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1. Introduction 

1.1 Flood risk and climate change 

In the domain of flood risk analysis, the term flood risk is commonly 

understood as the product of flood hazard and flood consequences (Plate 2002; 

Apel et al. 2004). Flood hazard is characterised by the frequency of occurrence of 

extreme events which cause flooding, and flood consequences consist of flood 

damages under these events. Flood consequences are defined by the product of 

flood exposure and vulnerability. Flood exposure consists of the people and 

resources at risk. Vulnerability is the predisposition to be adversely affected. Put 

simply, vulnerability to flooding is the lack of resistance when flooding would 

occur (Kron 2005; IPCC 2012). 

In the past decades, exposure to riverine and coastal flooding has increased 

due to population growth, economic growth and urbanisation of flood-prone land. 

According to Jongman et al. (2012), over 800 million people in the world are 

exposed to a once in one hundred years (1/100) probability of river flooding, and 

more than 270 million people to 1/100 years of coastal flooding. Jongman et al. 

(2012) also estimated that at the global level asset exposure has increased from 

1.8 trillion USD in 1970 to 35 trillion USD in river basins in 2005, and from 820 

billion to 13 trillion USD in coastal zones. Low-lying coastal zones cover only 2% of 

the world’s land surface, but 10% of the world population is living in these zones 

(McGranahan et al. 2007). 

Global flood risk will continue to increase in the coming decades due to 

increasing flood exposure, increasing vulnerability and changing flood 

frequencies. The largest increase in economic flood exposure is projected to occur 

in Asia. In North America, Europe, Australia and Latin America, flood exposure will 

also continue to increase despite a slowing trend in population exposure 

(Jongman et al. 2012). Meanwhile flood frequencies will change due to soil 

subsidence and climate change induced impacts on weather patterns, river flows 

and sea levels (Syvitski et al. 2009; IPCC 2014). 

Climate change has potential impacts on urban, riverine and coastal flood 

frequencies. The projected increases in intensity and frequency of rainfall 

extremes will decrease the performance of urban drainage systems (Mailhot and 

Duchesne 2010). Without additional investments, this will lead to more frequent 
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system failures, which, amongst others, increase the incidence of surface flooding. 

Furthermore, peak river discharges and riverine flood frequencies are projected to 

increase in large parts of Europe, Southeast Asia, Northeast Eurasia, Eastern and 

low-latitude Africa, and some parts of Latin America (Feyen et al. 2012; 

Hirabayashi et al. 2013). Moreover, without effective adaptation sea level rise will 

lead to larger coastal flood risks worldwide, possibly reinforced by increasing 

storm intensities in some regions (Webster et al. 2005; Knutson et al. 2010; 

Nicholls and Cazenave 2010). Countries around the globe, therefore, have to 

reconsider their current flood risk management strategies. 

1.2 Flood risk management 

Without additional flood risk management measures, expected damages 

from flooding that can be ascribed to climate change will increase rapidly (Bosello 

et al. 2007; Ciscar et al. 2011). Expected damages from increasing flood risk can be 

mitigated by investment in flood risk reduction. The expected benefits of these 

investments, which can be expressed in terms of monetary damage reductions, 

are often higher than the costs to reduce flood risk. Flood risk management, 

therefore, can improve social welfare. 

For long-term decisions, such as decisions on investments in infrastructure, 

anticipatory adaptation to climate change is needed (Smith 1997). Flood risk 

infrastructures have typically long technical lifetimes and often involve fixed costs 

of investment or modification (Gersonius et al. 2013). By anticipation of future 

flood regimes frequent re-investment, which is costly due to the fixed costs 

associated with every re-investment round, can be avoided. It is, for example, 

clearly suboptimal to heighten a dike on a yearly basis (van Dantzig 1956). 

Anticipatory adaptation relies on climate change impact projections. There 

are, however, large uncertainties about climate change impacts on flood regimes. 

Until now, there is no scientific consensus on which climate projections to use, 

and how to use them for stormwater management and riverine and coastal flood 

risk management (Hall 2007; Kundzewicz 2010; Rosenberg et al. 2010). Despite 

climate change uncertainties, it is widely agreed that it is necessary to anticipate 

climate-induced changes in flood frequencies by upgrading storage and 

conveyance capacities of urban drainage systems and by updating fluvial and 

coastal flood risk management strategies (Nie et al. 2009; Merz et al. 2010; 

Katsman et al. 2011; Berggren et al. 2014). 
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There is a large variety of flood risk management measures for different types 

of flood risk. Coastal and fluvial floods can be classified as low-probability high-

impact floods and may cause economic and societal disruption (Vrijling 2001; 

Jonkman et al. 2003). High probability-low impact floods from heavy precipitation 

at the local scale, in contrast, have less impact on society. Inundation depths are 

not comparable to those of fluvial and coastal flooding, but damages can still be 

substantial (Hoes and Schuurman 2006; Wu et al. 2012). 

For any type of flood risk, control measures are either aimed at reducing 

flood frequencies or at mitigating flood exposure or flood vulnerability. Examples 

of measures that reduce flood frequencies are dune restoration in coastal areas, 

raising dikes in river basins, and upgrading drainage capacities in urban areas. 

Flood exposure mitigation can be achieved through spatial planning, and 

vulnerability can, for example, be reduced by implementing building codes and 

the development of emergency plans (Hooijer et al. 2004; Aerts and Botzen 2011; 

Wu et al. 2012; Hanley et al. 2014). 

Due to climate change flood-related extremes can no longer be assumed to 

be statistically stationary for flood risk management practices (Khaliq et al. 2006; 

Milly et al. 2008; Merz et al. 2010; Rosenberg et al. 2010; Gilroy and McCuen 

2012). It has, however, remained difficult to identify economically efficient and 

robust investment options, and to determine optimal investment levels and 

investment timing under climate change. 

1.3 Economic analysis of flood risk management strategies under 

climate change 

Flood exposure and flood frequencies will continue to change. As a 

consequence, investment in flood risk reduction will have to be repeated over 

time. Flood risk management strategies can be defined as sequences of 

investments in flood risk management measures. In order to identify economically 

efficient and robust strategies, both optimal strategies of single measures have to 

be identified, such as dike heights, as well as an optimal selection of investment 

options, for example the choice between raising a dike and creating a floodplain. 

Economic analysis of flood risk management strategies has become more 

complex, because uncertain climate change impacts have to be incorporated in 

the analysis (Zhu et al. 2007; de Bruin and Ansink 2011; Lickley et al. 2014). 
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Before an economic analysis of flood risk management strategies under 

climate change is carried out, first the applicable decision criterion needs to be 

considered. Cost-benefit analysis (CBA) aims at the maximisation of social welfare. 

CBA has been frequently applied to assess flood risk management strategies and 

to determine optimal flood protection standards (van Dantzig 1956; Zhu and Lund 

2009; Eijgenraam et al. 2012; Kind 2014). Climate change increases the spread of 

possible outcomes. As a result, decision criteria that include risk aversion may 

lead to other optimal decisions than risk-neutral criteria. Risk-aversion has, for 

example, recently been studied by Kuijper and Kallen (2012) and Wang et al. 

(2015). 

Decision-makers may also be regret-averse under climate change. This is for 

instance reflected by the search for ‘no regret’ or ‘low regret’ flood risk 

management options, which are relatively insensitive to different climate futures 

(IPCC 2012; Wilby and Keenan 2012). For flood protection studies, regret aversion 

may require an economic analysis that applies a regret-based decision criterion 

(Brekelmans et al. 2012). Other decision criteria, such as minimax, Laplace, 

Hurwicz or modified versions of these criteria can be considered as well (Clarke 

2008; Gaspars-Wieloch 2014). 

Once the decision criterion and the corresponding type of economic analysis 

have been chosen for the optimisation of flood risk management strategies, 

climate change uncertainty can be included in the analysis. The easiest way to 

include climate change uncertainty is to use a ‘single future’ approach, in which a 

single climate change scenario is applied to identify optimal investment strategies. 

Examples are CBA with a deterministic parameter for the rate of sea level rise, 

cost calculations of flood risk management strategies per design peak flow 

scenario, and the analysis of cost-effective compliance with a flood risk standard 

under a given rainfall scenario (van Dantzig 1956; Middelkoop et al. 2004; Mailhot 

and Duchesne 2010). Expected-value based economic analysis, in contrast, assigns 

subjective probabilities to different climate scenarios, or a probability distribution 

to possible climate change futures. The probabilistic information can then be 

applied to obtain estimates of the expected future flood risk (Purvis et al. 2008). 

Climate change impact projections, furthermore, may be subject to change 

over time. For example, recent assessments report larger uncertainty ranges of 

sea level rise and extreme rainfall than in previous assessments (Wahl et al. 2013; 

KNMI 2014). Moreover, more extreme value observations and scientific progress 
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may reduce or resolve climate uncertainties in the long run (Baker 2005; Khaliq et 

al. 2006). Uncertainty that can be reduced by acquiring new knowledge has been 

classified as epistemic (Merz and Thieken 2005). Possible changes in climate 

information, including the possibility that uncertainty is reduced, can be applied 

to study the value of flexibility and to develop adaptive flood risk management 

strategies (Gersonius et al. 2013). The arrival of new information, or learning, can 

be incorporated in an economic analysis of flood risk management strategies by 

real options methods (Woodward et al. 2011). Learning can also occur upon the 

arrival of new data, which can be analysed, for example, by means of Bayesian 

updating (Davis et al. 1972). However, learning, as induced by the arrival of new 

information, has received relatively little attention in economic flood risk 

management studies. This thesis is therefore concerned with the economic 

analysis of flood risk management strategies under climate change with learning. 

Countries increasingly recognise that it is not only necessary to anticipate 

changes in flood risk, but that it is also important to be able to respond to new 

insights (Zevenbergen et al. 2013). The overall ability to adapt flood risk 

management investments to changing insights is part of the adaptive capacity of a 

water system (Pahl-Wostl 2007). Economic analysis of flood risk management 

with learning about climate change impacts is useful to study trade-offs between 

flexibility and costs, and to identify optimal strategies under possible changes in 

climate information. 

1.4 Research objective and research questions 

The overall objective of this thesis is to investigate the impact of climate 

change on investment in flood risk reduction, and to explore and apply 

optimisation methods to support identification of optimal flood risk management 

strategies. To this end, the following sets of research questions are addressed:  

1. How can probabilistic extensions of cost-benefit analysis using climate 

and learning scenarios be applied to improve decision-making on flood 

risk management strategies? And what are advantages and limitations of 

such probabilistic extensions? 

 

2. What are optimal dike investment strategies under uncertainty and 

learning about climate change impacts? What are the implications of the 
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assumed learning process and the use of subjective probability 

distributions to represent structural water level increase? And how large 

are the differences in optimal investment levels without and with 

learning? 

 

3. What is the impact of new rainfall observations on cost-effective 

investment in detention storage? Can ‘white noise’ be distinguished from 

a structural shift of an extreme rainfall distribution? And what is the 

relationship between the fixed costs of investment and the statistical 

beliefs of a decision-maker about the risk of flooding? 

 

4. What is the motivation for a minimax regret approach to study flood risk 

management investments? Can a consistent dynamic minimax regret 

procedure be developed, and can it be applied to practical flood risk 

management problems? What is the impact of ‘learning scenarios’ on 

optimal investment selection and optimal investment levels under a 

minimax regret decision criterion? 

The research questions are addressed in Chapters 2-5 of this thesis.  

1.5 Methods 

This thesis applies three different types of economic analysis to study flood 

risk management strategies: (i) CBA with probabilistic extensions, (ii) a cost-

effectiveness analysis for the case where a flood protection standard has been set 

and new rainfall data becomes available, and (iii) a dynamic robustness analysis 

based on regret. The appropriateness of a type of economic analysis is 

determined by the decision-context. It includes the decision-maker preferences 

regarding risk, loss and regret, the perspective of the decision-maker, and the 

relevant economic decision criterion. 

To address the research questions, this thesis applies three main solution 

methods: (i) decision tree analysis, (ii) dynamic programming, and (iii) a novel 

dynamic minimax regret method. Decision tree analysis is applied throughout the 

thesis in Chapters 2, 3 and 5 to explore research question sets 1, 2 and 4. Dynamic 

programming methods are used to solve the economic models presented in 

Chapters 3 and 4 in order to study research question sets 2 and 3 in more detail. 
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In Chapter 4, moreover, stochastic dynamic programming is combined with 

simulation of rainfall and water levels. In Chapter 5, a dynamic minimax regret 

procedure is developed as well as a conceptual flood risk management model to 

address research question set 4. 

Decision tree analysis has been advocated for its simplicity and is commonly 

used to explain the value of information and to study investment problems with 

information arrival (Copeland and Antikarov 2003). The method finds its origins in 

the binomial tree model of Cox et al. (1979) as an alternative model for financial 

option pricing in discrete time. Simplified tree models with scenarios for real 

options without risk-adjusted discounting followed shortly after (Conrad 1980). 

The dynamic programming theory was developed by Bellman (1954). A 

deterministic application to the problem of optimal dike height for a single 

segment dike has been presented by Eijgenraam et al. (2012). 

Rainfall-runoff-inundation simulation can be linked to an economic 

optimisation module.  An example of a rainfall generator is described by Cameron 

et al. (1999). There are numerous software packages for the simulation of runoff, 

flow, water levels and inundation. The results may serve as an input to a damage 

model for CBA of upgrading urban drainage or regional surface systems, but this 

setting is not often studied in practice (Pathirana et al. 2011). Cost-effective 

compliance with a performance target under climate change can be studied in a 

deterministic setting (Mailhot and Duchesne 2010). This, however, does not 

account for randomness in the frequency of occurrence of extreme events. In 

Chapter 4 simulation-optimisation methods are applied to include these effects 

on optimal investment levels. 

The minimax regret decision criterion has first been described by Niehans 

(1948) and Savage (1951). The problem of dynamic inconsistency, as a result of 

the dynamic application of the minimax regret decision criterion, has been studied 

by Hayashi (2011). 

1.6 Outline of the thesis 

The research questions are addressed in Chapters 2-5. Figure 1.1 displays an 

overview of the thesis chapters. Chapter 2 studies probabilistic extensions of CBA 

with climate scenarios and learning and explores the scope of such extensions. 

Chapter 3 revisits the problem of optimal dike height. An existing model is 

extended with an uncertain rate of structural water level increase and perfect 



Chapter 1 

8 
 

learning. Chapter 4 develops a cost-effectiveness model with rainfall variability 

and climate change. It is applied to study the storage volume of a detention 

storage facility in a Dutch polder system. Chapter 5 develops and applies a 

consistent dynamic minimax regret procedure to a conceptual flood risk 

management model. The thesis ends with a general discussion of modelling 

approaches and results, and summarises the findings in Chapter 6. 
 

Climate change and 

flood risk

Structural change in  

water levels
Rainfall extremes Peak river flows

Uncertainty 

approaches
Probabilistic futures

Chapter 2: 

CBA overview

Chapter 3: 

dike height

Chapter 4:

detention storage

Chapter 5:

dike, floodplain

Learning 

approaches

Non-probabilistic 

scenarios
Single scenario

Perfect learning New observations Learning scenarios

Economic decision 

analysis

Cost-benefit 

analysis

Cost-effectiveness 

analysis
Robustness analysis

Decision criteria
Social welfare 

maximisation

Constrained cost 

minimisation

Minimisation of 

maximum regret

 

Figure 1.1 Thesis overview of Chapters 2-5 
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2. Economic analysis of adaptive strategies for flood risk 

management under climate change*
 

 

 

Climate change requires reconsideration of flood risk management strategies. 

Cost-benefit analysis (CBA), an economic decision-support tool, has been widely 

applied to assess these strategies. This paper aims to describe and discuss 

probabilistic extensions of CBA to identify welfare maximising flood risk 

management strategies under climate change. First, uncertainty about the 

changes in return periods of hydro-meteorological extremes is introduced by 

probability-weighted climate scenarios. Second, the analysis is extended by 

learning about climate change impacts. Learning occurs upon the probabilistic 

arrival of information. We distinguish between learning from scientific progress, 

from statistical evidence, and from flood disasters. These probabilistic extensions 

can be used to analyse and compare the economic efficiency and flexibility of 

flood risk management strategies under climate change. We offer a critical 

discussion of the scope of such extensions and options for increasing flexibility. 

We find that uncertainty reduction from scientific progress may reduce initial 

investments, while other types of learning may increase initial investments. This 

requires analysing effects of different types of learning. We also find that 

probabilistic information about climate change impacts and learning is imprecise. 

We conclude that risk-based CBA with learning improves the flexibility of flood 

risk management strategies under climate change. However, CBA provides 

subjective estimates of expected outcomes, and reflects different decision-maker 

preferences than those captured in robustness analyses. We therefore advocate 

robustness analysis in addition to, or combined with, cost-benefit analysis to 

support investment decisions for flood risk reduction.  

                                                 
*
 Accepted for publication in Mitigation and Adaptation Strategies for Global Change (in 

press):  

van der Pol TD, van Ierland EC, Gabbert S (2015a) Economic analysis of adaptive strategies 

for flood risk management under climate change, DOI: 10.1007/s11027-015-9637-0 
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2.1 Introduction 

Cost-benefit analysis (CBA) has been widely applied to flood risk management 

strategies, and its application has become more complex due to climate change 

(van Dantzig 1956; Zhu and Lund 2009; Kind 2014; Lickley et al. 2014). This paper 

discusses probabilistic extensions of CBA to identify welfare maximising strategies 

under climate change. Flood risk, here defined as the expected monetary loss 

from floods, is increasing in many regions of the world due to population growth, 

economic growth and urbanisation, and due to the impacts of climate change on 

weather patterns, peak river discharges, and sea levels (Milly et al. 2002; 

Groisman et al. 2005; Jongman et al. 2012). Flood risk is composed of the product 

of flood hazard, flood exposure, and vulnerability (Kron 2005; IPCC 2014). To 

mitigate flood risk locally, flood risk management strategies can be implemented 

that either mitigate flood hazard, exposure or vulnerability. Flood hazard 

mitigation is achieved by implementing flood protection measures over time 

which lower flood frequencies in vulnerable areas. Examples are restoration of 

sand dunes and beach nourishment in coastal areas, raising or relocating dikes in 

river basins, and extension of urban drainage capacities in urbanised areas. The 

harmful consequences of flooding are reduced by flood exposure mitigation 

through spatial planning, and by flood vulnerability mitigation, for example by 

implementing building codes and preparation of emergency plans (Hooijer et al. 

2004; Wu et al. 2012; Stive et al. 2013; Hanley et al. 2014). 

Flood protection measures, especially engineering-based measures, will 

continue to place a significant burden on national budgets and this trend is 

reinforced by climate change (Narain et al. 2011). Due to climate change, 

distributions of weather extremes, peak river discharges and water levels can no 

longer be assumed to be statistically stationary (Milly et al. 2008). Moreover, 

flood protection measures typically have long technical lifetimes and their 

protection levels are highly sensitive to climate change (Gersonius et al. 2013). It 

is therefore important to identify economically efficient flood risk management 

strategies, i.e.: welfare maximising investments in flood protection measures and 

other flood risk reducing measures over time, in response to current changes in 

climate and in anticipation of future climate change. 

Economic analysis of flood risk management strategies aims to efficiently 

reduce the frequency and the consequences of various flooding events. These 

include low-probability high-consequence flooding events, typically coastal and 
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fluvial floods, and high probability-low consequence flooding events, for example 

flash-floods in urbanised areas (Vrijling 2001; Wu et al. 2012). The latter may 

cause damages if storage and drainage capacities are insufficient to detain, retain 

or convey stormwater from heavy rainfall. From the perspective of a risk-neutral 

social planner, Net Present Value (NPV) estimates of the total expected damage 

costs from floods and the costs of protection determine the relative importance 

of investing in flood risk reduction.  

The objective of CBA is to maximise the stream of discounted net benefits, or 

to evaluate whether or not an investment project improves social welfare 

(Boardman et al. 2011). CBA compares avoided damages of different flood risk 

management strategies, the monetised benefits of flood risk reduction, to their 

costs (Jonkman et al. 2008; Zhu and Lund 2009; Dierauer et al. 2012). It has, 

however, remained challenging to include climate change uncertainties in CBA of 

flood risk management strategies. There is, amongst others, hydrologic 

uncertainty about the effects of climate change on weather extremes, peak river 

discharges and sea levels, and about the possible emergence of new information 

about these changes over time. Furthermore, the outcomes of an economic 

analysis of flood risk management strategies are sensitive to a range of other 

uncertainties, including those originating from hydraulic, structural and economic 

uncertainties (Bao et al. 1987). 

This paper restricts attention to the impacts of climate change on hydrologic 

uncertainty. Hydrologic uncertainty manifests, for example, through model 

uncertainty about the type of a peak flow distribution, and statistical uncertainty 

about its parameters over time. Moreover, hydrologic uncertainty is partly 

epistemic, which, in contrast to natural or inherent uncertainty, can be reduced or 

resolved by acquiring more knowledge (Merz and Thieken 2005). 

The need to anticipate the possible emergence of new hydrologic information 

and to identify adaptive flood risk management strategies under climate change 

uncertainty is increasingly recognised; both in risk-based economic optimisation 

approaches, as well as in recently developed robustness approaches (Kwadijk et 

al. 2010; Woodward et al. 2011; Gersonius et al. 2013; Haasnoot et al. 2013). 

However, until now scientific consensus is lacking both on how to address climate 

change uncertainty and on how to incorporate learning in economic analysis of 

flood risk management and other climate change adaptation strategies (Watkiss 

et al. 2014). Moreover, probabilistic models to analyse efficient flood risk 
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management strategies with new information are relatively scarce, and usually 

consider only one type of new information (Woodward et al. 2011). 

The central research questions of this paper are as follows:  

(i) How can probabilistic extensions of CBA using climate and learning 

scenarios be applied to improve decision-making on flood risk 

management strategies?  

(ii) What are advantages and limitations of such probabilistic extensions?  

These questions are relevant to inform flood adaptation decisions at different 

scales, from local decisions on flood risk management strategies to global 

decisions on, for example, the allocation of adaptation funds. This paper therefore 

informs adaptation strategies at different scales through economic analysis to 

mitigate flood risk under climate change. 

In this paper, two types of probabilistic extensions of CBA are considered. 

First, uncertainty about the changes in return periods of hydro-meteorological 

extremes is introduced by probability-weighted climate scenarios. Second, CBA is 

extended by probabilistic arrival of new information, hereafter called learning, 

about climate change impacts to introduce two phenomena: (i) the reduction of 

epistemic uncertainty and (ii) the arrival of new data. We elaborate on different 

types of learning, from scientific progress, from statistical evidence, or from flood 

disasters, and discuss their reinforcing or opposite effects on optimal investment. 

The methods to implement these types of learning originate from statistics and 

the real options literature and have been widely used in many domains (Copeland 

and Antikarov 2003; Press 2003). We describe their generic implementation in a 

non-technical manner, and discuss the availability of the required probabilistic 

information and implications for the economic efficiency and flexibility of flood 

risk management strategies under climate change. Finally, we contrast cost-

benefit approaches with robustness approaches, which follow a different line of 

analysis. We discuss the general findings and provide suggestions for the use of 

methods to support decisions on flood risk management strategies. 
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2.2 Climate change uncertainty and the climate change learning 

process 

2.2.1 Current approaches for including climate change uncertainty in 

flood risk management decisions 

Frequency analysis of extremes is required to estimate future flood risk, but is 

plagued by hydrologic uncertainty. In the literature, a variety of methods have 

been developed to assess return periods of extreme hydro-meteorological events 

under climate change. Examples are perturbation methods used to specify design 

rules or design storms with climate model simulations, and regression methods to 

remove effects of serial dependence and non-stationarity in hydro-meteorological 

observations (Khaliq et al. 2006; Willems 2013). Until now, however, it has 

remained unclear how the performance of flood defences and urban drainage 

systems should be assessed under climate change (Kundzewicz et al. 2010; 

Berggren et al. 2014). One approach is to exclude non-stationarity in the flood 

hydrology from the economic analysis of flood risk management strategies, which 

is still occasionally observed in theoretical work (Zhu and Lund 2009). However, in 

the adaptation literature it has been emphasised that anticipatory adaptation is 

required to support efficient decision-making on investments with fixed costs and 

long technical lifetimes (Smith 1997). Here, we provide a brief description of two 

important methods for water system design with the anticipation of climate 

change impacts; (i) a fixed-factor increase of design intensities, for example 

derived from the so-called delta-change method, for urban drainage design (Hay 

et al. 2000; Arnbjerg-Nielsen 2012), and (ii) the use of a prior distribution of, for 

example, sea level rise to estimate future coastal flood risk (Purvis et al. 2008).  

Rainfall inputs used to evaluate the performance of urban drainage systems 

are design storms, either from frequency analysis of annual maxima, or partial 

duration series, or are obtained from continuous simulation (Cameron et al. 1999; 

Boughton and Droop 2003; Cameron 2006; Mailhot et al. 2013). With the design 

storm method a rainfall depth of an assigned duration with a given return period 

is applied to a site (De Michele et al. 1998). This method assumes that the average 

return period of the design storm coincides with the average return period of a 

flow rate, if an appropriate duration is selected, together with one or more 

representative synthetic storm hyetographs (Levy and McCuen 1999; Mays 2011). 
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To account for climate change, the design storm can be increased with a fixed 

factor (Waters et al. 2003). The appropriate uplift factor for the intensity of the 

design storm can be chosen pragmatically, or derived from the delta-change 

method, where rainfall events in a historical rainfall series are increased with 

delta-change factors. These factors, which are different for different rainfall 

intensities, are derived from the output of a regional climate model (Nilsen et al. 

2011; Arnbjerg-Nielsen 2012). Uplift factors are, however, usually obtained per 

climate change scenario. Such studies usually do not provide estimates of total 

expected discounted costs of flood risk management strategies under multiple 

climate futures provided that a certain uplift factor is chosen for the design of 

flood protection measures.  

Global climate change projections have remained highly uncertain. As a 

consequence, most projections are presented without probability distributions 

(Andronova and Schlesinger 2001; IPCC 2014). Prior distributions about regional 

climate change impacts are required to estimate the expected damage reduction 

over time associated with flood risk management strategies. It is, however, 

questionable whether or not such expected damage estimates can be obtained in 

the first place. Weitzman (2009), for example, argued that it may be inappropriate 

to perform CBA under uncertain fat-tailed extreme value distributions containing 

low probability but catastrophic events. 

Nonetheless, some attempts have been made to estimate future flood risk 

with probabilistic methods. Purvis et al. (2008) defined a triangular distribution for 

sea level rise, where probabilities are set with IPCC scenarios based on the best 

estimate, and the lower and upper bound of the scenarios. This distribution, 

however, does not account for low-probability climate change scenarios, which, in 

expected terms, may be important to determine optimal flood risk management 

strategies. Van der Pol et al. (2014) showed this for a normal and log-normal 

distribution for dike investments. Flood risk uncertainty is even larger if socio-

economic uncertainties are considered as well. Hall et al. (2005), for example, 

studied flood risk under climate change and socio-economic scenarios. 

