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Propositions

1. Fully parallelized data processing as exemplified by Sambamba will 
be essential to analyze big data. 
(this thesis)

2. Opinions are equally important as results in accomplishing scientific 
breakthroughs. 
(this thesis)

3. Homo sapiens is now a model for other species.

4. Scientists are a factor never accounted for in calculating the false 
discovery rate.

5. Those who fashionably claim to study complex biology basically 
should be heed to Einstein’s  ‘if you can’t explain it simply, you don’t 
understand it well enough’.

6. If you think humans are the summit of evolution, take a second look 
at the domesticated cat.
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1
Introduction

1.1 Elucidate biological processes from sequenced DNA and

RNA

DNA encodes the information for all life on earth. In the living cell, sections of
DNA get transcribed to messenger RNA which in turn gets translated into proteins.
Proteins are the building blocks and functional molecules which take care of most
molecular processes inside an organism. This flow from DNA to protein is known
as the central dogma of molecular biology[1].

Since the invention of Sanger sequencing in 1977[2], technology allows for
ever faster decoding of both DNA and RNA into the purine bases, adenine ‘A’ and
guanine ‘G’ and the pyrimidines cytosine ‘C’ and thymine ‘T’ (RNA uses uracil in
place of thymine). These four nucleotide bases are the building blocks of DNA.
The sequencing effort leads to DNA/RNA sequences comprising the genetic code
for every individual and, stringing out the genetic code into a combination of A,
G, C and T’s. The full string of DNA forms the genome.

Genes are the coding part of the genome. In human the genes represent ap-
proximately 2% of our DNA. These genes ultimately code for proteins. Intrigu-
ingly, as a result of sequencing, we are finding that large parts of, so called, non-
coding DNA actually gets transcribed into ‘non-coding’ RNA and has function in
gene-expression regulation and post-transcription modification, i.e., non-coding
DNA has function too. The overall landscape of DNA transcription and regula-
tion is complicated: the encyclopedia of DNA Elements (ENCODE) has systemati-
cally mapped regions of transcription, transcription factor association, chromatin
structure and histone modification with the result that approximately 80% of the
human genome appears to have some form of biochemical function[3].

For agriculture, biology and biomedical research an important challenge is to
link phenotype, i.e., the observable characteristics or traits, with that of geno-
type, i.e., the DNA. Examples of phenotype linked to genotype are the number of
spots on a leopard, colour blindness, and susceptibility to certain disease. In rare
cases a single phenotype can be linked to a single gene. For example, one gene
is causal for the human sickle-cell disease[4] and mutations in the BRCA1 gene
are responsible for approximately 40% of inherited breast cancers, even though
these mutations account for only 2-3% of all breast cancers[5]. It was even found
that mutations in one gene define the ambling gait characteristic of the Icelandic
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horse[6]. With most phenotypes of interest, however, many genes are involved
and a wide range of variation in regulation, transcription, translation and post-
translational modification complicate the disentanglement of the relation between
genotype and phenotype. The discipline of genetics, as it is used here, concerns the
study of such quantitative or complex traits. Today, we live in the era of genomics,
where the science of genetics is combined with high-troughput technologies, such
as DNA sequencing. Computational biology, in conjuction with bioinformatics,
makes it possible to help sequence, assemble, and analyse the function and struc-
ture of genomes and, ultimately, improve the understanding of how phenotype
relates to genotype.

This thesis focuses on the elucidation of biological processes from sequenced
DNA and RNA using high-throughput technologies. Software solutions were writ-
ten and explored for analysing sequenced data, starting with the DNA of the small-
est multi-cellular organism on earth, the nematode or roundworm. Nematodes are
studied, not only because they are partial to human, animal, and plant disease,
with huge associated cost, but also because they are useful model organisms for
studying particular biological phenomena which provide insight into the workings
of higher organisms. Nematodes belong to the most successful species on earth,
living in diverse habitats. There may exist over one million species. So far, about
28,000 species have been described. The genomes of about twenty parasitic and
non-parasitic nematodes has been sequenced, including that of the free-living ne-
matode Caenorhabditis elegans which was famously the first multi-cellular species
to have its genome published[7].

Broadly, bioinformatics can be defined as the application of information tech-
nology to the field of molecular biology. In the context of this thesis the term
bioinformatics is used for the creation and advancement of computational solu-
tions for genetics and genomics, where genomics concerns the effort of sequencing
and analysis of the function and structure of genomes. Bioinformatics is interdis-
ciplinary because it serves both biology and informatics. In this thesis a number
of research questions were formulated that were directed more towards the ‘bio’,
and others that were directed more towards the ‘informatics’ in bioinformatics.
For example, bio-type research questions asked were ‘How can we identify genes
involved in pathogenicity or plant defence from DNA and RNA sequences?’ and
‘How can we identify genes that are expressed differentially and relate them to a
phenotype’. Informatics-type research questions asked were ‘How can we improve
tools for genetic analysis in the era of high-throughput sequencing?’ and ‘How can
we scale up computations and be prepared for the genomic data deluge?’.

The chapters in this thesis pursue to answer such questions with the aid of
software solutions that were developed and published. The usefulness and appli-
cation of bioinformatics solutions quickly extends beyond the phyla of Nematoda.
Software written for nematodes is generally useful for research on other eukary-
otes, such as plants, insects and mammals.
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Through the internet, free and open source software (FOSS) is published ‘early
and often’ and made available to the wider international biological and biomedical
research community who can immediately access and run the tools.

1.2 Outline of this thesis

Identifying nematode genes involved in plant pathogenicity

In Chapter 2 ‘A cross-species genome-wide scan for nematode gene-families sub-
ject to diversifying selection’ a strategy was defined for locating genes involved in
plant pathogenicity on a genome-wide scale. Plant parasitic nematodes deliver a
battery of secreted effectors into the apoplast and cytoplasm of plant cells to en-
able the invasion of the host and to alter the structure and function of host cells.
Some of these nematode effectors interact at a molecular level with the plant in-
nate immune system, which triggers a potent defence response in the plant. The
nematode effectors capable of inducing plant immune responses appear to be the
products of gene families harbouring stretches of hypervariable coding sequences.
This finding led us to investigate whether such footprints of positive selection in
genomes of parasitic nematodes can also be used to identify novel nematode effec-
tors by executing a genome-wide scan for evidence of positive selection in multiple
species. This resulted in a multi-species database of DNA sequences possibly in-
volved in pathogenicity, including those for nematodes Meloidogyne incognita and
Meloidogyne hapla, providing a resource which grows in value with every genome
that is added.

In Chapter 3, ‘GenEST, a powerful bidirectional link between cDNA sequence
data and gene expression profiles generated by cDNA-AFLP’ cDNA-AFLP was com-
bined with available nematode sequence material, this time by efficiently inte-
grating information captured in the form of expressed sequence tags (ESTs) to
find novel factors involved in Globodera rostochiensis pathogenicity through gene
expression profiles.

Identifying maternally controlled plant genes

In Chapter 4 ‘Identification of imprinted genes subject to parent-of-origin specific
expression in Arabidopsis thaliana seeds’ the challenge was to identify genes that
are expressed differentially in alternatively spliced DNA. Essentially we applied
the same technique developed for ESTs and nematodes (Chapter 3) to predict
splice variants of genes with differentially expressed transcript-derived fragments
(TDFs) from the DNA sequence of the plant and model organism A. thaliana.
The resulting software solution GenFrag predicted genes involved in epigenetic
parental imprinting in seed and identified 52 candidate maternally expressed
genes in seed from the genome sequence of A. thaliana.
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Improving tools for genetics in the age of high-throughput sequencing

To find correlation between phenotype and genotype, statistical tools can be ap-
plied. Quantitative trait loci (QTL) mapping is a time proven statistical method
for linking phenotype to genotype. For example, high throughput microarrays and
RNA sequencing (RNA-seq) measure gene expression levels which are quantitative
traits and can be analysed in the same way as classical traits. This strategy, when
applied to gene expression levels on a genome-wide scale, is known as ‘genetical
genomics’[8].

In Chapter 5 ‘R/qtl: high throughput Multiple QTL mapping’ we added multi-
ple QTL mapping (MQM), a sensitive approach for QTL mapping, to the R/qtl QTL
mapping software-suite for genetical genomics. Not only is this implementation
of MQM part of the statistical R/qtl environment, which is both for use on the
desktop and for scripting pipe-lined setups, it is also scalable through parallelisa-
tion and allows for high-throughput QTL analysis. For determining significance in
large data sets we included permutation strategies for determining thresholds of
significance relevant for QTL and QTL hot spots. This work has resulted in MQM
for R/qtl being a high-performance comprehensive QTL mapping toolbox for the
analysis of experimental populations which is increasingly used for research in
model organisms, including Mus musculus (mouse), C. elegans, A. thaliana, and
S. lycopersicum (tomato).

Chapter 6 ‘Genetical Genomics for Evolutionary Studies’ is a review-style book
chapter that builds on the previous chapters and suggests a strategy for identify-
ing genes involved in plant-resistance, combining QTL analysis with genome-wide
scans for positive selection.

Scaling software development in biology

With the increasing amount of data being churned out by sequencers, the bioinfor-
matics part is increasingly a bottleneck in creating software solutions and execut-
ing data analysis. Scalability problems come in multiple forms. Scaling software
development for high-throughput DNA and RNA analysis, for example, can be
achieved by pooling software engineering resources.

In Chapter 7 ‘BioRuby: Bioinformatics software for the Ruby programming
language’ and Chapter 8 ‘BioGem: an effective tool based approach for scaling
up open source software development in bioinformatics’, we demonstrate that
improved collaborative software development efforts can be applied to scale up
software development in bioinformatics.

Scaling software solutions for the genomic data deluge

A different type of scalability problem concerns the non-linear growth of data pro-
duced in biology which puts a strain on not only people and software development
resources, but also on infrastructure. Data analysis takes significant computational
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resources. Chapter 9 ‘Sambamba: fast processing of NGS alignment formats’ in-
troduces a software solution that makes effective use of multi-core processing to
speed up processing of next generation sequencing (NGS) data.

Currently the genomes of tens of thousands of people are being sequenced.
Soon, millions world-wide will be sequenced. In addition RNA sequencing is
on the increase. RNA sequencing will drive data growth as it is applied over
multiple experimental conditions, tissues, time series, and may include the meta-
transcriptome of all bacterial gut data which is much larger than the host genome,
e.g., [9]. The same is happening for animal and plant sequencing, with impli-
cations for both medicine and agriculture. Sequencing centers are already han-
dling petabytes of sequence data within species. Analysing such large sized data
is non-trivial, a point we make in Chapter 10 ‘Big Data, but are we ready?’. In
Chapter 11 ‘Towards effective software solutions for big biology’ we point out that
significant investments in bioinformatics software development are required to
realise the potential of big biology.

A perspective on High-throughput open source computational

methods for genetics and genomics

One of the exciting developments in biology and biomedical research is the emer-
gence of NGS. NGS is dramatically faster than older sequencing techniques, but
raises its own challenges, in particular when it comes to data size and fidelity. The
final Chapter 12 ‘General Discussion’, brings up future perspectives of FOSS devel-
opment for genetics and genomics, a prelude to the development of new software
solutions for NGS and QTL mapping.





2
A cross-species genome-wide scan for
nematode gene-families subject to
diversifying selection

Persistent infections by parasitic nematodes are recognised as a major health con-
cern in animals, humans, and plants. Host organisms and obligate parasites are em-
broiled in an evolutionary arms race with reciprocal adaptations driving sequence
diversification in duplicated genes. To identify genes subject to diversifying selec-
tion in the plant-parasitic nematode Meloidogyne incognita, evidence of positive se-
lection was analysed on a genome-wide scale in multiple parasitic and non-parasitic
nematode species. Clusters of highly similar duplicated sequences within nema-
tode genomes were investigated for evidence of positive selection using the ratio of
non-synonymous to synonymous nucleotide substitution rates (dN/dS or ω). By
comparing the presence of positively selected clusters across genomes of nematodes
with entirely different life histories, we identified gene families uniquely associated
with plant parasitism.

Manuscript in preparation ‘A cross-species genome-wide scan for nematode gene-families subject
to diversifying selection’ by Pjotr Prins, Anna Tomczak, Jaap Bakker, Maria Anisimova, Aska Goverse
and Geert Smant
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2.1 Introduction

Nematodes are the most ubiquitous and abundant animals on earth, inhabiting all
terrestrial and marine habitats. They have a simple build that includes a complete
alimentary tract to acquire essential nutrients, a neural system with sensory organs
to perceive environmental cues, muscles to move about, and multiple glandular
systems to maintain the internal homeostasis and to interact with other organisms
in their immediate environment.

Even though nematodes are barely visible with the naked eye, they are success-
ful models for studying organismal development and complex genetic diseases of
humans and other higher animals. The first species in the animal kingdom that
had its genome of approximately 100 million nucleotide base pairs (Mb) fully se-
quenced and published in 1998 for this particular purpose was the soil-dwelling
nematode Caenorhabditis elegans, a free-living species that thrives on bacteria and
other microbes[7].

A subset of nematode species has evolved into highly advanced parasites of
animals and plants. Over one-quarter of the global human population carries
parasitic nematodes, often without clinical symptoms, e.g., [10]. Animal para-
sitic nematodes included in this study are Brugia malayi, Trichinella spiralis and
Strongyloides ratti, all of which employ fundamentally different parasitic strategies
to exploit their host. B. malayi is one of the three causative agents of lymphatic fi-
lariasis (elephantiasis) in humans and was the first parasitic nematode which had
its genome sequence published in 2004[11]; T. spiralis thrives in muscular tissue
of essentially all mammals; and S. ratti is a common gastro-intestinal parasite
of rats. Not all parasitic nematodes have a negative impact on health in natural
ecosystems and many parasitic species are essential parts of food webs[12]. Plants
can co-exist in intimate and prolonged relationships with parasitic nematodes. To
identify genes involved in plant-parasitism of M. incognita, we included the fol-
lowing harmful plant parasitic nematodes in this study: M. incognita, the main
object of this study, Meloidogyne hapla, Globodera pallida and Bursaphelenchus xy-

lophilus. M. incognita is a biotrophic root-knot plant parasitic nematode with a
worldwide distribution and numerous hosts, including tomato, cotton, coffee, and
grape. M. hapla is another ubiquitous nematode that invades many known hosts,
including vegetables. G. pallida is an important pest in potato cultivation and
B. xylophilus is causal for Pine wilt disease. The typical persistence of nematode
infections gives evidence of extensive mutual adaptations in nematodes and plants
that they acquired during a prolonged common evolutionary history. The purpose
of the study in hand was to develop a genome-wide scan for gene families subject
to positive, diversifying selection and to identify positively selected genes uniquely
associated with parasitism of the root-knot nematode M. incognita.

The genome sequence of the root-knot nematode M. incognita was published
in 2008[13]. Most of the assembled sequence of this asexually reproducing nema-
tode, totaling approximately 86 Mb, exists in pairs of homologous but divergent
segments. The sequencing effort suggested that ancient allelic regions in M. incog-
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nita are evolving toward effective haploidy and permitting new mechanisms of
adaptation. The number and diversity of plant cell wall degrading enzymes in
M. incognita, for instance, was unprecedented in any animal for which a genome
sequence was available and may be derived from multiple horizontal gene trans-
fers from bacterial sources[13].

To invade their host, all plant-parasitic nematodes have developed mechanisms
to alter the structure and function of host cells. Plant-parasitic nematodes deliver
a battery of secretory proteins into the apoplast and cytoplasm of host cells. Some
of these nematode effectors are known to interact at a molecular level with the
plant innate immune system, which may trigger a potent defence response in the
plant[14]. Further investigations into the coding sequences of nematode effec-
tors that are recognised by plant immune receptors have revealed evidence of
positive diversifying evolutionary selection in nematode genomes. For example,
the SPRY Domain-Containing Protein SPRYSEC, from the plant-parasitic nema-
tode G. rostochiensis, interacts with a CC-NB-LRR protein from susceptible tomato
host Solanum lycopersicum)[15]. Many nematode effectors associated with the
induction or suppression of plant immune responses appear to be the products of
gene families harbouring stretches of hypervariable coding sequences. This find-
ing led us to investigate whether such footprints of positive selection in genomes
of parasitic nematodes can also be used to identify novel nematode effectors.

By using sequences from more than two related species and by making com-
parisons between evolutionary models within a likelihood framework, it is possi-
ble to identify both lineage-specific trends and to quantify the relative strengths
of positive selection, negative selection, and neutral evolution[16]. Natural selec-
tion is inferred by estimation of dN/dS (or ω), i.e., the ratio of non-synonymous
(dN, amino acid changing) to synonymous (dS, amino acid retaining) substitution
rates. With ω< 0, ω = 1 and ω > 1 representing purifying, neutral and adaptive
evolution respectively. Identification of genes with ω > 1 is persuasive evidence
for adaptive evolution at a particular locus[17]. A review of the validity of this ap-
proach can be found in [18]. The software tool CODEML, part of the phylogenetic
analysis by maximum likelihood package (PAML), can identify codon sites which
show evidence of positive selection by testing evolutionary models that allow for
positive selection against models that do not allow for positive selection and apply-
ing a likelihood ratio test (LRT). If the model that allows positive selection fits the
data significantly better, as judged by the LRT, positive selection is inferred[16].
To calculate ω, e.g., [19, 20], we investigated clusters of paralogous predicted
coding DNA sequences (CDS) for evidence of positive selection. The statistical
significance of ω > 1 per site was assessed under PAML’s evolutionary models M7
and M8[17](see methods).

Because CDS are not available for all species and predicted CDS sets do not
fully represent real gene sets, especially for less-studied species[21], we also
tested for evidence of positive selection using clusters of orthologous open reading
frames (ORF, see methods).

For the large majority of orthologous gene sequences in different but related
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species ω is small, confirming the general assumption that non-synonymous mu-
tations are selected against and that purifying selection is the dominant force in
evolution[20]. In contrast, paralogous genes in nematodes exhibit a relaxation
of selective constraints and may be subject to positive selection. We focused our
studies on the adaptive evolution of the families of duplicated genes in nematode
genomes[22]. As a ‘surrogate outgroup’ we analysed the genome of Phytoph-

thora infestans, a plant-pathogenic oomycete with a large genome (approximately
240Mb) that causes potato late blight[23].

To identify genes encoding proteins that are likely involved in the host-parasite
interactome (HPI), in addition to above inter-species comparison, evidence was
collected and added to a database on conserved properties of sequences from NCBI
Refseq[24]. Also, information was compiled that predict whether a protein is
secreted because most known nematode effectors delivered into the plant contain
a signal peptide (SP) at the N-terminus of the protein[15, 25].

Previous analysis of the genome of parasitic nematodes identified families of
orthologous genes shared between these species and gene families which are spe-
cific to the lineage, e.g., [13, 20]. To our knowledge, this is the first study that
includes such a large-scale cross-species comparison of adaptive evolution at the
codon level through both predicted CDS and ORFs which were combined with
known functional DNA characteristics.

2.2 Results

Genome-wide identification of positive selection

Gene families in plant-parasitic nematodes can be subject to positive, diversifying
selection. To identify such gene families, predicted CDS from the genome of a
species were clustered at a conservative 70% amino acid sequence identity with
the BLASTCLUST tool, part of the NCBI-BLAST software suite (see 2.4). For the
plant parasitic nematode, M. incognita out of a total of 20358 predicted CDS, 260
clusters were identified containing four or more sequences. Of these clusters, 43
(17%) clusters contain hypervariable codon locations showing significant evidence
of positive selection (p < 0.05), according to the CODEML algorithm of PAML[16].
For five other nematodes species with predicted CDS available (i.e., C. elegans,
G. pallida, M. hapla, P. pacificus, and T. spiralis) we used the same approach to
identify CDS-based positively selected clusters (PSC) (see supplementary figure
online Fig. S1 at http://biobeat.org/GWP/).

To expand the genome search space, ten nematode species and one oomycete
(i.e., B. malayi, B. xylophilus, C. briggsae, C. elegans, G. pallida, M. incognita,
M. hapla, P. pacificus, S. ratti, T. spiralis, and P. infestans) were included to identify
sequence families from ORFs. ORFs were generated by splitting the full genome
sequence into fragments on stop codons in six reading frames. Only sequences
were included in the cluster analysis that contained more than 60 codons and
were less than 10% masked (see methods). For M. incognita 1873 ORF clusters

http://biobeat.org/GWP/s1.jpg
http://biobeat.org/GWP/
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were identified containing four or more sequences having a sequence identity of
more than 70%, out of a total of 299,643 ORFs. Of these clusters, 325 (17%) clus-
ters contain hypervariable codon locations showing significant evidence of positive
selection (p < 0.05) (Fig. S1).

To estimate the overlap between ORF PSC and CDS PSC, a within-species nu-
cleotide MegaBLAST search was executed (p < 10−5). MegaBLAST is optimised
for aligning nucleotide sequences that differ slightly[26]. All matches were fil-
tered for alignment-length > 60bps, resulting in 252,089 significant ORF hits
against 19,632 (or 96%) of CDS for M. incognita, i.e., almost all CDS matched
one or more ORFs. Using these results, we identified all individual ORF sequences
that make up ORF PSC and matched them against CDS sequences that make up
CDS PSC. 59 out of 325 (18%) ORF-based PSC contained one or more sequence
matches and thus overlap with CDS-based PSC. The other way, 17 out of 43 (40%)
CDS-based PSC contained one or more matches and thus overlap with ORF-based
PSC. At the PSC level, ten CDS PSC were matched by more than one ORF PSC,
possibly because of shared domains/motifs. For example, the large CDS clus-
ter0001 matches the GATA transcription factor gene families with multiple ORF
PSC hits (supplementary tables online ORF CDS matches). Altogether, the com-
bined M. incognita CDS-based and ORF-based positive selected clusters resulted
in a total of 325− 59+ 43 = 309 unique paralogous sequence families subject to
positive, diversifying selection.

Identification of PSC that are conserved in annotated species

Not all gene families under positive, diversifying selection, are involved in plant-
parasitism. To prune PSC that have conserved functional properties in non-parasitic
organisms, PSC were identified that have similarity to members of the NCBI cu-
rated non-redundant Refseq database which contains predicted proteins from over
30,000 organisms[24]. For all 11 genomes of the species in this study, a PSC was
considered conserved when its member sequences shows significant BLAST simi-
larity (p < 10−5) to organisms annotated in Refseq.

For M. incognita, 27 (63%) of CDS-based PSC and only 36 (11%) of ORF-
based PSC showed significant similarity to accessions from other organisms in
protein databases After subtracting the PSC harbouring sequence conservation in
multiple other organisms we identified a total of 325−36+43−27= 305 unique
PSC that may be associated with plant-parasitism of M. incognita (see Fig. S1 and
supplementary tables online Refseq1 and Refseq2).

Identification of conserved evidence of positive selection across

nematode genomes

To identify PSC that display ‘conserved’ footprints of adaptive evolution (i.e. PSC
that show homology to PSC in other species) all sequences contained in PSCs
from the 11 genomes were stored in a searchable database. The members of this

http://biobeat.org/GWP/s1.jpg
http://biobeat.org/GWP/opsc_cpsc_matches.tsv
http://biobeat.org/GWP/s1.jpg
http://biobeat.org/GWP/Mi_CDS_refseq_matches.tsv
http://biobeat.org/GWP/Mi_DNA_refseq_matches.tsv
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database were used as queries in a BLAST search (p < 10−5) on the database
itself to identify PSCs from different genomes sharing significant sequence simi-
larity. The number of PSC of M. incognita with significant sequence similarity with
PSC from other species in the full comparison set was 29 (67%) and 109 (34%),
for CDS PSC and ORF PSC, respectively. Of those, respectively 9 (21%) and 75
(23%) showed similarity to predicted proteins from plant parasitic nematodes only
(Fig. S1). Most of sequence similarity was found between ORF-based positively se-
lected clusters in two closely related root-knot nematode species M. incognita and
M. hapla. Some of the ORF-based PSC show sequence similarity with the more
distantly related plant-parasite nematode G. pallida. No sequence similarity was
found between PSCs from M. incognita, and animal-parasitic nematodes or P. in-

festans.
Eliminating the PSC of M. incognita that have sequence similarity either with

the predicted protein sequences from other organisms in RefSeq or with PSC from
other genomes in the searchable database resulted in 84 PSC uniquely associated
with plant parasitism by root-knot nematodes in this study (Fig. S1).

Identification of PSC encoding nematode secreted proteins

Nematode effectors secreted into the apoplast and cytoplasm of plant cells typi-
cally carry a classical eukaryotic amino-terminal signal peptide for secretion and
lack a transmembrane domain in the mature protein sequence. To identify PSCs
harbouring putatively secreted proteins, we used SignalP[27] and PHOBIUS[28]
algorithms to predict whether sequence members of PSC in our database har-
boured an N-terminal signal peptide and possible transmembrane domain(s) (see
methods).

For M. incognita both SignalP and PHOBIUS predicted that 20 (47%) CDS-
based PSCs contained members with a signal peptide for secretion. Out of those,
13 CDS PSC were predicted to lack TMM activity. Meanwhile, 43 (13%) ORF
PSC contain SP according to SignalP and 50 (15%) according to PHOBIUS. Out of
those, 35 ORF-based PSC were predicted for TMM activity (supplementary tables
online S1 and S2).

Functional ORF PSC consist of exons and contain sequences that are trun-
cated from the 5’ and/or 3’ end. To identify the full-length genes that correspond
to genes from M. incognita ORF PSC we reused above MegaBLAST results (for
M. incognita 252,089 significant ORF hits against 19,632 (96%) of CDS). The full-
length CDS sequences which match the short ORF PSC sequences out resulted in
identification of an additional 19 SP-protein containing ORF PSC, whereof 11 lack
a TMM.

The three sets of SP-proteins (20 from CDS data, 50 from ORF data and 19
from ORF expanded MegaBLAST) were checked for overlap and resulted in a total
of 77 PSC that may be secreted by the plant-parasite M. incognita (supplementary
tables online S3).

http://biobeat.org/GWP/s1.jpg
http://biobeat.org/GWP/s1.jpg
http://biobeat.org/GWP/Mi_signalp_matches.tsv
http://biobeat.org/GWP/Mi_phobius_matches.tsv
http://biobeat.org/GWP/Mi_77psc.xlsx
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A database of positively selected gene families from nematode

To make the analysis reproducible and the data available for further analysis we
made the software available for download under a free and open source soft-
ware license together with a queryable database containing the full body of data
analysed in this study. The database includes computed PSC, annotated sequence
homology from both Refseq and the special BLAST database of species created
for this study, as well as the annotation from SP and TMM topology predictions.
This database comes in the form of a linked data resource description framework
(RDF) graph containing 14,054,846 data points (triples) which can be loaded,
for example, in a 4store triple-store[29] and allows further searches in data and
relationships[30].

2.3 Discussion

This study adds weight to the findings that the DNA sequence of plant-parasitic
nematode M. incognita contains evidence of adaptive evolution driven by DNA se-
quence diversification through duplicated genes which was suggested by the first
published sequence initiative[13]. Abad et al. stated that the genome of M. incog-

nita harbours ancient allelic regions that are evolving toward effective haploidy
and permitting new mechanisms of adaptation. Because evidence of positive se-
lection in highly conserved paralogous sequences is not likely to represent ran-
dom DNA motifs, we hypothesise that many plant-parasitic nematode PSC may
represent a functional role in either the innate immune system or host-parasite
interactions.

In this study we applied the CODEML algorithm in PAML to test for evidence of
positive selection on a genome-wide scale. We have not quantified or formally con-
trolled the false positive (FP) rate of detecting sequences under positive selection,
but we have aimed to minimise false positives by clustering sequences on a conser-
vative 70% sequence identity threshold and by gathering additional evidence from
multiple approaches (i.e., inter-species homology comparisons, functional annota-
tion and evidence of DNA coding for signal peptides) to narrow down on possible
gene candidates. In the highly-variable sequence regions, inferior alignments are
known to be a source of FPs. When comparing alignment algorithms Villanueva-
Cañas et al.[31] found the estimated fraction of positively selected genes with
PRANK alignments was consistently lower than with MAFFT alignments, also in
agreement with previous results[32–34]. Based on this information we selected
the codon-based PRANK aligner even though PRANK is computationally slower
than the other aligners. Villanueva-Cañas et al. focused on genome-wide scans
with PRANK and PAML assessing protein isoforms of similar length returned less
false positives which can be reduced by using protein isoforms of similar length.
They state that further improvements in methods for the automated analyses of
gene families are highly desirable[31] and, according to Markova and Petrov, one
should account for a false positive rate of 50%[33]. We tried automated align-
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ment cleansing procedures as provided, for example, by Gblocks which eliminates
poorly aligned positions and divergent regions of a DNA or protein alignment[35].
Gblocks is aimed at making alignments more suitable for phylogenetic analysis.
We even wrote our own alignment correction routines as part of Biogems (Chap-
ter 8). In the end we decided that these methods were too stringent and reasoned
that the strategy of combining evidence from multiple approaches would render a
limited number of results that could be tested and validated in the laboratory.

