Projectnr.: 71.316.24

Development and Validation of HPLC-methods for the official control of Coccidiostatics and

Antibiotics used as Eeed AdditiveS (SMT4-CT98-2216)

Co-ordinator: Dr. J. de Jong

FINAL REPORT

Report 2002.016

August 2002

CANFAS - Collaborative study for the determination of maduramicin in feedingstuffs and premixtures by HPLC

J.J.M. Driessen, M.J.H. Tomassen, J. de Jong

Business Unit: A&O (Analysis and Development)

State Institute for Quality Control of Agricultural Products (RIKILT)
Bornsesteeg 45, 6708 PD Wageningen
P.O. box 230, 6700 AE Wageningen
Phone +31 317-475400
Fax +31 317-417717

Copyright 2002, State Institute for Quality Control of Agricultural Products (RIKILT). Take-over of the content is allowed only with clear acknowledgement of sources

MAILING LIST

INTERNAL:

director authors program leaders (4x) Marketing and Communication (2x) library (3x) J.A. van Rhijn

EXTERNAL:

Participants

Mrs. D. Ramaekers, European Commission, M&T program, DG Research

F. Verstraete, European Commission, DG SANCO

A. Thalmann, LUFA Augustenberg

H.J. Keukens, RW

K. Michels, LUFA Augustenberg

Secr. CEN/TC 327 Animal Feedingstuffs; ISO/TC34/SC10, O.J.M. Kolsteren, NEN

AOAC - Methods Committee on Feeds, Fertilisers and Related Agricultural Topics, M.R. Coleman (chair) and L. Wetzler (secretary)

AAFCO Laboratory Methods and Services Committee, N. Thiex

- H. Campbell, Canadian Food Inspection Agency
- P. de Vries, Pre-Mervo
- H. van der Voet, Biometris, Wageningen UR

CON	TENTS	5	page		
SUMI	MARY		3		
1 INTRODUCTION 5 2 PARTICIPANTS 6					
2	PART	TCIPANTS	6		
3	MATE	ERIALS	7		
	3.1	Samples for collaborative study	7		
		3.1.1 Sample composition	7		
		3.1.2 Sample homogeneity	8		
		3.1.3 Sample logistics	8		
	3.2	Reference standard	9		
4	METI	HODS	10		
	4.1	Method of analysis	10		
		4.1.1 HPLC- conditions	10		
	4.2	Method for statistical evaluation	10		
5	RESU	JLTS	12		
	5.1	Statistical evaluation	12		
	5.2	Blank samples	18		
	5.3	Recoveries	18		
	5.4	Remarks	19		
	5.5	Special requests	20		
		5.5.1 HPLC conditions	20		
		5.5.2 Recoveries	21		
		5.5.3 Remarks	21		
		5.5.4 Results of the samples	22		
6	EVAI	LUATION AND CONCLUSIONS	23		
ACK	NOWL	EDGEMENTS	24		
APPE	ENDICE	ES CONTRACTOR OF THE PROPERTY			
Appe	endix 1	letter with instructions, sent with the samples (with five annexes)			
Appe	endix 2				
Appe	endix 3				
• •	endix 4	• • • • • • • • • • • • • • • • • • • •			
• •	endix 5				
	endix 6	•			

SUMMARY

This report describes the results of a collaborative study of an HPLC method for the coccidiostat maduramicin in four broiler feeds, one turkey feed and one premixture. The collaborative study forms part of the EU-project "Development and Validation of HPLC-methods for the official control of Coccidiostats and Antibiotics used as Feed Additives (CANFAS-SMT4-CT98-2216).

The principle of the method is as follows: The sample is extracted with methanol. The content of maduramicin is determined by reversed-phase high performance liquid chromatography (HPLC) with post-column derivatisation with vanillin and VIS-detection at 520 nm.

The samples which were tested in the collaborative study were 3 broiler feeds with declared maduramicin contents of 2,5, 4,5 and 9 mg/kg, 1 turkey feed with 5 mg/kg, 1 blank broiler feed and 1 premixture with declared content of 450 mg/kg maduramicin. The feed samples were sent to the participants as blind duplicates, the premixture as a single sample. The participants were asked to do a single determination per sample for the feed samples and to analyse the premixture in duplicate.

Results were reported by 10 laboratories. Statistical evaluation was performed according to ISO 5725.

The results of the collaborative study were evaluated in a meeting attended by the participants. The panel has accepted the results of the statistical evaluation, as described in Table 7 (including the results of lab 26). It can be concluded that the repeatability and reproducibility of the method is acceptable, both for feedingstuffs and premixtures. The results obtained for the blind blank feeds and for the recovery are also acceptable. The panel agreed that the method can be recommended for adoption as an official method.

Three laboratories used dimethylaminobenzaldehyde (DMAB) for post column derivatisation. The results do not differ significantly from the results with vanillin.

1 INTRODUCTION

Within the framework of the EU-project "Development and Validation of HPLC-methods for the official control of Coccidiostats and Antibiotics used as Feed Additives (CANFAS-SMT4-CT98-2216), a method was developed for maduramicin. Maduramicin is a coccidiostat which is registered for broiler and turkey feeds at a content of 5 mg/kg.

The method for feeds and premixtures was developed and validated by the Bundesamt und Forschungszentrum für Landwirtschaft (BFL), Vienna, Austria (see Final report on method development and validation for maduramicin, B. Stoisser, 26-05-1999). Subsequently, the method for feeds and premixtures was subjected to between-lab validation by the Universität Hamburg, Institut für Angewandte Botanik, Germany (see report H.-A. Putzka, 24-01-2000) and the National Veterinary Institute (NVI), Uppsala, Sweden, (see report A. Stepinska, May 2000) with satisfactory results (see Second Annual Report CANFAS, J. de Jong, 12-08-2000).

Prior to the collaborative study, a kick-off meeting was organised (Brussels, 13-14/6/2000) and participating laboratories were given the opportunity to familiarise themselves with the method, using feed samples with stated contents of maduramicin. Also prior to the production of the materials for the collaborative study, separate batches of the materials were produced for stability testing, indicating that maduramicin is unstable in feeds and premixtures at room temperature and at 37 °C. At 4 °C about 10 % breakdown is observed after 4 months. For this reason it was decided to store and ship the samples frozen and to ask the participants to analyse the samples in a short period of time after receipt.

The samples which were prepared for the collaborative study were 3 broiler feeds with declared maduramicin contents of 2,5, 4,5 and 9 mg/kg, 1 turkey feed with a content of 5 mg/kg, 1 blank feed and 1 premixture with declared content of 450 mg/kg maduramicin. The feeds with 2,5 and 9 mg maduramicin per kg have been included in order to assure that the method is applicable for contents 2 times lower and 2 times higher than the permitted content.

The feed samples were sent to the participants as blind duplicates, the premixture as a single sample. The participants were asked to do a single determination per sample for the feed samples and to analyse the premixture in duplicate. Before these samples were shipped, the between-sample homogeneity was checked with satisfactory results (see par. 3.1.2). Apart from the samples, a letter with instructions, reporting forms, etc. was sent to the participants (see Appendix 1).

This report describes the results of the collaborative study.

2 PARTICIPANTS

The following laboratories/persons participated in the collaborative study.