Furthermore, Bouwer et al. (2010) constructed loss-probability curves for a range 

of climate and socio-economic scenarios under a range of flood scenarios.  
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2.2.2 Expert elicitation 

Water defence systems are typically designed to withstand plausible high-end 

scenarios of flood-related frequency changes, which would require different flood 

protection measures and larger investments than under less severe climate 

change impacts (Katsman et al. 2011). Estimates of the likelihood of more 

extreme climate scenarios are therefore crucial to study the economic efficiency 

of flood risk management strategies with risk-based economic optimisation 

approaches using probability-weighted climate scenarios. In the previous section, 

we discussed that only few studies examining the economic efficiency of flood risk 

management strategies have applied prior probability distributions about climate 

change impacts. In addition, the design of many urban flood protection measures 

has been based on a single climate change scenario. Such pragmatic approaches 

do not seem satisfactory, as expected damage costs may greatly increase if the 

incidence of extreme weather events or high water levels is underestimated. This 

raises the question of whether or not it would be more appropriate to obtain 

prior distributions about climate change impacts from expert elicitation.  

One could, for example, think of the Delphi method as a means to obtain 

priors from expert elicitation (Dalkey and Helmer 1963). Many climate experts 

reject participation in Delphi surveys and expectations of participants are too 

diverse to reach consensus and to arrive at a single prior distribution specifying 

likelihoods of rapid climate change (Arnell et al. 2005). Existing studies reveal that 

some high-end scenarios, for example the collapse of the West-Antarctic Ice 

Sheet, are considered to be unlikely in the near term (Vaughan and Spouge 2002). 

Satellite observations confirm this finding, although there is now strong evidence 

for partial ice-sheet thinning (Vaughan 2008). Despite the controversy of expert 

elicitation it might provide valuable insights on the physical processes that are 

more, or less likely to happen, which can be used to derive likelihood statements 

about climate change effects on, for example, the weakening of the Atlantic 

Meridional Overturning Circulation (Zickfeld et al. 2007). Expert opinion can also 

be used for, for example, defining climate model parameter ranges for 

perturbation purposes, or to distinguish between climate models based on quality 

(Stainforth et al. 2005; Knutti et al. 2010). 

From the above we draw the following conclusions. First, decision-making on 

flood risk management strategies under climate change cannot be classified as 

decision-making under risk. This is because the probabilistic changes in the 
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frequency of occurrence of the relevant hydro-meteorological extremes under 

climate change are not well-defined. Second, it can also not be classified as 

decision-making under ignorance, as there appears to be at least some consensus 

that some scenarios are less likely than others. This case is therefore best 

described as decision-making under uncertainty characterised by imprecise 

probabilities (Hogarth and Kuhnreuther 1995). 

2.2.3 Learning about the impacts of climate change 

In addition to uncertainty about climate change impacts, there is uncertainty 

about the detection of future climate change signals, and uncertainty about how 

decision-makers’ investment decisions may respond to possible climate signals. In 

this section, we discuss different types of learning and their effects on climate 

change adaptation decisions. We distinguish between learning from scientific 

progress, from statistical evidence, and from flood disasters. 

Information from scientific progress 

Several authors have argued that climate change uncertainty cannot be 

expected to reduce or to be resolved any time soon. Leach (2007), for example, 

concluded that it may take hundreds if not thousands of years before reliable 

parameter estimates of climate models will become available. According to Roe 

and Baker (2007) uncertainty about climate change projections has not 

significantly decreased over the past decades, and showed, furthermore, that the 

probability of large temperature increases is relatively insensitive to reductions in 

climate change process uncertainties. 

Information from scientific progress, in contrast, might reduce uncertainty 

about climate change impacts. Scientific progress can be modelled as probabilistic 

events of information. Uncertainty reduction introduces a trade-off between costs 

associated with immediate action, and increased exposure resulting from a learn 

than act strategy. The conditions required for immediate action to reduce 

emissions of a harmful pollutant such as CO2 have been analysed by Gollier et al. 

(2000), in which the degree of risk-aversion, irreversibility and the information 

rate determines optimal action. Ingham et al. (2007) presented a model with both 

mitigation and adaptation, and showed that the possibility to adapt together with 

the prospect to learn tends to reduce climate change action today. In earlier work, 
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Kolstad (1994) studied mitigation and adaptation decisions under perfect learning, 

and investigated trade-offs between the effects of irreversibilities associated with 

the accumulation of greenhouse gases, and the accumulation of abatement 

capital. 

If uncertainty is epistemic, and expected to gradually reduce over time, 

flexible adaptation measures may be more economically efficient than inflexible 

measures. Flexible climate change adaptation with learning from scientific 

progress can be studied with risk-based optimisation approaches, such as real 

options analysis, as well as robustness approaches (Copeland and Antikarov 2003; 

Hallegatte et al. 2012). De Bruin and Ansink (2011), for example, distinguished 

between structural measures with relatively high fixed costs, such as dikes, and 

non-structural measures with relatively low fixed costs, such as beach 

nourishment. For analysis of an adaptation measure in isolation, the expected 

value of information is compared with the additional costs from immediate 

investment in the measure. Hence, future learning through scientific progress may 

have impacts on investment timing, size and portfolio of flood risk management 

measures, and may also have an impact on greenhouse gas mitigation strategies. 

Assumptions about the probabilities of learning in the near future, and the degree 

of uncertainty reduction are, however, determinants of initial investment 

strategies and the optimal responses to new information over time (van der Pol et 

al. 2014). 

New hydro-meteorological observations: evidence-based learning 

New hydro-meteorological observations are an important source of new 

information on changing flood risk. New hydro-meteorological observations may 

provide statistical evidence regarding climate change impacts on flood regimes in 

the future. It has, however, remained difficult to statistically detect changes in 

weather patterns, river flows and acceleration of mean sea level rise. Short-term 

trend detection is, amongst others, difficult due to multi-annual serial correlation, 

variability, and sample size. Fowler and Wilby (2010) reported that the detection 

of changes in seasonal precipitation may take several decades, and that this could 

motivate a precautionary approach to climate change adaptation. Zhang et al. 

(2004), furthermore, compared detection methods by simulations of 50 and 100 

years of annual maxima. The simulation results show, in addition to differences in 

the ability to detect trends, that none of the methods guarantee trend detection, 
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and that the probability of no-detection is much lower for larger sample sizes for 

any of these methods. Hamed (2008) showed that significant river flow trends 

found in earlier annual flow maxima may be false if scaling is considered. Wahl et 

al. (2013) reported that the rate of sea level rise over the past two to three 

decades has been high as compared to the long-run average, but that similar 

periods of high sea level rise have been observed at other times. 

New hydro-meteorological observations can also be applied to evaluate 

water system performance over time. Because new weather and water level 

observations are not likely to reveal much information on structural climate 

change impacts in the near future, one might be tempted to think that it is 

irrelevant to consider the likelihood and effects of future observations on current 

decisions on flood protection measures. This is, however, a misconception. 

Weather variability and climate change uncertainty result in variability of best 

estimates of flood probability, which, in turn, results in uncertainty about the 

timing of new investments in flood protection measures, for example, through the 

need to meet a flood protection standard. However, evidence-based flood 

probability evaluation over time, and its effects on the economic efficiency of 

flood risk management strategies, has largely remained unexplored in flood risk 

management practices. It might, however, be highly relevant for efficient 

decision-making. First, in contrast to learning from scientific progress it is certain 

that new data will become available over time. Second, despite white noise, 

extreme value data may still be applied to analyse changes in flood risk and 

evaluate water system performance in the future. The underlying statistical 

beliefs, however, may deviate from actual frequency distributions. Whereas 

learning from scientific progress is about anticipation of better information by 

uncertainty reduction, learning from statistical evidence is about anticipation of 

new information that is not necessarily better. Effects of white noise can be 

opposite to the effect of uncertainty reduction on optimal investment; 

underestimation of a system’s performance might trigger new investments, which 

can be anticipated by enlarging initial investments, while learning from scientific 

progress tends to reduce overall investment till better information becomes 

available. We will explain the latter in more detail in Section 2.3.3. 



Cost-benefit analysis with learning 

19 

 

Disasters: incident-based learning 

Historic flood observations show that large-scale flooding events often lead 

to large-scale investments in flood protection measures in developed countries 

that go far beyond repair. Examples that led to such large-scale investments 

include the 1953 flood in the Netherlands, the New Orleans flood by hurricane 

Katrina, and the flood by the 2011 tsunami in Japan. There are several 

explanations why investments in flood protection measures often take place after 

large-scale incidents, but the phenomenon remains intriguing. Clearly, a failure of 

a flood defence shows that a specific load has been greater than the resistance of 

the defence. In a statistical sense, however, any single observation has only a 

modest impact on extreme value estimates, even if its value is several times larger 

than ever measured before (Coles and Pericchi 2003). 

In some cases, an incident may reveal new failure modes of, for example, a 

dike, and the flood probability estimate can be updated with this new 

information. This, however, does not explain large-scale investments for cases 

where a conventional failure mode, for example overtopping, was the primary 

cause of flooding. Neumayer et al. (2014) argued that both individuals and 

governments have incentives to underinvest in flood control. While this would 

explain large-scale re-investments after a disaster for cases with a maintenance 

backlog, it provides insufficient explanation for cases without backlog. Another 

motivation for re-investment is the “never again”-argument, often heard after 

large-scale disasters (Gerritsen 2005). A possibly related argument is victim 

pressure, where victims may have a disproportionate share in the decision 

process on flood control (Harries and Penning-Rowsell 2011).  

Perhaps it is not important to understand why re-investment takes place 

after a disaster, as long as the likelihood of incidents occurring earlier than 

expected, together with the following investment response, are included in the 

economic analysis of flood risk management strategies. To illustrate this, consider 

that a decision maker can either invest in flood protection measure 1, with total 

expected discounted costs � consisting of both investment costs and total 

expected discounted damage costs, or in measure 2 with total costs � consisting 

of investment costs only and no expected damage costs. Furthermore, consider 

that � < �. At first sight, a risk-neutral decision maker would prefer measure 1. 

As an extension, consider that the public will demand to invest in never again-

measure 2 if a disaster happens, and that the decision maker knows this in 
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advance. Consider, furthermore, that the probability that a disaster happens 

during the technical lifetime of flood protection measure 1 is larger than zero. 

Now, despite that the decision maker is assumed to be risk-neutral, the risk-

attitude of the public leads to a change in the expected economic efficiency of 

measure 1 through the probability of disaster during the lifetime of the 

infrastructure. As a result, measure 2 might be preferred.  

2.3 Economic models for flood risk management 

In this section we turn to economic models for analysing and comparing flood 

risk management strategies. We describe how a cost-benefit model can be 

extended with climate scenarios to include uncertainty about climate change 

impacts. We also provide a brief introduction to the modelling of the different 

types of learning that were introduced in the previous sections (2.3.1-2.3.3). 

2.3.1 Cost-benefit optimisation  

Benefits of flood risk management can be estimated in monetary terms by 

estimating the expected reduction in damages. Flood damage models can be used 

for this purpose (de Moel and Aerts 2011). An optimal investment strategy can be 

obtained by balancing discounted expected damages and costs of protection. In 

early work, van Dantzig (1956) applied this concept to determine optimal dike 

height. Improved versions of this model are still used today in the Netherlands to 

analyse optimal dike height strategies and to determine economically efficient 

flood protection standards (Brekelmans et al. 2012; Kind 2014). It is, furthermore, 

increasingly recognised that, especially in a context of climate change uncertainty, 

different types of flood protection measures have to be considered 

simultaneously (de Bruin and Ansink 2011; Woodward et al. 2011; Meyer et al. 

2012). 

Many urban drainage system elements have been designed with particular 

design storms and simple flow calculations instead of cost minimisation models, 

and only few stormwater models include an economic analysis of alternative 

stormwater management strategies (Zoppou 2001). Moreover, detailed CBA 

studies of urban drainage systems are rare (Pathirana et al. 2011). One possible 

explanation could be that in many countries CBA may not be legally required for 

such systems. In the Netherlands, for example, uniform flood protection 
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standards have been defined for regional water systems per land use type, rather 

than setting flood protection standards at welfare maximising levels for every 

water system (NBW 2005; Hoes and Schuurmans 2006). Cost-effectiveness 

approaches are, hence, still predominant for urban drainage system design. 

However, if flood protection standards are set at economically efficient levels the 

solutions of cost-benefit analysis and cost-effectiveness analysis with an efficient 

flood protection standard will coincide. Therefore, in what follows, we continue 

with a cost-benefit model only. 

In a CBA, the objective of a risk-neutral decision maker is to maximise the net 

present value of the total expected net benefits associated with a portfolio of 

flood protection measures over time (Eq. (2.1)): 

� = max	
,�  ��(��(��,� , ��,� , … ) − ��(��,� , ��,� , … ))�������
 !																															(2.1) 

where �&,� is the decision variable, and �&,� is the stock of the flood protection 

measure '&  at system node  ( = 1,2,…	. System nodes, for example, can be 

segments of a dike ring, open channels of a surface system, or pipe segments of a 

sewer system. �� is a benefit function, �� is a protection cost function, ) is the 

discount rate, and * represents the end of the considered time horizon. Benefits 

of flood risk management can be modelled as reduced damages, but expected 

damages from floods can also be interpreted as costs. By symmetry, minimisation 

of total expected discounted loss + yields the same optimal investment strategy 

as under Eq. (2.1): 

+ = min	
,� ��(.�/��,� , ��,� , … 0 + ��(��,� , ��,� , … ))�������
 !																																		(2.2) 

Consider a two-period model with a binary decision to invest (2 ) or not invest 

(3 ) at � , followed by the binary decision to invest (2�) or not invest (3�) at � = *�. This is displayed in Figure 2.1.  
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Figure 2.1 Example of a two-period decision tree with decisions to invest (2 ; 2�) 
or not invest (3 ; 3�) at � = �  and at � = *�, respectively 

The optimal strategy follows from outcome minimisation, i.e.: min	{�, �, �, .}, 
and results in investment strategy (2 ∗, 3�∗) in this example. This example 

represents a deterministic CBA, as the outcomes of different strategies are 

assumed to be known with certainty. However, a deterministic CBA is not suitable 

under climate change uncertainty, as multiple climate futures are possible 

(Watkiss et al. 2014). Therefore, we now turn to a probabilistic extension of CBA 

using probability-weighted climate scenarios. 

2.3.2 Probabilistic modelling of climate change impact scenarios 

Climate change impact scenarios can be introduced in the cost-benefit model 

through defining possible states of nature in order to account for uncertainty 

about climate change impacts. To illustrate this, consider that under a high 

climate change impact scenario the annual increase of the flood probability is 89 

and that probability :9 is assigned to this scenario, and that under a low climate 

change impact scenario flood probability increases with 8;  with probability 
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:; = 1 − :9.  The corresponding decision tree for this problem is displayed in 

Figure 2.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 Decision tree for the two-period investment model extended with two 

possible climate change scenarios (8;  and 89) 

The expected outcome of a strategy is equal to the weighted average of the 

total discounted costs under the two scenarios. For strategy {2 ; 2�} the total 

discounted expected costs are: 
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� = :;�; + :9�9 ,																																																																																																													(2.3) 
and idem for outcomes �, � and .. Again, the optimal strategy follows from: min	{�, �, �, .}. In this example, only two climate scenarios are considered. The 

general case would require a continuous prior distribution of climate change 

impacts. 

The importance of probability distributions for climate change adaptation 

has, for example, been explained in the UKCP09 projections, in which probabilistic 

climate projections of over-land changes have been derived for the UK (Murphy et 

al. 2009). However, probabilistic coastal projections are generally not available 

(Lowe et al. 2009; IPCC 2014). Without probabilistic impact projections, the above 

method can only employ probabilistic assumptions to derive expected flood 

damages under climate change for different flood risk management strategies. As 

a consequence, cost-benefit solutions may appear to be precise, while the 

discretised probabilities or densities to arrive at the solutions are not (Hall 2007). 

Risk-based cost-benefit optimisation using probability-weighted scenarios or 

distributions, therefore, cannot provide final answers to optimal flood risk 

management decisions. However, it supports the identification of economically 

efficient management strategies using information that is available to the best of 

our knowledge. Yet, this information is debatable. Sensitivity analysis can provide 

insights in the sensitivity of solutions to distributional assumptions.  

2.3.3 Models of learning 

Modelling of scientific progress 

Scientific progress may eventually lead to a better understanding of the 

severity of climate change. This can be modelled as a probabilistic reduction of 

climate change uncertainty over time. Figure 2.3 displays a simplified example of 

the gradual reduction of sea level rise uncertainty over time. At � , sea level rise 

can be high or low, at *� the rate of sea level rise is approximately known, and at *� sea level rise uncertainty is fully resolved, and we know the outcome with 

certainty, for example ��. 
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Figure 2.3 Graphical representation of gradual uncertainty reduction. Outcomes 

for strategy {2 ; 3�} are displayed 

 

The initial investment for this setting follows from: 

min{=>;=?};{=>;@?},{@>;=?},{@>;@?} AB :C(8C)�C ,C B :C(8C)�C ,C B :C(8C)�C ,B :C(8C).C ,CC D,							(2.4) 
and the investment at decision moment �� depends on the available information 

(8;  or 89) at this moment. Larger problems with uncertainty reduction can be 

formulated recursively by dynamic programming, for example, applied in van der 

Pol et al. (2014). Clearly, future information has expected value. As a 

consequence, investment decisions may be changed by the probability of future 

information arrival, which has a general tendency to reduce overall investment 

before the arrival of new information, for example by postponing investment 

(deferral), changing the scale of investment (e.g. contraction), adaptive design or 

alternative portfolio choices (switching). These are typical examples of real 

options strategies from the real options literature. However, real options methods 

have not often been applied to economic flood risk management studies 

(Schwartz and Trigeorgis 2004; Woodward et al. 2011). This may be explained by 

the probabilistic assumptions needed regarding information arrival. In Section 

2.3.1 we discussed that there is no consensus about the timing of uncertainty 

reduction, if reduced at all. 
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Belief updating with new observations 

Evidence-based learning can be approached from a frequentist or a Bayesian 

perspective. Frequentist approaches interpret observations, for example of 

extreme water levels, as random realisations from a “true”, but unknown 

distribution. Re-sampling methods, such as bootstrapping, can be used to 

evaluate the robustness of the initial estimates. Climate change, however, 

introduces a trend in the data which can be studied with, amongst others, moving 

window analysis, or regression methods. In a moving window analysis, a part of 

the available observations is treated as if it is stationary (De Michele et al. 1998). 

For every time step, for example every year, an extreme value distribution J is re-

estimated with the last 3 years of observations with standard statistical 

procedures such as maximum likelihood or the method of L moments. The 

likelihood of distributional estimates can then be studied by simulation of new 

observations based on climate scenarios.   

Contrary to frequentist approaches, Bayesian inference methods assume that 

the unknown parameter K is a random variable and can be expressed by means of 

prior beliefs :(K). This is a probabilistic specification of the decision maker’s 

beliefs before new evidence has been observed. Prior beliefs can be updated with 

sample data using Bayes law: 

:(K|M) = :(M|K):(K):(M) 						,																																																																																												(2.5) 
where :(K|M) is the posterior belief after observing new event M, and :(K) is the 

prior belief. :(M|K) denotes the likelihood function, being the conditional 

probability distribution of observed data. Prior beliefs about, for example, 

extreme value distribution parameters, can either be based on subjective guesses 

(Huard et al. 2010), or can make use of existing information. Bayes law allows 

combining subjective beliefs with evidence gained from observed data, or 

simulated data M that can be added to original data, in order to arrive at posterior 

beliefs (Rajabalinejad and Demirbilek 2013). The posterior probability distribution 

characterises beliefs about the hypothesis K (e.g. increase of mean temperature, 

sea level rise) after seeing the data. An early application of Bayes theorem to 

identify optimal protection levels for dike design under limited data and flood 

uncertainty is found in Davis et al. (1972). 
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As for the case of perfect learning, optimal investment strategies with 

evidence-based learning can be studied by formulating the general investment 

problem (Eq. (2.2)) recursively. The transition probabilities can be derived from 

the belief updating process which follows from dynamic application of Bayes law 

(Eq. (2.5)), and simulation of future hydro-meteorological observations. 

Implementation of this setting is, however, complex and goes beyond the scope 

of this paper. Note that variability in extremes is high relative to the expected 

changes in frequency of extreme weather events, which suggests that effects 

from variability in such settings may well be greater than the structural 

distributional changes due to climate change in the coming decades, and could 

increase optimal initial investment. So far, to our knowledge only few flood risk 

management studies explore the impacts of future weather variability and 

resulting transitions in beliefs on current investment decisions. 

Modelling of disasters 

In public choice theory the outcome of the net loss-minimising model (Eq. 

(2.2)) has been called the social planner’s solution. It has, however, been argued 

that social planner solutions may not be implemented, because it differs from 

policy-makers’ preferences which are subject to various factors including the 

discontent of voters (Hansen and Thisse 1981). Voter preferences for flood 

protection may differ from a social planner perspective, as voters may be risk-

averse, or at least have a different planning horizon than the social planner. 

Consider, as an example, voters who minimise total expenses on taxes and total 

costs from flood damages during their lifetime. Consider, further, that voters can 

observe whether or not flood disasters have occurred in previous years, and that 

the discounted costs associated with a single flood disaster are typically larger 

than the present value of total flood protection costs during the lifetime of a 

person. Two general implications from the objective function of individual voters 

can be deducted. First, the willingness-to-pay (WTP) for flood protection of an 

individual voter is not constant over time due to the probabilistic arrival of new 

information about the occurrence of disasters over time. As a result of the 

objective function, the WTP of an individual voter might decrease over time if no 

disaster occurs, but it might increase after the occurrence of a flood disaster. 

Second, a decision-maker cannot be sure about the timing of re-investment in 

flood protection, which now also depends on the stochastic nature of the 



Chapter 2 
 

28 
 

occurrence of flood disasters. Early or frequent re-investment in flood protection, 

furthermore, may be costly due to initial costs of flood protection measures. In 

this setting, therefore, a risk-neutral decision-maker has to account for the risk-

averse preferences of voters.  

2.4 Robustness analysis 

The probabilistic extensions described in Section 2.3 require subjective 

probabilistic information on climate change impacts and the arrival of new 

information. However, climate change uncertainties have been classified as deep 

(Kandlikar et al. 2005). Several authors have argued that the optimality criterion 

should be abandoned in the presence of deep uncertainties and that research 

effort should focus on the identification of robust strategies that perform 

relatively well across a range of possible futures (Lempert et al. 2006; Hall et al. 

2012). 

Various kinds of robustness analysis have been developed, which appears to 

be the result of the normative nature of the robustness concept. Robustness 

analysis of adaptation strategies can be used to identify robust solutions in a 

narrow sense by employing alternative decision criteria, for example, minimax or 

minimax regret criteria (Clarke 2008). Other robustness methods analyse the 

performance of robust solutions under different degrees of uncertainty, for 

example info-gap theory (Hine and Hall 2010). Moreover, in recent robustness 

analysis, such as adaptation pathways, stakeholder participation is used to explore 

uncertainties, preferences, lock-ins and path-dependencies by qualitative 

methods (Haasnoot et al. 2013).   

Robustness approaches differ fundamentally from risk-based optimisation 

approaches in at least two respects. First, they reject the assumption of risk-based 

approaches that probabilistic information can be identified for analysis of 

management strategies. Second, they reject the assumption that welfare 

maximising solutions can be identified, and are instead aimed at identifying 

solutions that are expected to perform relatively well under worst-case or a wide 

range of scenarios.  
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2.5 Discussion 

The probabilistic extensions of CBA described in this paper can be used to 

analyse and compare the economic efficiency and flexibility of flood management 

strategies under climate change. They thereby support economic decision-making 

on flood risk management strategies. However, the results of a risk-based CBA of 

flood risk management and other climate adaptation strategies using probability-

weighted scenarios have to be interpreted with care. Results can be misleading, as 

assigned probabilities may misrepresent uncertainty (Hall 2007). 

We observe that the underlying scientific debate on whether or not climate 

change uncertainty should be addressed as subjective risk or deep uncertainty is 

increasingly polarised. In many papers, authors either motivate a risk-based or a 

robustness approach (Speijker et al. 2000; Hine and Hall 2010; Woodward et al. 

2011; Brekelmans et al. 2012; Haasnoot et al. 2013). Clearly, both risk-based and 

robustness approaches are defensible. We argue that, due to differences in 

assumptions regarding decision-maker preferences and implementation of 

uncertainty, they may provide different but complementary insights. 

A standard approach to expected-value based optimisation assumes risk-

neutrality. The common use of CBA of flood risk management strategies reflects 

that expected outcomes provide an important decision criterion for flood risk 

management. However, expected-value optimisation is not the only relevant 

decision criterion. Even if probabilities would be properly defined decision-makers 

might, at least to some degree, be risk-averse. Risk aversion can be included in a 

risk-based economic analysis of flood risk management strategies if a certain 

degree of risk-aversion is assumed (Kuijper and Kallen 2012; Wang et al. 2015). 

However, given the imprecise probabilities associated with the impacts of climate 

change on flood frequencies and the high consequences of flooding, also other 

decision-maker preferences may be applicable, such as uncertainty aversion, loss 

aversion or regret aversion (Woodward and Bishop 1997; Clarke 2008; Weitzman 

2009). These preferences do not fit in a standard cost-benefit framework (Hogarth 

and Kunreuther 1995; Yager 2004; Clarke 2008). 

Both CBA and robustness approaches impose extreme assumptions. In a 

deterministic CBA uncertainty is largely ignored, while usually risk-neutrality with 

known probabilities is assumed in an expected value-based CBA (Watkiss et al. 

2014). Robustness approaches usually put implicit or explicit weights on possible 

outcomes. For example, some decision criteria which are employed to obtain 
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robust solutions, such as minimisation of maximum losses or maximum regret, 

focus only on outcomes under worst case-scenarios. Other robust decision criteria 

employ arbitrary scenario weights, or consider scenario outcomes to be equally 

likely (Gaspars-Wieloch 2014).  

Yet, it may not always be the case that the outcomes from risk-based 

optimisation and robustness analysis diverge due to similarities between the 

overall decision objectives. For example, recently robustness methods and 

approaches have been developed to study adaptive flood risk management and 

other climate adaptation strategies that can be changed at relatively low costs 

over time (Kwadijk et al. 2010; Merz et al. 2010; Haasnoot et al. 2013). This refers 

to the overall objective of decision-robustness, which is important for flood risk 

management in addition to the robustness of a system to withstand disturbances 

(Mens et al. 2011). Risk-based optimisation models with events of information 

arrival also consider decision robustness by quantitative evaluation of the 

flexibility of management strategies under the emergence of new information. 

To understand the quantitative effects of learning presented in this paper 

further applied economic analyses of flood risk management strategies is 

required, with extensions to implement the different types of learning. Sensitivity 

analysis allows the study of optimal long-run flood protection without the explicit 

modelling of information arrival (Zhu et al. 2007). However, anticipation of 

possible future information may help to avoid costly lock-in situations by giving 

weight to information scenarios in which non-incremental adaptation decisions 

would be required. Non-incremental changes in adaptation strategies tend to be 

costly, but early implementation could in some cases reduce long-run adaptation 

costs (Kates et al. 2012).  