Two studies relevant for multi-species genome-wide searches for evidence of
positive selection were recently published. Roux et al. studied positive selec-
tion in seven ant species and compared them with ten bee species and twelve fly
species, resulting in 24 functional categories of genes which were enriched for
positively selected genes in the ant lineage. Roux et al. also combined evidence
from other sources (mostly using GO categories) to zoom in on gene families[36].
Moretti et al. published an update on the running Selectome ‘protein evolution’
database project which hosts searchable precomputed estimates of positive selec-
tion from the CODEML branch-site test. The Selectome database applies more
stringent filtering criteria and contains 6810 gene (family) trees that display evi-
dence of positive selection from 81 species[37].

In our search for sequences that make up the host-parasitic ‘interactome’ we
included ORFs because gene predictors are known to be less effective for poorly-
studied species[21] (see also Chapter 12). Another reason to include ORFs as
source data is that the general view of the genome has become increasingly plas-
tic over time and even non-coding sequences may have functional properties (e.g.,
[38]) and may form a reservoir for novel effectors in pathogenicity, as was shown
in bacteria[39]. Furthermore, non-coding sequences may be precursors for smaller
mRNAs[40]. While 96% of CDS match known ORF sequences, only 17 out of 43
(40%) CDS-based PSC contained one or more sequence matches with ORF-based
PSC. The limited overlap of sequence families showing evidence of positive selec-
tion may (partly) be explained by the fact that the sequences in the ORF-based
PSC are much shorter than the sequences in the CDS-based PSC (e.g., [41]) while
at the same time they are selected for further analysis based on their hypervariable
regions (showing evidence of positive selection). Even if the search for evidence
of positive selection is inherently difficult and will underestimate the real num-
ber of PSC, adding ORF-based PSCs significantly expanded the final number of
sequence families potentially involved in host-pathogen interaction from 20 CDS-
based PSCs to 77 PSCs in total.

Future work may include relaxing the 70% identity constraint for original clus-
tering of sequences. This will result in larger sets of gene families to study includ-
ing those proteins with a smaller conserved scaffold and larger (hyper)variable
regions. Another improvement would be to break down highly diversified gene
families into smaller sequence clusters, along likely phylogenetic branches, and
test them all separately for positive selection. In the current version with large
sequence clusters, the number of sequences included in the alignment was limited
so that both PRANK and PAML could finish within reasonable computation time.
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Other potential improvements would be to include additional branch-site models
of evolution, such as provided by PAML[42].

The relatively large genome of plant-parasite M. incognita and the PSC discov-
ered in this study suggests that M. incognita harbours conserved coding and non-
coding sequences under current or recent diversifying selection. Some of these
will be part of the host-parasite interactome and may thus help explain the success
of M. incognita in attacking a large range of hosts. Altogether, our approach has
resulted in the identification of 77 PSC unique associated with plant-parasitism in
the genome of M. incognita. Further functional characterization of these PSC in
the laboratory is needed to pinpoint the subset of PSCs with significant contribu-
tions to virulence of root-knot nematodes in plants. Our approach was validated
by PSCs identified in this study which included previously discovered effectors in
M. incognita[43]. We conclude that, although our search for positive selection
may have returned FPs and although we may have lacked power of detecting pos-
itive selection (FNs), the overall approach of clustering paralogues sequences and
using PAML for detecting evidence of positive selection, followed by drilling down
on functional characteristics of sequences and a between-species comparison, has
rendered a novel and useful resource for plant-parasite research that can easily be
explored further in the laboratory.

2.4 Materials and Methods

Databases and software

G. pallida CDS and contigs (v1.0) were fetched from Sanger FTP. The other Nema-
tode genome sequences were fetched from Wormbase (release W236)[22]. Pre-
dicted CDS transcripts for gene families were fetched for C. elegans, M. hapla,
P. pacificus, and T. spiralis; as well as the full genomic soft masked whole genome
for C. elegans, M. hapla, P. pacificus, T. spiralis B. malayi, B. xylophilus, C. briggsae,
C. elegans, M. incognita, M. hapla, P. pacificus, S. ratti, and T. spiralis. The P. in-

festans CDS and genome sequence was fetched from ENSEMBL Genomes FTP (re-
lease 20). The RefSeq non-redundant BLAST database release 59 was downloaded
from the NCBI FTP site[44] and indexed using a local BLAST installation[45].
BLAST 2.2.26[45], Paml 4.7[16], Prank-msa v130410[46], signalP-4.1[27],
Phobius-1.01[28] and EMBOSS-6.6.0[47] were installed and run on Red Hat
Linux 4.4.7-3 using gcc version 4.4.7 20120313.

Clustering of sequence families with BLASTCLUST

CDS sequences were prepared and translated for a within-species amino acid
BLASTCLUST ‘-L .7 -b T -S 70’, i.e., a 70% percentage identity and length cov-
erage threshold. For ORF sequences EMBOSS getorf was used to create a FASTA
file of nucleotide sequences between STOP codons. ORF sequences shorter than
nucleotide 180 bps or with more than 10% masked nucleotides were discarded.

ftp://ftp.sanger.ac.uk/pub/pathogens/Globodera/pallida/Assembly/
ftp://ftp.ensemblgenomes.org/pub/release-20/protists/fasta/phytophthora_infestans/cdna/
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After BLASTCLUST all clusters with more than four sequences were collected and
rewritten as FASTA nucleotide multi-sequences alignment (MSA) files containing
the clustered sequences. To prevent Prank and PAML from seizing up and have
computations complete within 24 hours, MSA’s were truncated to 19 sequences.

Testing for positive selection with CODEML

For each sequence cluster the MSA was aligned using the codon aligner PRANK.
PRANK also provided the phylogenetic tree, used as input for CODEML. Next, the
CODEML programme of the PAML software was run on each cluster to predict for
positive selection using M7-8 models. Relevant settings were CodonFreq=F3X4,
model=0, fix_kappa=0, kappa=4, fix_omega=0, omega=5, ncatG=10. The re-
sults of the CODEML runs were turned into a digest of positive selected clusters
(PSC) and added to the RDF database (see section 2.4).

Testing for similarity and conservation with BLAST

To compare PSC between species all amino acid sequences contained in PSC were
compiled into a BLAST database. Next, every individual sequence in each PSC
was ‘BLASTed’ against this database (E− value < 10−5) and results were added to
the RDF database. Also every sequence in PSCs was BLASTed against RefSeq[44]
(E − value < 10−5) and the result was added to the RDF database. A nucleotide
MegaBLAST search[26] was executed of all clustered M. incognita ORF sequences
against all sequences that make up CDS. MegaBLAST default settings were used
and post-filtered for alignment-length > 60 and p < 10−5. All BLAST results
were transformed to RDF using the bioruby-blastxmlparser tool with the blast2rdf-
minimal.erb template (see also Chapter 8).

Identification of secreted proteins with Signal-P and PHOBIUS

N-terminal signal peptide and possible transmembrane domain(s) in PSC sequences
were identified using SignalP[27] and PHOBIUS[28] prediction algorithms using
default settings. The result was added to the RDF database.

RDF database

All results were stored in an RDF graph, available for download from
http://biobeat.org/GWP/ and for this study stored in a 4-store v1.1.4 container
for SPARQL queries[29]. The SPARQL results were compiled for figures and tables
using scripts.

Pipeline and scripts

In addition to the GWP scripts (http://github.com/pjotrp/) we wrote and added
PAML-parsing support to BioRuby 1.4.3 (Chapter 7) and alignment support to the

http://biobeat.org/GWP/
http://github.com/pjotrp/
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Biogems bio-alignment gem (Chapter 8) as well as tools for parsing blastclust,
BLAST XML and PAML output. Gems installed are bioruby-blastxmlparser 1.1.1,
bioruby-bigbio 0.1.5 and bioruby-table 0.8.0. For all the tools default settings
were used, unless mentioned differently.

All software and scripts for running the invidual steps are available from the git
repositories http://github.com/pjotrp/ and supplementary data at
http://biobeat.org/GWP/. For information on how to use the scripts in the pipe-
line, see the protocol document.

http://github.com/pjotrp/
http://github.com/pjotrp/
http://biobeat.org/GWP/
http://biobeat.org/GWP/protocol.html
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GenEST, a powerful bidirectional link
between cDNA sequence data and gene
expression profiles generated by cDNA-AFLP

The release of vast quantities of DNA sequence data by large-scale genome and ex-
pressed sequence tag (EST) projects underlines the necessity for the development
of efficient and inexpensive ways to link sequence databases with temporal and spa-
tial expression profiles. Here, we demonstrate the power of linking cDNA sequence
data (including EST sequences) with transcript profiles revealed by cDNA-AFLP, a
highly reproducible differential display method based on restriction enzyme digests
and selective amplification under high stringency conditions. We have developed
a computer program (GenEST) that predicts the sizes of virtual transcript-derived
fragments (TDFs) of in silico digested cDNA sequences retrieved from databases.
The vast majority of the resulting virtual TDFs could be traced back among the
thousands of TDFs displayed on cDNA-AFLP gels. Sequencing of the corresponding
bands excised from cDNA-AFLP gels revealed no inconsistencies. As a consequence,
cDNA sequence databases can be screened very efficiently to identify genes with
relevant expression profiles. The other way round, it is possible to switch from
cDNA-AFLP gels to sequences in the databases. Using the restriction enzyme recog-
nition sites, the primer extensions and the estimated TDF size as identifiers, the
DNA sequence(s) corresponding to a TDF with an interesting expression pattern
can be identified. In this paper we show examples in both directions by analyzing
the plant parasitic nematode G. rostochiensis. Various novel pathogenicity factors
were identified by combining ESTs from the infective stage juveniles with expres-
sion profiles of ∼4000 genes in five developmental stages produced by cDNA-AFLP.

Published as ‘GenEST, a powerful bidirectional link between cDNA sequence data and gene
expression profiles generated by cDNA-AFLP’ by Ling Qin, Pjotr Prins, John T. Jones, Herman Popeijus,
Geert Smant, Jaap Bakker and Johannes Helder

Nucleic Acids Res (2001)
29(7):1616-22. doi:10.1093/nar/29.7.1616
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3.1 Introduction

With the advent of high throughput techniques for DNA sequencing, whole genome
sequences from several organisms have become available[7, 48] and many others
will be available in the near future. At the same time, millions of expressed se-
quence tags (ESTs), single pass sequences of cDNA clones selected randomly from
a library, have been generated and deposited in public and private databases.
Searching for homologous sequences in databases is usually the first step towards
understanding the functions of newly identified genes. Homology information is
useful for orthologous genes, but in the case of paralogs the value of this informa-
tion may be more limited. Furthermore, it is often found that a significant propor-
tion (40-60%) of newly identified DNA sequences lack homology with genes for
which the functions are known [7, 49]. Additional tools are therefore needed to
allow functional analysis of newly identified genes.

Biological responses and developmental processes are precisely controlled at
the level of gene expression. Information on the temporal and spatial regula-
tion of gene expression often sheds light on the potential function of a partic-
ular gene. Hence, an essential aspect of functional genomics is the transcrip-
tome, i.e., the analysis of expression patterns of genes on a large scale. There
are currently three high throughput techniques for large-scale monitoring of gene
expression: serial analysis of gene expression (SAGE)[50], hybridization-based
methods[51, 52], gel-based RNA fingerprinting techniques such as differential
display[53] and cDNA-AFLP[54]. In principle, SAGE can provide quantitative
data concerning gene expression. However, it is expensive and labor intensive
when multiple sample points are to be compared. Microarray technology is very
powerful in generating a broad view of gene expression. Unlike cDNA arrays,
oligonucleotide arrays are able to distinguish between highly homologous se-
quences. However, the design of oligonucleotide arrays requires comprehensive
sequence knowledge at present only available for a small number of organisms.
cDNA-AFLP is an inexpensive gel-based method for analysis of gene expression
patterns and can be performed in any laboratory.

In the cDNA-AFLP procedure cDNAs synthesized from mRNAs isolated from
various sample points are digested by two restriction enzymes. Oligonucleotide
adapters are then ligated to the resulting restriction fragments to generate tem-
plate DNA for PCR. PCR primers complementary to the adapter sequences with
additional selective nucleotides at the 3’-ends allow specific amplification of a lim-
ited number of cDNA fragments. Unlike differential display methods that make
use of small random primers[53], relatively high annealing temperatures can be
used and, hence, cDNA-AFLP is more stringent and reproducible. In contrast to
most hybridization-based techniques, cDNA-AFLP will distinguish between highly
homologous genes from gene families while (contrary to oligonucleotide arrays)
no sequence foreknowledge is needed.

Since sequence information is accumulating at an unprecedented rate for a
wide variety of organisms, there is an urgent need for efficient and inexpen-
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sive ways to screen these databases on genes with interesting expression profiles.
Here, we report on the advantages of combining ESTs with cDNA-AFLP data. The
potential benefits of this combination in gene discovery and functional analysis
prompted us to develop a computer program that creates restriction patterns of
cDNAs in silico in accordance with the enzyme combinations used in cDNA-AFLP.
The resulting virtual cDNA fragments are ordered according to the extensions of
the amplifying primers and their sizes. These virtual fragments can then be traced
back on cDNA-AFLP gels to identify the corresponding bands, with primer exten-
sions and fragment sizes as a unique identifier. The program can also be used
in the opposite direction by using the size and primer extensions of a potentially
interesting band identified on a cDNA-AFLP gel as criteria to search the corre-
sponding cDNA. This simplifies the procedure of cloning full-length genes with
interesting temporal and spatial expression patterns.

In this paper we demonstrate the utility of the program by linking EST se-
quence data and expression profiles of ∼4000 genes from the potato cyst nema-
tode Globodera rostochiensis, which causes extensive damage to solanaceous crops.
Genes potentially related to the nematode’s ability to parasitize plants were iden-
tified within a pool of hundreds of ESTs. We show that this program could be
useful in any system where stage- or tissue-specific genes are to be selected from
pools of (uncharacterized) cDNAs.

3.2 Results

ESTs and cDNA-AFLP-based expression profiles

A cDNA library from second stage juveniles in the H stage of the potato cyst ne-
matode G. rostochiensis was used to sequence 985 cDNA clones. Starting from
the 5’-end, the average read was ∼600 bp[55]. In parallel, cDNA-AFLP-based
gene expression profiles were generated from five distinct developmental stages,
D, S, H, U and P, of this nematode species. The expression profiles were highly
reproducible and no significant differences were observed between independent
replicates. An average of 32 bands per lane were displayed using EcoRI and TaqI
primers with two selective nucleotides (E+NN and T+NN, respectively) extend-
ing beyond the adapters into the cDNA. Approximately 8200 TDFs were displayed
using the whole set of 256 (16∗16) primer combinations. In a previous study[56]
it was shown that genes involved in plant parasitism are usually up-regulated in
developmental stages S and H or in stage H only. Bands showing such expression
patterns were excised from gels, cloned and sequenced. Sequencing of > 100
TDFs revealed that the marker-based size estimations corresponded well to the
actual sizes of these TDFs (with an accuracy of ±1 nt for bands < 300 nt and ±3
nt for bands > 300 bp).
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Generation of virtual TDFs from ESTs using GenEST

We used GenEST to generate virtual TDFs from 985 ESTs. EcoRI and TaqI recog-
nition sites were used as begin and end tags with a length modifier of 22 nt to
account for the additional adapter sequences.

A total of 228 virtual TDFs derived from 159 ESTs were predicted by GenEST
(Table 3.1). Of these 159 ESTs, 100 were predicted to produce a single virtual
TDF, 51 were predicted to give rise to two virtual TDFs each (thereby generating
102 TDFs), six ESTs were predicted to result in three TDFs each (generating 18
TDFs) and two ESTs were predicted to generate four TDFs each (eight TDFs in
total).

Table 3.1: Virtual TDFs generated after in silico restriction with EcoRI and TaqI of 985
ESTs randomly picked from a cDNA library from infective juveniles of the potato cyst ne-
matode G. rostochiensis using GenEST. E+AN/CN/GN/TN are the extensions of the EcoRI
primer (E, core primer). Each EcoRI primer was combined with all TaqI primers (T+NN).
Note: E+GA will constitute both a TaqI and an EcoRI recognition sequence (GAATTCGA).
In this case TDFs will not be amplified and cannot be traced back on a cDNA-AFLP gel.
Therefore, these TDFs were not included in the total counta.

E+AN E+CN E+GN E+TN Total
N = A 20 17 32a 2
C 6 11 15 11
G 12 14 19 14
T 14 33 22 18
Total 52 75 56a 45 228a

To estimate how many genes are represented by the 8200 TDFs displayed in
our study we have randomly extracted 1000 full-length cDNAs of Caenorhabdi-

tis elegans from GenBank (both the size and average GC content of the G. ros-

tochiensis genome are similar to C. elegans; [56]. These sequences were processed
by GenEST and 336 cDNAs (∼34%, the remaining cDNAs not containing both re-
striction sites) generated 693 virtual EcoRI/TaqI TDFs. The percentage of genes
which produced TDFs is ∼48% (336/693 = 48%) of the total TDF number. As-
suming that the average mRNA size and the number of genes of the potato cyst
nematode do not differ substantially from C. elegans, the 8200 TDFs displayed on
cDNA-AFLP gels in this study would represent ∼4000 expressed genes.

From ESTs to the corresponding TDFs on cDNA-AFLP gels

The vast majority of the virtual TDFs predicted could be located at the expected
position on the cDNA-AFLP gel. The cases where no matches were found between
virtual and real TDFs could usually be explained by the system used. Here, we
describe detailed analyses of 52 virtual TDFs that were generated in silico using
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the primers E+AN in combination with all TaqI primers (T+NN) (Table 3.1). Mul-
tiple TDFs that originated from a single EST sequence were all checked. Matching
bands could be found on gels for 41 TDFs. Eight virtual TDFs were smaller than
the exclusion limit of 50 nt used in this study. As expected, these TDFs were not
displayed. Lowering the exclusion limit would allow the display of bands down to
10 nt. Among these eight ESTs, six would produce a second virtual TDF. All these
TDFs were identified on gels. Within the size range analyzed only three virtual
TDFs could not be traced back on the cDNA-AFLP gels.

The TDF computed from EST GE1867 could not be detected. This EST aligned
almost completely with the cloned GR-eng-2 gene from G. rostochiensis[57]. Care-
ful examination of the sequence suggested that a 10 bp fragment at the 5’-end of
the EST, in which a TaqI recognition site was located, may have originated from
another gene. We therefore assumed that a rare recombination event occurred
during construction of the cDNA library. A second band predicted for GE1867,
399 nt in length with extensions E+TT/T+TG, was readily identified on the gel.

For one particular EST, GE1782, a TaqI recognition sequence (bold) was found
to be partially nested inside the EcoRI recognition site (underlined) (GAATTCGA).
Contrary to the E+GA group mentioned in Table 3.1, the TCGA sequence was
located at the outside of the TDF. Following the cDNA-AFLP protocol the cDNA
was first digested with TaqI and, as a consequence, the EcoRI site was lost. Hence,
in this particular case the predicted TDF was not amplified.

ESTs GE1349 and GE1483 were predicted to produce four TDFs. All four TDFs
of GE1349 were located on gels at the predicted size. For GE1483 one band was
found, the other three being smaller than the cut-off size of the gel.

In summary, from a total of 52 TDFs predicted to be produced by E+AN just
one, from EST GE1133, could not be located at the predicted size and primer
extensions. This minor discrepancy between the GenEST prediction and the bands
displayed on the gel may be caused by a PCR or sequencing error. It is concluded
that predicted TDFs from ESTs can always be traced back on cDNA-AFLP gels,
when taking PCR and sequencing errors into account.

Validation of virtual TDFs by sequencing the matching bands

As has been described above, sequencing of > 100 bands excised from cDNA-AFLP
gels showed that the marker-based size estimation was highly accurate. This ac-
curacy was further confirmed by sequencing 24 bands that matched virtual TDFs.
Sequencing of these matching bands revealed no inconsistencies with the com-
puted TDFs. It is therefore concluded that three identifiers, the restriction enzyme
recognition sites, the primer extensions and the size of the band, are sufficient to
find the corresponding real TDFs on cDNA-AFLP gels.
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Expression patterns of virtual TDFs derived from ESTs with putative

housekeeping functions

We chose several ESTs with putative housekeeping functions and investigated
whether we could find TDFs from these genes on cDNA-AFLP gels at the appropri-
ate positions and with the expected constitutive expression pattern.

EST sequences GE1373, GE1659 and GE1699 share high homology (BLASTX
E value < 10−30) with elongation factor 1-β from various organisms, GE99 shares
high homology (E value 10−35) with 40S ribosomal protein S20 and GE1409 is
likely to be a ribosomal protein L20 homolog (E value 10−41). These proteins are
essential components in protein synthesis and are constitutively expressed in most
eukaryotic organisms. For all individual ESTs, GenEST predicted the generation
of at least one TDF. Examination of cDNA-AFLP gels showed discrete bands at
the right positions and virtually equal band intensities were observed in the five
developmental stages. From one of the developmental stages the amplification
products were cloned and sequenced. The resulting sequences were found to
perfectly match the corresponding EST sequences.

These results show that the expression profiles were in accord with the pre-
dicted functions of the ESTs and that it is feasible to discard or select ESTs by
analyzing the expression patterns of the predicted TDFs.

EST to cDNA-AFLP: discarding ESTs on the basis of expression profiles

For many ESTs no function could be inferred from homology searches. About
40% of the ESTs obtained from G. rostochiensis were categorized as unknown and
many of these genes seemed to be nematode-specific. Proteins encoded by these
nematode-specific genes are presumably important in nematode physiology and
a few among them may be related to parasitism of host plants[55]. Examination
of the expression profiles of the virtual TDFs provides valuable information on
whether such ESTs deserve further investigation or not. This is exemplified by
ESTs GE54 and GE1084. GE54 was predicted to produce a TDF with extensions
E+TC/T+AG and a size of 138 nt and GE1084 with extensions E+AC/T+AC and
a size of 85 nt. Their corresponding TDFs were readily identified on cDNA-AFLP
gels. Both bands displayed a constitutive expression pattern throughout the five
developmental stages. This argues against a direct function of the proteins en-
coded by these two genes in plant parasitism.

EST to cDNA-AFLP: selection of ESTs on the basis of expression

profiles

GE1156 was predicted to produce three TDFs (E+CA/T+TT/65 nt,
E+CT/T+GG/73 nt and E+GC/T+AT/82 nt). A band could be found at each
of the predicted positions. The bands in the hatched J2 stage showed the high-
est intensity. Sequence alignment revealed that GE1156 was similar to the dorsal
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gland-specific gene GR-dgl-2 from the potato cyst nematode[58]. GR-dgl-2 was
previously shown to be specifically expressed in PRD-hatched J2. In situ hybridiza-
tion revealed specific expression of GR-dgl-2 in the dorsal gland of the nematode.
The proteins produced by this gland may be involved in induction of a feeding site,
a so-called syncytium, in the host plant[59]. The protein conceptually translated
from the cDNA was predicted to be preceded by a signal peptide for secretion, in-
dicating that this protein might be secreted by the nematode during the infection
process.

GE1867 appeared to be identical to GR-eng-2, one of the β -1,4-endoglucanases
that is secreted by cyst nematodes. In situ hybridization showed that GR-eng-2 was
specifically expressed in the subventral gland[57]. Unlike GE1156, the GE1867-
derived TDF (E+TT/T+TG/399 nt) showed high expression not only in the H but
also in the (earlier) S stage. This points to an earlier transcription activation of
subventral gland-specific genes. The proteins encoded by these genes may be im-
portant in the early infection process, namely penetration of and migration in the
plant root.

cDNA-AFLP to EST: finding (near) full-length cDNAs corresponding to

TDFs with relevant expression patterns

The extensions of the EcoRI primer, the extensions of the TaqI primer and the
size of a band on a cDNA-AFLP gel constitute a unique identifier for a TDF. These
parameters can be used to search in the EST database to find an EST that can
produce such a TDF. In this way TDFs with S/H or H stage-specific expression
(i.e., gene expression just prior to invasion of the plant) were used to search the
list of virtual TDFs generated from the EST database.

One TDF specifically expressed at the H stage, with extensions E+CC/T+CT/
and 137 nt in length, perfectly matched the parameters of the predicted TDF from
EST GE2075. This band was subsequently cloned and sequenced. The sequence
showed 99% match to EST GE2075. With the help of GenEST the gene sequence
representing this H stage-specific band was extended from 137 to 477 bp (Table
3.2). By sequencing the original plasmid of EST GE2075 from the 3’-end, the
cDNA sequence was extended to 685 bp.

Another band displaying high expression in the S and H stages, with extensions
E+AA and T+TA and a size of 251 nt, perfectly matched the predicted TDF from
EST GE1816. Analysis of this EST sequence revealed that the longest open reading
frame (ORF) contained 107 amino acids. This gene had no significant homology
with existing genes in public databases. Use of the SignalP program[60] predicted
that the protein had a cleavable signal sequence at its N-terminus that presumably
targets the mature peptide for secretion. Hence, the combination of cDNA-AFLP
and EST analysis has allowed us to identify this gene as worthy of further study
for its potential role in nematode parasitism of plants.

These two examples illustrate another benefit of combining cDNA-AFLP and
EST, which is to facilitate cloning of full-length cDNA sequences from which inter-
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Table 3.2: Genes selected on the basis of a combinatorial use of EST sequences and
cDNA-AFLP data from the potato cyst nematode G. rostochiensis. In each direction the
bidirectional program GenEST allowed for selection of putative pathogenicity-related genes
out of hundreds of EST sequences and expression profiles of thousands of genes.

Starting point Corresponds to Expression
pattern on gel

Homology

E+AA/T+TA/251 GE1816 ↑ in S and H Unknown, predicted to
have a signal peptide for
secretion

E+CC/T+CT/137 GE2075 ↑ in H Nematode dorsal
gland-specific gene
GR-dgl-2

GE1156 E+CA/T+TT/65;
E+CT/T+GG/73;
E+GC/T+AT/82

↑ in H (three
TDFs, same
pattern
observed)

Nematode dorsal
gland-specific gene
GR-dgl-2

GE1867 E+TT/T+TG/399 ↑ in S and H
stages

GR-eng-2 from potato cyst
nematode

esting TDFs are derived. The corresponding gene can be readily identified from
the EST database even without cloning and sequencing of the TDF displayed on
a gel. Once the corresponding EST is identified, obtaining a (nearly) full-length
sequence is relatively simple by sequencing the entire cDNA insert from which the
EST was originally derived.

In Table 3.2 four examples of putatively interesting ESTs and their correspond-
ing TDFs are given. In online Figure 3.1 an overview of the bidirectional link
between ESTs and cDNA-AFLP expression profiles established by GenEST is given.

3.3 Discussion

In this paper we present an efficient and bidirectional link between (partial) cDNA
sequences and gene expression profiles as generated by cDNA-AFLP. A program
called GenEST establishes this link. The added value of combining cDNA se-
quence information and cDNA-AFLP profiles is illustrated for one particular case,
namely the search for putative pathogenicity factors from a plant parasitic nema-
tode, G. rostochiensis. On the one hand, GenEST enabled us to find the expression
profile of a given EST among the profiles of thousands of genes. The other way
round, it allowed quick extension of TDFs by searching for the corresponding
EST(s). As we have shown, the restriction enzyme recognition sites, the primer
extensions and the size of the band displayed on a cDNA-AFLP gel constitute a
unique set of identifiers for a TDF, the corresponding (nearly) full-length cDNA can
be identified even without cloning and sequencing of the TDF of interest. In this
way, the bottleneck of identifying the (near) full-length cDNAs in high throughput

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC31277/figure/gke255f1/
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functional genomics studies using gel-based gene expression monitoring systems
can be overcome. Since database similarity searches are more robust when using
longer sequence fragments, the possibility of moving directly from a short TDF
to a much longer EST may be very useful in further characterizing the putative
function of a gene.