- Bundesambt und Forschungszentrum für Landwirtschaft (BFL), Wien, Austria; B. Stoisser, M.
 Wieshaider
- Hoffmann-La Roche Ltd., Basel, Switzerland; P. Hofmann, A. Zuber
- IEEB, Bordeaux, France; J.P. Antalick, T. Gron.
- INETI/DTIA, Lisbon, Portugal; I. Felgueiras, C. Saldanha.
- Laboratory of the Government Chemist, Teddington, United Kingdom; G. Merson, J. Cowles, K. Needham.
- LUFA Augustenberg, Karlsruhe, Germany; A. Thalmann, K. Wagner
- LUFA-ITL Kiel, Kiel, Germany; F.H. Johannsen, Kollwitz.
- Masterlab, Putten, The Netherlands; K. van Schalm, A. Schaaf.
- National Veterinary Institute, Uppsala, Sweden; E. Nordkvist, A. Stepinska
- Rijksontledingslaboratorium, Tervuren, Belgium; K. Haustraete, A. Fontaine, M. Bral, R. van San
- RIKILT, Wageningen, The Netherlands; H.J. van der Kamp, H.C.H. Kleijnen
- Universität Hamburg, Institut für Angewandte Botanik, Hamburg, Germany; H. Putzka, D. Böhm.

3 MATERIALS

3.1 Samples for collaborative study

3.1.1 Sample composition

Specifications of the samples, which were produced for the collaborative study, are given in Table 1.

Table 1: Specifications of the samples

Type of feed / premixture	Declared content	Units	Subcontractor	Date of production
Broiler feed I, 4 % fat	2,5	mg/kg	Hoffmann-La Roche	29/09/2000
Broiler feed 1, 4 % fat	9	mg/kg	Hoffmann-La Roche	29/09/2000
Broiler feed II, 8 % fat	4,5	mg/kg	Hoffmann-La Roche	29/09/2000
Turkey feed	5	mg/kg	Hoffmann-La Roche	29/09/2000
Premixture for broiler feed	450	mg/kg	Hoffmann-La Roche	25/08/2000

The broiler feeds contained wheat, broken rice, soya extruded, corn gluten feed and pig fat in the usual industrial quantities. The turkey feed contained wheat, corn, soya expellers, rape, peas, potato protein and pig fat in the usual industrial quantities. The complete composition of the feeds is stored in the files of the co-ordinator (confidential). The premixture was based on wheat middlings as carrier material and contained regular contents of vitamins, minerals and trace elements.

The composition of the turkey feed and the premixture was the same as the composition of the products that were produced by Hoffmann-La Roche in August 1999 for stability testing (see Report on homogeneity and stability studies of samples for the collaborative studies for maduramicin, B. Stoisser, BFL, Vienna, Austria, 31.01.2000). For the broiler feeds, the composition had to be adapted because, due to the BSE-measures, some of the ingredients were no longer available.

The feed products have been prepared in a quantity of 30 kg each (10 kg went to waste, 20 kg were used). 50 subsamples of approx. 250 grams have been taken (manual distribution with a shovel). The subsamples were stored in minigrip PE sacks.

The premixture has been prepared in a quantity of 5 kg. From the premixture 35 subsamples of approx. 100 g have been taken (manual distribution with a shovel) and supplied in minigrip PE sacks.

All subsamples have been stored frozen (- 20 °C).

Next to the above mentioned samples which contained maduramicin, a blind blank feed was sent to the participants as well as a blank feed labelled "blank feed for maduramicin recovery check"

(see Appendix 1). The blind blank feed was the broiler I type feed (see above). This feed was analysed at F. Hoffmann-La Roche Ltd prior to the collaborative studies and was found to contain no detectable amounts of maduramicin or interfering substances. The blank feed for maduramicin recovery check was the same broiler I type feed.

3.1.2 Sample homogeneity

The homogeneity of the samples was studied by BFL by random selection of 10 subsamples, applying the HPLC-method developed in CANFAS (see Annex 1 of Appendix 1). The results of the homogeneity determinations of the individual feeds / premixture are attached in Appendix 2. Table 3 gives a summary of these results.

کی

Table 3: Results of homogeneity tests for maduramicin in feeds and premixture

Results	Declared	Measured	Homogeneity resu	lts
Product	content (mg/kg)	content (mg/kg)	Between sample CV (%)	Within sample CV (%)
Broiler feed I. 4 % fat	2,5	2,69	4,4	6,2
Broiler feed I. 4 % fat	9	9,89	4,2	7,9
Broiler feed II. 8 % fat	4,5	5,03	2,4	4,3
Turkey feed	5	5,12	3,1	3,7
Premixture	450	487	4,4	4,6

According to the Project Plan the CV's for homogeneity should not exceed 2 times the CV's for repeatability (CV $_{hom} \leq 2$ CV $_r$). Based on previous results of within-lab validation (see Second Annual Report CANFAS, J. de Jong, 12-08-2000) the maximum limit for CV $_{hom}$ was set to 15 % for the feed containing 2,5 mg/kg and 12 % for the other feeds and the premixture. All between- and within-sample CV's fulfil these requirements. Thus, it is concluded that the samples are sufficiently homogeneous.

3.1.3 Sample logistics

The feed samples were sent as blind duplicates. The codes are given in Appendix 3. The premixture was sent as a single sample and was labelled as such. The samples were sent to the participants from Hoffmann-La Roche by courier service on 14 November 2000. The samples were shipped frozen on dry ice.

3.2 Reference standard

The reference standard was supplied by dr. P. Hofmann, Hoffmann-La Roche, Basel, Switzerland. The certificate of analysis of the reference standard (Lot No. AC 9745-1C) is described in Appendix 4. The purity of this standard, expressed as the ammonium-salt, is 93,3 %. This information is described on the label of the reference standard vials and should be used in the calculations (see method). In addition to the information already given, the participants were instructed by E-mail to set the purity of the reference standard to 93,3 %. Moreover, the participants were also instructed by E-mail that, contrary to the information on the certificate of analysis, the reference standard should be used as such and should not be dried.

4 METHODS

4.1 Method of analysis

The method of analysis is included as annex 1 to Appendix 1. The participants were instructed that this method has to be used without any modifications.

4.1.1. HPLC-conditions

Various types of HPLC-columns were used (the column which is recommended in the method is a Hypersil BDS C18, 250x4,6mm, 5 µm).

The mobile phase described in the method is phosphate buffer 10 mM, pH=4,0: methanol = 100:900 (v/v). One laboratory used a different mobile phase.

The HPLC conditions (Column and mobile phase) used by the participants are shown in Table 4.

Table 4: HPLC-conditions

Partner	Column	Mobile phase
17	As described in the method	As described in the method
22	As described in the method	As described in the method
23	Not reported	Not reported
26	Sperisorb ODS-2	As described in the method
27	As described in the method	As described in the method
29	Spherisorb ODS-3, C18, 4,6x250 mm, 5 μm	As described in the method
30	Kromasil C18 150 x 4,6 mm 5μm	As described in the method
31	As described in the method	As described in the method
35	Lichrospher 100 RP18 (5 µm)	As described in the method
36	Hypersil ODS, 5 µm, 250x4 mm	100 ml phosphate buffer pH 4, 80 ml tetrahydrofurane, to 1000 ml with methanol

4.2 Method for statistical evaluation

Statistical evaluation was performed according to ISO 5725 Part 2: Basic method for the determination of repeatability and reproducibility of a standard measurement method (First edition, 1994-12-15).

The scrutinity of results for consistency and outliers was checked by

- a) Graphical consistency techniques: Mandel's h plot for between-laboratory variability, Mandel's k plot for within-laboratory variability
- b) Numerical outlier techniques: Cochran's test of the within-laboratory variability, Grubbs' test (single and double) for between-laboratory variability

Whenever necessary and appropriate, laboratories which showed consistently high within-cell variation and/or extreme cell means across many levels and/or Cochran or Grubbs' outliers were contacted to try to ascertain the cause of the discrepant behaviour.

The Horwitz equation and the HORRAT ratios form the basis for the evaluation of the reproducibility of the method. The HORRAT ratios are given in Table 5. The HORRAT ratios should be lower than 2 (see W. Horwitz and R. Albert, J.A.O.A.C. 74 (1991) 718-744).

5 RESULTS

For each participant the reported results for the samples, the completed questionnaire and representative chromatograms are annexed in Appendix 5.

