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ABSTRACT
For controlling agricultural systems, weather forecasts can
be of substantial importance. Studies have shown that fore-
cast errors can be reduced in terms of bias and standard de-
viation using forecasts and meteorological measurements
from one specific meteorological station. For agricultural
systems usually the forecasts of the nearest meteorological
station are used whereas measurements are taken from the
systems location. The objective of this study is to evaluate
the reduction of the forecast error for a specific agricultural
system. Three weather variables , that are most relevant for
greenhouse systems are studied: temperature, wind speed,
and global radiation. Two procedures are used consecu-
tively: diurnal bias correction and local adaptive forecast-
ing. For each of the variables both bias and standard devi-
ation were reduced. In general, if local measurements are
reliable, forecast errors can be reduced considerably.
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dard deviation

1 Introduction

In many agricultural systems all kinds of weather variables,
such as temperature, radiation and rain, have a dominant ef-
fect on the systems’ behavior. Weather input variables are
not only a disturbance to the system but are also a resource,
(e.g. global radiation drives plant growth). For maximiza-
tion of plant production some of the control inputs should
closely follow changes in weather conditions,e.g. CO2-
dosing in green-houses should anticipate on changes of
global radiation. Therefore, when controlling agricultural
systems, weather forecasts can be of substantial impor-
tance, especially when anticipating control strategies are
used. [seee.g. 1, 2]. If forecasts of less than one hour are
used, the so-called ”lazy man” weather prediction, where
the forecast is chosen equal to the most recently measured
value, seems to be reasonable [3]. If, however, the forecast
horizon increases, preferably commercial forecasts should
be used.

It is well known that, because of the chaotic behav-
ior of the atmosphere, weather forecasts can be rather un-

certain. This uncertainty increases as the forecast horizon
increases. Many efforts are taken by meteorologists to im-
prove the quality of the weather forecasts, but forecasts of
weather variables remain uncertain. For instance, the 2 me-
ter temperature forecast has a variance of 2oC2 for the
zero-hour ahead forecast in ”De Bilt”, The Netherlands [4].

Previous research has been done to improve local
weather forecasts. For instance, biases can be largely re-
moved from meteorological model outputs [5]. This bias
reduction procedure uses a Kalman filter that predicts a di-
urnal forecast error. This forecast error then has to be added
to the original forecast. The procedure is further called ”di-
urnal bias correction” (DBC). In specific cases like moun-
tainous areas and places surrounded by seas [6] this DBC
proved to reduce the bias drastically. Standard deviations
of the forecast error however, are not reduced with this pro-
cedure. However, reduction of the standard deviation of the
forecast error can be obtained as well [4]. The standard de-
viation reduction procedure uses local measurements in a
Kalman filter to update the forecast. This procedure is fur-
ther referred to as ”local adaptive forecasting” (LAF). The
best performance was obtained obtained by applying both
procedures: first bias reduction, then standard deviation re-
duction [4].

The presented studies in [5] and [4] used meteorolog-
ical data of specific meteorological stations. Measurements
at these meteorological stations need to fulfill specific me-
teorological requirements [7]. In general, local measure-
ments for agricultural systems do not fulfill the meteoro-
logical requirements, but they do represent the actual local
situation. Furthermore, the forecasts from weather agen-
cies are specific for some predetermined places, but most
often the specific agricultural systems are not located at
these places. At last, local circumstances such as soil prop-
erties, different altitudes, presence of water resources (lake,
sea) etc., have an effect on local weather conditions and
thus should be accounted for by the local weather forecast.
Therefore it is assumed that weather forecasts for agricul-
tural systems can be improved for both bias and standard
deviation.

The purpose of this paper is to show that local fore-
casts for agricultural systems can be improved by using lo-
cal measurements. This improvement is based on reduction
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of thebias as well as thestandard deviation of the forecast
error.

In section 2 theoretical background is given and the
analyzed data are explained. In section 3 the results of three
weather variables are presented: temperature, wind speed
and global radiation. The results are discussed in section 4.
Finally, some conclusions are presented in section 5.