Use of GenEST for the selection of putative pathogenicity factors

Selection on the basis of expression profiles of the 228 virtual TDFs that were
produced by in silico restriction of 985 ESTs with EcoRI and TaqI revealed four
putative pathogenicity-related genes. One was a known gene encoding a cellulase
[57]. GE2075 and GE1156 displayed strong homology with a nematode secre-
tory gland-specific gene GR-dgl-2, indicating a possible role in the parasitism of
host plants. GE1816 is a novel gene. Its function will be studied further to re-
veal its role in the nematode infection process. It should be noted that this is
the result of a small-scale pilot experiment only. Even on this scale, the value of
GenEST, which combines two high throughput technologies, is evident: four puta-
tive pathogenicity-related genes were selected out of hundreds of EST sequences
and expression profiles. The applicability of this freely available tool is broad as
long as the expression of genes of interest is strictly limited, either spatially or
temporarily.

Further applications of GenEST

Contrary to EST approaches, the cDNA-AFLP technique is not biased towards
abundant transcripts and does not involve selection on insert size. Moreover, there
is no unwanted selection due to intolerance of Escherichia coli to a subset of the
inserts. To estimate the fraction of genes not tagged by ESTs, Penn et al.[61] have
spotted 10,000 predicted ORFs from the human genome on a cDNA array and
monitored expression of these ORFs under various conditions. They concluded
that potentially up to 30% of the genes in the human genome will not be discov-
ered by an EST approach. A similar experiment could be performed by linking
cDNA-AFLP and EST data with GenEST. Failure to find a good match for a TDF
shown on a cDNA-AFLP gel in a large-scale EST database is informative. The
corresponding gene is presumably a novel gene expressed at a low level, a small
gene or a gene refractory to cloning in E. coli. An advantage of our approach is
that ESTs and cDNA-AFLP are not linked physically, as is the case for cDNA arrays.
This avoids the amplification and spotting of thousands of EST clones, saving huge
logistical efforts.

Besides generating restriction patterns of sequences, GenEST can also be used
to find other sequence motifs in a large data set, a process which is often too time
consuming to be done manually. To illustrate this application, GenEST was used
to predict the occurrence of trans-spliced leader sequences from a database com-
posed of ∼1000 ESTs of the root knot nematode Meloidogyne incognita. In many
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nematode species up to 70% of the mature mRNAs are trans-spliced with a 22 nt
leader sequence on the 5’-end of the mRNAs[62]. When the EcoRI recognition
sequence in the command file is replaced by the trans-spliced leader sequence all
the ESTs containing this sequence can be quickly identified using GenEST. This
information can be used to estimate the fraction of full-length cDNAs present in
a library and to check whether the encoded ORFs start with a peptide signal for
secretion. This latter process could be further streamlined by establishing a link
between GenEST and search algorithms such as SignalP.

AFLP techniques have been used extensively in genetic mapping in various
organisms and a large number of AFLP markers associated with genes of interest
have been identified[63, 64]. Such markers combined with a fully sequenced
genome (e.g. Arabidopsis thaliana; [65]) could facilitate efficient cloning of target
genes. To this end, GenEST can be adapted to assist in the identification of the
physical locus of an interesting gene by using the identifiers of appropriate AFLP
markers.

Further improvement of the EST coverage

Only 16% (159/985 ∗ 100%) of the 985 ESTs were digested in silico by EcoRI and
TaqI. To increase the percentage of ESTs from which virtual TDFs are obtained a
set of alternative rare cutters, including NcoI, KasI and AseI, are currently being
used in combination with TaqI. With three additional primer combinations, more
than half of the EST sequences [1− (1− 0.16)4 = 50.2%] will produce at least
one virtual TDF, which could be identified on cDNA-AFLP gels. To further increase
the coverage of the EST population, cDNA-AFLP can be performed with two fre-
quent cutters. Alternatively, cDNAs could be digested with a frequent cutter only
and ligated to the corresponding adapter. Subsequently, 3’-anchored cDNA-AFLP
could be performed using an oligo(dT) primer in combination with the rare cutter
adapter primer. This approach may be especially useful with organisms for which
the entire genome has been sequenced or for which large-scale 3’-end EST se-
quencing has been performed. Moreover, by increasing the fraction of full-length
cDNA sequences, the chance of finding at least one corresponding TDF on a gel
would improve significantly.

As shown in this study, the ability to switch between sequence data and expres-
sion profiles revealed by cDNA-AFLP and vice versa is a very powerful approach
to select genes for further research. This novel link provided by GenEST will be
useful for functional genomics studies and is applicable to any organism where
differentially expressed genes are of interest. The source code of the GenEST
program is freely available.
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3.4 Materials and methods

The nucleotide sequences of the ESTs described in this study are available in
the GenBank EST division (dbEST) under accession nos BE607308 (GE1867),
AW506364 (GE1782), AW506154 (GE1483), AW506045 (GE1349), AW505895
(GE1133), AW506065 (GE1373), AW506280 (GE1659), AW506299 (GE1699),
AW505736 (GE99), AW506094 (GE1409), AW505716 (GE54),
AW505855 (GE1084), AW506406 (GE1816), BE607310 (GE2075) and BE607309
(GE1156).

Generation of ESTs

The ESTs described by Popeijus et al.[55] were used in this study. Briefly, total
RNA was extracted from infective second stage juveniles (J2) of the potato cyst
nematode G. rostochiensis pathotype Ro1 Mierenbos freshly hatched in potato root
diffusate (PRD). cDNA primed with an oligo(dT) primer was directionally cloned
in the pcDNA II vector (Invitrogen, Leek, The Netherlands). The resulting library
contained at least 2.5∗106 recombinant plasmids. ESTs were obtained by random
sequencing of the library inserts from the 5’-end.

cDNA-AFLP profile

cDNA-AFLP profiles were generated as described by Qin et al.[58]. Briefly, total
RNA was extracted from five developmental stages of G. rostochiensis: D, dehy-
drated unhatched J2 in cysts (in diapause); S, rehydrated unhatched J2 in 1-year-
old cysts after exposure to sterile tap water for 2 days; H, pre-parasitic J2 (dry
cysts incubated in sterile tap water for 1 week, then PRD for a second week); U,
developing nematodes (mostly J1) in gravid females 2 months post-inoculation;
P, developing nematodes (J2) in gravid females 3 months post-inoculation. cDNA
was synthesized with oligo(dT)12-18 as primer. The resulting cDNAs were then
digested with the restriction enzymes EcoRI and TaqI and ligated to correspond-
ing adapters. The ligated cDNA fragments were subsequently amplified by EcoRI
and TaqI primers that annealed to the adapters in PCR reactions and displayed on
polyacrylamide gels.

GenEST program

A command file can be created, with a text editor, which contains restriction en-
zyme recognition sites to be used as the begin and end tags and the marker length
modifier. Multiple combinations can be defined in a command file. GenEST uses
the begin tag to search for the tag sequence in the cDNA data, which are contained
in the input files in FASTA format. If such a tag is found, it will continue its search
for a matching end tag. This search action is executed in both directions for all be-
gin/end tag combinations. The marker length modifier is designed to compensate
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for the additional adapter sequences present in the transcript-derived fragments
(TDFs) as they appear on a cDNA-AFLP gel.

Furthermore, the identifiers of a band on a gel (restriction enzyme recognition
sequences, primer extensions and band size) can be used as a search query to
quickly identify the corresponding EST(s) in an automated procedure.



4
Identification of imprinted genes subject to
parent-of-origin specific expression in
Arabidopsis thaliana seeds

Epigenetic regulation of gene dosage by genomic imprinting of some autosomal
genes facilitates normal reproductive development in both mammals and flowering
plants. While many imprinted genes have been identified and intensively studied in
mammals, smaller numbers have been characterized in flowering plants, mostly in
Arabidopsis thaliana. Identification of additional imprinted loci in flowering plants
by genome-wide screening for parent-of-origin specific uniparental expression in
seed tissues will facilitate our understanding of the origins and functions of im-
printed genes in flowering plants.

cDNA-AFLP can detect allele-specific expression that is parent-of-origin depen-
dent for expressed genes in which restriction site polymorphisms exist in the tran-
scripts derived from each allele. Using a genome-wide cDNA-AFLP screen survey-
ing allele-specific expression of 4500 transcript-derived fragments, we report the
identification of 52 maternally expressed genes (MEGs) displaying parent-of-origin
dependent expression patterns in A. thaliana siliques containing F1 hybrid seeds (3,
4 and 5 days after pollination). We identified these MEGs by developing a bioin-
formatics tool (GenFrag) which can directly determine the identities of transcript-
derived fragments from (i) their size and (ii) which selective nucleotides were
added to the primers used to generate them. Hence, GenFrag facilitates increased
throughput for genome-wide cDNA-AFLP fragment analyses. The 52 MEGs we iden-
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tified were further filtered for high expression levels in the endosperm relative to
the seed coat to identify the candidate genes most likely representing novel im-
printed genes expressed in the endosperm of A. thaliana. Expression in seed tissues
of the three top-ranked candidate genes, ATCDC48, PDE120 and MS5-like, was con-
firmed by Laser-Capture Microdissection and qRT-PCR analysis. Maternal-specific
expression of these genes in A. thaliana F1 seeds was confirmed via allele-specific
transcript analysis across a range of different accessions. Differentially methylated
regions were identified adjacent to ATCDC48 and PDE120, which may represent
candidate imprinting control regions. Finally, we demonstrate that expression lev-
els of these three genes in vegetative tissues are MET1-dependent, while their uni-
parental maternal expression in the seed is not dependent on MET1.

Using a cDNA-AFLP transcriptome profiling approach, we have identified three
genes, ATCDC48, PDE120 and MS5-like which represent novel maternally expressed
imprinted genes in the A. thaliana seed. The extent of overlap between our cDNA-
AFLP screen for maternally expressed imprinted genes, and other screens for im-
printed and endosperm-expressed genes is discussed.

4.1 Background

Flowering plant (angiosperm) seeds are chimeric structures which contain tissues
whose cells have unequal genomic contributions from the maternal and pater-
nal parents[66–68]. Within A. thaliana seeds the diploid embryo is comprised of
cells containing nuclear genomes inherited equally from the maternal and paternal
parents. In contrast, the triploid endosperm contains two maternally inherited nu-
clear genomes and one paternal genome. In addition, these two fertilisation prod-
ucts are surrounded by a maternally derived diploid seed coat[69]. The triploid
endosperm is a terminally differentiated structure which nourishes the develop-
ing embryo, while the diploid maternal seed coat plays key roles in supporting
the development of the seed and the embryo it harbours[70]. The interactions
between these different tissues and genomes during seed development in plants
remain poorly understood[71], despite the fundamental economic importance of
angiosperm seeds. For any given gene, the relative and absolute contribution of
each seed tissue to overall transcript levels in the seed can be difficult to deter-
mine.

An important consequence of the unequal contributions of male and female
genomes to the chimeric seed is that seed development can be affected by genome
dosage and parent-of-origin effects[72]. Such maternal effects include sporo-
phytic maternal effects from the maternally derived seed coat and gametophytic
maternal effects derived from the female gametes. Gametophytic maternal effects
on seed development can be due (a) to general dosage effects in the endosperm;
(b) to deposition of maternal transcripts expressed prior to fertilization in the
egg and central cell that give rise to the embryo and endosperm, respectively; or
(c) to epigenetic regulation of genes via genomic imprinting, whereby autosomal
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genes are uniparentally expressed post-fertilisation in a parent-of-origin-specific
manner[73, 74].

Genomic imprinting has been predominantly described in mammals and flow-
ering plants where it occurs in nutritive tissues (endosperm, placenta) and the
developing embryo, although the latter is rare in plants[75]. While there are
many theories regarding the evolution of genomic imprinting in mammals and
plants, some focus on imprinting arising due to a ‘parental conflict’ over resource
allocation[76] or due to a necessity to limit gene dosage of key genes during early
development[77, 78].

Many imprinted genes (i.e., hundreds, typically arranged in gene clusters along
chromosomes) have been identified and intensively studied in mammalian
species[79]. Until recently (2010), only 18 imprinted genes had been reported
across all flowering plant species, 11 of them in A. thaliana (Table S1). Im-
printed genes have been identified using a range of different strategies, includ-
ing: mutant screens for maternally-controlled seed abortion (A. thaliana MEA
and FIS2[80]); screens for genes regulated by the FIS Polycomb group complex
(A. thaliana PHE1[81]); microarray analyses searching for genes showing similar
responses to known imprinted genes (A. thaliana MPC[82]); endosperm mRNA
profiling (maize nrp1[83]), and via a combination of microarray profiling and
allele-specific expression analysis on endosperm from reciprocally crossed inbred
lines (eight maize genes[84]). Using cdka;1 fertilized seeds which lack a pater-
nal genome contribution to the (unfertilised) central cell, Shirzadi et al. (2011)
used microarray profiling to identify AGL36 as a maternally expressed imprinted
gene amongst the 600 genes differentially regulated in the absence of a paternal
genome[85]. The advent of next generation sequencing based transcriptomics
has facilitated the recent identification of additional imprinted gene candidates in
A. thaliana seeds[86]. Hsieh et al (2011)[87] identified 43 confirmed imprinted
genes (9 paternally expressed, 34 maternally expressed) in F1 hybrid seeds (7-8
days after pollination) from Ler-0×Col-0 reciprocal crosses. Again using next gen-
eration sequencing approaches, Wolff et al (2011)[86] have identified 65 candi-
date imprinted genes in F1 hybrid seeds (4 days after pollination) from Bur-0×Col-
0 reciprocal crosses of which 19 were confirmed in both cross directions (8 pater-
nally expressed, and 11 maternally expressed). Hence, next generation sequenc-
ing studies are now being employed to identify putative imprinted genes[86, 87].

An indirect approach for the identification of novel imprinted genes has been
conducted based on identification of differentially methylated regions (DMRs) as
candidate imprinting control regions (ICRs)[88]. Genes acting as modifiers of
genomic imprinting have also been identified in plants and include MET1[89],
DDM1[80] and DME[90]. For example, the 5-methylcytosine DNA glycosylase
gene DME is preferentially expressed in the central cell of the female gameto-
phyte and can regulate the expression of some imprinted genes in the endosperm
through demethylation of their ICRs[90]. In mutant DME endosperm ICRs re-
main methylated and as a result some imprinted genes are misregulated, which
facilitates their detection[90].

http://www.biomedcentral.com/content/download/supplementary/1471-2229-11-1 13-s1.doc
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While there are a number of genome-wide profiling approaches that can be
used to identify allele-specific expression, there are several significant challenges
for the definition of novel imprinted genes[91]. To distinguish between allele-
specific expression effects that are either parent-of-origin dependent (e.g. im-
printing) or independent, it is necessary to demonstrate the parent-of-origin de-
pendency of uniparental expression at imprinted loci by analysis of reciprocal F1
hybrid offspring. Furthermore, where maternal-specific expression is detected in
a plant seed, it is necessary to distinguish between seed coat versus endosperm
(and/or embryo) expression, and also to distinguish between transcripts mater-
nally deposited in the egg and/or central cell versus transcripts generated post-
fertilisation in the developing endosperm and/or embryo[75]. While imprinted
genes displaying clear mutant phenotypes (e.g. medea) on seed development can
facilitate interpretation of such loci as imprinted[74], many of the imprinted genes
identified to date do not display any obvious mutant phenotype in seeds[92].
In some instances, promoter:reporter constructs have been used to identify cis-
regulatory regions that are required for im-printing[82, 93], while only one study
has demonstrated post-fertilisation nascent uniparental de novo transcription of
an imprinted gene in the endosperm[80].

The choice of transcript profiling platform is an important consideration for
identification of novel imprinted genes. Microarrays are dependent on genes be-
ing expressed at a level sufficient to be detectable via hybridization and com-
plementary strategies are necessary to also detect imprinted genes that may be
lowly expressed. Hence, in this study we chose cDNA-AFLP[54] for genome-
wide screening for novel imprinted genes. Although an early generation tran-
script profiling technology, as a PCR-based technology, cDNA-AFLP allows the
amplification of even lowly expressed transcripts and can identify uniparentally
expressed transcripts for all cases where there is a restriction site polymorphism
between the parental alleles. To facilitate genome-wide cDNA-AFLP expression
profiling, we have developed a gene-identifying bioinformatic software program,
GenFrag, which can determine the identity of genes displaying parent-of-origin
specific cDNA-AFLP expression profiles.

Our analysis of allele-specific expression of 4500 transcript-derived fragments
(TDFs) in an experimental design based on the generation of reciprocal F1 hy-
brids seeds allowed the identification of 52 genes displaying maternal-specific ex-
pression (MEGs). The maternal specific expression of some of these MEGs may
be due to genomic imprinting. Within these 52 maternally expressed genes, 18
represent genes that display higher relative and absolute expression levels in the
endosperm relative to the maternal seed coat. Hence, the detection of maternal-
specific expression of such genes in F1 hybrid seeds 4 days after pollination (DAP)
is consistent with such genes being subject to genomic imprinting in the develop-
ing endosperm. Four of these 18 MEGs have proximal differentially methylated
regions (DMRs) in seed endosperm from wild-type and DME mutant backgrounds
that may represent candidate imprinting control elements (ICRs). For the three
top ranked candidates (ATCDC48, PDE120 and MS5-like) we confirm maternal-
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specific expression in F1 hybrid seeds 4DAP and characterise the control of their
allele-specific expression at different developmental stages, and in different ge-
netic and mutant backgrounds. Overall, we have identified a range of novel MEGs
in A. thaliana seeds, from which we further demonstrate that three are novel ma-
ternally expressed imprinted genes in A. thaliana seeds.

4.2 Results

cDNA-AFLP expression profiling of A. thaliana siliques containing F1

hybrid seeds detects 93 uniparentally-expressed TDFs

To identify genes which are uniparentally expressed in F1 hybrid seeds within
siliques of A. thaliana we employed a genome-wide cDNA-AFLP transcriptome
profiling approach. At 3, 4 and 5DAP RNA samples were generated from siliques
containing F1 hybrid seeds generated via reciprocal crosses between the acces-
sions Col-0 and Ler-0Ṫhese three stages correspond to developmental stages from
the late globular 3DAP to early and late heart stages 4 and 5DAP of embryo de-
velopment within the seed. These stages of embryo development were chosen
to mitigate against the possibility of detection of maternally deposited long-lived
RNAs in the egg cell and/or central cell, and also because zygotic expression from
both parental alleles is evident at these developmental stages[94]. In these sam-
ples, maternally expressed genes may be detected from either the silique or F1
seed tissues, and within the F1 seeds from either the maternal seed coat or the
fertilisation products (i.e., the embryo and/or endosperm).

cDNA-AFLP was performed on cDNA derived from RNA samples following re-
striction digestion with a frequently cutting enzyme (BstYI) and a rare cutting en-
zyme (MseI) (Fig. S1 — supplementary data can be found online at
http://www.biomedcentral.com/1471-2229/11/113/additional).

Fragments were ligated with adapters complementary to the restriction sites of
the enzymes. To reduce the complexity of the mixture of fragments, a series of PCR
amplifications were performed to generate subsets of fragments using selective
primers. These selective primers share a common sequence, which corresponds
to the adapters and a section of the restriction sites but are differentiated by one
or two additional nucleotides at the 3’end, called selective nucleotides (Methods;
Fig. S1).

The cDNA-AFLP generated transcript derived fragments (TDFs) were run on
an ABI-3130xl capillary analyser and visualized with fluorescently labelled probes
to accurately estimate their size (see Methods). A total of 10,200 TDFs were de-
tected across the three time points 3, 4, 5DAPṪhe TDFs ranged in size from 50 to
500 nucleotide base pairs (bp) and an average of 80bp was visualized per sam-
ple. Of the 10,200 TDFs screened, 4500 showed a polymorphism between cDNA
derived from the reciprocal crosses between the two different accessions (genetic
backgrounds) with sizes ranging from 100bp to 500bp. Maternally expressed alle-

http://www.biomedcentral.com/1471-2229/11/113/suppl/S2
http://www.biomedcentral.com/1471-2229/11/113/additional
http://www.biomedcentral.com/1471-2229/11/113/suppl/S2
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les were found in approximately equal numbers when each of the two accessions
were used as the maternal parent in a reciprocal cross (Table S2). For example, at
the 4DAP time-point, 366 maternally expressed Col-0 alleles were detected in the
Col-0×Ler-0 cross, while 306 maternally expressed Ler-0 alleles were detected in
the reciprocal Ler-0×Col-0 cross. The numbers of maternally expressed TDFs de-
tected were similar across the three developmental stages indicating consistency
of maternal-specific transcription during early silique development. For each poly-
morphic allele, i.e., Col-0 vs Ler-0 alleles differing in a restriction site, only one
fragment is detectable from each restriction digestion event as only those TDFs
proximal to the poly-A tail were isolated for analysis. Hence for each of the two
accessions there is no redundancy within the number of TDFs detected at each
time-point.

To identify uniparentally expressed genes, cDNA-AFLP profiles for these 4500
polymorphic TDFs were compared between those obtained from siliques contain-
ing reciprocal F1 hybrid seeds, i.e., F1 progeny of Ler-0×Col-0 versus Col-0×Ler-0
crosses, and those obtained from the equivalent cross between plants of the same
accession, i.e., Col-0×Col-0, Ler-0×Ler-0. The samples at 3, 4 and 5DAP were
used to filter for TDFs which displayed uniparental expression for at least two of
the stages sampled. This strategy allowed the identification of 93 uniparentally
expressed TDFs. All 93 of the uniparentally expressed TDFs displayed a maternal-
specific expression pattern (Table S3).

Direct identification of genes based on TDF size and the selective

nucleotides of each primer combination using the GenFrag

bioinformatics program

To identify the genes that produced the maternal TDFs detected in A. thaliana

siliques containing F1 hybrid seeds (Table S3), we developed a bioinformatics
program called GenFrag. GenFrag is designed to allow in silico identification of se-
quences of TDFs produced by cDNA-AFLP using publicly available cDNA and EST
libraries (which for the well annotated A. thaliana genome also includes all cu-
rated alternative splice variants[95]). Using these resources, GenFrag is designed
to simulate the steps of the cDNA-AFLP in silico by scanning existing A. thaliana

genome information for dual restriction enzyme cutting sites (see Methods and
Fig. S1). Given the fragment size (as assessed on the capillary sequencer) and
the selective nucleotides added to the primers used to generate the TDF, GenFrag
can identify the corresponding sequence of a TDF and thereby the identity of the
gene corresponding to the TDF. The GenFrag software is developed as open source
software and is freely available for use online (see Chapter 8).

http://www.biomedcentral.com/1471-2229/11/113/suppl/S3
http://www.biomedcentral.com/1471-2229/11/113/suppl/S4
http://www.biomedcentral.com/content/download/supplementary/1471-2229-11-113-s4.doc
http://www.biomedcentral.com/1471-2229/11/113/suppl/S2
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GenFrag-based identification of 52 genes from the set of 93

maternally expressed TDFs

GenFrag was used to identify genes corresponding to the 93 maternal specific
TDFs (Table S3). To increase selectivity, we incorporated an option into GenFrag
to only return the last matched fragment in a 5’-3’ sequence i.e., the fragment clos-
est to the poly-A tail of the mRNA. We combined this adaptation with a stringent
range of 1bp deviation between the observed size of the TDF when run on the
capillary analyser and the size predicted in silico for a candidate sequence. Using
these conditions, GenFrag was able to determine unique sequence (i.e., gene ID)
matches for 52 of the 93 maternally expressed TDFs identified (i.e., TDFs 1-52 in
Table S3). Of the remaining TDFs, 21 matched sequences shared by more than one
gene and therefore could not be uniquely distinguished (TDFs 53-73 in Table S3),
while the remaining 20 could not be matched to any genes using the GenFrag
approach (TDFs 74-93 in Table S3). The lack of identification of these 20 TDFs
may be due to aberrant enzyme restriction and/or incomplete coverage of the
A. thaliana transcriptome. The 52 unique sequence TDFs were matched to genes
by BLAST searching the A. thaliana genome (TAIR). This allowed us to unambigu-
ously identify 52 maternally expressed genes in A. thaliana siliques containing F1
hybrid seeds (Table T1). Gene Ontology enrichment analysis of the 52 maternally
expressed genes did not reveal any significant enriched terms (data not shown).
Our set of 52 MEGs did not include the known imprinted genes from A. thaliana,
however, this is not surprising as most of these 52 MEGs have few SNP differences
between the alleles from different accessions, and where they do, the SNPs do not
disrupt the restriction sites that are scanned by the cDNA-AFLP technique using
these restriction enzymes (Table S4). For instance, there are no Col-0/Ler-0 SNPs
in the coding sequence of the maternally expressed imprinted gene MEDEA. The
52 genes we identify represent novel maternally expressed genes (MEGs).

18 candidate imprinted genes in which the observed maternal

expression is predominantly derived from higher transcript levels in

the endosperm relative to the maternal seed coat

The 52 maternally expressed genes (MEGs) were detected in siliques containing
reciprocal F1 hybrid seeds where the maternal-specific expression could be derived
from the silique, the maternal seed coat, the endosperm and/or the embryo. Seed
expressed genes which are predominantly maternally expressed in the endosperm
from 3DAP (late globular stage embryos) are excellent candidates for regulation
by genomic imprinting. It was recently shown that embryo development up to the
globular stage does not depend on de novo transcription while endosperm devel-
opment requires active transcription following fertilization, suggesting that mater-
nally deposited RNAs do not play a predominant role in the endosperm[96]. Thus,
mRNAs detected in the endosperm at ≥3DAP are most likely to be derived from
de novo transcription post-fertilization. To identify which of the 52 maternally
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expressed genes are predominantly expressed in the endosperm at high expres-
sion levels, we used a publicly available expression dataset (Seed Gene Network -
Harada-Goldberg Arabidopsis Laser Capture Microdissection Gene Chip Data Set,
[97]) where the relative expression levels of genes in the seed coat and endosperm
tissues (peripheral, chalazal and micropylar fractions) of seeds at the globular
stage of embryo development 3DAP have been assessed.

From the 52 maternally expressed genes, we could identify 32 genes which
had strong signals of expression in the 3DAP seed. Eleven genes were not de-
tected as they did not have probes in the array dataset used or their probes also
matched another gene. Nine genes were not expressed in seeds and therefore
may be good candidates for silique specific MEGs. Comparing the expression lev-
els between the endosperm and the seed coat, we found three MEGs which were
exclusively expressed in the seed coat but no MEGs which were absent from the
seed coat but were expressed in the endosperm. 29 MEGs showed expression in
both the endosperm and the seed coat. We considered that if maternal-specific
expression can be demonstrated in seeds for MEGs where the majority of the ex-
pression level signal is from the endosperm, that such a pattern would be strongly
indicative of a maternally expressed imprinted gene in the endosperm. Biallelic
expression in the endosperm should also be easier to detect in such cases. Hence,
for these 29 MEGs, we aimed to identify genes where the majority of the expres-
sion detected in the seed is due to the endosperm fraction. We selected the 18
genes out of the 29 that showed higher expression in the endosperm compared
to the seed coat and ranked these genes based on the absolute difference of ex-
pression levels between the highest expressing endosperm fraction and the seed
coat (see online Table T2). We reasoned that genes displaying the highest levels
of expression in the endosperm of 3DAP seeds were least likely to be genes where
maternal-specific transcripts detected could be due to maternal deposition of tran-
scripts in the central cell [96] or transferred from the maternal seed coat as has
recently been proposed [87] i.e., we focussed on genes which are highly expressed
in the endosperm relative to the maternal seed coat. As a complementary ap-
proach, we also compared these genes on the basis of relative transcription levels
(Table S5). For these MEGs with significantly higher expression levels in the en-
dosperm when compared to the seed coat, maternal-specific expression detected
in reciprocal F1 hybrid seeds at 4DAP is consistent with regulation via genomic
imprinting in the endosperm. Using these approaches, we chose the three top
ranked genes as measured by total enrichment of expression in the endosperm,
ATCDC48 (At3g09840), PDE120 (At5g16620) and MS5-like (At3g51280) as our
strongest imprinted candidates for further investigation. Although PDE120 and
MS5-like were less highly expressed in the endosperm in total, they were also the
most highly ranked genes as measured by ratio of endosperm to seed coat expres-
sion (Table S5) and as noted in online Table T1 have previously been reported as
preferentially endosperm-expressed in a microarray study performed by Day et
al.[98]. Hence we consider all three of these MEGs to be principally expressed in
the F1 endosperm relative to the maternal seed coat.
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Laser capture microdissection (LCM) and qRT-PCR confirm expression

of ATCDC48, PDE120 and MS5-like in A. thaliana seed

To validate the expression patterns of the three top ranked imprinted gene can-
didates ATCDC48, PDE120 and MS5-like, we used Laser Capture Microdissection
(LCM) to microdissect A. thaliana seeds 5DAP of accession Ler-0 into endosperm
(ES), seed coat (SC) and embryo (EM) fractions. The three LCM tissues were
screened by qualitative end-point RT-PCR to investigate tissue-specific expression
of each gene within the seed at 5DAP which confirmed that all three genes are
indeed expressed in A. thaliana seeds (Fig. S2). Transcripts were detected in both
the seed coat and endosperm for all three genes while ATCDC48 and MS5-like
were also detected in the embryo. Although this qualitative RT-PCR analysis pro-
vided no indication of relative expression levels in each of the three distinct parts
of the seed, it served to independently confirm that the three genes are indeed ex-
pressed in seed tissues at 5DAP in the tissues predicted by the Seed Gene Network
expression database (Table T2).