5.1 Statistical evaluation

The results reported by the participants are given in Table 7.

The results of lab 29 for the 450 mg/kg sample were discarded for the following reason: due to the fact that the extract of the premixture was not diluted, the value for the peak area was much higher than the area value for the highest standard (see Remarks, Table 11).

Statistical analysis of the results (excl. lab 29, 450 mg/kg sample) showed that lab 30 is a Cochran outlier for the 5 mg/kg sample. The resulting values for the statistical parameters (mean, relative standard deviations for repeatability and reproducibility) are given in Table 7. According to the Project Plan, the rsd_r-values should be ≤ 10 %. For all samples this criterion is met and consequently it can be concluded that the repeatability is satisfactory.

The Horwitz equation and the HORRAT ratios form the basis for the evaluation of the reproducibility (see W. Horwitz and R. Albert, J.A.O.A.C. 74 (1991) 718-744). The HORRAT ratios are given in Table 5. The HORRAT ratios should be lower than 2. For all five samples this criterion is met and established rsd_R -values are in line with values predicted by the Horwitz equation. Consequently it can be concluded that the reproducibility of the method is satisfactory.

Table 5:	Horrat ratios	of the	Maduramicin	collaborative	study

Mean after elimination of outliers ¹ (mg/kg)	Predicted rsd _R	Established rsd _R	Horrat ²	Conclusion
2,616	13,844	15,270	1,10	Reproducibility OK
4,438	12,785	25,350	1,98	Reproducibility OK
5,052	12,538	16,120	1,29	Reproducibility OK
9,374	11,424	16,820	1,47	Reproducibility OK
464,3	6,349	11,450	1,80	Reproducibility OK

^{1 =} lab 29/sample 450ppm; lab 30/sample 5 ppm

Lab 26 reported a recovery (80 %) much lower than the mean recoveries of the other laboratories, which are all higher than 90 % (see par. 5.3). The latter is in line with the results obtained in the method development and between-lab validation phases of the CANFAS project where recoveries were consistently higher than 90 % (see Second Annual Report CANFAS, J. de Jong, 12-08-2000). The Mandel h plot (see Figure 1) shows low results for lab 26 across all levels. This could be caused by a systematic low recovery for the method in this lab. Together with the results, lab 26 had already indicated that they had a number of problems with the

² = Horrat is the ratio between the established rsd_R and the predicted rsd_R

chromatography, mainly with regards to the sensitivity of the method (see par. 5.4). Lab 26 was contacted to try to ascertain the cause of the discrepant behaviour. The lab suggested that the low results could be caused by degradation of the samples because "the final analysis was undertaken at the extreme limit of the time permitted. We may have experienced a degree of sample degradation even though the samples were kept frozen throughout the time period between receipt and final analysis". The suggested sample degradation is not very likely because a number of other labs performed the analyses later than lab 26.

During the evaluation meeting it has been discussed with relation to the above-mentioned reasons whether the results of lab 26 should be discarded or not. The results of the discussions are described in Chapter 6 of this report.

When the results of lab 26 are discarded, statistical analysis of the results shows that lab 30 is still a Cochran outlier for the 5 mg/kg sample. The resulting values for the relative standard deviations for repeatability are not very different from the values including lab 26 (see Table 8). The resulting values for the relative standard deviations for reproducibility and the HORRAT ratios are slightly improved (see Table 6).

Table 6: Horrat ratios of the Maduramicin collaborative study after discarding lab 26

Mean after elimination of outliers ¹ (mg/kg)	Predicted rsd _R	Established rsd _R	Horrat ²	Conclusion
2,679	13,794	13,570	0,98	Reproducibility OK
4,543	12,740	25,070	1,97	Reproducibility OK
5,184	12,490	14,690	1,18	Reproducibility OK
9,654	11,374	14,140	1,24	Reproducibility OK
472,0	6,334	9,195	1,45	Reproducibility OK

^{1 =} lab 29/sample 450ppm; lab 30/sample 5 ppm

The corresponding Mandel h and k plots are shown in Figure 2.

² = Horrat is the ratio between the established rsd_R and the predicted rsd_R

Table 7: Maduramicin in one turkey feed, four broiler feeds and one premixture for broiler feed

Table 7. Maduramicin in on	urami	icin în on	e turkey	e turkey feed, four broiler feeds and one premixture for hroiler feed	broiler fe	eds and o	ne oremix	cture for h	roiler feer		
						Result (ma/ka)	(ma/ka)				
Sample	ple	MAD 2,5	s mg/kg	MAD 4.5 mg/kg	5 ma/ka	MAD 5	MAD 5 mg/kg	MAN	MAD 9 mg/kg	MAND AEC	1000
Lab					,		0		50 /S	מאולווו ספד טבואו	DI JOHN
17	-	2,51	2,67	4.75	4.71	4.94	4 97	0.38	0.44	503	1
22		2 64	2.57	4 87	80.4	7		3	- (- (200	± .
000		- (5 6) i	00.0	70'0	0,0 -	9,44	9,52	485	510
73		3,18	3,28	5,91	6,49	9,76	6,44	12.07	12.90	501	507
<u> 2</u> 8		2,20	1,90	3,30	3,70	4.00	4.00	6.20	7.50	240 gGdis	3
27	-	2.65	2.67	4 77	4 73	1,01	5 6		2 (ָבְילָבְי	
30			; d	ř) 	17.0	78,4	00'A	9,56	456	474
67		2,41	Z,84	5,01	5,25	5,79	5,57	10,90	10,63	644	711
30		3,00	3,10	2,40	1,70	6.60 ^{Co}	5.30 Co	8 90	10.40	401	. 1
31		2,30	3,00	4,40	4,90	4.90	4.90	00 6	9,10	777	- 0
35		2,20	1,90	4,50	3.80	4 00	06.6	20.0	2, 5	27.2 Gdls	20rGds
36		2,80	2,50	4,70	3,80	5,00	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5) (4)	ς α	2/0	303
							2	20.5	0,10		4/3

10		6,18 3,15	16,8
6	5,05	3,29	16,1
10	4,44	8,19	25,4
10	2,62	8,53	15,3
number of labs	m (mg/kg)	rsd _r (%)	rsd _R (%)

Italic printed results are not taken into account in the statistical evaluation!

Key to symbols:

resutt^{co} = Cochran outlier resutt^{Gdls} = Grubb's double lower straggler

result

Table 8: Maduramicin in one turkey feed, four broiler feeds and one premixture for broiler feed after elimination of lab 26

Lab 17 2,51 2,67 22 2,64 2,57 23 3,18 3,28 26 2,20 1,90 27 2,65 2,67 29 2,41 2,84 30 3,10 31 2,30 3,00	na/ka		<u>.</u>					
2,51 2,64 3,18 3,18 2,20 2,65 2,41 3,00 2,30	0	MAD 4,5 mg/kg	MAD 5 mg/kg	mg/kg	MAD 9 mg/kg	mg/kg	MAD 450 mg/kg	0 ma/ka
2,51 2,64 3,18 2,20 2,65 2,41 3,00 2,30						,		
2,64 3,18 2,20 2,65 3,00 2,30	-	4,71	4,94	4,97	9,38	9,41	503	514
3,18 2,20 2,50 3,00 2,30 2,30		5,08	5,52	5,04	9,44	9,52	485	510
2,20 2,65 2,41 3,00 2,30		6,49	6,76	6,44	12,07	12,90	501	202
2,65 2,41 3,00 2,30		3,70	4,00	4,00	6,20	7,50	341	
2,41 3,00 2,30		4,73	5,21	4,90	9,56	9,56	456	474
3,00		5,25	5,79	5,57	10,90	10,63	644	711
2,30	3,10 2,40 ^{Gls}	1,70 ^{Gls}	6,60°	5,30 ^{Co}	8,90	10,40	491	511
		4,90	4,90	4,90	00'6	9,10	444	469
2,20		3,80	4,00	3,90	8,70	7,30	378^{Gls}	385^{Gls}
	_	3,80	5,00	5,10	8,60	8,40	444	479