2 Background

2.1 Kalman filtering

Both procedures, DBC and LAF, are based on a discrete-
time state-space system representation of either forecast
errors or forecasts and use the Kalman filter as the main
algorithm to update weather forecasts.

The stochastic discrete-time state-space system used
in both procedures is given by:

x(k + 1) = A(k)x(k) + B(k)u(k) + G(k)w(k) (1)

y(k) = C(k)x(k) + v(k) (2)

wherex(k) ∈ R
M+1, u(k) ∈ R

M+1, with M the maxi-
mum forecast horizon, andy(k) ∈ R

p, with p the dimen-
sion of the actual output vector. It is assumed that the dis-
turbance inputw(k) (so called ”system noise”) and mea-
surement noisev(k) are zero-mean Gaussian random se-
quences with:

E
[

w(k)
]

= 0, E
[

w(k)wT (k)
]

= Q (3)

E
[

v(k)
]

= 0, E
[

v(k)vT (k)
]

= R (4)

The matricesA(k), B(k), C(k), G(k), Q andR are system
dependent and will be defined in the subsequent sections.

As mentioned before, the so-called Kalman filter is
used to update local weather forecasts. For an elaborate
description of the Kalman filter we refer to Gelb [8]. Here,
the algorithm is briefly outlined. Given a system in state-
space form (1)-(2) with noise properties (3)-(4) and a mea-
sured outputy(k), the Kalman filter estimates the states
at time instancek with the smallest possible error covari-
ance matrix. The following Kalman filter equations for the
discrete-time system (1)-(2) are used to estimate the new
states (updated forecast errors in DBC or forecasts in LAF)
when new observations become available:

x̂(k + 1|k) =A(k)x̂(k|k) + B(k)u(k) (5)

P (k + 1|k) =A(k)P (k|k)A(k)T + G(k)QG(k)T

(6)

K(k + 1) =P (k + 1|k)CT

[

CP (k + 1|k)CT + R
]

−1
(7)

x̂(k + 1|k + 1) =x̂(k + 1|k) + K(k + 1)
[

y(k + 1) − Cx̂(k + 1|k)
]

(8)

P (k + 1|k + 1) =P (k + 1|k) − K(k + 1)CP (k + 1|k)
(9)

wherex̂(k + 1|k) denotes the estimate of statex at time
instantk+1 given the state atk, andA(k)T is the transpose
of A(k). Furthermore,K(k + 1), known as Kalman gain,
denotes the weighting matrix related to the prediction error
[

y(k + 1) − Cx̂(k + 1|k)
]

.

2.2 Diurnal bias correction

It has been shown by Homleid [5] that systematic errors
from numerical weather prediction models can be largely
removed. A brief outline of the algorithm is given.

The basic assumption is that the prediction errors are
assumed to vary only in a 24 hour context. The states
x1 · · ·x24 represent the forecast errors at times from 0000
UTC until 2300 UTC. No input is present in this system.
The outputy is defined by the measurement at a specific
time and is a scalar. The system matrices are given by:
A = I, G = I andC is time-varyinge.g. C = [1 0 · · · 0]
at 0000 UTC,C = [0 1 0 · · · 0] at 0100 UTCetc. The
Kalman filter matricesQ andR are time-invariant whereQ
is a symmetric Toeplitz matrix with ones on the diagonal,
premultiplied by the varianceW 2 andR = V 2 the vari-
ance of the measurement error. TheW/V -ratio determines
the update rate. The optimalW/V -ratio can vary between
meteorological stations and can vary between weather vari-
ables [e.g. 5, 4]. The initial covariance matrixP (0) is typ-
ically chosen as:P (0) = 106I, with I the identity matrix.
The estimated prediction errors (x̂(k+1|k+1) are added to
the external forecasts independent of the forecast horizon.