To determine how the expression levels of these genes in seeds varied over
the time-course covered by our cDNA-AFLP experiment, we performed qRT-PCR
on seeds at different time-points 3, 4 and 5-6 days after manual pollination. The
existing data for whole-seed expression levels in Ws-0 (Seed Gene Network, [97])
predicted that expression of MS5-like and CDC48A would increase through devel-
opment (across globular, heart and elongated cotyledon stages). In our qRT-PCR
analysis, we found that this expression pattern was conserved in both Col-0 and
Ler-0 seeds (see online Fig. F1 A,B) indicating that for these genes there is little
effect of accession background on total expression levels. We also found increased
expression of PDE120 at the 5-6DAP time-point in both accessions, which differed
from the Ws-0 data (Seed Gene Network) (Fig. F1 A,B).

To preclude any differences on expression levels that could be due to a hybrid
background, we also measured expression of PDE120 within reciprocal Col-0×Ler-
0 crosses at the 3, 4 and 5-6DAP time-points and again found increased expression
through seed development (Fig. F1 C). This suggests that the expression patterns
of these three seed-expressed genes, which are similar in both parental acces-
sions, are not significantly altered in their F1 hybrid offspring, although transcript
levels of PDE120 might be slightly higher at 3DAP in the Col-0×Ler-0 cross direc-
tion. Because expression increases throughout development, and was, in contrast,
lower in pre-fertilized ovules (Fig. F1 D), this suggests that the expression we
have detected is due to de novo post-fertilisation transcription and not maternal
deposition of long-lived RNA transcripts from the central cell and/or egg cell to
the post-fertilisation endosperm and/or embryo, respectively. The maternally ex-
pressed seed genes ATCDC48, PDE120 and MS5-like are subject to gene-specific
imprinting in different genetic backgrounds

Genomic imprinting can be ‘gene-specific’ (where all alleles of the gene are im-
printed in the majority of genetic backgrounds) or ‘allele-specific’ (where only one
or a few alleles are imprinted in specific genetic backgrounds)[91]. To validate
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the three top-ranked genes as maternally expressed imprinted genes and to test
for gene- vs allele-specific imprinting, we identified SNPs in the coding regions
of each gene between the Col-0 and C24 accessions, and between the Col-0 and
Bur-0 accessions. We sequenced cDNA from reciprocal F1 hybrid seeds 4DAP to
detect any evidence of mono-allelic expression patterns consistent with regulation
of the genes by genomic imprinting. To confirm the effects in both of the genetic
backgrounds used for cDNA-AFLP, we also sequenced SNPs in cDNA from F1 hy-
brid seeds 4DAP of Ler-0×Col-0 crosses for PDE120 and MS5-like. In all cases,
we found that ATCDC48, PDE120 and MS5-like were maternally expressed in F1
hybrid seeds at 4DAP (see online Fig. F2; S3). While binary imprinted expression
(on/off) was observed for ATCDC48 and PDE120, MS5-like displayed preferen-
tial expression of the maternally inherited allele (Fig. F2). This indicates that
the imprinted status of these three genes, like their expression levels (Fig. F1),
is conserved across divergent accessions and that they likely represent cases of
gene-specific imprinting.

As a more general validation of the cDNA-AFLP approach to detect maternally
expressed seed genes, we chose six further genes predicted to be expressed in seed
tissues and sequenced SNPs in cDNA generated from Col-0×C24 and C24×Col-0
F1 hybrid seeds at 4DAṖIn all six cases, we validated maternal-specific expression.
We have therefore validated 9/52 = 17% of the genes identified as uniparentally
expressed by cDNA-AFLP as MEGs (Fig. S4).

For the top ranked imprinted gene ATCDC48, we also quantified the extent
of imprinting using Quantification of Allele Specific Expression by Pyrosequenc-
ing (QUASEP), a technique based on real-time pyrophosphate (PPi) detection[54,
95, 96], which allows precise relative quantification of SNP frequencies (Fig. F3).
QUASEP was performed on the maternally expressed imprinted gene ATCDC48 us-
ing cDNA collected from reciprocal Col-0×C24 F1 hybrid seeds 4DAP. The known
imprinted genes FWA and PHE1 were used as controls (see online Table T3),
which confirmed maternal-specific (binary) and paternal-specific (preferential)
expression patterns for these two imprinted genes, respectively[89, 99]. PHE2,
the non-imprinted endosperm-expressed homologue of PHE1, was used as a bial-
lelic control (Table T3). We found that in F1 hybrid seeds at 4DAP the relative
expression level from the maternally inherited allele of ATCDC48 was 100% for
Col-0×C24 and 80.5% for C24×Col-0 indicating that ATCDC48 displays maternal-
specific expression (Fig. F2). Although ATCDC48 is subject to expression in the
seed coat, it displays high expression levels in the chalazal endosperm (Table T2),
which is consistent with post-fertilisation transcription in the endosperm rather
than a scenario of deposition of maternal transcripts in the central cell. Thus, the
expression pattern of ATCDC48 is consistent with ATCDC48 being a novel mater-
nally expressed imprinted gene in the endosperm of A. thaliana seeds.

Both ATCDC48 and MS5-like show high levels of expression in the embryo
(Table T2). Biallelic expression at the heart stage of embryo development would
be expected for most embryo-expressed genes, following the earlier reactivation of
the paternal genome (from the globular embryo stage onwards) in A. thaliana[94].
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In the case of MS5-like, expression within the seed is largely confined to the em-
bryo and to the peripheral endosperm. It is likely that imprinting of MS5-like
occurs exclusively within the 4DAP endosperm whilst expression in the embryo
is biallelic, which could explain the partial peak of expression from the pater-
nal allele of this gene (Fig. F2). For ATCDC48 however, the detection of almost
exclusively maternal transcripts by sequencing and QUASEP could suggest that
ATCDC48 may undergo delayed reactivation of the paternally inherited allele in
the 4DAP embryo. Expression of imprinted genes in endosperm of seeds at later
developmental stages

In a recent study, Hsieh et al. (2011)[87] screened for novel imprinted genes
in 7-8DAP seed from reciprocal crosses between Col-0 and Ler-0Ṫhe differences
between the numbers of uniparental TDFs identified by cDNA-AFLP at 3, 4 and
5DAP (Table S2), with only 92 uniparental TDFs detected at multiple develop-
mental stages, suggests some temporal dynamism in the regulation of imprinting
in A. thaliana seeds which could potentially explain the lack of overlap between
our results and those of Hsieh et al.[87]. To test this, we investigated whether
the MEGs we had identified at 4DAP remained monoallelic or became biallelic at
later developmental stages. Our results indicate that in cDNA from 7DAP seed,
paternal alleles were more highly expressed than at 4DAP for all three of the
genes (Fig. F2). In the case of ATCDC48A, this rendered the expression fully bial-
lelic, whilst the maternal allele was still preferentially expressed for MS5-like and
PDE120 (Fig. F2). At the 7DAP time-point, while all three genes are expressed
from the embryo and endosperm, the relative and absolute contributions of each
tissue to total transcript levels in the 7DAP seed are not known. Hence, the in-
creased expression of the paternal allele observed in the 7DAP seed could arise
from loss of imprinting and/or a shift in the relative proportion of embryo versus
endosperm tissues amounts in the 7DAP seed (compared to the 4DAP seed). In
the latter scenario, the MEG could remain imprinted in the endosperm tissue, but
be masked by a biallelic expression signal from the more abundant embryo tissue
at 7DAPṪhe expression of both alleles would be likely to preclude their identi-
fication at the p < 0.001 cut-off used for most gene identifications by Hsieh et
al.[87]. We also considered the concordance between our dataset and a further
next-generation sequencing screen performed by Wolff et al.[86] (Fig. S5) and
found no overlap either with our screen or with that of Hsieh et al.[87] (see also
Discussion). We also found very little overlap (seven out of 100) between im-
printed genes detected by these two studies and differentially methylated regions
(DMRs) previously predicted by Gehring et al.[88]. This prompted us to consider
the possible existence of unidentified DMRs which could act as imprinting control
regions (ICRs) associated with our imprinted genes.

Identification of DMRs at the ATCDC48, PDE120 and MS5-like loci

While the imprinting control regions (ICRs) of imprinted genes in mammals often
overlap with differentially methylated regions (DMRs), the genome-wide distri-
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bution of DMRs means that only some of these are likely to be ICRs[100–103].
In plant genomes, ICRs that coincide with DMRs have been identified for the im-
printed genes FWA[89, 104], PHE1[93], and MPC[82]. As noted above, how-
ever, they have not been detected for many other imprinted genes, and induc-
tion of imprinting by many putative DMRs[75] remains unconfirmed (Fig. S5).
Using available methylation data for wild-type and DME endosperm[105], we
searched for DMRs in the genomic vicinity of the maternally expressed imprinted
loci ATCDC48, PDE120 and MS5-like.

We identified DMRs that could potentially act as ICRs for PDE120 and ATCDC48
(Fig. F4 A,B) by analysing expression data derived from endosperm of the wild
type and endosperm of seeds deficient for a maternal DMEX allele[105]. These
were retrieved from ArrayExpress and the percentage of methylation at cytosines
situated between the genes immediately upstream and downstream of the gene
bodies calculated. A DMR was located 432bp downstream of ATCDC48A contain-
ing 26 cytosines, of which 6 are hypermethylated in DME (Fig. F4 A). Four DMRs
were located upstream of PDE120 at distances of 8273bp (30 cytosines, 17 hyper-
methylated in DME), 5377bp (49 cytosines, 6 hypermethylated in DME), 4620bp
(46 cytosines, 13 hypermethylated in DME) and 3635bp (115 cytosines, 12 hy-
permethylated in DME) (Fig. F4 B). No obvious DME-dependent DMRs could be
identified in the genomic neighbourhood of the imprinted gene MS5-like (Fig. F4
C). We also analysed our entire portfolio of candidate imprinted genes (Table T2)
for potential DMRs in their vicinity. In contrast to our three top ranked imprinted
genes, we could only identify DMRs for two additional genes out of the other
49, namely At1g25370 (encoding a protein of unknown function containing a
DUF1639) and At2g32000 (encoding a DNA topoisomerase, type 1A) (Fig. S6).
Overall, these data suggest that the imprinted MS5-like gene is less likely to
be regulated via a methylation-dependent mechanism than the imprinted genes
ATCDC48 and PDE120.

Expression levels of imprinted genes ATCDC48 and PDE120 are

regulated by methylation pathways

In order to confirm whether DNA methylation changes are associated with al-
tered expression levels of our novel imprinted genes, we performed qRT-PCR on
cDNA derived from seedlings of met1-3 plants and found that there is a significant
aberrant induction of the imprinted MEGs ATCDC48A and PDE120 in met1-3 mu-
tants (Fig. F5 A). In concordance with the failure to detect a candidate DMR for
MS5-like, no such induction occurred for this gene (Fig. F5 A). Interestingly, seeds
generated by fertilising wild-type A. thaliana with pollen from met1-3 plants did
not cause a reactivation of the paternal allele of any of the three genes (Fig. F5
B). The maternal FIS-complex has also been recently shown to regulate imprint-
ing of certain MEGs[99, 106–108]. For the three imprinted loci of focus in this
study, however, we found that fertilising fis2 plants with wild-type pollen did not
lead to any loss of imprinting either (Fig. F5 B). Overall, this could imply that the
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proximal DMRs we have identified do not function as ICRs for these imprinted
loci. Alternatively, it may suggest the existence of a subset of imprinted MEGs
in which imprinted status and expression levels are regulated via a MET1- and
DME/FIS-independent pathway. The lack of response of these three genes to these
epigenetic modifier pathways offers a further explanation for the failure of Hsieh
et al.[87] to detect ATCDC48A, MS5-like and PDE120 as imprinted MEGs, as their
filtering approach compared numbers of sequence reads in wild-type crosses with
those crossed to such epigenetic modifier backgrounds.

4.3 Discussion

In comparison with current knowledge of genomic imprinting, i.e., regarding num-
ber of imprinted genes and regulatory mechanisms, in mammalian genomes, the
study of genomic imprinting in plants has been hindered by the low number of
imprinted genes that have been reported and studied to date. In this study, we
have sought to address this by identifying novel imprinted genes in the model
plant A. thaliana and considering our results in the light of screens performed by
others, and of current theories concerning the regulation of imprinting in plants.

In this study, we have conducted a genome-wide allele-specific expression
analysis screen using cDNA-AFLP to identify 93 maternally expressed TDFs from
a total of 4500 polymorphic allele-specific TDFs. Some of these may represent
candidate maternally expressed genes regulated by imprinting in the model plant
A. thaliana. To identify the genes represented by each TDF, we developed a novel
bioinformatics software program called GenFrag which can directly identify genes
in well annotated sequenced genomes, such as Col-0 accession, based only on
the size of the TDF and the selective nucleotides of the primers used to generate
the TDF. Although cDNA-AFLP is an early generation transcriptomics platform, as
a technique it has some distinct advantages over probe hybridisation based ap-
proaches such as microarrays. These advantages include: (a) applicability to any
species (including species with no genomic information), (b) low cost and re-
producibility, (c) small amounts of RNA template needed, (d) detection of lowly
expressed genes and (e) high specificity to distinguish closely related genes[109–
112]. One of the most time-consuming steps in the cDNA-AFLP technique is the
excision of TDFs from gels so that the TDF can be sequenced (typically following
amplification and/or subcloning into a plasmid). To increase the throughput of
gene identification in cDNA-AFLP experiments involving species with sequenced
and well annotated genomes (such as A. thaliana), we developed the GenFrag
bioinformatics software program.

There have been previous efforts to develop bioinformatic approaches to im-
prove the efficiency of (cDNA-)AFLP techniques. The large amount of DNA se-
quence data available for several species has been used for in silico predictions of
virtual transcript profiles. Tailor-made software, such as AFLPinSilico[113] and
GenEST (Chapter 3, [114, 115]), allow high-throughput identification of AFLP
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and cDNA-AFLP TDFs for A. thaliana and Globodera rostochiensis, respectively.
These in silico approaches were also developed to enable experiment simulations,
decreasing the time needed for AFLP optimisation, and the number of samples
which need to be processed[113–115]. The GenFrag program developed in this
study is designed to facilitate high throughput direct identification of genes from
cDNA-AFLP experiments with fully sequenced well-annotated genomes such as
that of A. thaliana. We have made the GenFrag program freely available to the
research community (see also Chapter 8).

In our study to identify novel imprinted genes in A. thaliana, we applied
the GenFrag program to the 93 TDFs displaying a maternal-specific expression
pattern, and could thereby identify 52 maternally expressed genes (MEGs) in
A. thaliana (Table T1). By filtering for expression within seeds and enrichment
within endosperm tissues, we ranked 18 MEGs on the basis of the absolute differ-
ence of their expression levels between the seed coat and the endosperm (Table T2).
The identification of MS5-like and PDE120 was also supported by alternative ap-
proaches, i.e., comparison with the dataset of Day et al. ([98]; Table T1) and
ranking by ratio of Endosperm/Seed Coat expression (Table S5). For any given
gene expressed in the developing seed, it is difficult to separate both the abso-
lute and relative contributions of the different seed tissues, especially given their
differing ploidies (triploid in the endosperm, diploid maternal in the seed coat,
diploid hybrid in the embryo) and the differences in cellular/nuclear abundance
for the different tissues (seed coat, endosperm, embryo). As the contributions to
total transcription are normalised against units of RNA no direct determination of
the absolute contributions from each seed tissue is possible. We can demonstrate,
however, that biallelic expression in the seed is detectable at the developmen-
tal stage we sample through use of a biallelic endosperm expressed gene (PHE2)
as a positive control (Table T3). Our approach does have the advantage of al-
lowing a focus on highly expressed genes, whose transcripts in seeds 4DAP are
least likely to have been maternally deposited in the central cell prior to fertil-
isation. The endosperm is transcriptionally active immediately following fertil-
ization, such that maternally deposited, long-lived RNAs are unlikely to play an
important role[96] or be found at high levels in endosperm tissues 4DAPṪhis con-
trasts with the early development of the embryo, where expression in the embryo
is maternally-biased (88% of transcripts at the 2-4 cell stage, for example), with
paternal alleles subsequently becoming reactivated at the later globular stages
of embryo development[94]. Hence, the top ranked endosperm-enriched genes
identified in our study can be considered to be the most likely imprinted genes
(Table T2).

A striking finding in our study is that there is little overlap in terms of genes
detected between all of the different screens for imprinted genes in A. thaliana

conducted to date, including our study (Fig. S5). Possible explanations for such
lack of overlap can include (a) use of different accessions (genetic backgrounds);
(b) use of samples from different developmental stages (where the relative abun-
dance and contribution of embryo versus endosperm tissues will differ); (c) use
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of different filtering criteria; (d) use of different experimental approaches for iso-
lation of seed, embryo and endosperm tissues and RNA from each tissue; and (e)
use of different transcriptome profiling platforms and bioinformatic pipelines. In
this study we demonstrate that the imprinted genes we have identified are unlikely
to be detected at the later developmental stage used by Hsieh et al.[87], whilst
the lack of overlap between the next-generation sequencing approaches of Hsieh
et al. (2011) and Wolff et al.[86] is likely contributed to the analysis of differ-
ent time points 7-8DAP versus 4DAP and different accessions (Col-0×Ler-0 versus
Col-0×Bur-0). There is some overlap (7 genes) between the RNA sequencing ap-
proach of[86] (Col-0×Bur-0 crosses) and a screen for genes regulated by DMRs
in Col-gl X Ler-0 crosses[88] suggesting that DMRs may control gene-specific im-
printing for a limited number of loci, and/or that their ability to do so may vary
according to different genetic backgrounds. Although it seems likely that all these
approaches have identified imprinted genes it would seem that detection of im-
printed loci (gene-specific or allele-specific) may be dependent upon accessions
(genetic backgrounds), developmental stages sampled and experimental method-
ology. These factors may introduce significant variation between the results of
different studies. Given the increasing numbers of allele-specific expression ef-
fects being detected in plants, it may be opportune for the imprinting research
community to develop some common standards for the definition and validation
of imprinted genes in flowering plants (see also[75]).

For the top three ranked genes ATCDC48, PDE120 and MS5-like, using LCM,
we could independently detect expression of these genes in 4DAP seed tissues
(seed coat, endosperm and embryo) (Fig. S2). For ATCDC48 and PDE120 we also
confirmed that expression was low in pre-fertilized ovules but increased during the
course of seed development (Fig. F1A, B), which is consistent with these genes be-
ing subject to post-fertilisation expression in the developing seed (i.e., not mater-
nally deposited). We confirmed that all three of these endosperm-expressed genes
are maternally expressed in 4DAP reciprocal F1 hybrid seeds from different acces-
sions and hence represent novel cases of gene-specific imprinting in A. thaliana

(Fig. F2 and Fig. F3). While ATCDC48 and PDE120 are subject to binary im-
printed expression, MS5-like shows a preferential maternal expression pattern of
imprinting[73, 84], as some paternal expression is also detected (Fig. F2). Al-
though the expression levels of MS5-like were similar in Col-0 and Ler-0 (Fig. F1),
and in the pattern determined for Ws-0 (Seed Genes Network), the extent of im-
printing did vary, with the C24 and Bur-0 alleles displaying a greater extent of
imprinting when paternally inherited.

ICRs of imprinted genes often overlap with DMRs. Hence, we considered that
our top-ranked imprinted genes ATCDC48, PDE120 and MS5-like might contain
candidate DMRs in their genomic vicinity and that, if so, these could be candidate
ICRs. We could identify DMRs upstream of PDE120 and one DMR downstream
of ATCDC48 that could potentially act as ICRs (Fig. F4 A and B). The difference
in methylation between wild-type and DME endosperm, however, did not reveal
any DMR for MS5-like (Fig. F4 C). Expression of DME in the central cell leads
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to hypomethylation of the maternal genome. The methylation data used[105],
however, represent the global methylation status of both the maternal and pa-
ternal genomes of the endosperm. This could explain why no DMR could be
identified for MS5-like. Control of imprinting at the MS5-like locus may be in-
dependent of DNA methylation, or be regulated by a DMR far distal to the gene.
Methylation-independent imprinting has been observed for some imprinted loci
in mammals[116] and histone methylation by Polycomb group proteins has been
shown to regulate several imprinted genes in plants[99, 106, 117]. Our results
indicate that lack of MET1 in the male gamete has no effect on imprinting of
ATCDC48, PDE120 and MS5-like in the developing seed. In contrast, we find that
lack of MET1 leads to overexpression of ATCDC48 and PDE120 in vegetative leaf
tissues. No effects of lack of MET1 in vegetative tissues were observed for MS5-
like. Taking into consideration the recent findings of[86] and previous reports
showing that PcG complexes regulate imprinting[99, 106–108], we also tested for
possible effects of the maternal FIS-complex on regulation of the three maternally
expressed imprinted genes and found that fertilising fis2 plants with wild-type
pollen did not lead to any loss of imprinting. Hence, alternative epigenetic path-
ways are likely to regulate imprinting of MS5-like. Such regulation can neither
be ruled out for ATCDC48 and PDE120. Further characterization of the imprinted
ATCDC48, PDE120 and MS5-like loci will provide opportunities for increasing our
understanding of the epigenetic mechanisms involved in the regulation of genomic
imprinting in angiosperms.

The maternally expressed imprinted gene, ATCDC48A, is a homohexameric
AAA(+) ATPase chaperone implicated in cell cycle control and cell proliferation.
CDC48/p97 represents a highly conserved protein which plays a role as an ini-
tiation factor for DNA replication in many species[118] and has been shown to
be essential in a wide range of multicellular and unicellular organisms [119].
In plants, the CDC48A protein has been shown to physically interact with the SO-
MATIC EMBRYOGENESIS RECEPTOR LIKE KINASE 1 (SERK1) protein[120, 121].
The A. thaliana genome contains three CDC48 loci, ATCDC48A (At3g09840),
ATCDC48B (At3g53230) and ATCDC48C (At5g03340). ATCDC48A can function-
ally complement CDC48 mutants of Saccharomyces cerevisiae[118], and loss of
the PUX1 negative regulator of ATCDC48 leads to accelerated plant growth due
to increased cell division and expansion[122]. Additional studies in A. thaliana

conducted with T-DNA knockout lines of AtCDC48A have demonstrated that ho-
mozygous null seedlings are viable until 5 days old but die shortly thereafter. It
was also demonstrated that null Atcdc48a alleles have a drastically reduced trans-
mission efficiency through the male gametophyte (i.e., ATCDC48A is essential for
normal pollen germination and tube elongation)[119].

Our results indicate that ATCDC48A is maternally expressed and subject to
genomic imprinting in the developing seed (endosperm) (Fig. F1, Fig. F2 and
Fig. F3). Although the imprinting status of the maize homolog of ATCDC48A
has not yet been determined, it is possible that imprinting of the maize homolog
of ATCDC48A (or other cell-cycle genes) could be responsible for the dosage ef-
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fects on cell-cycle progression observed in endosperm from interploidy crosses of
maize[123]. While a clear role for ATCDC48 in the control of DNA replication in
plant cells has not yet been established, our findings that ATCDC48 is a mater-
nally expressed imprinted gene in developing endosperm resonates with a role in
controlling proliferation as suggested for imprinted genes by the parental conflict
theory[124].

Less is known from a functional perspective regarding the other two imprinted
genes identified in this study. The MS5-like maternally expressed imprinted gene
has sequence similarity to Male Sterile 5 (MS5), a gene that has been shown to
be essential for male meiosis in A. thaliana[125]. MS5-like also displays sequence
similarity with the sulphur deficiency-induced gene AtSDI1[126].

The maternally expressed imprinted gene PDE120 is annotated as a pigment
defective embryo (pde) mutant in the SeedGenes database[127, 128]. The nu-
clear encoded PDE120 locus encodes the TIC40 protein which is a component
of the protein import apparatus of the inner envelope of the chloroplast[129].
The identification of a maternally expressed imprinted nuclear gene which en-
codes a protein product targeted to the maternally-inherited chloroplasts could
be suggestive of selection for imprinting at nuclear loci where strong control by
maternally-inherited alleles of chloroplast function is essential[130].

4.4 Conclusion

In this study we have identified 52 maternally expressed genes in siliques contain-
ing reciprocal F1 hybrid seeds. We have developed and employed a novel bioin-
formatics tool called GenFrag to facilitate higher-throughput analysis of cDNA-
AFLP experiments on organisms with well-annotated sequenced genomes. We
ranked the 52 maternally expressed genes according to their relative expression
levels in the endosperm versus seed coat tissues at the globular embryo stage and
chose the three top-ranked imprinted candidate genes for further investigation.
We confirmed expression of the three candidates in 4DAP seeds by LCM RT-PCR
and further confirmed maternal-specific expression of the three genes in 4DAP
F1 hybrid seeds generated with different A. thaliana accessions. Taken together,
our results indicate that ATCDC48 is a maternally expressed imprinted gene in
the developing A. thaliana seed, and is likely imprinted in the endosperm and
perhaps the embryo. Confirmation of imprinted maternal expression was also
demonstrated for the other two top-ranked genes PDE120 and MS5-like. Where
present, DMRs for each of the three imprinted genes and the 18 maternally ex-
pressed genes in Table T2 were identified and posited as putative ICRs. Analysis of
the imprinted ATCDC48, PDE120 and MS5-like loci with the candidate modifiers
met1-3 and fis2 indicates that the regulation of imprinting at these three genes is
independent of DNA methylation and the FIS-complex. Overall, our study identi-
fies novel maternally expressed genes in A. thaliana seed and validates three genes
(ATCDC48, PDE120 and MS5-like) as novel maternally expressed imprinted genes

http://www.biomedcentral.com/1471-2229/11/113/table/T2
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in A. thaliana seed. Further analysis of the genes identified here and by others
will accelerate efforts to increase our understanding of the epigenetic regulatory
mechanisms and evolution of imprinted genes in flowering plants.