Table 8. Maduramicin in one turkey feed, four broiler feeds and one premixture for broiler feed

number of labs	ກ	O)	00	o o	ω
m (mg/kg)	2,68	4,54	5,18	9,65	472
rsd _r (%)	8,37	8,17	3,40	5,48	3,10
rsd _R (%)	13,6	25,1	14,7	14,1	9,2

Italic printed results are not taken into account in the statistical evaluation! Remark:

Key to symbots:

result^{co} = Cochran outlier result^{Gis} = Grubb's lower straggler

Figure 1: Mandel h and k plots after elimination of lab 29 (450 mg/kg) and lab 30 (5 mg/kg)

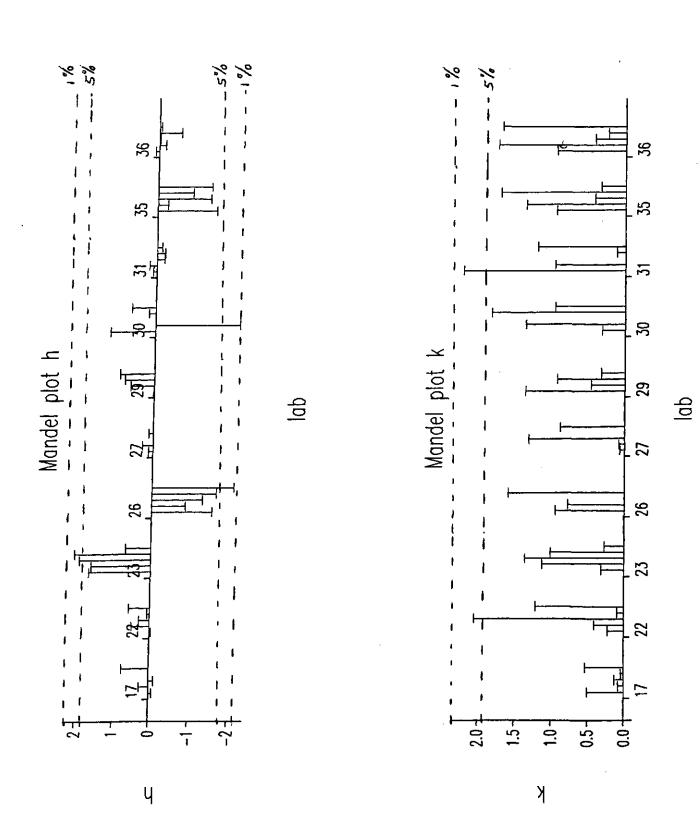
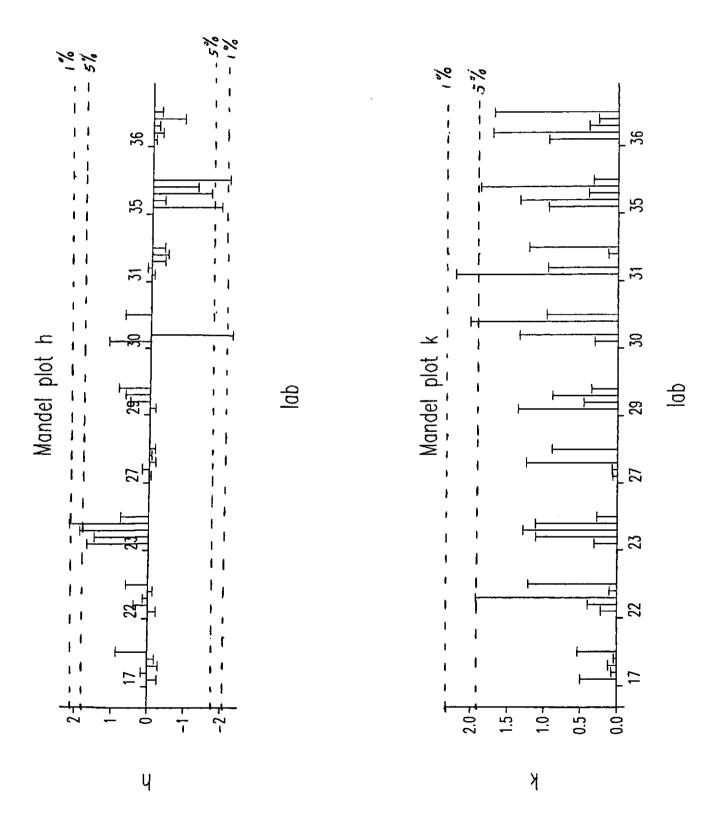



Figure 2: Mandel h and k plots after elimination of lab 29 (sample 450 mg/kg), lab 30 (sample 5 mg/kg) and all results of lab 26

5.2 Blank samples

Table 9: Reported results of the participants for the blank samples

Partner	Blank sample 1	Blank sample 2
17	-	•
22	<1	<1
23	<0,39	<0,39
26	0,8	0,7
27	Not detectable	Not detectable
29	0	0
30	<1	<1
31	0	0
35	<2	<2
36	0	0

One laboratory (nr 26) detected a signal in the blank samples, corresponding to 0,8 and 0,7 mg/kg. This signal was below their limit of quantification, which was estimated at 1 mg/kg.

5.3 Recoveries

Table 10: Recoveries

Partner	Recovery 1 in %	Recovery 2 in %	Recovery average in %
17	99	100	100
22	99	103	101
23	Not reported		
26	80		80
27	103		103
29	100	110	105
30	103		103
31	99	101	100 (day 1)
	111	106	108 (day 2) mean: 104
35	97	95	96
36			99 (feeds)
			99 (premixes)

Except for lab 26, all recoveries were higher than 90% (see also paragraph 5.1). The result of lab 26 (80% recovery) is a straggler according to the Grubbs' test.

5.4 Remarks

Table 11: Remarks made by the partners

Partner	Remarks
17	No remarks
22	The lower limit 0,2 µg/ml was the lowest standard concentration achievable due to the
	ripple in the base-line.
23	Not reported
26	- The extraction and clean up was straightforward and easy to follow.
	- We had a great number of problems with the chromatography.
	- The documentation does not mention the need to eliminate all stainless steel
Ì	fittings between the mixing chamber and detection
	- Even with the recommended length of tubing between the reaction coil and the
	detector we found it impossible to eliminate the baseline noise.
	- As a result of the baseline noise we found it very difficult to integrate the lowest
	standard consistently even with a 100 µl injection loop
	- After several runs we experienced an increase in back pressure generated by the mixing chamber
	- Due to the above and pressure of time we are able to submit only 1 result for the premix.
27	There were no problems. On the four days, when analyses have been done, the
	linearity of the calibration graphs area vs. Concentration (from 0,2 µg/ml to 2,0 µg/ml)
	can be described as follows:
	r= 0,999987; 0,999852; 0,9999947; 0,999724
	Two remarks to the method description:
<u> </u>	- In the chapter "Apparatus" (4.3.3) and in the chapter "Parameters" (5.3.1) you
	should write 5 µm for the particle size of reversed phase material in the analytical column instead of 5 µ.
	In the chapter "Parameters, mobile phase" (5.3.1) the mixing proportion of the mixture
	of phosphate buffer solution with methanol (100 + 900 [V+V]) does not correspond
	exactly to that one described in the chapter "Reagents" (3.7) because of the
1	phenomenon of volume contraction. I would like to write "mixture (Vmi) of phosphate-
	buffer solution (Vp) with methanol 100/1000 (Vp/Vmi)".
29	We made some little modifications on the method such as:
	- The decanted supernant was placed in the refrigerator overnight, in feedingstuffs
	and in premixtures (5.2.1, 5.2.2) and not in the freezer for 2-3 hours.
	- There was no dilution for premix, but maybe it would be more correct to do one
	because the value for the peak area was much higher than the area value for the
	highest standard (187 μg/ml).
	- The reaction temperature was settled at 98-100 °C.
	- The injection was of 200 µl and not 50 µl because of the detector sensitivity.

