey of a few millimetres in length to large prey of more than 100 mm shells or crabs
(Swennen 1976; Beauchamp et al, 1992; Madsen 1954). See Kats et al (2002, in prep)
for a review on prey size selection. Cockles were taken up to 49 mm shell length,

12 Alterra-rapport 839

although under normal conditions (Nehls, 1995), the upper cockle limit was about 40
mm. Mussels, being more slender, were accepted up to 65 mm (Nehls 1995) although
the preferred range was 30-52 mm.

Nehls (1995), Swennen (1976), Hamilton et al. (1999) mention that from a food
supply with large variation in size eider ducks prefer medium sized mussel and cockle
shells, although larger shells probably are more profitable regarding energetic yield.
Large shells contain more flesh and shell mass. Energetic yield is defined as the
difference between the energetic profit and all the costs needed to collect, handle and
digest that prey. During winter, this preference shifted towards larger prey sizes
(Hamilton et al. 1999; Nehls 1995). Also, diving ducks usually took somewhat larger
shells than dabblers did (Nehls, 1995). Swennen (1976) describes a number of threats
a duck may suffer if it swallows too large shells, like suffocation, or damaging the
stomach muscle.

Barnacle overgrowth negatively effects the size spectrum taken, not only because of
the increased size of the mussel compared to the mussel alone, but also because
barnacles may be an additional risk for the duck during swallowing.

Swennen (1976) described that ducks inspected the shell surface before swallowing
the shells, which might be related to the danger of damaging digestive organs.
Another explanation of this phenomenon might be that damaged shells might
indicate the presence of parasites.

2.3 Feeding rates

When a duck has an empty gullet, stomach and gut, it can eat a lot of shells in a short
time. Swennen (1976) mentioned a duck that swallowed 28 25 mm cockle shells in
1.5 minutes, after being hungered for about 12 hours. After 58 minutes, the first
faeces appeared, which stopped after 86 minutes. In this period, about 65 grams of
grit was excreted, which corresponded to the total shell mass of the ingested cockles.
Common eider ducks are possibly able to feed at different feeding rates and still meet
their daily energy intake. Feeding can take place on different time scales between
continuous feeding at low intake rates and/or interval feeding at high intake rates.
When the crop is full feeding stops. Eider ducks feed most of the time on submerged
prey, although it's not completely clear why.

2.4 Interference

When feeding, birds may interact with other birds. Mostly, this interaction is an
attack by another bird that is interested in the prey. For foraging oystercatchers
(Haematopus ostralegus) this process is well documented (Ens & Cayford, 1996; Goss-
Custard et al, 1996; Hulscher, 1996; Stillman et al, 1997; Van der Meer & Ens, 1997;
Zwarts & Drent,1981). The foraging efficiency (or intake rate) of oystercatchers
decreases with increasing oystercatcher density, which has implications for the

Alterra-rapport 839 13

number of oystercatchers that can sufficiently feed on a certain area. Eider ducks
usually show much less interference. An observation in the Texel harbour learned
that there was a major interaction between gulls (Herring gulls Larus argentatus and
lesser black-backed gulls Larus fuscus, not the smaller black-headed gulls Larus
ridibundus) and eider ducks. The ducks, feeding on small crabs (Carcinus maenas), of
about 10 cm maximum size (leg to leg), were chased by the gulls and had to dive
frequently to avoid contact with the gulls. There was not any attempt by a duck
trying to catch another duck’s prey.

For the present model development, we decided not to implement a description of
interference. Thus, in the model the ducks can forage without being influenced by
their own density.

Alterra-rapport 839 15

3 Energetic considerations

3.1 Introduction

For a bird it is only relevant to forage if the energy that can be gained is larger than
the energetic costs of catching and processing that same prey. Also, the bird needs a
certain basic amount of energy per day; the prey energy surplus has to cover that
basic amount as well. In the next parts, we consider four types of costs:
Σ Basic costs, needed to maintain the organism
Σ Environmental costs, related to heat losses
Σ Feeding and prey processing costs, describing the costs of e.g. shell crushing

and digestion
Σ Activity costs, that describe the costs of flying and swimming.

3.2 Heat and kinetic energy

Most of the authors only discuss energy as an all-embracing quantity. In this report,
we distinguish between heat and kinetic plus potential energy as two different types
of energy. When swimming, as an example, the bird has to overcome friction forces.
Movement of the feet comprises an energetic cost. But part of that energy is a loss in
terms of heat, which increases body temperature. Even, water is moved then; after
dissipation as a result of viscosity, this part of the kinetic energy is converted into
heat as well. Thus, we are not only bookkeeping the energy budget, but also the heat
budget.

3.3 Processes

The energy gain of a prey is directly related to the meat content of the prey, the
assimilation efficiency and the energy content of the meat. The non-assimilated part
will be excreted as faeces.

When a bird is not active it still has to use energy reserves for maintenance. This is
called the basal metabolic rate (BMR). BMR is an energetic cost but it becomes
manifest as heat and thus adds to the heat budget. This is the reason that a non-
feeding bird can maintain its body temperature under not too cold conditions (Jensen
et al, 1989a,b).

The energy losses concern all the other processes. Prey is heated (to body
temperature), there is a heat flow (loss) through the feather layer and breathing
results in heat losses. All these losses have to do with the temperature difference
between the bird’s body (40 °C) and the temperature of the air or water (somewhere
between 20 and -10 °C). Digestion also costs energy because the animal has to

16 Alterra-rapport 839

produce enzymes which are lost as chemical energy together with the faeces.
Movements of the birds cost energy. While swimming, the bird has to overcome a
drag that is related to the shape of the animal and to the characteristics of the fluid.
While diving, the bird first will accelerate, and then it has to overcome a form and
viscosity drag. The bird also has to overcome buoyancy. The specific mass of the
bird plus feathers plus lungs is less than that of the fluid. While diving, the bird gets
an increasing potential energy that is lost as soon the bird emerges later on. When the
sediment is reached, the bird has to stay there and has to overcome buoyant forces.
It also has to remove mussels attached to the bottom (or to other mussels) one by
one or by clump selection, or to gather cockles or other shellfish from the sediment.
During the stay at the sediment or the diving the bird does not increase it’s own
kinetic energy and thus all the energy produced by the animal is lost. As long as the
animal stays at the sediment, it has to paddle its feet, producing a force directed
towards the sediment and moving the fluid in the opposite direction. By this, the
animal adds energy to the environment which dissipates and actually results in
heating the water. This production of energy does not happen without any losses and
thus the duck itself is heated as well. The same happens during the actual dive. The
efficiency of producing a force downward (overcoming the buoyancy and drag
forces) is not 100%. First, not all the energy transferred to the water is transformed
in a downward directed force, secondly the production of energy in the duck’s body
will not completely be used to move the feet. The first heat loss implies that the duck
will loose more energy than strictly needed. It will however not heat the bird, but
only the water. The second loss means that the energy production is not 100%
efficient. The energy loss results in heat.

The last energetic term that is to be considered is flying. The duck flies from the
summer breeding areas to the wintering grounds. It may fly from one foraging site to
another, and it may fly as a result of disturbance. Knowledge of flight costs may help
us to understand decisions a bird has to make on staying on a certain site or flying to
a site with better food conditions.
Flying forms an only very limited part of the present model. We assume a certain fly
activity per day and compute its costs.

In the next section the energy terms will be discussed.

Alterra-rapport 839 17

4 Energy budget of an adult eider duck

The energy budget is based on an adult bird. Yearly growth is zero and therefore
storage may be a better term for the difference between yield and losses. Generally,
the energy budget reads:

tsonassimilatistorage cos−= (1)

During bad feeding conditions, the animal can use body reserves down to a certain
level. Such a minimum level may be a useful characteristic when the description of
survival is at stake. Thus:

mortalityincreasedmassrealmassif

massmassmass

monthfettmass

→<

∈

=

))((

],........,[

)()arg(

min

maxmin (2)

In order to find out how much food an animal needs an energy budget is needed.
Therefore, the costs have to be divided into ‘standard costs’, i.e. all the costs an
animal would make when it is not feeding at all, and ‘foraging costs’. Foraging costs
include all the extra costs that a bird makes in order to gather food. Foraging results
in a gain: ‘foraging yield’. The difference between yields and costs is the profit. For a
balanced energy budget, the total profit has to equal the standard energy costs. The
number of dives follows from:

diveperprofit
tsenergydards

divesofnumber
costan

= (3)

Now, we have to specify both nominator and denominator.

First, the standard energy costs concern BMR, heat loss during resting and breathing,
and the costs of some movements the bird makes. In the model it is assumed that
eider ducks always fly a litle, and always swim a little. Therefore, the costs associated
with these activities are considered to be standard costs:

BMRflyingbasicgswim
breathlossheatfeatherslossheattsdards
+++

+=
_min

costan
(4)

where BMR is the basal metabolic rate. A specification is given in section 6.

Next, the profit per dive follows from:
divepertsdiveperyielddiveperprofit cos−= (5)

18 Alterra-rapport 839

The yield per dive and the costs per dive both depend on the kind of prey. Thus, for
a certain prey we have to sum up all costs and yields. Costs and yields will, among
others, depend on characteristics of the prey such as size and availability. The latter
may include density of the prey as well, although this aspect is not treated in his
report..

First, the costs will be specified. Costs are related to all activities of the duck: heat
demand, diving costs, costs for crushing the shells, and costs for production of e.g.
enzymes that serve to transform the food into assimilation-ready substances. Also,
when more kinetic energy is produced, the duck has to increase breathing and will
lose more heat. All costs are expressed here in Joules. We distinguish between costs
associated with the eider duck and costs that are associated with the prey:

tspreytsanimaldiveperts cos_cos_cos += (6)

The energy costs associated with the eider duck include:

restingextraflyingextra
breathingextra

gswimextra
tsdivingfeatherslossheatextratsanimal

++
++

+
+=

min
cos__cos_

(7)

Extra swimming and flying are not specified further (in this report) in the prey_costs
because we considered one site at a time. All terms except diving are additional costs
next to the basic expenditures already mentioned in eq. (4). The prey_costs include:

excretionsaltdigestioncrushingshellsheatingtsprey __cos_ +++= (8)

These terms will each be explained in chapter 6 and on.

In the model, food uptake (mass per unit of time) is transformed to energy uptake
(Joules per unit of time). The part of the food that is not assimilated is excreted as
faeces. Thus:

efficiencyonassimilatiuptakeonassimilati _*= (9)

and

onassimilatiuptakefaeces −= (10)

Assimilation efficiency depends on stomach and gut passage time and thus on food
intake rate. It may be important whether an animal feeds slowly but continuously or
fast with resting periodes to digest the food. The basics of the so-called digestive bottle-
neck may be applied here.

Alterra-rapport 839 19

The amount of food caught each dive depends on the size and the flesh content of
the prey. Although it is believed that usually only one prey is caught per dive, a
model may contain a ‘more-prey-per-dive’ option, to test the profitability of a more
efficient foraging behaviour.

For a more precise specification of energy costs, first a description of some
characteristics of an eider duck (shape, buoyancy, etc) is needed.

Alterra-rapport 839 21

5 Size and mass characteristics of eider ducks, mussel and
cockle shells

5.1 Eider ducks

Body area including and excluding feathers, body volume and buoyancy
For the computation of fat - and feather thickness we need to know the body surface
area (A, m2) of an eider duck in relation to duck mass (W, kg) and/or duck length (L,
m). In order to estimate additional characteristics, some assumptions on the body
shape of an eider duck are made. By trial and error it appeared that a cone shape can
be used to describe body shape (App. A). The frontal area of a bird (to compute
body drag while diving) and feather thickness (to compute isolating properties of the
feathers and fat) can be estimated with equations that describe the cone shape.

In text box 1 and 2 we summarized some literature data on duck characteristics. The
data given by several authors had to be unravelled, because they appeared to be
inconsistent with respect to methods and units.

Body area
Wallsberg & King (1978) describe the body area as a function of animal mass,
underestimating the body area as given by Lovvorn et al (1991b). The latter gave two
equations. The authors preferred a linear relation. Our ‘cone’-equation, including
feathers, reproduced the allometric equation by Lovvorn et al (1991) quite nicely
(Figure 1). The equations used by Jensen et al (1989a,b) produced a slightly larger
body area (5% compared to Lovvorn et al (1991b) for a 1000 g bird and 10% for a
2000 g bird).

Body volume
Lovvorn & Jones (1991a, 1991b) and Woakes & Butler (1983) gave linear equations
for body volume as a function of mass (in their equation “volume=a+b mass” the
value of the constant a was #0, so the equation was not apllicable for small ducks).
The proportionality constant (b) in this equation represents the specific mass of the
duck plus the volume of the respiratory system.

The non-linear equation by Lovvorn & Jones (1991b) resulted in much higher values
of body volume for eider ducks and scoters than the linear ones did (Figure 2).

Buoyancy and volume of the respiratory system
Buoyancy is the resultant of body volume plus feather air volume and the volume of
the respiratory system. Lovvorn and Jones (1991a,b) mention that eider ducks and
scoters have a relatively large buoyancy compared to most other diving ducks. It is
not clear whether they distinguished between diving and swimming eider ducks. We
found a difference regarding buoyancy during diving and during resting. Eider ducks,
for example, have an average specific mass during diving of about 0.7 kg dm-3

(Lovvorn & Jones, 1991b). If the same specific mass is valid for a swimming duck
this would imply that 70% of the duck would be submerged and 30% emerged. Our

22 Alterra-rapport 839

impression is that this is not the case. At least 50% of the duck is above water
(estimated by four specialist). In some cases the duck is almost under water except
the head but normally it looks like at least half of the duck is above water. In the
model a value of 50% is used. Partly, the difference between specific mass during
diving and during resting is the result of exhalation diving ducks perform prior to
diving. Tufted ducks can decrease the respiratory content by 42% from 232 tot 165
cm3 kg-1 (Stephenson et al, 1989), which represents a buoyancy reduction from 1.6 to
1.1 N regarding the respiratory system alone. Since buoyancy of a tufted duck (mass
about 700 g for a male adult) is about 3 to 4 N, Stephenson’s data imply a 30% (26%
during diving, 40 to 50% during swimming) contribution of the respiratory system to
buoyancy. Others give that the respiratory content represents about 160 to 220 cm3

kg-1 (Kooijman, 1975; Stephenson et al, 1989b) resulting in 1.1 to 1.5 N contribution
to buoyancy for a 700 g tufted duck. Keijer & Butler (1982) found a volume of the
respiratory system for a tufted duck of 180 cm3 kg-1(130 cm3 for a 700 g bird; 1.3 N
buoyancy contribution). The respiratory system of an eider duck (2000 g) amounts
about 320 to 440 cm3 (Stephenson et al; 1989b) or 320 cm3 Lasiewski & Calder;
1971). This represents a contribution to buoyancy of 3.2 to 4.4 N on a total of about
10 N. With a specific mass of about 0.7, a 2000 g bird would have a buoyancy of
about 8.6 N (and a total air volume of 860 cm3).

If the specific mass for a swimming bird is lower than 0.7, e.g. 0.5 kg dm-3, the
buoyancy of a 2000 g eider duck would be 20 N and the total air volume 2 dm3. In
Figure 3 buoyancies are given as a function of duck mass.

Feather volume and thickness
Feather volume is mainly computed from the computed body volume minus the
content of the respiratory system. Feather volume divided by feather area gives
feather thickness. Wilson et al (1992) give a formula for feather volume but the result
(thickness=volume/area; area as an average of a body surface of a bare bird plus
feathered area) does not seem to be in line with most of the other results. For the
eider duck example in the previous paragraph the total air volume amounts from 860
cm3 to 2000 cm3. Subtracting a respiratory volume of 320 cm3 (the minimum value)
to 440 cm3 (the maximum value), the feather volume ranges from 540 cm3 to about
1560 cm3. Divided by the body area (the mean between bare area represented by the
cone-equation, and the feathered area) the thickness of the feather layer is computed.
This yields an area of 0.5*(1217 cm2 + 1378 cm2) = 1300 cm2 for a 2000 g eider duck,
and 0.42 cm to 1.1 cm for the feather thickness. In Figure 4 feather data are
presented.

Frontal area
We did not find data on frontal areas but had to estimate these from the cone
characteristics (app. A). In Figure 5, results are shown. These data are needed for the
computation of hydrodynamic body drag during diving.

Salinity effects
A possible salinity effect on buoyancy depends on the difference between specific
mass of fresh water and of salt water. Since the specific mass of water with normal
salinity (about 35‰) is only about 3.5% higher than of fresh water, effects of salinity

Alterra-rapport 839 23

may be neglected. Lovvorn and Jones (1991a) did some computations on the salinity
effect but came –as expected- to only minor effects.

Mass ranges and variation
The mass of an adult duck varies during a year. This is the result of a strategy to be
efficient with food and energy and associated costs of carrying a heavy body around
(predation risk) or an effect of season, moult, breeding etc.

In an ideal situation, an eider duck would show an ideal development of mass. As an
average a male adult weighs about 2200 grams (Bauer & Glutz von Blotzheim, 1969).
Since flying costs are high, the bird has to be fat prior to migration (up to 2600
grams) and will be lean after the migration (down to about 1800 grams). During the
breeding season the bird’s mass will vary around it’s preferred average Before the
winter period starts it will need to have sufficient reserves. The variation in mass
during a year is presented in Figure 6 (after Nehls, 1995). The real mass during a year
depends on food availability, food quality, weather conditions, and more In our
model the duck has its ideal mass from this we compute the required amount of
food.

24 Alterra-rapport 839

Text box 1. Characteristics of ducks.

All characteristics are expressed as value = α + β* Mass + γ*Mass2, exceptions are explained in the table (see
also text box 2). Mass in gram.

Body volume (cm 3) α β γ

65.74 1.144 2.49e-4 All diving ducks

13.7 1.43 Diving + surface feeding ducks, except eiders and
scoters

Lovvorn & Jones,
1991b

-29,94 1.467 All diving ducks, except eiders and scoters

42.97 1.387 All species, summer

339.2 0.9711 Lesser Scaup, winter

Lovvorn & Jones,
1991a

213.6 1.2506 Redhead + Canvasback, winter

Woakes & Butler, 1983 339 0.9771 Tufted Duck

Buoyancy (N) α β γ

1.21 3.17e-6 All diving ducks

-0.303 4.58e-3 All diving ducks, Mass<1200 g

0.131 4.18e-3 Diving + surface feeding ducks, except eiders and
scoters

Lovvorn & Jones,
1991b

8.034e-4* M1.1253 All diving ducks, including scoters and eiders.
Overestimates scaups, underestimates scoters and
eiders

Area (cm 2) α β γ M in gram

345 0.611 Canvasback, Lesser Scaup & Redhead;
bill + feathered body

15.2 * M0.595 Feathered body without bill

Lovvorn , Jones &
Blake, 1991

Wallsberg & King
(1978)

8.11* M0.667 Feathered body without bill

Alterra-rapport 839 25

Text box 2. Characteristics of ducks.

All characteristics are expressed as value = α + β* Mass + γ*Mass2, exceptions are explained in the table (see
also text box 1). Mass in gram.

Feather air volume (cm 3) α β γ M in gram

0.29 Surface diving, or pursuit.

0.67 Surface feeding or flying

Wilson et al, 1992
Method after Cramp &
Simmons, 1983 and Harpe
et al, 1985

0.45 plunge or occasionally surface diving

Wilson et al, 1992 -0.138 - 0.44 * Volume (duck) Volume in cm 3

Lovvorn & Jones, 1991 ??? 0.1232

Lung + air sack volume
(cm3)

α β γ M in gram

0.180 Tufted DuckKeijer & Butler, 1982

0.112 Mallard

Kooyman 1975,
Stephenson et al, 1989b

0.16 à
0.22

Lasiewski & Calder, 1971 1.61 M 0.91

Frontal area (cm 2) α β γ M in gram

No literature data Computed from a cone-shape, including feathers

Physical limitations concerning prey sizes
There is a minimum and a maximum to the prey size that can be handled bij eider
ducks.In Figure 7 an overview of a number of studies is given showing minimum and
maximum shell sizes taken up by an eider duck. Nehls (1995) found a normal uptake
of about 55 mm mussels. Maximum size of a mussel in the uptake was about 68
mm. The smallest mussels taken by an eider duck were about 3-5 mm large (Nehls,
1995). In other words, probably there is no lower physical limit. When the sizes of
shells in the uptake are compared with the availability, the preference can be
computed. Figure 8 shows the preference as presented by Nehls (1995).

The upper size limit is determined by the size of the mussels and by the occurrence
of barnacle epibionts. Barnacles increase the size of the mussel and have sharp edges
which may be dangerous for a duck’s gullet. Therefore a duck will decrease the
preferred prey size in case of barnacle overgrowth (see section 5.2).This effect also
depends on the extent of barnacle overgrowth.

26 Alterra-rapport 839

Digestive bottleneck
The feeding rate of eider ducks is limited. Digestion takes time and therefore a duck
cannot continuously swallow shells at a high rate. Sometimes there may be
restrictions on feeding periods and a bird needs to find a complete meal within a
relatively short period. A complete meal is considered here to be the maximum
amount of food a duck can carry in its stomach and guts. For birds feeding on tidal
flats, where emersion determines the prey availability, birds need to fill their stomach
and guts prior to high tide. In this case the volume of guts and stomach, combined
with the digestion rate, is limiting the maximum uptake rate.

If it is not necessary to take up complete meals in a short period and a bird can feed
more or less continuously, ans consequently, the implementation of a digestive
bottleneck is less crucial. Our estimate is that eider ducks do not need to feed within
a short period and therefore, we decided to refrain from the incorporation of this
phenomenon.

Alterra-rapport 839 27

Figure 1. Skin surface area related to body mass of ducks See also table 1.

Figure 2. Body volume related to body mass of ducks. See also table 1. From Lovvorn & Jones, 1991b. Without
air computed from line for All ducks minus air volume .

0

1000

1500

2000

2500

500 1000 1500 2000 2500 3000
Weight (gram)

Lovvorn et al 1991 Wallsberg & King

Lovvorn et al 1991 (2nd formula) Cone

Cone + feathers (Lasiewsky&Calder) Cone + feathers (Kooijman)

Area of ducks

500

0

1500

3000

4500

6000

500 1000 1500 2000 2500 3000
Weight (gram)

All ducks Except scoters and eiders

Without air Except scoters and eiders (2nd)

Duck volume

0
0

28 Alterra-rapport 839

Figure 3. Buoyancy of ducks related to body mass. From Lovvorn & Jones, 1991b. See also table 1.

Figure 4. Relationship between thickness of the feather layer and body mass of ducks. See also table 1. Buoyancy
equals line “all ducks incl scoters and eiders” from fig. 3.

0

6

9

12

15

500 1000 1500 2000 2500 3000
Weight (gram)

All ducks, non-linear Ducks<1200 g

Except scoters and eiders All ducks incl scoters and eiders

Buoyancy of ducks

3

0

0.0

0.5

1.0

1.5

2.0

0

10

20

30

40

0 500 1000 1500 2000 2500 3000
Weight (gram)

Lungs after Lasiewsky & Calder Lungs after Kooijman

Buoyancy

Feather thickness of eiders
Air volume from buoyancy

Alterra-rapport 839 29

Figure 5. Relationship between frontal area and body mass of ducks. “Cone” refers to idealized shape of an eider
duck as explained in Appendix A.

Figure 6. Mass of eider ducks during a year (taken from Nehls 1995).

0

200

300

400

500 1000 1500 2000 2500 3000
Weight (gram)

Cone (with h=5r) Cone (&Lasiewsky+Calder)+ feathers

Cone (&Wallsberg + King) + feathers

Frontal area of ducks

100

0

Eider duck mass in field (Nehls 1995)

1500

1750

2000

2250

2500

2750

1 2 3 4 5 6 7 8 9 10 11 12

Month

Adult male (Field)
Adult female (Field)

30 Alterra-rapport 839

Figure 7. Prey size selection of eider ducks (1). What sizes are available and what sizes are eaten. An overview
from several studies.

Minimal and maximal lengths of mussels on sites where
Eider ducks search for prey

0

5

10

15

20

25

0-5 5-10 10-
15

15-
20

20-
25

25-
30

30-
35

35-
40

40-
45

45-
50

50-
55

55-
60

60-
65

65-
70

70-
75

75-
80

80-
85

85>

length (mm)

minimum
maximum

Minimum and maximum length of mussels eaten by eider ducks

0

2

4

6

8

10

12

14

16

0-5 5-10 10-
15

15-
20

20-
25

25-
30

30-
35

35-
40

40-
45

45-
50

50-
55

55-
60

60-
65

65-
70

70-
75

75-
80

80-
85

85>

length (mm)

minimum
maximum

Alterra-rapport 839 31

Figure 8. Prey size selection of eider ducks (2). Selection index D: size contribution to uptake / contribution to
prey availability. From Nehls (1995).

5.2 Shells

Shellfish in the sub-tidal and the intertidal area are the main food source for eider
ducks. Mussels (intertidal and sub-tidal), cockles (mainly intertidal), spisulas and
donax (subtidal, in the North Sea coastal zone) may be distinguished in model
computations. The shells are crushed in the bird’s stomach and the energetic costs of
this crushing are related to the shell mass and the shell thickness. The profits are
directly related to the amount of flesh present in the shell. Therefore, we need an
overview of shell characteristics such as shell mass, breaking forces, shell thickness,
flesh mass, ash free dry masses (AFDW), and also the energetic value of flesh mass.