4.5 Methods

Plant growth and generation of cDNA

A. thaliana L. of accessions Col-0, Ler-0 C24 and Bur-0 were grown on 8 parts
Westland multipurpose compost (Dungannon, N. Ireland): 1 part perlite: 1 part
vermiculite under the following conditions: 200 µmol m-2 s-1 at 21◦C/18◦C and a
16:8 hr light:dark cycle. F1 hybrid seeds were generated via reciprocal crosses of
Col-0 and Ler-0 Bur-0 and C24 accessions[87, 88]. Plants were manually emascu-
lated before anthesis and reciprocally crossed by hand under a Leica MZ6 dissect-
ing microscope (Leica Microsystems CMS GmbH, Ernst-Leitz-StraÃČÂ§e 17-37,
Wetzlar, D-35578, Germany) using Dumostar No. 5 tweezers (Dumont Biology,
Switzerland). Siliques and seeds were harvested at the time points described.
mRNA was extracted in combination with on-column DNase treatment using an
RNase-free DNase kit (Qiagen, USA). 5 µg of total RNA was hybridized to biotiny-
lated oligo dT which binds the streptavidin-coated PCR tube wall (mRNA Capture
Kit, Roche) and cDNA synthesis performed (Quantitect Reverse Transcriptase kit,
Qiagen). Quality control was performed on the Agilent 2100 Bioanalyzer (Agi-
lent Technologies Schweiz AG, Basel, Switzerland). Samples were stored at -80◦C
prior to use.

cDNA-AFLP

cDNA from siliques was generated as described, digested with restriction enzymes
BstYI and MseI and ligated with adapters complementary to the restriction site
of BstYI and MseI. The ligated fragments were selectively amplified a first time
using MseI primer and BstYI primers. The amplified fragments were diluted
1:20 and amplified a second time using 128 primer combinations (8 BstYI pos-
sible primers×16 MseI possible primers = 128 combinations). Products were
run on polyacrylamide gels and visualised with the GelDoc-ItTM Imaging Sys-
tem (Ultra-Violet Products Ltd., Cambridge, UK). Samples were processed using
the 16-capillary 3130×l Genetic Analyser (Applied Biosystems Inc.). 0.5 µl reac-
tion products were mixed with 0.4 µl Internal Lane Standard 600 ROXTM size
standard (Promega, WI, USA) or GeneScanTM 500 ROXTM size standard (Ap-
plied Biosystems, UK), in 9 µl Hi-Di Formamide (Applied Biosystems, UK). Frag-
ments were analysed in a multiplex run and visualised with BstYI+C and BstYI+T
primers, respectively labelled with the fluorescent dyes JOE and 6-FAM. Samples
were analysed using the GeneMapper v3.7 software, which assigned each TDF an
allelic label, or bin, based on its size as determined by comparison to the ILS600-C
marker (Promega). Bin assignment permitted a variation of ±0.5bp in the deter-
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mined size. For cDNA-AFLP samples generated with a given primer combination,
the two parental lines, Col-0×Col-0 and Ler-0×Ler-0 and the two reciprocal hy-
brids, Col-0×Ler-0 and Ler-0×Col-0 were analysed together within a run to allow
identification of polymorphic and differentially expressed TDFs. Fragment-sizing
and allele-calling parameters for GeneMapper were normalized to the data us-
ing the default Sum-of-Signal method; alleles common between samples were not
deleted. This generated electropherograms matching detected peaks with their
allele calls, from which genotypes were derived.

Development of GenFrag program & software

We downloaded the two datasets containing the available full-length A. thaliana

cDNAs from the TIGR v.4.0 (released March 2005) and TAIR databases respec-
tively. A. thaliana ESTs were downloaded from the plantgdb.org website and
a dataset of alternative splicing variants from the TIGR database (release June
2003).

GenFrag expands on the earlier GenEst package (Chapter 3, [115]) by pro-
viding a web interface. In addition, GenFrag provides full named support for
all known restriction enzymes as listed in REBASE[131], additional support for
primer combinations, their size corrections, and a listing of mismatched fragment
sizes. GenFrag also allows a subset of experimental allelic fragments to be selected
for analysis on the basis of the potential interest of genes in a candidate sequence
list, i.e., rather than sequencing all fragments. The GenFrag software is written
in Ruby, and can be run on all platforms supported by Ruby, including Windows,
OSX, Linux and the Java virtual machine. The restriction enzyme module is avail-
able as part of the Open Bioinformatics Foundation BioRuby toolkit(Chapter 7,
[132]) and includes all known restriction enzymes by name. Genomic information
can be read in any BioRuby supported format, including FASTA. The web interface
is written in Ruby on Rails, and SQLite is used for caching searches. GenFrag can
be used in two ways: through a public web interface and as a software module in
a computing pipeline.

Expression analysis

Microarray data of gene expression levels and absence calls from Seedgenenetwork
(Harada-Goldberg Arabidopsis Laser Capture Microdissection Gene Chip Data Set)
were downloaded from Gene Expression Omnibus [133], accession numbers
GSM284397 and GSM284398 (seed coat), GSM284390 and GSM284391 (periph-
eral endosperm), GSM284388 and GSM284389 (micropylar endosperm),
GSM284392, GSM284393 and GSM284394 (chalazal endosperm) and
GSM284384 and GSM284385 (embryo). The developmental stage sampled by
these experiments is the globular stage of embryo development. The mean ex-
pression value of all replicates was used. The following genes did not have
probes: At1g12420, At1g55320, At2g45315, At3g21465, At4g01000, At4g25315,

http://www.plantgdb.org/
http://seedgenenetwork.net/
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At5g04895, At5g35737 and At5g40240. Probes for At4g37530 and At1g14880
also matched another gene so were omitted from the analysis due to the possibil-
ity of ambiguous results.

Laser capture microdissection (LCM)

Siliques of emasculated and hand-crossed plants of accession Ler-0 were collected
and directly transferred to an ASP200 embedding machine (Leica Microsystems
GmbH, Wetzlar, Germany) and dehydrated at room temperature in a graded etha-
nol series (1 hour at 70%, 3×1 hour at 90%, 3×1 hour at 99.98%) and in xylol
(2×1 hour and 1×75 minutes) which was substituted by Paraplast X-tra embed-
ding media (Roth AG, Arlesheim, Switzerland) at 56◦C (2 × 1 hour, 1×3 hours),
poured into paraffin blocks and stored at 4◦C. Paraffin blocks were cut to 10 µm
thin sections on an RM2145 microtome (Leica Microsystems GmbH, Wetzlar, Ger-
many) and mounted on nuclease-free membranes held in metal frame slides in
methanol, dried overnight at 42◦C and deparaffinised in xylol at 56◦C (3×10 min-
utes). Microdissection was performed on thin sections of siliques using the MMI
CellCut Plus laser capture microscope (MMI Molecular Machines and Industries
AG, Glattburg, Switzerland) to generate circa 150 cuts (1500 cells) per sample.
Total RNA was extracted from pooled samples using the PicoPure RNA isolation kit
(Arcturus Engineering, Mountain View, CA 94043-4019, USA) and single-stranded
cDNA generated using the NuGEN WT-Ovation Pico RNA Amplification System
(NuGEN Technologies Inc., Brockville, Canada).

RT-PCR Primers for the three top ranked candidate genes were designed us-
ing the Universal ProbeLibrary Assay Design Center (Roche, Switzerland) Iden-
tical PCR conditions were used for all genes, with Tm of 59◦C and 40 amplifi-
cation cycles. Two replicates were performed (data not shown), one representa-
tive result is shown for the three top ranked candidate imprinted genes analysed
(Fig. S2). Quantitative RT-PCR was performed on biological triplicate samples
using SYBR Green master mix (ABI) and run on a C1000 Thermal CycLer in-
corporating the CFX Real-Time System. Details of all primers are available on
request. DNA sequencing & QUASEP Exonic SNPs between A. thaliana acces-
sions were identified at TAIR[134] (PERL0437780 for ATCDC48, PERL0895299
for PDE120, PERL0626585 for MS5-like and Exon 2, 2345566 (C/T) for PHE1).
cDNA from seeds of reciprocal Col-0×C24 and Col-0×Ler-0 crosses was gener-
ated as described. Sequences surrounding the SNPs were amplified by PCR per-
formed under standard conditions with GoTaq (Invitrogen) and sequenced by
GATC. Quantification of maternally- and paternally-derived SNPs was performed
via QUASEP (Quantification of Allele-Specific Expression by Pyrosequencing). RT-
PCR was performed with Quantitect RT kits according to manufacturer’s instruc-
tions. PCR was performed on cDNA using one biotinylated primer per pair using
sequences adapted from assays designed by PSQ assay software (sequences avail-
able on request). Mean values of parental expression were calculated from at least

http://www.biomedcentral.com/1471-2229/11/113/suppl/S7
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three replicates. Genomic DNA and the genes FWA, PHE1 and PHE2 were used as
controls.

Identification of DMRs

High-throughput bisulfite sequencing data of A. thaliana wild-type endosperm and
endosperm from seeds deficient for a maternal DME allele[105] were retrieved
from ArrayExpress (accession number E-GEOD-15922), corresponding to the TAIR
version 8. The percentage of methylation at cytosines situated between the genes
immediately upstream and downstream of our candidates was calculated. Re-
gions that showed a difference between DME and wild-type endosperm cytosine
methylation percentages were identified as DMRs and potential ICRs.

Online figures and tables

Figures and tables can be found online at
http://www.biomedcentral.com/1471-2229/11/113/additional.
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5
R/qtl: high throughput Multiple QTL
Mapping

R/qtl is free and powerful software for mapping and exploring quantitative trait
loci (QTL). R/qtl provides a fully comprehensive range of methods for a wide range
of experimental cross types. We recently added Multiple QTL Mapping (MQM) to
R/qtl. MQM adds higher statistical power to detect and disentangle the effects
of multiple linked and unlinked QTL compared to many other methods. MQM
for R/qtl adds many new features including improved handling of missing data,
analysis of 10,000s of molecular traits, permutation for determining significance
thresholds for QTL and QTL hot spots, and visualizations for cis-trans and QTL
interaction effects. MQM for R/qtl is the first free and open source implementation
of MQM, that is multi-platform, scalable and suitable for automated procedures and
large genetical genomics datasets.

R/qtl is free and open source multi-platform software for the statistical lan-
guage R, and is made available under the GPLv3 license. R/qtl can be installed
from http://www.rqtl.org/.

5.1 Introduction

R/qtl is an extensible, interactive environment for the mapping of quantitative
trait loci (QTL, see also Chapter 6) in experimental crosses. It is implemented as
an add-on package for the freely available and widely used statistical language/-

Published as ‘R/qtl: high throughput Multiple QTL Mapping’ by Danny Arends†, Pjotr Prins†,
Ritsert C. Jansen and Karl W. Broman

Bioinformatics (2010)
26 (23), 2990-2992. 10.1093/bioinformatics/btq565
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software R [135]. Since its introduction, R/qtl[136] has become a reference im-
plementation with an extensive guide on QTL mapping [137]. R/qtl development
is continuous, with input from multiple collaborators and users. We have intro-
duced a full testing environment with regression testing, updated the license to
the GPL version 3, and hosted the source code repository on Github, which gives
R/qtl software development high visibility and transparency. The development
of R/qtl reflects trends in quantitative genetics, in particular the use of larger
datasets, larger calculations and requirements for controlling the false discovery
rate (FDR). These developments are partly driven by high-throughput genetical
genomics—the name coined for the study of gene expression QTL (eQTL)[8],
metabolite QTL (mQTL), protein QTL (pQTL).

Multiple QTL Mapping (MQM) belongs to a family of QTL mapping meth-
ods, that include Haley-Knott regression[140] and composite interval mapping
CIM[141]. MQM combines the strengths of generalized linear model regression
with those of interval mapping[142, 143] . Recent developments in QTL mapping
include Bayesian modelling of multiple QTL, e.g., R/qtlbim package[144, 145].
Bayesian modelling, however, is computationally expensive, and arguably has lit-
tle additional power when applied to high density maps, and (nearly) complete
genotype data[146]. Still, we intend to combine the strengths of the different
methods in future versions of R/qtl.

MQM provides a practical, relevant and sensitive approach for mapping QTL
in experimental populations. The theoretical framework of MQM was introduced
and explored by one of us[147] and explained in the ‘Handbook of Statistical
Genetics’[146]. MQM has one known commercial implementation[148], which
has been used effectively in practical research, resulting in hundreds of papers,
e.g., in mouse, plant, and fish, respectively[149–151]. Now, with MQM for R/qtl,
we present the first free and open source implementation of MQM, that is multi-
platform, scalable and suitable for automated procedures and large datasets.

5.2 Features

MQM for R/qtl is an automated three-stage procedure in which, in the first stage,
missing genotype data is ‘augmented’. In other words, rather than guessing one
likely genotype, multiple genotypes are modelled with their estimated probabil-
ities. In the second stage, important marker cofactors are selected by multiple
regression and backward elimination. In the third stage, a QTL is moved along
the chromosomes using these pre-selected markers as cofactors. QTL are interval-
mapped using the most informative model through maximum likelihood. A re-
fined and automated procedure for cases with large numbers of marker cofactors
is included. The method lets users test different QTL models by elimination of
non-significant cofactors. MQM for R/qtl brings the following advantages to QTL
mapping: (1) Higher power, as long as the QTL explain a reasonable amount of
variation; (2) Protection against over-fitting, because MQM fixes the residual vari-
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ance from the full model, which allows the use of more cofactors than may be
used in, for example, composite interval mapping (CIM)[141]; (3) Prevention of
ghost QTL detection (between two QTL in coupling phase); and (4) Detection of
negating QTL (QTL in repulsion phase).

MQM for R/qtl brings additional advantages to genetical genomics data sets
with hundreds to millions of traits: (5) A pragmatic permutation strategy for con-
trolling the FDR and prevention of locating false QTL hot spots, as discussed in
Breitling et al. (2008)[152]. Marker data is permuted, while keeping the corre-
lation structure in the trait data; (6) High-performance computing by scaling on
multi-CPU computers, as well as clustered computers, by calculating phenotypes
in parallel, through the Message Passing Interface (MPI) of the SNOW package
for R[153]; (7) Visualizations for exploring interactions in a genomic circle plot
(Fig. 5.1a) and cis- and trans-regulation (Fig. 5.1b).

A 40-page tutorial for MQM explores, both the automated procedure, and the
manual procedure of adding and removing cofactors, in an Arabidopsis thaliana

recombinant inbred line (RIL) metabolite (mQTL) dataset with 24 metabolites as
phenotypes[138]. In addition, the tutorial visually explains the effects of data
augmentation, cofactor selection, model selection, and tweaking of input param-
eters, such as cofactor significance (Fig. 5.1c). Genetic interactions (epistasis) are
explored through effect plots, and an example is given of parallel computation.
The tutorial is part of the software distribution of R/qtl and is available online.

5.3 Conclusion

MQM for R/qtl is a significant addition to the QTL mapper’s toolbox. R/qtl pro-
vides the user with the most frequently used statistical analysis methods: single-
marker analysis, interval mapping, Haley-Knott regression[140], CIM[141] and
MQM[147]. MQM has improved handling of missing data and allows more pow-
erful and precise detection of QTL, compared to many other methods. Not only is
this new implementation of MQM available in the statistical R environment, which
allows scripting for pipe-lined setups, it is also highly scalable through parallelisa-
tion and paves the way for high-throughput QTL analysis. With MQM, R/qtl is a
free and high-performance comprehensive QTL mapping toolbox for the analysis
of experimental populations. R/qtl now includes permutation strategies for de-
termining thresholds of significance relevant for QTL and QTL hot spots; the first
step towards causal inference and network analysis.
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Figure 5.1: Three examples of
MQM plots included in R/qtl.
(a) Circular genome mQTL in-
teraction plot of the A. thaliana

glucosinolate pathway, metabo-
lite data 2,000 mass peaks in
162 RILs of Arabidopsis gen-
erated from a cross between
the distant accessions Lands-
berg erecta (Ler-0) and Cape
Verde Islands (Cvi). These
individuals have been geno-
typed at 117 markers which are
nearly evenly distributed along
the genome[138]. LOD scores
shown at marker positions are
scaled (grey circles), with se-
lected cofactors (red circles)
and epistasis between multi-
ple cofactors (green and blue
splines). (b) Cis-trans plot
of significant eQTL (squares)
showing cis acting QTL (diago-
nal) and a trans-band (vertical,
chromosome 5) in Caenorhabdi-

tis elegans gene expression data
of 80 N2 and CB4856 RILs, hy-
bridized on 40 two-color mi-
croarrays with 23,232 pheno-
types (probes)[139]. (c) Com-
parison of genome-wide mQTL
detection in A. thaliana when
adding 0, 1 and 2 cofactors
manually to the model, with
dataset as in (a)[138]. LOD
score increases when cofactors
are added manually to the
model. Here, adding more than
two cofactors does not improve
the model any further (as dis-
cussed in the online MQM tuto-
rial).



6
Genetical Genomics for Evolutionary
Studies

Genetical genomics combines high-throughput genomic data with genetic analysis.
In this chapter, we review and discuss application of genetical genomics for evolu-
tionary studies, where new high-throughput molecular technologies are combined
with mapping quantitative trait loci (QTL) on the genome in segregating popula-
tions.

The recent explosion of high-throughput data — measuring thousands of pro-
teins and metabolites, deep sequencing, chromatin, and methyl-DNA immunopre-
cipitation — allows the study of the genetic variation underlying quantitative phe-
notypes, together termed xQTL. At the same time, mining information is not getting
easier. To deal with the sheer amount of information, powerful statistical tools are
needed to analyze multidimensional relationships. In the context of evolutionary
computational biology, a well designed experiment may help dissect a complex evo-
lutionary trait using proven statistical methods for associating phenotypical varia-
tion with genomic locations.

Evolutionary expression QTL (eQTL) studies of the last years focus on gene
expression adaptations, mapping the gene expression landscape, and, tentatively,
eQTL networks. Here, we discuss the possibility of introducing an evolutionary
prior, in the form of gene families displaying evidence of positive selection, and us-
ing that in the context of an eQTL experiment for elucidating host-pathogen protein-
protein interactions. Through the example of an experimental design, we discuss
the choice of xQTL platform, analysis methods, and scope of results. The resulting
eQTL can be matched, resulting in putative interacting genes and their regulators.
In addition, a prior may help distinguish QTL causality from reactivity, or indepen-
dence of traits, by creating QTL networks.

Published as ‘Genetical Genomics for Evolutionary Studies’ by Pjotr Prins, Geert M. Smant,
Ritsert C. Jansen
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6.1 Introduction

Genetics, as it is used here, concerns the study of quantitative, or complex, traits. A
quantitative trait is influenced by multiple factors, including gene interactions and
environmental factors, and typically does not lead to discrete phenotypes. Many
traits of interest, such as milk production in cattle, response to fertilizer in crops
and most human, animal, and plant diseases, are complex traits. Associating, or
linking, complex traits with certain positions on the genome are achieved through
the mapping of the so called quantitative trait loci (QTL, see also Chapter 5).

Mapping QTL in experimental populations is possible when linkage and/or as-
sociation information is available. When we have a population of individuals with
known genotypes, it may be possible to link a phenotype with a certain genotype.
To genotype individuals, first marker maps are created. A marker is a known ge-
nomic location, where the genotype of an individual can be determined. In the
early days, the genotype was determined with visible chromosome features, later
with Restriction Fragment Length Polymorphism (RFLP), and Amplified Fragment
Length Polymorphism (AFLP, see also Chapter 3 and Chapter 4, [154]), and, these
days increasingly, with SNP/haplotype data(see also Chapter 12, [155]). Say, all
individuals with genotype A, at a marker location somewhere on the genome, are
susceptible to a disease and all other individuals with genotype B are not, there
is linkage/association, or a QTL. If it is clear cut, it may even be a single gene
effect. When it is not a single gene effect, significance statistics are required to
link phenotype with genotype.

It is also possible to map QTL in natural populations through linkage disequi-
librium (LD). Linkage disequilibrium occurs when certain stretches of the genome
(haplotypes) show nonrandom behavior, based on allele frequencies and recom-
bination. Associating haplotype frequencies with phenotypes potentially renders
QTL. Kim et al. describe the genome-wide pattern of LD in a sample of 19 Ara-

bidopsis thaliana accessions using SNP microarrays[156]. LD is tested, for example
by Dixon et al., to globally map the effect of polymorphism on gene expression in
400 children from families recruited through a proband with asthma[157].

The use of terms ‘association’ and ‘linkage’ can be confusing, even in literature.
Here, we use association with haplotypes in natural populations of unrelated in-
dividuals, and linkage with markers in experimental populations. Note that in
some association studies, such as Dixon et al., individuals are related, i.e., some
within-family linkage information is available for 400 children from 206 families.

Statistical power can be increased by using experimental crosses instead of nat-
ural populations. For example, recombinant inbred lines (RILs) are homozygous
at every genomic location, simplifying genetics and increasing statistical power at
the same time. For model organisms, such as A. thaliana, Caenorhabditis elegans,
Drosophila melanogaster and Mus musculus, genotyped experimental crosses are
available; i.e., for these species it is not always necessary to generate a new cross.
Compared with natural populations, experimental crosses may introduce some
bias, for example with recessive lethal alleles. Also, these individuals are rarely
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100% homozygous. Finally, populations that have been maintained for some time
will likely contain genotyping ‘errors’, mutations over generations and there is evi-
dence that 4% line swaps can be expected due to human error[158]. Data analysis
should account for such sources of bias.

Genetical genomics combines genetics with high-throughput molecular tech-
nologies. In 2001, Jansen and Nap coined the term Genetical Genomics[8] for
mapping QTL in segregating populations with gene expression as a phenotype.
Combining gene expression, as measured by microarray probes, with linkage leads
to gene expression QTL (eQTL). Such eQTL studies elucidate how genotypic vari-
ation underlies, for example morphological phenotypes, by using gene expression
levels as intermediate molecular phenotypes. In other words, the expression level
as measured by a microarray probe, or probe set, is treated as a phenotype, i.e., a
gene expression trait. This phenotype is associated with the genome in the form
of one or more eQTL. With microarrays, the probe represents a known gene, and
therefore genomic location. Therefore, expression phenotype and probe connect
two types of genomic information: eQTL location(s) and gene location. It is usu-
ally assumed that eQTL loci represent cis- or trans-transcription regulators of the
target gene[159]. If the eQTL is located close to the gene on the genome, the
eQTL may point to a cis-regulator. If the eQTL is located far from the gene on
the genome, the eQTL may point to a trans-regulator of a single gene or even
trans-bands for multiple regulated genes (Chapter 5, [139]).

In a similar fashion, abundance of thousands of proteins and metabolites can
be measured to map protein QTL (pQTL) and metabolite QTL (mQTL). Deep se-
quencing, chromatin, and methyl-DNA immunoprecipitation are just a few of the
latest technologies that add to the arsenal of tools available for the study of the
genetic variation underlying quantitative phenotypes. Together, eQTL, mQTL, and
pQTL are referred to as xQTL. Different xQTL appear to confirm each other, for
example, with the A. thaliana glucosinolate pathway[160]. Such causal inference
can lead to dissecting pathways and gene networks which is an active field of
research.

Evolutionary xQTL studies

From the perspective of evolutionary biology, genetical genomics has been applied
to elucidate evolutionary adaptations of transcript regulation. For example, Fraser
et al. introduced a test for lineage-specific selection and analyzed the directional-
ity of microarray eQTL for 112 haploid segregants of a genetic cross between two
strains of the budding yeast Saccharomyces cerevisiae; reanalyising the two-color
cDNA microarray data of Brem and Kruglyak[161]. They found that hundreds
of gene expression levels have been subject to lineage-specific selection. Com-
paring these findings with independent population genetic evidence of selective
sweeps suggests that this lineage-specific selection has resulted in recent sweeps
at over a hundred genes, most of which led to increased transcript levels. Fraser
et al. suggest that adaptive evolution of gene expression is common in yeast, that
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regulatory adaptation can occur at the level of entire pathways, and that similar
genome-wide scans may be possible in other species, including human[162].

In another S. cerevisiae study, Zou et al., by reanalyising the same two-color
cDNA microarray data, uncovered genetic regulatory network divergence between
duplicate genes. They found evidence that the regulation of the ancestral gene
diverged since gene duplication[163].

Li et al. studied plasticity of gene expression in C. elegans, using a set of 80
RILs generated from a cross of N2 (Bristol) and CB4856 (Hawaii), representing
two genetic and ecological extremes of C. elegans. Differential expression induced
in a RIL population by temperatures of 16 ◦C and 24 ◦C has a strong genetic com-
ponent. With a group of trans-genes there was prominent evidence for a common
master regulator: a trans-band of 66 coregulated genes appeared at 24 ◦C. The
results suggest widespread genetic variation of differential expression responses
to environmental impacts and demonstrate the potential of genetical genomics for
mapping the molecular determinants of phenotypic plasticity[139], leading to a
more generalized genetical genomics, where value is added from environmental
perturbation[164].

Kliebenstein et al. detected significant gene network variation in 148 RILs
originating from a cross between two A. thaliana accessions, Bay-0 and Shahdara.
They were able to identify eQTL controlling network responses for 18 out of 20 a

priori-defined gene networks, representing 239 genes[165].
According to Gilad, eQTL studies show that (i) variation in gene expression lev-

els is both widespread and highly heritable; (ii) gene expression levels are highly
amenable to genetic mapping; and (iii) most strong eQTL are found near the target
gene, suggesting that variation in cis-regulatory elements underlies much of the
observed variation in gene expression levels[166]. Meanwhile, Alberts et al. sug-
gest that sequence polymorphisms may cause many false cis eQTL, which should
be accounted for[167].

Adding a prior

QTL link complex traits with one or more locations on the genome (Fig. 6.1).
Such a location is a wide measure, because a QTL is a statistical estimate, and
rarely a precise indicator. On the genome, a single QTL may represent tens, hun-
dreds, or even thousands of real genes. Combining the QTL with high-throughput
technologies, such as microarrays, can add information. To zoom in on the genes
underlying QTL, information from other sources can be utilized. Such a priori

knowledge could consist of results from traditional linkage studies or association
studies of, for example, human disease. That way one can assign a specific regu-
latory role to polymorphic sites in a genomic region known to be associated with
disease[166]. Other useful priors can be existing information on gene ontology
terms, metabolic pathways, and protein-protein interactions, which can be used
to identify genes and pathways[168], provided these databases are sufficiently
informative.
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Zou et al., for example, used gene ontology as a prior and concluded that trans-
acting eQTL divergence between duplicate pairs is related to fitness defect under
treatment conditions, but not with fitness under normal condition[163].

Chen et al. identified strong candidate genes for resistance to leaf rust in barley
and on the general pathogen response pathway using a custom barley microarray
on 144 doubled haploid lines of the St/Mx population[169]. 15,685 eQTL were
mapped from 9,557 genes. Correlation analysis identified 128 genes that were
correlated with resistance, of which 89 had eQTL colocating with the phenotypic
QTL (phQTL), or classic QTL. Transcript abundance in the parents and conserva-
tion of synteny with rice prioritized six genes as candidates for Rphq11, the phQTL
of largest effect[169].

Evidence of positive selection as the prior

In this Chapter 6 we discuss the steps needed to design an xQTL experiment to
make use of genetical genomics in evolutionary studies more concrete. As the prior

we add information on plant host genes showing evidence of positive selection.

6.2 Designing an evolutionary xQTL experiment

An experimental design based on genetical genomics can highlight sections of
the genome showing correlation with an evolutionary trait. One such evolution-
ary trait of interest is plant resistance against pathogens. Plants have developed
mechanisms to defend themselves against pests. When a pathogen, such as potato
blight Phytophthora infestans, or a nematode, such as Meloidogyne hapla, infects
a plant, it uses a battery of, so-called, effectors to help invade the plant (see also
Chapter 2). Some of these effector molecules act to dissolve cellulose[170]. In-
triguingly, other molecules are involved in actively reprogramming plant cells.
Such plant pathogen effectors have been shown to mimic plant transcription
factors[171] and switch on genes that help the pathogen[172]. A susceptible
plant allows the pathogen to suppress defense mechanisms and to change cell
configuration. For example, the nematodes M. hapla and Globodera rostochiensis

transform plant cells, so they become elaborate feeding structures. The genetics of
this plant-pathogen interaction is potentially even relevant for human medicine, as
an increased understanding of host-pathogen relationships may help understand
the workings of the innate immune system and helminth immunomodulation, e.g.,
[173, 174]. The innate immune system, through plant resistance genes (R-genes,
see Box 6.2), influences susceptibility to infections in all multicellular organisms
and is a much older evolutionary mechanism than the advanced adaptive immune
system of higher organisms.

In this chapter we do not limit ourselves to (known) R-genes. Plants have
evolved a complex array of chemical and enzymatic defenses, both constitutive
and inducible, that are not involved in pathogen detection but whose effective-
ness influences pathogenesis and disease resistance. The genes underlying these
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defenses comprise a substantial portion of the host genome. Based on genomic
sequencing, it is estimated that some 14% of the 21,000 genes in A. thaliana

are directly related to defense [175]. Most of these genes are not involved in
pathogen detection, but possibly their products do molecularly interact directly
with pathogen proteins or protein products. Among these proteins, for exam-
ple, are chitinases and endoglucanases that attack and degrade the cell walls of
pathogens, and which pathogens counterattack with inhibitors. Such systems of
antagonistically interacting proteins provide the opportunity for molecular coevo-
lution of individual systems of attack and resistance[176].