Partner	Remarks
30	The method is not sensitive enough. The risk of interference of other ionophores is important.
31	Temperature of reaction was 98 °C instead of 95 °C. This method has to be considered as semi quantitative because of the low signal to noise ratio. The results were strongly influenced by the integration with the Turbochrom program. It was not possible to fix a clear baseline.
35	No remarks
36	We used our in-house method. (Note form the co-ordinator: this method only differs with regards to the chromatographic conditions and consequently it can be regarded as equivalent. No recovery experiments have been performed; recovery experiments are part of our in-house validation.

5.5 Special requests

The following partner performed another method (Cyanamid method, pre-column derivatisation with dansylhydrazine)

- Rijksontledingslaboratorium, Tervuren, Belgium; K. Haustraete, A. Fontaine.

The following partners performed the post-column derivatisation reaction with DMAB (dimethylaminobenzaldehyde) instead of with vanillin:

- LUFA Augustenberg, Karlsruhe, Germany; A. Thalmann, K. Wagner,
- Hoffmann-La Roche Ltd., Basel, Switzerland; P. Hofmann, A. Zuber
- Universität Hamburg, Institut für Angewandte Botanik, Hamburg, Germany; H. Putzka, D. Böhm.

5.5.1 HPLC conditions

Table 12: HPLC conditions

Partner	Column	Mobile phase
Rijksontledingslaboratorium	Hypersil ODS, 25 cm x 4,9	TBAS solution : acetonitril =
Tervuren, Belgium	mm	20:80 (v/v)
LUFA - Augustenberg,	Hypersil ODS, 5 µm	As described in the method
Karlsruhe, Germany	250x4,6 mm	
Hoffmann-La Roche Ltd.,	Hypersil ODS, 5 µm, 250 x	100 ml Phosphate buffer pH4,
Basel, Switzerland	4 mm	80 ml tetrahydrofurane, to 1000 ml with methanol
Universität Hamburg, Institut für Angewandte Botanik, Hamburg, Germany	As described in the method	As described in the method

5.5.2 Recoveries

Table 13: Recoveries

Partner	Recovery 1 in %	Recovery 2 in %	Recovery average in %
Rijksontledingslaboratorium	95		95
Tervuren, Belgium			
LUFA - Augustenberg,	104	100	102
Karlsruhe, Germany			
Hoffmann-La Roche Ltd.,			99,4 (feed)
Basel, Switzerland			99,3 (premixes)

5.5.3 Remarks

Table 14: Remarks made by the partners

Partner	Remarks
Rijksontledingslaboratorium Tervuren, Belgium	The Cyanamid method was followed because with the proposed CANFAS method problems with sensitivity and problems with the post-column derivatisation (air bubbles and non stabile system) occurred.
LUFA - Augustenberg, Karlsruhe, Germany	The reason for post-column derivatisation with DMAB instead of with vanillin was that the reaction with vanillin was too weak
Hoffmann-La Roche Ltd., Basel, Switzerland	No remarks
Universität Hamburg, Institut für Angewandte Botanik, Hamburg, Germany	As to post-column derivatization with "DMAB-reagent" one test was made with 3 different standard solutions and 2 sample extracts. The conditions were nearly the same as with the prescribed vanillin method, i.e. we used the same post column reactor coil and the temperature of the water bath was 93°C. Reagents 3.13. and 3.14 were mixed (1+1/v+v) and thus added by 1 pump, but the flow rate of the post-column reagent was only 0,4 ml/min (the same as with the vanillin reagent), the flow rate of the mobile phase was 0,4 ml/min as well, injection volume was 50 µl, wavelength for detection 600 nm. Result: The corresponding signals for the area were about 5% higher than those caused by the vanillin reagent (on an average).

5.5.4 Results of the samples

Table 15: Results reported by the partners

Partner	Rijksontledingslaboratorium	LUFA - Augustenberg,	Hoffmann-La Roche
	Tervuren, Belgium	Karlsruhe, Germany	Ltd., Basel, Switzerland
Method	Cyanamid	DMAB	DMAB
Sample		Reported result (mg/kg)	
content			
(mg/kg)			
0	<1	0	0 &
0	<1	0	Not analysed
2,5	2,6	2,4	2,9
2,5	2,9	2,3	Not analysed
4,5	4,7	4,9	3,9
4,5	4,6	4,6	Not analysed
5	4,9	4,6	Not analysed
5	5,3	4,1	Not analysed
9	9,3	9,1	8,7
9	8,6	8,9	Not analysed
Premixture	276 276	443 528	Not analysed

Representative chromatograms of LUFA-Augustenberg and Hoffmann-La Roche are included in Appendix 6.

The results obtained with DMAB do not differ significantly from the mean values obtained with vanillin (see paragraph 5.1). Applying pre-column derivatisation with dansylhydrazine, for feeds the same conclusion can be drawn but for the premixture significantly lower values are obtained. The reason for this is not clear.

6 EVALUATION AND CONCLUSIONS

The results of the collaborative study were evaluated in a meeting in Tervuren (Belgium) on June 19-20, 2001.

After thorough discussions the panel decided that the results of lab 26 should be taken into account in the statistical evaluation. The relatively low results at all levels (see Mandel h plot, Fig. 1) do not justify removal of the results because only 1 value is below the 5 % indicator line. The problems with the sensitivity of the method that were reported by lab 26 are no reason to remove the results because some other laboratories experienced the same problem. During the meeting the question was raised if the recovery value reported by lab 26 (80 %) is an outlier. This was checked later on by Jaap Driessen (RIKILT): lab 26 is a Grubbs' straggler, but not a Grubbs' outlier.

The panel has accepted the results of the statistical evaluation, as described in Table 7 (including the results of lab 26). Consequently it can be concluded that the repeatability and reproducibility of the method is acceptable. The results obtained for the blind blank feeds and for the recovery are also acceptable. The panel agreed that the method can be recommended for adoption as an official method.

The co-ordinator will send an enquiry to the participants about the type of detector that has been used, any special arrangements to increase the sensitivity in the VIS region and about the data acquisition system applied.

The following points will be changed in the method:

- The use of stainless steel tubing in the post-column reactor and detector should be avoided
- A remark will be added about the suitability of DMAB for post-column derivatisation, stating that a full validation with DMAB has not been performed

The following remarks, related to the method description have been accepted:

- Lab 27, remarks about particle size and mobile phase composition

The method description will be modified and the final method, together with the results of the collaborative study will be sent to the European Commission (CEMA), CEN and ISO.

ACKNOWLEDGEMENTS

Financial support from the European Commission, DG Research, Standards, Measurements and Testing Programme (SMT) is gratefully acknowledged.

Dr. P. Hofmann, Hoffmann-La Roche, Basel, Switzerland, is thanked for supplying the maduramycin reference standard.

Dr. H. van de Voet, Biometris, Wageningen University and Research Centre is thanked for statistical advice.

APPENDIX 1

Letter with instructions, sent with the samples (with five annexes)

to addressee

Dear colleague,

With separate post the samples for the collaborative study for maduramicin will be sent to you by dr. Hofmann (Hoffmann-La Roche). We expect the samples will be sent within one or two weeks from now. You will receive the following samples:

- 10 feed samples, with the text "additive; MADURAMICIN" and with a sample code; these samples constitute 4 blind duplicates of feed samples containing maduramicin (contents in the range between 1 and 15 mg/kg) and 1 blind duplicate of a blank feed
- 1 premixture containing maduramicin, content in the range between 200 and 1000 mg/kg.