As an additional topic, we discuss the presence of epibionts on the shells that may
influence the edibility of shells.

Mostly, an allometric equation is used to express wet, dry, shell and total mussel mass
or ash free dry mass as a function of shell length:

bLaW = (g) (11)

Shell size
Mussels (Mytilus edulis) have a maximum size of about 7 cm. On intertidal mussel
beds, shells grow slower then in sub-tidal regions. In the Netherlands, the larger part
of the sub-tidal mussels occur on mussel culture lots (van Stralen, 1998; Bult et al,
2003) where they grow to about 5-6 cm in 2.5 years. Mussels on culture lots occur
more loose than on mussel beds where bissus-threads may fix a mussel tightly.
Intertidal mussels grow to a size of 4.5-5 cm in 2.5 years. On culture lots the average

Size-selection of mussels by eider ducks on mussel beds
in the German Wadden Sea (Nehls 1995)

-1

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

1

1 2 3 4 5 6 7 8

Length (cm)

Jun-90
Jan-91
Jul-91
Jan-93

32 Alterra-rapport 839

size ratio length: width: height is about 6:2.3:2.9 (own measurements, based on
about 2000 subtidal mussel shells (De Jager, 2002; see Figure 9). Cockles
(Cerasteroderma edulis) have a maximum size of about 5 cm and are much thicker and
wider than mussels. Data on thickness are available, but not analysed yet. The shells
are individually buried in the sediment and can occur in extremely low to extremely
high densities. Relatively sandy areas are preferred habitats, but cockles also occur in
silty areas. Consequently, cockles are more difficult to find, but easier to handle.

Spisulas (Spisula subtruncata) occur in the North Sea coastal zone. The maximum size
is about 4-5 cm. Spisulas are an important food source for eider ducks foraging in the
North Sea.

Figure 9. Shell width and height, data from about 2100 sub-tidal shells from the Dutch Wadden Sea. The lines
represent linear regression results through (0,0). It is obvious that for small shells, shell height is larger than the
regression predicts.

Shell ash free dry mass (flesh content
As an average, mussels contain about 0.05 g AFDW / g (fresh shell). In the
allometric equation (11) b is about 2.8, and a=9e-6 to 1.8e-5 (W in gram, L in mm).
(Brinkman, 1993). Highest values occur in the late summer, when a 50 mm shell may
contain up to 1 g AFDW; lowest values shortly after winter, and just after spawning.
A 50 mm shell may contain down to 0.5 g AFDW. Cockles contain somewhat less
flesh then mussels do (2/3 as an average).

0

5

10

15

20

25

30

0 10 20 30 40 50 60
Length (mm)

Width Height

Width (regression) Height (regression)

Mussel shell sizes

Alterra-rapport 839 33

Figure 10. Shell masses for cockles and mussels: A) data from literature, B) data Alterra of 2000 subtidal
mussels. Regression line in B (red dots) from mass = 7.82e-5 length^2.8.

0

5

10

15

0 10 20 30 40 50 60
Length (mm)

Data regression

Mussel shell mass

0

20

40

60

80

0 20 40 60 80
Length (mm)

Cockle subtidal Cockle intertidal Mussel subtidal

Mussel intertidal Nehls, mussel

Shell weights

B

A

34 Alterra-rapport 839

Shell mass
Shell mass and shell thickness determine energy costs of breaking a shell. Hamilton
et al (1999) related shell thickness (mm) to shell length (mm): thickness = 0.0625 *
length0.65. The lengths ranged between 10 and 55 mm. The exponent 0.65 (being
smaller than 1.0) implies that with increasing length shell masses are somewhat
decreasing relative to flesh ash free dry mass. But Hamilton’s data show a large
variability. Probably it is not easy to distinguish between 0.65 and (i.e.) 1.0 as
exponent.

Nehls (1995) mentions shell mass (g) = 5.64 10 -5 length2.943 (length in mm). For a 50
mm shell, mass is about 5.5 g. Dekker (unpublished results) presented us data for
cockles and mussels sampled in subtidal and intertidal areas. Cockles have a much
larger shell mass than mussels. Dekker’s data are well in line with Nehls’ relation
who did not distinguish between subtidal and intertidal animals (Figure 10). Nehls
(1995) also states that per gram AFDW, an eider duck swallows about 7 g mussel
shells.

Water content
Besides flesh and shell, mussels consist of water. After Nehls (1995), water content
of a shell (g) is:

7.24102 lwater −⋅= (g) (12)

with shell length l in mm. According to eq.(12), a 50 mm shell contains about 8 g
water.

In the model, water content is computed as the difference between fresh mass (see
below) and flesh mass plus shell mass.

Fresh masses
Shellfish surveys mostly measure shell fresh masses: water plus shell mass plus flesh
(g fresh). Nehls (1995) gives for the total shell mass:

92.241056.1 lenweightshelltotal −= (g) (13)

For our purpose we are interested in shell meat contents (as ash free dry mass) and in
shell mass (g shell). Therefore fresh masses are converted into flesh and into shell
masses. As an average for mussels, ash-free dry mass is about 5% of fresh mass (pers.
comm. C.J. Smit, Alterra). Flesh masses are about 25% of total fresh masses. This
implies that about 75% is shell plus water. A 50 mm shell weighs about 20 g, of
which 15 g consist of shell and water. According to the equation for shell mass of
Nehls (1995), shell mass of a 50 mm mussel is about 5.5 g and thus accompanying
water is about 9.5 g. According to eq.(12), this should be 8 g. So there is a small
discrepancy between both estimates.

A mussel with a total fresh mass of 20 g contains 5 g flesh with an ash free dry mass
of 1 g. These data are meant as a rule of thumb and vary with season, site and
individual.

Alterra-rapport 839 35

Breaking force and breaking costs
Hamilton et al (1999) measured the force needed to break a single mussel shell: force
(N) = 2.754* length1.08, for a shell length ranging from 10 to 55 mm. This implies
that with increasing shell mass (mass will increase with area (~length2) times
thickness (~length0.65), and thus according to length2.65) breaking costs will relatively
decrease.

Nehls (1995) gives a linear relationship between the mechanical costs (in kJ) of shell
crushing and shell mass: costs (kJ) = 0.643 * Shell mass (g) - 0.317. For a 5.5 g shell
costs would be 3.3 kJ. According to this equation eating about 100 mussels of 50 mm
per day costs about 300 kJ. In chapter 6 costs are specified more in detail.

Mussel attachment and resistance against removal
Byssus threads attach mussel shells to each other. Hamilton et al (1999) state that the
smallest mussels are easiest to detach, the largest ones the most difficult. According
to Nehls (1995), mussels on culture lots are the easiest to remove and mussels on
tidal mussel beds the most difficult.

Barnacle epibionts
Additional characteristics, such as the presence of barnacle epibionts, may be
important. Barnacles increase the size of the shell considerably and therefore
decrease the edibility. They also form sharp edges on the shell which makes it more
dangerous for an eider duck to swallow. Thus, the profitability of a prey decreases
with increasing barnacle overgrowth. Especially on adult mussels, barnacle
overgrowth can be substantial (Saier & Buschbaum, 2001; Buschbaum, 2001). In an
overview Saier et al (2002) argued that subtidal mussels suffer less from barnacle
epibionts than intertidal mussels, mainly due to predation by juvenile starfish and
adult green crabs upon juvenile barnacles. Young mussels are capable to clean their
own shell within the reach of their foot. From about a size of 20 mm this is no
longer possible for the whole shell.

Usually two different species of barnacles may be present. On intertidal mussels,
Semibalanus balanoides can be found with a size of up to 1.5 cm diameter and about 1
cm heigh. Subtidal mussels have a Balanus cretatus overgrowth with a size of up to 2
cm diameter and sometimes of the same height (Campbell, 1976).

An eider duck swallowing a mussel will profit from the slender shape of the shell
which is an important reason for prey size selection differences between mussels and
cockles. Barnacles add to the width and the height of the mussels. Since a mussel has
an average length : width : height ratio of about 6:2:3 (see above), the contribution to
width has most effect on the edibility. Even an overgrowth with small barnacles
(about 5 mm height) will increase width of a 4 cm mussel from 1.4 to 2.4 cm. This is
the same width as a clean mussel with a length of 7.2 cm. Combined with the sharp
edges, the extent of barnacle overgrowth in a mussel bed will reduce the prey
availability and thus prey selection for ducks drastically. Own data (De Jager, 2002;
see Figure 11 and Figure 12) show that it is clear that width is more affected by

36 Alterra-rapport 839

barnacle overgrowth than height..

Figure 11. Shell heights when barnacles are present (data Alterra). Lines represent the result of a linear regression.

Figure 12. Shell widths when barnacles are present (data Alterra). Lines represent the result of a linear regression.

0

5

10

15

20

25

30

0 10 20 30 40 50 60
Length (mm)

Height Height (regression)

Height + barnacles Height with barnacles

Mussel shell sizes

0

5

10

15

20

25

30

0 10 20 30 40 50 60
Length (mm)

Width Width with barnacles

Width (regression) Width with barnacles

Mussel shell sizes

Alterra-rapport 839 37

6 Specification of all energy terms

6.1 Heat loss of an eider duck through conductance

Flux of heat through fat layer and feathers
Because of the temperature difference between an eider duck’s body and the
environment, there’s always loss of heat. Fat and feathers minimize this loss as much
as possible. The rate of the heat flow through an isolating layer depends on the
thickness of that layer, the temperature difference over that layer (together they
make up the temperature gradient), and the heat conductance coefficient (W m-1 K-1)
of the medium. Figure 13 shows differences between a diving and a swimming bird
because of a different feather thickness.
In all cases, the heat flux F reads:

dx
dT

a−=Φ (W m-2) (14)

with
a = heat conductance coefficient of the medium (fat, air) (W m-1 K-1)
T = temperature (K)
x = distance (m)

For the heat flow from the duck’s body to the air, the flux through the fat (F fat)
equals the flux through the feathers (F feat). With dT/dX = ?T/?x (since there is no
heat production in fat nor feathers, T decreases linearly with x), one can compute the
skin temperature Tskin:

b

TTb
T envirbody

skin +

+
=

1
(oC) (15)

with

fat

feathers

feathers

fat

d

d

a

a
b ⋅= (-) (16)

and dfeathers and dfat as mean the thickness (m) of the feather layer and the fat layer,
respectively. Multiplication with the duck’s body area (see below) yields the heat loss
per animal:

areaSurfacelossHeat ⋅Φ= (W) (17)

For the situation of swimming or resting at the shore, dfeathers is larger than when
diving. The result for the first situation gives the basic heat loss, the result for the

38 Alterra-rapport 839

second situation the heat loss during diving for food. The difference between both is
the extra heat loss as a result of foraging. In the model, it is accounted for that during
foraging, the bird also spends some time above water (handling the prey and
recovering from the dive). During that period, the heat loss depends on the heat loss
in the water (for that part of the duck that has contact with the water), and the heat
loss in the air (for the other part of the duck that is in contact with air).

With Tbody = 40 ºC, Tenvir = 5 ºC, a feathers = 2.5e-02 and a fat = 2.5e-01 (W m-1 K-1), dfat=
4e-03 m, and dfeathers=20e-3 m, it follows that b = 50. Thus, Tskin is almost equal to the
body temperature (39.3 ºC). During diving, dfeathers is about 6e-3 m, and Tskin = 37.8
ºC. This implies that in both cases Tskin is close to Tbody and thus isolating properties
of the fat layer are not very important as long as the feathers are functioning well.
Only if the feather layer is damaged and the fat layer is thin heat loss can become
large.. Heat loss while diving in 5 ºC water amounts about 200 W m-2, while in air it
amounts about 60 W m-2. More data on dfeathers are given in section 5.1.

Figure 13. Heat loss through fat and feathers. In case of swimming (B), the feather layer is thicker than in case of
diving (A). Feather thickness also determines buoyancy by altering the duck’s specific mass, which is 0.7 during
diving, and about 0.4-0.5 while swimming.

We validated the equations on some of De Leeuw’s measured data (De Leeuw,
1997). His results indicate that a tufted duck (Aythya fuligula, female; mass 606 g; body
surface 688 cm2; feather thickness about 2.4 - 3.5 mm, depending on the assumption
for lung volumes; all data according to section 5.1) shows a maximum cooling rate of
8e-3 ºC s-1 and while diving in water of about 4.7-6.2 ºC. This implies a heat flow of

Fat Feathers

IN AIR

IN WATER

TEMP

A

B

Body

Alterra-rapport 839 39

about 20 W (based on a specific duck heat of 4.2 J g-1 K-1, the same as for water is
assumed here), and a flux of about 296 W m-2. The calculated temperature difference
(?T in eq. (14)) between body and water should then be between 41 - 29 ºC. The real
difference ?T is 31-35 ºC (skin temperature about 37.8-39.3 ºC minus water
temperature 4.7-6.2 ºC).
This result suggests that the here presented computation method and De Leeuw’s
measurements are consistent.

Text box 3. Heat transfer approach by De Leeuw (1997).

Eqs. (14) - (16) assume optimal isolating properties of the feathers. In reality, heat
loss will be larger. Especially during the stay above water we expect an extra heat loss
during strong winds and high air humidity. These effects are mentioned under ‘wind
chill effects’, see section 6.13. In that section also heat loss as a result of extra
evaporation of feather water is discussed.

A duck has an extra mechanism to reduce its heat loss. It is capable to reduce blood
flow in the fat layer region. This complicates the computation from eqs. (14) - (16),
but the effect is omitted for the present study. The above outline suggests that the
insulating properties of the fat layer are much less important than that of the
feathers, as long as the feather layer is not disturbed.

Effect of wind (or: absence of wind)
Without doubt, wind is of importance for the overall heat transfer between duck and
air. In the explanation above, it is assumed that the resistance against heat transfer is
only determined by the insulating capacity of feathers and fat. Or, in other words,
that at the feather surface, the temperature exactly equals the environmental
temperature. The resistance against heat transfer in the air then is supposed to be
zero. This, however, is not reality. Wind speed may be low, and then heat exchange
decreases.
Usually this effect is described by a general equation:

bUWIaExhange= (18)

with b=2 as a common value for the exponent (see e.g. other heat budget
computations where wind is involved; Thomann & Mueller, 1987). Since the overall
heat transfer has to be computed, the effect of wind is a reduced resistance against

De Leeuw (1997) used an alternative method to estimate the heat transfer from body to water. He
assumed that during a dive there are two major processes going on: heat production by basic
metabolism and the heat transfer. During a dive, the heat transfer is the largest of both, resulting in a
decrease in body temperature. After the dive, the time to recover is mainly needed to restore the
normal body temperature. De Leeuw’s method to compute the several contributions is not suitable
for our model, but the approach gives us an opportunity to estimate the recovery time. Thus: diving
heat is lost and thus, body temperature will decrease. After the dive, the duck will rest until the body
temperature is back at the normal level. Since the last process is a first order process depending on
(Tfinal - Tbody), it contains an asymptote (the target temperature Tbody) and one can only use this
approach to compare one recovery time with another.

40 Alterra-rapport 839

transfer, and this should be added to eqs.(15) and (16)(see appendix B). In Figure 14
a computed heat flux as a function of wind speed is shown.

When the surrounding medium is water, this resistance against heat transfer
presumable is very low and any effect of water flow may be neglected.

Figure 14. Best guess of wind speed effects on heat transfer, Tair = 5°C. The guess is implemented in the model,
but will be subject to improvements. See appendix B for an extended explanation.

Effect of solar radiation and long wave back radiation
In day light a duck receives heat energy from the sun. This solar radiation can be
measured, and directly gives the solar energy a duck receives. A fraction of the
received energy is lost due tot reflection. During summer, daily average solar
radiation is about 200-300 W m-2. For a duck with a body area perpendicular to solar
radiation of about 450 cm2 (about 0.5*total feather area / v2) heat capture is about
6-10 W (over the whole 24 h period). In a normal winter period, this is about 10-40
W m-2, or 0.3 to 1.2 W.

Long wave back radiation follows Stefan-Boltzmann’s law (loss ~(?T)4, with ?T as
the temperature difference between feather surface and air). Cloudiness and air
humidity are variables in the description.

0 3 6 9 12 15
Wind (m/s)

Heat flux
as a function of wind speed

60

65

70

75

80

85

Alterra-rapport 839 41

In the present model, solar radiation and long wave back radiation are not accounted
for.

6.2 Heat loss of an animal through breathing

Heating the inhaled air
A breathing bird, inhaling cold air, and exhaling air at body temperature, loses heat.
The heat loss reads:

][airbodyairbreathbreath TTQLoss −⋅⋅⋅= ρσ (W) (19)

Qbreath = breath flow (m3 s-1)
s = specific heat of air (J kg-1 K-1)
? = specific mass of air (kg m-3)
Tbody = body temperature (K)
Tair = air temperature (K)

The breath flow Qbreath is related to the metabolic rate. For a certain amount of body
mass respired a proportional amount of oxygen is needed. When CH2O is taken as
average body mass composition, respiration of 1 gram body mass (to CO2 and H2O)
requires 32/30 gram of oxygen. The oxygen content of air is (a) 20% (a=0.2 g g-1),
and each inhalation only a part (ß) of the oxygen is used. It is assumed that this part
is 20% of the available oxygen (ß=0.2). With an energetic content of body mass of T
(J g-1 dry mass), breath flow (Qbreath) can be related to respiration Y (W):

(m3 s-1) (20)

In case of resting, only the basic metabolism is relevant. In case of foraging the extra
energetic action is relevant. In both cases, the energy expenditure is translated using
eq.(20) into a breath flow (Qbreath) .

Effects of evaporation of water (in the lungs
A correction may be necessary to account for the energetic costs concerning the
evaporation of water in the lungs. A maximum loss can be computed when one
assumes that completely dry air is inhaled and completely saturated air is exhaled.
The heat loss Evap (W) amounts

evap
mol

breath H
V
MolP

QEvap ⋅⋅⋅=
510

(W) (21)

) . (
10

.
30
32

.
Y

 = Q
5

breath βαρ ⋅Θ air

42 Alterra-rapport 839

where P is the vapour pressure (Pa), and 105 denotes the standard air pressure at
which 1 Mol water (18 g) has a volume of Vmol (22.4 10-3 m3), and Hevap is the
evaporation heat of water (= 2.26 103 J g-1). These data are relatively accurate physical
data and eq. (21) gives the maximum energy loss under the conditions as mentioned.
Usually, it will be less since the exhaled air will not be completely saturated and the
inhaled air will not be completely dry. Figure 15 outlines this relationship.

Figure 15. Evaporation losses through breathing, as a function of the metabolic rate. For an eider duck, 8-32 W
is a relevant range.

6.3 Heating the prey and losses through defecation

When a prey is swallowed, it will be heated:

)(*_ shellduckshellw TTMshellHeating −∗= σ (J) (22)

with sw= specific heat of the shell (J kg-1 K-1), Mshell the mass of the shell (kg) and
(Tbody-Tshell) denotes the temperature difference between eider duck and shell (K). s w

usually will be close to 4.2 103, because a large part of a shell consists of water.

For a more precise estimate of the specific heat of a mussel or cockle one can
distinguish between the shell, the water and the meat. The specific heat s w (J kg-1 K-1)
reads:

0.00

0.20

0.40

0.60

0.80

1.00

2 4 8 16 32 64
Metabolic rate (W)

Heat loss through breath evaporation

Alterra-rapport 839 43

fleshwatershell

fleshfleshwaterwatershellshell
w MMM

MMM

++

⋅+⋅+⋅
=

σσσ
σ (J kg-1 K-1) (23)

where M (shell, water, flesh) is the contribution (g) of shell, water and flesh to the
total mass, and s (shell, water, flesh) the specific heat of shell, water and flesh.
These are 0.9 (an estimate for calcite), 4.2 (water) and 3.5 (an estimate for flesh (De
Leeuw, 1997)) (J kg-1 K-1), respectively. Since shell mass is about 30%, water mass
about 65% and flesh mass about 5% of total mass (see section 5.2), it follows that s w

= 3.2 (J kg-1 K-1).

That part of the food that is excreted afterwards transports heat but is not a loss
term for the heat budget. The loss is accounted for by eq. (22).

6.4 Crushing shells

The energy costs of crushing shells depend on the thickness of the shells and on the
strength of the shells. Generally, one could use a description like:

crushbhShellLengtcrushaCrushing __ ⋅= (J) (24)

The b_crush -parameter determines whether there is or there is not a shell size where
yield based upon flesh content and crushing costs is maximal. A maximum only
exists if b_crush is larger than the corresponding parameter for flesh content. A large
value for b_crush also implies that shells become relatively thicker with age or with
length. In case b_crush is smaller than the allometric parameter for flesh content, the
profit for a duck will always increase with increasing shell size.

Mussels on tidal flats usually have a relatively thick shell, which is often ascribed to
the poorer growing conditions on tidal flats and to the observation that shells of the
same age have more or less the same shell thickness. Sometimes, data on shell
crushing costs is not presented in terms of energy (J), but in terms of force (N).

Nehls (1995) computed crushing costs from the difference between nett food yield
and the flesh yield (nett yield = flesh yield - crushing costs {heating the prey is taken
into account}).
The nett yield is calculated as ln(E nett) = 3.737 ln (Length) - 12.815, and the flesh
yield (22.5 kJ g-1) follows from the flesh content of the prey: ln(5*flesh) = 2.919 ln
(Length) - 8.764. The term 5* flesh is because Nehls uses fresh flesh mass, and not
AFDW. With the relation between shell mass and length ln(Shell_Mass) = 2.943 ln
(Length) - 9.783, Nehls was able to relate the energy needed for crushing shells to
shell mass (g):

317.0_643.0 −= MassShellCrushing (J) (25)

44 Alterra-rapport 839

Nehls’ results show that the nett energy yield increases with length3.737, and the gross
yield with length2.919. Consequently, Nehls concludes that crushing costs increase
slower with shell size than yields.

Nehls’ relation is valid for subtidal mussels. This relation can be converted so that
crushing costs are related to shell length: crushing costs (kJ/shell) = -0.317 +3.63 10 -5

length2.919.

Others present data on breaking force in stead of energetic costs. Piersma et al
(1993) found: Force (N)=0.0101 Length2.994 for Cerasteroderma edule, =0.0018
Length3.527 for Macoma balthica , and =0.0446 Length2.351 for Mytilus edulis . If correct,
these data would give information on relative crushing energies. However, the
formulas Piersma et al present suffer from an error that is often made when
estimating parameters for allometric equations (Brinkman, 1993). Although the result
of the equation gives a reliable estimate for the dependent variable (in this case the
breaking force), the separate allometric parameters (the constant and the exponent)
are not reliable at all, and show a large banana-shaped combined uncertainty region.
This can already be observed when comparing the three constants, and the three
exponents. The exponents vary between 2.5 for Mytilus and 3.5 for Macoma and the
constants show a reverse picture: 0.04 for Mytilus and 0.002 for Macoma. A low value
for the exponent is compensated by a large constant, and vice versa. One of the
causes may be that most of the data that have been used by Piersma et al (1993) for
the parameter estimation cover only the smaller sizes. Larger shells were not
included. Parameter estimation on allometric relationships only produces reliable
parameters if the data cover a broad size spectrum.

If only the result (the breaking force in this case) is needed, then the very limited
reliability of the parameters is not a major draw-back. However, if, and this is what
Nehls did, the costs of shell crushing are computed by combining two allometric
equations, then the reliability of the allometric exponents is crucial.

So, it’s not unlikely that Nehls (1995) equation has the same kind of error as the
equations of Piersma et al (1993).

The translation of force (N) into crushing costs (J) is impossible to make without
experimental data telling us how much work a bird has to do in order to crush shells
of a certain size. The observations of work=f(shell size) can be applied to scale the
amount of energy needed when crushing shells of different sizes. Thus, we need data
like Nehls (1995) presented plus comparisons like the data Piersma et al (1993)
presented.

Although the interpretation of the data mentioned is questionable, we tried to deduce
a relationship for mussels and cockles based on both data sets. Assuming that Nehls’
equation is correct, and the breaking costs are proportional to breaking forces, then a
factor of about 7 10-3 kJ N-1 would be a first estimate to convert crushing costs in
crushing force:

Alterra-rapport 839 45

forcetscrush ⋅= 007.0cos_ (J) (26)

with force according to Piersma et al (1993) (see above). In Figure 17, crushing costs
related to shell mass, and in Figure 16 crushing costs related to shell lengths are
given. For the allometric line in figure 16, a= 3.12 10-4 and b= 2.35. The value for a is
found with the equation of Piersma et al for breaking force, and eq. (26) is used for
the conversion into J.

Figure 16. Costs of crushing shells as a function of shell length, according to Nehls (1995) and Piersma et al
(1993) (estimated after conversion).

Mussels (Nehls) Cockles Mussels

3

6

9

12

15

0 20 40 60
Length (mm)

Crushing costs of shells

46 Alterra-rapport 839

Figure 17. Costs of crushing shells as a function of shell mass, according to Nehls (1995) and Piersma et al
(1993) (estimated after conversion).