In this chapter we suggest ther design of an experiment to look for all gene
families showing evidence of positive selection (see also Chapter 2). This infor-
mation is the prior for eQTL analysis: combining known genomic locations of
gene families with eQTL locations derived from gene expression variation in a
host-pathogen interaction experiment, which hopefully results in zooming in on
gene families involved in plant resistance. The prior adds statistical power in
locating putative gene families involved in host-pathogen coevolution (Fig. 6.1).
Note that, in this chapter, the term ‘interaction’ is used in two ways. The first is
QTL interaction, where two QTL on the genome interact statistically. The second
is host-pathogen gene-for-gene interaction, where gene products from different
species interact physically.
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Box 6.2

Plant resistance genes (R-genes) are a homologous family of genes,
formed by gene duplication events and hypothesized to be involved in
an evolutionary arms race with pathogen effectors. R-genes are involved
in recognizing specific pathogens with cognate avirulence genes and initi-
ating defense signaling that results in disease resistance[14]. R-genes are
characterized by a molecular gene-for-gene interaction[177] in which a
specific allele of a disease resistance gene recognizes an avirulence pro-
tein or pathogen allele. This specificity is often encoded, at least in part, in
a relatively fast-evolving Leucine-Rich-Repeat (LRR) region[178], which
consists of a varying number of LRR modules. Activation of at least some
of these proteins are regulated in trans, as has been shown for RPM1 and
RPS2[179].
A single A. thaliana plant has about 150 R-genes, representing a subset
of R-genes in the overall population. The protein products of R-genes
are involved in molecular interactions. They generally have a recognition
site which can dock against, i.e. recognise, another one or more specific
molecule(s). The proteins encoded by the largest class of R-genes carry a
nucleotide-binding site LRR domain (NB-LRR, also referred to as NB-ARC-
LRR and NBS-LRR). NB-LRR R-genes can be further subdivided based on
their N-terminal structural features into TIR-NB-LRR, which have homol-
ogy to the Drosophila Toll and mammalian interleukin-1 receptors and
CC-NB-LRR, which contain a putative coiled-coil motif[180]. The LRR
domain appears to mediate specificity in pathogen recognition, while the
N-terminal TIR, or coiled-coil motif, is likely to play a role in downstream
signaling[178]. When a molecule is docked, the R-protein is able to ac-
tivate pathways in the cell, resulting in, for example, a hypersensitive
response causing apoptosis and preventing spread of infection.
Meanwhile, one single R-protein only recognizes one type of invading
molecules. Therefore, through its R-genes, one individual plant only rec-
ognizes a limited number of strains of invading pathogens, as the individ-
ual pathogens have variation in effectors too. When a pathogen evolves
to use nonrecognized effectors, the plant becomes susceptible. The suc-
cess of plant defense is determined by both evolution and the variation of
specificity in a population. Unlike the evolved mammal immune system,
which can change in a living organism and learn about invasions ‘on the
fly’[181], plant R-genes depend on the variation inside a gene pool to pro-
vide the resistance against a pathogen; see for example Holub et al.[182].
Even so, many genes involved in pathogen recognition undergo rapid
adaptive evolution[176], and studies have found that A. thaliana R-genes
show evidence of positive selection, e.g., [183–185].
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Create a prior with PAML

To create the prior we use Ziheng Yang’s Codeml implementation of phylogenetic
analysis by maximum likelihood (PAML)[17]. PAML can find amino acid sites
which show evidence of positive selection using dN/dS ratios, which is the ratio
of non-synonymous over synonymous substitution (ω, see Chapter 2). The calcu-
lation of maximum likelihood for multiple evolutionary models is computationally
expensive, and executing PAML over an alignment of a hundred sequences may
take hours, sometimes days, on a PC.

The software for generating the prior is prepackaged on BioNode, including
BLAST[45], Muscle[186], pal2nal[187], PAML[17], and BioRuby[132].

It is possible to find nonoverlapping large gene families by using BLASTCLUST,
a tool that is part of the BLAST tool set[45]. After fetching the A. thaliana cDNA se-
quences from the Arabidopsis Information Resource (TAIR)[188], convert the se-
quences to a protein BLAST database format. Based on a homology criterium, the
identity score, genes are clustered into putative gene families by running BLAST-
CLUST with 70% amino acid sequence identity. Note that the percentage identity
may not render all families, and will leave out a number of genes. It is used here
for demonstration purposes only. For A. thaliana such a genome-wide search finds
at least 60 gene families, including some R-gene families.

After aligning all family sequences, use PAML’s Codeml to find evidence of
positive selection in the gene families. Muscle is used to align the amino acid
sequences, and create a phylogenetic tree. Next, pal2nal creates CODON align-
ments, which can be used by PAML. Finally run PAML’s Codeml M0-M3 tests and
M7-M8 tests in a computing cluster environment using, for example, BioNode and
the ‘rq’ job scheduler.

An M0-M3 χ2 test finds that 43 gene families (out of 60) show significant
evidence of positive selection. M7-M8, meanwhile, finds 35 gene families. There-
fore, based on the described procedure, approximately half the families show sig-
nificant evidence of positive selection and can therefore be considered candidate
gene families involved in host-pathogen interactions. Note that this figure con-
tains false positives because the evolutionary model may be too simplistic; see
also[189]. Nevertheless, these candidate gene families can be used as an effective
filter for further research.

When a gene family displays evidence of positive selection, the genome loca-
tions can be used as a prior for genetical genomics (Fig. 6.1). With the full genome
sequence of A. thaliana available, the location of gene families showing evidence
of positive selection is known. For example, in the Columbia-0 (Col-0) ecotype,
the majority of the 149 R-genes are combined in clusters spreading 2 to 9 loci; the
remaining 40 are isolated. Clusters are organized in, so-called, superclusters[65,
180]. Phylogenetic analysis shows that such clusters are the result of both old
segmental duplications and recent chromosome rearrangements[180, 190].
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Select a suitable experimental population

To select a suitable experimental population, the choice of parents is key. Here, we
want a descriptive evolutionary prior based on gene families with known genome
locations. This means that one of the parents has to have a sequenced genome.
The choice of parents for QTL analysis is normally based on large (classical) phe-
notypic differences. For testing pathogen resistance, the choice would ideally be
one susceptible parent and one resistant (nonsusceptible) parent. For eQTL, the
phylogenetical distance can be used, when there is no obvious phenotype. In
general, it is a good idea to use common library strains based on, for example,
Colombia (Col), Landsberg erecta (Ler-0), Wassilewskijai (Ws), or Kashmir (Kas),
as one of the parents because experimental resources and online information will
be available. In addition a reference genetic background is provided in this way,
which allows the comparison of the effects of QTL and mutant alleles[191]. A
number of RIL populations can be found through TAIR, a model organism database
providing a centralized, curated gateway to Arabidopsis biology, research materi-
als, and community[188].

Which xQTL technology?

A large part of published xQTL studies is based on gene expression eQTL partly
because gene expression probe provides a direct genomic link. When it comes to
selecting single-color or two-color arrays one consideration may be that two-color
arrays have higher efficiency when using a distant pair design[192].

Deep sequencing technology (RNA-Seq, [193]) will soon be affordable for
eQTL studies. The main advantage over microarrays is improved signal-to-noise
ratios, and possibly improved coverage depending on the reference genome (see
Chapter 12). Microarrays are noisy partly due to cross-hybridization, e.g.,[194],
and have limited signal on low expressors; both facts are detrimental to signif-
icance. Deep sequencing is no panacea, however, since it accentuates the high
expressors. High expressors are expressed thousands of times higher than low ex-
pressors. Low expressors may lack significance for differential expression. Worse
because deep sequencing is stochastic, many low expressors may even be absent.
Another point to consider is that currently at least 1 in 1,000 nucleotide base pairs
is misread, which makes it harder to disentangle error from genetical variation.
Only when a sequence polymorphism is measured many times (say 20), it is con-
firmed to be genetical variation.

Also a choice of eQTL technology may take into account that, when looking
at differential gene expression analysis, different microarray platforms agree with
each other, but overlap between microarray and deep sequencing is much lower,
suggesting a technical bias[195].

For an example of a metabolite mQTL study, see Keurentjes et al.[196] and Fu
et al.[138]. For a study integrating eQTL, pQTL, mQTL and classical phenotypic
QTL, see Fu et al.[197], and Jansen et al.[160].
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Sizing the experimental population

The size of the experimental population should be large enough to give informa-
tive results. For classical QTL analysis, the sizing may be assisted using estimates
of total environmental variance and the total genetic variance derived from the
accessions, selected as parents. Roughly, population sizes of 200 RILs, without
replications, will allow detection of large-effect QTL with an explained variance of
10% in confidence intervals of 10-20 cM. Detection of small-effect QTL, or map-
ping accuracy below 5% requires increasing the population size to at least 300
RILs[191]. It is important to see that QTL mapping accuracy is a function of
both marker density and number of individuals tested. The promise of extreme
dense marker maps, such as delivered by SNPs, does not automatically translate
to higher accuracy. It is the number of recombination events in the population for
a particular QTL that limits QTL interval size. In fact, current marker maps, in
the order of thousands of (evenly spread) markers per genome, suite population
sizes of a few hundred RILs. It is a fallacy, for example, to expect higher mapping
power combining an ultradense SNP map with just 20 individuals.

For high-throughput xQTL, the experimental population should be sized
against an acceptable false discovery rate (FDR). This can be achieved using a per-
mutation strategy to assess statistical significance, maintaining the correlation of
the expression traits while destroying any genetic linkages, or associations in nat-
ural populations: marker data is permuted while keeping the correlation structure
in the trait data, such as presented by Breitling et al.[152]. Unfortunately, this in-
formation differs for every experiment and is only available afterward! Analyzing
a similar experiment, using the same tissue and data acquisition technology, may
give an indication[197], but when no such material is available a crude estimate
may be had by taking the thresholds of a (classic) single-trait QTL experiment,
and adjust that for multiple testing by the Bonferonni correction. Note that this
results in a very conservative estimate.

Analyzing the xQTL experiment with R/qtl

R/qtl is extensible, interactive free software for the mapping of xQTL in experi-
mental crosses. It is implemented as an add-on package for the widely used statis-
tical language/software R (Chapter 5). Since its introduction, R/qtl has become a
reference implementation with an extensive guide on QTL mapping[137].

R/qtl includes Multiple QTL Mapping (MQM), as described in Chapter 5 and
[198], an automated procedure, which combines the strengths of generalized lin-
ear model regression with those of interval mapping. MQM can handle missing
data by analyzing probable genotypes. MQM selects important marker cofactors
by multiple regression and backward elimination. QTL are moved along the chro-
mosomes using these preselected markers as cofactors. QTL are interval mapped
using the most informative model through maximum likelihood. MQM for R/qtl
brings the following advantages to QTL mapping: (i) higher power, as long as the



6.2. Designing an evolutionary xQTL experiment 67

QTL explain a reasonable amount of variation; (ii) protection against overfitting,
because MQM fixes the residual variance from the full model; (iii) prevention of
ghost QTL detection (between two QTL in coupling phase); and (iv) detection of
negating QTL (QTL in repulsion phase)[198].

MQM for R/qtl brings additional advantages to genetical genomics data sets
with hundreds to millions of traits: (v) a pragmatic permutation strategy for con-
trol of the FDR and prevention of locating false QTL hot spots, as discussed above;
(vi) High-performance computing by scaling on multi-CPU computers, as well as
clustered computers, by calculating phenotypes in parallel, through the Message
Passing Interface (MPI) of the SNOW package for R[153]; (vii) visualizations for
exploring interactions in a genomic circle plot and cis- and trans-regulation (see
Chapter 5 Fig. 5.1). A 40-page tutorial for MQM is part of the software distribution
of R/qtl and is available online[199].

Matching the prior

After detecting eQTL, we have a map of gene regulation in the form of a cis-
trans map. When taking a priori information into account, i.e., genomic locations
derived through other methods, we can potentially match the genomic locations
of genes and gene families with the eQTL cis-trans map. Until now, there has
been no combined QTL and evolutionary study, involving PAML, for host-pathogen
relationships in plants, though they have been conducted separately.

Combining xQTL results: causality, network inference

In addition to identifying eQTL or xQTL, it is possible to think in terms of grouping
related traits by correlations. Molecular and phenotypic traits can be informative
for inferring underlying molecular networks. When two traits share multiple QTL,
something that is not likely to happen at random, inference of a functional rela-
tionship is possible (Fig. 6.1). Thus, distinguishing trait causality, reactivity, or
independence can be based upon logic involving underlying QTL. This was the
basic idea in Jansen & Nap 2001[8]. Later, people started to use the biological
variation as extra source for reasoning because biological variation in trait A is
propagated to B and not vice versa if A affects B. This assumes there is no hidden
trait C affecting both A and B; see also Li et al.[200].

Mapping phenotypes for thousands of traits is the first step in attempting to
reconstruct gene networks. Not only can network reconstruction be used within a
particular layer, say within eQTL analysis, i.e., transcript data only, but also across
layers. Such interlevel (system) analysis integrates transcript eQTL, protein pQTL,
metabolite mQTL, and classical QTL[160].

The examination of pairwise correlation between traits can lead to the hypoth-
esis of a functional relationship when that correlation is high. Beyond the detected
QTL, the correlation between residuals among traits, after accounting for QTL ef-
fects, or correlations between traits conditional on other traits is further evidence
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for a network connection. To infer directional effects, it is necessary to analyze
the correlations among pairs of traits in detail. If trait A maps to a subset of the
QTL of trait B, then the common QTL can be taken as evidence for their network
connection while the distinct QTL can be used to infer the direction (Fig. 6.1),
unless all the common QTL have widespread pleiotropic effects, which is when a
single gene influences multiple traits. If traits A and B have common QTL, without
QTL that are distinct, then the inference is more complicated and further analy-
sis is needed to discriminate pleiotropy from any of the possible orderings among
traits[160, 200].

Li et al.[200] point out that, despite the exciting possibilities of correlation
analysis, extreme caution is advised, especially in intralevel analyses, owing to
the potential impact of correlated measurement error (leading to false-positive
connections). By introducing a prior, however, causal inference becomes feasible
for realistic population sizes[200] . The outcome of a causal inference on two
traits sharing a common QTL may be either that one is causal for the other or
that they are independent. In the first case, QTL-induced variation is propagated
from one trait to the other while in the latter case the two traits may even be
regulated by different genes or polymorphisms within the QTL region and their
apparent relationship (correlation) is explained by linkage disequilibrium and not
by a shared biological pathway[200].

6.3 Discussion

A QTL is a statistical property connecting genotype with phenotype. In this chap-
ter, we reviewed studies which, with various degrees of success, combine some
type of prior information with xQTL. We propose that a search for genome-wide
evidence of positive selection can produce a valid and interesting prior for xQTL
analysis. This is achieved by tying genomic locations of putative gene families,
possibly involved in plant-pathogen interactions, with QTL locations derived from
a genetical genomics experiment. Both the eQTL example and the search for
genome-wide evidence of positive selection pressure are essentially exploratory
and result in a list of putative genes, or gene families, with known genomic lo-
cations. The combined information yields candidate genes and pathways that are
under positive selection pressure and, potentially, involved in host-pathogen inter-
actions. We explain that it is possible to design an eQTL experiment using existing
experimental populations, e.g. using an A. thaliana RIL population, and analyze
results with existing free and open source software, such as the R/qtl tool set.

Genetical genomics bridges the study of quantitative traits with molecular bi-
ology and gives new impetus to QTL population studies. Genetic variation at
multiple loci in combination with environmental factors can induce molecular or
phenotypic variation. Variation may manifest itself as linear patterns among traits
at different levels that can be deconstructed. Correlations can be attributed to
detectable QTL and a logical framework based on common and distinct QTL and
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propagation of biological variation, which can be used to infer network causality,
reactivity, or independence[200]. Unexplained biological variation can be used to
infer direction between traits that share a common QTL and have no distinct QTL,
though it may be difficult to separate biological from technical variation. Prior
knowledge and complementary experiments, such as deletion mapping followed
by independent gene expression studies between parental lines, may validate or
disprove implicated network connections[201].

Evolutionary genetical genomics can help dissect the underlying genetics of
pathogen susceptibility in plants. Where ‘Evolutionary Genetics’ describes how
evolutionary forces shape biodiversity, as observed in nature, ‘Evolutionary Ge-
netical Genomics’ describes how phenotype variation in a population is formed
by genotype variation between, for example, host and pathogen involved in an
evolutionary arms race.

If you want to know more about eQTL, we suggest the review by
Gilad et al.[166], which also discusses eQTL in genome-wide association stud-
ies (GWAS), useful in situations where experimental crosses are not available
(such as with many pathogens and humans). For further reading on R-gene evo-
lution, we recommend Bakker et al.[178]. For R/qtl analysis, we recommend
the R/qtl guide[137] and our MQM tutorial online[199]. For integrating dif-
ferent xQTL methods and causal inference, we recommend Li et al.[200] and
Jansen et al.[160].
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Figure 6.1: In this hypothetical and schematic example, related to mapped locations on a
chromosome, prior information is combined with multiple phenotype-genotype QTL map-
pings to zoom in on genomic areas and to reason about causal relations between different
layers of information. (a) The prior (red area on the chromosome) points out that certain
sections are of interest; these sections consist of related genes with high homology show-
ing evidence of positive selection, as discussed in the main text. The blue double arrow
points out the confidence interval for each QTL, above the significance threshold (red dot-
ted line). The accumulated evidence (light blue areas) leads to a narrowed down section
on the genome, where in this case the prior information is the most specific. In addition,
A and B point to exact gene locations (dotted line, based on exact probe information). (b)

To infer causal relationships network inference is possible. On the left (vertical I), traits A,
B, and D map to one hot spot, where A may be a regulator of B, as one QTL is shared. B
causes metabolite C, again a shared QTL. Phenotype D matches A and B, and phenotype E
matches A, B, and C. These causal relationships are drawn by arrows. The figure suggests
that, while individual QTL are not very informative, accumulated evidence, including a
prior starts to paint a picture.
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BioRuby: Bioinformatics software for the
Ruby programming language

The BioRuby software toolkit contains a comprehensive set of free development
tools and libraries for bioinformatics and molecular biology, written in the Ruby
programming language. BioRuby has components for sequence analysis, pathway
analysis, protein modelling and phylogenetic analysis; it supports many widely used
data formats and provides easy access to databases, external programs and public
web services, including BLAST, KEGG, GenBank, MEDLINE and GO. BioRuby comes
with a tutorial, documentation and an interactive environment, which can be used
in the shell, and in the web browser.

BioRuby is free and open source software, made available under the free and
open source Ruby license. BioRuby runs on all platforms that support Ruby, includ-
ing Linux, Mac OS X and Windows. And, with JRuby, BioRuby runs on the Java
Virtual Machine.

The source code is available from http://www.bioruby.org/

7.1 INTRODUCTION

Research in molecular biology depends critically on access to databases and web
services. The BioRuby project was conceived in 2000 to provide easy access to
bioinformatics resources through free and open source tools and libraries for Ruby,

Published as ‘BioRuby: Bioinformatics software for the Ruby programming language’ by Nao-
hisa Goto†, Pjotr Prins†, Mitsuteru Nakao, Raoul Bonnal, Jan Aerts and Toshiaki Katayama

Bioinformatics (2010)
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Figure 7.1: BioRuby shell example of fetching a KEGG graph using BioRuby’s KEGG
API[202]. After installing BioRuby the ‘bioruby’ command starts the interactive shell.
With the bfind command the KEGG module database is queried for entries involved in
the metabolic ‘cytrate cycle’, or tricarboxylic acid cycle (TCA cycle). The purple and blue
colours, in input and output, reflect two modules in the carbon oxidation pathway. The
user loads and confirms entries by using flatparse and pathways commands. Next, KEGG
ORTHOLOGY database IDs are fetched and the colours are assigned to enzymes in each
module. Finally KEGG generates the coloured image of the ‘cytrate cycle’ pathway and the
image is saved locally.

a dynamic open source programming language with a focus on simplicity and
productivity (see www.ruby-lang.org).

The BioRuby software components cover a wide range of functionality that is
comparable to that offered by other Bio* projects, each targeting a different com-
puter programming language[203], such as BioPerl[204], Biopython[205] and
BioJava[206]. BioRuby software components are written in standard Ruby, so
they run on all operating systems that support Ruby itself, including Linux, OS X,
FreeBSD, Solaris and Windows. With JRuby, BioRuby also can run inside a Java
Virtual Machine (JVM), allowing interaction with Java applications and libraries,
like Cytoscape for visualisation[207].

Both BioRuby and Ruby are used in bioinformatics for scripting[208], scripting
against applications[209], modelling[210, 211], analysis[212], visualisation and

http://www.ruby-lang.org/
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service inte-gration[213].
The web development framework ‘Ruby on Rails’ is used to create web appli-

cations and web services[214, 215]. BioRuby provides connection functionality
for major web services, such as the Kyoto Encyclopedia of Genes and Genomes
(KEGG; see example in Fig. 7.1)[202], and the TogoWS service, which provides a
uniform web service front-end for the major bioinformatics databases[216].

The BioRuby source tree contains over 580 documented classes, 2800 public
methods and 20,000 unit test assertions. Source code is kept under Git version
control, which allows anyone to clone the source tree and start submitting. We
have found that Git substantially lowers the barrier for new people to start con-
tributing to the project. In the last two years the source tree has gained 100 people
tracking changes and 32 people cloned the repository.

The BioRuby project is part of the Open Bioinformatics Foundation (OBF),
which hosts the project website and mailing list, and organises the annual Bioin-
formatics Open Source Conference (BOSC) together with the other Bio* projects.
A bignum of BioRuby features support Bio* cross-project standards, such as the
BioSQL relational model for interoperable storage of certain data objects, or their
implementation is coordinated across the Bio* projects, including support for the
FASTQ[217] and phyloXML[218] data exchange formats.

7.2 FEATURES

BioRuby covers a wide range of functional areas which have been logically divided
into separate modules (Table 7.1).

Table 7.1: BioRuby Modules

Category Module list
Object Sequence, pathway, tree, bibliography reference
Sequence Manipulation, translation, alignment, location, mapping, fea-

ture table, molecular weight, design siRNA, restriction enzyme
Format GenBank, EMBL, UniProt, KEGG, PDB, MEDLINE, REBASE,

FASTA, FASTQ, GFF, MSF, ABIF, SCF, GCG, Lasergene, GEO
SOFT, Gene Ontology

Tool BLAST, FASTA, EMBOSS, HMMER, InterProScan, GenScan,
BLAT, Sim4, Spidey, MEME, ClustalW, MUSCLE, MAFFT, T-
Coffee, ProbCons

Phylogeny PHYLIP, PAML, phyloXML, NEXUS, Newick
Web service NCBI, EBI, DDBJ, KEGG, TogoWS, PSORT, TargetP, PTS1, SO-

SUI, TMHMM
ODBA BioSQL, BioFetch, indexed flat files
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BioRuby allows accessing a comprehensive range of public bioinformatics re-
sources. For example, BioRuby supports the Open Biological Database Access
(ODBA) as a generic and standardised way of accessing biological data sources. In
addition BioRuby can directly process local database files in a variety of different
flat file formats, including FASTA, FASTQ (Fig. 7.2), GenBank and PDB. BioRuby
also allows querying and accessing remote online resources through their inter-
faces for programmatic access, such as those provided by KEGG, the DNA Data-
bank of Japan (DDBJ), the National Center for Biotechnology Information (NCBI),
and the European Bioinformatics Institute (EBI).

BioRuby has online documentation, tutorials and code examples. It is straight-
forward to get started with BioRuby and use it to replace, or glue together, legacy
shell scripts, or to mix Ruby on Rails into an existing web application.

BioRuby comes with an interactive environment, both for the command-line
shell and in the browser. Ideas can be quickly prototyped in the interactive envi-
ronment, and can be saved as ‘scripts’ for later use. Such an interactive environ-
ment has shown to be especially useful for bioinformatics training and teaching
(Fig. 7.1).

New features, and refinements of existing ones, are constantly being added to
the BioRuby code base. Current development activity focuses on adding support
for the semantic web, and on designing a plugin system that allows adding en-
tirely new components in a loosely coupled manner, such that experimental new
code can be developed without having an impact on BioRuby’s core stability and
portability.

require 'bio'

quality_threshold = 60

Bio::FlatFile.open('sample.fastq').eah do |entry|

hq_seq = entry.mask(quality_threshold)

puts hqseq.output_fasta(entry.entry_id)

end

Figure 7.2: BioRuby example of masking sequences from next generation sequencing data
in FASTQ format using a defined quality_threshold, and writing the results in FASTA format.

7.3 CONCLUSION

The BioRuby software toolkit provides a broad range of functionality for molecular
biology and easy access to bioinformatics resources. BioRuby is written in Ruby,
a dynamic programming language with a focus on simplicity and productivity,
which targets all popular operating systems and the JVM. The BioRuby project
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is an international and vibrant collaborative software initiative that delivers life-
science programming resources for those researchers who want to benefit from
the productivity features of the Ruby language, as well as from the larger Ruby
ecosystem of reusable open source components.
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BioGem: an effective tool based approach
for scaling up open source software
development in bioinformatics

BioGem provides a software development environment for the Ruby programming
language, which encourages community-based software development for bioinfor-
matics while lowering the barrier to entry and encouraging best practices. BioGem,
with its targeted modular and decentralized approach, software generator, tools,
and tight web integration, is an improved general model for scaling up collabora-
tive open source software development in bioinformatics.

BioGem and modules are free and open source software. BioGem runs on
all systems that support recent versions of Ruby, including Linux, Mac OS X and
Windows. Further information at www.biogems.info. A tutorial is available at
www.biogems.info/howto.html

8.1 Introduction

In biomedical science, new technologies, data formats, and methods emerge con-
tinuously. Scientists want to take advantage of these developments as soon as
possible, which requires bioinformatics software to keep up with new require-
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Geert Smant, Francesco Strozzi, Rob Syme, Rutger Vos, Trevor J Wennblom, Ben J Woodcroft, Toshiaki
Katayama†, and Pjotr Prins†
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ments. We support the notion of the Open Bioinformatics Foundation (OBF) that
development of collaborative open source software (OSS) is essential for bioinfor-
matics. The OBF represents a number of important projects, such as BioPerl[204],
Biopython[205], BioRuby[132], and BioJava[219]. These Bio-star (Bio*) projects
effectively function as community centres and share a centralised approach in
software development with large source code repositories. Bio* projects, gener-
ally, aim for consolidated tools, a stable application programming interface (API),
and backwards compatibility.

Within the BioRuby project we experienced the drive for stability easily over-
whelmed and discouraged developers. Not only because of the complexity of the
existing code base, but also because coding standards are enforced, and extensive
tests and documentation are required. Furthermore, newly contributed code may
be subject to community scrutiny, and in many cases further demands for improv-
ing the code follow. The full process introduces a significant delay between initial
idea and final acceptance of the code in the main project. Months, even years,
may pass between stable releases of main Bio* projects. It may take a long time
before a new feature is publicly released.

To scale up collaborative software development in BioRuby, we recognised ex-
isting and new developers need to be encouraged to contribute more code. To
achieve this, we created BioGem a Ruby application framework for rapid cre-
ation of decentralised, internet published software modules written to lower the
barrier to entry. BioGem was initially inspired by the R/Bioconductor packaging
system[220], which encourages software developers to publish software modules
independently using simple rules; and Ruby on Rails (RoR) plugins[221], which
provides a software generator and modular software plugin system.

8.2 Features

For BioGem we created specific tools to support the creation of bioinformatics
software functionalities and to support development ‘best practises’, i.e., infras-
tructure for software specification, documentation and tests. We also provide tight
web integration based on public websites and services. These websites publish and
distribute software modules and give web based access to source code, complete
with revision history (see Fig. 8.1). BioGem exposes Ruby bioinformatics modules,
and makes developer productivity and module popularity visible.