2.6 Conclusions 

Climate change has introduced additional challenges for the economic 

analysis of flood risk management strategies. At the local level decisions need to 

be made on investment in flood risk reduction. At the global level strategies need 

to be defined on how to allocate adaptation funds for flood risk management in 

various regions of the world. This paper has discussed probabilistic extensions of 

cost-benefit analysis to identify economically efficient strategies under climate 

change. Uncertainty about the changes in return periods of hydro-meteorological 

extremes was introduced by probability-weighted scenarios. We revisited expert 
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elicitation as a means to study climate change uncertainty. Expert elicitation is 

controversial. Yet, there appears to be some consensus that at least some of the 

more extreme climate scenarios are less likely than others in the near term.  

Learning about climate change impacts has remained a largely unexplored 

domain in flood risk management. In the long run, uncertainty may be reduced 

because of scientific progress and longer time series of hydro-meteorological 

observations. Uncertainty reduction from statistical analysis of hydro-

meteorological observations is, however, not very likely in the near term as trend 

detection tests may remain inconclusive in the coming decades, and convergence 

will be slow due to the high degree of variability in these observations. We have 

discussed that investment responses in the past have been strongly driven by 

actual observations, both to evaluate the performance of water systems, for 

example with a calibrated rainfall generator, and by the occurrence of disasters. 

The analysis of the likelihood of and investment responses to possible climate 

change signals, either as a result of transitions in beliefs about climate change 

impacts, or induced by incidents, may therefore improve the economic efficiency 

of decisions on flood risk management strategies. We have argued that risk-based 

approaches reflect different decision-maker preferences and implementations of 

climate uncertainty than robustness approaches. We have highlighted that flood 

risk practitioners and policy-makers are not merely concerned with subjective 

estimates of expected outcomes. We therefore advocate the use of robustness 

methods in addition to, or combined with, cost-benefit analysis for the economic 

analysis of flood risk management strategies to support decisions. For further 

research, it would be interesting to combine cost-benefit and robustness solutions 

in a meta-analysis. 

Our paper contributes to the development of adaptation strategies through 

economic analysis of flood risk reduction under climate change. Local investments 

can be optimised, and global strategies on the allocation of adaptation funds can 

be enhanced if the costs and benefits of flood risk management strategies of 

individual countries are understood. Global strategies on the allocation of 

adaptation funds for flood risk management can then be derived from an 

economic analysis of costs and benefits of flood risk reduction that considers 

uncertainty under climate change. 
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3. Optimal dike investments under uncertainty and learning about 

increasing water levels*
 

 

 

Water level extremes for seas and rivers are crucial to determine optimal dike 

heights. Future development in extremes under climate change is, however, 

uncertain. In this paper we explore impacts of uncertainty and learning about 

increasing water levels on dike investment. We extend previous work in which a 

constant rate of structural water level increase is assumed. We introduce a 

probability distribution for this rate, and study the impact of learning about this 

rate. We model learning as a single stochastic event where full information 

becomes available. Numerical solutions are obtained with dynamic programming. 

We find that the expected value of information can be substantial. Before 

information arrives, investment size is reduced as compared to the benchmark 

without learning, but investment frequency may be increased. The impact of 

learning on the initial investment strategy, however, is small as compared to the 

impact of uncertainty about increasing water levels by itself. 

 

                                                 
*
 Published in Journal of Flood Risk Management: 

van der Pol TD, van Ierland EC, Weikard HP (2014) Optimal dike investments under 

uncertainty and learning about increasing water levels, Volume 7, Issue 4, pages 308-318 
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3.1 Introduction 

Many countries are challenged to recurrently heighten their river and sea 

dikes for reasons of, for instance, economic growth, climate change impacts on 

water levels or soil subsidence. Estimated effects of climate change on peak river 

discharges (cf. Graham et al. 2007; Hurkmans et al. 2010; te Linde et al. 2010) as 

well as sea level rise predictions (cf. IPCC 2007; Guillerminet and Tol 2008; 

Katsman et al. 2008; Vellinga et al. 2009; Schaeffer et al. 2012) are, however, 

highly uncertain. 

As expenditures on dikes place a significant burden on public budgets, 

economically efficient investment in dikes is of major importance to governments 

of countries with flood prone densely populated areas or low lying areas 

representing significant economic activity. The objective is to find a balance 

between investment costs and the reduction of expected damage costs of dike 

heightening over time. This is a cost-benefit approach which can be used to 

inform decision-makers on safety standards (e.g. Kind 2014). In a cost-

effectiveness analysis, in contrast, social welfare is not maximised. Costs, for 

example, are minimised under a given safety standard or expected damages are 

minimised under a budget constraint. 

Water level extremes for seas and rivers are crucial to determine optimal dike 

heights. In this paper we explore the impacts of uncertainty about increasing 

water levels and the resolution of the uncertainty on optimal dike investment and 

costs. It is likely that uncertainty about the structural increase in extreme water 

level observations and the related flood risk under climate change will be reduced 

over time as time series grow longer, as ‘low-data’ methods are developed and as 

model uncertainties in climate and hydrological models are reduced (cf. Wagener 

et al. 2003; IPCC 2007; Lenderink et al. 2007; Cunha et al. 2011). We refer to the 

event of obtaining new information as learning. We study the impact of 

uncertainty and learning on optimal dike investment strategies using a Bayesian 

approach applying informed priors for the structural water level increase. 

Structural water level increase is defined as the annual rate of the shift of the 

cumulative water level distribution (η) (van Dantzig 1956). For instance, if the 

exceedance probability of extreme water level � in year � is given, then in year � + 1 the same exceedance probability applies to an extreme water level � + O.  
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A number of optimisation models have been developed to study the dike 

heightening problem (van Dantzig 1956; Speijker et al. 2000; Eijgenraam et al. 

2012; van der Pijl and Oosterlee 2012). Van der Pijl and Oosterlee (2012) derive 

optimal increments from Hamilton-Jacobi-Bellman equations. The model is solved 

for stochastic economic growth. Evidence, however, is lacking that a stochastic 

process with drift can be used to represent water levels (cf. Booij 2005; Katsman 

et al. 2008).  

Various other approaches have been used to deal with uncertainty, ranging 

from sensitivity analysis (Eijgenraam 2006) to minimisation of regret (Brekelmans 

et al. 2012) or mean-variance minimisation (Kuijper and Kallen 2012), and 

pragmatic approaches (Hoekstra and de Kok 2008). ‘Robust’ solutions perform 

best according to some regret minimising rule. Such solutions, however, rely on 

defined worst case scenarios and do not minimise expected costs (cf. Brekelmans 

et al. 2012). In Eijgenraam (2006) an illustration is provided how one would 

respond to the arrival of perfect information on the structural increase in extreme 

water levels. Hoekstra and de Kok (2008) propose an approach in which dike 

height is based on the worst case observation so far plus a safety margin. Figure 

3.1 illustrates the recurrent heightening of a dike for a river dike ring in the 

Netherlands. It shows dike heightening strategies for different rates of structural 

water level increase (η): ‘no climate change and no soil subsidence’ (O = 0), ‘low 

structural increase in extreme water levels’ (OR = 0.5) and ‘high structural 

increase in extreme water levels’ (OS = 1.0). Note that even without climate 

change the dike will be recurrently heightened if positive economic growth in the 

area behind the dike is assumed.  
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Figure 3.1 Base case solution with relative dike heights over time (ℎ�) for a 

homogeneous dike without uncertainty and without learning for different values 

of O with the model and calibration of den Hertog and Roos (2008) (dike ring 15: 

Lopiker- en Krimpenerwaard area, the Netherlands). 

A probabilistic analysis which separates the effects of uncertainty about 

increasing water levels from uncertainty resolution is missing in the growing 

literature on optimal investment in dikes. The expected value of information from 

learning is positive for two reasons. Firstly, one can respond to information. For 

instance, if one would learn that ‘sea level rise is high’ dike heightening effort 

would be increased from that moment onwards. Secondly, total costs, i.e.: the 

aggregate of discounted expected damage and investment costs, may be reduced 

by changing initial dike investments before learning takes place. 

Examples of methods to analyse ‘real’ investment decisions under 

uncertainty, irreversibility and learning are tree analysis, dynamic programming 

and methods related to optimal stopping problems. For an overview of real 
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options literature see Schwartz and Trigeorgis (2004). The ability to change an 

investment project is in this literature referred to as ‘managerial flexibility’. In the 

dike heightening problem both the timing of consecutive dike heightening as well 

as investment size can be adapted over time. One could think of a discretised time 

horizon where there is an option to re-invest in the dike at every time step. 

Together, the decisions constitute the investment strategy.  

We study the dike heightening problem with a homogeneous dike model. The 

problem of investment in a homogeneous dike was first described by van Dantzig 

(1956) after a large flooding event in the Netherlands in 1953. The problem has 

later been readdressed by Eijgenraam et al. (2012) by including economic growth 

and by Brekelmans et al. (2012) with a multi-segment dike and robust 

optimisation. The deterministic setting of the problem has been solved 

analytically, with dynamic programming and as an impulse control problem (cf. 

den Hertog and Roos 2008; Chahim et al. 2012; Eijgenraam et al. 2012). Results 

have been made available to policy makers (Duits 2010).  

We use dynamic programming to obtain numerical results for the case with 

uncertainty and learning. Dynamic programming is similar to backwardly solving a 

discrete ‘tree’. The tool of tree analysis has been used by Cox et al. (1979) as an 

alternative model for financial option pricing in discrete time. The tool of tree 

analysis has also been adopted in real investment analysis (Conrad 1980). It is now 

widely applied (e.g. Copeland and Antikarov 2003). 

3.2 The optimisation problem 

To set the stage, we introduce the main elements of the deterministic 

exponential homogeneous dike model developed by van Dantzig (1956), 

Eijgenraam (2005; 2006), den Hertog and Roos (2008) and Eijgenraam et al. 

(2012). We extend this base model with a probability distribution for the rate of 

structural water level increase and we introduce perfect learning where full 

information on the structural water level increase becomes available. We 

distinguish between perfect learning at a given moment in time and perfect 

learning modelled as a stochastic event. 
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3.2.1 The deterministic base model 

Cost-benefit analysis in the context of flood prevention goes to the 1936 US 

Flood Control Act and earlier. To our knowledge, van Dantzig (1956) was the first 

to provide a cost minimisation model for optimal investment in a ‘homogeneous’ 

dike. A homogeneous dike can be defined as a ‘single segment’ dike which can be 

represented by a single set of parameters. Clearly, water defence systems such as 

dikes are rarely homogeneous. An engineering level analysis encompasses 

assessment of complex failure probabilities (e.g. Kingston et al. 2011). Consider a 

risk-neutral decision maker who minimises total costs (Eq. (3.1)): 

minU,V � =BWC����X +� .�����Y
 

Y
CZ ��																																																																														(3.1) 

where � is the Net Present Value of the total expected costs composed of the sum 

of the   construction costs of a sequence of dike investments (WC) at moments �C  

(U = /�C0C∈{ ,�,�,..}) and the expected damage costs (.�) over time which are 

discounted at rate ). In the sequel we define  � = 0. At �  the dike may or may 

not be heightened. The solution to the optimisation problem consists of two 

control variables: optimal dike heightening moments U = (� , ��, . . ) and amounts V = (\ , \�, . . ) at those moments in time. When the dike is heightened it is 

assumed that it is raised without delay. 

The expected damage at time � is equal to the sum of probability weighted 

flood losses at time �. We adopt the exponential expected damage cost function 

(.�) for flooding events presented in den Hertog and Roos (2008) and Eijgenraam 

et al. (2012) (Eq. (3.2)): 

.� = :],�2� = :], � 	^(	_��9�)2 �`�ab9� 																																																																							(3.2)  
The value of loss 2� depends on the economic value behind the dike at time �. The 

exceedance probability :],� in Eq. (3.2) has been discussed by van Dantzig (1956). 

The initial flood probability :],  can be estimated from water level observations, 

for instance annual maximum water levels or peak-over-threshold observations. 

High water levels will be observed more frequently over time due to soil 

subsidence and sea level rise or larger peak flows. The relationship between 

climate change impacts and increasing water levels at the local level is complex. 
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The structural increase in frequency of occurrence of extreme water levels is 

represented by a constant log-linear
 

shift of the cumulative extreme value 

distribution over time. We refer to O as (the rate of) structural water level 

increase which, for example, can be expressed in cm/year. If only a single failure 

mode is considered, namely that the dike will fail when the water level reaches 

the ‘critical dike height’ and not otherwise, then there is no difference between 

exceedance and flood probability. ℎ� is the dike height at time � relative to ℎ = 0 

and c is a shape parameter. When relevant we will distinguish between the dike 

height before heightening (ℎC) and dike height after heightening (ℎCa� = ℎC + \C). 

The annual growth of the economic value behind the dike is represented by 

parameter d.  Parameter e represents the additional losses incurred per cm dike 

height increase. The homogeneous dike model has been applied in the context of 

a sea dike and in the context of river dikes (cf. van Dantzig 1956; Eijgenraam et al. 

2012).  

We also adopt the exponential investment cost function of den Hertog and 

Roos (2008) and Eijgenraam et al. (2012) (Eq. (3.3)): 

WC = (fg + h\C)�i9Xj? 																																																																																																					(3.3) 
with fg > 0 if \C > 0. fg is a fixed cost incurred every time the dike is heightened 

and h represents  constant marginal heightening costs. l is a constant for the 

marginal cost increase in dike height. Due to fixed costs it will never be optimal to 

continuously heighten a dike (van Dantzig 1956).  

With exponential damage costs (Eq. (3.2)) and exponential investment costs 

(Eq. (3.3)) a periodic solution to the first order conditions of the problem (Eq. 

(3.1)) is obtained (den Hertog and Roos 2008). Periodicity implies that dike 

increments (Eq. (3.4a)) and periods of time between consecutive dike heightening 

moments are constant (Eq. (3.4b)), i.e.: 

\C = \m		∀o ≥ 1																																																																																																																(3.4q) 
�Ca� − �C = r		∀o ≥ 1																																																																																																				(3.4h) 
Although numerical results suggest that periodic solutions are global minima, it 

remains as yet unproven (cf. Chahim et al. 2012; Eijgenraam et al. 2012). 

When investment and damage costs are not balanced over time a dike will 

become ‘unhealthy’ at some moment in time. A dike is defined to be ‘unhealthy’ 
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when the damage reduction at time � associated with dike increment \m  is larger 

than the costs of the investment accruing to that year (Eijgenraam 2006):  

.�X/ℎC0 − .�X/ℎC + \m0 > )WC(\,s ℎC + \m)																																																																				(3.5) 
Den Hertog and Roos (2008) provide an equivalent mathematical result. Thus, a 

‘healthy’ dike is heightened when condition (5) holds with equality. The 

mathematics has been extensively dealt with by den Hertog and Roos (2008) and 

Eijgenraam et al. (2012). We will not repeat it here, but we will apply the 

analytical results to compute expected costs after perfect learning.  

3.2.2 The benchmark model with uncertainty 

In the base model the rate of the water level increase (O) is assumed to be 

known. Now we explore a benchmark model where we relax this assumption. We 

introduce a probability distribution for O which represents the beliefs about the 

structural increase in extreme water level observations. Let K be the set of 

possible states of O, and define :&  the probability that O& ∈ K is the true state. If 

no new information arrives the state of O remains unobserved and beliefs are 

unaltered. Hence, the objective function of the benchmark model with 

uncertainty is: 

�t;∗ = minU,V B:&�(U, V|O = O&)& 																																																																																						(3.6)	 
where �t;∗  denotes the total discounted expected costs for the no learning case 

with a constant but unobserved state of O. The first-order conditions of (6) are: 

B :& vv�C �(U, V|O = O&)& = 0																																																																																					(3.7q) 
B :& vv\C �(U, V|O = O&)& = 0																																																																																				(3.7h) 
Substituting (2) and (3) in (7a), and rearranging gives (cf. den Hertog and Roos 

2008): 
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B:&. �(^_
a`)�X�(ia^�b)9X/�(^�b)IX − 10& = )(fg + h\C)																																(3.8) 
No time-independent O̅ = z∑ :&O&&  can be identified to eliminate :&  from Eq. 

(3.8). Hence, no periodic strategy exists which is the certainty equivalent of the 

optimal strategy under the benchmark model. This result is confirmed by our 

numerical analysis (see Figure 3.3). This figure also includes results from the 

benchmark model extended with learning. We now turn to the issue of learning. 

3.3 Learning 

We introduce a single moment in time at which perfect information is 

received. This moment is referred to as the ‘moment of learning’ (�;). We first 

analyse optimal investment when the moment of the information arrival is given. 

Subsequently, a setting is introduced where the moment of learning is stochastic. 

3.3.1 Perfect learning with a given moment of learning 

After uncertainty resolution at � = �;  the dike heightening problem is 

reduced to the base model. The optimal dike heightening strategy is then 

conditional on the observed state of O and the height of the dike at �;. We call the 

costs incurred after learning terminal costs (|): 

 

|/ℎ�} , �; , O&0 = minU~,V~ B WC(ℎC , \C)����X�
CZC� + �.�(ℎ�|O&)�����

�} ��																												(3.9) 
with U~ ⊆ U and V~ ⊆ V containing all �C  and \C  for which �C ≥ �;  (o ≥ o�). We 

specify * as the end of the time horizon, and � as the index of the final 

heightening. For every 3-tuple (ℎ�} , �; , O&) a unique ‘best response’ strategy exists. 

This is the optimal dike heightening strategy given the height of the dike at time of 

learning (ℎ�}), the moment of learning (�;), and the rate of water level increase 

(O). 
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Define	�@(ℎ�) the total discounted costs incurred in period 3 on interval 

[*,∞). For the model to be applicable it must hold that lim�→Y 	�@(ℎ�) = 0 .
1
 We 

choose * such that Eq. (3.10.1) is approximately true. We discretise time and dike 

height on interval [0, �;) and solve the investment problem backwards with 

dynamic programming (Eq. (3.10.1)-(3.10.3)): 

�@(ℎ�) = 0																																																																																																																			(3.10.1) 
�@��/ℎ�}0 =B :&|(ℎ�} , �; , O&)& 																																																																													(3.10.2) 
��(ℎ�) = minI� ��B :& � .�(ℎ� , O&)��������j?

��& � + W�(ℎ�, \�)�����
+ ��a�(ℎ�a�)!																																																																													(3.10.3) 

where � = 0,1, . . , 3 − 2 , and with dike increment steps of ∆\ and time steps of ∆�. Hence,  \� = {0, ∆\, 2∆\, . . , ℎH��} and �� = �∆�. 
Eq. (3.10.2) contains the expected terminal costs from �;  onwards. Total expected 

terminal costs are the weighted terminal costs of scenarios O& ∈ K (( = 1,2, . . ) 
with prior probabilities :&  of occurrence. Eq. (3.10.3) is the Bellman equation. It is 

solved backwards in time. First Eq. (3.10.2) is calculated for ℎ�} = {0, ∆\, 2∆\, . . , ℎH��},	followed by ��Z@��, ��Z@�F  etc. Lastly, �;∗: = � (0) is 

obtained. 

If the timing of arrival of perfect information is given, the optimal height of 

the dike at the moment of learning is generally lower than the height of the dike 

at that moment for the case without learning. This is best understood by analysing 

a simple example. Consider the following case. At  ��(�) a dike can be heightened 

with \m(�). We use � to refer to some dike heightening strategy: 

�(U, V) = �� �� ��			. .\ \� \�				. .� 

                                                 
1
 This is satisfied when the discount rate is sufficiently high. 
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Assume, furthermore, that perfect information on the structural increase in 

extreme water levels will arrive at a given moment �;(��(�) < �; < ��(�)) and 

that instead of heightening the dike at ��(�) one could wait for the information 

before heightening the dike. Which of the two strategies, waiting or heightening 

the dike at ��(�) with \m(�), is less costly? The dilemma is graphically illustrated in 

Figure 3.2. 

 

 

 

 

Figure 3.2 A simplified dike investment problem with two choices: construct a 

dike at �� with height \m  or postpone investment till learning at moment �;(�; > ��) 
Applying the dynamic programming equations (3.10.1-3.10.3) to this simplified 

investment problem gives: 

�;∗ = min ��B :&� .�(ℎ� = 0|O&)�����}
 ��& + ��(0)� ,��W�/\m(�)0�

���?(�)

+B :&& � � .�(ℎ� = 0|O&)�����?(�)
 �� + � .�(\m(�)|O&)�����}

�?(�) ���
+ ��/\m(�)0���																																																																																			(3.11) 

In Eq. (3.11), the discounted investment and damage costs incurred after learning 

are ��(0) if ℎ�} = 0, or ��/\m(�)0 if ℎ�} = \m(�). Expected damage costs on interval [� , �;) are higher when investment is postponed till �;. The difference in expected 

damage costs on the interval is: 

ℎ� 

��(�) �  ��(�) 

\m(�) 

�; 
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B :& � � .�(ℎ� = 0|O&)�����}
�?(�) �� − � .�(\m(�)|O&)�����}

�?(�) ���& 																					(3.12) 
The savings on investment when waiting are: 

�fg + h\m(�)� �iIs(�)���?(�)																																																																																										(3.13) 
The additional terminal costs due to postponement are: 

B :&|/ℎ�} = 0, �; , O&0& −B :&|(\m(�), �; , O&)& 																																																					(3.14) 
Note that ��/ℎ�} = 00 > ��/ℎ�} = \m(�)0 because total expected terminal costs are 

strictly decreasing in dike height. Hence, it is less expensive to wait with 

heightening the dike if the gains from delaying the investment are higher than the 

sum of the expected additional damage costs before heightening, and the 

difference in expected terminal costs. 

The above example illustrates that delaying a dike investment can be an 

effective strategy to account for the possible arrival of new information. Another 

simplified setting is one where waiting at ��(�) is not considered. Instead, imagine 

an alternative increment \� < \m(�) at ��(�). Clearly, changing the investment size 

is another strategy to account for the possible arrival of information.  
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Figure 3.3 Case study (dike ring 15: Lopiker- en Krimpenerwaard area, the 

Netherlands): i) Deterministic base case strategy (no uncertainty, no learning) for O = 0.76. ii) Uncertainty benchmark with O~3(0.73,0.12) and no learning. iii) 

Optimal strategy before learning for  �; = 55 (left panel) and �; = 60 (right panel), 

which is followed by iv) a best response strategy after perfect learning (a selection 

of best response strategies is displayed) 

Figure 3.3 displays flexible dike heightening strategies resulting from Eq. 

(3.10.1)-(3.10.3) with a given moment of learning at � = 55 years (left panel) or � = 60 (right panel) for a dike ring. It shows that for this ring the introduction of a 

probability distribution for the rate of structural water level increase enhances 

dike increments over time and decreases time intervals between consecutive 

increments as compared to the deterministic base case. The left panel shows an 

example for a case where the ‘option to wait’ is exercised. The adverse effects of 

waiting, however, are reduced by heightening the dike at �  more than for the 

uncertainty benchmark without learning (ℎ� = 57.5|	�; = 55 versus ℎ� = 55.5| 

no learning). The right panel shows for learning at � = 60 that the dike is 

heightened for a second time before learning. This example illustrates that the 
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possibility of learning in the future may have an effect on the entire dike 

heightening strategy before the information arrival. Comparing the left and the 

right panel also shows that differences in expected moment of learning result in 

different optimal dike heightening strategies. When �; = 60 it is not worthwhile 

to wait for the information, and the dike is heightened at � = 51 but its height at �;  is lower (ℎ� = 107.5|	�; = 60) than the optimal height under the uncertainty 

benchmark (ℎ� = 109|no learning). 

3.3.2 The expected value of information 

The expected value of information is equal to the (quasi) option value of 

flexibility (Conrad 1980). Recall that minimum total discounted expected costs for 

the benchmark case without flexibility are defined �t;∗  (Eq. (3.6)). The minimum 

total discounted expected costs with a strategy adjustment after learning are �;∗ 
(Eq. (3.10.3)). Hence, the total expected value of information is equal to:  

2�W� = �t;∗ 	− �;∗																																																																																																											(3.15) 
The expected value of information is monotonically decreasing in �;: 
vv�  2�W� ≤ 0																																																																																																																					(3.16) 

Eq. (3.16) implies that when perfect information on the structural water level 

increase arrives later in time its value decreases due to discounting. In the limit 

(�; → ∞) total expected costs can no longer be reduced whatever information is 

received.  

Measure 2�W� follows from a reference scenario where the decision maker 

never receives information (cf. Woodward et al. 2011). However, decision makers 

can adjust the initial investment strategy when new information becomes 

available even if the event of learning was not expected. Define �¢∗ as the 

expected total costs resulting from an initial strategy derived from the uncertainty 

benchmark model (�∗) which is adapted optimally at �;, i.e.: 
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�¢∗ =B :& �� .�(ℎ�(�∗)|O&)�����}
 ���& +BWC(ℎC(�∗), \C(�∗))R

CZ ��£�X
+B :&|(ℎ�} , �; , O&)& 																																																																						(3.17) 

 

with �R < �; ≤ �Ra�. 

We distinguish between 2�W�, the total expected value of information defined as 

the difference in expected costs between the benchmark and the best strategy 

when it is known that information will arrive at �;, and the expected value of 

information from reactive flexibility which is the difference between the 

benchmark and the best reactive strategy when it is not known that information 

will arrive at �;: 2�W� = �t;∗ 	− �¢∗																																																																																																											(3.18) 
We can, furthermore, compare reactive flexibility with an optimal flexible 

strategy: 

2�WF = �¢∗ − �;∗																																																																																																													(3.19)  
Measure 2�WF is the expected value of information of knowing when we will 

learn. It is associated with changes in the initial investment strategy. Hence, we 

have disaggregated the total expected value of information (2�W�) in two 

components: 

2�W� = 2�W� + 2�WF																																																																																																				(3.20) 
where the total expected value of information is separated in the expected value 

of learning the true O if the event of learning itself is not expected, and the value 

of knowing that we will learn in the future. 

3.3.3 Probabilistic learning 

It was shown that dike investment is changed by the timing of learning. It is, 

however, hard to identify the timing of learning about the structural increase in 

extreme water level observations. For this reason, we model perfect learning now 

as a probabilistic event. Figure 3.4 displays the discretised dike heightening 
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problem with a probabilistic moment of learning (�;). We assume an 

approximation of an exponential survival model where the conditional probability 

of perfect learning (:;) is constant. A maximum moment of learning (�;,H��) is 

included. For simplicity, it is assumed that if learning has not occurred before �;,H�� learning will occur at �;,H��. 

Extending Eq. (3.10.1)-(3.10.3) with conditional learning probabilities gives: 

 �@(ℎ�) = 0																																																																																																																			(3.21.1) 
�@��/ℎ�}0 =B :&|(ℎ�} , �;,H��, O&)& 																																																																					(3.21.2) 
��(ℎ�) = 

minI� ¤¥¦
¥§(1 − :;)��B :& � .�(ℎ�, O&)��������j?