6.5 Costs of digestion

The costs of digestion only concern the costs the eider duck has to make in order to
make the food suitable for assimilation. It is a function of the amount of meat, of the
quality of the food, and the passage time of stomach and guts. Since we are regarding
average passage times, and average meat quality, the last two arguments are not
considered in the rest of the paper.

Nehls (1995) gives as an estimate that about 14% of the energy equivalent of food is
needed for the digestive costs. Thus, in

uptakeenergyfoodtsDigestive __cos_ ⋅=γ (J) (27)

the parameter ? = 0.14.

On average food_energy_uptake is about 22.5 kJ g-1 AFDW (see section 6.15).

0

1

2

3

4

5

0 1 2 3 4 5 6
Shell weight (g)

Mussels (Piersma) Mussels (Nehls) Adapted Nehls (through (0,0))

Crushing costs

Alterra-rapport 839 47

More in detail, Nehls gives an equation of digestive costs related to food_uptake in g
(AFDW):

113.7_874.3cos_ −⋅= uptakefoodtsDigestive (J) (28)

Digestive costs are chemical costs, i.e., the bird has to produce enzymes and other
metabolically active substances. There is no (or hardly any) heat production involved.
Thus, the costs appear on the energy budget, not on the heat budget. As an example,
for a food_uptake of 10 g AFDW (equivalent of 220 kJ), digestive costs are 31.6 kJ.
This equals 0.143 times the food_energy_uptake, as described by eq. (27). Nehls’ data
also allow an equation like eq. (28) without a constant. In that case, the
proportionality factor is 3.15 (kJ g-1 AFDW-uptake). Food is used for storage. This
appears as biomass on the budget, and is converted into energy (kinetic energy, heat)
later on. The result of that process is loss of biomass.

6.6 Costs of diving

Acceleration
When a bird dives, it first has to accelerate, swim to the bottom of the water system,
and stay at the bottom until a suitable prey is found and torn loose. The eider duck
does not dive with a constant speed, but there are some variations that make up part
of the energy losses.

Acceleration costs are very straightforward: the bird (with mass m) gets a kinetic
energy

2

2
1

vmEkin= (J) (29)

If, during a dive, a bird varies it’s diving speed between vmin< v < vmax (m s-1), with a
frequency of frdiv (s-1), each time the bird accelerates from vmin to vmax the energy
input is 0.5 * m * (vmax

2 - vmin
2). The energy loss that occurs when the speed decreases

from vmax to vmin is dissipated into the environment as heat. Thus, the extra costs as a
result of the not-constant speed is:

divedivaccelextra durationvvmfrE *)(5.0 2
min

2
max −⋅= (J) (30)

with duration of the dive in (s). At the end of section 6.6 it is explained that the
frequency frdiv depends on diving force (generated by the duck), upward force (as a
result of buoyancy), drag forces during downward and upward movement and the
value of vmax and vmin.

Drag
When diving, the bird encounters a drag force (or friction), which consists of a form
drag related to the size and the shape of the duck’s body, and a viscosity drag, related
to the duck’s surface area. Generally, the friction force reads:

48 Alterra-rapport 839

fKAFf = (N) (31)

with A as the object area (m2) (perpendicular to the flow direction), K as the
characteristic kinetic energy of the object per unit volume (J m-3), and f as the friction
factor (-). Eq. (31) is a definition for f. Usually, not Ff is measured, but the final
falling velocity of an object.
In fluid mechanic science, friction forces for many objects and many flow velocities
have been measured.
The formula to be used depends on the Reynolds number:

η

ρ Dvfluid=Re (-) (32)

with
? fluid = specific mass of the fluid (kg m-3)
v = velocity of the duck relative to the fluid (m s-1)
D = specific size of the object, usually the diameter of the object perpendicular

to the flow direction (m)
? = viscosity of the fluid (kg m-1 s-1) (often as centipoises, 1 kg m-1 s-1 = 1000

cPoise)

Since ?˜ 103 (kg m-3), ?˜ 10-3 (kg m-1 s-1), ṽ 1 m s-1 and D˜ 0.15 m, Re˜ 1.5 105. For
Re>2 103, and thus also in our case, the friction factor f from eq. (31) reads:

44.0=f (-) (33)

In case of a sphere, and thus, when the speed relative to the fluid = v (the diving
speed), the friction force is:

)5.0()
2
1

(44.0 22 DvF waterf πρ= (N) (34)

The energy needed to reach the bottom is (force times distance):

depthFE fdiving ⋅= (J) (35)

The power needed reads:

divingjdrag vFW ⋅= (W) (36)

Because the shape of a duck is not spherical, the proportionality (or friction) factor f
will differ somewhat from 0.44. With eq (35), the mechanical energy needed to reach
the bottom is known. The frontal area (0.5ΒD2) of the duck is described in section 5
(Figure 5).

Lovvorn et al (1991) measured Ff for ducks by gently sealing frozen ducks, pulling
these through a fluid and measuring the force acting on the duck. They found a
relationship Ffr=-0.946 +0.826M + 0.614 v + 0.825 v2 (N), where M is the bird’s

Alterra-rapport 839 49

mass (kg), and v the diving speed (m s-1). Unfortunately, they did not document in
what range the formula is valid. Their equation yields a positive drag at v=0. This
should however be 0. In Figure 20, Ffr according to eq.(34) and Ffr according to
Lovvorn’s equation are given. We also inserted a slightly altered version of Lovvorn’s
equation where Ffr |v=0=0. From Figure 20 it is clear that (34) and Lovvorn’s values
are of the same order. We consider that as support for both approaches. For our
purpose, a most appropriate value for the friction factor f turned out to be 0.10 to
0.15.

Buoyancy
The duck has to overcome the buoyant forces. Because of the difference between the
specific mass ∆ (kg m-3) of the fluid and that of the duck, the buoyant force reads:

duckduckwaterbouy VgF)(ρρ −= (N) (37)

with
g = gravity acceleration (m s-2)
Vduck = volume of the duck (including feathers) (m3)

So, the potential energy added to the duck as a result of diving is:

depthFE bouybouyancy ⋅= (J) (38)

Adding eqs. (29), (30), (35) and (38) gives the total energy needed for a dive.
The power needed to overcome buoyancy reads:

divingbuoybuoy vFW ⋅= (W) (39)

Pressure has a significant effect on buoyancy; see the section on pressure effects
below.

Efficiency
An eider duck is not a 100% efficient diver. It dives by 1) the acceleration at the
beginning of the dive, and 2) by using its feet producing a force directed downwards.
The duck produces heat because not all the energy is transformed into flipper
movement (efficiency ,1), and secondly, not all the flipper movement is transformed
into a force directed downward (efficiency ,2). Probably, the losses are larger or even
much larger than the energy strictly needed for the dive.

So, the total amount of energy needed, is:

21
_

)(

εε ⋅

+
= buoyancydiving

realdiving

EE
E (J) (40)

50 Alterra-rapport 839

The heat production inside the duck’s body amounts:

realdivingbodyheat EE _1_)1(/⋅−= ε (J) (41)

The heat loss to the water reads:

realdivingwaterheat EE _12_)1(/⋅⋅−= εε (J) (42)

The last variable does not appear in the model. What does appear is the energy
needed (eq (40)) and the heat production in the body, which adds to the heat budget.

Text box 4. Estimation of diving efficiency of tufted ducks. Measured data after De Leeuw (1997). Efficiencies
that are used, are computed. See text for further explanation..

To give an estimate of efficiency, measured costs have to be compared with
theoretical costs. Up to this moment, we only used data of De Leeuw (1997) for
tufted ducks (text box 4). With his data we estimated an efficiency of about 35-40%.
Thus, about 60-65% of the energy needed, is converted into heat instead of
movement. We assume that this part adds to the heat content of the bird, which is
not entirely true because also a part of the heat is lost in the water (eq.(42)). No
estimates could be found on that part yet.

Pressure effects
When diving, the buoyancy is affected by the compression of the air between the
feathers and in the lungs of an eider duck. Using Boyle-Gay-Lussac’s law pV=RT
(the necessary corrections are omitted since the deviations from the standard

Mass of tufted duck 606 g
Diving metabolic rate (DMR) 11 W measured

Basic metabolic rate BMR 2.97 W measured
DMR - BMR 8.03 W computed

Needed for drag 0.7 W estimated by De Leeuw
Needed for buoyancy 2.5 W estimated by De Leeuw

Drag+Buoyancy 3.2 W estimations added
DMR-BMR-(Drag+Buoyancy) 4.83 W losses

Needed for drag 0.23 W equation
Needed for buoyancy 1.79 W equation

Needed for acceleration 0.79 W equation
Drag+Buoyancy+Acceleration 2.81 W equations added

Efficiency (measurement) 0.40 (-) using estimations by De Leeuw
Efficiency (computed) 0.35 (-) using estimations according to equations

Alterra-rapport 839 51

situation (1 atm) are not that large) it follows that the air volume between feathers is
related to depth:

)10(
10

.)0(V
)(

)0(
.)0(V = V

5

5

airairair depthgdepthp
p

water ⋅⋅+
=

ρ
(m3) (43)

The specific mass of the duck including air thus becomes:

bodyair

bodybodyairair
duck VV

VV

+

⋅+⋅
=

ρρ
ρ (kg m-3) (44)

Substituting equations 43 and 44 in eq 37 gives the relationship between buoyancy
and depth. For a very shallow water body this effect is not relevant, but at a depth of
about 3 m, a common situation in the Dutch Wadden Sea, buoyancy is reduced with
about 30%. The energy needed to overcome buoyancy (Figure 21) therefore
decreases.

In appendix C it is explained how the effect of changing buoyancy during descent is
handled in the model.

Staying at the bottom
After the dive, the bird has to stay at the bottom for a while, searching for a prey or
handling the prey. Drag forces will be smaller than during the dive, but the buoyant
forces still have to be compensated. There is no potential energy added to the duck.
All the energy dissipates partly inside the duck, and partly in the water. This implies
that from eq. (40) some terms disappear, and some remain. Lovvorn et al (1991)
estimate staying costs of 1.7 - 2.6 W kg-1 from the computed upward movement
between two strokes of the duck’s feet and the energy needed to get back to the
bottom position. Since the efficiency of this process determines the energy needed,
we applied our estimate of efficiency from De Leeuw’s data (see text box 4). The
power needed to overcome upward forces (buoyancy) and the power needed for the
ongoing acceleration is quite low. A tufted duck requires about 8 (W) for the ‘normal’
diving process, including an efficiency of about 35%. For the stay at the bottom
normal diving power (8 W) minus about 2.8 W (used to overcome drag, buoyancy
and acceleration) = 6.2 W is needed. This is a maximum estimate. Another estimate
is to use relative amounts: (8-2.8)/8 * 6.2 = 4 W.

Lowworn et al (1991) computed 1.7 W kg-1 for lesser scaups (817 g body mass) and
2.5 W kg-1 for redheads and canvasbacks (respectively 1013 and 1275 g body mass).
Including 35% efficiency, we would arrive at 3.9 W for lesser scaups, and 9 W for
canvasbacks as power requirement to stay at the bottom. For an eider duck of 2000 g
body mass, we calculate a power requirement of 5/0.35 ̃ 14 W.

In order to come to a more precise estimate, we simulated the movements of an
eider duck at the bottom of a water system, at two depths: 3 m and 5 m. The
buoyancy differences are accounted for and the diving speed -with average 0 m s-1-
ranges between +0.1 and -0.1 m s-1. The stroke frequency (measured by De Leeuw
(1997) for tufted ducks as 3.06 s-1, given by Lovvorn et al, 1991 as 2.8 s-1 for

52 Alterra-rapport 839

canvasbacks, 3.3 s-1 for redheads and 3.6 s-1 for lesser scaups) is chosen to be 3 s-1.
An eider ducks stroke frequency is about 2.6 s-1. Power requirement is not very
sensitive to different values of stroke frequency.

For eider ducks, we calculate a force to stay at the bottom of about 7.2 N during
the period of active strokes, and 5.6 N as an average for the whole period including
the periods between two strokes. At 3 m depth, these data are 8.05N and 6.47 N for
active force and average, respectively. These forces include the forces needed to
overcome buoyancy, acceleration and drag forces. These last two are small since the
speed is close to zero, and the speed amplitude is 0.1 m s-1 . With increasing
amplitude, acceleration and, to a certain extent, also drag increases.

In Figure 18, velocities, acceleration and buoyancy is sketched for an eider duck
staying at the bottom, 3 m deep.

When diving, drag forces are added (Figure 19). The force during strokes is about
10.3 N, and the average is 8.56 N. Acceleration (variations in diving speed) costs are
about 0.4 W, which equals 0.4 N when speed is 1.0 m s-1. Especially these
acceleration costs depend on the assumption of minimum and maximum velocities.
Compared to buoyancy costs, acceleration is less important, although it cannot be
ignored.

The computed costs are real costs. Regarding a 35-40% efficiency, including the
conversion from power (watts) needed to produce force (N), the diving will cost an
eider duck about 21-24 W, and staying at the bottom about 14-16 W. Acceleration
costs are 1.2 W for a diving duck (mean velocity =1.0 m s-1, amplitude = 0.1 m s-1) or
2.4 W if the amplitude is 0.2 m s-1. At the bottom, acceleration costs are 0.2 W if the
amplitude = 0.2 m s-1 and 0.06 W if this is 0.1 m s-1.

Work against buoyancy depends on depth. The duck also has to perform work for
the local variations in velocity (the duck does not stay constantly at the same vertical
position, but there is a small variation).

Still, it is difficult to transform forces -needed to counteract upward buoyant forces-
to power needed to produce that force. One may argue, and that’s what we are
doing, that when diving a duck has to produce a power of 11-12 W (force times
speed or {buoyancy+drag+acceleration} times 1 m s-1 with about 2.8 W needed for
drag and 0.4 for acceleration). Because of efficiency loss it costs an eider duck about
100/40 times as much energy, thus about 27 W. At the sediment, speed is zero, and
only 16 W is needed. This is in case of zero m water depth and a buoyancy of 8.7 N.
Thus, an estimate for the energy needed to stay at the bottom is 2 W N-1. This figure
is used in the model.

Alterra-rapport 839 53

Figure 18. Velocity, buoyancy, and acceleration of an eider duck when foraging at the sediment surface (depth=
3m).

2.998

3.000

3.002

3.004

3.006

3.008

3.010

6.463

6.464

6.465

6.466

6.467

6.468

6.469

0 0.2 0.4 0.6 0.8 1
Time (sec)

Depth Speed

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

-4.0

-3.0

-2.0

-1.0

0.0

1.0

0 0.2 0.4 0.6 0.8 1
Time (sec)

Speed Acceleration

Eider duck at bottom, d=3 m.
Force when active: 8.05 N, average force: 6.47 N.
Strokes= 3 /s .

54 Alterra-rapport 839

Figure 19. Velocity, buoyancy, and acceleration of an eider duck when diving, starting at 3 m depth.

Eider duck diving, d=3 m.
Force = 10.2 N when active, average force= 8.6 N.
Strokes= 3 /s .

0.85

0.90

0.95

1.00

1.05

1.10

1.15

-5.0

-4.0
-3.0

-2.0

-1.0

0.0
1.0

2.0

0 0.2 0.4 0.6 0.8 1
Time (sec)

Speed Acceleration

3.000

3.200

3.400

3.600

3.800

4.000

6.00

6.10

6.20

6.30

6.40

6.50

0 0.2 0.4 0.6 0.8 1
Time (sec)

Depth Speed

Alterra-rapport 839 55

Getting back to the surface
After the dive, the duck will float; the upward speed depends on the buoyant forces
and the opposing drag forces. The approximate vertical speed of the duck can be
computed since the buoyant force Fbuoy (eq. (37)) equals the friction force Ff (eq.
(34)), and thus:

)5.0()
2
1

(

)(
2Df

Vg
v

water

duckduckwater
float

πρ

ρρ −
= (m s-1) (46)

The friction factor f equals 0.44 for a sphere, but is about 0.15 for an eider duck
(Figure 20 and §6.6).

In Figure 21, also vfloat is shown, including pressure effects on buoyancy, and
assuming 30% air volume at the beginning of a dive. These results show that the time
needed to get back to the surface is 30-50% shorter than the time needed to dive .
Floating is without energetic demands, the potential energy of the bird dissipates
during floating, and adds to the water temperature. Thus, it does not appear in the
heat budget of the duck.

The velocities found in this way are higher than data from literature. De Leeuw’s data
on ascent time for a tufted duck show an upward velocity of about 0.9-0.95 m s-1,
data for an eider duck are not found in literature (so far). The difference between
computation and observation can be explained by the way tufted ducks perform their
ascent.

De Leeuw (1997) monitored diving tufted ducks during their descent and ascent. He
clearly showed that a diving tufted duck has a much more hydrodynamic shape than
a duck that is ascending as a result of buoyancy alone. The frontal area of a
descending duck is smaller than of an ascending duck. From De Leeuw’s
photographs we estimated a 1.5 times larger frontal area for an ascending duck. The
resulting upward velocity for a tufted duck (mass: 600 g, frontal area: 128 cm2)
becomes about 1.1 m s-1. But, De Leeuw’s photographs also show that the ducks
exhale some air prior to rising. Assuming a buoyancy loss of about 15% as a result of
such a loss of air (from 0.7 specific mass to 0.75 kg dm-3), the speed of ascent
decreases from 1.15 to 0.98 m s-1. By these corrections, the computed upward
velocity equals the measured velocity of tufted ducks. A typical computed eider duck
upward velocity is about 1.3 m s-1 assuming similar exhalation characteristics and
changing frontal areas.

Effects of environmental temperature
Temperature (T) plays a minor role in the computation of diving costs. Viscosity of
water changes from 1.78 cp at 0 °C to 1.3 cp at 10 °C and 1.0 cp at 20 °C (1
centipoise = 10 -3 N s m-2). But diving drag is mainly determined by form drag instead
of viscosity drag, and therefore, effects are smaller.

56 Alterra-rapport 839

Specific mass of air is about linearly related with T-1, with T in K. From 0 °C to 20
°C (the normal range of water temperatures), the relative change is about 7%. But,
because mainly the difference between specific mass of air (changing from small to
even somewhat smaller with increasing temperature) and of water (a much larger
density, which is constant within about 0.2% from 4 °C to 20 °C) is used, the effect
will be much smaller, and thus ignorable.

6.7 Swimming

When a bird is swimming, it encounters a drag as a result of its speed. Since only a
part of the body is in the water, the plane perpendicular to the swimming direction
(the effective frontal area) is (much) smaller than while diving. On the other hand, at
the water surface, surface tension effects add to the forces.

Baudinette and Gill (1985, cited by Wilson et al, 1992) presented an empirical
formula:

CFPower swim −⋅=α (W) (46)

with a as a proportionality factor (0.74 W N-1 for ducks), and C as an empirical
constant (0.08 W). Since power equals speed * force, this proportionality constant
should be related to speed divided by efficiency. If we assume an efficiency factor of
0.35 to 0.40 (the same as for diving), then average swimming speed is about 0.3 m s-1

, which is not an unlikely average speed (pers. observation).

How the friction force Fswim is found, is not mentioned by Wilson et al, but if we
assume that this is closely related to the friction force under water (while diving),
then about 0.8 N would be our first estimate. Thus, swimming power would be
about 0.6 W.

6.8 Flying

Flying is considered as very costly in terms of energy. Lovvorn and Jones (1994)
mention an energy expenditure of 300 W. With 22.5 kJ per gram AFDW as an
estimate for energetic content of body tissue, 300 W is equivalent to about
300/22.5e3= 1.3e-2 g AFDW of body mass per second. Per day, this amounts about
1100 g AFDW, or (with 20% AFDW to total mass) 5 kg fresh mass per day. Flight
speed of an eider duck is about 24 m s-1 (= 85 km h-1; Lovvorn & Jones, 1984), which
implies that during one day, the flight span would be about 2000 km. It is impossible
for an eider duck to fly such a distance without reducing the costs (by V-shape flying,
for example) or without substantial extra foraging during the trip. Assuming an
existing maximum reserve of about 1000 g fresh mass (which is a high value), thus
about 200 g AFDW, a flight distance of about 360 km for an eider duck would be
possible.

Alterra-rapport 839 57

In the present study, flying costs are not crucial, since we only investigated
differences between regions and sites, and not a decision strategy of a bird whether
to fly to another area or to stay in the present one. We just assumed a small
contribution of flying costs to the overall energy budget. During flying, a part of the
produced energy will be a loss term that contributes to the heat budget. This loss is
estimated to be 60% (same as for energy needed for diving). So, when flying 60 %
of 300 W is heat loss.

6.9 Resting time or recovery

After a dive, a duck needs some time to recover. Probably recovery time is needed to
restore the body temperature (De Leeuw, 1997). Or, in other words, during the dive,
the heat loss is larger than the production, and thus, it needs some time to restore the
internal heat content. Therefore, the resting (recovery) time can be deduced from the
shortage of heat during the dive, and the excess of heat production afterwards. As
soon as the loss has been compensated, the resting time is over.
For the present study, we did not work out this approach, but we kept ourselves to
the observations by Nehls (1995) that in the summer period, the resting time after a
dive was about 12 s, in winter about 15 s. Related to the duration of the dive, resting
time can be described as:

timedivingtimeresting _3.1_ ⋅= (s) 47)

This relationship is implemented in the model, and is used to compute the total time
needed for prey searching and handling.

De Leeuw (1997) measured time budgets for diving tufted ducks (Aythya fuligula), and
found that resting_time was about 0.9 times diving_time at intermediate water
temperatures. Surface time increased only slightly with diving depth. So, may be we
overestimated resting_time.

6.10 Handling time at bottom

During the stay at the sediment surface, the duck has to find a shell and pull it loose.
Probably, finding a mussel is not very time consuming. On mussel beds or culture
lots mussels are present in high densities. If the mussels are loose, it will cost the
duck little time to remove a shell. This will be the case on culture lots. On wild
mussel beds, the duck needs more time. De Leeuw constructed a time budget for
tufted ducks, and found 7 s foraging time in 1 m deep water and about 12-13 s
foraging time in 3 and 5 m deep water, both excluding diving time. Nehls (1995)
found average foraging times for Wadden Sea eider ducks of about 16.8 s in summer
and 19.5 s in winter periods, both including diving time. Because the time needed for
descent and ascent together will be in the order of 5-8 s for 3-5 m deep water, true
foraging time for eider ducks is of the same magnitude as for tufted ducks.
A distinction between culture lot sites and natural mussel beds is not given by Nehls.

58 Alterra-rapport 839

Nehls (1995) also found that when an eider duck could not find a suitable mussel,
the diving was interrupted. Interrupted diving times were on average 22 s instead of
17 s.

6.11 Handling time above water

When a prey is found, it may have to be torn loose. For mussels from culture lots,
this is hardly a problem. They are rather loose, and it does not take much time for a
duck to handle them. In that case, the handling time of loose mussels is (Nehls
1995):

2001.0006.042.0_ lenlentimhand ++= (s) (48)

with len = length of the mussels in mm. The formula is completely empirical, and
derived from field observations on eider ducks eating mussels that were offered in a
tray.

In case the mussels originate from culture lots, a clutch of mussels is released,
transported to the surface, and one mussel (or sometimes more than one) is loosened
by a duck by shaking the clutch vigorously. Nehls (1995) gives an average handling
time in summer of 12.8 s, and 16.1 s in winter.

6.12 Dabbling

Dabbling is relevant for ducks feeding on cockles in very shallow water. Since this
has not been subject of our investigation, we left this topic out of the study.

6.13 Salt excretion

As far as we know, Nehls (1995) is the only one who took into account that mussels
have to excrete the extra salt that they take up during feeding. The amount of salt is
directly related to the amount of water in the shells. The salt (about 35 g of NaCl dm-

3 sea water) needs about 1.5 kJ g-1 NaCl upon excretion. This adds to the energy
budget, not to the heat budget.

6.14 Evaporation of body water

After a dive, a duck is wet. Excess water will be shaken off, but the remains
evaporate, and cause an extra cooling of the feather surface. The heat needed for
evaporation will partly be withdrawn from the air, and partly from the duck. As a
result of evaporation the feather surface temperature as used in eq. (15) and section
6.1 decreases and thus heat loss will increase according to eq. (17). However, this
process in not implemented in the present version of the heat budget.

Alterra-rapport 839 59

6.15 Energetic uptake

The flesh content of a prey is digested, and assimilated. Not all the flesh is used
completely, nor is the assimilation complete. On average, assimilation efficiency
(including digestion efficiency) is about 70-80%. The non-digested part is just leaving
the guts without any contribution to the heat-, energy- or mass budget of the duck.

The food that passes the gut wall is converted into storage matter later on, and this
conversion is not 100% efficient as well. This loss will appear as heat production on
the heat budget. We do not have data for this part of the process.

Therefore, we omitted this in our model and used 75% assimilation efficiency as
basic value for the uptake process.

6.16 Maximum uptake rates

The maximum uptake rate describes the maximum amount of meat or shells a duck
can handle (per unit of time). The maximum amount of shells depends on the
volume of guts and stomach, and their digestive capacities.

As written in section 2, Swennen (1974) described an eider duck that swallowed 28
mussels with a size of 25 mm in only a few minutes. It took the duck about one and
a half hour to process this completely. Since a 25 mm shell contains about 0.12 g
AFDW, and weighs about 2.5 g, it implies a processing rate of about 60 g total shell
mass and 3 g AFDW per 1.5 h, or 400 shells with total mass of 960 g per day and 50
g AFDW per day (= 1.1 103 kJ day-1).