2.3 Local adaptive forecasting

Local measurements are used to update the short term fore-
casts. The updating algorithm as described by Doeswijk
and Keesman [4] uses a linear, time-varying system in
state-space form that describes the evolution of the fore-
casts. Every stochasticl-steps ahead forecast at time instant
k is treated as a state variablexl(k) wherel = 0, ...,M ,
with M the maximum forecast horizon. Consequently,
x0(k) represents the actual state,x1(k) the one-step ahead
forecast,etc. As a consequence, the state vectorx al-
ways represents the forecast horizon (from0 to M − k
hours ahead). Subsequently, the effective system dimen-
sions reduce as long as there are no new external forecasts
available. The external forecasts that become available at
time instantk∗ are treated as deterministic input(s)u(k).
Given the assumption that new external forecasts are better
than updated old forecasts, the old states are reset and the
new initial state is fully determined by the new forecast,
i.e. x(k∗ + 1) = u(k∗). The outputy(k) is the observed
weather variable and is a scalar. The system matrices are
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then defined by

A(k) =










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
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...

. . .
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...

...
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. ..
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...
. . .

. ..
. . . 1

0 · · · · · · · · · 0



















k 6= k∗, k ∈ N

(10)

A(k) =0 k = k∗, k ∈ N

(11)

C =
[

1 0 · · · 0
]

(12)

The system noise or disturbance input is only relevant at
time instantk = k∗, i.e. when a new external forecast
becomes available. The time-varying system matricesB
andG are defined as follows:

B(k) = G(k) = I ∀k = k∗, k ∈ N (13)

B(k) = G(k) = 0 ∀k 6= k∗, k ∈ N (14)

whereA,B,G ∈ R
(M+1)×(M+1) andC ∈ R

1×(M+1).
The Kalman filter matricesQ and R must still be

specified. The measurement noise covariance matrixR
may be found from the sensor characteristics. The key
problem is how to chooseQ, the covariance matrix related
to the disturbance inputs or system noise. In previous work
this system noise covariance matrix of the short-term fore-
casts has been determined from historical data by compar-
ing forecasts with observations. The initial covariance ma-
trix P (0) is typically chosen as:P (0) = 106I, with I the
identity matrix.

2.4 Weather data

Three different weather variables, that are most relevant for
greenhouse systems, are studied: temperature, wind speed
and global radiation. Data is obtained from January 1, 2002
until June 31, 2002 and January 1, 2003 until June 31,
2003. The origin of forecasts and local measurements are
specified by:

short term forecasts The commercial weather agency
Weathernews Benelux delivered forecasts for location
‘Deelen, The Netherlands’ (see figure 1). These data
become available every six hours and consist of fore-
casts from 0 to 31 hours ahead with an hourly interval.
These external data are extracted from the GFS model
(National Weather Service). The data are possibly ad-
justed by a meteorologist. The data are made available
at 0100, 0700, 1300 and 1900 UTC.

local measurementsThese data are obtained from a
greenhouse in ‘Wageningen, The Netherlands’ located
at about 20 km from ‘Deelen’ (see figure 1). Mea-
surements were stored with a 2 minute interval. The
hourly averages were calculated and used for analysis.

Figure 1. Indication of forecast (Ã) and measurement (¥)
location within the Netherlands

3 Results

Forecast data are compared with local observations. For
the DBC, matrixQ describes the correlation of the forecast
error over a 24 hour horizon. In this experiment it is cho-
sen similar as described by Homleid [5],i.e. exponentially
decaying untilt + 12 and then rising again untilt + 23
(e−0.0744t with 0 ≤ t ≤ 12, t ∈ N), for each weather vari-
able. The optimalW/V -ratio is found with a line search
procedure. Optimality in this case is defined by: minimum
average standard deviation (σ) of the forecast error

min
W/V

1

M + 1
ΣM

i=0σi(W/V ) (15)

The optimal ratio is calculated over the period January 1,
2002 until June 31, 2002. IfW is chosen as 1, andW/V is
given,R can be calculated.

The covariance matrix of the forecast errorQ of the
LAF procedure is calculated for each weather variable with
data from January 1, 2002 until June 31, 2002.