��& �+ W�(ℎ�, \�)����� + ��a�(ℎ�a�)�
+:;B:&|(ℎ� , �� , O&)& ¥̈©

¥ª		 
(3.21.3) 
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Figure 3.4 Event tree 

3.4 Implementation & results 

We use a hybrid method which combines dynamic programming and base 

case analytics after uncertainty resolution to find optimal investment strategies 

before and after perfect learning.
2
 Eq. (3.21.1)-(3.21.3) are solved to determine 

                                                 
2
 The code is provided on request. 

� =B :&|& /ℎ�} , �; , O&0 
with :(�; = � ) = :; 

� = W (\ ) +B :& � .�(ℎ�|O&)�������?
�>&+B :&|& (ℎ�} , �; , O&) 

with	:(�; = ��) = (1 − :;):; 

… � =BW�(\C , ℎC��)�
CZ ����X

+B :& � .�(ℎ�|O&)�������},®¯
 &+B :&|& (ℎ�} , �; , O&) 

with 	:(�; = �;,H��) = (1 − :;)�},®¯∆�  

�; = �� 

�; > �� 

�; = �  

�; > �  

�; = �;,H�� 
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best flexible dike heightening strategies and total expected costs (�;∗). To limit 

computation time we do not compute best response strategies (|) with dynamic 

programming. Instead, best responses are computed with analytical results of 

Eijgenraam et al. (2012) and built-in Matlab solvers ‘fzero’ and ‘fminbnd’. Dike 

heightening strategies of the uncertainty benchmark without learning are found 

with dynamic programming (Eq. 3.10.1 and 3.10.3). We use a time horizon of 1500 

years with 300 years being cut off (* = 1200) which closely approximates an 

infinite time horizon problem under the considered discount rates () = 0.025 and ) = 0.04). The computation of �¢∗ is straightforward: the benchmark dike 

heightening strategy is combined with best responses when information arrives. 

The event of learning might take place at � , or at � + ∆� etc. as described in 

Figure 3.4. 

The implementation is executed in Matlab (R2012a; 64-bit) with local parallel 

computing on a pc with a processor with 4 cores and 16Gb internal memory. 

Solutions are obtained for a grid of ∆� = 0.5 (year) and ∆ℎ = 0.5 (cm). To further 

reduce solution time we define a non-binding maximum increment (\H��) and a 

non-binding maximum dike height at �;,H�� (ℎH��). The maximum increment and 

maximum dike height are chosen sensibly with results from test-runs with a 

courser grid. Numerical results are presented for a river dike ring protecting the 

Lopiker- en Krimpenerwaard area in the Netherlands southwest of Utrecht; see 

Hoogheemraadschap De Stichtse Rijnlanden (2006) and ter Horst and Jongejan 

(2013). Table 3.1 contains the calibration of this ring.  

Table 3.1 Calibration of ring 15  

  ring 15
* 

 °± 0.001372 

 2± 11810.4 c 0.0502 

 d  0.02 

 e 0.003764 

 l 0.0098
 

 � 125.6422
 

 h 1.1268
 

* 
Source: den Hertog and Roos (2008) 
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Currently, downscaled climate change projections and impact assessments 

are provided without probability distributions (e.g. van den Hurk et al. 2006; 

Hurkmans et al. 2010). We perform a sensitivity analysis with two distributions 

and two standard deviations. In Hurkmans et al. (2010) peak discharge estimates 

range from 1.1-1.6 *10
4
 m

3
/s for the river Rhine basin at the gauge station of 

Lobith for a return period of one hundred years. If these estimates would 

represent a 90% confidence interval of a normal distribution the standard 

deviation would be 1.5*10
3
 m

3
/s. Longer return periods than one hundred year 

are applicable for primary water defences and standard deviation increases with 

return period. In the original base model a structural increase in extreme water 

levels of 0.76 cm/year is included for ring 15. From this a standard deviation in the 

order of 0.1 cm/year might be reasonable. 

For comparison, the mean is calibrated such that the expected total costs of 

the benchmark model with uncertainty are approximately equal to the estimate 

found under the original base case (545 million €) with a discount rate of 4% and a 

standard deviation of 0.12. For ring 15 this results in O̅ = 0.73 with a normal 

distribution or O̅ = 0.41 for a lognormal distribution. We make use of equal bins 

of O with size 0.01 and truncate the distributions: two-sided at O = 0 and O = 3.5 

for the normal distribution and right-sided at O = 3.5 for the lognormal 

distribution.   

Perfect learning is a theoretical construct. Little is known about the process of 

learning about climate change. We use a constant biannual conditional learning 

probability of 1/100 and a maximum moment of learning at 400 years. 

The impact of uncertainty and learning on dike heightening is demonstrated 

below for the dike ring protecting the Lopiker-Krimpenerwaard area in the 

Netherlands. This is a dike with a ‘maintenance backlog’ at �  which implies that 

the dike is heightened immediately. Figure 3.5 displays results for a lognormally 

distributed rate of water level increase. We already reported that a probabilistic 

rate increases dike height: time intervals between consecutive heightening 

decrease and dike increments increase over time. This is illustrated by the 

‘uncertainty, no learning’ line in Figure 3.5. Probabilistic learning tends to 

decrease overall investment in dikes: dikes are generally lower when learning has 

not yet occurred compared to the base case with uncertainty but without 

learning. However, we find a tendency to heighten dikes more often. This finding 

is illustrated by the line ‘best flexible strategy before learning’ in Figure 3.5. For 
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example, using a grid of 0.5 cm and 0.5 years the first increment with learning is 

found to be 0.5 cm lower than without learning. The third increment takes places 

at � = 92.5 with learning rather than at � = 94 but its increment size is smaller: 

55.5 cm with learning rather than 63 cm without learning respectively. 

 

Figure 3.5 Optimal dike heightening strategy with a probabilistic O without 

uncertainty resolution ( ) and with probabilistic uncertainty resolution  

( ) for O~ ²³3(0.41,0.12) and ) = 0.04 

Table 3.2 displays the results of a sensitivity analysis with two standard 

deviations (´), discount rates ()), and distribution types. The following is 

observed. Firstly, a larger standard deviation increases total discounted expected 

costs both without and with learning. This finding is independent of the assumed 

discount rate and the assumed distribution type. Secondly, from Table 3.2 it can 

be concluded that the total value of information (2�W�) is largest when the impact 

scenarios of the higher quantiles have significant probability mass and relatively 
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low discount rates are used. This can be observed by comparing 2�W� under a 

normal and lognormal distribution in Table 3.2. The total expected value of 

information can even exceed total expected costs (i.e.: 2�W� > �;∗) indicating that 

learning might reduce total expected costs with more than half as compared to 

total expected costs under the benchmark model. Thirdly, initial dike heightening 

strategies without and with learning largely coincide under a normal distribution. 

Gains of anticipation of information arrival are approximately zero (2�WF) under a 

normally distributed O for the considered dike ring with the described 

calibrations. With a heavy-tailed distribution gains of expecting information arrival (2�WF) are higher. We find a reduction in total discounted expected costs of 15.1 

million Euro (1.0% of costs under the benchmark) for the probabilistic learning 

case with a relatively low discount rate () = 2.5%), a relatively high standard 

deviation (´ = 0.14) and a lognormal distribution for O. 
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Table 3.2 Total discounted expected costs under the learning case and the 

expected value of information in million € and as percentage of �t;∗  (in brackets) 

for two standard deviations, discount rates and distribution types (ring 15) 
 

   ´    )   Normal   Lognormal   

0.12 0.025  �;∗ 863.8 (96.6) 723.4 (47.3) 

     2�W� 30.7 (3.4) 805.0 (52.7) 

     2�WF 0.0 (0.0) 1.6 (0.1) 

  0.04  �;∗ 539.2 (99.1) 474.7 (87.3) 

     2�W� 4.7 (0.9) 69.2 (12.7) 

     2�WF 0.0 (0.0) 0.3 (0.1) 

0.14 0.025 �;∗  867.1 (95.2) 727.3 (46.1) 

  
  2�W�  43.8 (4.8) 850.9 (53.9) 

  

     2�WF 0.0 (0.0) 15.1 (1.0) 

  0.04  �;∗ 540.1 (98.8) 475.5 (86.7) 

  
  2�W�  6.4 (1.2) 73.2 (13.3) 

  

  
 

2�WF 0.0 (0.0) 0.4 (0.1) 

3.5 Discussion 

No prior distributions of beliefs about the likelihood of climate change 

impacts have been reported so far; only impact scenarios are available (cf. van 

den Hurk et al. 2006; IPCC 2007). The numerical results show that dike investment 

is increased under a lognormal distribution for the rate of structural water level 
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increase as compared to a normal distribution. Impacts of learning are also larger 

under the former distribution. These findings illustrate the importance of 

distributional assumptions for increasing water levels to compute optimal dike 

heights. In the absence of consensus on likelihood of climate change impacts 

robust control approaches can be used instead (e.g. Brekelmans et al. 2012). 

The process of learning has been represented by an exponential survival 

model with a constant conditional learning probability. When the probability of 

learning in the near future is high the optimisation problem approaches the case 

with a given moment of learning. When learning probabilities are close to zero, in 

contrast, the solutions of learning and no learning cases are approximately equal. 

An improved understanding of when new information might become available 

and of the degree of uncertainty reduction over time would support the analysis. 

Some authors have argued that climate change uncertainties have not decreased 

in the past decades despite improved understanding of the climate system and 

that, therefore, uncertainty may not be reduced in the short run (e.g. Hallegatte 

2009). Learning about climate change impacts has been represented in a 

simplified manner. An alternative approach is to replace the assumption of 

probabilistic perfect learning with gradual learning through Bayesian updating. 

We have used an existing base model which omits several real-world issues. 

For instance, it is assumed that the dike is homogeneous and that it has a single 

failure mode (van der Most and Wehrung 2005). Also river system interactions are 

not modelled (Markus et al. 2010). Our learning analysis can be extended with 

such features for real-world applications. The analysis in this paper can be used to 

obtain a first indication of impacts of uncertainty and learning on optimal dike 

heightening strategies. Further research on priors and the learning process about 

climate change impacts is needed.  

3.6 Conclusions 

It is unlikely that expectations about climate change impacts will remain as 

they are today, while climate change impacts are amongst the key determinants 

for decision making on optimal dike height. These two observations motivate our 

paper. We have extended an existing dike heightening model with a probability 

distribution for the rate of structural water level increase to study impacts of 

uncertainty and uncertainty resolution on dike investment and expected costs. 

The analysis contributes in three ways to the understanding of the problem.  
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(1) The analysis reveals important gaps in the current state of research. These 

gaps need to be filled to solve the dike heightening problem with a greater 

accuracy. It was shown that prior probability distributions constructed around 

climate change impact scenarios are needed, as well as an improved 

understanding of the learning process about climate change impacts. 

(2) We show that a risk of overinvestment exists when learning is excluded 

from the analysis, and that uncertainty by itself tends to increase investment over 

time. We explain why initial investment in dikes is reduced when uncertainty is 

high but uncertainty is reduced in the near future as compared to a strategy 

where future learning is not expected. Our numerical findings also suggest that 

the initial investment frequency may be increased. The effect of uncertainty as 

such increases the first dike investment and for the presented cases it also 

accelerates and increases next investments.  

(3) Learning may reduce total discounted expected costs, the aggregate of 

discounted costs of dike heightening and discounted damage costs, substantially. 

For the reported cases we find expected values of information (2�W�) of 0.9% − 53.9%	of total costs of the uncertainty benchmark. Hence, learning might 

even reduce total discounted expected costs by more than half.  

(4) We find that first dike increments are similar before learning for the 

studied cases, whether or not the event of learning is expected from the start. The 

cost difference between a flexible strategy anticipating information arrival and a 

benchmark strategy which is adjusted in response to new information is small for 

most investigated cases (2�WF < 1%).  

Our results indicate that current and short-term dike height decisions are 

weakly affected by future learning and this suggests that it could be left aside in 

these decisions. Furthermore, it was shown that perceptions of the likelihood of 

climate impacts have a significant effect on initial investments and that the value 

of climate change impact information can be substantial especially when 

information may become available in the near future. We have modelled learning 

as an exogenous event. With research, however, it might be possible to influence 

the timing of learning in order to improve the quality of the information on which 

decision making will be based. That would make it possible to reduce the overall 

expected costs of adaptation.  
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4. Impacts of rainfall variability and expected rainfall changes on 

cost-effective adaptation of water systems to climate change* 

 

 

Stormwater drainage and other water systems are vulnerable to changes in 

rainfall and runoff and need to be adapted to climate change. This paper studies 

impacts of rainfall variability and changing return periods of rainfall extremes on 

cost-effective adaptation of water systems to climate change given a predefined 

system performance target, for example a flood risk standard. Rainfall variability 

causes system performance estimates to be volatile. These estimates may be used 

to recurrently evaluate system performance. This paper presents a model for this 

setting, and develops a solution method to identify cost-effective investments in 

stormwater drainage adaptations. Runoff and water levels are simulated with 

rainfall from stationary rainfall distributions, and time series of annual rainfall 

maxima are simulated for a climate scenario. Cost-effective investment strategies 

are determined by dynamic programming. The method is applied to study the 

choice of volume for a storage basin in a Dutch polder. We find that ‘white noise’, 

i.e. trend-free variability of rainfall, might cause earlier re-investment than 

expected under projected changes in rainfall. The risk of early re-investment may 

be reduced by increasing initial investment. This can be cost-effective if the 

investment involves fixed costs. Increasing initial investments, therefore, not only 

increases water system robustness to structural changes in rainfall, but could also 

offer insurance against additional costs that would occur if system performance is 

underestimated and re-investment becomes inevitable. 

  

                                                 
*
 Published in Journal of Environmental Management: 

van der Pol TD, van Ierland EC, Gabbert S, Weikard HP and Hendrix EMT (2015b) Impacts 

of rainfall variability and expected rainfall changes on cost-effective adaptation of water 

systems to climate change, Volume 154, pages 40-47 
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4.1 Introduction 

There is growing evidence that climate change will lead to an increase of the 

intensity and frequency of heavy rainfall, the number and duration of droughts, 

and increasing peak river flows (Ekström et al. 2005; Frei et al. 2006; IPCC 2007; 

Lenderink et al. 2007; May 2008; Kirono et al. 2011; Vrochidou et al. 2013). Water 

systems, including stormwater drainage, flood defence and water supply systems, 

are vulnerable to changes in rainfall and runoff and need to be adapted (Hoes and 

Schuurmans 2006; Medellín-Azuara et al. 2008; Nie et al. 2009; te Linde et al. 

2010). This paper studies impacts of rainfall variability and expected changes in 

the return periods of rainfall extremes on cost-effective adaptation of water 

systems to climate change given a predefined system performance target. System 

performance targets for water systems describe the minimum system 

performance that is required by law or institutional arrangements. Examples are 

flood risk standards for dike rings, flood risk standards for surface and urban 

drainage systems, and water quality limits for receiving waters (EC 2000; NBW 

2005; Kind 2014). 

Climate change impacts are uncertain, and technical lifetimes of 

infrastructure, such as sewers, open channels and dikes, are typically long (e.g. 

100 years) and usually involve fixed costs (Read 1997; Arnbjerg-Nielsen 2012). An 

optimal mixture of initial climate change adaptation measures therefore accounts 

for the cost structure of available options (de Bruin and Ansink 2011). Moreover, 

it has been suggested to compare the expected decrease in performance during a 

portion of the expected lifetime of the infrastructure with a predefined 

performance target (Mailhot and Duchesne 2010). However, best estimates of 

extreme weather distributions, needed to evaluate infrastructure performance 

over time, are generally not reliable. This is due to the number of extreme value 

observations, weather variability, and uncertainty about the shift of extreme 

value distributions due to climate change (Huard et al. 2010; Rosenberg et al. 

2010). Moreover, one or few new observations may change beliefs about the 

distribution parameters or distribution type, and hence about the return period of 

extreme events (e.g. Coles and Pericchi 2003). Hitherto, the stormwater and flood 

risk management literature has paid surprisingly little attention to the likelihood 

of investment responses induced by new hydro-meteorological observations, and 

to the implications for initial investment decisions (e.g. Fletcher et al. 2013). 
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This paper analyses optimal investment levels in water system adaptations to 

keep water system performance in line with a system performance target under 

climate change. Effects of rainfall variability and projected structural changes in 

rainfall on cost-effective investment levels are studied. To this end, the 

optimisation problem is described mathematically. In addition, a solution method 

is developed and applied to identify cost-effective investment strategies for 

stormwater drainage system adaptations. 

Figure 4.1 summarises inputs and processes required for design decisions 

about elements of water systems. It includes: (i) hydro-meteorological 

observations from the case study area, for example weather, or peak flows 

observations, (ii) information about cost-structures and technical lifetimes, (iii) 

expected changes in extreme-value distributions, (iv) failure probabilities of the 

system before and after investment, (v) a system performance target, or other 

design rules, and (vi) an analysis of system failure probabilities over time based on 

simulated realisations of extremes. In the sequel, rainfall is used as observational 

input, failure probability is defined by flood probability, and a flood risk standard 

is applied to study cost-effective investment in stormwater infrastructure. 
 

 

Figure 4.1 Flowchart with required inputs (trapezoids) and processes (rectangles) 

for decision-making on cost-effective infrastructure design 
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4.2 Rainfall variability 

Traditionally, the design of stormwater infrastructure has been derived from 

so-called design storms. A critical design storm (CDS) specifies rainfall depth, i.e. 

rainfall quantity, for an assigned probability of occurrence and duration (e.g. De 

Michele 1998). Before simulation models were available, water system elements 

have often been designed separately with design storms, rather than by analysing 

the reliability of the system as a whole under a large number of rainfall events. 

System reliability is equal to one minus the joint failure probability of the system 

elements. For small water systems, system reliability (|¶�) at moment � can be 

approximated by Eq. (4.1) if all individual system elements are designed for the 

same CDS. In Eq. (4.1), ·� is the average return period of the chosen design storm 

at moment �. Clearly, this is a rough approximation, for which an appropriate 

design storm duration, and representative synthetic rainfall events have to be 

selected (cf. Levy and McCuen 1999; Mays 2011).  

|¶� = �1 − �¢��																																																																																																																			(4.1)  
The CDS has to be chosen such that its average return period (·�) in the future 

remains large enough to meet the reliability target under climate change. 

Analogue to the work of Mailhot and Duchesne (2010), the return period of the 

CDS could be chosen such that projected system reliability under a rainfall 

scenario intersects with the system reliability standard at the end of the 

compliance period. This is displayed in Figure 4.2, where the compliance period is 

assumed to end by the year 2050.  

Rainfall variability, however, causes reliability estimates to be volatile. To 

illustrate this, a moving window analysis was applied where the last 50 years of 

observations were used to estimate the return period of the original CDS (cf. De 

Michele et al. 1998). Future rainfall was simulated by random draws from the 

shifted (24-hour) annual maximum rainfall distribution over time. Figure 4.2 

shows three main differences between projected reliability and reliability 

estimates. Firstly, projected reliability decreases monotonically, but reliability 

estimates do not due to rainfall variability. Secondly, median reliability estimates 

are larger than projected reliability. Thirdly, the lower bound of the 95%-

confidence interval intersects with the reliability standard well before the 

intersection of the projected reliability with the standard. 
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Figure 4.2 Comparison of projected system reliability and moving-window system 

reliability estimates, as derived from the expected or estimated return period of a 

critical design storm
3
 

Re-investment in the system is required as soon as the best estimate of the 

system’s reliability, following from the best estimate of the return period of the 

CDS (Eq. (4.1)), falls below the pre-defined reliability standard. This simplified 

example illustrates that due to rainfall variability the timing of re-investment in 

the system cannot be assumed to be known if a reliability standard has to be met. 

Future beliefs about the return period of rainfall extremes are partly based on 

new rainfall observations and may result in under- or overestimation of the actual 

flood probability, and hence in over- or underestimation of system reliability. 

Note that only overestimation of the flood probability can have unforeseen 

                                                 
3
 KNMI (2013) daily precipitation observations were used. The confidence interval has 

been obtained from 10000 simulations. The Matlab code is available on request. 
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financial consequences, as only experienced underperformance results in new 

investments. Such investments may incur additional costs due to the fixed costs of 

stormwater infrastructure. Cost-effective capacities of stormwater infrastructure 

are therefore not only determined by current beliefs about future return periods 

of rainfall extremes, but also by future beliefs about the return periods of the 

extremes. 

4.3 Mathematical representation of water system adaptations 

We now turn to a model specification and solution method to determine 

cost-effective water system adaptations. Consider the objective to find a cost-

minimising investment strategy (� , ��, … , ��) in a single water system element 

up to the last year of time horizon *: 

� = min	>,	?,…,	¸  ¹BW(��) + �(��)(1 + ))��
�Z º																																																																											(4.2) 

where � is the Net Present Value of total investment, operation and maintenance 

costs. Annual investment costs are described by function W, and annual operation 

and maintenance costs by function �. Costs are discounted at rate ). The decision 

variable �� gives the level of investment in additional storage or conveyance 

capacity at year �, and �� represents the total stock of the system element at year � before or, without construction time, directly after an investment. Investment �� 
is realised in every year � at the beginning of that year, i.e.: 

��a�: = �� + �� 																																																																																																																		(4.3) 
A reliability constraint is applicable during the compliance period [0, *], 
|(J� , �� , ¼) ≥ c														∀			�	½	[0, *]																																																																												(4.4) 
where |(J� , �� , ¼) is the estimated system reliability, and c is the predefined 

reliability standard. Estimated reliability is a function of (i) probability density 

function J� estimated with a historical time series, (ii) stock �� and (iii) other 

elements of the system, ¼. In what follows, ¼ is kept constant over time. Eq. (4.4) 

describes decision-maker behaviour. It reflects how the decision-maker 

implements legislation that specifies the system reliability standard (c). We 
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consider that best estimates are used to evaluate system reliability, and that 

these estimates are not allowed to fall below the reliability standard at any year � 
after investment in that year. Alternative specifications, for example with a 

probabilistic constraint, could be considered to reflect alternative 

implementations of the reliability standard. 

In the context of stormwater infrastructure, an annual system reliability 

estimate + follows from continuous simulation of rainfall, runoff and inundation: 

+ = 1 − ∑ �@�Z�3 																																																																																																														(4.5) 
where 3 is the number of simulated years, and � = 1 if one or more flooding 

events occur during a year � of the simulated series, else � = 0. System 

reliability can be obtained from Eq. (4.5) before and after investment. 

Continuous simulation of rainfall, runoff and water levels is computationally 

intensive even with stationary rainfall distributions. For this reason, an indirect 

procedure is developed to estimate system reliability over time based on annual 

maxima. As a first step, flood probability-rainfall curves ℎ(¾, �� , ¼) are estimated 

for 24-hour annual rainfall maxima and for a range of ��. These curves define the 

conditional probability that if some 24-hour annual maximum ¾ has been 

observed in a year �, flooding has occurred in that year given �� and ¼. Note that 

this function is time-independent if there is a time-invariant upper bound on ��. 
Furthermore, 24-hour annual maximum rainfall distributions are estimated. 

Rainfall maxima are described by a Generalised Extreme Value distribution (GEV) 

with cumulative distribution function (Jenkinson 1955): 

¿�(¾) = ��° À− Á1 + Â� Ã¾ − Ä��́ ÅÆ��Ç�È																																																																							(4.6) 
where Â� is the shape parameter, �́  is the scale parameter, and Ä� is the location 

parameter. It is estimated with rainfall of the past �̅ years. Hence, the oldest 

observation is dropped when a new annual maximum becomes available. Moving-

window analyses have previously been performed to study frequency changes in 

design storms and annual maximum floods (De Michele et al. 1998; Jain and Lall 

2001). A full data set can also be used for frequency analysis if the trend in the 

data is removed; see Khaliq et al. (2006). 

In a second step, reliability at the beginning of year � is estimated by: 
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|(J� , �� , ¼) = 1 − � J�(¾)ℎ(¾, �� , ¼)�¾Y
 																																																																			(4.7) 

where J�(¾) is the density function of ¿�(¾). In order to solve for the cost-

effective investment strategy an investment cost function, and an operation and 

maintenance cost function for the water system element should be identified. A 

linear investment cost function W is applied with fixed costs q and variable 

investment costs of h per unit: 

W(�) = Éq + h�		(J		� > 00												(J		� = 0																																																																																														(4.8) 
where � is the decision variable, the level of investment in additional storage or 

conveyance capacity, in a given year �. For simplicity, the investment cost function 

is assumed to be linear. For the main purpose of this paper, it is sufficient to work 

with a simple investment cost function that accounts for fixed costs. The fixed 

costs component (q) in Eq. (4.8) motivates ‘anticipatory’ adaptation rather than 

‘reactive’ adaptation (Smith 1997), as will be shown. Note that the investment 

cost function is assumed to be time-independent.  

Marginal annual operation and maintenance costs are assumed to be 

constant: �(�) = '�																																																																																																																								(4.9) 
where ' denotes unit costs of operation and maintenance. 

Annual rainfall transition probabilities can be described by a three-

dimensional Markov process: 

°(Â�a�, �́a�, Ä�a�|Â� , �́ , Ä�) 
We define the vector of distribution parameters as Ê� = (Â� , �́ , Ä�). The 

conditional transformation probability can then be written as °(Ê�a�|Ê�). This 

implies that distribution parameter estimates Â�a�, �́a� and Ä�a� are stochastic 

and depend on the parameter estimates at moment �. The optimisation problem 

can now be formulated recursively. The Bellman equation is: 

��(Ê, �) = min	 ËW(�) + �(� + �) + {��a�((Ê�a�|Ê), � + �)}1 + ) Ì																							(4.10) 
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�. �.					|(J, � + �) ≥ c																																																																																																	(4.11) 
where �� is the value function, and  (Ê�a�|Ê) the stochastic transformation. 

A practical way to implement the Bellman equation is to discretise the 

parameter state space of Ê�. Let °&C�: = °�(ÊC|Ê&), where Ê& contains values for 

distribution parameter estimates Â� , �́  and Ä�, and ÊC contains the estimates of 

the next distribution. This gives: 

��(Ê& , �) = min	 ËW(�) + �(� + �) + 11 + )B °&C���a�/ÊC , � + �0C Ì														(4.12) 
where	� = 0,1,2, . . . , * − 1, and � = 0, ∆�, 2∆�,… , �H�� − �. In this paper, 

transition probabilities (°&C�) are evaluated by simulation. Combining the moving-

window part of existing rainfall maxima (e.g. the last 40 years) with a simulated 

series (e.g. the next 20 years) determines the distribution estimates at a particular 

year. The oldest observation, e.g. an oldest annual maximum, is dropped to 

inform estimates of the next year. Rainfall extremes, i.e.: future realisations, of 

the next year can be simulated to estimate the new rainfall distribution. Many 

repetitions provide an estimate of the distribution of transitions of distributional 

beliefs. This method, however, is computationally intensive, and we therefore use 

an approximation using ‘synthetic series’ for every distribution state to derive 

transitions; see Section 4.1. 

Terminal costs at the end of the time horizon are considered to be zero. 

��(Ê& , �) = 0																																																																																																																		(4.13) 
 

4.4 Solution methods and case study 

4.4.1 Solution methods 

The practical implementation of the solution method consists of three steps: 

i. estimation of flood probability-rainfall curves for 24-hour annual 

rainfall maxima  
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ii. determination of lower and upper bounds of parameter estimates Â� , �́ and Ä� of the 24-hour annual maximum rainfall distribution 

over time 

iii. economic optimisation 

To estimate flood probability-rainfall curves for 24-hour annual rainfall 

maxima, a rainfall generator was calibrated with an original hourly rainfall series 

as described in Cameron et al. (1999). Empirical rainfall duration and inter-arrival 

time distributions were obtained. Furthermore, empirical average intensity 

distributions per duration class were extrapolated with a Generalised Pareto 

Distribution (GPD). For exceedances over thresholds, the GPD was shown to be 

consistent for tail estimation under mild conditions (Pickands 1975). The GPD has 

a flexible functional form. The shape parameter provides a concave, or a convex 

plot, and a zero value reduces the GPD to an exponential distribution (Cameron et 

al. 1999).  