As discussed in the kick-off meeting, please store the samples frozen and perform the analysis within 2 weeks after receipt.

For the feed samples you are asked to do a single determination per sample, the premixture must be analysed in duplicate.

For recovery purposes, a blank sample with the text "blank broiler feed for maduramicin recovery check" will be included.

The method which has to be used is included as Annex 1 (please note that this method is a modified version of the method which was distributed prior to the kick-off meeting).

Annex 2 contains the reporting form. This form has already been send to you by E-mail as an Excel 5.0 file. We strongly prefer to get the results back in electronic form by Email (please send the results to the following E-mail address: i.i.m.driessen@rikilt.wagur.nl). Of course you can also fill in the form and send it by fax or normal mail. The deadline for reporting the results is 22 December 2000.

Annex 3 contains instructions for handling (milling, storage) of the samples.

Annex 4 is a questionnaire. We kindly ask you to give us information about the experimental conditions, recoveries, etc.. On this form you can also give your remarks about the method.

25 October 2000

collaborative study CANFAS maduramicin 71.316.24

ENCLOSUREIS

OUR REFERENCE 00/0024096

Dr. J. de Jong

DIRECT ITELEPHONEI LINE

+31 317 47 55 81

j.dejong@RiKiLT.WAG-UR.nl

State Institute for Quality Control of Agricultural Products P.O.Box 230 6700 AB Wageningen The Netherlands

YISITORS' ADDRESS Building no. 123 Bornsesteng 45 6708 PD Wageningen

TELEPHONE +31 317 47 54 00

+31 317 41 77 17

CHAMBER OF COMMERCE REGISTRATION NO. 09098104 to Arnhom

THE INTERNET www.rikiit.wageningen-ur.nl

Annex 5 contains information about special requests. We hope that, next to the regular determinations, you are prepared to volunteer to do extra work with post-column derivatisation with DMAB.

The reference standard of maduramicin which has to be used will be send to you by Mr. Hofmann (Hoffmann-La Roche) together with the samples. In the calculations please take into account the purity of the reference standard.

We wish you and your colleagues the best with the collaborative studies. If you have any questions, do not hesitate to contact us.

Kind regards,

dr. Jacob de Jong CANFAS co-ordinator collaborative studies

ing. J.J.M. Driessen co-ordinator CANFAS

RIKILT State Institute for Quality Contr of Agricultural Products

25 October 2000

00/0024096 PAGE 2 of 2

cc Mrs. D. Bennink, European Commission, DG Research, Cll/3, Brussels

Annex 1 - Description of the method

CANFAS/MAD/09102000/B.STOISSER

DETERMINATION OF MADURAMICIN-AMMONIUM

1 PURPOSE AND SCOPE

The method is for the determination of maduramicin in feedingstuffs and premixtures. The usual concentration of maduramicin in feedstuffs is 5 mg/kg, in premixtures 500 mg/kg. The limit of determination is 2 mg/kg. The limit of detection is 0,5 mg/kg.

2 PRINCIPLE

The sample is extracted with methanol. The content of maduramicin is determined by reversed-phase-high-performance-liquid chromatography (HPLC) with post column derivatisation with vanillin using a Vis-detector.

3 REAGENTS

- 3.1 Methanol, HPLC-grade
- 3.2 1,5-Dimethylhexylamine
- 3.3 Sulfuric acid, 95-97%, p.a.
- 3.4 Ortho-phosphoric acid, appr. 85%, p.a.

3.4.1 Diluted o-phosphoric acid:

Dissolve 10 ml of o-phosphoric acid (3.4) to 100 ml with demineralised water

3.5 Potassium dihydrogen phosphate, p.a.

3.6 Phosphate buffer solution 10 mmol/l, pH=4,0:

Dissolve 1.36 g of potassium dihydrogen phosphate (3.5) in 500 ml of demineralised water. Add 3.0 ml of o-phosphoric acid (3.4) and 10 ml of 1,5-dimethyl hexylamine (3.2). Adjust the pH to 4.0 with diluted o-phosphoric acid (3.4.1) and fill with demineralised water to 1000 ml.

The solution can be stored some weeks, but if fungus grow, prepare a new one.

3.7 Mobile phase:

Dilute 100 ml of phosphate-buffer solution 10 mmol/l, ph=4 (3.6) with methanol (3.1) to 1000 ml.

3.8 Vanillin ≥ 98% (HPLC)

3.8.1 Vanillin reagent:

Dissolve 10 g of vanillin (3.8) in a mixture of 250 ml of methanol (3.1) and 5.0 ml of sulfuric acid (3.3). Mix well and sonicate for some min under vacuum at room temperature. This solution has to be prepared daily prior to use and has to be cooled with ice water during use.

3.9 Maduramicin K⁺- sait (8.4)

The purity-grade accounted as NH₄⁺-salt has to be taken into consideration at the following operations

3.9.1 Stock-standard-solution 100 µg/ml:

Dissolve in a 100 ml volumetric flask to the nearest 0.1 mg10 mg of reference standard (3.9) with methanol (3.1) to 100 ml. This solution should be stored at 4°C not longer than 1 month.

3.9.2 Standard solution 10 µg/ml:

Dilute 10.0 ml of the stock-standard-solution (3.9.1) to 100 ml with methanol (3.1) in a 100 ml volumetric flask

Standard solutions should be stored at 4°C not longer than 1 week.

3.9.3 Standard solution 1 µg/ml

Dilute 2.0 ml of the stock-standard-solution (3.9.1) to 200.0 ml with methanol (3.1) in a 200 ml volumetric flask.

Standard solution should be prepared freshly

3.9.4 Calibration solutions

Into a series of 50 ml graduated flasks transfer 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 8.0, and 10.0 ml of the intermediate standard solution (3.9.2). Make up to the mark with methanol and mix. These solutions correspond to 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.6, and 2.0 µg of maduramicin per ml respectively.

Calibration solutions should be prepared freshly

4 APPARATUS

- 4.1 Centrifuge
- 4.2 Ultrasonic bath
- 4.3 HPLC-equipment

with pump and column oven

- 4.3.1 Autosampler with injection system, suitable for injection of 50 µl
- 4.3.2 (UV)-Vis-detector (8.1)
- 4.3.3 Liquid chromatographic column 250x4.6 mm,5µ,Hypersil BDS C 18 or equivalent
- 4.3.4 Reagent pump
- 4.3.5 PEEK mixing chamber
- 4.3.6 PTFE reaction coil (knitted) (8.3) 0.5 mm x 10 m (volume ≈2.0 ml)
- 4.3.7 Reactor oven for the PTFE-reaction coil, suitable to 100°C (or suitable water bath)
- 4.4 Freezer
- 4.5 Membrane-filter, PTFE, 0.22µm

5 PROCEDURE

5.1 General

5.1.1 Blank feed

For the performance of the recovery test (5.1.2) a blank feed should be analysed to check that neither maduramicin nor interfering substances are present. The blank feed should be similar in type to that of the sample and maduramicin or interfering substances should not be detected.

5.1.2 Recovery test

A recovery test should be carried out by analysing the blank feed which has been fortified by addition of a quantity of maduramicin, similar to that present in the sample. To fortify at a level of 5 mg/kg transfer 500 μ l stock-standard solution (100 μ g/ml (3.9.1)) to the flask. Add 10 g of the blank feed, mix thoroughly and leave for 10 min, mixing again several times before proceeding with the extraction step (5.2).

Alternatively, if a blank feed similar in type to that of the sample is not available (see 5.1.1), a recovery test can be performed by means of the standard addition method. In this case, the sample to be analysed is fortified with a quantity of maduramicin similar to that already present in the sample. This sample is analysed together with the unfortified sample and the recovery can be calculated by subtraction.