According to the time budgets as described above (sections 6.9-6.11), an eider duck
may process about 1 mussel per minute, or 1400 mussels per day. With an average of
0.6 g AFDW per shell this implies about 840 g AFDW per day, or 16 kg total fresh
shell mass per day, and 16.6 103 kJ day-1 in terms of energy. De Leeuw (1997)
mentions a maximum total daily fresh shell mass uptake for tufted ducks of about 3
times its body mass. For an eider duck this would mean that about 6 kg mussels per
day is the maximum amount of food. This would equal about 300 g AFDW day-1,
and 6.6 103 kJ day-1.

Nehls (1995) presents an uptake rate of 0.85-0.9 g AFDW min-1, or 18.8 kJ min-1

which equals 1224 g AFDW day -1 or 39 103 kJ day-1. These data were based on
dabbling ducks and ducks were not active 24 hours continuously. Nehls (1995) also
mentions a daily energy expenditure of about 3 103 kJ day-1. Thus, the high uptake
values mentioned above represent short time maxima. In the model we constructed
we implemented an upper limit: the duck cannot gather more than this amount of
shells. This is a model parameter, and has to be chosen. Thus, if a duck needs (from
energetic considerations) to gather more food than this upper limit, the duck will not
be able to meet its own energy requirements.

60 Alterra-rapport 839

6.17 Basal metabolic rate

In order to maintain its own existence, an organism needs energy to prevent loss of
essential organic and inorganic matter. This process is called the basal metabolism;
the energy is provided by the oxidation of organic storage matter. As a result, the
animal produces heat. Thus, the basal metabolic rate (BMR) is a continuous process
irrespective of any other activity. The BMR is a negative term on the energy budget,
and a positive one (with same magnitude) on the heat budget. In case of no feeding,
a duck loses mass as a result of the process.

For eider ducks, an BMR average of about 4.05 W kg-1 is mentioned by Nehls (1995);
for tufted ducks (Aythya fuligula) 4.9 W kg-1 is mentioned by De Leeuw (1997).
Rahn & Whittow (1984, cited by Wilson et al, 1992) give:

dMcBMR = (49)

with
d = 0.744, and c = 2.29 10-7 (m3 (oxygen) s-1 kg-1)1, and BMR in m3 oxygen s-1.

Since oxygen is equivalent to 22.5 *30/32 = 21 kJ g-1 (oxygen), and the density of
oxygen is about 32/22.4 (gram per mol divided by dm3 per mol) = 1.4 g dm-3, 1 m3

of oxygen (1 atm) is equivalent to 1000 * 21 * 1.4 kJ = 29.4 103 kJ. Thus, in eq. (49),
c equals 2.29 10 -7 * 29.4 103 = 6.7 (W kg-d) in case BMR is in W, in stead of oxygen
volume. For M= 2.0 kg, the BMR is about 11.2 W, which is considerably higher than
the 8 W mentioned by Nehls. For a tufted duck (body mass of 600 g), eq. (49) gives
4.6 W, which is clearly above the 2.97 W De Leeuw (1997) mentions. We applied the
description by Nehls, although we realize that a better description of the relationship
with body mass is desirable.

6.18 Faeces production

Faeces production is not an item of interest when modelling heat or energy budgets.
It has been argued above that faeces do not contribute to the heat budget. The
amount of faeces (if wanted) is computed directly from the food and shell uptake,
and the digestion efficiency, which is estimated to be about 75%.

1 Note that the mentioned units by Rahn &Whittow are not correct: the unit of c is m3

(oxygen) s-1 kg-d. The value of d is part of the unit of c

Alterra-rapport 839 61

Figure 20. Friction forces (drag) for a diving duck. Red: original equation from Lovvorn (1991), Adapted
Lovvorn (brown): gives drag=0 at speed=0. Drag around sphere: computed according to eq. (34); green line
Cd=0.1, bleu squares Cd=0.2. The diameter of a duck is estimated.

Figure 21. Buoyancy of a duck and upward velocity as a function of depth. Drag forces according to eq.(34).
When Lovvorn et al (1991b) is followed, upward velocities would be somewhat higher.

1.6

1.7

1.8

1.9

2.0

5

6

7

8

9

0 1 2 3 4 5
Depth (m)

Buoyancy Speed

Buoyancy duck

0

2

4

6

8

10

12

0 0.5 1 1.5 2 2.5
Speed (m/s)

Drag force diving eider duck

Lovvorn Adapted Lovvorn

Sphere, Cd=0.1 Sphere, Cd=0.2

Alterra-rapport 839 63

7 Prey decision strategy

7.1 General

An assumption that is crucial for the model is the way we expect the bird to decide
whether to take a prey or to find another (and better) one. When the duck reaches a
shellfish in or on the sediment, it can take the first prey it encounters, or it can decide
to search until the best possible prey is found.

We assume that the choice is directly related to the energetic profit of a prey of a
certain length and the occurrence of the shell (coupled to the size frequency
distribution of the shells on the foraging site). Thus, the profit distribution together
with the real length frequency distribution is the weight factor that determines the
food uptake of the duck. There are some limitations to the uptake (section 6.1).
Certain sizes are impossible to catch for an eider duck. Very large shells cannot be
swallowed and very small shells cannot be handled.

Thus, when the net energy gain for shell size A is twice the energy gain for shell size
B, shell A is taken twice as much as shell B, assuming equal appearances. Such a
weighting can be handled in many ways. Not only a linear relationship with the net
gain can be assumed, but a stronger one is possible too. There is no sound basis for
the linear weighting we used for our model computations.

7.2 Model

In the simulation model, we consider prey with a certain size distribution. For each
size class (we used 5 mm sub-ranges) the energetic profit is computed as the
difference between yield and costs. This is exactly according to eq. (5), when each
dive yields one prey of a particular size. The model also computes the time needed to
catch and handle a prey (based on diving speed, upward velocity and searching time
at the bottom, see chapter 6), thus an energetic profit per unit of time is known.
Thus, for each prey size, we know the net profit in terms of J s-1. Those size ranges
that yield a negative profit are excluded. Then, the preference of each size class
follows from the values of these net profits. Thus, let profit(len) be the profit of a
shell of length len (J s-1), then the preference of a bird for size class len equals (for N
size classes) is:

∑
=

= N

l

lofit

lenofit
leneference

1

)(Pr

)(Pr
)(Pr (-) (50)

The prey choice of the bird also depends on the availability of the size classes and
physical limitations. When Freq (len) is the relative availability (based on numbers) of

64 Alterra-rapport 839

size class len, and Phys(len) the capability to take a prey of size len, then the real prey
choice is:

∑ ⋅⋅

⋅⋅
= N

l

lPhyslFreqlofit

lenPhyslenFreqlenofit
lenChoice

)()()(Pr

)()()(Pr
)((-) (51)

Note that eq. (51) actually says that in case of a large part of physically unmanageable
or less manageable preys (Phys (l)<1), the duck has a total prey choice considerably
smaller than 1:

∑
=

=
N

l

lChoicetotChoice
1

)(_ (-) (52)

For the model computations, this implies that per dive there are (1-Choice_tot)
failures.

7.3 Food uptake per dive

Eq. (52) gives the food preference of an eider duck. It also is the size frequency
distribution of preys gathered by an eider duck, when many dives are considered.
Thus, the energy budget of each average dive can now be computed. The average
flesh content is computed according to

∑

∑

=

=

⋅
=

N

l
l

N

l
ll

choice

fleshchoicel
flesh

1

1 (g dive-1) (53)

Similar equations give the (average) costs per dive for crushing the shells, for heating
the prey, etc. From section 6, diving costs and diving time are known, and per dive
an energy and heat budget is known.

7.4 Kinetic plus potential energy and heat

Two specific situations can be considered: a submerged duck diving for a prey and an
emerged duck, which is handling prey or resting. During resting the duck loses heat,
thus heat production is needed to overcome that loss. A duck produces heat because
of the basal metabolic rate. The energy budget above water is negative (there is no
energy provision during resting), the heat budget may be positive or negative. If
negative, the bird needs to convert energy to heat. While diving the duck needs
energy and produces heat. The energy need is always negative. The heat budget may

Alterra-rapport 839 65

be negative or positive. The collected food provides the duck with energy , which is
always a positive term on the overall energy budget.

We now have four different situations to handle.
a- Heat budget is negative during resting and during diving
In both situations there is a shortage of heat and this adds to the energy demand in
eq. (3). The heat demand during resting appears in the nominator, the heat demand
per dive appears as a negative profit in the denominator.

b- Heat budget is positive during resting and during diving
In both situations there is a surplus of heat. The bird has to loose that heat by
decreasing the insulating properties of the feathers, by extra dives, or by taking
smaller preys than possible. The last behaviour also implies more dives per day than
strictly necessary.

c- Heat budget is positive during resting and negative during diving
The surplus heat during resting may compensate the heat demand as a result of the
dives. Without such compensation, the energy budget per dive (costs plus food
profit) would be the amount of the heat demand lower than the sum of diving energy
costs and food profit. It is tested whether the resting heat surplus is enough for
compensating the complete heat loss during diving or not.

d- Heat budget is negative during resting and positive during diving
The heat surplus per dive is used to (partly) compensate the negative budget during
resting. It is also tested whether the heat surplus from the dive is enough to
compensate the heat demand during resting completely or just for a part.

7.5 Special case: more than one prey per dive

Nehls (1995) mentions that a duck does not catch more than one prey at a time.
Later he stated (pers. comm.) that especially when mussels are small, (many) more
than one mussel per clutch could be swallowed. To test the effects of more than one
prey per dive, a multiple-prey factor (e.g. ‘MultPrey’) may be implemented in the
model. This factor may depend on size (len) of the prey and may thus be valid for all
prey sizes or only part of these sizes (e.g. the smaller ones only). In the present
version of the model a multi-prey factor is not included.

Alterra-rapport 839 67

8 Simulation model

The whole set of equations as mentioned above is implemented in the simulation
model EIDER. A flow diagram is presented in Figure 22. The model is written in
Borland Pascal for Windows, vs. 7.0. and runs on any machine equipped with
Windows9x, WinNT, Win2000 or XP. The complete listing is not added to this
report, but is available upon request. In appendix D, some relevant parts are listed,
including examples of the necessary input-files, the definition file (eisysdef.pas) and
the crucial budget computations (eifunt1.pas and eifunct2.pas).

Figure 22. Flow diagram of model EIDER.

Alterra-rapport 839 69

9 Air and water data

For realistic simulations, meteorological data (wind speed, air temperature) and water
temperature data are needed. Humidity is not used as a variable in the present
version of the model.

We had temperature data for four sites at our disposal, and wind data for one site:
- The western part of the Dutch Wadden Sea. Water temperature as monthly

averages (computed from data for the period 1975-2001) for a central site, and
air temperatures and wind speed as monthly averages (computed from data for
the period 1975-2001) for the weather station De Kooy (The Netherlands, near
Den Helder).

- The Limfjorden area (Logstoer area) in northern Denmark. F. Mohlenberg & P.
Dolmer have supplied water and air temperatures as monthly averages over the
period 1989-1999. Wind values were not available at this moment, and are taken
from the Dutch data set.

- The Ljunskile area at the Swedish west coast. Water and air temperatures
(averages for the period 1999-2000) have been supplied by L.O.Loo, and partly
taken from Anderson (2000). Wind data were taken from the Dutch data set.

- The area in front of La Rochelle, west France. Monthly means for 1999 were
supplied by CREMA/IFREMER (La Rochelle). Wind data are copied from the
Dutch data set.

In Figure 23 an overview of one-year monthly weather data for the Netherlands is
given. In Figure 24 data for Denmark, Sweden and France are presented.

Figure 23. Monthly weather data. Station De Kooij (near Den Helder), The Netherlands.

4
6
8

10
12
14
16
18
20
22

0

2

4

6

8

10

0 91 183 274 365
Daynr

T_air T_water Wind

Weather

70 Alterra-rapport 839

Figure 24. Air and water data for France, Sweden and Denmark. Explanation see
text.

Denmarkkk

0,0
0

5,0
0

10,0
0

15,0
0

20,0
0

25,0
0

1 2 3 4 5 6 7 8 9 10 1
1

1
2

water
rair

Sweden

0,00

5,00

10,0
0

15,0
0

20,0
0

25,0
0

1 2 3 4 5 6 7 8 9 10 11 12

water

air

France

0,00

5,00

10,00

15,00

20,00

25,00

1 2 3 4 5 6 7 8 9 10 11 12

water

air

Figure 24. Air and water data for France, Sweden and Denmark. Explanation see text.

Alterra-rapport 839 71

10 Characteristics of foraging areas

Sites
The Dutch Wadden Sea contains a number of mussel sites suitable for foraging eider
ducks. Mussel beds occur as wild intertidal mussel beds, wild subtidal mussel beds
and subtidal mussel culture lots. For most of the areas some information is available
on sizes, stocks and size distribution.

In this study we restricted ourselves to wild subtidal mussel beds. Data were available
from our own sampling, and from surveys by RIVO (Van Stralen, 1998). We used
average bird numbers and shell data for the whole Wadden Sea because interference
is not implemented as a relevant process. At this moment, our only goal was to
compute quality of each site. For the Wadden Sea area, necessary data are:
- average water depth (while submerged),
- emersion time (as fraction of the tidal period),
- total size of the area (m2),
- density and average size class distribution of shells, size class intervals were 5

mm, from 0 up to 75 mm (number m-2),
- allometric constants (a, b) for ash free dry mass, shell mass and fresh mass,
- the variation of the condition factor (the a-value) for ash free dry mass during

the season.

In appendix D, the input file for area characteristics is given.

Number of eider ducks
We do not intend to estimate here the exact number of eider ducks that can forage in
the Dutch Wadden Sea. Although there are approximately 80.000 eider ducks in the
Dutch Wadden Sea in wintertime, we used 20.000 as an overall year-value for the
present simulations. For the other three sites, we did not perform a simulation with
the number of birds because an accurate combination of number of overwintering
ducks, available foraging area, and prey densities was not available.

For the sites in Denmark, Sweden and France, we just restricted ourselves to a
comparison of the foraging possibilities for a single duck.

Bird parameters are given in the input file on bird characteristics (appendix D). The
parameters apply to all the four different countries.

72 Alterra-rapport 839

Figure 25. Costs of prey handling in four countries. For Sweden all three sites are shown. SW are long lines:
SW_1 is one meter deep, SW_3 three, and SW_5 five meters deep. FR_1 is the long line situation in France.
DK and NL are benthic mussel communities in Denmark and The Netherlands respectively. Especially crushing
costs are high in Denmark.

0

2000

4000

6000

8000

0 10 20 30 40 50 60 70 80
Length (mm)

Crush HeatPrey Digestion SaltExcretion

NL

0

2000

4000

6000

8000

10000

0 10 20 30 40 50 60 70 80
Length (mm)

Crush HeatPrey Digestion SaltExcretion

DK

0

2000

4000

6000

8000

0 10 20 30 40 50 60 70 80
Length (mm)

Crush HeatPrey Digestion SaltExcretion

Sweden_5

0

2000

4000

6000

8000

0 10 20 30 40 50 60 70 80
Length (mm)

Crush HeatPrey Digestion SaltExcretion

France_1

0

2000

4000

6000

8000

0 10 20 30 40 50 60 70 80
Length (mm)

Crush HeatPrey Digestion SaltExcretion

Sweden_3

0

2000

4000

6000

8000

0 10 20 30 40 50 60 70 80
Length (mm)

Crush HeatPrey Digestion SaltExcretion

Sweden_1

Alterra-rapport 839 73

11 Results

11.1 Performed computations

We performed two types of computations. For the 4 countries we computed the
number of necessary dives per day for a single duck. We used this figure as a quantity
that shows us how profitable a site is for a duck. Costs for handling the prey and the
amount of flesh per dive are given below. We also computed profitability of the three
different depths in Sweden, and the profitability of the mussels on the long lines and
at the bottom of a pole in France.

Results for the latter indicated that the food at the bottom part of the poles in France
is insufficient for an eider duck; therefore, details of the energy budget are not
mentioned here.

11.2 Costs, flesh profits and number of dives

Prey handling costs for each shell length are presented in Figure 25. All data are valid
for the winter period. Salt excretion is the same in all cases because there is not a
different salt content assumed. In France digestion costs are high because of the high
meat content of shells. In Denmark and The Netherlands digestion costs are low. In
Sweden digestion costs are intermediate. Crushing costs are especially high in
Denmark; the shells are much thicker than in the other situations.

The amount of flesh, and thus energy, a bird collects per dive is shown in Figure 26.
The situation in Sweden and Denmark is that the birds find a relatively low quantity
of food per dive. In France, at the long lines, they find a large quantity, and in The
Netherlands the benthic mussel beds provide an intermediate amount of flesh per
dive.

The number of dives a bird needs per day is more or less a resultant of total costs
(which of course also involve heat losses and basal metabolic costs) and the amount
of flesh that a bird colects per dive. In Figure 27 the number of dives (in wintertime)
is sketched. In The Netherlands, the number of necessary dives in the first winter is
about the same as in Denmark. In the next winter, the number of necessary dives
becomes higher in The Netherlands because there was a depletion of food (in our
simulations). In summer, the Dutch situation is better, which has to be assigned to
the better condition of the shellfish. In France, the necessary number of dives per
day is much lower; a result of the much higher flesh content of the shells. In Sweden
the number of dives is of the same order as in The Netherlands and Denmark, but
the distribution over a year differs from the Danish and Dutch situation. Careful
examination of the graphs learns that diving to 1 metre is (only) slightly more
efficient than to 3 or 5 metres deep.

74 Alterra-rapport 839

11.3 Prey choices

For the Dutch situation we were able to perform a simulation for a more or less
realistic number of birds and a realistic food resource situation. About 20.000 eider
ducks feed on 22000 ha of mussel area. Shell densities are according to the first graph
of Figure 28. With the used numbers of eider ducks and mussel area the simulations
show that during a year food sources are partially depleted. The densities of large
shells decrease during the year. We did not implement the natural increase in mussel
sizes. In reality mussels grow and fill up the gap caused by the ducks. Also, we only
considered wild mussel beds and left the mussel culture plots out of the
computations. But also, normal wintering numbers of ducks are considerably higher
than 20.000. Thus our simulation should be considered as an example.

Figure 26. Amount of flesh (in grams AFDW) a duck collects per dive. It is assumed that a duck can take one
prey per dive .

0.3

0.4

0.5

0.6

0.7

0.8

0 91 183 274 365

NL

0.44

0.45

0.46

0.47

0.48

0 91 183 274 365

DK

0.3

0.4

0.5

0.6

0 91 183 274 365
Daynr

SW3

0.3

0.4

0.5

0.6

0 91 183 274 365
Daynr

SW1

0.8

0.9

1.0

1.1

1.2

1.3

0 91 183 274 365
Daynr

FR1

0.3

0.4

0.5

0.6

0.7

0 91 183 274 365
Daynr

SW5

Alterra-rapport 839 75

Figure 27. Number of dives a duck needs to make per day to get enough food. The mussels at the bottom of a pole
in France are not of sufficient quality to feed a bird .

100

150
200

250

300
350

400

450
500

0 92 183 275 366

NL

300

320

340

360

380

400

0 92 183 275 366

DK

100

150

200

250

300

350

400

0 92 183 275 366

SW3

60

70

80

90

100

110

0 92 183 275 366
Daynr

FR1

100

150

200

250

300

350

400

0 92 183 275 366
Daynr

SW5

100

150

200

250

300

350

400

0 92 183 275 366

SW1

76 Alterra-rapport 839

Figure 28. Prey choice and prey availability simulation for the Dutch Wadden Sea: 20.000 eider ducks, and
22000 ha mussel area; densities of shells according to the upper left graph.

The simulation showed that eider ducks can benefit from mussels down to 20 mm
during summer, while they have to restrict themselves to shells larger than 30 mm in
winter. The reason is that in summer costs are lower (especially heat losses are much
lower) while the profits (meat content) per shell is higher. This result fits very well
the observations (Nehls, pers. comm.; Nehls, 1995) that ducks prefer smaller shells in
summer than in winter despite of the better profit of large shells in summer. De
Leeuw found similar feeding characteristics for tufted ducks (Aythya fuligula). May be,
eider ducks prefer small shells but have to take the larger ones in winter because of
energetic reasons.

0

2

4

6

8

10

12

14

0

0.05

0.1

0.15

0.2

0.25

0 10 20 30 40 50 60 70

Day 0

0

2

4

6

8

10

12

14

0

0.05

0.1

0.15

0.2

0 10 20 30 40 50 60 70

Day 100

0

2

4

6

8

10

12

14

0

0.05

0.1

0.15

0.2

0 10 20 30 40 50 60 70

Day 200

0

2

4

6

8

10

12

0

0.05

0.1

0.15

0.2

0 10 20 30 40 50 60 70
Length

Day 300

0

2

4

6

8

10

12

0

0.05

0.1

0.15

0.2

0.25

0 10 20 30 40 50 60 70
Length

Day 400

Prey availability and choice.
Netherlands.
20.000 eider ducks
220 km2 mussel area

Prey availability

Prey choice

Alterra-rapport 839 77

11.4 An energy budget

Finally, we can compute an energy budget for an eider duck during a dive. In Figure
29a, characteristics of a large mussel are shown. In fig. 29b the heat budget for a
winter day in The Netherlands is shown, and in fig. 29c the energy budget. In fact all
the terms are costs, except the input term in the energy budget: the food. Part of the
energy costs appear as input (gain) on the heat budget: BMR and crushing costs,
mainly. The net gain of one dive is about 1.6e3 Joules, which is used to compensate
the ‘standard costs’.

Figure 29a. Composition of mussel shells Netherlands, winter and summer situation. Especially the relative shell
mass differs from site to site, and differs between species.

Shell (34.49%)

AFDW (3.28%)Salt (2.10%)

Water (60.12%)

Winter

Shell characteristics of average prey

Shell (33.12%)

AFDW (6.30%)Salt (2.05%)

Water (58.53%)

Summer

78 Alterra-rapport 839

Figure 29b. Heat budget for an eider duck (winter situation, The Netherlands; start of the simulation). The
duration of one dive is 20.5 seconds. The whole cyclus (including resting and handling) is about 52 sec. It is
obvious that the most important costs concern the heat loss to the air and the heat needed to increase the
temperature of the prey. Heat losses during diving are of minor importance. Crushing the shells costs a lot of energy
(fig. 29c), but since this is converted into heat, it is also an important gain for the heat budget. The heat
corresponding to the basal metabolic rate is the second important entry.

The budget will change with changing weather conditions and shell characteristics.

Figure 29c. Energy budget for an eider duck (winter situation, The Netherlands; start of the simulation). The
duration of one dive is 20.5 seconds. The whole cyclus (including resting and handling) is about 52 sec. Only
positive entry concerns the food; most important costs is the crushing energy and the basal metabolism. Digestion
costs is the third most important item. Note that flying is of minor importance here, but this will change drastically
when the duck moves to other areas in Europe.

This budget will change with changing weather conditions and shell characteristics

CoolingWater (3.75%)
ExtrBreath (2.88%)

HeatPrey (56.97%)

AdditWater (2.19%)

CoolingAir (32.98%)

Breathing (1.23%)

1.84 E6 Joules/day 1.83 E6 Joules/day

Accel0 (0.03%)
Accel (0.13%)
Drag (0.23%)
Buoy (1.26%)

Bottom (0.72%)
Crushing (50.91%)

Digestion (4.13%)
Swimming (0.01%)

Flying (4.42%)
BMR (38.16%)

Eider Duck heat budget
Winter

Costs Gain

Depth = 5 m

Heat surplus (0.23%)
Acceler0 (0.04%)

Acceler (0.17%)
Diving_Drag (0.30%)

Buoyancy (1.63%)
Bottom-search (0.93%)

Crushing (39.43%)
Digestion (16.00%)

Salt (6.01%)
Swimming (0.01%)

Flying (5.70%)
BMR (29.55%)

food (100.00%)

2.37 E6 Joules/day 2.37 E6 Joules/day

Eider Duck energy budget
Winter

Alterra-rapport 839 79

Daily energetic expenditures (DEE) (again the Dutch situation only) are given in
Figure 30. DEE as a function of environmental temperature is presented in Figure
31. Figure 30 is in good agreement with Nehls (1995) who mentioned a DEE of
about 3.0e6 J in winter, and about 2.1e6 J in summer. We calculate a lower demand
in summer, but our winter values are almost the same. The reasons for the
differences in summer are not completely clear yet.

Figure 30. Daily energy expenditure of an eider duck in The Netherlands, as computed by the model. Note that
the budgets are slightly different from those in figs 29b and 29c.

1.4E+06

1.8E+06

2.2E+06

2.6E+06

3.0E+06

0 92 183 275 366

Daynr

Daily energy expenditure

80 Alterra-rapport 839

Figure 31. Daily energy expenditure as a function of environmental temperature as computed by the model.
Situation for the Netherlands, all simulation results are pooled.

Figure 32. Energy demand of an eider duck based on literature data. Note that these data are based on the energy
content of the prey; the data in figure 30 and 31 are based on 75% assimilation efficiency of that same prey. Thus,
the data in this graph have to be multiplied by 0.75 before comparing them with the model results.