Duration profiles per class were randomly selected, and 1000 years of rainfall 

were simulated. To reduce computation time, a selection of rainfall events from 

the simulated series was used for runoff and inundation simulation, instead of 

continuous simulation of runoff and water levels with the 1000 years of rainfall. 

For this purpose, 24 hours of maximum rainfall were selected from every 

simulated year of rainfall. Simulated rainfall in proceeding hours and in hours 

following the event were added. The number of hours added was based on a 

‘system recovery time’, which we pragmatically defined as the time needed to 

restore the target water levels within the system after a one-hour rainfall event 

with a return period of 10 years. The simulation of runoff and inundation was 

repeated several times with the selected rainfall events, while changing system 

element dimensions in the hydrological model. Temperature and wind conditions 

were kept constant during all simulations. Finally, probit models were fitted to the 

binary inundation results to obtain flood probability-rainfall curves for 24-hour 

annual rainfall maxima. 

To determine lower and upper bounds of parameter estimates Â� , �́  and Ä� 
of the 24-hour annual maximum rainfall distribution for all yearly decision 

moments �, the original hourly rainfall series was transformed in a climate change 

scenario series, and 24-hour annual maxima were selected from both the original 

and the transformed series. Bootstrap samples were taken from the original 24-

hour annual maximum series, and matched with corresponding bootstrap samples 
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of the transformed 24-hour annual maximum series. GEV parameter estimates 

were obtained with maximum likelihood for every bootstrap sample. The GEV 

parameters of each original and transformed bootstrap sample were (log)linearly 

interpolated to find parameter estimates between � = 0 and the time horizon of 

the climate scenario (Kharin and Zwiers 2005). This was followed by simulation of 

times series of 24-hour annual maxima by random draws from bootstrap sample 

distributions to determine lower and upper bounds of moving-window parameter 

estimates of the 24-hour annual maximum distribution over time. 

Cost-effective stormwater investment strategies are determined by solving 

the value function (Eq. (4.12)) backwards in time. For this purpose, synthetic time 

series of 24-hour annual rainfall maxima were created, which approximate 

parameter estimates of the GEV parameter state space Ê�(Â� , �́ , Ä�) at decision 

moment �. The length of any synthetic series was kept fixed at 60 years, 

corresponding to the number of observations in the moving window, and 

percentile bins were used to construct the synthetic series. At every decision 

moment �, possible parameter state transitions were computed for every 

synthetic series. To achieve this, percentile bins of 24-hour annual maxima were 

estimated from simulated 24-hour annual maxima for year � + 1 which were 

obtained from random draws from the interpolated bootstrap samples of the GEV 

distribution parameters. One observation of each synthetic series approximating 

the oldest moving window observation of the original series, i.e.: the historical 

observation of year � − 60 + 1, was then replaced by one discretised percentile 

observation of � + 1, and this was repeated for all percentiles. The value function 

evaluation uses a grid interpolation to identify optimal action (��) at decision 

moment � given GEV parameter states Ê�(Â� , �́ , Ä�) and total investment so far 

(��). 
4.4.2 Case study 

As an empirical application of the solution method, the volume of a storage 

basin in the Waalblok polder, the Netherlands, was studied. The Waalblok polder 

is located in the South-Western part of the Netherlands near the city of The 

Hague and has an area of 55 ha. Most of the area is covered by greenhouses. In 

contrast to a standard polder, water is pumped into the polder in dry periods and 

is discharged at sluices. Target water levels have been set at + 0.25 m above 

datum (A.D.) and, in a small area, at - 0.1 m A.D. (Delfland Water Board 2010). The 



Chapter 4 
 

68 
 

Waalblok is primarily used for greenhouse horticulture, and experienced regular 

inundation problems in the past. To resolve this, various measures were 

investigated (Gehrels et al. 2007). A pilot project was initiated which included the 

realisation of an off-line storage basin; it only fills if the water level rises above the 

crest level of the inlet. This storage basin, made of concrete, has been realised 

under a greenhouse upstream at the border of the lower lying area (- 0.1 m A.D.) 

to reduce flood risk in this sub-system. 

Uniform flood risk standards, describing the maximum accepted annual flood 

probability within a water system, have been defined for Dutch regional water 

systems; see Table 4.1. First analysis showed that despite the realisation of a large 

storage basin (7142 m
3
) the - 0.1 m A.D. subsystem of the Waalblok polder does 

not meet the horticulture flood risk standard of one inundation event per 50 years 

on average, see also Figure 4.4 in Section 4.5. We therefore applied the grassland 

flood risk standard to analyse the cost-effective volume of the storage basin in the 

- 0.1 m A.D. subsystem of the Waalblok polder. 

Table 4.1 Dutch flood risk standards, describing maximum accepted annual flood 

probabilities, for regional water systems per land use type and failure definitions 

expressed as percentage of flooded land (source: NBW 2005) 
 

Land use type Standard Failure definition 

Grassland 1/10 >5% 

Agriculture 1/25 >1% 

Horticulture 1/50 >1% 

Urban 1/100 >0% 

 

The rainfall generator was calibrated with a homogenised hourly rainfall 

series of 106 years for gauging station ‘de Bilt’ (KNMI 2004).
4
 We increased these 

observations with a fixed factor (10%) to correct for the ‘coastal effect’, a method 

which has also been applied by the water board responsible for the Waalblok 

polder system (Delfland Water Board 2005). We transformed the original hourly 

rainfall series into a climate change (W
+
) scenario following the procedures of the 

KNMI transformation tool (Lenderink 2006; Bakker and Bessembinder 2012). 

                                                 
4 We combined the KNMI (2004) data set with homogenised rainfall for 2005-2012 

supplied by KNMI via personal communication. 
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To simulate water levels during heavy rainfall events we used hydrological 

model Sobek Rural. Detailed overland runoff and flow ‘schematisations’ of the 

Waalblok polder were provided by Water Board Delfland and RoyalHaskoning 

DHV. Sobek Rural allows detailed flow and water level simulation from many 

heavy rainfall events for real-world surface systems (Deltares Systems 2012). 

Inundation was defined to occur if the target water level (- 0.1 m A.D.) in the area 

increases with 60 cm or more, because the water level starts to exceed the 

surface level of the lowest lying land at this point. We adopted a number of 

system changes to increase the system performance. The water level in the - 0.1 

m A.D. water level area tends to rise up to the water level of the + 0.25 m area 

during heavy rainfall events. We increased, therefore, the pumping station 

capacity at the downstream exit of the - 0.1 m A.D. subsystem with a factor 3; 

from 10 to 30 m
3
/ min. Verhoeven (2010) proposed, furthermore, to change the 

storage inlet to increase storage capacity use.
5
 

Table 4.2 shows cost parameter values used for the case study. These were 

derived from cost information that we obtained from Waterboard Delfland, and 

are used for illustrative purposes only. Gehrels et al. (2007) report values in the 

same order of magnitude as in Table 4.2.  

                                                 
5 For our simulations the crest level of the orifice was lowered from + 0.65 m to + 0.3 m 

and its width was doubled from 1.5 m to 3.0 m.  
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Table 4.2 Cost parameter values used for the economic analysis of the case study 
 

Parameter Value (EUR) q 1100000 h 88 ' 1.3 

Most of the three-step procedure was programmed in Matlab. We used Matlab 

R2013a with parallel computing and optimisation toolbox. The Matlab code is 

available on request. 

4.5 Results 

Storage basin volumes up to 10000 m
3
 were considered in steps of 1000 m

3
 

(∆�). Figure 4.3 displays a selection of resulting flood probability-rainfall curves for 

24-hour rainfall maxima and different storage volumes. Figure 4.3 shows that the 

storage basin effectively reduces flood risk in the studied subsystem of the polder. 

Marginal flood risk reductions were largest for small storage volumes, while 

increasing the storage basin beyond 5000 m
3
 had little effect on flood probability. 

Although increasing the storage beyond 5000 m
3
 still could prevent flooding in 

some of the simulation runs, other measures would be needed to reduce flood 

risk sufficiently to meet the horticulture flood risk standard (Figure 4.4). 



Cost-effective water system adaptations 

71 
 

 

Figure 4.3 Selection of flood probability-rainfall curves for 24-hour rainfall maxima 

for different storage volumes 

Figure 4.4 reports initial annual flood probabilities in the studied subsystem  

(-0.1 m A.D.) after an initial investment (� ). These flood probability estimates can 

be obtained from the flood probability-rainfall curves presented in Figure 4.3. 

Note that the annual flood probability associated with the occurrence of some 24-

hour annual rainfall event is the product of the probability of occurrence of this 

event and the probability that this event results in flooding. The flood probability 

is the sum of the probability products over all 24-hour events. As both the density 

function of annual rainfall, and flood probability-rainfall curves are continuous, 

estimates are obtained by numerical integration of flood probability-rainfall 

curves for given storage volumes (Figure 4.3) multiplied by the density function of 

annual rainfall. This is summarised by the integral in Eq. (4.7). A storage volume of 1000 m
3 

meets the grassland flood risk standard at � . This is, therefore, the cost-



Chapter 4 
 

72 
 

effective storage volume if only immediate compliance is required, and future 

compliance is not considered. It is also the cost-effective initial volume for longer 

compliance periods in the absence of fixed costs (q = 0). 

 

Figure 4.4 Initial annual flood probabilities for different storage volumes 

Figure 4.5 shows total discounted costs for different storage volumes for a 

compliance period of 38 years. These costs include investment and operation 

costs. The minimum initial capacity is 1000 m
3
 for compliance at � . However, 1000 m

3
 is no longer cost-effective because there is a risk that the estimated 

subsystem reliability falls below the reliability standard somewhere in the coming 

decades, which would require re-investment. The cost-effective volume for this 

case is 2000 m
3
, which we find for shorter compliance periods (* ≥ 2) as well. We 

also find that the absolute cost difference between 1000 m
3 

and 2000 m
3
 is 

increasing, and between 2000 m
3
 and 3000 m

3
 is decreasing in *. This finding 

demonstrates that the cost-effective storage volume tends to increase when the 
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compliance period is increased, although the effect is negligible for * ≥ 2. There 

is, furthermore, a trade-off between operation costs and the risk of re-investment 

in storage volume. While a larger initial storage basin reduces the probability that 

re-investment is required, it goes along with increased costs of operation, and vice 

versa. Hence, cost-effective investment strategies are driven by the investment’s 

cost structure and the time horizon of the performance target. The time horizon 

captures two effects: expected climate change impacts, and randomness in the re-

investment moment due to rainfall variability. 

 

Figure 4.5 Total discounted costs for different storage volumes for a compliance 

horizon till 2050 

4.6 Discussion 

In the context of climate change cost-effectiveness analysis of water system 

adaptation options requires a performance target, for example a flood risk 
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standard, and specification of expected revision moments of the performance 

target. In practice, explicit definitions of revision moments are often lacking, 

despite that economically efficient revision moments could be derived from a 

cost-benefit analysis (NBW 2005; Kind 2014). Moreover, initial performance 

targets are sometimes purposely set at economically inefficient levels (cf. Hoes 

and Schuurmans 2006). 

A longer compliance period, during which the performance target remains 

unchanged, implies application of larger structural changes in rainfall to compute 

initial cost-effective water system adaptations. Long-term performance targets, 

therefore, increase the robustness of water systems to climate change. Moreover, 

when the likelihood of future beliefs about return periods of rainfall extremes is 

considered, a long-term performance target also reduces the probability of re-

investments early in time. Yet, our case study results illustrate that cost-effective 

initial investments do not always change considerably when the time horizon of 

the performance target is increased. The numerical results are mainly driven by 

the cost structure of investment, expected rainfall changes, and the probability 

that costly re-investments are required in the short-run as a result of new rainfall 

observations. Other determinants are the initial state of the system, and the 

statistical updating process applied. For the case study analysis, only one climate 

change scenario was considered. So far, there is no scientific consensus on how to 

use multiple climate change scenarios (Kundzewicz et al. 2010; Berggren et al. 

2014). In this study moving window estimates were used to recurrently evaluate 

performance. Alternatively, a statistical updating procedure could be applied on 

transformed data, which could improve the reliability of the distribution estimates 

over time (cf. Khaliq et al. 2006). 

The three-step solution method described in this paper was designed to study 

cost-effective investment strategies for investments in a single element of a 

surface or urban drainage system. In certain cases, it may be reasonable to study 

an investment strategy in one water system element in isolation. The subsystem 

of the case study, for example, covers a relatively small area with a limited 

number of subsystem elements. In addition, the storage basin incurs relatively 

high costs compared to the other system elements, with no close substitutes for 

reducing flood risk in the subsystem. For other cases, however, these conditions 

may be different. Various algorithms could be used instead, for example, those 

applied to identify cost-effective sewer designs (e.g. Swamee and Sharma 2013). 
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The presented solution method can be extended to study multiple 

investments. This would, however, require integrated models that allow 

performance analysis of many system configurations at once (i.e.: the analysis of 

large-scale combinatorial problems with many investment options, and many 

investment levels). This was beyond the scope of this paper. Moreover, as water 

system investments will often have non-linear investment cost functions, their 

implications on cost-effective investment levels require further research.  

Furthermore, cost-benefit analysis could be considered, but this would require 

damage assessment (Jonkman et al. 2008; Pathirana et al. 2011). 

4.7 Conclusions 

Water systems, including stormwater drainage, flood defence and water 

supply systems, are vulnerable to climate change and often need to be adapted to 

keep system performance in line with performance targets, for example flood risk 

standards. In current practices, structural changes in rainfall are commonly 

anticipated in decisions on water system adaptations. In this paper, we argue that 

rainfall variability may have an impact on initial cost-effective investments on the 

basis of two premises. Firstly, it was assumed that decision-makers recurrently 

evaluate the performance of the water systems for which they are responsible. 

Secondly, it was assumed that decision-makers do not change the performance 

target during a specified time horizon. 

We started this paper by showing that rainfall variability and the limited 

number of extreme value observations result in volatility of performance 

estimates. We demonstrated that if these estimates are used to evaluate whether 

or not a water system still complies with a predefined performance target, the 

timing of re-investment in the system cannot be assumed to be known. As a 

consequence, initial cost-effective investments are determined by current beliefs 

about the future return periods of rainfall extremes, and by future beliefs about 

the return period of the extremes. These beliefs will determine when re-

investment is necessary, rather than the actual structural changes in rainfall, 

which cannot be observed in the short-run. So far, it has remained a challenge to 

link current management practices and investments with an analysis of possible 

rainfall realisations in the future. In this paper, an integrated solution method has 

been developed to show how such an analysis could be implemented. 
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The presented method has been developed to identify cost-effective 

investment strategies for stormwater drainage system adaptations. Runoff and 

water levels were simulated with rainfall from stationary rainfall distributions, and 

time series of annual rainfall maxima were simulated for a climate scenario. Cost-

effective investment strategies were determined by dynamic programming. The 

results suggest that increasing initial investments increases water system 

robustness to climate change. For investments with large fixed costs shares this 

may also reduce the probability that costly re-investments are required in the 

short-run as a result of new rainfall observations. Increasing initial investments 

could therefore offer insurance against costs from underestimation of the 

system’s performance. 
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5. A dynamic minimax regret analysis of flood risk management 

strategies under climate change uncertainty with emerging 

information on peak flows*
 

 

 

Investment decisions on flood protection are often guided by considerations of 

regret. The ‘minimax regret’ (MR) decision criterion is used to identify 

investments in flood protection which minimise worst-case regret. In this paper, 

we study the dynamic application of the MR decision criterion to analyse 

robustness of flood risk management (FRM) strategies under climate change 

uncertainty with emerging peak flow information. The approach supports 

identification of adaptive FRM strategies by including ‘learning scenarios’ about 

peak flow development. We implement the MR decision criterion dynamically to 

study optimal dike height and floodplain development in a conceptual FRM 

model. Outcomes of static and dynamic MR analysis are compared. It is shown 

that the dynamic model offers greater flexibility than the static model, because it 

allows investments to be changed when new peak flow information emerges. We 

conclude that dynamic MR solutions are more robust than the solutions obtained 

from a static MR analysis of FRM investments due to ongoing changes in climate 

change impact projections. 

                                                 
*
Chapter is based on a submitted manuscript and a working paper presented in a thematic 

session of the 21st Annual Conference of the European Association of Environmental and 

Resource Economists in Helsinki, June 24-27, 2015: 

van der Pol TD, van Ierland EC, Gabbert S, Weikard HP and Hendrix EMT (2015) A dynamic 

minimax regret analysis of flood risk management strategies under climate change 

uncertainty with emerging information on peak flows 
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5.1 Introduction 

Investment decisions on flood protection are often guided by considerations 

of regret, comparing an actual or a hypothetical outcome against a best 

achievable outcome. The ‘minimax regret’ (MR) decision criterion is used to 

support robust decision-making by identifying flood risk management (FRM) 

solutions with the least worst-case regret (cf. Hall and Solomatine 2008; 

Brekelmans et al. 2012). In its basic form, the MR objective is to minimise 

maximum regret for a defined set of scenarios (Niehans 1948; Savage 1951). In a 

one-shot or static MR application, this set is constant over time. However, recent 

literature advocates ‘flexible’ or ‘adaptive’ FRM strategies which can be adapted 

to new information at relatively low costs, motivated by the presence of ‘deep’ 

uncertainties, and the inherently limited capacity to predict the future and the 

possible emergence of new information (cf. Pahl-Wostl 2007; Kwadijk et al. 2010; 

Haasnoot et al. 2013). In this paper, we apply the MR decision criterion 

dynamically to FRM strategies under the possible emergence of new climate 

information. 

Our starting point is an example of a static MR application to flood risk 

management to illustrate how climate change impact scenarios result in selection 

of flood protection measures using the MR criterion. Consider the choice between 

raising inland dikes and investment in a storm surge barrier.
6
 Table 5.1(a) 

summarises total discounted costs, including investment and damage costs, 

associated with both investment options under a ‘low’ (�R), ‘high’ (�S) or 

‘extreme’ (�Í) sea level rise scenario. 

  

Table 5.1(a) Total discounted costs under different sea level rise scenarios:  

raising inland dikes versus construction of a storm surge barrier 
 

Measure / Scenario �R �S �Í  

Storm surge barrier  ��∗  ��∗ �F  

Inland dikes  �G  �Î �Ï∗  
                                                 
6
 Dutch policy makers were facing this dilemma in the 80s along the estuary of the “New 

Waterway” near Rotterdam. Raising the inland dikes would have required large-scale 

investments, which resulted in the decision to construct an innovative storm surge barrier 

(Bol 2005). 
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An optimal ex-post decision (*) minimises the costs of both flood protection 

measures for a given scenario. In this example, �� < �G, �� < �Î and �Ï < �F. 

Corresponding anticipated regret values are displayed in Table 5.1(b). 

Table 5.1(b) Corresponding regret values 
 

Measure / Scenario �R �S �Í  

Storm surge barrier  0 0  �F − �Ï  

Inland dikes  �G − �� �Î − ��  0  

 

The regret values in Table 5.1(b) are ‘absolute’ regret values obtained from 

subtracting the costs of an optimal ex-post alternative from the costs of the 

selected adaptation measure for the scenario.  

Suppose that �F − �Ï > �Î − �� > �G − ��. MR of dike heightening is �Î − �� and MR of investment in the storm surge barrier is �F − �Ï. The optimal 

strategy, when applying the MR criterion, is to raise inland dikes if scenarios �R , �S and �Í  are included in the MR analysis. Note that exclusion of extreme 

scenario �Í  from the set of scenarios results in a decision to invest in the storm 

surge barrier rather than to raise the inland dikes. This implies that MR decisions 

are sensitive to the set of scenarios considered. 

MR analysis of flood protection measures is challenged by climate scenario 

choices. Including scenarios that cover the complete uncertainty set, i.e. “the 

smallest closed set such that the probability of the data to take a value outside of 

this set is zero” (Ben-Tal et al. 2009), might include highly unlikely, but 

catastrophic climate scenarios and could lead to excessive investment costs or 

extreme outcomes, such as ‘abandoning land’ (cf. Clarke 2008; Londsdale et al. 

2008). Instead, ‘plausible high-end’ climate change impact scenarios can be used 

for the analysis, as has been suggested for the updating of FRM strategies 

(Katsman et al. 2011). 

In addition, the set of ‘plausible’ climate change impact scenarios may be 

subject to change over time. Examples are recent reports of larger uncertainty 

ranges of sea level rise and extreme rainfall than previously reported (Wahl et al. 

2013; KNMI 2014). In the long run, more extreme value observations and 

scientific progress may reduce or resolve climate uncertainties (cf. Baker 2005; 

Khaliq et al. 2006). When new information emerges, anticipated regrets may 

change and investments can be adapted accordingly. 
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So far, few authors have discussed the dynamic application of the MR 

decision criterion with emerging information, and focus has mainly been on 

theoretical problems (Krähmer and Stone 2005; Hayashi 2011). To our best 

knowledge, no dynamic application of the MR decision criterion to FRM cases has 

been reported in the literature. This paper shows how the MR decision criterion 

can be applied dynamically to analyse practical FRM investment problems under 

climate change, and the important differences between static and dynamic MR 

analysis due to the possible emergence of new information. First, a procedure is 

developed to implement the MR decision criterion in a time-consistent manner 

building on the work of Hayashi (2011). Next, a conceptual FRM model is 

developed applying the dynamic MR procedure. 

The structure of this paper is as follows. Section 5.2 provides a brief 

motivation for MR analysis. Section 5.3 introduces the MR decision criterion 

formally and develops a consistent procedure for its dynamic implementation. 

Section 5.4 describes a conceptual FRM model, and applies the dynamic MR 

procedure to this model. Section 5.5 presents results. Section 5.6 concludes and 

discusses implications of our findings. 

5.2 Motivation 

Management strategies are robust when they perform relatively well across a 

range of possible future states (Lempert et al. 2006). Robustness methods, 

including MR applications, are generally motivated by the presence of ‘deep’ 

uncertainties (Woodward and Bishop 1997; Dessai and Hulme 2007; Clarke 2008; 

Hine and Hall 2010; Green and Weatherhead 2014). Uncertainty is ‘deep’ when 

probability or outcome information is ambiguous or lacking. Decision-making 

under risk, in contrast, assumes known probabilities of possible outcomes 

(Hogarth and Kunreuther 1995). Climate change uncertainties have been classified 

as ‘deep’ (Kandlikar et al. 2005).  

In this paper, robust solutions that minimise maximum regret are analysed 

(cf. Averbakh 2000). Regret is a context-dependent measure, because its value 

follows from outcome comparisons. Context-dependency implies that regret 

values may change under different scenarios or investment alternatives. As a 

result, no fixed relationship exists between a possible outcome and the objective 

variable assumed in standard economic theory (e.g. Yager 2004). Therefore, a 
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decision-maker’s ability to anticipate regret induces axiom violations of expected 

utility theory (Loomes and Sugden 1982). 

Minimisation of maximum regret implies an infinite aversion against worst-

case regret for a given set of investment opportunities and scenarios. In flood risk 

management, decision-makers are often regret- or loss averse. The common use 

of safety margins reveals loss aversion. The ‘minimax’ criterion analyses maximum 

losses. However, ‘minimax’ solutions may be associated with large regret, which 

advocates MR analysis. Regret arises both from under- and overinvestment. For 

example, a ‘very high’ dike may be robust to virtually any climate change impact 

scenario with barely any flood risk remaining. Therefore, the largest dike 

investment possible minimises maximum losses. Yet, this is not a low-regret 

solution, as these investment costs will largely outweigh damage reduction under 

any scenario (cf. Brekelmans et al. 2012). 

MR analysis has several practical advantages over other robustness and 

expected-value methods. Application of the MR criterion does not require 

probabilistic information. The use of subjective probability distributions in 

expected-value approaches is controversial, and might result in ‘bad’ adaptation 

decisions (Hall 2007). It is generally considered easier to formulate a range of 

scenarios, for example by setting parameter intervals, than to attach probability 

distributions to these intervals. Furthermore, the MR decision criterion does not 

rely on arbitrary scenario weights such as the Laplace decision criterion, which 

uses equal scenario probabilities, the Hurwicz decision criterion, which employs 

weights for pessimism and optimism, or combined decision criteria (e.g. Gaspars-

Wieloch 2014). Moreover, MR analysis usually yields a unique solution. More 

recent robust decision-making methods, such as info-gap theory, give insights in 

the robustness of solutions under different degrees of uncertainty (e.g. Hine and 

Hall 2010). Info-gap theory, however, does not prescribe which measures to 

implement. 

5.3 Static versus dynamic regret minimisation 

The MR decision criterion is mostly applied in static settings (Hayashi 2011). 

Let �(�, �) be the Net Present Value (NPV) of the total costs of option � under 

climate scenario � ∈ K. The maximum absolute regret (|) for mutually exclusive 

adaptation investment options �, M ∈ Ð is mathematically defined by (e.g. 

Kasperski 2008) 
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|(�) = max�∈Ñ{�(�, �) − minÒ∈Ó �(�, M)}.																																																																													(5.1) 
The MR objective is given by 

|∗ = min	∈Ó|(�).																																																																																																																	(5.2) 
Hence, the investment option that minimises maximum regret is 

�∗ = arg min	∈Ó {|(�)}.																																																																																																									(5.3) 
Sequential repetition of MR analysis over time could lead to dynamically 

inconsistent decisions as discussed by Hayashi (2011). However, no procedure 

was provided to resolve this problem. Dynamic consistency “imposes that the 

sequence of choice dispositions of the decision-maker’s successive ‘selves’ has to 

be connected across date-events in a recursive manner” (Hayashi 2011). In other 

words, dynamic inconsistency arises when a decision-maker commits to an initial 

plan as his final, but would prefer to change it later on. Time-inconsistent 

decisions originate from context-dependency, as briefly explained in Section 5.2. 

Information arrival implies a change in scenarios. Therefore, regrets change on 

arrival of new information even if the scenario payoffs remain unchanged. This, in 

turn, may result in a change of the initial plan, which is dynamically inconsistent. 

To address this problem, we suppose that a decision-maker is not only 

capable of anticipating regret, but also has the analytical capacity to anticipate 

future optimal decisions, i.e. future decisions which minimise maximum regret for 

any hypothetical sequence of previous decisions and events. In contrast to the 

time-inconsistent implementation of Hayashi (2011), our method removes any 

future suboptimal decision by a backward induction procedure. We will first 

illustrate the procedure by means of an example and formalise it in Section 5.4.2. 

Consider forward-looking regret in the two-period investment problem of 

Figure 5.1.  
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Figure 5.1 Decision-event-outcome tree for a two-period investment problem. 