5.2 Extraction

5.2.1 Feedingstuffs

Weigh to the nearest 0.01 g 10 g of the \leq 1mm ground sample into a 250 ml volumetric flask and add 50 ml methanol (3.1). Close the flask with a suitable method, and place in a ultrasonic bath at 50° C for 20 minutes. Shake vigorously, store and cool down to room temperature appr. 15 min, decant the clear supernant and place in freezer for 2 - 3 hours to settle down fat. Then centrifuge an aliquote for 1-2 min. After membrane (4.5) filtration 50 μ l of this solution are injected into the HPLC-apparatus.

5.2.2 Premixes

Weigh to the nearest 0.01 g 1 g of the \leq 0.5mm ground sample into a 250 ml volumetric flask and add 50 ml methanol (3.1). Close the flask with a suitable method, and place in an ultrasonic bath at 50° C for 20 minutes. Cool down to room temperature, shake vigorously, store some minutes and dilute an aliquote 1:10 of the clear supernatant with methanol and place in freezer for 2-3 hours to settle down fat. Then centrifuge an aliquote for 1-2 min. After membrane (4.5) filtration 50 μ l of this solution are injected into the HPLC-apparatus.

5.3 HPLC determination

5.3.1 Parameters:

The following conditions are offered for guidance, other conditions may be used provided that they give equivalent results.

Analytical column (4.3.3)

250 x 4.6 mm, 5μ, Hypersil BDS C 18

Mobile phase (3.7)

Mixture of phosphate-buffer solution (3.6) with

methanol (3.1), 100 + 900 (V + V)

Column oven:

40°C

Flow rate:

0.4 ml/min

Flow rate reagent pump: 0.4 ml/min
Reactor temperature: 95°C (8.2)
Detection wavelength: 520 nm
Injection volume: 50 µl

Retention time: approx. 25 min
Run time: 30 –35 min

Check the stability of the chromatographic system, injecting several times the calibration solution (3.9.3) containing 1.0 μ g/ml, until constant peak areas and retention times are achieved.

Working with the described conditions there is baseline separation from other ionophores like salinomicin, narasin, monensin, semduramicin.

5.3.2 Calibration graph

Inject each calibration solution (3.9.4) several times and determine the mean peak areas for each concentration. Plot a calibration graph using the mean peak areas of the calibration solutions as the ordinate and the corresponding concentrations in $\mu g/ml$ as the abscissae.

5.3.3 Sample solution

Inject the sample extract (5.2) at least 2 times using the same volume as taken for the calibration solutions and determine the mean peak area of the maduramicin peaks.

6 CALCULATION OF THE RESULTS

From the mean area (8.5) of the maduramic peaks of the sample solution determine the concentration of the sample solution in $\mu g/ml$ by reference to the calibration graph (5.3.2)

The maduramicin content in mg/kg of the sample is given by the following formula:

 $C = maduramicin concentration of the sample extract (5.2) in <math>\mu g/ml$

M = mass of the test portion in g

F = dilution factor according to (5.2)

7 VALIDATION OF THE RESULTS

7.1 Identity

The identity of maduramicin can be confirmed by co-chromatogrphy.

A sample extract (5.2) is fortified by addition of an appropriate amount of calibration solution. The amount of added maduramicin should be similar to the amount of maduramicin found in the sample extract.

Only the height of the maduramicin-peak should be enhanced after taking into account both the amount added and the dilution of the extract. The peak width, at half of the

height, must be within \pm 10% of the original width of the maduramic peak of the unfortified sample extract.

7.2 Repeatability

The difference between the results of two parallel determinations carried out on the same sample must not exceed xx % relative to the higher result for maduramicin contents.

8 OBSERVATIONS

- 8.1 The detector is used in visual scope at 520 nm and should give sufficient light energy. Noise preferabably should be $< 1.10^{-5}$ AU (250nm, 600nm)
- 8.2 A temperature of 92°C to 98°C is possible, high stability (\pm 1°C) should be guaranteed
- 8.3 The length of the teflon tube (e.g. 1m ID 0.25 mm) between reagent-pump and mixing chamber and the length of the teflon tube (e.g. 3m ID 0.17 mm) between reactor and detector should be optimized if there are problems with bubbles
- 8.4 Maduramicin is very toxic. LD50 = 33mg/kg (rat).
- 8.5 Only area is allowed for calculation

	_
CANFAS	-32
	_
28 J. O. P. P. W. A. V. B. L. D. C. P. C. V.	
	,
	-

Development and Validation of HPLC-methods for the official control of Coccidiostats and Antibiotics used as Feed Additives (SMT4-CT98-2216)

Subtitle: Lab-name:	Task 4 COLLA	BORATIVE STUDY	
Contact person:		e-mail:	
		fax: telephone:	
Date of analysis:			

Analyte:

MADURAMICIN

	Unit	Result (mg/kg)
Sample code		
312233		
312247		
312264		
312307		
312331		
312334		
312357		
312359		
312362		
312367		

Unit	Result 1	Result 2
Sample	(mg/kg)	(mg/kg)
Premixture		

Annex 3 - Instructions for handling and analysis of the samples

1. Storage

Store the samples frozen until analysis

2. Analysis

Analyse the samples within 2 weeks after receipt

3. Milling

- Feed samples: grind the feed samples with a mill equipped with a 1 mm screen
- Premix: grind the premix sample with a mill equipped with a 0.5 mm screen. Take care of contamination of the milling equipment.

After milling, store the samples at 4 °C (or frozen if the time between milling and analysis is longer than one week).

4. Mixing of the test samples before weighing

Mix the entire sample thoroughly

Annex 4 - Questionnaire

Laboratory:	•
Contact person:	•
Date(s) of analysis:	•
Dilution factor of the samples:	
Feed samples (specify for which feed samples):	
	•
Premixture:	٠.
Chromatographic conditions:	
• Column:	
As described in the method	
•	
Mobile phase:	
As described in the method	
• 🗇 Other:	
• Flow-rate: ml/min	
• Injection volume:µl	
Retention time of maduramicin: min	
Chromatograms: Please include representative chromatograms of:	
Blind positive feed samples	
Blind blank feed sample	
Premixture	
Please indicate the maduramicin peak with an arrow	
Recovery results:	
Percentage recovery: %	
Single / duplicate determinations: □ single □ duplicate	
If duplicate, please give both percentages: % and %	
Spiking level: mg/kg	

	rks /Comments (if necessary, continue on another page):

	•••••••••••••••••••••••••••••••••••••••
••••••	
••••••	***************************************
*******	***************************************
••••••	***************************************
******	***************************************
•••••	***************************************
••••••	***************************************
,	
_	***************************************
******	***************************************
******	***************************************
lease (complete this questionnaire and return it together with representative chromatograms to
g. J.J.N	l. Driessen
KILT	
O. Box	230
00 AE	Wageningen
e Neth	
x +31-	317-417717

Thank you for your cooperation!

CANFAS COLLABORATIVE STUDIES OCTOBER 2000 - MADURAMICIN

Annex 5 - Special requests

Volunteers are asked to do the following additional work:

post-column reaction with <u>DMAB</u>

Conditions for post-column derivatisation:

- 3.1 Methanol HPLC grade
- 3.8 Sulphuric acid, w $(H_2SO_4) = 95-97 \%$
- 3.9 4-(dimethylamino)-benzaldehyde (DMAB, C₀H₁₁NO)
- 3.13 Methanol-sulphuric acid: 40 ml sulphuric acid (3.8) are given cautiously while stirring to 950 ml methanol (3.1). The solution is degassed prior to use in an ultrasonic bath (8.3) during 15 min.
- 3.14 DMAB-solution: 60.0 g dimethylaminobenzaldehyde (3.9) are solved in 950 ml methanol (3.1). The solution is degassed prior to use in an ultrasonic bath (8.3) during 15 min.
- 4.1.3 Post-column reactor (double pump or two single pumps) with mixing chamber, reaction coil of inert material (f.e. Teflon or Peek) for operation at 95 °C, 7.0 m with 0.33 mm ID and water bath or reactor oven for operation at 95 °C

Flow rate of methanol-sulphuric acid-mixture (3.13)	0.4 ml/min
Flow rate of DMAB-solution (3.14)	0.4 ml/min
Temperature of the post-column reaction	95 ° C
VIS-Detector after post-column reaction	600 nm
Volume of injections	100 µl

8.4 Post-column reaction

If only one pump for the post-column reaction is available, the reagents 3.13 and 3.14 may be mixed (1 + 1 v/v). Since DMAB undergoes quick auto-oxidation resulting in darkening of the solution this has to be kept protected from light in an ice bath and has to be used within 24 h.