The primary tool of the BioGem framework is a software generator consist-
ing of templates for bioinformatics scripts, source code, software specification,
documentation, and tests. With the generator, required directories and files are
automatically created from templates for a new software module. Templates are
included for commonly encountered tasks, such as command line parameter han-
dling, error handling, make files etc.

Another BioGem tool publishes the versioned module with its dependencies
on the internet. The published module is immediately available for download and
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% biogem foo
create scaffold:
bioruby-foo
|-- Gemfile
|-- Gemfile.lock
|-- LICENSE.txt
|-- README.rdoc
|-- Rakefile
|-- VERSION
|-- bio-foo.gemspec
|-- lib
|  `-- bio-foo.rb
|-- test
   |-- helper.rb
   `-- test_bio-foo.rb

% cd bioruby-foo

% edit lib/bio-foo.rb

% edit test/test_bio-foo.rb

% rake test

% git commit -c 'changes'

% rake release

Figure 8.1: Biogem eases publication of new bioinformatics Ruby software modules on
the Internet, in a few steps. (1) The software generator creates the directory layout and
files for a new software module named ’foo’. (2) The developer writes or modifies source
code, and (3) quickly and easily publishes the source code and module online, for oth-
ers to read, install and use. Collaboration (4) is facilitated by publishing source code
and changes to navigationable websites. Then the workflow continues again at (2). The
http://biogems.info website tracks published modules. Popularity of each published mod-
ule is tracked, as well as source code changes, updates, bugs, and issues. Unlike with the
practise of publishing scientific papers, collaboration on software often comes post factum,
i.e. after original publishing of a software module. Therefore it pays to publish software
modules early and often. This is reflected in the Biogem workflow.

installation to bioinformatics users in the form of a Ruby gem (i.e., an archive of
modular Ruby code with all the supporting files and information needed for instal-
lation by ‘package manager’ software). We refer to a BioGem module as a ‘BioRuby
plugin’ if the module extends the BioRuby project. Published software modules
are easily repackaged by software distributions, e.g., Debian Bio Med[222] and
BioLinux[223].

The BioGem website (see abstract) makes it easy to find and install software
modules. The website also allows people to track releases, software dependencies,

http://biogems.info


80 Chapter 8 — BioGem

development activity, outstanding issues, integration test results, documentation
and popularity of published modules. A map shows the location of Biogem devel-
opers to help foster a sense of international community.

BioGem encourages software development best practices by providing tem-
plates for documentation and multiple test driven development strategies; such as
unit tests, behaviour driven development, and a natural language parser for soft-
ware specification[224]. A notable difference to the traditional code contribution
procedures of the Bio* projects is that best practices are encouraged, rather than
enforced.

Templates are also included for certain types of functionality, e.g., to generate
portable SQL database handlers, and to build a dynamic web site. With BioGem
it is possible to create a functional web application, or service, in just a few steps.
Generating the different features is handled through work flows (Fig. 8.1).

We added tutorials for BioGem, which explain the software generators, tem-
plates and software publishing. These tutorials are part of the software distribu-
tion and available online.

We created ‘collections’ that bundle important modules together as specific re-
leases. For example, ‘bio-core’ contains stable modules, and ‘bio-core-ext’ contains
stable modules with bindings to C libraries. Special purpose collections exist such
as ‘bio-biolinux’, which is distributed by the Cloud Biolinux project and merged
with the Galaxy CloudMan project [225].

In the first eight months of the BioGem functionality becoming available, over
twenty new modules have been published through BioGem, showing a wide va-
riety of subjects. These modules, for example, target big data handling, next
generation sequencing, and parsing of bioinformatics data formats (Table 1).

8.3 Conclusion

BioGem provides an environment for rapid bioinformatics software development
with a low barrier to entry. BioGem frees potential contributors from code matu-
rity expectations that can be deterring, and encourages Ruby developers to con-
tribute experimental source code early to the BioRuby community. Through Bio-
Gem software is published in a modular way, and best practises are encouraged
through infrastructure for software specification and testing. All this results in
better utilisation of existing and new software development manpower, thereby
scaling up open source software development in bioinformatics.

We suggest BioGem can serve as a generic model; not by replacing existing
Bio* projects, but by supplementing them with a decentralised and evolutionary
model for collaborative software development.
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Table 8.1: The introduction of BioGem has led to a broad range of new BioRuby
plugins. An up-to-date list can be found at http://biogems.info

Name Description
bio assembly read and write assembly data
bio blastxmlparser fast, low memory, big data BLAST parser
bio bwa Burrows Wheeler aligner
bio cnls scraper nuclear localisation signal prediction
bio six frame sequence translation
bio genomic interval detect intervals
bio gff3 fast, low memory, big data GFF3 parser
bio isoelectric point calculate protein isoelectric point
bio kb illumina Illumina annotations
bio lazyblastxml another BLAST XML parser
bio logger sane error handling
bio nexml NeXML support, for phylogenetic data
bio ngs NGS workflows and display, incl. support

for bio bwa, Bowtie, TopHat, and Cuf-
flinks

bio octopus transmembrane domain predictor inter-
face

bio restriction enzyme DNA cutting operations with REBASE
bio samtools samtools API
bio signalp signal peptide prediction interface
bio sge split huge files for cluster computing
bio tm hmm transmembrane predictor interface
bio ucsc api UCSC Genome Database binding

http://biogems.info
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Sambamba: fast processing of NGS
alignment formats

Sambamba is a high performance robust tool and library for working with SAM,
BAM and CRAM sequence alignment files; the most common file formats for aligned
next generation sequencing (NGS) data. Sambamba is a faster alternative to sam-
tools that exploits multi-core processing and dramatically reduces processing time.
Sambamba is being adopted at sequencing centers, not only because of its speed,
but also because of additional functionality, including coverage analysis and pow-
erful filtering capability.

9.1 Introduction

Processing speed matters, not only for diagnostics, but also for analysis and shar-
ing of computational resources. NGS is increasingly used as a genetic screening
tool in diagnostics[226] and reducing time from sample intake to test
result/diagnosis potentially saves lives. Introducing multi-core processing can ac-
celerate steps in a pipeline when the CPU is the bottleneck[227].

Since its introduction by the 1000 Genomes Project[228], the sequence
alignment/map format (SAM) and its compressed binary counterpart (BAM) have
become the de facto file formats used for storing and distributing NGS data. Sam-
tools is the original tool for SAM/BAM files processing, including data extraction
and filtering[229]. Recently samtools added the CRAM format as a compressed
alternative to SAM/BAM[230]. While samtools exploits the speed of the low-level

Published as ‘Sambamba: fast processing of NGS alignment formats’ by Artem Tarasov,
Albert J. Vilella, Edwin Cuppen, Isaac J. Nijman and Pjotr Prins
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Figure 9.1: Processing speed comparison of samtools and sambamba. Wall-clock time (s)
versus number of threads to convert a 11 GB CRAM (1000genomes HG00110) to 108 GB
SAM. With Samtools, VIEW is bound to a single thread at CPU 90%. With Sambamba,
IO gets saturated at approx. CPU 250%. When using a faster RAM-disk, IO gets satu-
rated at approx. CPU 350%. For samtools a RAM-disk makes no difference. When adding
more threads, performance reproducibly degrades because of CPU cache contention. All
timings were performed on a server-class machine with 512 GB of RAM and 48 CPU cores
(4×12-core AMD Opteron(tm) Processor 6174 @2.2Ghz with 6Mb L2 cache) Samtools ver-
sion v1.0-15 using htslib v1.0-1 and sambamba v0.5.0 compiled with the LLVM D-compiler
v0.14.0.

C programming language and uses streamed data for efficiency, it has limited sup-
port for parallel processing (Fig. 9.1). Samtools has inspired a number of other
BAM processors, notably Picard[231], samblaster[232], biobambam[233], and
Scramble[234], each of which is either slower than samtools, or offers a subset of
its functionality.

To accelerate analysis pipelines we created sambamba, a new incarnation of
samtools that fully utilises parallel processing. Sambamba (which means ‘parallel’
in Swahili) is written in the D programming language, a modern programming
language with run-time performance similar to that of C[235]. D has powerful
abstractions for parallel computing which make it possible to scale computations
with the number of cores (Fig. 9.1). When running a Human cancer exome SNV
calling pipeline on the results of a single Illumina HiSeq 2500 flowcell in fast mode
(2000 genes, 300 million reads, 100bp read length and average read depth of 100
for 6 samples) following standard best practice guidelines, the bioinformatics pro-
cessing time was reduced from 2 hours to 30 minutes by replacing Picard MARKDUP

and samtools INDEX, FLAGSTAT, MERGE and VIEW.

9.2 Features

Sambamba introduces full parallelised data processing of SAM, BAM and CRAM
files. Sambamba primarily uses D’s parallel processing capabilities. For CRAM
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Table 9.1: Examples of processing of 31GB BAM and matching 11GB CRAM of HG00110
with sambamba and samtools. Wall-clock time (t in seconds) reflects improved analysis
time. CPU (×100%) reflects effective multi-core utilisation. See caption Fig. 9.1 for de-
scription of hardware, software and measurements.

samtools sambamba speedup
t(s) CPU% t(s) CPU%

BAM view 1506 429 785% 3.5×
filtera 195 35 471% 3.5×
sort 12288 396% 1265 945% 10×
index 577 137 562% 4×
markdupb 5220 2296 278% 2×
merge 3090 571% 2247 1015% 1.5×
mpileupc 7750 584 4409% 13×
BAM to CRAM 4354 640 796% 7×
CRAM to SAM 1850 729 347% 2.5×
CRAM index 9 9 =
a Filter on q > 30 and Chr1
b For markdup samtools v0.19 was used
c mpileup to VCF on 2GB BAM of Chr1 only

support the htslib C-library was linked against[234]. And for mpileup support the
original samtools program is called in map-reduce fashion. This resulted in im-
proved processing speed on multi-core computers (Table 9.1). Sambamba is most
effective on machines where CPU utilisation is the constraining factor (Fig. 9.1).
The gain may be therefore be limited on cluster setups where shared storage is a
bottleneck, e.g., [227].

Compatibility: Sambamba is a robust replacement for the commonly used
samtools commands: INDEX, SORT, VIEW, MPILEUP, MARKDUP, MERGE and FLAGSTAT.
The output of sambamba compares to that of samtools, except for markdup, where
the Picard ‘sum of base qualities’ method was chosen . Sambamba’s RAM utilisa-
tion compares to that of samtools; only with SORT sambamba uses significantly
less RAM.

New functionality: Sambamba adds new functionality compared to existing
tools. To be able to calculate coverage statistics, read DEPTH analysis was added. To
speed up splitting BAM files, SLICE was added which copies large regions without
decompression. And when a BED file is supplied to VIEW, the index is used to
decompress only those regions that are actually visited.
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To further shorten processing time, index files are created on the fly by SORT,
VIEW, MARKDUP and MERGE. And to combine multiple steps into one, powerful
filtering with logic operators and regular expressions was added. For example, to
filter on mapping quality and CIGAR

m a p p i n g _ q u a l i t y > = 3 0 a n d  i g a r = ~ / ^ \ d + M 1 I \ d + M $ /

Finally, to make it easier to process results, sambamba VIEW can generate out-
put in the standard Javascript object notation (JSON) format.

Source code: Sambamba abides by the rules of the ‘Small tools MANIFESTO
for Bioinformatics’[236]. The sambamba source code is extensible and maintain-
able. For SAM parsing we opted for Ragel, a finite-state machine compiler, which
generates a fast look-ahead parser with input validation, making the code base
even more compact[237]. Sambamba uses a unit testing framework with contin-
uous integration testing, so that existing functionality is validated every time the
code base is changed.

9.3 Conclusion

Sambamba is a software engineering example that shows how to make effective
use of the D programming language and multi-core computers to reduce the time
needed to get from sample to result. Whole genome sequencing and growing
sample numbers make such performance improvements increasingly relevant.
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Big data, but are we ready?

We welcome the timely Review by Schadt et al. (Computational solutions to large-scale
data management and analysis. Nature Rev. Genet. 11, 647-657 (2010))[238], which
presents cloud and heterogeneous computing as solutions for tackling large-scale and high-
dimensional data-sets. These technologies have been around for years, which raises the
question: why are they not used more often in bioinformatics? The answer is that, apart
from introducing complexity, they quickly break down when much data is communicated
between computing nodes.

In their review, Schadt and colleagues state that computational analysis in
biology is high-dimensional, and predict that petabytes, even exabytes, of data
will be soon stored and analyzed. We agree with this predicted scenario and
performed a simple calculation to illustrate how suitable current computational
technologies really are at dealing with such large volumes of data.

As shown in Fig. 10.1, processing 500 GB on each of 1000 cloud nodes takes
minimally 9 hours, and currently costs $3000 (500 GB - 500 TB of data). The
bottleneck in this process is the input/output (IO) hardware that links data storage
to the calculation node (Fig. 10.1). All nodes are idle for long periods, waiting for
data to arrive from storage; and shipping the data on a hard disk to the data
storage does not resolve the bottleneck. We calculate that 1000 cloud nodes each
processing one petabyte (1 petabyte to 1 exabyte of total data) currently takes two
years, and costs $6,000,000.

A less expensive option would be to use heterogeneous computing, in which

Published as ‘Big data, but are we ready?’ by Oswaldo Trelles†, Pjotr Prins†, Marc Snir and
Ritsert C. Jansen
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graphics processing units (GPUs) are used to boost speed. A similar calculation
shows, however, that GPUs are idle 98% of the time when processing 500 GB of
data. GPU performance rapidly degrades when large volumes of data are com-
municated, even with state-of-the-art disk arrays. Furthermore, GPUs are vector
processors that are suitable for a subset of computational problems only.

What is the best way forward? Computer systems that provide ‘fast’ access to
peta-bytes of data will be essential. As high-dimensional, large datasets exacer-
bate IO issues, the future lies in developing highly parallelized IO using the short-
est possible path between storage and CPUs. Examples of this trend are Oracle
Exadata[239] and IBM Netezza[240], which offer parallelized exabyte analysis
by providing CPUs on the storage itself. Another trend for improving speed is the
integration of photonics and electronics [241],[242].

To fully exploit the parallelization of computation, bioinformaticians will also
have to adopt new programming languages, tools and practices, because writ-
ing correct software for concurrent processing that is efficient and scalable is
difficult[243], [244]. The popular R programming language, for example, has
only limited support for writing parallelized software (e.g. [153], [245]), whereas
other languages, [246], [245]make parallel programming easier, e.g. through ab-
stracting threads[247] and shared memory[244].

So, not only do cloud and heterogeneous computing suffer from severe hard-
ware bottlenecks, they also introduce (unwanted) software complexity. It is our
opinion that large multi-CPU computers are the preferred choice for handling big
data. Future machines will integrate CPUs, vector processors, and RAM, with par-
allel high speed interconnections to optimize raw processor performance. Our
calculations show that for peta-byte sized high-dimensional data, bioinformatics
will require unprecedented fast storage and IO to perform calculations within an
acceptable time frame.
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Figure 10.1: Input/output (IO) bottleneck between data storage and calculation node. In
our calculations, 1000 computational nodes each processing a 500 GB dataset would take
500GB/15MB/s, or 9 hr, using large nodes at $0.34/hr. The total cost for a single analysis
run would be 1000× 9× 0.34 = $3, 060. In reality, throughput will be lower because of
competition for access to data storage caused by parallel processing. There are significant
throughput instability and abnormal delay variations, even when the network is lightly
utilized[248]. In the illustrated example, 1000 cloud nodes each processing a peta-byte
dataset take 1PB/15MB/s, or 750 days, and cost 1000× 750× 24× 0.34= $6, 120, 000.
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Towards effective software solutions for big
biology

Leading scientists tell us that the problem of large data and data integration, referred to as
Big Data, is acute and hurting research. Recently, Snijder et al. (Toward effective sharing
of high-dimensional immunology data), Nature Biotechnology 32, 755-759 (2014)[249])
suggest a culture change with scientists to share high-dimensional data between laborato-
ries. The elephant in the room is bioinformatics and bioinformatics software development
in particular - which, despite being crucially important, mostly fails to address the require-
ments of ‘big data’.

Whereas Internet companies such as Google, Facebook and Skype have built
infrastructure and developed innovative software solutions to cope with vast
amounts of data, the bioscience community seems to be struggling to realize big
data software projects. This has led to problems in sharing, annotation, computa-
tion and reproducibility of data[227, 250, 251].

Before we can devise software solutions for big data, there are more basic
pressing concerns with bioinformatics software development that need to be re-
solved. Biologists are not formally trained for software engineering, so much of
the bioinformatics software available today has been developed by PhD biologists
in relative isolation on the back of funded experimental research programs. This
model of software development tied to wet-lab research can work well but has
resulted in a culture of ‘one-offs’. The aim of most research projects is to obtain
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results in the shortest possible time, and this is often achieved by writing proto-
type software rather than developing well-engineered and scalable solutions. Even
when funding is obtained to develop software, there are usually no long-term re-
sources allocated to software maintenance, which results in problems with bug
fixing, continuity and reproducibility.

Instead of working alone to develop software, researchers can join or start
collaborative free and open-source software (FOSS) projects, thereby improv-
ing their coding skills through the scrutiny of their peers. True FOSS projects
have licenses that allow continuation of projects that were abandoned by the
original developers, thereby enabling modular development. We published a
bioinformatics manifesto[236] as a practical guide for FOSS-style development
that aims to provide process and architecture guidelines for early-career bioin-
formaticians and their supervisors. Bioinformatics already has vibrant collabora-
tive FOSS projects, such as Galaxy, Cytoscape, BioPerl and Biopython, but these
projects are often worked on parttime owing to lack of or inadequate funding
and will not service the requirements of big biology without major additional in-
vestment. For example, after initial funding from the US National Institutes of
Health (NIH) and the National Science Foundation (NSF), the Galaxy project is
now seeking new funding to continue its work, and no funds at all have been
granted by scientific agencies to work on Biopython. The amount of dedicated
funding for bioinformatics software development remains small. For example, the
NIH has a budget of $30 billion, of which an estimated 2-4% is allocated to com-
putation and bioinformatics grants. We estimate that only a small fraction of this
funding is used for big data software development. By comparison, the nonprofit
Mozilla Foundation turns over $300 million annually for software development
and FOSS promotion, and Google invests an estimated $6.7 billion annually in
R&D. Private donors could, in principle, establish a foundation to support software
development for integrative web-based services on large computer clusters. If in-
vestments in sharing data resources for biomedical research, such as the NIH Big
Data to Knowledge (BD2K) initiative, with an annual budget of $24 million, and
the European Bioinformatics Institute’s smaller BioSamples project, were matched
by serious investments in software development, maintenance and reproducibility,
these projects would render better returns.

One way to solve the challenge is to wait for companies, such as 23andMe,
that have made multimillion-dollar deals with pharma to realize large-scale in-
vestments and create big data solutions. However, such solutions would need to
be purchased and, owing to their proprietary nature, would be difficult to adapt
or benchmark. Another solution would be for biology funding agencies to estab-
lish initiatives for centralized software development. A different solution, and the
one that we favor, is to use FOSS as a distributed development effort and develop
collaborative software projects, such as those developed by the Linux, Mozilla and
Apache foundations, which include private sector participation. For example, the
goal of the Linux Foundation (which includes members such as IBM and Intel) is
to fund Linux development.

https://github.com/pjotrp/bioinformatics/blob/master/README.md
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Most of the bioinformatics software in use today does not scale for terabytes of
data. R software programs typically load all data in RAM and suffer from its mem-
ory and runtime inefficiencies, and they are not designed for simultaneous use
of multiple CPUs to speed up computations[227]. Where programming languages
such as R, Python, Perl and Ruby are great for prototyping and quick analysis, they
fail to deliver when it comes to big data processing. Solving the scalability prob-
lem will require embracing programming languages that are more efficient and
have abstractions for multi-CPU computations[227], even if switching languages
proves hard for most bioinformatician programmers.

Attribution for bioinformatics software development is also problematic. In a
post titled ‘You’re not allowed bioinformatics anymore’ on his blog
Opiniomics[252] Mick Watson eloquently explains that bioinformatics is a sci-
entific discipline in its own right and that bioinformaticians need career develop-
ment. Ironically, in many of the most-cited biology research publications, there
is a substantial bioinformatics contribution (usually the analytic method), often
delivered as novel software solutions and data. However, it is rare for bioinfor-
maticians to feature either as first or last authors on publications in high impact
journals. Authorship of community software projects can be troublesome as well,
because the original authors tend to receive credit for the lifetime of the project,
even when later code amendments and added functionality are equally or more
important than the initial software. Lack of scientific attribution for software de-
velopment hurts career development and can force bioinformaticians to opt for
careers in traditional biology.

To solve the issue of attribution and related career development, we propose
that the software contribution itself counts toward scientific track record. Every
versioned software release and accompanying source code can be assigned a dig-
ital object identifier (DOI) with clear attribution for all contributors. The relative
contribution of authors could be checked by visiting the software version control,
such as that delivered by web services such as GitHub. This would make published
software accountable, reproducible and citable. DOI citations could count as con-
ventional citations, because they express the impact of a piece of software by its
use.

In conclusion, our view is that to tackle the challenge of big biology software
development, leading scientists need to acknowledge that software development
is an integral part of research and not just an underpinning method. Projects need
to promote bioinformatics collaborations and create scientific rewards. Universi-
ties need to increase their efforts to promote interdisciplinary research, to ensure
that informatics is embedded in the life sciences curriculum and encourage tal-
ented software developers and biologists to get involved in big data by tailoring
individual career-development plans.
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Funding agencies can add institutional focus; emphasize collaborative FOSS ap-
proaches; build on existing grassroots initiatives[253]; create split funding streams
for software and hardware; support maintenance of projects; encourage collabo-
ration with experts in high-performance computing and software engineering; and
fund larger projects dedicated to big biology software solutions.
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General Discussion

The work described in this thesis provides computational methods and solutions for
genetics in the era of high-throughput sequencing, and a road map for the develop-
ment of software in big data genomics. The approach was to develop computational
methods to answer the following research questions:

1. ‘How can we identify genes involved in pathogenicity or plant defence from
DNA and RNA sequences?’

2. ‘How can we identify genes that are expressed differentially and relate them
to a phenotype’

3. ‘How can we improve tools for genetic analysis in the era of high-throughput
sequencing?’ and

4. ‘How can we scale up computations and be prepared for the genomic data
deluge?’.

Based on individual research cases, every chapter presents generic and tangible
bioinformatics software solutions that come in the form of free and open source
software (FOSS) tools and libraries that can be used by the wider research commu-
nity.

This discussion chapter builds up on the software solutions presented in this
thesis, painting a picture of further challenges in bioinformatics computational so-
lutions. The chapter starts with a discussion on the merits and shortcomings of
each individual software solution presented in this thesis (section 12.1), followed
by a perspective and recommendations on software solutions for next generation
sequencing, data integration and future research (section 12.2).

12.1 Merits and shortcomings of software solutions presented

in this thesis

GWP: A cross-species genome-wide scan for nematode gene-families

subject to diversifying selection

To identify genes subject to diversifying selection in the plant-parasitic nematode
Meloidogyne incognita, evidence of positive selection was analysed on a genome-
wide scale in multiple parasitic and non-parasitic nematode species. Special soft-
ware was written for executing the pipeline on a compute cluster (Chapter 2),
including a PAML parser (part of Chapter 7), a BLAST XML parser and Semantic
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Web resource description framework (RDF) generators (also part of Chapter 8).
Clusters of highly similar duplicated sequences within nematode genomes were
investigated for evidence of positive selection by calculating dN/dS (ω), the ratio
of non-synonymous to synonymous nucleotide substitution rates.

The merit of the bioinformatics approach presented in Chapter 2 concerns
the comprehensiveness of including all available DNA material, including ORFs,
and comparing the presence of positively selected clusters across genomes of ne-
matodes with entirely different life histories. Gene families were compared for
sequence homology and classified as putatively associated with plant parasitism.
The results were compiled into a linked data resource (see also 12.2), thereby cre-
ating an automated annotation pipeline that can grow in value when more species
are added.

The relatively large genome of plant-parasite M. incognita and the positive
selection clusters (PSC) discovered in this study suggested that M. incognita har-
bours conserved coding and non-coding sequences under current or recent diver-
sifying selection which makes up the host-pathogen interactome and possibly may
help explain the success of M. incognita in attacking a large range of hosts.

Even though 77 putative sequence families under positive selection were iden-
tified, this approach should be viewed as an exploratory method. The approach
of clustering sequences, aligning them and testing for positive selection involves
parameter choices at every step. Future work may include, for example, relax-
ing the 70% identity constraint for clustering PSC. This may result in a larger
set of gene families to study, including those proteins with a smaller conserved
scaffold and larger hypervariable regions. With large sequence clusters, the num-
ber of sequences included in the alignment was reduced to a maximum of 19, so
that PRANK and PAML would finish within reasonable computation time (24hr).
Rather than taking the first 19 sequences, future work could break down highly
diversified gene families into smaller sequence clusters, preferably along phyloge-
netic branches, and test them all separately for positive selection. Other potential
improvements would be to include additional branch site models of evolution,
such as provided by PAML[42].

GenEST and Genfrag: software for the identification of expressed

genes from cDNA-AFLP

cDNA-AFLP is a form of high-throughput PCR-based transcript selection where
identified targets can be sequenced (Chapter 3 and Chapter 4).

The GenEST software presented in Chapter 3 was the first in-silico cDNA-AFLP
tool forming a bidirectional link between virtual transcript derived fragments
(TDFs) derived from predictions on DNA sequences in an EST database and TDFs
as resolved in the cDNA-AFLP lab protocol. The power of GenEST was demon-
strated by the identification and validation of novel effectors from the nematode
Globodera rostochiensis and linking hundreds of EST sequences to cDNA-AFLP ex-
pression profiles, and vice versa.
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The Genfrag software presented in Chapter 4 evolved from GenEST to allow
for more flexible gene identification when full genome data is available. Genfrag
can handle larger data sizes than GenEST, comes with a choice of standard restric-
tion enzymes and adapters and can run as an interactive web server with database
attached. With Genfrag we successfully matched predicted splice variants of genes
with differentially expressed TDFs of the plant, and model organism, A. thaliana.
The use of GenFrag resulted in evidence of epigenetic parental imprinting in seed
and identified 52 candidate maternally expressed genes in seed from the genome
sequence of A. thaliana.

In Chapter 4 we concluded that cDNA-AFLP can be particularly useful when
high specificity in distinguishing the expression of closely related genes is needed.
A possible shortcoming of cDNA-AFLP is that the protocol is laborious. Even so,
cDNA-AFLP in conjuction with Sanger sequencing is stringent and reproducible
and, in contrast to microarray techniques and RNA sequenced data (RNA-seq, see
also 12.2), it may still be more successful in distinguishing lowly expressed genes,
gene heterozygosity and gene expression in highly similar paralogues.

MQM for R/qtl: software for genetics in the era of high-throughput

sequencing

The Multiple QTL Mapping (MQM) method provides a sensitive approach for map-
ping quantitative trait loci (QTL) in experimental populations. In Chapter 5 we
described a FOSS implementation of MQM. The main merit of MQM for R/qtl is
that it is a robust and scalable implementation of the original MQM method which
combines the strengths of linear model regression with those of interval mapping
[142, 143] .

Parallelisation of calculations paves the way for high-throughput QTL analysis.
To determine significance in large data sets we added permutation strategies for
determining thresholds of significance relevant for QTL and QTL hot spots (Chap-
ter 5). This way, MQM for R/qtl has become a parallelised comprehensive QTL
mapping toolbox for the analysis of experimental populations and is increasingly
used for research in, for example, Mus musculus [254], A. thaliana [255], and
Solanum lycopersicum [256].

With MQM for R/qtl there are, however, also some shortcomings. To support
the trend of the rapidly increasing number of phenotypes and genotypes in studies
the software still needs major work, mostly because the containing R environment
has severe limitations when it comes to fine-grained multi-threading and memory
use. A new project named ‘qtlHD’ has been started in the D programming language
to make use of fine-grained multi-core processing (see 12.2).
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BioRuby and Biogems: software solutions for the genomic data

deluge

In biomedical science, new technologies, data formats, and methods emerge con-
tinuously. Scientists want to take advantage of these developments as soon as
possible, which requires bioinformatics software to keep up with new require-
ments. Bio-star (Bio*) projects, such as BioPerl[204] and Biopython[205], effec-
tively function as (virtual) community centres and share a centralised approach in
software development with large source code repositories. Bio* projects, gener-
ally, aim for consolidated tools, a stable application programming interface (API),
and backwards compatibility. Where before data formats were a major challenge,
today it is dealing with the data deluge caused by sequencing and the accompa-
nying problem of data integration (see also 12.2).