The sub-trees, marked (1) and (2), are solved to determine optimal decisions at 

decision moment �� given that the initial decision is to postpone the investment 

At moment � ,	 the decision maker either chooses to invest (Ö ) or to postpone 

(× ) investment. The set of climate scenarios at decision moment �  is K ={�RR , �RS , �SR , �SS}. Under strategy (Ö , ×�), i.e. invest at �  and postpone 

investment at ��, total costs are assumed to be scenario-independent, which is 

displayed in the upper branch of the tree in Figure 5.1. Consider that at decision 

moment �� it will be known whether or not climate change is severe or less severe 

with scenarios �SR , 	�SS ∈ K� or �RR , 	�RS ∈ K�, respectively. If the investment 
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decision is postponed to moment ��, one can either invest (Ö�) at �� or postpone 

again (×�). 

The anticipated regret at moment ��	 after decision ×  and new information �SR , �SS ∈ K� does not depend on the costs (15) incurred up to moment ��, but 

only on the consecutive outcome changes from the decision at �� (respectively, +13,+10,+25,+18). The reader can verify that the minimising maximum regret 

decision at moment �� is Ö� under climate information �SR , 	�SS ∈ K�, and ×� 

under information �RR , 	�RS ∈ K�. This result is obtained from the static application 

of the MR decision criterion to sub-trees (1) and (2) in Figure 5.1 respectively. 

The initial optimal decision is derived from deleting outcomes of sub-optimal 

decisions from the next period. In the example, outcomes of decision ×� under 

scenarios �SR , 	�SS ∈ K�, and outcomes of decision (� under scenarios �RR , 	�RS ∈K� are removed. This results in the decision tree displayed in Figure 5.2. Applying 

MR Eqs. (1) and (2) to this problem leads to the optimal decision at �  to postpone 

investment. This is followed by investment at �� under climate information �SR , 	�SS ∈ K�, and no investment under climate information �RR , �RS ∈ K�. Note 

that this investment plan is dynamically consistent, because the decision-maker 

will stick to the initial plan throughout the time horizon under every course of 

events. 
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Figure 5.2 Decision-tree after removal of non-optimal branches of the second 

period 

5.4 A flood risk management application 

Section 5.4.1 describes a conceptual flood risk management (FRM) model for 

a stylised FRM investment problem. The dynamic MR procedure explained in the 

previous section is applied to this model in Sections 5.4.2-4.3. 

5.4.1 A conceptual flood risk management model 

Consider the problem of increasing river peak flows due to climate change 

and a river dike protecting agricultural land as well as urban area. The current 

river dike is expected to provide less flood protection in the future due to the 
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impact of climate change on peak flows. A quick-scan of possible adaptation 

options suggests two alternative adaptation strategies: either raising the existing 

river dike, or creating detention compartments on agricultural land. In the latter 

case, agricultural land can be deliberately flooded in order to attenuate peak 

flows to prevent flooding of the downstream urban area. However, damages arise 

from yield losses when detention area is used. Figure 5.3 illustrates the problem 

setting studied in the remainder of this paper. 
 

 

Figure 5.3 Graphical representation of the problem setting for two detention 

compartments 

Figure 5.3 displays the length ( H��) and the width (ØH��) of the agricultural 

land. The urban area is denoted by �, and the total area of agricultural land is 

denoted by �. Upstream of the urban area, the agricultural land can be used to 

create one or more rectangular detention compartments next to the existing 

primary dike. We assume that the existing dike can be used as one of the sides of 

the detention compartments. Detention compartment lengths are denoted by  �, 

with � = 1,2,… , Ù and  � ≤  H��, and compartment widths are denoted by Ø�  

with Ø� ≤ ØH��. The compartments can be flooded in a cascading order such 

that the agricultural area that has to be flooded in order to prevent flooding of 

the urban area is minimised. 

We study a two-period investment problem with an infinite time horizon 

divided into three parts: [� , ��), [��, *), and [*,∞). At decision moments  �  and �� investment can take place in either the primary dike or in detention storage. In 

the sequel, we denote these decisions moments by �C 	(o = 0,1). At the initial 

decision moment (� ), three different peak flow projections are available: a low 

(�R), a medium (�Ú) and a high (�S) peak flow scenario. We denote the set of peak 

flow scenarios at decision moment �C  by KC. At �  the set of peak flow scenarios 

consists of three scenarios, K = {�R , �Ú, �S}. Every peak flow scenario describes 
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the development of an annual peak flow distribution, which is shifting over time 

due to climate change. The annual maxima of peak flows ¼ are distributed 

according to a Gumbel distribution, a subtype of the Generalised Extreme Value 

(GEV) distribution without shape parameter, with cumulative distribution function 

(Gumbel 1941) 

¿�(¼, �) = exp Á−exp É−Ã¼ − Ä�(�)�́(�) ÅÝÆ,																																																																		(5.4) 
where Ä�(�) is the location parameter, the mode, and �́(�) is the scale 

parameter for peak flow scenario � at year �. Hence, a peak flow scenario � 

defines distribution parameters of the annual peak flow distribution for any year �: (Ä (�), Ä�(�),… ;  ́(�), �́(�),… ). Note that mean and variance follow from 

the location and scale parameters (e.g. Forbes et al. 2011). 

It is not only uncertain how peak flows will develop, but it is also hard to 

predict whether or not peak flow uncertainty will be reduced in the future. The 

future range of peak flow projections depends on future peak flow observations 

and new insights from improved climate models. We model possible futures by 

three ‘learning scenarios’, each represented by one or more information sets at ��:  

• ‘no learning’ scenario: the set of peak flow scenarios remains the 

same as today, with no-learning information set K� = {�R , �Ú , �S}, 
• ‘uncertainty reduction’ scenario: the set of peak flow scenarios 

becomes smaller,  either �R or �S disappears from the original set, 

with uncertainty reduction set K� = {�R , �Ú}, or K� = {�Ú, �S}, 
• ‘uncertainty resolution’ scenario: complete knowledge on the 

development of the annual peak flow distribution is obtained, with 

uncertainty resolution set K� = {�R},  K� = {�Ú} or K� = {�S}. 
To capture the notion of information sets, consider information superset ÞC, 

which contains possible information sets at decision moments �C . At decision 

moment �  the superset contains only one set as K  is given. At moment ��, the 

information superset contains the information sets from the different learning 

scenarios, i.e. Þ� = ß{�R, �Ú, �S}, {�R , �Ú}, {�Ú, �S}, {�R}, {�Ú}, {�S}à. 
Our conceptual FRM model contains a stage-discharge relationship and a 

peak flow attenuation function (cf. Westphal et al. 1999; Vis et al. 2003). These 

functions characterise the risk of flooding under different investment decisions. 
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The model also contains simple investment cost functions and damage cost 

functions. The model is described as follows: 

Indices o = 0,1   Decision moment index  � = 1,2, . . . , Ù   Detention compartment index  � = 0,1,2, . . . , ∞ Year  

   

Data KC ⊆ ÞC   Set of peak flow scenarios at decision moment �C   � ∈ KC  Peak flow scenario describing an annual peak flow distribution 

over time  Ä�(�)  Location parameter of annual peak flow distribution in year � 
under scenario �   �́(�)  Scale parameter of annual peak flow distribution in year � under 

scenario �  c�, c�  Stage-discharge function coefficients     á�, á�, áF Storage-attenuation function coefficients       f�, f�, l  Investment cost function coefficients of primary dike  ��, ��, �F Investment cost function coefficients of detention storage  °�  Damage value per unit of flooded urban area per flooding event °�  Yield loss per unit of flooded agricultural land per flooding event  H��  Length of agricultural land     ℎH��  Maximum dike height of the primary dike   ØH��  Width of agricultural land      �  Total urban area       �  Total agricultural area      

    

Stock variables ℎC  Dike height of primary dike at decision moment �C  before heightening   �C� Storage volumes of existing compartments � = 1,… , Ù� at moment �C     

         

Decision variables \C  Dike increment of primary dike at moment �C      ¾C�  Storage volume of new compartment � = Ù� + 1,… , Ù at moment �C  
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 C�   Detention length of compartment � at moment �C       ØC�  Detention width of compartment � at moment �C          

      

Objective function at �  

Minimisation of maximum regret at the initial decision moment (� ) is defined by 

|∗ = min{|â, |ã},																																																																																																												(5.5) 
with |â maximum regret under optimal investment in the primary dike (option �) 

and |ã under optimal floodplain investment in detention compartments (option �). Sections 5.4.2-5.4.4 describe how |â and |ã are obtained. 

Constraints 

Detention compartment width and length: 

ØC� ≤ ØH��												∀o, �																																																																																															(5.6q) 
B C�ä
�Z� ≤  												∀o.																																																																																																						(5.6h) 
Note that  C� = 2ØC�, which maximises the surface of a rectangular detention 

area for a given detention dike length, as one of the compartment sides is covered 

by the existing primary dike. Detention volume is described by 

�C� = 2ØC�� ³												∀o, �										 ⇔ 										ØC� = æ�C�2³ ,																																														(5.7) 
where ³ is the ‘effective storage height’ capturing the distance between the 

critical height of the floodplain dikes and the datum, i.e. the reference level of the 

surface, which is assumed to be constant, and a fixed amount of storage in the 

subsurface per surface unit. 

Dike height is characterised by 

ℎCa� = ℎC + \C .																																																																																																																	(5.8) 
The case of mutually exclusive investment options is studied. At moment �  this is 

achieved by 
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\ ¾ � = 0												∀�,																																																																																																					(5.9q) 
and at moment �� by 

ℎ�¾�� = 0				,				\���� = 0													∀�.																																																																								(5.9h) 
Damage cost functions 

We assume that if river stage ç exceeds critical level (ç̅), the primary dike 

fails, otherwise it does not. In case of primary dike failure, flood losses are 

assumed to be constant and independent of inundation depth
7
 

.� = °�� + °��.																																																																																																								(5.10) 
Annual use of detention compartments without primary dike failure gives 

damages from yield losses in the compartments approximated by: 

.� �è(¼, �C�), ØC�/�C�0� = B 2ØC��t(é,�X�)
�Z� °�	,																																																										(5.11) 

where è(¼, �C�) is the required number of detention compartments for a given 

peak flow event ¼. 

Investment cost functions 

The investment cost functions of dike construction or heightening are 

represented by an exponential function described by Brekelmans et al. (2012). 

Dike increments are denoted by \C, and the cost function of heightening the 

primary dike by 

Wâ/ℎC , \C0 = Af� + f�\C�i9Xj?0 											(J	\C > 0(J	\C = 0																																																							(5.12) 
where ℎCa� is the relative dike height after heightening at �C  with ℎ = 0, 

parameter f� the per kilometre heightening costs, f� the variable costs of 

heightening the primary dike and l the per centimetre incremental costs per 

kilometre of dike. 

                                                 
7
 In actual model applications more complex damage specifications can be included, e.g. 

damages depending on inundation depth and flood duration. 
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The storage cost function is represented by 

Wã/¾C�0 =
¤¥¦
¥§�� + �� B ¾C�ä

�Zä?a� + �F B ê¾C�ä
�Zä?a�0 							(J	 B ¾C�?a� > 0ä

�Zä?a�
(J	 B ¾C�?a� = 0ä

�Zä?a�
	(5.13) 

where �� are the fixed costs of investment in detention storage, and �� is a linear 

cost parameter, which includes a cost estimate of average infrastructure 

protection and land purchase costs per unit of detention. Construction costs of 

the floodplain dikes surrounding the detention compartments are captured in �F. 

This term reflects ‘economies of scale’, which implies that increasing the capital 

investment in detention results in a more than proportional increase in detention 

volume. Note that Wã/¾C�0 does not depend on previously constructed detention 

compartments (indexed � = 1,… , Ù�).  

Stage-discharge relationship 

Peak flow events result in increasing water levels, called surface water 

elevation, or stage. Stage can be studied in detail for peak flow events given the 

water bed form, roughness coefficients, and river bed elevation differences. An 

alternative is to identify a stage-discharge relationship, which can be directly 

applied to analyse FRM strategies (e.g. Hoekstra and De Kok 2008). Stage-

discharge relationships are represented by a power function (e.g. Westphal et al. 

1999) 

ç = c�¼^� 										⇔ 										¼ = Ã çc�Å
�̂� ,																																																																				(5.14) 

where ç is the surface water elevation, ¼ is the annual maximum peak flow 

discharge, and c� and c� are constants. 

Peak flow attenuation function 

In order to attenuate peak flows to a given peak flow base level (¼ë��]) 

required detention storage volume ì(¼) is represented by a quadratic function 

of peak discharge ¼ (cf. Vis et al. 2003) 
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ì(¼) = Éá�+á�¼ + áF¼�0 											(J	¼ > ¼ë��](J	¼ ≤ ¼ë��] 																																																						(5.15) 
5.4.2 The primary dike problem 

We first derive optimal investment strategies for the primary dike. Consider 

the present value of the terminal costs 2� from moment * onwards. Define a 

cumulative distribution function í�(ç, �), which is obtained by substituting Eq. 

(5.14) into Eq. (5.4). For the terminal condition we will assume that Ä�(�) = Ä̅(�) 
and �́(�) = ḿ(�) from * onwards. As a consequence, the annual flood 

probability :�(ℎ, �) is constant on interval [*,∞) for a given dike height and peak 

flow scenario. Define this probability by :m(ℎ, �) = 1 − í�(ç̅(ℎ), �), where ç̅(ℎ) is 

the critical surface water elevation for a dike with height ℎ. Terminal costs are 

given by 

2�(ℎ, �, \ = 0) =B:m(ℎ, �).�(1 + ))�Y
�Z� = :m(ℎ, �).�)(1 + ))��� 																																																			 (5.16) 

For a given dike height ℎ, peak flow development scenario � and dike 

increment decision \, the present value of the expected costs under scenario � 

from decision moment �� onwards is 

2�(ℎ, �, \) = 1(1 + ))�? Wâ(ℎ, \) + B :�(ℎ�, �).�(1 + ))��
�Z�? + 2�(ℎ�, �, 0),																				(5.17) 

where ℎ� = ℎ + \. Given dike height ℎ and information set K ∈ Þ�, the MR 

decision at moment ��is 

\∗(ℎ, K) = arg	minI∈[ ,9®¯�9]	max�∈Ñ Ã2�(ℎ, �, \) − minî∈[ ,9®¯�9]2�(ℎ, �, ï)Å.																(5.18) 
For the perfect learning case, the MR computation (Eq. (5.18)) is trivial, as K�contains only one scenario for this case (�R, or �Ú, or �S). As a result, maximum 

regret is zero under the optimal strategy, which coincides with a deterministic 

cost minimising investment. 

Once all regret minimising decisions \∗(ℎ, K) for decision moment �� have 

been identified, 2�(ℎ, �, \) is replaced by 2�∗(ℎ, �(K)) = 2�/ℎ, �(K), \∗(ℎ, K)0, i.e. 
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any \(ℎ, K) ≠ \∗(ℎ, K) will not be implemented at decision moment ��. If the 

primary dike is raised at the first decision moment (� ) the optimal investment in 

the primary dike at this moment is 

\∗ = arg minI∈[ ,9®¯] maxÑ?∈ñ? max�∈Ñ?�ò
��Wâ(ℎ = 0, \) +B:�(\, �).�(1 + ))�

�?
�Z + 2�∗/ℎ� = \, �(K�)0�

− minî∈[ ,9®¯]�Wâ(ℎ = 0, ï) +B:�(ï, �).�(1 + ))�
�?
�Z 

+ 2�∗/ℎ� = ï, �(K�)0�
�ó
� .																																																														(5.19) 

5.4.3 The floodplain problem 

Next, we derive optimal investment strategies for the floodplain. Recall that è(¼, �C�) is the number of required detention compartments for a given peak 

flow ¼ > ¼ë��]. The number of required detention compartments is determined 

by 

B�C� < ì(¼ > ¼ë��]) ≤t��
�Z� B�C�t

�Z� 	,																																																																								(5.20) 
where ì(¼) follows from inserting ¼ in Eq. (5.15). Hence, the maximum peak 

flow ¼ for which the number of required detention compartments is equal to è is 

defined by 

¼Iô(è) = 12áF�−á� ±öá�� − 4áF(á� −B�C�t	
�Z� )�.																																						(5.21q) 

The minimum peak flow for which è detention compartments are required is 
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¼;±÷(è) = 12áF��−á� ±öá�� − 4áF(á� −B�C�t��
�Z� )�� + �¼.																										(5.21h) 

The probability :t� that the number of used detention compartments is equal to è under peak flow scenario � in year � is 

:t�(�) = ¿�/¼Iô(è), �0 − ¿�(¼;±÷(è), �)	,																																																													(5.22) 
with :t�(�) = 	:mt(�) on interval [*,∞). Define ¼H��(Ù�): = ¼Iô(è = Ù�), which 

is the maximum peak flow whose water can be stored in the existing Ù� detention 

compartments without causing flooding of the urban area. The present value of 

the total expected damage costs under scenario � on interval [*,∞) is 

2�(��, �, ¾� = 0) = 

BBË:mt(�).�(è, Ø�(��))(1 + ))� Ìä?
tZ�

Y
�Z� +B�1 − ¿/¼H��(Ù�)0�.�(1 + ))�Y

�Z� 	,																								(5.23) 
where the first term of the right-hand side consists of expected damages due to 

the use of detention compartments to prevent flooding, and the second term 

contains expected damages due to failure of the primary dike. 

The remainder of the floodplain problem follows the same lines as the 

primary dike problem. Given compartment volumes �� and information set K ∈ Þ�, the MR decision at moment ��is 

¾�∗(��, K) = arg	minø� max�∈Ñ Ã2�(��, ¾�, �(K)) − minù� 2�(��, ù�, �(K))Å.																				(5.24) 
Again, 2�(��, �, ¾�) is replaced by 2�∗(��, �(K)) = 2�(��, �(K), ¾�∗(��, K)) and is 

substituted in the MR equation for moment � . This results in the optimal initial 

investment in the floodplain. 

5.4.4 Investment selection and threshold-to-switch 

The choice for either investment in the primary dike or in floodplain 

development follows from the cost differences between the options given the 
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optimal investment strategies under the different learning scenarios. Between-

option regrets are calculated as follows: 

|â = maxÑ?úñ? max�∈Ñ?{2â(K�, �) − 2∗(K�, �)}																																																																	(5.25q) 
|ã = maxÑ?úñ? max�∈Ñ?{2ã(K�, �) − 2∗(K�, �)}																																																																	(5.25h) 
where 2â(K�, �) and 2ã(K�, �) are the total discounted costs under scenario � and 

information set K� ∈ Þ� for investment in the primary dike, and investment in 

detention compartments, respectively. The maximum regret minimising 

investment option is obtained by substituting |â and |ã from Eq. (5.25a) and Eq. 

(5.25b) in Eq. (5.5). 

To examine differences in flexibility between the two investment options, we 

will also study the threshold-to-switch from investment in the primary dike, to 

investment in the detention compartments based on adaptation capital 

accumulation. For comparison, the average of the total discounted capital 

investments under the specified learning scenarios is used as a negative measure 

of flexibility, i.e. 

Ùsâ = Wâ(\ ∗) + 1+BWâ(ℎ� = \ ∗ , \�∗(K�( )))(1 + ))�?R
;Z� 																																																							(5.26q) 

Ùsã = Wã/¾CZ ,�∗ 0 + 1+BWã/¾CZ�,�∗ (K�( ))0(1 + ))�?R
;Z� 	,																																																								(5.26h) 

where + = |Þ�|, which is the number of learning scenarios. Next, the average 

total discounted capital is minimised under an acceptable maximum regret, where 

maximum regret is allowed to be higher than |∗. Thus, 

min(Ùsâ, Ùsã) 					�. �.					|â ≤ (1 + c)|∗   ,   |ã ≤ |∗(1 + c).																													(5.27)  
Switching can occur if Ùsâ < Ùsã and |â > |ã, or if Ùsã < Ùsâ and |ã > |â. The 

switching threshold cû is: 

cû = ||â − |ã||∗ .																																																																																																														(5.28) 
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Thus, cû reflects the amount of additional maximum regret as a fraction of |∗ that 

has to be allowed in order to reduce adaptation capital accumulation by switching 

between the investment options. 

5.5 Implementation and results 

In this section, results are presented of a numerical implementation of the 

conceptual FRM model. The results illustrate the effects of emerging information 

on optimal initial investment and on the optimal decisions after information 

arrival.
8
 Outcomes of static and dynamic MR analysis are compared. 

5.5.1 Implementation 

The conceptual model of Section 5.4 is calibrated with peak flow information 

and information on dike and detention investment options from the lower Rhine 

River for which data was readily available from the literature (cf. Vis et al. 2003; 

Hoekstra and De Kok 2008; Hurkmans et al. 2010). We use our own assumptions 

where appropriate. Baseline annual peak flow distribution of the river Rhine at 

gauging station Lobith are reported by Hoekstra and De Kok (2008). They describe 

an ‘extreme’ peak flow scenario in which the design discharge with a return 

period of 1250 years increases from 16000 m
3
 / sec. to 20000 m

3
 / sec. by the year 

2100. We adopt this scenario as an upper scenario for 2100 and define two other 

peak flow scenarios for 2050 and 2100. We consider that the design peak flow of 

16000 m
3

 / sec. today changes to 17000, 18500 and 19000 m
3

 / sec. in 2050 under 

scenarios �R, �Ú and �S, respectively, and to 16700, 18000 and 20000 m
3

 / sec. in 

2100. Note that the frequency of occurrence of peak flow extremes in the second 

half of this century decreases under scenarios �R and �Ú as compared to 2050. 

This is in line with the general findings reported in Hurkmans et al. (2010). Peak 

flow distribution parameter estimates are obtained for intermediate years by 

interpolation of the original and the scenario parameters (Kharin and Zwiers 

2005). 

Table 5.2 summarises the other parameters for the numerical case study. The 

investment cost function is taken from a Dutch dike ring at the Lobith-

Westervoort-Doetinchem area (den Hertog and Roos 2008). Land use is assumed 

                                                 
8
 Note that optimal decisions after information arrival have been called ‘optimal recourse’ 

decisions in the operations research literature. 
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to be predominantly agricultural. Illustrative dimensions of the rural and urban 

areas are considered to describe the surface area of the case study. The effective 

distance between the datum and the water table is assumed to be small, which 

implies the retention capacity in the subsurface to be limited. The dimensions of 

the agricultural land ( H�� and ØH��) are calibrated such that the demand for 

storage capacity is not restricted by the area dimensions. In practice, this is not 

always the case at downstream river locations, for example, at the lower river 

Rhine. 

Floodplain construction is usually relatively expensive in comparison with 

raising an existing dike. This is mainly due to the purchase of land and the costs of 

protection of infrastructure in the area (cf. Vis et al. 2003; Brouwer and van Ek 

2004). We consider a Dutch average agricultural land price of 3.5 €/ m
2
, and 

consider that 5% of the floodplain area has to be converted at this price with no 

alternative use. Note that farmers are compensated for inundation damages, 

which enters the model through the damage function. A fraction of 0.7 of the land 

acquisition costs is used to represent the average infrastructure protection costs 

per m
2
, for example to protect roads and bridges within a detention area.

9
 This 

results in an estimate of 0.3 €/ m
2
, which is divided by the effective storage height 

(³), here assumed to be equal to 1 meter to obtain the value of parameter ��. We 

consider that floodplain dikes are relatively inexpensive as compared to primary 

dikes, and assume 1.4 million € / km to calibrate parameter �F. Fixed costs of 

detention are assumed to be lower than of the primary dike at 10 million €. A 

primary dike might involve more planning costs, because it stretches out over an 

entire dike ring (cf. den Hertog and Roos 2008). For flooding of residential and 

agricultural land constant value losses per square meter per flooding event are 

used, respectively, derived or taken from the literature (Vis et al. 2003; de Moel 

and Aerts 2011).  

  

                                                 
9
 These costs depend on local conditions. For example, in Brouwer and van Ek (2004) a 

fraction of 2445/1790=1.4 is reported. 
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Table 5.2 Default calibration 
 

Parameter Value Units Based on: 

Ä  5.170 ∙ 10F 'F��� 

Hoekstra and De Kok (2008):  

Rhine at Lobith 

 ́ 1.519 ∙ 10F 'F��� 

Hoekstra and De Kok (2008):  

Rhine at Lobith c� 0.7953 '��F^��^�  Hoekstra and De Kok (2008) c� 0.3229 - Hoekstra and De Kok (2008) á� 1.093 ∙ 10�  	'F Vis et al. (2003): quadratic regression á� −1.53 ∙ 10Ï � Vis et al. (2003): quadratic regression áF 53.43 	'�F�� Vis et al. (2003): quadratic regression f� 3.5625 ∙ 10ý € den Hertog and Roos (2008): ring 48 f� 1.425 ∙ 10Ï 	€	f'�� den Hertog and Roos (2008): ring 48 l 0.0063 	f'�� den Hertog and Roos (2008): ring 48 

�� 1.0 ∙ 10ý € 

own assumption:  

see in-text explanation 

�� 0.3 €	'�F 

own assumption:  

see in-text explanation 

�F 4.0 €	'�F 

own assumption: 

see in-text explanation 

 H�� 4.00 ∙ 10G ' 

own assumption:  

see in-text explanation 

ØH�� 2.00 ∙ 10G ' 

own assumption:  

see in-text explanation 

� 8.00 ∙ 10ý 
   '� 

own assumption:  

see in-text explanation 

°� 75.60 €	'�� 

de Moel and Aerts (2011): 

residential value* damage factor (0.3) °� 0.11 €	'�� Vis et al. (2003) 

) 0.04 - 

den Hertog and Roos (2008):  

risk-free rate + risk premium 

³ 1 ' 

own assumption:   

see in-text explanation 
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The decision space of dike height is discretised to steps of ∆\ = 1 cm with a 

maximum dike height of ℎH��. Dike increments of the primary dike (\�), 
therefore, take values 0, ∆\,… , ℎH�� − ℎ�. The detention volumes are discretised 

in steps of ∆¾� = 50	(10Ï'F) and the construction of a maximum of two 

detention compartments per period (2x2) are allowed. We implemented and 

solved the problem in Matlab R2013a. Running times are modest (seconds to 

minutes) due to the specified number of decision moments and the coarse grid. 

The code is available upon request.  

5.5.2 Results 

Figure 5.4 displays the optimal dike height strategy for the uncertainty base 

case without learning, and optimal strategies for the specified learning scenarios. 

The optimal increment at �  is 55 cm for the uncertainty base case without 

learning, followed by an increment of 33 cm at ��. This strategy is optimal under 

the static minimisation of maximum regret, in which it is assumed that the 

information set remains unchanged over time (K = K� = {�R , �Ú, �S}). 
Interestingly, the initial optimal increment is 58 cm under the dynamic 

minimisation of maximum regret for the learning scenarios contained in Þ� = ß{�R, �Ú, �S}, {�R , �Ú}, {�Ú, �S}, {�R}, {�Ú}, {�S}à. This result of an increase of 

the initial investment due to future learning is counter-intuitive at first sight. 