1.4E+06

1.8E+06

2.2E+06

2.6E+06

3.0E+06

4
6
8
10
12
14
16
18
20
22

4 6 8 10 12 14 16 18 20 22
Water temperature

DEE Air Twat=Tair

Daily energy expenditure

Energy need of an eider duck

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

monthnumber

kJ
/d

ag

Field (Nehls 1995)

Captivity (Swennen 1976)

Literature

Captivity (Cantin et al 1974)

Field (Cantin et al 1974)

Captivity (Bédard et al 1980)

Alterra-rapport 839 81

12 Final

We performed a first analysis with mussels as a characteristic food source for eider
ducks. In future, cockles and spisulas will be subject of our investigations. The
developed model proved to be useful; it made a comparison between the several sites
in Europe possible. In a next version we intend to implement a site decision strategy
in the model, which should allow us to understand better why an eider duck does or
does not shift from one site to another.

The preliminary simulations done for the Dutch situation showed that the eider
ducks are capable to eat a significant part of the mussel stock. Based on the present
work, however, it is too early to draw any conclusions on the relationship between
fishery activities and a possible food shortage for the ducks. Therefore, also cockles
have to be taken into account as a food resource, as well as spisulas and may be other
shellfish species in the North Sea coastal zone.

Alterra-rapport 839 83

References

Bauer, K.M., & U.N. Glutz von Blotzheim. 1969. Handbuch der Vögel
Mitteleuropas, Band 3, 2. Teil). Akademische Verlagsgesellchaft. Frankfurt amM.

Beauchamp, G., M. Guillemette & R. Ydenberg, 1992. Prey selection while diving by
common eiders, Somateria mollissima Anim. Behav. 44: 417-426

Bédard J., Therriault J.C. & Bérubé J. 1980. Assessment of the importance of
nutrient cycling by seabirds in the St. Lawrence estuary. Canadian Journal of
Fisheries and Aquatic Sciences 37: 583-588.

Brinkman, A.G.1993. Estimation of length and weight growth parameters in
populations with a discrete reproduction characteristic. IBN Research Report 93/5.
27 pp +app.

Brinkman, A.G. & B.J. Ens, 1998. Effecten van bodemdaling in de Waddenzee op
wadvogels. IBN-DLO rapport 371, 249 pp.

Bult,T.P., van Stralen,M.R., Brummelhuis,E. & Baars,D. Mosselvisserij en - kweek
in het sublitoraal van de Waddenzee. RIVO Rapport - Concept voor stuurgroep
EVA II, 1-74. 2003b. Yerseke, RIVO.

Buschbaum, C., 2001. Direct and indirect effects of Littorinas littorea (L.) on
barnacles growing on mussel beds in the Wadden Sea. Hydrobiologia 440:119-128

Campbell, A.C., 1976. The Hamlyn guide to the seashore ans shallow seas of Britain
and Europe. Hamlyn Publ. Group, London

Cantin M., Bédard J. & Milne H. 1974. The food and feeding of Common Eiders in
St. Lawrence estuary in summer. Canadian Journal of Zoology 52: 319-334.

De Leeuw J. 1997. Demanding divers - Ecological energetics of food exploitation by
diving ducks. Proefschrift, RU-Groningen.

Ens, B.J. & Cayford, J.T. 1996. Feeding with other Oystercatchers. Chapter 4 in J.D.
Goss-Custard (ed.), The Oystercatcher: from individuals to populations, Oxford
Univ. Press, Oxford, 77-104.

Goss-Custard, J.D., West, A.D., Caldow, R.W.G., Durell, S.E.A. le V. dit, McGrorty,
S. & Urfi, J. 1996. An empirical optimality model to predict the intake rates of
feeding oystercatchers Haematopus ostralegus feeding on mussels Mytilus edulis. Ardea
84A: 199-214.

84 Alterra-rapport 839

Hamilton D.J., Nudds, T. D. & Neate, J. 1999. Size-selective predation of blue
mussels (Mytilus edulis) by Common Eiders (Somateria mollissima) under controlled
field conditions. Auk 116 (2): 403-416.

Hawkins, P.A.J., P.J. Butler, A.J. Woakes & J.R. Speakman, 2000. Estimation of the
rate of oxygen consumption of the common Eider Duck (Somateria mollissima),
with some measurements of heart rate duting voluntary dives. Journ. Exp. Biology
203:2819-2832

Hulscher, J.B. 1996. Food and feeding behaviour. Chapter 1 in J.D. Goss-Custard
(ed.), The Oystercatcher: from individuals to populations, Oxford Univ. Press,
Oxford, 7-29.

Jenssen B.M., Ekker, M. & Bech, C. 1989a. Thermoregulation in winter-acclimatized
common eiders (Somateria mollissima) in air and water. Canadian Journal of Zoology
67 (3): 669-673.

Jenssen B.M., Ekker, M. & Bech, C. 1989b. Erratum: Thermoregulation in winter-
acclimatized common eiders in air and water. Canadian Journal of Zoology 67:669-
673.

Kooijman, G.L. 1975. Behaviour and phyiology of diving.In: B. Stonehouse (ed). The
biology of penguins, pp. 115-137. MacMillan, London.

Lasiewski, R.C. & W.A. Calder. 1971. A preliminary allometric analysis of respiratory
variables in resting birds. Respiratory Physiology 11:152-166

LWVT/SOVON, 2002. Bird migration over The Netherlands (in Dutch). Schuyt &
co, Haarlem. 2002

Lovvorn, J.R., D.R. Jones & R.W. Blake, 1991. Mechanics of underwater locomotion
in diving ducks: drag, buoyancy and acceleration in a size gradient of species. J. exp.
Biol. 159: 89-108

Lovvorn, J.R, & D.R. Jones, 1991a. Effects of body size, body fat, and change in
pressure with depth on buoyancy and costs of diving ducks (Aythya spp.). Can. J.
Zool. 69:2879-2887

Lovvorn, J.R. & D.R. Jones, 1991b. Body mass, volume and buoyancy of some
aquatic birds, and their relation to locomotor strategies. Can. J. Zool. 69: 2888-2892

Lovvorn, J.R. & D.R. Jones, 1994. Biomechanical conflicts between adaptations for
diving and aerial flight in estuarine birds. Estuaries, 17 (1A): 62-75

Madsen, F.J. 1954. On the food habits of the diving ducks in Demark. Dan. Rev
Game Biol. 2: 157-226

Alterra-rapport 839 85

Meltofte, H., J. Blew, J. Frikke, H-U. Roessner & C.J. Smit, 1984. Numbers and
distribution of waterbirds in the Wadden Sea. IWRB-Publication 34. Wader Study
Group Bulletin 74, special issue. Common Secretariat for the Coperation of the
Protection of the Wadden Sea. Wilhelmshaven.

Nehls G. 1995. Strategien der Ernahrung und ihre Bedeutung fur Energiehaushalt
und Ökologie der Eiderente. Dissertatie, Universitieit Kiel (173 blz).

Saier, B. & C. Buschbaum. 2001 Growth of the mussel Mytilus edulis L. in the
Wadden Sea affected by tidal emergence and barnacle epibionts J. Sea Res. 45: 27-36

Saier, B., C. Buschbaum & K. Reise, 2002. Subtidal mussel beds in the Wadden Sea:
threatened oases of biodiversity Wadden Sea Newsletter, 25 (1) (in press)

Stephenson, R., J.R. Lovvorn, M.R.A. Heieis, D.R. Jones & R.W Blake (1989). A
hydromechanical estimate of the power requirements of diving and surface
swimming in lesser scaup (Aythya affinis). J. exp. Biol. 147-507-519

Stillman, R.A., Goss-Custard, J.D. & Caldow, R.W.G. 1997. Modelling interference
from basic foraging behaviour. J. Anim. Ecol. 66: 692-703.

Swennen C. 1976. Population structure and food of the Eider Somateria m.
mollissima in the Dutch Waddensea. Ardea 64 (3/4): 311-371.

Swennen, C. 1991. Ecology and population dynamics of the Common Eider in the
Dutch Wadden Sea. PhD-Thesis Univ.Groningen, 144 pp.

Van der Meer, J. & Ens, B.J. 1997. Models of interference and their consequences for
the spatial distribution of ideal and free predators. J. Anim. Ecol. 66: 846-858.

Van Stralen, M.R., 1998. The development of the mussel stock in the Wadden Sea
and the Eastern Scheldt after 1992 (in Dutch). RIVO-DLO-report C.006.98

Wallsberg, G.E. & J.R. King. 1978. The relationship of the external surface of birds
to skin surface area and body mass. J. Exp. Biol 76: 185-189

Wilson, R.P., K.Hustler, P.G. Ryan, A.E. Burger & A.C. Nöldeke, 1992. Diving birds
in cold water: do Archimedes and Boyle determine energetic costs? Am. Nat. 140:
179-200

Woakes A.J. & P.J. Butler. 1983. Swimming and diving in tufted ducks, Aythya
fuligula, with particular reference to heart rate and gas exchange. J. Exp. Biol. 107:
311-329

Zwarts, L. & Drent, R.H. 1981. Prey depletion and the regulation of predator
density: Oystercatchers (Haematopus ostralegus) feeding on mussels (Mytilus edulis). In:
V.H. Jones & W.J. Wolff (eds) Feeding and survival strategies of estuarine organisms:
193-216. Plenum Press, New York.

Alterra-rapport 839 87

Appendix A Description of bird sizes following a cone geometry

When pure spherical, the area A would read:

3
2

3
2

3
2

48240.0)(836.4)
4
3

(4 W
WW

A
bodybody

===
ρπρ

π (m2) (54)

with ?body is 1000 kg m-3 and W=body mass (kg)

Based on a cone shape the following equations can be used:

π2
3

⋅=
h
V

r (m) (55)

2rAb π= (m2) (56)

)(srrA +=π (m2) (57)

22 hrs += (m) (58)

Figure 33. A cone shape to estimate duck characteristics.

For eider ducks, h = c times r, and it seems that for a body mass of about 2000 g, the
value for the constant c is about 4 - 5. For h=c r, eq. (55) changes into

Ab

h
s

r

r = frontal radius
s = side
h = height
Ab= frontal area

88 Alterra-rapport 839

3
2

3
π⋅⋅

=
c
V

r (m) (59)

(c is about 4 - 5). The remaining equations stay the same. For other birds, or for
smaller sized eider ducks, we used this same approximation. For adult birds, that
become meagre in winter, it does not hold, since they do not decrease in length.
Thus, for these birds, h stays the same, and r decreases upon starvation, or increases
as a result of fattening.

Alterra-rapport 839 89

Appendix B Description of the effect of wind on conductive heat
transfer from an eider duck to the environment

Heat transfer from a duck’s body through the fat and feather layers is a conductive
process. Heat transport from the feather’s surface to the air is a matter of convection
only in those cases where wind is effective enough to keep the feather’s temperature
exactly equal to the air temperature. This will be the case at higher wind speeds.
Under conditions with a low wind speed, heat transfer from the feathers to the air is
a combination of conduction and convection. In the extreme case of no wind,
convection is purely driven by the density differences between the air and the
(slightly) heated air close to the feathers.

As a first guess, we described this effect by the assumption of an extra insulating
layer in the air, which a thickness d (m) only depending on the square of the wind
speed. Such a dependency of the square of the wind speed is not uncommon. It is
often found in descriptions where wind speed effects on heat transfer are at stake
(see eg Thomann & Mueller, 1987). Thus:

)b.WIND + (a
1

 = d
cair (m) (60)

with c =2 in many cases.

Thus, a is the value for zero wind speed. Both a and b are estimated very roughly and
only serve to supply some relationship between wind conditions and heat loss for a
duck.

The solution of this problem is similar to the one of eqs. Figure 13, (16) and (15).
The flux through the plane between feathers and fat and the flux between feathers
and air is the same and there’ s no heat production in the fat or the feather layer.
Actually, we have to speak of heat flow equality here (instead of fluxes), because the
area of the plane between feathers and air is somewhat larger than the area of the
plane between feathers and fat. But for reason of simplicity we assume these to be
equal, and thus not only the flows but also the fluxes are equal.
We use again:

fat

feathers

feathers

fat

d

d

a

a
b ⋅= (-) (61)

and (now Tfeath in stead of Tair, as in eq. (15))

b

TTb
T envirbody

skin +

+
=

1
(oC) (62)

We introduce for convenience:

air

feathers

d

d
d =23 (-) (63)

and after some conversions, one can find for the temperature at the feather surface:

90 Alterra-rapport 839

d23)+b)(1+(1
-1

d23)+b)(1+(1
Tb

+
d23)+(1

T*d23

 = T

air

feat b
(oC) (64)

with (62) T skin is known. The heat flux follows from:

feathers

feathskin
feathersheat d

TT
aflux

−
⋅= (W m-2) (65)

The total heat loss of the duck follows again from eq.(17). Note that we assumed that
the heat loss is uniformly distributed over the body and that there are no spots with
very large losses.

We performed some calculations and found ourselves content with the parameter
values as mentioned in text box 5. But this is not more than a first try and the values
have to be validated.

Text box 5 Parameter values for relationship between wind and heat transfer, for dair in m

Text box 5

A=10
B= 5
C=2

Alterra-rapport 839 91

Appendix C Effect of changing buoyancy during descent on
diving costs

The buoyancy of a bird with a specific mass of ? d, and volume Vd is given by eq. (37).
During descent, the specific mass ?d increases because of the compression of the air
in the feathers and the respiratory system. The result is given by eqs. (44) and (43). If
the specific mass of the birds body is set equal to 1.0 kg dm-3 buoyancy equals: :

depth
Volbuoy waterair +

⋅⋅⋅=
10

10
81.9 ρ (N) (66)

with depth in m, the water specific mass (? water) in kg m-3 and the total volume of air
(Volair) in m3.
Now, the total work that has to be done to counteract buoyancy during a descent
with velocity vd (m s-1) is:

∫
=

=
⋅=

tet

t
dtpowerwork

0
(J) (67)

with
buoyvpower d ⋅= (W) (68)

Combining eqs. (66) - (68) gives, after substituting a=9.81*Volair*10*? water , b=10 vd
-1

and depth = vd t :

∫ +
=

te

t
dt

tb
a

work
0

(J) (69)

with a= b/a and ß=1/a work can be described with:

)ln(
1

)ln(
1

)ln(
1

0

α
β

βα
β

βα
β

−+=

+= e

te

t

ttwork (J) (70)

This formula (70) is implemented in the model.

Alterra-rapport 839 93

Appendix D Input data for the eider duck simulation model

D1 Weather data for The Netherlands
{==#
ALTERRA
#--#
Model DEPLETE_Eider
DEPLETEEider describes the way eider ducks find and utilize food
and how the food fits their energetic needs
#--#
Alterra PO Box 167 1790 AD Den Burg-NL
Phone () 31 222 369728
Fax () 31 222 319235
#--#
Developers Bert Brinkman a.g.brinkman@alterra.wag-ur.nl
#
Bruno Ens b.j.ens@alterra.wag-ur.nl
#==#
File weather.dat
#
Description Contains weather data
Called by input routine
Weather and water temp data for the
Dutch Wadden Sea
Data
Created 2002-April-17
Last Modified 2002-April-17
#--#
Called by EIplIO.PAS routine ReadSystemData
#--#
First lines are reserved for comment.
And, each data line has thirty positions free
for additional comment.
LA ROCHELLE - data
#
_comment________________30|
#==}
 mon Twat Tair wind
data:
month. water. air. wind 1 7.24 5.62 5
month. water. air. wind 2 7.14 8.87 5
month. water. air. wind 3 8.90 10.68 5
month. water. air. wind 4 12.22 12.19 5
month. water. air. wind 5 15.52 16.95 4
month. water. air. wind 6 17.79 18.18 4
month. water. air. wind 7 19.53 21.55 4
month. water. air. wind 8 21.03 20.69 4
month. water. air. wind 9 20.22 19.13 4
month. water. air. wind 10 16.44 14.87 5
month. water. air. wind 11 11.98 8.57 5
month. water. air. wind 12 7.66 8.19 5

94 Alterra-rapport 839

D2 Bird characteristics
{==#
ALTERRA
#--#
Model DEPLETE_Eider
DEPLETEEider describes the way eider ducks find and utilize food
and how the food fits their energetic needs
#--#
Alterra PO Box 167 1790 AD Den Burg-NL
Phone () 31 222 369728
Fax () 31 222 319235
#--#
Developers Bert Brinkman a.g.brinkman@alterra.wag-ur.nl
#
Bruno Ens b.j.ens@alterra.wag-ur.nl
#==#
File BirdPar.dat
#
Description Bird characteristics data file
Called by input routine
Data
Created 2002-January-17
Last Modified 2002-April-23
#--#
Called by EIplIO.PAS routine ReadSystemData
#--#
First lines are reserved for comment.
And, each data line has thirty positions free
for additional comment.
#
_comment________________30|
#==}
data:

NameDutch Eidereend
NameEngl, Common Eider
NameGerm : String; Eiderente
BMR basic metab rate W/kg 4.05
FlyCosts costs of flying W/kg 150
frictionfact 0.20
Swima, Watts 0.6
Swimb, x 0.0
swimTimperDay (s) 500
flyTimperDay (s) 900
Botta, Watts 0.8
WeightMax upper bound of mass 2400
WeightMin lower bound of mass 1600
WeightAvg mass average 2000
YearWeight_Jan 2000
YearWeight_Feb 2000
YearWeight_Mar 2000
YearWeight_Apr 2000
YearWeight_Mei 2000
YearWeight_Jun 2000
YearWeight_Jul 2000
YearWeight_Aug 2000
YearWeight_Sep 2000
YearWeight_Okt 2000
YearWeight_Nov 2000
YearWeight_Dec 2000
SpecMass eider swimming 0.45
SpecMass eider diving kg/dm3 0.67

Alterra-rapport 839 95

PreySpecMass spec mass prey 1
Temp body temp of eider (oC) 41
SwimmingSpeed m/s 0.3
FySpeed (m/s) 25
DivingSpeed m/s when diving 1.0
DivingSpeedAmpl 0.2
DivingAmpFreq 2.63
BottomSpeed m/s at bottom 0.1
BottomSpeedAmpl, 0.2
BottomAmpFreq, 2.62
searchTime0 loose mussel 4
searchTime1 bunched mussel 12
handlingtime loose mussel 4
handlingtime bunched mussel 16
MaxIntakeRate xxx 0.1 (not active yet)
MaxGrowthRateConstxxx 0.1 (not active yet)
assimilation efficiency 0.8
EnergContentFat J/gDW 22.5e3
EnergContentAnimal J/gDW 22.5e3
airexhaled before diving 0.20
cone proportionality const 4.0
LungVol_a (lit=dm3, -> cm3) 1.61e-1
LungVol_b (mass (g)^b) 0.91
diving_energetic efficiency 0.35

Now the length-preferences
preynr 1=mussels 1
LenPref[0-5] 1 0
LenPref[5-10] 2 0
LenPref[10-15] 3 0.1
LenPref[15-20] 4 0.5
LenPref[20-25] 5 1
LenPref[25-30] 6 1
LenPref[30-35] 7 1
LenPref[35-40] 8 1
LenPref[40-45] 9 1
LenPref[45-50] 10 1
LenPref[50-55] 11 1
LenPref[55-60] 12 1
LenPref[60-65] 13 1
LenPref[65-70] 14 0.5
LenPref[70-75] 15 0.2

96 Alterra-rapport 839

D3 Area characteristics, The Netherlands
{==#
ALTERRA
#--#
Model DEPLETE_Eider
DEPLETEEider describes the way eider ducks find and utilize food
and how the food fits their energetic needs
#--#
Alterra PO Box 167 1790 AD Den Burg-NL
Phone () 31 222 369728
Fax () 31 222 319235
#--#
Developers Bert Brinkman a.g.brinkman@alterra.wag-ur.nl
Database setup Bruno Ens b.j.ens@@alterra.wag-ur.nl
Data provision Rieneke de Jager
#
#==#
File AreaCharNL.dat
#
Description Area characteristics data file
Called by input routine
Data for Dutch Wadden Sea
#==#
Data
Created 2002-January-17
Last Modified 2002-April-17
#--#
Called by EIplIO.PAS routine ReadSystemData
#--#
First lines are reserved for comment.
And, each data line has thirty positions free
for additional comment.
Standard situation
#
_comment________________30|
#==}
___comment________________30|

data:
number of compartments 1
Number of prey species 1
Number of size classes 15
First simulation day 1
Last simulation day 400
Total population at day0 2.0E+4
Number of population sim's 1
Step size populations 0.0E+4

salt_content (g /gr) 0.035
salt_costs J/g exret 1.5e3

Preynr ([x]=month) mussels 1
rel a-value[1] 0.5
rel a-value[2] 0.5
rel a-value[3] 0.6
rel a-value[4] 0.7
rel a-value[5] 0.8
rel a-value[6] 0.9
rel a-value[7] 1
rel a-value[8] 1
rel a-value[9] 0.9
rel a-value[11] 0.8

Alterra-rapport 839 97

rel a-value[11] 0.7
rel a-value[12] 0.6

Crush -a (nehls, thru 0,0) 600
Crush-b 0

Site: 1
Name Site1
x-km position 120 (No meaning yet)
y-km position 430 (No meaning yet)
dry-time (%) 0
depth (m) 5
size of area (m2) 2.2e8
Cockles (1) Mussels(2) 1
Loose (0) or bunch (1) 1
flesh alfa-value 9.5e-6
flesh beta-value 2.91
shell=alfa 4.8e-5
shell-beta 2.92
fresh weight -alfa 3.5e-4
fresh weight -beta 2.8
water weight -alfa 2.0e-4
water weight -beta 2.7
1 Size class [0-5] nr/m2 0.0
2 Size cl [5-10] nr/m2 0.3
3 Size cl [10-15] nr/m2 1.4
4 Size cl [15-20] nr/m2 3.6
5 Size cl [20-25] nr/m2 6.8
6 Size cl [25-30] nr/m2 11.1
7 Size cl [30-35] nr/m2 12.5
8 Size cl [35-40] nr/m2 7.3
9 Size cl [40-45] nr/m2 4.4
10 Size cl [45-50]nr/m2 3.7
11 Size cl [50-55]nr/m2 2.9
12 Size cl [55-60]nr/m2 1.7
13 Size cl [60-65]nr/m2 0.7
14 Size cl [65-70]nr/m2 0.4
15 Size cl [70-75]nr/m2 0.1

98 Alterra-rapport 839

D4 System definition file EISysdef.pas
{==#
ALTERRA
#--#
Model DEPLETE_Eider
DEPLETE describes the way eider ducks find and utilize food
and how he food fits their energetic needs
#--#
IBN PO Box 167 1790 AD Den Burg-NL
Phone () 31 222 369728
Fax () 31 222 319235
#--#
Developers Bert Brinkman a.g.brinkman@alterra.wag-ur.nl
#
#==#
File EISysDef.PAS
#
Description EISysDef contains all the data types, record
descriptions and system definitions.
#
Created 2002-Januari-17
Last Modified 2002-April-23
#--#
Calls none
#--#
Used by All the modules
#==}

UNIT EIsysdef;

INTERFACE

Uses WinDos;

Const MaxAreas = 12;
 MaxSim = 100;
 MaxPreySpec = 3;
 MaxLengths = 15;
 MeatToWet_conversion = 20.0;
 SecPerDay = 86400.0;
 Pi = 3.1416;

Type DateTime= RECORD
 year,
 month,
 day,
 dayofweek,
 hour,
 minute,
 second,
 sec100 : WORD;
 END;

 Physic_Char
 = RECORD
 Fat_heatcond, {* W /m/K fat *}
 Wat_heatcond, {* W /m/K water *}
 Air_heatcond, {* W /m/K air *}
 Fat_specheat, {* J/g /K fat *}
 Wat_specheat, {* J/g /K fat *}
 Air_specheat, {* J/g /K fat *}
 Waterdens, {* specmass_water *}

Alterra-rapport 839 99

 AirDens, {* specmass_air *}
 windChill_a, {* chill-fact a *}
 windChill_b, {* chill-fact a *}
 windChill_c, {* chill-fact a *}
 gravity : REAL; {* versnelling zwkrcht*}
 END;

 Weather_Rec
 = RECORD
 airTemp, {* oC *}
 watTemp, {* oC *}
 windSpeed: ARRAY[1..12] OF REAL; {* m/s *}
 END;

Type Food = RECORD {* dens used at start *}
 FoodDens : ARRAY [1..MaxLengths] OF REAL;
 DW_a, {* a,b for AFDW *}
 {* read per month *}
 DW_b, {* in shell *}
 Shell_A, {* a,b for shell *}
 Shell_B, {* thickness *}
 Fresh_A, {* a,b for shell *}
 Fresh_b, {* fresh masses *}
 Water_a, {* a,b for *}
 Water_b : REAL; {* water content shell*}
 END;

Type AreaChar=
 RECORD
 Xpos, {* km coordinate *}
 Ypos, {* km coordinate *}
 Size, {* size in m2 *}
 depth, {* m *}
 DryPeriod : REAL; {* fract of time *}
 Name : String; {* name of site *}
 preyKind : INTEGER; {* type benthic animal*}
 prey : ARRAY[0..MaxPreySpec] OF Food;
 {* only at start *}
 musselKind : INTEGER; {* 0=loose, 1=bunch *}
 END;