As both DBC and LAF are complementary the pro-
cedures are run consecutively after a new measurement be-
comes available. The procedure is run over the period Jan-
uary 1, 2003 until June 31, 2003. The updated forecasts
(DBC+LAF) are compared with the original forecasts pro-
vided by the weather agency.

The results related to a specific weather input variable
contain the optimalW/V -ratio for DBC. In addition, the
assumed measurement noise covariance matrixR used in
LAF is given. Furthermore, the forecast error,i.e. forecast -
observation, is calculated and the average forecast error and
the standard deviation of the forecast error are presented.

3.1 Temperature

The results are given in figure 2 with aW/V -ratio of 0.011
for DBC and the variance of the measurement noiseR in
LAF of 0.1 ◦C2. In figure 2 it can be seen that the bias is
reduced for each forecast horizon. The standard deviation
is reduced for each forecast horizon but especially up to 10
hours ahead this reduction is clear.

109



0 10 20 30
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6
av

er
ag

e 
er

ro
r 

(o C
)

forecast horizon (hours)
0 10 20 30

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

forecast horizon (hours)

st
an

da
rd

 d
ev

ia
tio

n 
(o C

)

Figure 2. Average forecast error and the standard deviation
of forecast error of the original forecasts ( —- ) and of the
adjusted forecasts with DBC+LAF (- - -) of the temperature

3.2 Wind speed

TheW/V -ratio used in the DBC was 0.042. The variance
of the observation noise of the wind speed in the local adap-
tive short term system is assumed to be 0.1 (ms−1)2. The
results are summarized in figure 3. The bias is almost com-
pletely removed compared to the original forecasts for each
forecast horizon. Again, the standard deviation is lowered.
The reduction of standard deviation in this case clearly re-
mained until the maximum forecast horizon.

3.3 Global radiation

For global radiation the same LAF procedure as for tem-
perature and wind has been implemented but withR = 10
(Js−1m−2)2. However, in DBC the covariance matrix
should be adjusted. At night no radiation is available and so
no correlation is present. The length of the nights should
also vary during the year. For reasons of simplicity the
yearly variation is neglected and hence it is assumed that
for the whole year no correlation is needed between 1700
and 0500 UTC. The remaining correlations are kept the
same as for the temperature case. The optimumW/V -
ratio appeared to be around 0.010. In figure 4 the average
error and standard deviation for the original forecast and
the adjusted forecast are presented. Overall, the bias is re-
duced. However, only in the first few hours this can be seen
clearly. Furthermore, the standard deviation is reduced for
each forecast horizon, particularly in the first 5 hours. In
addition to this, the peaks are largely removed.

4 Discussion

Bias of the forecast error is often present even if the fore-
cast is related to a specific meteorological measurement lo-
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Figure 3. Average forecast error and the standard deviation
of forecast error of the original forecasts ( —- ) and of the
adjusted forecasts with DBC+LAF (- - -) of the wind speed

cation. Therefore, it can be expected that for local mea-
surements, as in agricultural systems, bias is present and
is probably larger than for the meteorological station from
which the forecast originated. In figures 2 - 4 the bias is
clearly present.

When considerable biases are present the DBC works
quite well for bias reduction as can be seen in figures 2
and 3. TheW/V -ratio appears to be crucial for the perfor-
mance of DBC. If theW/V -ratio is chosen too large then
a loss in performance is observed,i.e. the standard devi-
ation increases for larger forecast horizons. For instance,
values chosen by [5],i.e. W/V = 0.06, does not satisfy
for temperature in our case. Too low values will lead to
neglegible changes in the forecasts. Furthermore, the value
for this ratio depends on the weather type and change in
weather conditions. A time-varying ratio was proposed by
[6]. The problem remains, however, because the value is
always obtained from past data.