However, it is a consequence of both the timing of the second decision, which is in 

the year 2050, as well as the optimal decisions that would follow at this decision 

moment after information arrival, which are zero (i.e.: no heightening) if peak 

flow increase turns out to be low (K� = {�R}), or low or moderate (K� = {�R , �Ú}). 
Under the higher peak flow scenarios {�Ú, �S}, {�Ú} and {�S}, optimal increments 

are 48 cm, 37 cm, and 58 cm at ��, respectively. As a result, total discounted costs 

and regret decrease under worst-case scenarios by increasing the initial 

investment as compared to the base case strategy without learning. 
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Figure 5.4 Optimal dike height strategy for the uncertainty base case without 

learning (static regret) and optimal strategies under a number of learning 

scenarios (dynamic regret)  

The optimal floodplain development is to first invest in one detention 

compartment with a storage capacity of 250 million m
3
 for the default calibration 

with economies of scale (�F = 4.0). Recall that parameter �F represents the 

economies of scale component of the investment cost function (Eq. (5.13)). For 

this case, the reduction in damages from yield losses by the creation of a second 

detention compartment does not outweigh the investment costs to create it. The 

optimal decisions after information arrival are displayed in Table 5.3. The 

investment pattern is similar to the one found for the dike height problem. Under 

scenarios {�R , �Ú}, {�R} and {�Ú} and �F = 4.0 no second investment would be 

required. For this case, information that peak flow increase is moderate or high 

({�Ú, �S}), or just high ({�S}) results in a second investment of 250 million m
3
 and 
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400 million m
3
, respectively. When uncertainty is not reduced at ��, an additional 

150 million m
3
 is needed. Without economies of scale (�F = 0.0) two unequally 

sized detention compartments would be constructed at the initial decision 

moment (� ) with volumes of 100 million m
3
 and 200 million m

3
. For any case, the 

total storage volume remains below the 2000 million m
3
 that would be required at 

the end of the century to accommodate a peak flow event with a return period of 

1250 years under peak flow scenario �S. This implies that a higher flood 

probability will be accepted with time, which is caused by the relatively high 

investment costs. This effect is smaller when investment in the floodplain would 

be less expensive (for example, if �� = 0, or �F = 0), which results in larger 

optimal detention storage volumes; a total of 800 million m
3
 of storage would be 

optimal under learning scenario K� = {�S} and �F = 0. 

 

Table 5.3 Optimal investments in detention volume at decision moment �� 
 

  �F = 4.0 �F = 0.0 

K� 

¾��∗  (�� = 0, K�)  
(million m

3
) 

¾�F∗  (�� = 0, K�)  
(million m

3
) 

¾�F∗  (�� = 0, K�)  
(million m

3
) 

¾�G∗  (�� = 0, K�)  
(million m

3
) 

{�R , �Ú, �S} 0 150  50 200 

{�R , �Ú} 0 0  50 50 

{�Ú, �S} 0 250  100 300 {�R} 0 0  0 0 

{�Ú} 0 0  100 150 

{�S} 0 400  150 350 

 

Table 5.4 displays a comparison of the NPVs of the total costs under different 

learning and peak flow scenarios associated with both investment options. 

Corresponding regret values are displayed as well. Based on the dynamic 

application of the MR criterion investment in the primary dike is the preferred 

option. This conclusion follows from the application of Eq. (5.5), i.e.: min{7.3; 11.0} = 7.3.  
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Table 5.4 NPV of total costs under different learning and actual scenarios and 

corresponding regret values in million	€ 
 K� Scenario NPV dikes NPV floodplain |â∗   |ã∗   

{�R , �Ú, �S} �R 288.7 285.1 3.6 0.0 

  �Ú 360.1 361.4 0.0 1.3 

  �S 420.2 428.2 0.0 8.0 

{�R , �Ú} �R 278.2 271.2 6.9 0.0 

  �Ú 366.5 359.2 7.3 0.0 

{�Ú, �S} �Ú 360.7 362.2 0.0 1.5 

  �S 411.2 422.2 0.0 11.0 {�R} �R 278.2 271.2 6.9 0.0 {�Ú} �Ú 359.5 359.2 0.3 0.0 {�S} �S 409.9 419.0 0.0 9.1 

  7.3 11.0 
 

Despite that the primary dike is the maximum regret minimising investment 

option, more adaptation capital accumulates over time when the primary dike is 

raised as compared to the option to invest in detention storage. Table 5.5 reports 

the Present Value (PV) of dike and detention investment costs under the different 

learning scenarios.  Due to the postponement of investment, as well as due to the 

relatively high unit costs of detention and the resulting reduction in investment, 

total discounted investment costs of floodplain investment are relatively low. 

 

Table 5.5 Comparison of total discounted investment costs  
 K� PV dike investments PV floodplain investments 

{�R , �Ú, �S} 180.8 172.9 

{�R , �Ú} 154.7 148.2 

{�Ú, �S} 194.8 183.4 {�R} 154.7 148.2 {�Ú} 185.9 148.2 {�S} 203.8 198.0 

Average 179.1 166.5 
 

Recall that the average of total discounted investment costs under the 

specified learning scenarios was defined as a negative measure of flexibility. The 

average PV of floodplain investments is lower (min{179.1; 166.5} = 166.5). If a 
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decision-maker would be willing to accept an additional maximum regret of 11.0 − 7.3 = 3.7 million Euros, switching to investment in the floodplain would 

be optimal (Eq. (5.27)). The threshold-to-switch is 100% ∗ |ý.F���. |ý.F = 51% of |∗ 

(Eq. (5.28)). 

5.6 Conclusions and discussion 

This paper presents a dynamic ‘minimax regret’ (MR) modelling approach for 

the analysis of flood risk management (FRM) investment problems under climate 

change. The approach supports the identification of adaptive FRM strategies by 

the inclusion of ‘learning scenarios’ about climate change impacts. We show how 

the MR decision criterion can be applied dynamically in order to analyse 

investments in flood protection. The important differences between static and 

dynamic MR analysis of FRM investments due to the possible emergence of new 

climate information are highlighted. The key message of this paper is that 

dynamic MR solutions are more robust than the solutions obtained from a static 

MR analysis of FRM investments due to ongoing changes in climate change impact 

projections. 

In recent work the importance of the emergence of new information has 

been stressed for the successful adaptation to climate change, for example with 

the development of methods related to ‘adaptation tipping points’ and ‘adaptive 

pathways’ (cf. Kwadijk et al. 2010; Haasnoot et al. 2013). Unlike these methods, a 

dynamic MR analysis provides detailed economic advice on optimal management 

strategies based on regret aversion. 

Robustness concepts are normative in nature. In this paper, a ‘narrow’ 

definition of robustness is employed, i.e.: minimisation of maximum regret. 

However, other robustness approaches, such as info-gap theory and analytic 

robustness methods, may give complementary insights in FRM strategies that 

perform relatively well across a wide range of scenarios (cf. Lempert et al. 2006; 

Hine and Hall 2010). 

So far, applications of the MR decision criterion have mostly been restricted 

to static settings (Hayashi 2011). Whereas static MR analysis provides insights in 

the ability of a flood protection measure or a system to remain functioning under 

scenarios of future disturbances, it is implicitly assumed that this set of scenarios 

does not change over time. Dynamic MR analysis, in contrast, incorporates future 
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information, which improves the robustness of decisions over time (cf. Mens et al. 

2011). 

The FRM problem solved in this paper could also be addressed from the 

perspective of a social planner with an expected-value based cost-benefit 

optimisation procedure (van der Pol et al. 2014). However, this approach assumes 

risk-neutrality and requires information on the probabilities of future states and 

events. In Europe, cost-benefit analysis is predominantly applied for economic 

appraisal of flood protection and other adaptation measures, although its use is 

controversial (Turner 2007; Watkiss et al. 2014). 

We have shown that the implementation of the dynamic MR decision is 

complex, and that a backward induction procedure is required to ensure dynamic 

consistency. This procedure, however, is computationally intensive. The 

computation time is determined by the number of learning scenarios and the 

number of decision moments. Even if the number of learning scenarios is constant 

over time, computation time is exponential in the number of decision moments. 

However, the presented case illustrates that this is no obstacle to the application 

of the dynamic MR procedure to FRM problems as long as the number of decision 

moments is small. In this paper, the setting was restricted to two decision 

moments, and mutually exclusive investment options. For further research it 

would be interesting to study a multi-period case with complementary investment 

options. 

The inspection of average adaptation capital accumulation might be a useful 

extension to obtain insights in the overall flexibility of dynamic MR solutions. We 

argue that adaptation capital accumulation is risky, as invested capital can lose 

some or all of its value under new information on climate change impacts. The 

concept of ‘value-at-risk’ originates from finance (Linsmeier and Pearson 2000). 

The value-at-risk, however, cannot be quantified in the absence of information on 

the likelihoods of value losses. 

The conceptual FRM model presented in this paper is stylised regarding the 

cost functions and the risk of flooding. For example, fixed damages per flooding 

event were assumed independent of dike height, flood scenario and flood 

duration. Detention areas were assumed to be rectangular, and the infiltration 

potential was assumed to be constant independent of previous weather. For the 

dynamic MR approach to be applicable for decision support of real-world FRM 
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investment decisions, the dynamic MR approach can be combined with a rainfall-

runoff-inundation model.  
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6. General discussion and conclusions 

This thesis investigates the impact of climate change on investment in flood 

risk reduction, and applies optimisation methods to support identification of 

optimal flood risk management strategies. The structure of this chapter is as 

follows. Section 6.1 summarises key findings. Section 6.2 provides a general 

discussion of modelling approaches and results. Section 6.3 presents model 

limitations and suggestions for further research. Section 6.4 ends with modelling 

and policy conclusions. 

6.1 Research questions and summary of findings 

1. How can probabilistic extensions of cost-benefit analysis using climate and 

learning scenarios be applied to improve decision-making on flood risk 

management strategies? And what are advantages and limitations of such 

probabilistic extensions? 

Chapter 2 presents probabilistic extensions of cost-benefit analysis (CBA) to 

assess flood risk management strategies under multiple climate change impact 

scenarios and learning, and discusses the scope of such extensions. Probabilistic 

climate scenarios were used to model uncertainty about the changes in return 

periods of hydro-meteorological extremes. Learning was modelled by probabilistic 

events of information arrival. A distinction was made between learning from 

scientific progress, from statistical evidence and from flood disasters. 

The principle advantage of assigning probabilities to climate change impact 

scenarios is that scenarios which are considered to be likely are given additional 

weight in the economic analysis, and that scenarios that are considered to be 

unlikely are still assigned relatively low but positive probabilities to optimise flood 

risk management strategies. There appears to be some consensus that some of 

the more extreme climate change impact scenarios are less likely. For example, 

local sea level rise scenarios beyond one meter by 2100 are often considered to 

be unlikely. 

However, assigning probabilities to climate change impact scenarios is 

controversial. Climate model ensembles mostly provide non-probabilistic 

uncertainty ranges. Chapter 2 argues that expert elicitation methods are possible 

instruments to obtain probabilistic statements. Yet, climate change uncertainties 
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prevent convergence of opinions with these methods. It was discussed that flood 

risk management under climate change is a case of decision-making under 

uncertainty. Risk-based approaches provide subjective estimates of expected 

costs. Subjective estimates of expected outcomes are arguably better than 

outcomes obtained with single scenarios due to non-linear damage cost and 

investment cost functions and their economic implications for the efficiency of 

flood risk management strategies. It was also discussed that robustness 

approaches may provide complementary insights to CBA, because they aim to find 

solutions that perform relatively well under worst-case or a range of scenarios 

and represent other types of decision-maker preferences, such as uncertainty 

aversion, loss aversion or regret aversion. 

A key advantage of extending CBA with learning is that flood risk 

management strategies can be optimised under the possible arrival of new 

climate change information. Trade-offs between flexibility and expected costs are 

modelled, which could improve the flexibility of flood risk management strategies 

over time and could reduce total discounted expected costs. Chapter 2 briefly 

discussed that adaptive flood risk management is achieved in various ways, 

including adaptive design, investment timing and scale, and portfolio choice of 

flexible flood risk management measures. It was also discussed that different 

types of learning may have different effects on investment strategies, for example 

in terms of investment scale. For this reason, it may be useful to extend an 

economic analysis of flood risk management strategies with different types of 

learning. 

The external validity of the discussed probabilistic learning models is limited 

by uncertainty about the learning process. It is, for example, unclear if and when 

hydrologic uncertainty will be reduced in the short-run. Outcomes are sensitive to 

the assumed learning process. In contrast, a learning analysis with new flood-

related data does not rely on an exogenously defined learning process. Effects of 

flood-related extremes on flood risk management decisions can be introduced in 

an economic model by means of statistical updating and an analysis of possible 

future realisations of extremes, including flood events. Still, uncertain climate 

change impact projections are needed for this type of learning analysis. 

2. What are optimal dike investment strategies under uncertainty and 

learning about climate change impacts? What are the implications of the 

assumed learning process and the use of subjective probability 
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distributions to represent structural water level increase? And how large 

are the differences in optimal investment levels without and with 

learning? 

Welfare-maximising dike investment strategies minimise total discounted 

expected costs. In Chapter 3, total costs are assumed to consist of total 

discounted investment costs and total discounted expected damage costs. 

Expected annual damage costs are changing over time, and can be approximated 

by the sum of probability-weighted monetised expected flood losses in a year 

under climate change for a given dike height. Chapter 3 studies both cases of 

perfect learning with a given learning moment and probabilistic learning, where 

learning is implemented by a survival model. Chapter 3 demonstrated effects of 

uncertainty resolution on optimal dike investment strategies. It was shown that 

the original investment timing and size can be altered to anticipate and respond 

to new information on exceedance frequencies, respectively before and after 

information arrival. 

The numerical results of Chapter 3 show that optimal dike investment 

strategies and total expected costs are sensitive to distributional assumptions of 

structural water level increase. However, subjective probability distributions of 

structural changes in water levels are often lacking. Chapter 3 also shows that an 

earlier investigated alternative, a model with a deterministic parameter for 

structural water level increase, is highly sensitive to the assumed parameter value 

due to the exponential investment and damage cost functions. The deterministic 

base model, therefore, overlooks the importance of climate change uncertainty. 

Chapter 3 also demonstrated that the timing of information arrival is 

important for investment decisions. As a first step, investment in a dike was 

studied for a given moment of learning. Optimal investment in the limit (� → ∞) 

coincides with the uncertainty benchmark without learning, which is applicable 

for the case where uncertainty reduction is expected to occur far away in the 

future. In contrast, earlier learning can both result in a lower or a higher dike 

before learning than under the benchmark without learning, depending on when 

the information is obtained. In some cases initial investment can be increased to 

be able to postpone investment later on, whereas for other cases multiple smaller 

investments may be optimal as compared to the benchmark without learning. 

This is due to trade-offs between the value of information, fixed costs of 
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investment and additional damage costs, in expected terms, of waiting or reduced 

investment scale. 

In a second step, the more general case of probabilistic learning was studied. 

The sensitivity of the outcomes to the assumed learning process led to the 

conclusion that further research on realistic representation of learning is needed 

to improve economic decision-making on dike height. 

Moreover, Chapter 3 showed that learning may reduce discounted expected 

damage and investment costs. For the cases considered, expected values of 

information of 0.9–53.9% of total benchmark costs were reported. These 

estimates are highly sensitive to distributional assumptions and the applied 

discount rate. It was also shown that whether or not new information is expected 

from the start differences between first dike increments are small (e.g. ½ cm) for 

the studied cases. As a result, the expected cost difference between a flexible 

strategy anticipating information arrival and a reactive strategy that is only 

adjusted in response to new information is also small for most investigated cases. 

The results indicate that for the case of dike investment optimal recourse 

decisions are more important than the anticipation of new climate information, as 

studied from the perspective of a risk-neutral social planner. 

 

3. What is the impact of new rainfall observations on cost-effective 

investment in detention storage? Can ‘white noise’ be distinguished from 

a structural shift of an extreme rainfall distribution? And what is the 

relationship between the fixed costs of investment and the statistical 

beliefs of a decision-maker about the risk of flooding? 

Chapter 4 studies impacts of rainfall variability and changing return periods of 

rainfall extremes on cost-effective adaptation of water systems to climate change 

given a predefined system performance target. An example of a system 

performance target is a flood protection standard. It was shown that trend-free 

variability of rainfall, i.e. white noise, might cause re-investment to occur earlier 

than one would expect under projected changes in rainfall. Investment in flood 

risk and stormwater adaptations can be increased to reduce expected costs from 

underestimation of system performance. This was illustrated by a case study of 

the cost-effective volume of a storage basin in a Dutch polder system used to 

temporarily store stormwater from heavy rainfall. 
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It was shown that rainfall variability and the limited number of extreme value 

observations result in volatility of system performance estimates. Consequently, if 

these estimates are used to evaluate whether or not a water system still complies 

with a flood protection standard, the timing of re-investment in the system 

cannot be assumed to be known. Therefore, initial cost-effective investments are 

determined both by current beliefs about the future return periods of rainfall 

extremes, as well as by future beliefs about the return period of the extremes. 

These beliefs will determine when re-investment is necessary rather than the 

actual structural changes in rainfall, which cannot be observed in the short-run. 

This was demonstrated by applying a moving-window analysis. It is possible to 

increase the moving-window length. Yet, this reduces the probability of detection 

of climate change and increases the risk of overestimation of system 

performance. In contrast, reducing the length of the moving-window increases 

the probability of detecting climate change, but it also increases volatility of 

system performance estimates. 

Chapter 4 showed that increasing initial investment reduces the probabilities 

of early re-investment. Frequent re-investment can be costly due to fixed costs of 

investment, and motivates anticipatory climate change adaptation in general. 

Flood risk infrastructure has typically a long technical life time and usually involves 

fixed costs. In Chapter 4 the timing of investment is determined by the statistical 

beliefs about the probability of flooding, which are compared to the predefined 

flood protection standard over time. Increasing the initial investment has two 

effects. Firstly, the actual flood probability will be lower than the accepted flood 

probability for a longer period of time, because the system is able to cope with 

larger structural changes in rainfall induced by climate change. Secondly, 

increasing initial investment offers insurance against additional costs that would 

occur in case of violation of the flood protection standard as a result of 

overestimation of the actual flood probability. 

4. What is the motivation for a minimax regret approach to study flood risk 

management investments? Can a consistent dynamic minimax regret 

procedure be developed, and can it be applied to practical flood risk 

management problems? What is the impact of ‘learning scenarios’ on 

optimal investment selection and optimal investment levels under a 

minimax regret decision criterion? 
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Chapter 5 presents two arguments to motivate the application of the 

minimax regret decision criterion to study flood risk management investments. 

The first argument is about the general shortcomings of expected value-based 

optimisation approaches. Expected-value based approaches assume that risks are 

well-defined, and do not account for other decision-maker preferences under 

ambiguity or in the absence of probabilities. This type of argument motivates 

robustness analysis in general. The second argument focusses on the context-

specific motivation for applying the minimax regret decision criterion, including 

evidence for regret aversion in the domains of flood risk management and climate 

change adaptation and the anchoring of worst-case outcomes in the decision-

making on flood risk management strategies. 

However, various theoretical and practical concerns have been expressed in 

the literature for applying the minimax regret decision criterion (Yager 2004; 

Hayashi 2011). Regret is a context-dependent measure, which implies that 

solutions are sensitive to specified scenarios and alternatives. This, for example, 

results in sensitivity to irrelevant alternatives (Yager 2004). A practical problem for 

dynamic application of the minimax regret decision criterion is that the dynamic 

analysis could result in time-inconsistent commitments (Hayashi 2011). 

Chapter 5 develops a dynamic minimax regret procedure based on backward 

induction used to sequentially eliminate sub-optimal decisions. The developed 

procedure is computationally intensive. However, it remains tractable if the 

number of decision moments is kept low. In Chapter 5, a two-period investment 

case was studied. 

The developed approach supports the identification of adaptive flood risk 

management strategies by including learning scenarios about peak flow 

development, and the dynamic minimisation of maximum regret over time under 

these scenarios. As a proof of concept, optimal dike height and floodplain 

development were studied with a conceptual flood risk management model. 

Numerical differences in investment levels were highlighted by comparing 

outcomes of static and dynamic minimax regret analysis. Also, thresholds-to-

switch between investment in dikes and floodplain development were studied. 

The chapter concludes that dynamic minimax regret offers greater flexibility than 

static application of the decision criterion, because it allows investments to be 

changed at lower maximum regret when new peak flow information emerges. 

Dynamic minimax regret solutions may be more robust than the solutions 
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obtained from a static minimax regret analysis of flood risk management 

investments due to ongoing changes in climate change impact projections. 

6.2 General discussion 

This section briefly compares modelling approaches and results of Chapters 

2-5, and puts the contribution of the thesis in a broader flood risk management 

perspective. 

 

• Modelling approaches 

The need for adaptive flood risk management strategies has received 

increasing attention in recent years, for example by the analysis of adaptation 

tipping points and the application of quantitative learning methods to the flood 

risk management domain (Kwadijk et al. 2010; Woodward et al. 2011; Gersonius 

et al. 2013). However, the inclusion of climate change uncertainty and new 

information in economic models for flood risk management has remained 

challenging. The relevance and impact of new information on optimal strategies 

has often been overlooked. This thesis contributes to the existing research by 

implementing different types of learning processes in both probabilistic and non-

probabilistic models to optimise flood risk management strategies under climate 

change uncertainty and the possible arrival of new information. 

The models in Chapters 2-5 investigate several optimisation objectives. 

Chapters 2 and 3 present cost-benefit models aimed at maximisation of social 

welfare. In Chapter 3, economically efficient dike height is studied. Chapter 4 on 

cost-effective water system optimisation, in contrast, minimises expected costs in 

order to comply with a pre-defined flood protection standard. Hoes and 

Schuurmans (2006), for example, argued that application of equal protection 

standards to different systems may lead to economically inefficient investment 

strategies. Yet, CBA is not always useful for practical or legal reasons (NBW 2005; 

Pathirana et al. 2011). Equal protection standards have, next to practical 

implementation advantages, also advantages regarding transparency, insurance 

and flood risk communication. When such standards or other constraints are 

treated as given in the decision-making process on flood risk management 

strategies, the economic model has to reflect this as well for effective decision-

support. 
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Chapter 5 on dynamic minimax regret departs from expected costs 

minimisation applied in Chapters 2-4. Robustness analysis provides an alternative 

to expected-value based approaches when climate change uncertainties are 

considered to be deep (Kandlikar et al. 2005; Lempert et al. 2006). The minimax 

regret decision criterion provides a narrow interpretation of robustness. Chapter 

5 shows that for floodplain development and dike construction anticipated 

regrets are larger than zero, and that dynamic minimax regret analysis is useful to 

obtain insights in the robustness of flood risk management strategies over time. 

Besides these differences the models in Chapters 2-5 consider several 

implementations of learning. Chapter 2 provides an overview of types of learning 

about climate change impacts that are relevant for the economic analysis of flood 

risk management strategies. Chapter 3 on optimal dike height studies the effects 

of probabilistic uncertainty resolution. Chapter 4 on cost-effective water system 

optimisation addresses the arrival of new rainfall data. Chapter 5 on dynamic 

minimax regret applies predefined learning scenarios. 

The model in Chapter 3 on optimal dike height shows that even if a single 

investment option is studied, identification of optimal strategies is complex under 

the arrival of new information. It was shown that economic modelling is required 

for a detailed understanding of trade-offs between flexibility and expected costs. 

Recently, development of adaptive policy pathways under climate scenarios has 

been proposed as a tool to study dynamic adaptation strategies (Haasnoot et al. 

2013). However, iterative pathway construction is limited by the human capacity 

to heuristically deal with high-dimensional problems, and therefore can only 

consider a limited number of investment options, investment levels, and climate 

and learning scenarios. In contrast, economic models with learning, as presented 

in Chapters 2-5, can provide detailed economic analysis of flood risk management 

strategies under climate change uncertainty and learning. These analyses can be 

used to identify economically efficient, cost-effective or robust flood risk 

management strategies. 

 

• Comparison of main results of the thesis chapters 

Throughout the thesis it was demonstrated that the outcomes of an 

economic analysis of flood risk management strategies are sensitive to possible 

changes in information about climate change. In Chapter 2, it was discussed that 

the type of learning has an effect on optimal investment strategies. This is 
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confirmed by the findings in Chapters 3-5. In Chapter 3 on economically efficient 

dike height, initial dike investment is reduced by probabilistic learning from future 

uncertainty resolution, whereas in Chapters 4 (cost-effectiveness analysis) and 5 

(minimax regret analysis) initial investment is increased by future learning, 

respectively from new observations and under predefined learning scenarios. 

Moreover, when the welfare maximising economic model of Chapter 3 and the 

maximum regret minimising model of Chapter 5 would be applied to the same 

investment problem on optimal dike height, results are likely to be different, 

because they use another objective and implementation of learning. The 

numerical results of Chapters 3 and 5 seem to suggest that the effect of learning 

on initial dike investment might be larger under minimisation of maximum regret 

than under minimisation of total discounted expected costs. This, however, might 

also be caused by the timing of new information and other learning assumptions. 

A comparison of identical cases would therefore be interesting for further 

research. 

 

• Wider context of the thesis 

The investment problems addressed in this thesis are based on Dutch flood 

risk management cases. In practice, large differences can be observed in flood 

exposure, definitions of acceptable flood risk and flood risk management 

strategies across countries. Many countries try to find effective portfolios of flood 

risk management measures that minimise flood frequencies, exposure and 

vulnerability under changing conditions, including climate change. In the 

Netherlands, a ‘multi-layer safety’ approach has been advocated in the domain of 

flood risk management (de Moel et al. 2014). It encompasses hazard, exposure 

and vulnerability mitigation. Historically, the Netherlands has invested in many 

structural flood protection measures, which is not surprising given the portion of 

land that is located below sea level and the proximity of rivers. Yet in other 

countries, for example in Germany, controlled flooding has been more common 

along rivers (e.g. Kreibich and Thieken 2009). In the United States, furthermore, 

accepted flood probability has historically been much higher than in the 

Netherlands (Kind 2014; Lickley et al. 2014). In developing countries, moreover, 

high vulnerability of the poor and governmental budget constraints may play an 

important role for flood risk management (Few 2003; Hanson et al. 2011). For the 

economic models developed in this thesis to be applicable elsewhere, local 



Chapter 6  
 

116 
 

conditions need to be carefully considered for the economic assessment of flood 

risk management strategies. 

The economic models with learning presented in this thesis are not limited to 

local investment decisions for flood risk management. The modelling of learning is 

also important to analyse global adaptation costs to climate change. Aggregation 

of national flood risk management costs can be used to obtain estimates of global 

flood risk management costs, including the economic effects of adaptive flood risk 

management practices under different climate change futures. Moreover, the 

understanding of differences in costs and benefits of flood risk management 

strategies across countries may also support the development and distribution of 

regional adaptation funds and improve international coordination of flood risk 

management strategies. 

6.3 Model limitations and directions for further research 

6.3.1 Limitations 

Mathematical models, by definition, represent reality by simplification. The 

models presented in this thesis simplify reality at points where this was possible 

with no or limited loss of generality. For example, the distinction between 

exceedance probability and flood probability is clearly important for real-world 

decisions. However, it has not been included in the models throughout this thesis, 

as this distinction was not fundamental to the answering of the research 

questions. In the economic models of Chapters 3-5 various other modelling 

assumptions have been introduced, which have been summarised in the 

discussion sections of these chapters. Chapter 3, for example, considers dikes but 

no other flood risk management measures, and uses simple damage and 

investment cost functions. The learning process is considered to be exogenously 

given in this chapter, as well as a time-independent discount rate. Chapter 4 uses 

a simplified investment cost function, and modifies only one water system 

element. Chapter 5 employs a narrow definition of robustness and a stylised flood 

risk management model. 