Type ShellChar= {* some char of shell *}
 RECORD
 SpecMass, {* spec mass of prey *}
 SpecHeat, {* spec heat of prey *}
 EnergyContent, {* energ content J/gDW*}
 Salt_Water, {* salt content water *}
 {* g NaCl/dm3 *}
 Salt_energy : REAL; {* J/g salt excreted *}
 a_month : ARRAY[1.. MaxPreySpec] OF
 ARRAY[1..12] OF REAL;
 {* gives the relative *}
 {* condition factor *}
 Crush_a : ARRAY [1.. MaxPreySpec] OF REAL;
 Crush_b : ARRAY [1.. MaxPreySpec] OF REAL;
 DisgestionEnergy : REAL; {* J/kg DW needed for *}
 {* digestion *}
 length : ARRAY[0..MaxLengths] OF REAL;
 END; {* intervals lengths *}

100 Alterra-rapport 839

Type Duck = RECORD
 NameDutch,
 NameEngl,
 NameGerm : String;
 BMR, {* basic metab rate *}

 FlyCosts, {* costs of flying W *}
 frictionFact, {* drag-parameters *}
 Swima,
 Swimb,
 swimtimPerDay, {* sec per day swimmi *}
 flytimPerDay, {* secs per day flying*}
 Botta, {* watts per N buoyan *}
 WeightMax, {* upper bound of mass*}
 WeightMin, {* lower bound of mass*}
 WeightAvg : REAL; {* mass average *}
 YearWeight : ARRAY[0..12] OF REAL;
 {* factor telling us *}
 {* what the normal *}
 {* weight has to be *}
 SpecMass_Swim, {* spec mass kg/dm3swim}
 SpecMass_Div, {* spec mass kg/dm3 div}
 PreySpecMass, {* spec mass of prey *}
 BodyTemp, {* body temp of eider *}
 SwimmingSpeed, {* m/s when swimming *}
 FlySpeed, {* speed in flight *}
 DivingSpeed, {* m/s when diving *}
 DivingSpeedAmpl,
 DivingAmpFreq,
 BottomSpeed, {* m/s when at bottom *}
 BottomSpeedAmpl,
 BottomAmpFreq,
 searchTime0, {* needed loose mussel*}
 searchTime1, {* bunched mussels *}
 handlingTime0, {* needed loose mussel*}
 handlingTime1, {* bunched mussels *}
 MaxIntakeRate, {* max gram/sec intake*}
 MaxGrowthRateConstant, {* max rate const 1/d*}
 assimilationEffic, {* efficieny of ass.(-)}
 EnergContentFat, {* energ content J/gDW*}
 EnergContentAnimal, {* energ content J/gDW*}
 exhPartbefDiv, {* part of air exhaled*}
 {* prior to diving *}
 hr_c, {* cone proportion. *}

 LungVol_a, {* a and b for *}
 LungVol_b, {* respiratory volume *}
 energ_eff {* energ_eff diving *}
 : REAL;
 LenPref : ARRAY[0..MaxPreySpec] OF
 ARRAY[0..MaxLengths] OF REAL;
 Interfer: InterFerPar; {* Interference par's *}
 a, {* max search rate *}
 h, {* handling time *}
 irMin, {* Min intake rate *}
 normalInRate: REAL; {* Normal intake rate *}

 END;

Alterra-rapport 839 101

 {**}
 {* Sysdef contains the area characteristics *}
 {* Only those one that do not change as a result of *}
 {* predation. *}
 {**}
Type SysDef = Record
 nareas,
 FirstDay,
 LastDay,
 npreyspec,
 npreylengths: INTEGER;
 Interfer : Interference;
 shell : ShellChar;
 typeOfArea : INTEGER; {* may overrule dryperiods *}
 Method : INTEGER;
 SerialComp : BOOLEAN; {* serie of many populations*}
 PreyFactor : REAL; {* Prey factor , used to
 easily perform scenario
 simulatons *}
 PopStart, {* first number of more *}
 {* population computations *}
 PopStep : REAL; {* stepsize population size*}
 NofSteps : INTEGER; {* number of simulations *}
 Area : Array[1..MaxAreas] of ^AreaChar;
 Twat, {* read from a table *}
 Tair, {* read from a table *}
 Humair, {* read from a table *}
 WindSpeed : REAL; {* read from a table *}
 End;

 {***
 * FoodRes is used to store simulation results for food. Will *
 * be part of simres-record *
 ***}
 FoodRes = Record
 FoodDens,
 FoodProfit,
 FoodChoice,
 FoodPrefChoice,
 FoodLoss : ARRAY [1..MaxLengths] OF REAL;
 END;

 PreyResult =
 RECORD
 Ndives : REAL;
 preyres : ARRAY [1..MaxPreySpec] OF FoodRes;
 END;

 {***
 * All the results on the energy budget are stored, for each *
 * time step. The same is done for the heat budget, and the *
 * time budget *
 ***}
 MassBud =
 RECORD
 uptakeShells,
 faeces,
 weightIncr : REAL;
 END;

102 Alterra-rapport 839

 {***
 * In energy the costs (in Joules) of a process are stored *
 ***}
 EnergyBud =
 RECORD
 BMR,
 uptakeReal,
 uptakeAss,
 condAir,
 condSwim,
 condDiv,
 heatPrey,
 heatbreath,
 evapbreath,
 crushing,
 digestion,
 divingAccel0,
 divingAccel,
 divingDrag,
 divingBuoy,
 divingAccEff,
 divingDragEff,
 divingBuoyEff,
 divingBott,
 swimming,
 flying,
 saltEx,
 basic : REAL;
 END;
 HeatBud =
 RECORD
 BMR,
 condAir,
 condSwim,
 condDiv,
 heatPrey,
 heatbreath,
 evapbreath,
 crushing,
 divingAccel0,
 divingAccel,
 divingDrag,
 divingBuoy,
 divingAccEff,
 divingDragEff,
 divingBuoyEff,
 divingBott,
 swimming,
 flying,
 basic : REAL;
 END;

 TimeBud =
 RECORD
 swimming,
 flying,
 descent,
 bottom,
 ascent,
 handling,
 resting,
 NDives : REAL;
 END;

Alterra-rapport 839 103

 {**}
 {* SimRes contains the computation results *}
 {**}
 SimRes = Record
 SimDate : DateTime; {* Date and time of moment*}
 {* of simulation *}
 RegrNum : INTEGER; {* registration number *}
 Day : INTEGER; {* Day number during simul*}
 Date : DateTime; {* date of day *}
 ElapsTime : REAL; {* elapsed time (seconds) *}
 TotPopulat, {* Total birds in system *}
 AvgIntake, {* Avg(IntakeRate*BirdDens*}
 IntakeRate, {* Prey number per bird/s *}
 FeedingTime : REAL; {* Part of the day used *}
 CompFeedTime, {* for feeding *}
 BirdDensity,
 AvgBirdDens,
 BirdNumber,
 AvgBirdNumb : Array[1..MaxAreas] of REAL;
 Area : Array[1..MaxAreas] of PreyResult;
 TotFood,
 TotPrefFood : ARRAY[1..MaxAreas] OF REAL;
 Energy : EnergyBud;
 Heat : HeatBud;
 Time : TimeBud;
 Mass : MassBud;

 End;

 BirdRes = Record
 Weight, {* mass of bird (g) *}
 StorageWeight, {* mass of storage *}
 BufferWeight, {* buffer size *}
 FatThickness, {* thickness fat layer *}
 bodArea, {* area of body alone cm2*}
 lungVol, {* repiratory volume *}
 {* swimming birds -------------------------*}
 SVol, {* total volume cm3 *}
 SairVol, {* total air volume *}
 SfeatVol, {* airvolume in feathers *}
 Sdfeat, {* thickness of feathers *}
 SfeatArea, {* feathered body area *}
 SfrontArea, {* fronal area = feathers*}
 {* diving birds -------------------------*}
 DVol, {* total volume cm3 *}
 DairVol, {* total air volume *}
 DfeatVol, {* airvolume in feathers *}
 Ddfeat, {* thickness of feathers *}
 DfeatArea, {* feathered body area *}
 DfrontArea, {* fronal area = feathers*}
 weightIncreaseRate, {* increase rate (input) *}
 IntakeRate : Real; {* intake rate of food *}
 End;

 PopRes = Record
 DDay : ARRAY[1..MaxSim] OF INTEGER;
 {* Depletion Day *}
 PreyStart, {* Total Prey at begin and*}
 PreyEnd, {* end of simulation *}
 PopulatStart, {* Population start and *}
 PopulatEnd : ARRAY[1..MaxSim] OF REAL; {* end *}
 ComPreyEnd,
 ComPreyStart: ARRAY[1..MaxSim,1..MaxAreas] OF REAL;
 End;

104 Alterra-rapport 839

 FileName = STRING[30];

 SortArr = ARRAY[1..MaxAreas] OF INTEGER;{* sorting area *}
 {* profitability *}

IMPLEMENTATION
BEGIN
END.

Alterra-rapport 839 105

D5 Lowest level computation file EIFunct1.pas
{==#
ALTERRA
#--#
Model DEPLETE_Eider
DEPLETEEider describes the way eider ducks find and utilize food
and how the food fits their energetic needs
#--#
Alterra PO Box 167 1790 AD Den Burg-NL
Phone () 31 222 369728
Fax () 31 222 319235
#--#
Developers Bert Brinkman a.g.brinkman@alterra.wag-ur.nl
#
#==#
File EIFunct1.PAS
Contains the detailed process funtions
#
Created 2002-Januari-17
Last Modified 2002-April-24
#--#
Calls no other routines
#--#
Called by Routines from EIfunct2.pas, that combine
most of these functions and routines to
energybudgets
#==}
UNIT EIFunct1;

INTERFACE

USES bbmath,
 EIsysdef;

{***
Computation of frontal area and feathered area of a duck ,
plus the volumes of lungs, feathers, etc.
***}
PROCEDURE AreasDuck (var dck : Duck;
 var brd : BirdRes);

FUNCTION Shell_Weight (var system: Sysdef;
 Areanr,
 preynr:INTEGER;
 len : REAL) : REAL;

{***
Computation of fresh weightess
***}
FUNCTION Fresh_Weight (var system: Sysdef;
 Areanr,
 preynr: INTEGER;
 len : REAL) : REAL;

FUNCTION Meat_content (var system: Sysdef;
 Areanr,
 preynr: INTEGER;
 len,
 monfact : REAL) : REAL;
{***
Computation of of water content in shells
***}
FUNCTION Water_content(var system: Sysdef;

106 Alterra-rapport 839

 Areanr,
 preynr: INTEGER;
 len : REAL) : REAL;

{***
Computation of salt content in shells
***}
FUNCTION Salt_content (var system: Sysdef;
 water : REAL) : REAL;

FUNCTION Crushing_Energy (var system: Sysdef;
 Areanr,
 preynr : INTEGER;
 length : REAL) : REAL;

{***
Computation of energic costs of heating prey (1 piece of prey)
***}
FUNCTION HeatingPreyInd_Energy (var freshweight : REAL;
 dck : Duck;
 var system : sysdef;
 shllchr : ShellChar) : REAL;

{***
Computation of energic costs of heating prey
***}
{FUNCTION HeatingPrey_Energy (var Meat_Content: REAL;
 dck : Duck;
 var system : sysdef;
 shllchr : ShellChar;
 var birdresult : BirdRes) : REAL;

{***
Computation of salt-intake related energy losses . Energy in J/sec
It's assumed that it's about 20% of BMR (see Nehls)
***}
FUNCTION Salt_Energy (var salt : REAL;
 var sd : sysdef) : REAL;

{***
Computation of energic needs for digestion
***}
FUNCTION Digestion_Energy (var Meat_Content: REAL;
 var sd : Sysdef;
 var dck : Duck) : REAL;

{***
Computation of energic benefit from prey
***}
FUNCTION PreyInd_Energy (var Meat_Content: REAL;
 var sd : Sysdef;
 var dck : Duck) : REAL;

{***
Computation of energic benefit from prey
***}
{FUNCTION Prey_Energy (var br : BirdRes;
 Meat_Content : REAL;
 var sd : Sysdef;
 var dck : Duck) : REAL;

{***
Computation of energic benefit from prey

Alterra-rapport 839 107

***}
FUNCTION PreyMass_Energy (var br : BirdRes;
 var sd : Sysdef) : REAL;

{***
Computation of diving energy
***}
PROCEDURE Diving_Energy (var dck : Duck;
 var br : BirdRes;
 var ener : EnergyBud;
 var heat : heatBud;
 var time : TimeBud;
 var system : sysdef;
 physchr : Physic_Char;
 areanr : INTEGER);

{***
Computation of energy costs at bottom
***}
PROCEDURE Bottom_Energy (var sd : Sysdef;
 dck : Duck;
 var brd : Birdres;
 var heat : HeatBud;
 var ener : EnergyBud;
 var time : TimeBud;
 var physCh : Physic_Char;
 areanr : INTEGER);

{***
Computation of swimming energy costs
***}
FUNCTION Swimming_Energy (var dck : Duck) : REAL;

{***
Computation of breathing energy losses
***}
FUNCTION Breathing_Energy(energy: REAL;
 var phys : Physic_Char;
 var dck : Duck;
 var sd : sysdef) : REAL;

{***
Computation of time needed to rest after a dive
***}
PROCEDURE Resting_Time (var dck : Duck;
 var system : sysdef;
 var time : TimeBud;
 nrarea : INTEGER);

{***
Computation of time needed to dive
***}
{FUNCTION Diving_Time (var dck : Duck;
 var system : sysdef;
 nrarea : INTEGER) : REAL;

{***
Computation of time needed to search at bottom
***}
{FUNCTION Bottom_Time (musselknd : INTEGER;
 dck : Duck) : REAL;

{***
Computation of time needed to search at bottom

108 Alterra-rapport 839

***}
FUNCTION Handling_Time (musselknd : INTEGER;
 var dck : Duck;
 var system : Sysdef;
 nrarea : INTEGER) : REAL;

{***
Computation of time needed to digest the prey
***}
FUNCTION Digestion_Time (flesh : REAL;
 dck : Duck) : REAL;

{***
Computation of flying energy costs
***}
FUNCTION Flying_Energy (flytime : REAL;
 dck : Duck) : REAL;

{***
Computation of fat volume eider feathers
weight of bird is in grams
***}
FUNCTION Eider_FatVolume (var dck :Duck;
 var br : BirdRes) : REAL;

{***
Computation of fat thickness eider feathers
weight of bird is in grams
***}
PROCEDURE Eider_FatThick (var dck :Duck;
 var br : BirdRes);

{***
Computation of energic costs of heating
***}
FUNCTION HeatingEider_Energy (var physch : Physic_Char;
 dck : Duck;
 var br : BirdRes;
 var sd : Sysdef;
 pos : INTEGER) : REAL;

{***
Computation of maximum uptake volume rate
It is assumed that an eider cannot take up more than a certain
volume of prey per unit of time. This sets the limits to the prey
to be caught.
***}
FUNCTION MaxVol_Uptake : REAL;

{***
Computation of maximum uptake rate
An eider can be meager, and be at the lower level of its weight
In that case, the possible uptake rate is maximal. At the other
hand, the animal can be fat. In that case; only the daily energy
costs have to be covered.
***}
FUNCTION MaxMass_Uptake : REAL;

{***
An eider has a certain strategie for its weight development
during the year. This cannot be computed here; it's the result of
of the average weight, and the yearweightfactor. This determines
what the preferred mass ingestion and assimilation rate is
***}

Alterra-rapport 839 109

FUNCTION DesiredWeightdevelopment (var br : BirdRes;
 dck : Duck;
 date : datetime) : REAL;

IMPLEMENTATION

{***
Computation of frontal area and feathered area of a duck
***}
PROCEDURE AreasDuck (var dck : Duck;
 var brd : BirdRes);
VAR a,b,c,h,r,s, f, nill,
 buoy,wei,hr_c,y,pp : REAL;
BEGIN
 wei := brd.weight; {* grams *}
 hr_c := dck.hr_c; {* (-) proport cons*}
 y := (wei*3.0/2.0/hr_c/Pi);
 pp := 0.33;
 r := power(y,pp); { radius, cm *}
 h := r * hr_c; {* cone length *}
 s := sqrt(h*h+r*r); {* cone side length*}

 brd.lungVol := dck.LungVol_a
 * power(wei,dck.LungVol_b); {* cm3 *}
 brd.bodArea := 2*pi*r*(r+s); {* body area no fea*}
 {**}
 {* swimming birds first *}
 {**}
 brd.SVol := brd.weight / dck.specMass_Swim; {* gram / kg/dm3 *}
 {* bird vol in cm3 *}
 brd.SairVol := brd.SVol - brd.weight; {* cm3 *}
 buoy := brd.SairVol;
 brd.SfeatVol := brd.SairVol
 - (1.0+dck.exhPartbefDiv)
 * brd.lungVol; {* cm3 *}

 a := pi*r+pi*s/2.0;
 b := pi*r*r+pi*r*s; {* the cone is only*}
 c := - brd.SfeatVol/2.0; {* taken half!! *}
 brd.Sdfeat := (-b+sqrt(b*b-4*a*c))/2/a; {* better est dfeat*}
 f := brd.Sdfeat;
 brd.SfeatArea:= 2*pi*(r+f)*(r+f+s); {* cm2 *}
 brd.SfrontArea:= pi*(r+f)*(r+f); {* cm2 *}
 {**}
 {* diving birds next *}
 {**}
 brd.DVol := brd.weight / dck.specMass_Div; {* gram / kg/dm3 *}
 {* bird vol in cm3 *}
 brd.DairVol := brd.DVol- brd.weight; {* cm3 *}
 buoy := brd.DairVol;

 brd.DfeatVol := brd.DairVol - brd.lungVol ; {* cm3 *}

 a := pi*r+pi*s/2.0;
 b := pi*r*r+pi*r*s; {* the cone is only*}
 c := - brd.DfeatVol/2.0; {* taken half!! *}
 brd.Ddfeat := (-b+sqrt(b*b-4*a*c))/2/a; {* better est dfeat*}
 f := brd.Ddfeat;
 brd.DfeatArea:= 2*pi*(r+f)*(r+f+s); {* cm2 *}
 brd.DfrontArea:= pi*(r+f)*(r+f); {* cm2 *}
 nill:=0.0;
 a:=1/nill; }
END; {* Now areas and thichness have been computed }

110 Alterra-rapport 839

{***
Computation of shell thickness
***}
FUNCTION Shell_Weight (var system: Sysdef;
 Areanr,
 preynr: INTEGER;
 len : REAL) : REAL;
VAR a,b,result: REAL;
BEGIN
 a := system.Area[Areanr]^.prey[preynr].Shell_A;
 b := system.Area[Areanr]^.prey[preynr].Shell_B;
 result:= a* power (len,b);
 Shell_Weight := result;
END;

{***
Computation of fresh weightess
***}
FUNCTION Fresh_Weight (var system: Sysdef;
 Areanr,
 preynr: INTEGER;
 len : REAL) : REAL;
VAR a,b,result: REAL;
BEGIN
 a := system.Area[Areanr]^.prey[preynr].Fresh_A;
 b := system.Area[Areanr]^.prey[preynr].Fresh_B;
 result:= a* power (len,b);
 Fresh_Weight := result;
END;

{***
Computation of shell flesh content AFDW
***}
FUNCTION Meat_content (var system: Sysdef;
 Areanr,
 preynr: INTEGER;
 len,
 monfact: REAL) : REAL;
VAR a,b,result: REAL;
BEGIN

 a := system.Area[Areanr]^.prey[preynr].DW_A *monfact ;
 b := system.Area[Areanr]^.prey[preynr].DW_B ;

 result:= a* power (len,b);

 Meat_content := result;
END;

{***
Computation of of water content in shells
***}
FUNCTION Water_content (var system: Sysdef;
 Areanr,
 preynr: INTEGER;
 len : REAL) : REAL;
VAR a,b,result: REAL;
BEGIN
 a := system.Area[Areanr]^.prey[preynr].Water_a ;
 b := system.Area[Areanr]^.prey[preynr].Water_b ;

 result:= a* power (len,b);

 Water_content := result;

Alterra-rapport 839 111

END;

{***
Computation of salt content in shells
***}
FUNCTION Salt_content (var system: Sysdef;
 water : REAL) : REAL;
VAR a,b,result: REAL;
BEGIN
 a := system.shell.Salt_Water;
 result:= a * water;

 Salt_content := result;
END;

{***
Computation of shell thickness
***}
FUNCTION Crushing_Energy (var system: Sysdef;
 Areanr,
 preynr : INTEGER;
 length : REAL) : REAL;
VAR a,b,result: REAL;
BEGIN
 a := system.shell.Crush_A[preynr];
 b := system.shell.Crush_B[preynr];

 result:= a* Shell_Weight (system,Areanr,preynr,
 length) +b;
 Crushing_Energy := result;
END;

{***
Computation of energic costs of heating prey (1 piece of prey)
***}
FUNCTION HeatingPreyInd_Energy (var freshweight : REAL;
 dck : Duck;
 var system : sysdef;
 shllchr : ShellChar) : REAL;
VAR result,shell,
 tempdiff :REAL;
BEGIN
 shell := freshweight; { gram fresh-weight *}
 tempdiff := dck.bodytemp- system.Twat; {* T-diff water-duck *}

 result := ShllChr.SpecHeat * shell
 *tempdiff ;
 HeatingPreyInd_Energy := result;
END;

{***
Computation of energic costs of heating prey
***}
FUNCTION HeatingPrey_Energy (var Meat_Content: REAL;
 dck : Duck;
 var system : sysdef;
 shllchr : ShellChar;
 var birdresult : BirdRes) : REAL;
VAR result,indheating :REAL;
BEGIN
 indheating :=
HeatingPreyInd_Energy(Meat_Content,dck,system,shllchr);
 {* product of intakerate * heating per individual *}
 result := BirdResult.IntakeRate
 * indheating;

112 Alterra-rapport 839

 HeatingPrey_Energy := result;
END;

{***
Computation of energic needs for digestion
***}
FUNCTION Digestion_Energy (var Meat_Content: REAL;
 var sd : Sysdef;
 var dck : Duck) : REAL;
VAR result: REAL;
BEGIN
 result := sd.shell.DisgestionEnergy * Meat_Content
 *dck.assimilationEffic ;
 Digestion_Energy := result;
END;

{***
Computation of energic benefit from prey
***}
FUNCTION PreyInd_Energy (var Meat_Content: REAL;
 var sd : Sysdef;
 var dck : Duck) : REAL;
VAR result: REAL;
BEGIN
 result := sd.shell.EnergyContent * Meat_Content
 *dck.assimilationEffic ;
 PreyInd_Energy:= result;
END;

{***
Computation of energic benefit from prey
***}
FUNCTION Prey_Energy (var br : BirdRes;
 Meat_Content : REAL;
 var sd : sysdef;
 var dck : Duck) : REAL;
VAR result: REAL;
BEGIN
 {**}
 {* BirdResInd.IntakeRate is in prey-numbers per second *}
 {**}
 result := br.IntakeRate
 * PreyInd_Energy(Meat_Content,sd,dck) ;
 Prey_Energy := result;
END;

{***
Computation of energic benefit from prey
***}
FUNCTION PreyMass_Energy (var br : BirdRes;
 var sd : Sysdef) : REAL;
VAR result: REAL;
BEGIN
 {**}
 {* BirdRes.IntakeRate is in mass meat per second *}
 {**}
 result := br.IntakeRate * sd.shell.energyContent ;
 PreyMass_Energy := result; {* Watts *}
END;

{***
Computation of diving energy in Joules per dive
***}
PROCEDURE Diving_Energy (var dck : Duck;
 var br : BirdRes;

Alterra-rapport 839 113

 var ener : EnergyBud;
 var heat : heatBud;
 var time : TimeBud;
 var system : sysdef;
 physchr : Physic_Char;
 areanr : INTEGER);
VAR ds,dsmin,dsmax,
 accelperiod,
 acceler0,
 accelerdiv,
 diep, rho,
 duckairvol, dragen,
 drag,frontarea,f,
 divspeed,kinener,
 te,a,b,alfa,beta,
 W0,We, work,power : REAL;
BEGIN
 {***
 * For all the computations: mind the units!! brd.Dvol eg is in cm3 *
 * brd.weight in grams *
 ***}
 ds := Dck.divingspeed;
 dsmin := Dck.divingspeed-Dck.DivingSpeedAmpl;
 dsmax := Dck.divingspeed+Dck.DivingSpeedAmpl;
 accelperiod := 1.0 / Dck.DivingAmpFreq;
 acceler0 := 0.5* br.Weight/1e3 * ds * ds;{* initial accela *}
 ener.divingAccel0:= acceler0 / dck.energ_eff; {* Joules *}
 heat.divingAccel0 := (1.0-dck.energ_eff) {* not effectively *}
 * ener.divingAccel0; {* used --> heat (J) *}
 {**}
 {* now the acceleration energy at the start is known *}
 {**}
 accelerdiv := 0.5* br.Weight/1e3
 *(dsmax*dsmax
 -dsmin*dsmin); {* acc. during diving *}
 ener.divingAccel:= accelerdiv / dck.energ_eff;{* Watts *}
 heat.divingAccel := (1.0-dck.energ_eff) {* not effectively *}
 * ener.divingAccel; {* used --> heat (W) *}