The line search procedure with optimality criterion
(15) to minimize the standard deviation of the forecast er-
ror will result in an average standard deviation equal to or
lower than the average standard deviation of the original
forecast. The bias, however, is then not necessarily mini-
mized. Therefor, other minimization criteria, such as min-
imum mean square error or minimum bias, must be used
according to the defined purpose. It should be noted that
the calculated optimalW/V -ratio is kept constant for each
year. In practice, the optimalW/V -ratio changes every
year. From the results in figures 2-4, however, it can be
seen that the calculated optimal ratio is applicable for the
following year.

The correlation in the covariance matrixQ in DBC
has to be determined for every weather variable. For global
radiation, this matrix should also depend on the time of the
year because daylight duration can change largely within a
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Figure 4. Average forecast error and the standard devia-
tion of forecast error of the original forecasts ( —- ) and of
the adjusted forecasts with DBC+LAF (- - -) of the global
radiation

year. In this case the matrixQ must be time-varying.

The LAF procedure largely depends on the choice of
covariance matricesQ andR. The matrixQ can be found
for every weather variable at a specific location by time se-
ries analysis. The period over which the covariance matri-
ces are determined may play an important role. In our study
we defined the covariance matrices over a period of six
months. This was the same period of the year over which
the Kalman filter was run. When seasonal effects on vari-
ability of the forecast error are suspected one can choose
to determineQ andR from the seasons of a previous year,
e.g. month by month, quarter by quarter etc. Apart from the
seasonal effects, meteorological models may have a more
significant effect on the variability of the forecast error.
Consequently, one could consider to use a ”window” for
the covariances.

In this paper a low variance is assumed for the local
measurement. This might be true for the measurement de-
vice itself but the variance also depends on how and where
the device is installed. The measurement should repre-
sent the weather disturbance input of the real system un-
der study. For local measurements devices it is crucial that
they are properly calibrated and maintained. Furthermore,
the measurement device must be situated on a proper place,
e.g. a temperature device should not be exposed to direct
sunlight. As ambient measurements are frequently used to
control greenhouse climates, it is acceptable to update fore-
casts with local measurements. On the other hand, if it is
known that local measurements are unreliable, it is worth-
while to investigate if the measurements can be updated
with weather forecasts to generate more reliable measure-
ments. As an example the observations of the meteorologi-
cal stations of ’Deelen’ and ‘Wageningen’ and the local ob-

Table 1. Mean and standard deviation (σ) of observa-
tion differences of meteorological stations in ‘Deelen’(D)
and ‘Wageningen’(W) and local observations in ‘Wagenin-
gen’(L).

temperature wind speed global radiation
mean σ mean σ mean σ

L-W 0.23 0.91 -0.88 0.84 -1.90 27.5
L-D 0.44 0.92 -1.77 1.17 2.1 29.5
W-D 0.22 1.17 -0.90 1.04 4.5 23.1

servations of ‘Wageningen’ are compared in table 1. The
meteorological station ‘Wageningen’ is located at about 4
km of the local observations. It can be seen in this table
that all differences are quite similar. Intuitively, the differ-
ence between local measurements and ‘Wageningen’ mete-
orological station is expected to be smaller than the others
because of the small distance. Apparently, local measure-
ments, as stated in the introduction, can behave quite dif-
ferently than meteorological measurements.

In this study DBC and LAF were executed consecu-
tively when a new measurement became available. It could
be worthwhile to examine the possibility of integrating both
procedures into a single system. For instance, the DBC
supposes a full correlation of the diurnal pattern,i.e. a cer-
tain error obtained now will also be present tomorrow. A
more valid assumption is that this relation is exponentially
decaying. As a result theW/V ratio can be chosen larger.
As an alternative to the stochastic filtering approach one
may also consider an unknown-but-bounded error approach
[seee.g 9, 10].

5 Conclusions

It has been demonstrated in this paper that both bias and
standard deviations of forecast errors are reduced for three
different weather variables: temperature, wind speed and
global radiation. The tuning parameters of DBC and LAF,
however, must be chosen carefully. Using historical for
tuning the parameters gives adequate results.
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