The BioRuby project, published in ‘BioRuby: Bioinformatics software for the
Ruby programming language’ (Chapter 7), is an international and vibrant col-
laborative software development initiative that delivers life-science programming
resources for the Ruby programming language. BioRuby has components for se-
quence analysis, pathway analysis, protein modelling and phylogenetic analysis;
it supports widely used data formats and provides access to databases, external
programs and public web services.

We also created ‘Biogem: an effective tool based approach for scaling up open
source software development in bioinformatics’ (Chapter 8), a tool based ap-
proach for rapid creation of decentralised internet published software modules
to facilitate the FOSS publication of bioinformatics software modules written in
Ruby.

All Ruby software created in the context of this thesis was contributed as FOSS
to initially the main BioRuby project, e.g. the PAML parser of Chapter 2, and
later as Biogems, e.g. the bio-blastxmlparser, bio-alignment, bigbio and bio-rdf
biogems for Chapter 2, and three Genfrag related biogems for Chapter 4. Over 16
modules were contributed by the author as Ruby FOSS projects and are listed on
the biogems.info website.

Because of the open nature of the BioRuby project, both BioRuby and Biogem
software modules are increasingly used in biomedical research, not only in ge-
nomics, e.g., [257], but also in phylogenetics and prediction of protein structural
complexes[258] and data integration[216]. The success of the Biogem approach
can be measured by the increase and variety of publications and software written
for biology and by the increasing number of contributors to Ruby bioinformatics.
In 2011 the there were five active developers contributing to the BioRuby project.
Two years after the introduction of Biogems by late 2012, there are over 120
new software modules contributed by over 30 software developers world-wide
and there are over one hundred publications citing these two papers, according to
Google Scholar (June 2015).

http://biogems.info
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Sambamba: fast processing of NGS alignment formats

The ‘sambamba software’ is a good example of successfully scaling computations
through the use of multiple cores on a computer (Chapter 9). Sambamba is a
replacement for the popular samtools tool[259], a commonly used software tool
for working with aligned output from sequencers. Sambamba makes use of multi-
core processing and is written in the D programming language[260, 261]. Not
only does sambamba outperform samtools, but it already comes with an improved
deduplication routine and other facilities, such as easy filtering of data.

The main shortcoming of sambamba is that it does not address the IO issue dis-
cussed in Chapter 10. Fig. 9.1 shows that from 8 CPU cores onwards performance
does not improve. Having a more efficient alignment format may help reduce
the IO bottleneck. The other shortcoming is that, for one commonly used func-
tionality, sambamba uses the samtools mpileup routines instead of having its own
routines. For future versions it would be an improvement to rewrite the (complex)
underlying algorithms so sambamba can be deployed without samtools.

12.2 Perspective

In the following section we identify critical areas of work for bioinformatics in the
coming years in relation to topics treated in this thesis.

Identification of genes involved in pathogenicity or plant defence

In Chapter 2 and Chapter 3 we developed methods for identifying genes involved
in pathogenicity or plant defence. The success of these methods depends largely
on the quality of the reference genome and prediction of genes and alternative
splicing variants. The exact mechanism involved in transcribing RNA from DNA
and the way RNA is spliced is complex and poorly understood[21]. In eukaryotes
there are common patterns, such as a TATA box, which is usually required to initi-
ate transcription, and there is an upstream coding region promoting transcription.
It is also known that different factors are necessary for binding polymerase to a
eukaryote promotor, and that the transcription is influenced by other factors, such
as DNA folding, histone location and methylation. The problem is that these fac-
tors interplay differently between species. For this reason, the best software that
predicts genes and splice variants from DNA is based on machine learning algo-
rithms, which needs prior information in the form of a learning set[21]. When the
genome is close enough to that of a well studied species, such as that of humans
and mice, the prediction software can do a reasonable job, certainly in combi-
nation with homology searches and RNA-seq/EST/cDNA-based annotation[262],
but for many genomes the contents are terra incognita[263]. With nematodes, for
example, a gene predictor trained on C. elegans turned out to be inappropriate for
plant-pathogens M. hapla and M. incognita. Therefore, in Chapter 2, we had to to
resort to using ORFs, rather than relying on predicted genes alone.
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Sequencing costs have fallen dramatically so that a single laboratory can af-
ford to sequence large genomes (see also section 12.2). Although sequencing has
become easier, genome analysis and annotation has not become less challeng-
ing. Several factors are responsible for this. In addition to mentioned problems
with gene prediction, the shorter read lengths of second generation sequencing
platforms mean that current genome assemblies rarely attain the contiguity of
the ‘classic’ shotgun assemblies. Another challenge is posed by the need to update
and merge annotation data sets. RNA-seq provides an obvious means for updating
older annotation data sets; doing so, however, is non-trivial[249]. Furthermore, it
is not unusual today for multiple groups to annotate the same genome using dif-
ferent annotation procedures. Merging these to produce a consensus annotation
data set is a complex task[249, 263], also discussed in section 12.2.

In Chapter 2 we assumed effector proteins involved in plant-pathogen interac-
tions to contain hypervariable regions in the DNA sequence encoding the protein.
Our method, therefore, only identifies effectors which are represented by such
regions and gene families. Effectors produced through gene conversion or, per-
haps, forms of post-transcriptional processing will be missed. Also, our method
discards a wide range of candidate gene families by only selecting candidates that
are represented in multiple species.

Identification of genes that are expressed differentially and relate

them to phenotype

In Chapter 4 differential gene expression was linked with maternal imprinting. In
Chapter 5 and Chapter 6 genetical genomics was introduced where gene expres-
sion is used as a phenotype that gets linked to genotype. This leads directly to the
next question of improving genetics in the era of high-throughput sequencing:

Improve genetics in the era of high-throughput sequencing

In Chapter 5 we provided a sensitive approach for QTL mapping that makes opti-
mal use of phenotype and genotype information for calculating QTL. QTL mapping
offers statistical analysis of high-throughput data[264]. It is important to realise,
however, that with RNA-seq high-throughput sequencing the number of pheno-
types increases rapidly. The power of QTL mapping in model species depends on
the amount of individuals used and the (detected) underlying DNA recombina-
tion in the experimental population (Chapter 6). Also, power can be increased by
multi-trait (eQTL) analysis and intepretation[8].

As mentioned in section 12.1, the current crop of QTL mapping tools needs
to improve further to scale for large datasets. To facilitate new requirements in
software it is sometimes a good idea to start from scratch and design on a new ar-
chitecture. Therefore we started the ‘qtlHD’ project (recently renamed to ‘R/qtl2’)
as a clean follow-up on MQM for R/qtl (Chapter 5). The QTL mapping function-
ality is being moved out of the R container. The new code may be written in the
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high-performing ‘D’ programming language. D is binary compatible with C and
can be bound to R. This means researchers can still work in the R environment, if
required.

In addition to solving the scalability requirements, next generation QTL map-
ping tools have to address demands from the genetics community, especially sup-
port for new crosses (e.g. [265]), data visualisation suitable for the web[266],
and access to shared data sources. Other bioinformatics demands from the ge-
netics community are (in no particular order): drilling down on ‘lower’ traits,
dealing with causality and inference, working with epigenetic & structural varia-
tion, model within cell and between cell interactions, dissecting the environment
component at the cellular level, support microbiome and between-species interac-
tions and provide access to human relevant biomedical data. These functionalities
do not necessarily have to be part of a qtlHD solution, but reflect current develop-
ments in genetics that require bioinformatics support.

Scale up software solutions and be prepared for the genomic data

deluge

In Chapter 10 we discussed some of the problems around big data analysis. The
sequencing effort is causing a deluge of data, often (inaccurately) referred to as
the ‘big data’ problem in biology. Big data is defined as ‘a collection of data sets
so large and complex that it becomes difficult to process using on-hand database
management tools or traditional data processing applications’[267]. At this stage
data sets are becoming large, but the complexity of such large datasets in biology
is still fairly low, even though the underlying biology and data analysis itself can
be complex.

DNA sequencers are churning out terabytes (TB) per day. Even the final pro-
cessed data that is stored for further analysis is bulky. For example, for the Genome
of the Netherlands (GoNL)[268], the genomes of 750 people have been sequenced
representing 60TB data and, as of March 2013, the 1000 genomes project contains
approx. 2700 individuals and counts 464TB[269]. These numbers are growing
fast and world-wide computational capacity is not keeping up with data growth.
And, as predicted in Chapter 10, the IO bottleneck is increasingly problematic.
An example of a solution we published for speeding up processing is ‘probabilistic
fast file fingerprinting’ (Pfff)[270] which speeds up the mundane task of file com-
parisons. Comparing and transferring files is computationally expensive and ties
down shared resources in data centers. Pfff exploits the intrinsic variation present
in biological data and computes file fingerprints by sampling randomly from the
file instead of reading it in full. This way, file comparison has a flat performance
characteristic and is not correlated with file size[270].

Data analysis takes significant computational resources. With GoNL, locat-
ing DNA variation between individuals took 145,000 CPU hours using the GATK
tool[271]. And, even though GATK SNP calling is approximately computationally
linear, data growth is non-linear. Currently the genomes of tens of thousands of
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people are being sequenced, and soon millions world-wide will be sequenced.
Especially RNA sequencing will drive data future growth as it is applied over
multiple experimental conditions, tissues, time series, and may include the meta-
transcriptome of all bacterial gut data which is much larger than the host genome,
e.g., [9].

To solve large data processing, as suggested in Chapter 10, computer sys-
tems that provide ‘fast’ access to peta-bytes of data will be essential. As high-
dimensional, large datasets exacerbate IO issues, the future lies in developing
highly parallelized IO using the shortest possible path between storage and CPUs.
Examples of this trend are Oracle Exadata[239] and IBM Netezza[240], which
offer parallelized exabyte analysis by providing CPUs on the storage itself. An-
other trend for improving speed is the integration of photonics and electronics
[241],[242].

To fully exploit the parallelization of computation, bioinformaticians will also
have to adopt new programming languages, tools and practices, because writ-
ing correct software for concurrent processing that is efficient and scalable is
difficult[243], [244]. The popular R programming language, for example, has
only limited support for writing parallelized software (e.g. [153], [245]), whereas
other languages, [246], [245]make parallel programming easier, e.g. through ab-
stracting threads[247] and shared memory[244].

NGS challenges

A thesis built on sequencing should discuss the emergence of next generation se-
quencing (NGS). NGS is dramatically faster than older sequencing techniques, but
raises its own challenges. Both the technology and biology strive to confound
the hunt for tangible results and clear markers. In general, technology related
problems are a result of short-reads, bias in short-read selection, stochastic effects
and misreads which increase towards the end of a read, e.g., [272]. Biology re-
lated problems are a result of repetitive information in the genome, few or flawed
reference genomes, issues around ploidy and the difficulty of functional gene pre-
diction and the functional impact of DNA nucleotide variants. Also, to get enough
starter material multiple cells in different states are sequenced together, such as
somatic variations in DNA variant calling, and expression variations in RNA-seq
calling. Together these factors result in a hunt for variation that is often close to
the noise level, whether it concerns de-novo genome sequencing or sequencing for
SNP/mutation scoring, e.g., [273].

In human, the problems with NGS sequencing are less pronounced than with
less studied species because after billions of dollars worth of research, much
is known about the human genome and its genes. The ‘$1,000 genome and
the $100,000 analysis’[274] is therefore probably better restated as the ‘$1,000
genome and the $1,000,000,000 analysis’ when taking the human genome project
as a reference for work on other species.
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Most tools in use today are based on using a single reference genome. The
reasons are that a single reference gives an anchor for (i) speedily mapping of
reads, (ii) easy variant calling (iii) useful visualisation of the genome and vari-
ants. Unfortunately, using a single reference genome introduces challenges and
pitfalls of its own. Current software development activity gives a perspective on
such challenges in bioinformatics. This activity includes improvements on variant
calling by local realignment against the reference genome, and imputed reference
genomes (see below).

Improving SNP calls and indels is an active area of software development. For
example, the non-FOSS GATK haplotype caller[271] has made significant strides
in 2013 improving sensitivity and specificity by realigning reads locally and local
indel variant quality score recalibration, a technique also picked up, for example,
by FreeBayes, a FOSS variant caller[275]. Local realignment mostly corrects for
small indels and is necessary because of of faulty positioning calls by the mapper
on top of a single reference genome. Mapping of reads (not to be confused with
QTL mapping) is the process of locating sequenced reads on a reference genome.
When the reads do not map, i.e., when the individual does not compare against
the reference genome, the reads are simply discarded (often in the order of 30%
of total reads). When reads do map, they can map against the wrong position,
especially in highly similar or repetitive regions. Local realignment can not fix all
these issues, and, in fact, can introduce artifacts of its own.

To address the problem of mapping reads wrongly against a single reference
genome, one immediate solution is to calculate an imputed ‘reference’ genome for
every individual from the sequenced parent/population genomes using all avail-
able haplotype information, and map reads against the imputed genome, similar
to [276] and [277]. For example, in M. musculus, imputed genomes are now cal-
culated for homozygous mice and other model organisms, which improves RNA-
seq results greatly[278]. Also with human heterozygous genomes it is possible
to improve the scoring of SNPs and other variants by piecing together a closest
‘reference’ genome by finding the closest matching haplotypes. In fact, the latest
reference human genome (HG20) is no longer a single reference genome, but con-
sists of sections of multiple alternate or ALT loci, especially for sections considered
problematic or variable, such as the major histocompatibility complex (MHC). Se-
lecting a closer match reduces the number of differences between that of the in-
dividual and the calculated reference genome, thereby (hopefully) increasing the
fidelity of mapping. The latest version of BWA, a software package for mapping
low-divergent sequences against a large reference genome, recently added sup-
port for ALT sequences[200]. And the latest versions of GATK have some form
of haplotype support. There is currently, however, no mapper that can take full
account of population haplotype information.

In the near future, it may be possible to let go of the concept of a reference
genome altogether. The main advantage of using a reference genome is that it al-
lows for fast read-mapping software, such as BWA, and it also provides a scaffold
for comparison. The downside is that individuals, or part of their genomes, are
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closer or further removed from the reference genome. Finding variants, therefore,
can more or less powerful between individuals, depending on the sequence differ-
ence or distance. Missing data on the reference genome is especially problematic.

With the right software it may be feasible to assemble the genome of every
individual from scratch using all available haplotype information at the time of as-
sembly, including that of the reference genome with the growing number of ALTS
and effectively use these and population haplotypes as ‘hints’. These hints take
this type of assembly some steps up from a pure de-novo assembly. Also genomic
evidence derived from other technologies, such as longer nanopore reads or even
optical mapping techniques, e.g., [262], can be incorporated right at the assem-
bly step to produce the genome for an individual. Different types of assemblers
can also be used to generate new hints for the main assembler. Current de-novo

assemblers in use are based on using greedy and overlap-layout-consensus (OLC)
[279] or de Bruin graphs[280]. Slower statistics based assembers that use the full
read length have also produced good results[281]. Combining the strengths of the
different assembly methods in a haplotype setting may improve results further.

Individually assembled genomes, when they closely represent the
actual genome, are especially likely to improve RNA-seq calling, SNP and MNP
calling; this was shown with ABRA, which reassembles a genome to account for
INDELs[282]. Also for (larger) structural variant (SV) calling in DNA, typically
operating at the noise level, it is likely that calls will be improved and SNP callers,
for example, can then correct for underlying SV.

Recent large scale DNA sequencing studies in human, nematode and plant
populations have provided evidence that structural DNA variation is omnipresent
between individuals. This suggests that phenotype effects of SV may be underes-
timated and that tools for variant detection may benefit from improved detection
methods that account for variation in populations. The GoNL project recently
showed that structural variation in DNA between humans is larger than thought
before, even between parent and child (communication Victor Guryev). This im-
plies that we should correct for SV when calling SNP and SNV variants.

To benefit from the power of detecting variants in populations new tools are
required. Current variant calling tools lack the ability to take full population in-
formation into account and only support a single reference genome. The GATK
tool has shown that haplotype calling improves SNV detection even by posterior
comparison of variants. Even so, GATK can not handle larger populations in the
early variant calling stages and has no facility for SV correction. A new crop of SV
tools require significant software engineering because accounting for multiple in-
dividuals is essentially an O(n2) (quadratic) problem and requires smart solutions
for RAM utilisation, multicore programming and, possibly, interaction between
running processes on a compute cluster.

Creating individually assembled genomes for species that have larger genomes,
using combined hints from multiple assemblers, multiple reference genomes and
population haplotype information, requires a full redesign of the current variant
calling software stack, starting from assembly all the way to variant calling. In-
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corporating all available evidence at time of assembly will be computationally in-
tensive, will require significant computational power from compute clusters, and
will require clever data storage systems. Intriguingly, by having an individual as-
sembled genome, it may be possible to remove the mapping step altogether, or
use the mapping step solely to check the fidelity of the assembled genome. Fi-
nally, there will also be the challenge of designing a user interface for presenting
variants based on different individual genomes to the research community. For
visualisation it may be advisable to fall back on a single reference genome again.
Here, the single genome acts as a scaffold for visualisation with the added benefit
of reusing existing visualisation tools.

To solve the problems around the reference genome we will have to produce
solutions that are able to assemble large genomes using ‘hints’, even if it proves
computationally expensive. Well engineered software that allows for creating in-
dividually assembled genomes and calling variants thereon will improve variant
detection in well-studied species. This will especially be a boon for species that are
less studied and have incomplete reference genomes or highly variable genomes
such as found in pathogenic species, as has been shown by work on bacteria[283].

The data integration challenge

Next to the rate of data generation, one of the most important bioinformatics
challenges is the problem of data integration. Not only for data generated by
genomics, but also for data generated by other technologies from -omics, such
as metabolomics and proteomics. Other types of data that need integration are
the phenotypes given by diagnostics and research programmes, including tissue
comparisons, time-series and even visualisations (images). Effective integrating
of such multi-level data and mining that data is one of the major challenges in
biomedical research (Fig. 12.1).

Decennia of work have led to an accumulation of databases world-wide, in-
cluding important resources NCBI GEO[284], KEGG[285], ENCODE[3] and
UNIPROT[286]. Lately, new data acquisition technologies, especially next gener-
ation sequencing (NGS), are rapidly increasing the amount of information avail-
able online, from data published with papers all the way to large scale collabora-
tions, such as Wormbase for nematodes (used in Chapter 2) and The Arabidop-
sis Information Resource (TAIR, used in Chapter 4)[287] and 1,001 genomes for
A. thaliana[288] offering information on sequenced genomes, gene expression,
gene onthologies, pathways etc. To reach information every service offers a differ-
ent approach and there is no unified way of accessing and querying this data with
automated tools. Collaborative projects, such as BioPerl[204] BioRuby (Chap-
ter 7) and Biogem (Chapter 8), put major efforts in writing specialised software
for accessing these resources.

The solution to data integration, the Semantic Web, originated
before 2001[289]. The Semantic Web refers to information that is explicitly
encoded in a standardised machine-readable syntax with relationships between



106 Chapter 12 — General Discussion

entities[289]. The Semantic Web is useful for biomedical data because it links
data without enforcing rigid two-dimensional data structures, which is the cur-
rent standard way of representing data in biology, including the tabular struc-
ture, the database table and the spreadsheet. Not only is modelling data up-front
required for tabular data, also such two-dimensional structures are highly con-
strained. For this reason, almost all successful biological data standards introduce
columns containing attributes or key-value pairs, adding dimensions to a two-
dimensional table. Examples of such successful formats that add key-value pairs
in a two-dimensional format are GFF3 and GVF tag-value pairs[290], SAM/BAM
tags[259], and VCF key-value pairs[291]. The flexibility of such key-value pairs
is required because data use cases evolve over time and the format needs to sup-
port them. Without such flexibility the ‘standard’ format would become obsolete
quickly. The downside is that these formats evolve quickly, become less standard-
ized, become hard to test for correctness, incompatibilities arise between tools and
data interchange and integration becomes hard.

The Semantic Web takes the key-value idea a step further. Not only is the
Semantic Web flexible because it allows linking data in any way (as it represents
a graph rather than a table or tree) but also because it formalizes direction and
multi-dimensionality, which is a natural way of modelling biological and biomed-
ical data. Such ‘linked data’ can also be integrated site-to-site across multiple
independent providers via queries that span multiple data-endpoints, because Se-
mantic Web standards cater for that. Linked data technologies and conventions,
therefore, facilitate data exploration and evaluation by removing the need to de-
sign an integrative schema, download, homogenise, and finally warehouse data
subsets in order to ask common domain-spanning questions[292]. In short, the
Semantic Web represents a wide range of standards and software solutions that
are very useful for biological research and should be adopted when data integra-
tion is a concern.

The Semantic Webification of data and structures is an on-going and expanding
exercise. It is indicative that, for example, EBI, KEGG and UNIPROT increasingly
make data available through Semantic Web tools and that NCBI resources are
being made available[293, 294]. In Chapter 2 we used Semantic Web technologies
to annotate the genomes of pathogenic nematodes by pinpointing regions which
may be involved with pathogenicity and published the results in RDF. Therefore,
this database can easily be accessed and mined over the internet using standard
Semantic Web technologies, in the same way as described in the Bio2RDF paper
which also transforms and publishes public bioinformatics databases such as PDB,
MGI, HGNC and several of NCBI’s databases[295].

To solve the data intergration problem, RDF and linked data are going to play
an increasingly important role in the biomedical sciences, next to tabular file for-
mats, SQL databases and the more tree-like storage systems provided by ‘NoSQL’
systems, such as CouchDB and MongoDB. Most biomedical data is naturally stored
in a graph-database and today’s SPARQL query engines provide sufficient power
for federated data integration purposes. Each of the different database systems
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Figure 12.1: Biology is increasingly data-driven and getting more complex and harder to
process using existing bioinformatics software solutions. Solutions have to integrate avail-
able data sources (e.g. A-B-C) and scale up in a reproducible way for hundreds conditions,
tissues and time-series and 100,000s of individuals in multiple generations. Furthermore,
clinical data and imaging have to be linked with such molecular evidence to unravel dis-
eases, such as cancer. We should be aiming at effective exploration of biomedical relevant
big biology, beyond current systems biology approaches (figure compiled by Joep de Ligt
and Pjotr Prins).

should be used for their different strengths, so in the biomedical sciences we are
likely to end up with a mixture of systems.





Summary

Biology is increasingly data driven by virtue of the development of high-throughput
technologies, such as DNA and RNA sequencing. Computational biology and
bioinformatics are scientific disciplines that cross-over between the disciplines of
biology, informatics and statistics; which is clearly reflected in this thesis. Bioin-
formaticians often contribute crucial insights and novelty to scientific research
because they are central to data analysis and contribute concrete algorithms and
software solutions. In addition, bioinformaticians have an important role to play
when it comes to organising data and software and making it accessible to others.
In this thesis, in addition to contributing to biological questions, I discuss issues
around accessing and sharing data, with the challenges of handling large data,
input/output (IO) bottlenecks and effective use of multi-core computations.

By creating software solutions together with molecular biologists, I contributed
and published insights in biological processes in nematodes and plants. I pub-
lished software solutions that made it easier for others to analyse data, which
impacts the wider research community. I created solutions that made it easier for
others to publish software solutions by themselves. The introduction of comput-
ing and the internet makes it possible to share ideas and computational methods.
I am convinced it is a good idea to publish software solutions as ‘free and open
source’ software (FOSS) in the public domain so that we can continue to build on
the work of others.

Chapter 2 presents a computational method for identifying gene families in a
sequenced genome that may be involved in pathogenicity, i.e., those genes that
code for proteins that interact with molecules of an infected host. Such nema-
tode proteins are known to contain highly variable DNA sections that code for the
biochemical properties of an interaction site. By applying phylogenetic analysis
through maximum likelihood (PAML) and comparison of homologues sequences
in other organisms with comparable and different life styles, we discovered 77
unique candidate sequence families in the plant pathogen M. incognita that de-
serve further investigation in the laboratory.

Chapter 3 presents GenEST, a computational method for predicting which frag-
ments captured by the cDNA-AFLP high-throughput technology matched known
expressed sequence tags (ESTs). The cDNA-AFLP biochemical process was calcu-
lated in silico and fragments matching the fragment lengths as given by cDNA-
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AFLP were matched. Through this technique novel effectors from the nematode
Globodera rostochiensis, putatively involved in pathogenicity, were identified and
partly confirmed in the laboratory.

Chapter 4 presents GenFrag, a computational method that expands on GenEST
for predicting which fragments captured by cDNA-AFLP matched fragments of a
fully sequenced genome with its known spliced gene variants. Through this in

silico technique genes were identified in the plant Arabidopsis thaliana putatively
involved in maternal genomic imprinting and partly confirmed in the laboratory.

Chapter 5 presents multiple QTL mapping (MQM), a high-throughput com-
putational method for predicting what sections of a genome correlate with, for
example, gene expression. The study of finding such eQTL is challenging, not
least because many of them are potentially false positives. The MQM parallelized
algorithm is embedded in the R/qtl software package which makes it widely avail-
able to researchers. The impact thereof means that it is widely cited by studies on
model organisms, such as mouse, rat, the nematode Caenorhabditis elegans and
the plant A. thaliana.

Chapter 6 presents a theoretical framework in the form of a review for identi-
fying plant-resistance genes (R-genes) that combines the lessons learnt in the pre-
vious chapters. Plants lack an adaptive immune system and therefore, next to hav-
ing physical defences, use R-genes to code for proteins that recognise molecules
and proteins from invading pathogens, with an example on A. thaliana. These
R-genes can be viewed as the counterparts of effectors identified in Chapter 3 and
Chapter 4. By introducing the concept of a prior the chapter discusses eQTL or
broader xQTL techniques as presented in the Chapter 5 to narrow down on gene
candidates involved in plant defence.

Chapter 7 and Chapter 8 present FOSS bioinformatics tools, and modules that
make use the Ruby programming language. BioRuby (Chapter 7) has compo-
nents for sequence analysis, pathway analysis, protein modelling and phylogenetic
analysis; it supports widely used data formats and provides access to databases,
external programs and public web services. All Ruby software created in the con-
text of this thesis was contributed initially to the main BioRuby project, e.g. the
PAML parser of Chapter 2, and later as individual Biogems (Chapter 8), e.g. the
bio-blastxmlparser, bio-alignment, bigbio and bio-rdf biogems for Chapter 2, and
three Genfrag related biogems for Chapter 4. Over 16 modules were contributed
by the author as Ruby FOSS projects and are listed on the http://biogems.info/
website. Because of the open nature of the BioRuby project, both BioRuby and
BioGem software modules are increasingly used and cited in biomedical research,
not only in genomics, but also in phylogenetics and prediction of protein structural
complexes and data integration.

Chapter 9 presents sambamba, a software tool for scaling up next genera-
tion sequencing (NGS) alignment processing through the use of multiple cores
on a computer. Sambamba is a replacement for samtools, a commonly used soft-
ware tool for working with aligned output from sequencers. Sambamba makes
use of multi-core processing and is written in the D programming language. Not

http://biogems.info/
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only does sambamba outperform samtools, but it already comes with an improved
deduplication routine and other facilities, such as easy filtering of data. The Sam-
bamba software is now used in the large sequencing centres around the world.

Chapter 10 ‘Big Data, but are we ready?’ gives a response to a publication on
using cloud computing for large data processing. The chapter discusses compu-
tational bottlenecks and proves prescient because the number of citations of this
paper increases every year.

Chapter 11 ‘Towards effective software solutions for big biology’ discusses the
need for a change of strategy with regard to bioinformatics software development
in the biomedical sciences to realise big biology software projects. This includes
improved scientific career tracks for bioinformaticians and dedicated funding for
big data software development.

Chapter 12 discusses the computational methods and software solutions pre-
sented in this thesis, painting a picture of further challenges in bioinformatics
computational solutions for the elucidation of biological processes. The chapter
starts with a discussion on the merits and shortcomings of each individual software
solution presented in this thesis, followed by a perspective on next generation se-
quencing, data integration and future research in software solutions.
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