 {**}
 {* now the acceleration energy is known *}
 {**}
 diep := system.area[areanr]^.depth; {* system depth on *}
 {* site areanr m *}
 frontarea := br.DfrontArea/1.0e4; {* m2 frontal area *}
 f := Dck.frictionFact; {* ==Cd *}

 rho := physchr.WaterDens; {* spec mass wat kg/m3*}
 divspeed := Dck.divingSpeed; {* m/s diving *}
 kinEner := 0.5*rho*divspeed*divspeed; {* kinetic cont water *}

 drag := f*frontarea*kinEner; {* force needed for *}
 {* diving *}
 dragEn := drag * divspeed; {* Watts *}

 ener.divingDrag:=dragEn / Dck.energ_eff; {* produced Watts *}
 heat.divingDrag:=(1.0-Dck.energ_eff) {* converted into *}
 * ener.divingDrag; {* heat Watts *}

 {***
 * Next, the effect of buoyancy is computed *
 * Here, the effect of a changing buoyancy with depth is computed *
 * See appendix C of the eider duck report *
 * We assume a constant diving speed *
 ***}

114 Alterra-rapport 839

 duckairvol := br.DAirVol/1.0e6; {* cm3/ 1e6 =m3 *}
 te := diep / divspeed; {* duration s *}
 a := 10.0 * physchr.gravity
 *duckairvol
 physchr.WaterDens ; { m/s2 / m3 *}
 b := 10.0 / divSpeed;
 alfa := b/a;
 beta := 1.0/a;
 W0 := 1.0/beta * ln(alfa);
 We := 1.0/beta * ln(alfa+beta*te);
 work := We-W0; {* Joules *}
 power := work / te; {* Watts *}
 ener.divingBuoy:= work / Dck.energ_eff; {* energy asked *}
 heat.divingBuoy:= (1.0 - Dck.energ_eff)
 * ener.divingBuoy; {* heat produced *}
 time.descent := te; {* store diving time *}
 time.ascent := te*0.7; {* store ascent time }
 {**}
 { The amounts computed above partly are Watts, and partly Joules. *}
 {* since we are interested in Joules per dive, and later on Joules *}
 {* per day, all power are converted into Joules *}
 {**}
 ener.divingAccel:= ener.divingAccel * te; {* Joules *}
 heat.divingAccel:= heat.divingAccel * te; {* Joules *}
 ener.divingDrag := ener.divingDrag * te; {* produced Joules *}
 heat.divingDrag := heat.divingDrag * te; {* produced Joules *}
 ener.divingBuoy := ener.divingBuoy * te; {* energy asked *}
 heat.divingBuoy := heat.divingBuoy * te; {* produced heat J *}
END;

{***
Computation of energy costs at bottom.
***}
PROCEDURE Bottom_Energy (var sd : Sysdef;
 dck : Duck;
 var brd : Birdres;
 var heat : HeatBud;
 var ener : EnergyBud;
 var time : TimeBud;
 var physCh : Physic_Char;
 areanr : INTEGER);
VAR result,depth,
 searchtime,yy,
 buoy,power : REAL;
BEGIN
 IF sd.area[areanr]^.musselKind=0
 THEN
 searchtime := Dck.searchTime0
 ELSE
 searchtime := Dck.searchTime1;

 time.bottom := searchtime;
 depth := sd.Area[areanr]^.depth;{* meters depth *}
 buoy := brd.DairVol {* cm3 *}
 physCh.gravity { zwaartekrachtversnelling *}
 /1.0e3 {* naar dm3 (rho-wat=1) *}
 10.0/(10.0+depth); { diepte-correctie *}
 {***
 * Buoyancy is corrected for depth **
 ***}
 power := buoy * dck.Botta; {* N * W/N-> W *}
 heat.divingBott := (1-dck.energ_eff)
 * power
 / dck.energ_eff; {* only losses *}
 ener.divingBott := heat.divingBott; {* W *}

Alterra-rapport 839 115

 heat.divingBott := heat.divingBott * searchTime; {* Joules *}
 ener.divingBott := ener.divingBott * searchTime; {* Joules *}

 result := 6.0 * searchTime ; {* demand = 6 Watts *}
END;

{***
Computation of salt-intake related energy losses . Energy in J/sec
It's assumed that it's about 20% of BMR (see Nehls)
Note that bmr is in watts/kg, and bird-weight in grams !!
***}
FUNCTION Salt_Energy (var salt : REAL;
 var sd : sysdef) : REAL;
VAR i,j : INTEGER;
 result : REAL;
BEGIN
 result := salt * sd.shell.Salt_energy; {* Joules *}
 Salt_Energy := result;
END;

{***
Computation of swimming energy costs (Watts)
***}
FUNCTION Swimming_Energy (var dck : Duck) : REAL;
VAR result: REAL;
BEGIN

 result := dck.Swima ; {* Watts *}
 Swimming_Energy := result;
END;

{***
Computation of breathing energy losses . Energy in J/sec
It's 20 kJ / gram DW - > 20 kJ / gram O2
***}
FUNCTION Breathing_Energy (energy: REAL;
 var phys: Physic_Char;
 var dck : Duck;
 var sd : sysdef) : REAL;
VAR gramO2ps,
 volO2ps,
 volair,
 volbreath,
 Tdiff,
 result: REAL;
BEGIN
 gramO2ps := energy /20.0e3; {* W *}
 volO2ps := gramO2ps/phys.AirDens; {* airdens = 1.3g/l *}
 volair := volO2ps * 5.0; {* 20% of air = O2 *}
 volbreath := volair * 5.0; {* only 20% of oxygen*}
 {* is used each time *}
 Tdiff := dck.BodyTemp - sd.Tair; {* temp difference *}
 result := TDiff * volbreath * phys.Air_specheat;
 {* J/s *}
 Breathing_Energy := result;
END;

{***
Computation of time needed to rest after a dive
***}
PROCEDURE Resting_Time (var dck : Duck;
 var system : sysdef;
 var time : TimeBud;
 nrarea : INTEGER);
VAR result: REAL;

116 Alterra-rapport 839

BEGIN
 time.resting := (time.descent + time.ascent+time.bottom)
 0.75; { guessed after Nehls p36 *}
END;

{***
Computation of time needed to dive
***}
FUNCTION Diving_Time (var dck : Duck;
 var system : sysdef;
 nrarea : INTEGER) : REAL;
VAR a,b,result: REAL;
BEGIN
 a := system.area[nrarea]^.depth; {* local depth *}
 b := dck.divingspeed; {* diving speed duck *}
 result := a/b ; {* diving time *}
 Diving_Time := result;
END;

{***
Computation of time needed to search at bottom
***}
{FUNCTION Bottom_Time (musselknd : INTEGER;
 dck : Duck) : REAL;
VAR result: REAL;
BEGIN
 IF musselknd =0
 THEN
 result := dck.searchtime0
 ELSE
 result := dck.searchtime1;

 Bottom_Time := result;
END; }

{***
Computation of time needed to search at bottom
***}
FUNCTION Handling_Time (musselknd : INTEGER;
 var dck : Duck;
 var system : Sysdef;
 nrarea : INTEGER) : REAL;
VAR result: REAL;
BEGIN
 IF musselknd =0
 THEN
 result := dck.handlingtime0
 ELSE
 result := dck.handlingtime1;

 Handling_Time := result;
END;

{***
Computation of time needed to digest the prey
Note: NOT used; handling time covers this part
***}
FUNCTION Digestion_Time (flesh : REAL;
 dck : Duck) : REAL;
VAR result: REAL;
BEGIN
 result := 0.0; {<<vooralsnog: handling time covert het <<<<<}

 Digestion_Time := result;
END;

Alterra-rapport 839 117

{***
Computation of flying energy costs
***}
FUNCTION Flying_Energy (flytime : REAL;
 dck : Duck) : REAL;
VAR result,y1,y2: REAL;
BEGIN
 result := Dck.flycosts * flytime ;
 Flying_Energy := result;
END;

{***
Computation of fat volume eider feathers
weight of bird is in grams
***}
FUNCTION Eider_FatVolume (var dck :Duck;
 var br : BirdRes) : REAL;
VAR result,
 fatdensity,
 y1 : REAL;
BEGIN
 fatdensity := 1.0;
 y1 := Br.StorageWeight; {* fatweight *}
 result := y1 / fatdensity; {* fat volume cm3 *}

 Eider_FatVolume := result;
END;

{***
Computation of fat thickness eider feathers
weight of bird is in grams
***}
PROCEDURE Eider_FatThick (var dck :Duck;
 var br : BirdRes);
VAR result,y1,y2: REAL;
BEGIN
 y1 := br.bodArea; {* body area (no feat) cm2 *}
 result := Eider_FatVolume(dck,br)
 / y1; {* fat volume cm3 *}
 br.FatThickness:= result; {* cm *}
END;

{***
Computation of energic costs of heating
***}
FUNCTION HeatingEider_Energy (var physch : Physic_Char;
 dck : Duck;
 var br : BirdRes;
 var sd : Sysdef;
 pos : INTEGER) : REAL;
VAR result,b,
 temp,
 Tskin,
 heatflux,yy,
 wind,zz,xx,
 d2d3,a1,a2,Tb,Tfeat,
 dfeat, Tenv,
 Askin,Afeat,Area,
 heatflow : REAL;
BEGIN
 IF pos =1 {* thick air layer *}

118 Alterra-rapport 839

 THEN {* in water *}
 yy := 1.0e4
 ELSE {* in air *}
 yy := physch.WindChill_a
 * power (sd.windspeed,physch.WindChill_b);
 zz := 1.0/yy; {* thickness air layer}

 Eider_FatThick (dck,br); {* thickness fat layer}
 xx := br.FatThickness*1e-2; {* m *}
 IF pos =0 {* thickness feathers*}
 THEN {* in air *}
 yy := br.Sdfeat*0.01
 ELSE {* in water *}
 yy := br.Ddfeat*0.01;

 a1 := physch.Fat_heatcond;
 a2 := physch.Air_heatcond;
 b := a1 / a2 * yy / xx; {* b-value *}

 d2d3 := yy / zz; {* d2 / d3 *}
 Tb := dck.bodyTemp;

 IF pos =0 {* temp environment *}
 THEN {* in air *}
 Tenv:= sd.Tair
 ELSE {* in water *}
 Tenv:= sd.Twat;

 {***
 * Note that fat and feather thicknesses were in cm, but since *
 * they appear both, it's OK *
 ***}
 Tfeat := (d2d3*Tenv/(1+d2d3)+Tb/(1+b)/(1+d2d3)){* feat surface temp *}
 /(1-b/(1+b)/(1+d2d3));

 Tskin := (b* Tb + Tfeat)/(1.0+b); {* skin temp oC *}

 heatflux := a2 {* W /m /K *}
 (Tskin - Tfeat) { oC *}
 /yy; {* feat thick in m *}

 ASkin := br.bodArea*1e-4; {* m2 *}
 IF pos=0
 THEN
 Afeat := br.SFeatArea*1e-4
 ELSE {* in water *}
 Afeat := br.DFeatArea*1e-4;
 Area := (Askin + Afeat)/2.0; {* aver. surface cm2 *}

 heatflow := heatflux *Area ; {* flux = W/m2 *}
 {* area in m2 *}
 HeatingEider_Energy := heatflow; {* W per animal *}
END;

{***
Computation of maximum uptake volume rate
It is assumed that an eider cannot take up more than a certain
volume of prey per unit of time. This sets the limits to the prey
to be caught.
***}
FUNCTION MaxVol_Uptake : REAL;
VAR result,y1,y2: REAL;
BEGIN

Alterra-rapport 839 119

 result := 0.0 ;
{<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<invullen <<<<<}
 MaxVol_Uptake := result;
END;

{***
Computation of maximum uptake rate
An eider can be meager, and be at the lower level of its weight
In that case, the possible uptake rate is maximal. At the other
hand, the animal can be fat. In that case; only the daily energy
costs have to be covered.
***}
FUNCTION MaxMass_Uptake : REAL;
VAR result,y1,y2: REAL;
BEGIN

 result := 0.0 ;
{<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<invullen <<<<<}
 MaxMass_Uptake := result;
END;

{***
An eider has a certain strategie for its weight development
during the year. This cannot be computed here; it's the result of
of the average weight, and the yearweightfactor. This determines
what the preferred mass ingestion and assimilation rate is
***}
FUNCTION DesiredWeightdevelopment (var br : BirdRes;
 dck : Duck;
 date : datetime) : REAL;
VAR result,
 presentweight,
 desiredweight,
 diff,
 specrate : REAL;
BEGIN
 presentWeight := br.weight;
 desiredweight := dck.weightavg *dck.yearweight[date.month];
 diff := desiredWeight- presentWeight;
 specrate := diff/ presentWeight;
 {***
 * We assume first that the bird tries to reach this difference *
 * But, the rate cannot be larger or smaller than the maximum growth *
 * rate. Only if the bird cannot find food, the growth rate can be *
 * lower. *
 ***}
 IF specrate > dck.maxgrowthrateConstant
 THEN
 diff := dck.maxgrowthrateConstant ;

 IF diff < - dck.maxgrowthrateConstant
 THEN
 diff := - dck.maxgrowthrateConstant;
 {***
 * Now we know what the birds wants to do. Next is to estimate *
 * whether it can reach this target; ie: is there enough food? *
 ***}
 DesiredWeightdevelopment := diff;
END;

END. {* of Unit EIFunct1.pas *}

120 Alterra-rapport 839

D6 Level 2 computation file EIFunct2.pas
{==#
ALTERRA
#--#
Model DEPLETE_Eider
DEPLETEEider describes the way eider ducks find and utilize food
and how the food fits their energetic needs
#--#
Alterra PO Box 167 1790 AD Den Burg-NL
Phone () 31 222 369728
Fax () 31 222 319235
#--#
Developers Bert Brinkman a.g.brinkman@alterra.wag-ur.nl
#
#==#
File EIFunct2.PAS
Contains the computation of the enrgy budget
#
Created 2002-Januari-17
Last Modified 2002-April-17
#--#
Calls The detail-functions from EIfunct1.pas
#--#
Called by Routine TotPopulation from RatesAndDensities
in file EIRatDen.pas
#==}
UNIT EIFunct2;

INTERFACE

USES bbmath,
 eisysdef,
 eifunct1,
 eiplio;
VAR flesh,
 ener_inp,
 heat_inp,
 shellw,freshw,
 waterw,saltw,
 heatprey,
 accel0en,
 accel0het,
 acceleng,
 accelheat,
 drageng,
 dragheat,
 dbuoyeng,
 dbuoyheat,
 botteng,
 bottheat,
 crush,
 heatprod,
 digestion,
 AirCool,H2OCool,
 ExtraCool,
 BreathBMR,BreathFod,
 ExtraBreat,
 saltcost,
 bottomtime,
 restingtime,
 divingtime,
 handlingtime,
 digestiontime,
 tot_time,underw_time,
 energy,

Alterra-rapport 839 121

 heat,
 energain,
 extraenergy,
 en_rate : ARRAY[1..MaxLengths] OF REAL;

PROCEDURE Compute_BasicEnergy
 (var sd : Sysdef;
 var dck : Duck;
 var res : SimRes;
 var bird : BirdRes;
 var physics : Physic_Char;
 var detailfile: text;
 {var breath,air: REAL; }
 detail : INTEGER);

PROCEDURE Check_Profitability
 (var sd : sysdef;
 var detfil: text;
 var dck : Duck;
 var br : BirdRes;
 physch: Physic_Char;
 var sim : SimRes ;
 detail: INTEGER) ;

PROCEDURE Area_FoodValue (var sd : Sysdef;
 var dck : Duck;
 var res : SimRes;
 var bird : BirdRes;
 var physics : Physic_Char;
 var detailfile: text;
 detail : INTEGER);

{***
Computation food value of an area
***}
PROCEDURE FindBestArea (var nrf,nrfpref: INTEGER;
 sd : sysdef;
 var res : Simres);

{***
* In order to find the number of dives necessary, the basis energy **
* demand and the demand related to dives has to be known **
***}
PROCEDURE Compute_NumberOfDives
 (var sd : sysdef;
 var detfil: text;
 var dck : Duck;
 var br : BirdRes;
 physch: Physic_Char;
 var sim : SimRes ;
 detail,
 sitenr: INTEGER;
 VAR final : INTEGER);

PROCEDURE Compute_PreyLosses
 (var sd : Sysdef;
 var dck : Duck;
 var res : SimRes;
 var bird : BirdRes;
 var physics : Physic_Char;
 var detailfile: text;
 sitenr : INTEGER);

122 Alterra-rapport 839

IMPLEMENTATION

{**}
{* Computes the basic-energy-demand for a bird *}
{**}
PROCEDURE Compute_BasicEnergy
 (var sd : Sysdef;
 var dck : Duck;
 var res : SimRes;
 var bird : BirdRes;
 var physics : Physic_Char;
 var detailfile: text;
 { var breath,air: REAL; }
 detail : INTEGER);
VAR i,j : INTEGER;
 AirCool,
 BreathBMR,SaltEnerg,
 FlyingBas, SwimBas,
 dailyheatbas, yy,
 DailyBasicExpenditure : REAL;

BEGIN
 {***
 * First the basal metabolic rate is handled . Note that BMR (as *
 (* characteristics) is given per kg body mass (that's in g) *
 ***}
 res.heat.bmr := dck.BMR * bird.weight/1.0e3; {* W *}
 res.energy.bmr := res.heat.bmr; {* W *}
 {**}
 {* First the amount of work needed normally *}
 {* Note that some terms are comuted in W, and some in J per action *}
 {* just a loss of heat. *}
 {**}
 {* first term: cooling in the air ; position == 0 *}
 AirCool := HeatingEider_Energy
 (physics,dck,bird,sd,0) ; {* W *}
 res.heat.condAir := AirCool; {* W *}
 {***
 # Computation of breathing energy losses . Energy in J/sec #
 # It's 20 kJ / gram DW - > 20 kJ / gram O2 . Always needed is BMR- #
 # related breathing #
 # Note: it is only used to account for the additional losses after #
 # foraging #
 ***}
 BreathBMR := Breathing_Energy
 (dck.BMR*bird.weight/1.0e3,
 physics,dck,sd); {* W *}
 res.heat.heatBreath := BreathBMR; {* W *}
 {***
 * Note that birdweight was in grams *
 ***}
 {**}
 {* Basic flytime is assumed to be 0.25 hours = .25*3600 sec *}
 {* Flying costs energy, of which part is vonverted into body heat *}
 {* inefficient production of fly-movement *}
 {* Similar for swimming . Joules per day *}
 {**}
 FlyingBas := Flying_Energy (dck.flytimperday, dck); {* Joules *}
 res.energy.flying := FlyingBas; {* Joules *}
 res.heat.flying := (1.0-dck.energ_eff)*FlyingBas; {* Joules *}

 SwimBas := Swimming_Energy (dck) *dck.swimtimPerDay;{* Joules *}
 res.energy.swimming:= SwimBas; {* Joules *}
 res.heat.swimming := (1.0-dck.energ_eff)*SwimBas; {* Joules *}

Alterra-rapport 839 123

 {**}
 {* Note that it is assumed that a duck swims about 500 m/day *}
 {**}
 res.energy.basic := {* these are basic energy terms *}
 - res.energy.bmr * SecPerDay {* Joules *}
 - FlyingBas+SwimBas; {* Joules *}

 res.heat.basic :=(res.energy.bmr {* W *}
 - res.heat.condAir {* W *}
 - res.heat.heatBreath
) * SecPerDay {* Joules *}
 + res.heat.flying {* Joules *}
 + res.heat.swimming; {* Joules *}
 {***
 * energy.basic is the amount of energy needed anyway per day (<0) **
 * Part of that energy is converted into heat, and the net heat gain **
 * is heat.basic. If this is negative, more heat is needed. May be **
 * there is sme compensation from heat produced (possibly) when diving*
 * If it is positive, it may be used to compensate losses resulting **
 * (possibly) from diving. If both are losss, feeding has to **
 * compensate both. if both are gains, the animal has to loose the **
 * surplus heat. **
 ***}

END;

{***
Computation profitability of one prey
The profitability is defined as the amount of energy a duck
can get out of one prey, divided by the time needed to catch that
prey. Thus, it's the nett energy rate in J/sec/per prey.
***}
FUNCTION Profitability (var sd : sysdef;
 var detFil: text;
 var dck : Duck;
 var br : BirdRes;
 physch: Physic_Char;
 var sim : SimRes;
 preynr,
 sitenr,
 detail: INTEGER;
 length: REAL;
 len : INTEGER
) : REAL;

VAR Ndives_need,
 weightIncRate,
 heat_inc,
 basic_heat,
 basic_energy_tot,
 totheat,
 monthfact,
 heatbasic,
 enerbasic,
 yy,xx : REAL;
BEGIN
 {**}
 {* The profitability of one prey depends on the energ content of *}
 {* the animal and the energy costs for a bird to catch an andle the *}
 {* prey *}
 {**}
 monthfact := sd.shell.a_month[preynr,sim.date.month];
 flesh[len] := Meat_Content (sd,sitenr,preynr,length,monthfact);
 {* gram flesh *}
 ener_inp[len]:= PreyInd_Energy (flesh[len],sd,dck);{* Joules/prey *}

124 Alterra-rapport 839

 {**}
 {* Here we find a coupling between heat and energy. If the bird *}
 {* has a constant mass, the ener_inp is also directly converted into*}
 {* heat. If there is a certain increase in weight expected *}
 {* (based on 'desired masses'), then not all ener_inp is used *}
 {* for heat production, but also for storage. If, on the other hand,*}
 {* the masses can decrease a bit, it adds to the heat production *}
 {* And, if there not enough food the provide the necessary energy *}
 {* the body mass MUST decrease. This is accounted for at the end of *}
 {* this routine. *}
 {**}
 heat_inp[len]:= ener_inp[len]; {* if all ->heat *}

 shellw[len] := Shell_Weight (sd,sitenr,preynr,length);
 {* gram shell *}

 waterw[len] := Water_Content (sd,sitenr,preynr,length);
 {* gram water *}
 saltw[len] := Salt_Content (sd,waterw[len]); {* gram salt *}
 saltcost[len]:= Salt_Energy (saltw[len],sd); {* J for the prey*}

 yy := Crushing_Energy(sd,sitenr,preynr,length);
 sim.energy.crushing:= yy; {* energy Joules *}
 sim.heat.crushing := yy; {* energy Joules *}
 crush[len] := yy;
 freshw[len] := Fresh_Weight (sd,sitenr,preynr,length);

 heatprey[len]:= HeatingPreyInd_Energy
 (freshw[len],dck,sd,
 sd.shell); {* heating Joules*}

 Diving_Energy (dck,br,sim.energy,sim.heat, {* energy for *}
 sim.time,sd,physch,sitenr); {* diving Joules *}

 accel0en [len]:= sim.energy.divingAccel0; {* joules *}
 accel0het[len]:= sim.heat.divingAccel0; {* joules *}
 acceleng [len]:= sim.energy.divingaccel; {* joules *}
 accelheat[len]:= sim.heat.divingaccel; {* joules *}
 drageng [len]:= sim.energy.divingDrag; {* Joules *}
 dragheat [len]:= sim.heat.divingDrag; {* Joules *}
 dbuoyeng [len]:= sim.energy.divingBuoy; {* Joules *}
 dbuoyheat[len]:= sim.heat.divingBuoy; {* Joules *}

 Bottom_Energy (sd,dck,br,sim.heat,sim.energy, {* energy for *}
 sim.time,physch,sitenr); {* searching J *}
 botteng [len]:= sim.energy.divingBott; {* Joules *}
 bottheat [len]:= sim.heat.divingBott; {* Joules *}

 digestion[len]:= Digestion_energy (flesh[len],
 sd,dck); {* digest costs J*}

 divingtime[len] := sim.time.descent
 + sim.time.ascent; {* dive time *}
 bottomtime[len] := sim.time.bottom; {* time searching*}
 handlingtime[len] := Handling_Time(sd.Area[sitenr]^.musselKind,
 dck,sd,sitenr); {* time handling *}
 Resting_Time (dck , sd ,sim.time,sitenr); {* time needed to*}
 {* recover *}
 restingtime[len] := sim.time.resting; {* secs *}
 digestiontime[len]:= Digestion_Time(flesh[len],dck);{* 1/digest rate*}

 tot_time[len] := bottomtime[len] + handlingtime[len]
 + divingtime[len]