The primary focus on economics and flood risk under climate change provides 

an important limitation of the models in this thesis. Other societal objectives, 

such as equity issues or social justice, or impacts on landscape and biodiversity, 

and interests of actors and stakeholders were beyond the scope of the research. 
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6.3.2 Suggestions for further research 

New research questions arise from my thesis. What is the best way to model 

learning by bad experience (e.g. disasters)? Why are regret calculations unpopular 

in practice? Can we combine robustness models for flood risk management to get 

even more robust answers? What is the impact of budget constraints on adaptive 

capacity over time in developing countries prone to flood risk? Next to alternative 

model specifications, including those that consider a broader scope or improve 

external validity, the following topics could be interesting for further study: 

1. Disaster-based learning 

In Chapter 2 learning from disasters was discussed as a special case of 

learning from extreme-value observations. The model developed in 

Chapter 4 assumes that decision-makers behave rationally and use 

statistics to evaluate the performance of water systems. However, 

disasters have often led to large-scale investments that went beyond 

repair. The development of an expected-cost model that takes 

probabilities of disaster realisations into account would be interesting, 

especially for cases where annual flood probabilities are relatively high 

(e.g. 1/100). 

 

2. Multi-type learning 

The numerical results of this thesis suggest that different types of learning 

may sometimes have opposite effects. It would be interesting to develop 

an economic model that combines different types of learning and to apply 

it to flood risk management case studies. 

 

3. Economic and climate uncertainties 

In Chapter 2 it was mentioned that impacts of climate change on flood 

risk are increased under high scenarios of economic growth. The effects of 

learning may also be reinforced under these scenarios. The relevance of 

this issue would be interesting for further study. 

 

4. Meta-analysis of economically efficient and robust strategies 

There are different robustness concepts and robustness decision criteria. 

Chapter 5 has restricted attention to the minimax regret decision 



Chapter 6  
 

118 
 

criterion. Moreover, solutions found with the minimax regret model of 

Chapter 5 are likely to be different from the solutions found with the 

expected-value based cost-benefit model of Chapter 3. Economic 

decision-making could be supported by developing meta-methods that 

help to identify solutions that perform relatively well both in terms of 

expected costs and under robustness definitions. 

 

5. Adaptive capacity in developing countries 

Adaptive capacity is time-dependent. The adaptive capacity of developing 

countries is currently not only lower than the adaptive capacity of 

developed countries, but may also be improved or reduced by current 

adaptation decisions or reduced by disasters. Analysis of flood risk 

management strategies under climate change uncertainty and learning in 

developing countries could therefore be very interesting. 

6.4 Conclusions 

6.4.1 Modelling conclusions 

Economic analysis of flood risk management strategies can be extended to 

include climate change uncertainty and new information. This thesis has 

demonstrated that concepts and methods from a number of disciplines are 

required to support the identification of economically optimal investment 

strategies. These disciplines include economics, operations research, statistics and 

hydrology. The work process applied to the modelling chapters of this thesis can 

be characterised by three main stages: (i) qualitative analysis of the decision 

problem, (ii) model development and (iii) implementation. 

The qualitative research stage, in which the main characteristics of the 

decision problem are explored, is crucial. It starts from the notion that flood risk 

management under climate change is a case of decision-making under 

uncertainty, and that investment strategies can be adjusted over time on the basis 

of new information. This thesis has shown that different optimisation objectives 

can be considered for the economic optimisation of flood risk management 

strategies under climate change. In Chapters 2 and 3 an expected-value based 

cost-benefit analysis (CBA) was applied to identify welfare maximising strategies. 

In Chapter 4 the case of cost-effective compliance with a given flood protection 
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standard was considered, and in Chapter 5 the objective was to minimise 

maximum regret over time. 

Also determinants of optimal investment were explored. The cost-structure 

of available flood risk management measures is a determinant of optimal 

investment. Fixed costs of investment explain, for example, why dikes are raised 

in intervals of several decades, a result of Chapter 3, and why future changes in 

rainfall have to be included to determine initial investment in a storage basin 

studied in Chapter 4. Several other determinants of optimal investment were 

identified for the cost-effectiveness study in Chapter 4, including the projected 

changes in rainfall, the compliance period of the flood protection standard, and 

the likelihood of future rainfall realisations. 

Optimisation models have been developed in Chapters 2-5. The economic 

objectives have been formalised, together with the state variables (e.g. dike 

height), decision variables (e.g. dike increments) and applicable constraints. 

Dynamic programming is a useful method to study flood risk management 

strategies under climate change, and was applied in Chapter 3 to dike investment 

and in Chapter 4 to investment in a storage basin. Chapter 4, furthermore, 

showed that for detailed economic analysis it is useful to combine stochastic 

dynamic programming with the simulation of rainfall and hydrodynamics. In 

Chapter 5 a conceptual flood risk management model was developed instead, but 

for real-world applications such models provide insufficient realism. The dynamic 

minimax regret approach developed in Chapter 5, however, could be linked to a 

detailed rainfall-runoff-inundation model in a similar fashion as in Chapter 4. 

The implementation of the models in Chapters 3-5 was a time-consuming 

process. This may be a concern for real-world applications, especially when the 

model components required for the final optimisation are not readily available. 

Yet, the implementation itself is relatively straightforward. All model components, 

from rainfall-runoff-inundation simulation to dynamic programming, are well-

described in the literature. 

Learning can be implemented exogenously, for example by a survival model 

applied in Chapter 3, or predefined learning scenarios in Chapter 5. Learning from 

new observations, in contrast, can be introduced by simulation of extremes, as 

was done in Chapter 4. 

The external validity of the numerical results presented in Chapter 3 is limited 

by probabilistic assumptions about climate change impacts and new information. 
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Expected-value based CBA was applied to dike investment with a normal and a 

lognormal distribution of structural water level increase and probabilistic 

uncertainty resolution. The numerical results heavily rely on the probabilistic 

assumptions about the learning process and the impacts of climate change on 

exceedance frequencies. Estimates of expected total costs and the value-of-

information diverge, which suggests that sensitivity analysis is a requirement for 

expected-value based CBA of flood risk management strategies under climate 

change uncertainty with learning. The results of Chapter 3 also suggest that other 

aspects, such as discounting, have to be considered in the sensitivity analysis. 

Chapter 4 shows that mere randomness in extreme value observations in the 

coming decades might trigger investment responses. Economic optimisation of 

flood risk management strategies goes beyond uncertainty from the natural 

system, for example, about the impacts of climate change on flood-related 

frequencies. New observations change decision-makers’ statistical beliefs, which 

introduces social uncertainty. So far, research on flood risk management rarely 

addresses this type of uncertainty, while the economic consequences of early re-

investment can be significant. Noisy observational evidence for climate change 

and changes in flood risk can be modelled in various ways, and the model in 

Chapter 4 provides one example of this. 

The advantages of the dynamic minimax regret approach in Chapter 5 are 

that no probabilistic climate information is required, and that various learning 

scenarios can be introduced. However, still a plausible range of climate scenarios 

is needed, and learning scenarios have to be specified. Chapter 5 did not focus on 

methods to specify learning scenarios, and considered a two decision period 

model only. Upscaling the model to annual decision moments may be intractable, 

as computation time is exponential in the number of decision periods. 

Furthermore, the underlying assumption that decision-makers are merely 

concerned with worst-case regret is a narrow interpretation of regret-aversion. 

Yet, the overall information from a dynamic minimax regret analysis is useful to 

obtain insights in maximum regrets, rather than in total expected costs, under 

different flood risk management strategies that can be adapted over time on the 

basis of new information. 

The models in this thesis can be used to analyse learning effects on initial 

investment and optimal recourse decisions, to support the identification of 

optimal flood risk management strategies, and to obtain expected cost estimates 
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or estimates of maximum regret. For any of these models holds that the 

underlying model assumptions and model inputs together determine the quality 

of the results. Given the severity of climate change uncertainties any model, no 

matter how detailed, solved to economically optimise flood risk management 

strategies supports economic decision-making by providing a small part of the 

puzzle for the decision-making process on flood risk management strategies under 

climate change. 

6.4.2 Policy conclusions 

Economic analysis of flood risk management strategies has become more 

complex due to climate change. Despite severe climate change uncertainties, it is 

widely shared that it is no longer sufficient to only consider changes in flood 

exposure. Future changes in weather patterns, river flows and sea levels need to 

be considered to effectively and efficiently reduce flood risks. Flood risk 

infrastructures typically have long technical lifetimes and often involve fixed costs 

of investment. Wrong choices today can therefore result in high costs and regret 

in the future. An economic analysis of flood risk management strategies supports 

the identification of economically optimal flood risk management strategies under 

climate change, and provides insights in trade-offs between flexibility and 

expected costs or regret. To analyse these trade-offs, learning is introduced as the 

possible arrival of new information over time. Learning is particularly relevant to 

gain insights in the benefits and costs of flexible flood risk management strategies. 

This thesis distinguishes between different types of learning, which were 

introduced in Chapter 2 and were summarised by learning from scientific progress 

and from new data. Learning from scientific progress was studied in Chapter 3 to 

determine optimal dike height under climate change uncertainty and uncertainty 

resolution. Uncertainty resolution is an extreme case of uncertainty reduction. 

Uncertainty resolution is not realistic, but more moderate versions of uncertainty 

reduction can be expected from reduction of epistemic climate uncertainties with 

time. 

Chapter 3 demonstrates that learning from scientific progress has a large 

effect on optimal investment if we would know for sure that climate change 

uncertainty will be resolved, and if we would also know when it would be 

resolved. In some cases initial dike investment is postponed, while in other cases 

investment levels are reduced till uncertainty is resolved, or initial investment is 
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increased in order to postpone investment later on. However, it is unclear how 

long it will take till we will have better information on climate change impacts on 

flood-related frequencies. Therefore, also solutions under probabilistic 

uncertainty resolution were studied in this chapter. The probabilistic learning 

cases show that learning could reduce expected costs significantly, for one case by 

an estimated 54% of total costs, as a result of implementing optimal response 

strategies as soon as new information becomes available. 

The numerical results in Chapter 3 should be interpreted with care and 

mainly carry qualitative messages. It was found that optimal dike investment 

strategies are highly sensitive to probabilistic assumptions about climate change 

impacts on exceedance frequencies, and also the assumed probabilistic learning 

process could greatly influence the results. This highlights that there is a clear 

need for better underpinning of these probabilistic assumptions, and also that 

sensitivity analysis of these key uncertainties is necessary. The effects of 

probabilistic learning on initial dike height for the studied cases were less than a 

centimetre, which suggests that the modelling of learning from scientific progress 

for short-term dike investment could be left aside. 

Chapter 4 investigates effects of new rainfall data on cost-effective water 

system investment under climate change. Unlike learning from scientific progress, 

learning from new data is certain: every day 24 new hourly rainfall observations 

will become available. These observations can be used to monitor the 

performance of a local water system over time. In the model it was assumed that 

if the estimated probability of flooding exceeds a predefined maximum accepted 

flood probability re-investment is required. One drawback of this approach is that 

the natural variation in rainfall observations is high, which results in volatility of 

performance estimates. If, for example, a water system element is designed for an 

event with a return period of 10 years in 2050, it is possible that somewhere along 

the way the return period of this design event is estimated to be smaller than 10 

years due to mere natural variation. Resulting performance underestimation can 

be a trigger for new system investments, and this could be costly. Chapter 4 

concludes that, if investments are associated with fixed costs, increasing initial 

investment not only increases water system robustness to future climate change 

impacts on rainfall, but it also provides insurance against costs that could arise in 

case of underestimation of system performance. 
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Chapters 2-4 consider expected cost minimisation as economic objective for 

flood risk management. Chapter 5, in contrast, focusses on minimisation of 

maximum regret as an alternative decision criterion. It has frequently been 

expressed in policy briefings and reports on climate change adaptation that 

adaptation should aim at no or low regret options. For flood risk management, 

however, these options do not always exist for structural investments. For 

example, if a low dike is constructed and sea level rise turns out to be high, this 

gives regret, and visa-versa. These regrets can be anticipated and quantified. This 

is explained in the introduction of Chapter 5. Whereas the concept of regret 

minimisation is well-established, the dynamic application of the minimax regret 

decision criterion has rarely been observed. In Chapter 5 it was shown that the 

decision criterion can be applied dynamically to analyse flood risk management 

strategies. By defining learning scenarios maximum regret minimising investment 

strategies can be identified, provided that these strategies are adapted as soon as 

new information becomes available. The results of a dynamic minimax regret 

analysis are more robust than of a static minimax regret analysis. A dynamic 

minimax regret analysis not only considers different climate scenarios, but also 

accounts for possible changes in information, and the costs of response strategies 

that would follow after information arrival under several informational scenarios.
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Summary 

Urban, riverine and coastal flood risks have been increasing globally, and 

flood risks will continue to increase in the coming decades as a result of growing 

flood exposure and higher flood frequencies. The adverse effects of climate 

change on flood frequencies can be mitigated by updating flood risk management 

strategies. Flood risk management poses a burden on national budgets. Yet, flood 

disasters may cause severe economic damages and social disruption. Economic 

analysis of flood risk management strategies supports the identification of 

economically optimal investments. Economic analysis of flood risk management 

strategies has become more complex due to climate change uncertainties. It is 

uncertain how weather patterns, river flows and sea levels will change in the 

future, and it is also hard to predict how the current information about these 

changes might alter over time. Learning, induced by the arrival of new 

information, has received relatively little attention in economic flood risk 

management studies. This thesis is therefore concerned with the economic 

analysis of flood risk management strategies under climate change with learning. 

The overall objective of this thesis is to investigate the impact of climate change 

on investment in flood risk reduction, and to explore and apply optimisation 

methods to support identification of optimal strategies. 

Economic analyses applied throughout this thesis are cost-benefit analysis 

(Chapters 2 and 3), a cost-effectiveness analysis (Chapter 4) and a robustness 

analysis (Chapter 5). Studied flood risk management measures include dikes 

(Chapters 3 and 5), a storage basin of a polder system (Chapter 4) and floodplain 

development (Chapter 5). Learning is modelled as an exogenous process (Chapter 

3), by simulation of new extreme-value data (Chapter 4) and by predefined 

learning scenarios (Chapter 5). 

Chapter 2 provides an overview of cost-benefit analysis (CBA) of flood risk 

management strategies extended with climate change scenarios and learning, and 

discusses the scope of such extensions. Uncertainty about the changes in return 

periods of hydro-meteorological extremes is introduced by probabilistic climate 

scenarios. Learning occurs upon the arrival of new information. A distinction is 

made between learning from scientific progress, from statistical evidence and 

from flood disasters. It is concluded that these probabilistic extensions of CBA are 
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useful to support the identification of economically efficient flood risk 

management strategies. However, the required probabilistic information for such 

analyses, both on climate change impacts and on the learning processes, is ill-

defined. Moreover, decision-makers may not be merely concerned with subjective 

estimates of expected outcomes. Robustness analysis can therefore be considered 

to complement insights obtained from CBA of flood risk management strategies. 

Chapter 3 revisits the problem of optimal dike height. Whereas dike 

investment strategies have previously been studied in a deterministic setting, 

Chapter 3 extends the original problem with climate change uncertainty and 

probabilistic uncertainty resolution, an extreme case of uncertainty reduction. It is 

demonstrated that investment timing and investment levels can be changed in 

order to anticipate and respond to new information on exceedance frequencies, 

respectively before and after information arrival. Optimal strategies are 

determined by dynamic programming. It is found that the expected value of 

information can be substantial. However, the effect on initial investments is 

mostly small for the studied case of probabilistic learning. The results suggest that 

it is more important to respond to new information than to anticipate these 

changes. Moreover, it is found that optimal strategies are highly sensitive to the 

probabilistic assumptions about structural changes in water levels. Therefore, a 

better understanding about these probabilistic assumptions is needed and this 

highlights the importance of sensitivity analysis. 

Chapter 4 studies impacts of rainfall variability and changing return periods of 

rainfall extremes on cost-effective adaptation of water systems to climate change 

given a predefined system performance target, for example a flood protection 

standard. Rainfall variability causes system performance estimates to be volatile. 

These estimates may be used to recurrently evaluate system performance. A 

model is presented for this setting, and a solution method is developed that 

combines rainfall simulation and a hydrological model with stochastic dynamic 

programming. It is demonstrated that if flood probability estimates are used to 

evaluate whether or not a water system still complies with a flood protection 

target, the timing of re-investment in the system cannot be assumed to be known. 

It is concluded that increasing initial investments not only increases water system 

robustness to structural changes in rainfall, but can also offer insurance against 

additional costs that would occur if system performance is underestimated and 
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re-investment becomes inevitable. Cost-structure is an important determinant of 

cost-effective investment. 

Chapter 5 departs from expected cost minimisation applied in Chapters 2-4. 

The minimax regret decision criterion is applied dynamically to identify minimax 

regret flood risk management strategies under the possible arrival of new 

information. New information is introduced through predefined learning 

scenarios, which are used to study dike investment and floodplain development. 

Dynamic minimax regret applications are scarce, and the chapter shows that it is 

possible to dynamically apply the decision criterion to practical flood risk 

management cases. The chapter concludes that dynamic minimax regret solutions 

are more robust than static solutions due to the ongoing changes in climate 

change impact projections. 

The following main conclusions are drawn from this thesis: 

• Several decision objectives can be considered to economically optimise 

flood risk management strategies, including expected welfare 

maximisation, constrained cost minimisation and minimisation of 

maximum regret; 

• Probabilistic climate projections are useful for expected-value based 

economic optimisation of flood risk management strategies. However, 

solutions may be highly sensitive to assumed probabilities; 

• For economic decision-support it is important to consider different types 

of learning, from scientific progress and from new data, as well as their 

effects on optimal investment. 

• The explicit modelling of learning may improve an economic analysis of 

flood risk management strategies; 

• Learning can be implemented in both probabilistic and non-probabilistic 

optimisation models; 
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Samenvatting 

Wereldwijd zijn overstromings- en wateroverlastrisico’s toegenomen en deze 

trend zal zich naar verwachting voortzetten door de groei van economische 

waarde in kwetsbare gebieden en de toenemende kansen op overstromingen. 

Daarbij kunnen de nadelige effecten van klimaatverandering worden beperkt door 

het verbeteren van strategieën die overstromingsrisico’s verminderen. Dit 

risicomanagement is echter kostbaar voor nationale overheden, net zoals 

overstromingsrampen die grote economische schade en sociale ontwrichting 

kunnen veroorzaken. De economische analyse van overstromingsrisico’s en 

managementstrategieën draagt bij aan het vinden van economisch optimale 

investeringen. Deze analyses zijn complexer geworden door 

klimaatonzekerheden. Niet alleen is het onzeker hoe weerpatronen, piekafvoeren 

en zeeniveaus zullen veranderen, het is ook moeilijk te voorspellen of en hoe de 

nu beschikbare informatie over deze veranderingen zal wijzigen met de tijd. Leren 

door het verkrijgen van nieuwe klimaat-gerelateerde informatie heeft relatief 

weinig aandacht gekregen in economische studies van overstromingsrisico’s en 

managementstrategieën. Dit proefschrift richt zich daarom op de economische 

analyse van strategieën die overstromingsrisico’s beperken onder 

klimaatverandering met speciale aandacht voor leereffecten. Het doel van deze 

studie is om onderzoek te verrichten naar de gevolgen van klimaatverandering 

voor investeringen in maatregelen die overstromingsrisico’s beperken en om 

geschikte optimalisatiemethoden toe te passen die bijdragen aan het vinden van 

economisch optimale strategieën. 

In dit proefschrift worden verschillende types van economische analyse 

toegepast. In hoofdstukken 2 en 3 wordt kosten-batenanalyse uitgewerkt, in 

hoofdstuk 4 wordt een kosteneffectiviteitsstudie gepresenteerd, en in hoofdstuk 

5 een robuustheidsstudie. Daarbij worden diverse maatregelen die 

overstromingsrisico’s beperken bestudeerd, inclusief het verhogen van dijken 

(hoofdstukken 3 en 5), de aanleg van kleinschalige detentieberging in een 

poldersysteem (hoofdstuk 4) en het creëren van meer ruimte voor rivieren 

(hoofdstuk 5). Leren wordt gemodelleerd als een exogeen proces (hoofdstuk 3), 

door middel van simulatie van extreme waarden (hoofdstuk 4) en met vooraf 

gedefinieerde leerscenario’s (hoofdstuk 5). 
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Hoofdstuk 2 geeft een overzicht van uitbreidingsmogelijkheden van kosten-

batenanalyse met klimaatscenario’s en leren om strategieën te analyseren die 

overstromingsrisico’s beperken. Ook wordt de externe validiteit van deze 

uitbreidingen beschouwd. Onzekerheid over de veranderingen in terugkeertijden 

van hydro-meteorologische extremen wordt geïntroduceerd door middel van 

kans-gewogen scenario’s. Leren vindt plaats na het verkrijgen van nieuwe 

informatie. Een onderscheid wordt gemaakt tussen leren door voortschrijdende 

wetenschappelijke inzichten, leren door het verkrijgen van nieuw statistisch 

bewijs en ervaringsleren uit het plaatsvinden van overstromingsrampen. Het 

hoofdstuk eindigt met de conclusie dat deze kans-gebaseerde uitbreidingen van 

kosten-batenanalyse bruikbaar zijn om economische efficiënte strategieën te 

identificeren. De benodigde kans-informatie met betrekking tot de huidige stand 

van kennis over de gevolgen van klimaatverandering en het leerproces is echter 

incompleet en onnauwkeurig. Bovendien zijn beleidsmakers niet alleen 

geïnteresseerd in subjectieve schattingen van uitkomsten. Robuustheidsanalyse 

kan worden overwogen om de inzichten van kosten-batenanalyse van strategieën 

voor het beperken van overstromingsrisico’s aan te vullen. 

Hoofdstuk 3 gaat verder met het vraagstuk van optimale dijkhoogte. In een 

aantal eerdere onderzoeken zijn dijkophogingsstrategieën bestudeerd in een 

setting van volledige zekerheid. Hoofdstuk 3 breidt het ophogingsvraagstuk uit 

met klimaatonzekerheid en de probabilistische oplossing van onzekerheid, welke 

een extreem geval is van de vermindering van onzekerheden. Er wordt 

aangetoond dat zowel de investeringstiming als de omvang van dijkinvesteringen 

kunnen worden gewijzigd om nieuwe informatie over overschrijdingskansen voor 

te zijn of om adequaat te reageren na voortschrijdende inzichten over de 

werkelijke overschrijdingskansen. Optimale strategieën worden bepaald met 

behulp van dynamische programmering. De resultaten geven aan dat de waarde 

van informatie substantieel kan zijn. Echter is het effect van probabilistisch leren 

op de eerstvolgende investering in de meeste bestudeerde gevallen beperkt. De 

resultaten lijken vooral te wijzen op het belang om adequaat te reageren wanneer 

betere informatie beschikbaar komt, maar nuanceren de noodzaak om het 

beschikbaar komen van deze informatie voor te zijn. Bovendien zijn de optimale 

strategieën erg gevoelig voor kans-aannames over de structurele wijzigingen in de 

terugkeertijden van hoge waterniveaus. Een beter begrip over deze kansen is 
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daarom wenselijk en dit benadrukt ook het belang om een kans-

gevoeligheidsanalyse uit te voeren. 

In hoofdstuk 4 worden de effecten van natuurlijke variatie in 

regenvalextremen en de structurele veranderingen in regenval bestudeerd op de 

kosteneffectieve aanpassing van watersystemen onder klimaatverandering en een 

gegeven doelstelling, bijvoorbeeld een wettelijk gedefinieerd maximaal 

toegestaan overstromingsrisico. Variatie in natuurlijke regenval veroorzaakt 

volatiliteit in faalkansschattingen van watersystemen. Deze schattingen kunnen 

worden gebruikt om het functioneren van een watersysteem te beoordelen over 

de tijd. Voor deze setting wordt een wiskundig model gepresenteerd en wordt 

een oplossingsmethode ontwikkeld, welke regenvalsimulatie combineert met een 

hydrologisch model en economische optimalisatie door middel van stochastisch 

dynamische programmering. In het hoofdstuk wordt uitgelegd dat onder een 

gegeven doelstelling de planning van investeringen in de tijd onzeker is. Het 

vergroten van investeringen die nu worden gedaan helpt niet alleen om beter in 

staat te zijn om grotere structurele veranderingen in regenval op te vangen, maar 

vormt ook een verzekering tegen extra kosten die kunnen ontstaan door 

overschatting van de faalkans van het systeem. Dat laatste kan resulteren in de 

wens om nieuwe systeemaanpassingen te maken. De kostenstructuur van een 

systeemelement is hierbij een belangrijke factor voor kosteneffectieve 

investering. 

In hoofdstuk 5 wordt afgeweken van de minimalisatie van verwachte kosten, 

welke is toegepast in hoofdstukken 2-4. Het besliscriterium van minimalisatie van 

maximale spijt, zgn. ‘minimax regret’, wordt dynamisch toegepast om spijt 

minimaliserende managementstrategieën te vinden wanneer wijzigingen in de 

huidige klimaatinformatie kunnen optreden. Deze informatie wordt 

geïntroduceerd in het model met vooraf gedefinieerde leerscenario’s. Als case 

studie wordt de methode numeriek toegepast op een conceptueel model waarbij 

maximale spijt van dijkverhoging met maximale spijt van tijdelijke overstroming 

van compartimenten worden vergelijken. Dynamische toepassingen van de 

minimax regret beslisregel zijn tot op heden zeldzaam en dit hoofdstuk laat zien 

dat het methodisch mogelijk is om de regel dynamisch toe te passen op praktische 

case studies voor overstromingsrisicomanagement. Dynamische minimalisatie van 

maximale spijt kan robuustere oplossingen geven dan statische toepassing van de 
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beslisregel, omdat dynamische toepassing kan omgaan met voortschrijdende 

inzichten over de gevolgen van klimaatverandering. 

De volgende hoofdconclusies volgen uit dit proefschrift: 

• Diverse besliscriteria kunnen worden overwogen voor de economische 

optimalisatie van strategieën die overstromingsrisico’s beperken, inclusief 

de maximalisatie van de verwachte welvaart, kostenminimalisatie onder 

gegeven beperkingen of minimalisatie van maximale spijt; 

• Kans-gewogen klimaatscenario’s of kansverdelingen zijn nodig voor de 

economische optimalisatie van risicomanagementstrategieën op basis van 

verwachte waarden. De uitkomsten zijn hierbij gevoelig voor de kans-

aannames over de effecten van klimaatsverandering; 

• Voor economische beleidsondersteuning is het belangrijk om na te 

denken over informatieveranderingen over de tijd, inclusief 

voortschrijdende wetenschappelijke inzichten en het beschikbaar komen 

van meer data, en de gevolgen van deze informatie voor investeringen. 

• Het explicit modelleren van leren kan de economische analyse van 

managementstrategieën verbeteren; 

• Leren kan zowel in optimalisatiemodellen met als zonder kansen worden 

geïmplementeerd; 
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