Alterra-rapport 839 125

 + digestiontime[len]
 + restingtime[len]; {* sec *}
 underw_time[len] := bottomtime[len] + divingtime[len] ; {* sec *}
 {**}
 {* Extra cooling of animal as a result of diving *}
 {**}
 {**}
 {* First the amount of work needed normally *}
 {* Note that some terms are comuted in W, and some in J per action *}
 {**}
 {* first term: cooling in the air ; position == 0 *}
 {**}
 AirCool[len] := HeatingEider_Energy
 (physch,dck,br,sd,0); {* Watts *}
 {* second: cooling in the water ; position == 1 *}
 H2OCool[len] := HeatingEider_Energy
 (physch,dck,br,sd,1); {* Watts *}
 ExtraCool[len] := (H2OCool[len] - AirCool[len])
 * underw_time[len]; {* Joules *}
 {***
 # Computation of breathing energy losses . Energy in Joules here, #
 # because it's about the amount of flesh that's assimilated #
 #==
 # Note :: first it was assumed that Breathfod - BreathBMR was the #
 # extra breathing, but that's not true: BreathFod alone is the extra #
 # cooling. #
 ***}
 BreathBMR[len] := Breathing_Energy
 (dck.BMR*br.weight/1.0e3, {* bmr =W/kg *}
 physch,dck,sd) * tot_time[len]; {* Joules *}
 BreathFod[len] := Breathing_Energy
 (ener_inp[len], physch,dck,sd); {* Joules *}
 ExtraBreat[len]:= BreathFod[len] ; {* Joules *}
 {***
 * Note that birdweight was in grams *
 ***}

 {**}
 {* Now the profit of a prey of length len is known. *}
 {**}
 heat[len] := crush [len] {* crushing prey *}
 - heatprey [len] {* heating prey *}
 + accel0het [len] {* starting acceleration*}
 + accelheat [len] {* acceleration diving *}
 + dragheat [len] {* drag *}
 + dbuoyheat [len] {* buoy during diving *}
 + bottheat [len] {* buoy during searching*}
 - extracool [len] {* extra cooling diving *}
 - extrabreat [len]; {* extra breathing *}

 energy[len] :=- saltcost [len] {* salt excretion *}
 - crush [len] {* needed for crushing *}
 - accel0en [len] {* initial acceleration *}
 - acceleng [len] {* acceleration diving *}
 - drageng [len] {* drag-energy *}
 - dbuoyeng [len] {* buoyancy energy *}
 - botteng [len] {* energy at bottom *}
 - digestion [len]; {* needed for digestion *}

 yy := heat_inp [len]; {* if all prey-> heat *}

 {***
 * Energy[len] is <0, meaning that it costs energy. Heat[len] has to **
 * be added to the basic heat costs. One of both may (partly) **
 * compensate the other. **

126 Alterra-rapport 839

 * heat_inp[len] is always positive. **
 *===**
 * Before calling this routine , and routine CheckProfitability, **
 * the basal energy demand BMR is already computed. This part **
 * consists of an energy part and a heat part as well. **
 * So, it is possible now to compare these terms. **
 ***}
 heatbasic := sim.heat.basic; {* Joules/day <0 = need *}
 enerbasic := sim.energy.basic; {* Joules/day <0 = need *}
 IF heat[len]<0 THEN {* <0: costs, >0 gain *}
 xx := heat[len]
 ELSE
 xx := 0.0;

 energain[len]:= (energy[len]+ xx + yy); {*energy gain per dive *}
 en_rate[len] := energain[len]/tot_time[len];{*energy gain per sec *}
 {**}
 {* Note that en_rate is only used to computed profitabilities, and *}
 {* prey choices. The final energy buf=dget is computed based on *}
 {* heatbasic, enerbasic and heat_inp *}
 {**}

 {**}
 {* Store all this; it gives detailed info on the energy budget terms*}
 {* Results for each length are printed. *}
 {**}
 IF detail =1
 THEN
 StoreEnergyDetails(DetFil,sim,
 length, {* length of shell mm *}
 flesh [len], {* AFDW content shell g*}
 ener_inp [len], {* Energy content J *}
 shellw [len], {* shell weight gram *}
 waterw [len], {* water content g *}
 saltw [len], {* salt content g *}
 saltcost [len], {* salt costs J *}
 freshw [len], {* fresh weight gram *}
 crush [len], {* cruhing shells J *}
 heatprey [len], {* heating prey J *}
 accel0en [len], {* Joules *}
 accel0het[len], {* joules *}
 acceleng [len], {* joules *}
 accelheat[len], {* joules *}
 drageng [len], {* Joules *}
 dragheat [len], {* Joules *}
 dbuoyeng [len], {* Joules *}
 dbuoyheat[len], {* Joules *}
 botteng [len], {* Joules *}
 bottheat [len], {* Joules *}
 digestion[len], {* Joules *}
 extracool[len], {* Joules *}
 extrabreat[len], {* Joules *}
 bottomtime [len], {* time searching (sec)*}
 restingtime[len], {* time resting (sec) *}
 divingtime[len], {* time diving (sec) *}
 handlingtime[len], {* time handling (sec) *}
 digestiontime[len], {* time digesting (sec)*}
 tot_time[len], {* total time for prey *}
 underw_time[len], {* time under water *}
 energy[len], {* gain JOULES *}
 heat[len], {* heat Joules *}
 en_rate[len], {* Watts during search *}
 heat_inc, {* result of storage *}
 basic_heat, {* basal heat *}
 basic_energy_tot, {* basal energy *}

Alterra-rapport 839 127

 ndives_need);

 Profitability := en_rate[len];

END;

{***
Computation profitability of one prey
It's nothing else then the energy gain per sec
***}
PROCEDURE Check_Profitability
 (var sd : sysdef;
 var detfil: text;
 var dck : Duck;
 var br : BirdRes;
 physch: Physic_Char;
 var sim : SimRes ;
 detail: INTEGER);
VAR sitenr,preynr,lengthnr : INTEGER;
 dl,length,yy : REAL;
BEGIN
 dl := (sd.shell.length[2] - sd.shell.length[1])/2.0;
 FOR sitenr:=1 TO sd.nareas DO
 BEGIN
 preynr:= sd.area[sitenr]^.preyKind;

 FOR lengthnr := 1 TO sd.npreylengths DO
 BEGIN
 length := sd.shell.length[lengthnr]+dl;
 yy := Profitability(sd, detfil,dck, br ,
 physch, sim, preynr,
 sitenr,detail,length,lengthnr);
 IF yy<1e-10 THEN
 yy := 0.0;
 sim.Area[sitenr].PreyRes[preynr].FoodProfit[lengthnr]:= yy;

 END;
 WriteLn(DetFil);
 END;
END; {* of the check what the profitability is of each prey *}

{***
Computation food value of an area
plus computation of the choices of the duck
***}
PROCEDURE Area_FoodValue (var sd : Sysdef;
 var dck : Duck;
 var res : SimRes;
 var bird : BirdRes;
 var physics : Physic_Char;
 var detailfile: text;
 detail : INTEGER);
VAR sitenr,
 preynr,
 len : INTEGER;
 yy : REAL;
BEGIN
 {**}
 {* First the amount of work needed normally *}
 {* Note that some terms are comuted in W, and some in J per action *}
 {**}

 Compute_BasicEnergy(sd,dck,res,bird, physics,
 detailfile,{breath0,air0,}

128 Alterra-rapport 839

 detail); {* Joules *}

 {**}
 {* NOw the profitability is needed, telling us what the profit per *}
 {* dive is *}
 {**}
 Check_Profitability(sd, detailfile, dck, bird,
 physics,res,detail);
 FOR sitenr:=1 TO sd.nareas DO
 BEGIN
 res.TotFood[sitenr] := 0.0;
 res.TotPrefFood[sitenr] := 0.0;
 preynr:= sd.area[sitenr]^.preyKind;

 FOR len := 1 TO sd.npreylengths DO
 BEGIN
 {**
 * Food value of each food site. Preference of an eider duck *
 * is not important. *
 **}
 res.TotFood[sitenr]:= {* Joules / m2 /sec *}
 res.TotFood[sitenr]
 +res.area[sitenr].preyres[preynr].FoodProfit[len]
 *res.area[sitenr].preyres[preynr].FoodDens[len];
 {* Joules/s * aantal /m2 *}
 {**
 * Food value of each food site, including preference of an *
 * eider duck *
 **}
 res.TotPrefFood[sitenr]:= {* Joules / m2 *}
 res.TotPrefFood[sitenr]
 +res.area[sitenr].preyres[preynr].FoodProfit[len]
 *res.area[sitenr].preyres[preynr].FoodDens[len]
 dck.LenPref[preynr,len]; { Joules * aantal /m2 *}
 END;
 END;
 {***
 * Now the food value of each food site is known. It is the product *
 * of the prey densituy and the food value of each prey. *
 --
 * Now, the preference of an eider duck for a prey has to be computed,*
 * giving the prey choice of the duck when foraging. This is needed *
 * for our bookkeeping: we ned to know which prey is caught. *
 ***}
 FOR sitenr:=1 TO sd.nareas DO
 BEGIN
 preynr:= sd.area[sitenr]^.preyKind;
 FOR len := 1 TO sd.npreylengths DO
 BEGIN
 {***
 * Choice without particular bird preference *
 ***}
 IF res.TotFood[sitenr]>1.0e-10
 THEN
 res.area[sitenr].preyres[preynr].FoodChoice[len]:=
 res.area[sitenr].preyres[preynr].FoodProfit[len]
 *res.area[sitenr].preyres[preynr].FoodDens[len]
 /res.TotFood[sitenr]
 ELSE
 res.area[sitenr].preyres[preynr].FoodChoice[len]:= 0.0;
 {***
 * Choice with particular bird preference *
 ***}
 IF res.TotPrefFood[sitenr]>1.0e-10
 THEN

Alterra-rapport 839 129

 res.area[sitenr].preyres[preynr].FoodPrefchoice[len]:=
 res.area[sitenr].preyres[preynr].FoodProfit[len]
 *res.area[sitenr].preyres[preynr].FoodDens[len]
 *Dck.LenPref[preynr,len]
 /res.TotPrefFood[sitenr]
 ELSE
 res.area[sitenr].preyres[preynr].FoodPrefChoice[len]:= 0.0;
 END;
 END;

END; {* of Area_FoodValue *}

{***
Computation food value of an area (food in J/m2/s)
***}
PROCEDURE FindBestArea (var nrf,nrfpref: INTEGER;
 sd : sysdef;
 var res : Simres);
VAR ff, ffpref : REAL;
 i : INTEGER;
BEGIN
 ff := 0.0;
 ffpref := 0.0;
 FOR i:=1 TO sd.nareas DO
 BEGIN
 IF res.totfood[i]>ff
 THEN
 BEGIN
 ff :=res.totfood[i];
 nrf := i;
 END;

 IF res.TotPrefFood[i]>ffpref
 THEN
 BEGIN
 ffpref :=res.TotPrefFood[i];
 nrfpref := i;
 END;
 END; {* all sites are checked. Best site is known now. *}

END; { FindBestArea }

{***
* In order to find the number of dives necessary, the basis energy **
* demand and the demand related to dives has to be known **
***}
PROCEDURE Compute_NumberOfDives
 (var sd : sysdef;
 var detfil: text;
 var dck : Duck;
 var br : BirdRes;
 physch: Physic_Char;
 var sim : SimRes ;
 detail,
 sitenr: INTEGER;
 VAR final : INTEGER);
VAR i,j,len,preynr : INTEGER;
 yy,
 DailyBasicExpenditure,
 breath0,air0 : REAL;
 totflesh,
 totener_inp,
 totshellw,

130 Alterra-rapport 839

 totwaterw,
 totsaltw,
 totsaltc,
 totfreshw,
 totcrush,
 totheat_inp,
 totheatprey,
 totaccel0en,
 totaccel0het,
 totacceleng,
 totaccelheat,
 totdragen,
 totdragheat,
 totdbuoyen,
 totdbuoyheat,
 totbottomeng,
 totbottomhet,

 totdiving,
 totbottom,
 totdigestion,
 totAirCool,
 totH2OCool,
 totExtraCool,
 totBreathBMR,
 totBreathFod,
 totExtraBreat,
 totheat,
 totdivingeng,
 totdivingheat,
 totbottomtime,
 totrestingtime,
 totdivingtime,
 tothandlingtime,
 totdigestiontime,
 tottot_time,
 totunderw_time,
 totenergy,
 totenergain,
 toten_rate,
 weightIncRate,
 totheatcosts,
 totengcosts,
 basiceng,
 basicheat,
 daycosts,
 heatsurpl,
 heat_inc,
 totgain,
 netgain,
 DEE,
 choic ,
 ndives,totcosts,
 timeneed,
 in_tot,
 out_tot : REAL;

BEGIN
 {**}
 {* The amount of work needed normally has already been computed *}
 { in AreaFoodvalue *}
 {**}

 {**}
 {* Then: compute the work coupled with one dive (positive and *}

Alterra-rapport 839 131

 {* negative). Choice tells us which preys actually are taken *}
 {**}
 totflesh := 0.0;
 totshellw := 0.0;
 totfreshw := 0.0;
 totsaltw := 0.0;
 totwaterw := 0.0;
 totcrush := 0.0;
 totener_inp := 0.0;
 totheat_inp := 0.0;
 totsaltc := 0.0;
 totheatprey := 0.0;
 totaccel0en := 0.0;
 totaccel0het := 0.0;
 totacceleng := 0.0;
 totaccelheat := 0.0;
 totdragen := 0.0;
 totdragheat := 0.0;
 totdbuoyen := 0.0;
 totdbuoyheat := 0.0;
 totbottomeng := 0.0;
 totbottomhet := 0.0;

 totdiving := 0.0;
 totbottom := 0.0;
 totdigestion := 0.0;
 totAirCool := 0.0;
 totH2OCool := 0.0;
 totExtraCool := 0.0;
 totBreathBMR := 0.0;
 totBreathFod := 0.0;
 totExtraBreat := 0.0;
 totheat := 0.0;
 totdivingeng := 0.0;
 totdivingheat := 0.0;
 totenergain := 0.0;
 totenergy := 0.0;
 toten_rate := 0.0;
 totheatcosts := 0.0;
 totengcosts := 0.0;

 totbottomtime := 0.0;
 totrestingtime := 0.0;
 totdivingtime := 0.0;
 tothandlingtime := 0.0;
 totdigestiontime := 0.0;
 tottot_time := 0.0;
 totunderw_time := 0.0;

 preynr := sd.area[sitenr]^.preyKind;

 FOR len:= 1 TO sd.npreylengths DO
 BEGIN
 choic :=
sim.area[sitenr].preyres[preynr].FoodPrefchoice[len];
 totflesh := totflesh + flesh [len]*choic;
 totshellw := totshellw + shellw [len]*choic;
 totwaterw := totwaterw + waterw [len]*choic;
 totsaltw := totsaltw + saltw [len]*choic;
 totfreshw := totfreshw + freshw [len]*choic;
 totener_inp := totener_inp + ener_inp [len]*choic;
 totheat_inp := totheat_inp + heat_inp [len]*choic;
 totsaltc := totsaltc + saltcost [len]*choic;
 totcrush := totcrush + crush [len]*choic;
 totheatprey := totheatprey + heatprey [len]*choic;

132 Alterra-rapport 839

 totaccel0en := totaccel0en + accel0en [len]*choic;
 totaccel0het := totaccel0het + accel0het [len]*choic;
 totacceleng := totacceleng + acceleng [len]*choic;
 totaccelheat := totaccelheat + accelheat [len]*choic;
 totdragen := totdragen + drageng [len]*choic;
 totdragheat := totdragheat + dragheat [len]*choic;
 totdbuoyen := totdbuoyen + dbuoyeng [len]*choic;
 totdbuoyheat := totdbuoyheat + dbuoyheat [len]*choic;
 totbottomeng := totbottomeng + botteng [len]*choic;
 totbottomhet := totbottomhet + bottheat [len]*choic;
 totdigestion := totdigestion + digestion [len]*choic;

 totAirCool := totAirCool + AirCool [len]*choic;
 totH2OCool := totH2OCool + H2OCool [len]*choic;
 totExtraCool := totExtraCool + ExtraCool [len]*choic;
 totBreathBMR := totBreathBMR + BreathBMR [len]*choic;
 totBreathFod := totBreathFod + BreathFod [len]*choic;
 totExtraBreat := totExtraBreat + ExtraBreat [len]*choic;

 totenergy := totenergy + energy [len]*choic;
 totenergain := totenergain + energain [len]*choic;
 totheat := totheat + heat [len]*choic;

 toten_rate := toten_rate + en_rate [len]*choic;

 totdivingtime := totdivingtime + divingtime [len]*choic;
 totbottomtime := totbottomtime + bottomtime [len]*choic;
 totrestingtime := totrestingtime + restingtime [len]*choic;
 tothandlingtime:= tothandlingtime + handlingtime [len]*choic;
 totdigestiontime := totdigestiontime + digestiontime [len]*choic;
 tottot_time := tottot_time + tot_time [len]*choic;
 totunderw_time := totunderw_time + underw_time [len]*choic;

 END;

 totdivingheat := totdivingheat + totaccel0het
 + totaccelheat
 + totdragheat
 + totdbuoyheat
 + totbottomhet
 - totextracool
 - totextrabreat;

 totdivingeng := totdivingeng - totaccel0en
 - totacceleng
 - totdragen
 - totdbuoyen
 - totbottomeng;

 totheatcosts := totheatcosts + totcrush
 - totheatprey
 + totdivingheat;
 totengcosts := totengcosts - totsaltc
 - totcrush
 - totdigestion
 + totdivingeng;
 totener_inp := totener_inp; {* no addition *}
 {***}
 {* There is also an extra energy need or an extra heat production *}
 {* because the mass of the duck has to increase or can decrease *}
 {***}
 weightIncRate := br.weightIncreaseRate; {* gram AFDW/day*}
 {** Note that heat)inc is per day!!, and inp per dive CHANGE!! *}
 heat_inc := - weightIncRate {* gram * 22.5e3*}
 * dck.EnergContentAnimal; {* = heat extra *}

Alterra-rapport 839 133

 {* <0 costs *}
 totgain := totener_inp + heat_inc; {* food+reserves*}
 {**
 * energy.basic : basal energy demand <0 : need *
 * heat.basic : basal heat demand <0 : need, >0 gain *
 * tot.engcosts : total energy costs per dive <0 : need *
 * totheatcosts : total heat costs per dive <0 : need, >0 gain *
 * totgain : tot results from food <0 need, >0 gain *
 * heat_inc : energy result from weightchanges *
 * If totgain is negative: the bird is in trouble; it cannot feed *
 * anyhow. If totgain >0, then the number of dives can be computed. *
 * If the number of dives er day needs more then the time per day, *
 * then there is not enough time to forage. In fact, we have chosen *
 * 80% of the day time as foraging lmit. *
 * We have to check for a positve heat from diving as compensation *
 * for a heat demand while wimming, or vice versa. If both are *
 * needs, they simply add to the energy need. If both are positive *
 * they simply are Joules, the bird has to get rid off. *
 * In no way can heat profits compensate kinetic energy demands!! *
 **}
 basiceng := sim.energy.basic; {* <0 need *}
 basicheat := sim.heat.basic; {* <0 need >0 gain}

 IF (basicheat>=0) AND (totheatcosts>=0) {* no heat needs *}
 THEN BEGIN
 netgain := totengcosts +totener_inp; {* ener from food*}
 daycosts := basiceng + heat_inc; {* daily costs *}
 NDives := - daycosts /netgain;
 heatsurpl := basicheat + NDives*totheatcosts; {* daily heat *}
 {* surplus *}
 {***}
 {* The bird has to loose this surplus heat *}
 {***}
 DEE := totengcosts*NDives + basiceng; {* daily expend *}
 END;
 IF (basicheat<0) AND (totheatcosts<0) {* heat need in *}
 THEN BEGIN {* both cases *}
 netgain := totengcosts +totener_inp
 + totheatcosts;
 daycosts := basiceng + heat_inc
 + basicheat;
 NDives := - daycosts /netgain;
 heatsurpl := basicheat + NDives*totheatcosts; {* daily heat *}
 {* surplus <0,now*}
 {***}
 {* But, this heat need is accounted for *}
 {***}
 DEE := (totengcosts+totheatcosts)*NDives
 + basiceng + basicheat; {* daily expend *}
 END;

 IF (basicheat>0) AND (totheatcosts<0) {* heat need in *}
 THEN BEGIN {* diving alone *}
 netgain := totengcosts +totener_inp
 + totheatcosts;
 daycosts := basiceng + heat_inc;
 {***}
 {* If the diving costs heat, and the swimming has a positive heat*}
 {* gain, then actually basicheat/Ndive can be added to the *}
 {* divingheatcosts: netgain1 := netgain + basicheat/Ndives *}
 {* Then, NDives follows from *}
 {* Ndives:= -daycosts/(netgain1) = *}
 {* -daycosts/(netgain + basicheat/Ndives) *}
 {* Left and right times NDives and rearranging gives *}
 {* ND*ND*netgain + ND * basicheat = -daycosts * ND ==> *}

134 Alterra-rapport 839

 {* ND =0 or ND = -(basicheat + daycosts) / netgain *}
 {*---*}
 {* There is a restriction: if basicheat/ND is > -totheatcosts *}
 {* then we should only put -totheatcosts/ND into the above *}
 {* computation *}
 {***}
 NDives := - (basicheat + daycosts) /netgain;
 heatsurpl := basicheat + NDives*totheatcosts; {* daily heat *}
 {* surplus *}
 DEE := (totengcosts+totheatcosts
 + basicheat/NDives) *Ndives
 + basiceng;
 IF heatsurpl>0 THEN {* restriction *}
 BEGIN {* gest active *}
 NDives := -(daycosts) /(netgain-totheatcosts);
 heatsurpl:= basicheat + NDives*totheatcosts; {* daily heat *}
 {* surplus *}
 DEE := (totengcosts+totheatcosts) *Ndives {* is the same eq*}
 + basiceng +basicheat; {* as one above *}
 END;
 END;

 IF (basicheat<0) AND (totheatcosts>0) {* heat need in *}
 THEN BEGIN {* diving alone *}
 netgain := totengcosts +totener_inp;
 daycosts := basiceng + heat_inc;
 {***}
 {* If the diving gains heat, and the swimming has a negative heat*}
 {* gain, then actually totheatcosts*Ndive can be added to the *}
 {* basicheat : daycosts1 := basiceng + basicheat+heat_inc+ND*thc *}
 {* Then, NDives follows from *}
 {* Ndives:= -daycosts1/(netgain) = *}
 {* -(daycosts+ND*thc)/netgain *}
 {* Rearranging gives *}
 {* ND*(netgain+thc)= -daycosts ==> *}
 {* ND = -daycosts) / (netgain +thc) *}
 {*---*}
 {* There is a restriction: if thc*ND is > -basicheat *}
 {* then we should only put -basicheat/ND into the above *}
 {* computation *}
 {***}
 NDives := - (daycosts) /(netgain+totheatcosts);
 heatsurpl := basicheat + NDives*totheatcosts; {* daily heat *}
 {* surplus *}
 DEE := totengcosts * NDives
 + basiceng + basicheat
 + totheatcosts * NDives;
 IF heatsurpl>0 THEN {* restriction *}
 BEGIN {* gest active *}
 NDives:= -(-basicheat+daycosts) /netgain;
 heatsurpl:= basicheat + NDives*totheatcosts; {* daily heat *}
 {* surplus *}
 DEE := totengcosts * NDives
 + basiceng ;
 END;
 END;

 DailyBasicExpenditure := DEE;

 in_tot := Ndives * totener_inp ;
 out_tot := DailyBasicExpenditure;
 timeneed := Ndives * tottot_time;
 IF (timeneed >0.8*secperDay)
 OR (timeneed<0)
 THEN

Alterra-rapport 839 135

 BEGIN
 Write ('the duck cannot feed itself sufficiently');
 final :=1;
 END;

 sim.area[sitenr].NDives := NDives;
 IF detail =1
 THEN

 StoreDetails(DetFil,sim, sd,
 totflesh, totshellw, totwaterw, totsaltw,
 totfreshw, totaccel0het, totaccelheat,totdragheat,
 totdbuoyheat, totbottomhet,
 totextracool, totextrabreat,
 totdivingheat,
 totaccel0en, totacceleng, totdbuoyen, totdragen,
 totbottomeng, totdivingeng,
 totcrush, totheatprey, totsaltc, totdigestion,
 totener_Inp, heat_inc, totgain,
 netgain, DailyBasicExpenditure, heatsurpl,

NDives, in_tot,
 out_tot, timeneed,
 totdivingtime,totbottomtime,

totrestingtime, tothandlingtime,
 totdigestiontime, tottot_time, totunderw_time);
END;

{**}
{* Computes the prey losses. The length-choices are known now. The *
* numbers of birds are known as well. *}
{**}
PROCEDURE Compute_PreyLosses
 (var sd : Sysdef;
 var dck : Duck;
 var res : SimRes;
 var bird : BirdRes;
 var physics : Physic_Char;
 var detailfile: text;
 sitenr : INTEGER);
VAR i,j,preynr,
 len : INTEGER;
 nrbirds,
 ndives,
 areasize : REAL;
BEGIN
 preynr := sd.area[sitenr]^.preyKind; {* mussels or cockles? *}
 nrbirds := res.totpopulat;
 ndives := res.area[sitenr].NDives;
 areasize:= sd.area[sitenr]^.size;
 FOR len:= 1 TO sd.npreylengths DO
 BEGIN
 res.area[sitenr].preyres[preynr].foodloss[len]:=
 res.area[sitenr].preyres[preynr].FoodPrefchoice[len]
 * Ndives {* number dives/day/bird *}
 * nrbirds {* number of birds *}
 / areasize ; {* areasize (loss is on *}
 {* densities *}
 {**}
 {* Losses are in numbers per m2 per day, for each length-class *}
 {**}
 END;
END