Other conditions are not changed

Please report the results in a copy of annex 4 and clearly describe your conditions, etc. if different from the above mentioned conditions. Please also include representative chromatograms.

Thanks in advance for doing the additional work

APPENDIX 2 Homogeneity of samples

Homogeneity study Broiler feed I (5% fat) supplemented with a nominal of 2,5mg/kg Maduramicin

weet suide seise				-,-			, ,
7,36 2,54							
9 2,59 3,11							
8 278 285		Z0'8	3,78		0,11751	4,36845	
2,82		F_crit_95%=	F_cnt_99%=		Sampling Deviation	6,171452 CV% between	
85/2 9					0,166012 Sampling Deviation	6,171452	7.561094
	Wean Square	0,0552	0,02765		Analytical Deviation	CV% within	CV% total
2.85 2.85 2.87		W - 6X ⊙	10	19			
. 268 2,659	Sum of Squares	0,4968	0,2756	0,7722			
27.78	Source of Variation	Between Sachets	Within	Total			
2.98	3	145,2186	145,4942	144,7220			
Sachet No Tsr Assay	Mean	2,69					

Homogeneity study

				7	7		-		
	7 10 7 167 7 776								
	5/20								
	8 57 12 57 13		3,02	9	0,12064		2,40026		
micin					0		+	+	_
adura	STATE.		19/000 JUL		pling	Deviation 4.307957 CVV	Merwe		
kg M					18 San	Dev 57	1	90	
5 mg/	16.9 2.5				0,216518 Sampling	4.3079		4,931506	
II of 4,	471 5,15 1. Square	60	98		_	i			
omina	4771 8.5.15 Wean Square	10,0780	0,0469		Analytical Deviation	CV% within		CV% total	
hanc		6)		19	<u> </u>	Ü	\dashv	듸	
nted wit	Sum of		88	122		H	+	$\frac{1}{2}$	
ment	Sum of	S 6 28 6 10	0,4688	1,1527					
anddns	5,35 Source of Variation	Between Sachets	Within Sachats	Total			1		
fat) s		Ber	Sal	۲					
1 (8%		505,8974	506,3662	505,2135					
l peay		20	Ž	ਨੂੰ 	1				
Broiler feed II (8% fat) supplemented with a nominal of 4,5 mg/kg Maduramicin sachet No 1 1 5 mg/kg Maduramicin	Mean	5 5 6							

Turkey feed supplemented with a nominal of 5 mg/kg Maduramicin Homogeneity study

		1				_		
10 5524 5550								
9 5/07 5/18								
	-	07	ø.		8	1	-	
46 5 16		3,02	8//8		0,1604	3,1311		
		ij.	ii.			Veen		
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		F_crit_95%=	F_crit_99%=		0,190013 Sampling	3,710108 CV% between		
		E S		E.	3 Sar	S C C	_	<u> </u>
0 (S) (E) (S) (S) (S) (S) (S) (S) (S) (S) (S) (S					19001	,7101(4,854733
					0	8		4
	808	0,0875	0,0361		ical	vithin		otal
	Mean Square	j j	0		Analytical Deviation	CV% within		CV% total
		ခ် ခ	ġ.	19				
		0	Ó	68				
1800 C	Sum of Squares	0.7878	0/98/0	1,1489				
		E 10						
	Source of Variation	Between Sachets	Within Sachets	Total				
		B S	- 0				\dashv	
7.00		525,3831	525,7441	524,5952				
		525	525	524			_	
		2						
Sachel No.	Mean. Ar	9,12						
		17.5						

Broiler feed (5% fat) supplemented with a nominal of 9 mg/kg Maduramicin Homogeneity study

1958,5909 1958,5909 1955,4509

Premix supplemented with a nominal of 450 mg/kg Maduramicin Homogeneity study

	ю								\neg
10	496	97.6							
6	515	219							
8	396			3,02	8/8		21,415	4,3938	
	47.3	187		F_crit_95%=	F_cnt_99%=		22,32263 Sampling Deviation	4,579941 CV% between	
9	525	20 A		5,218.740km militaris († 3) militaris († 3)			22,32263	4,579941	6,346752
	481		Weam Square	1415,5333	498,3000		Analytical Deviation	CV% within	CV% total
7	478	2006	ē	6	Ŏ.	19			
	1 (30)0 (C)	7.80	Sum of Suranes	12740	C86F	17723			
	1.00 to 1.00 t	907	Source of Variation	Between Sachets	Within	Total			
	7) FG	27.5		4763915	4768898	4751175			
		Phi Assay	Mean	787,440					

Sample codes

>	
þn	
ş	
رق	
ati∨	
e	
8	
쿋	
Ö	
2	
ੜ	
Ť	
ē	
₫	
a	
E	
je	
핕	
=	
ž	
ā	
믔	
₩	
Ē	
ŧ	
5	
70	
<u>ō</u>	
ō	
S	
<u>e</u>	
PO	i
ű	
<u> </u>	
Ĕ	
Sag	
•	

	•	CONTROL CONTROL CONTROL CONTROL CONTROL	こうこう						
14 MAD 1a 132282 172271 222350 232260	2ppm	2,5ppm	2,5ppm	4,5ppm	4,5ppm	9ppm	mdd6		
132282 172271 222350 232260	MAD 1b	MAD 2a	MAD 2b	MAD 3a	MAD 3b	MAD 4a	MAD 4b	MAD blank 1a	MAD biank 1b
	132327	132306	132272	132235	132236	132352	132293	132301	132251
	172242	172238	172273	172294	172303	172371	172298	172344	172269
	222337	222263	222252	222341	222267	222365	222287	222275	222280
	232254	232240	232281	232259	232253	232237	232336	232299	232353
	262266	262309	262368	262355	262261	262279	262277	262354	262268
72 272292 27	272278	272300	272323	272338	272257	272370	272241	272276	272234
292330	292361	292262	292246	292343	292305	292342	292322	292325	292295
30 302296 30	302328	302324	302274	302329	302316	302318	302290	302315	302356
	312233	312359	312331	312362	312334	312307	312367	312264	312247
	322349	322347	322312	322245	322372	322321	322335	322360	322326
	332311	332286	332255	332289	332302	332304	332243	332244	332285
35 352320 35	352284	352314	352310	352348	352256	352332	352358	352366	352265
36 362291 36	362313	362351	362258	362288	362317	362270	362363	362297	362340
38 382308 38	382333	382364	382369	382239	382319	382339	382346	382249	382345

Maduramcyin reference standard profille

TECHNICAL CENTER
1 DUGGAR DRIVE
WILLOW ISLAND, WV 26134-9711
Phone: (304) 665-4191

Fax: (304) 665-4187

Certificate of Analysis

NAME: <u>Maduramici</u>	DATE: August 3, 2000
Specifications	
Lot No:	AC 9745-1C
Purity:	95.9% (by HPLC)
Standard Type:	Secondary Standard
Reference No:	TC 4122
Expiration Date:	August 2002
Drying Conditions:	Dry at 60°C, 28 mm Hg, for three hours prior to use.
Storage Conditions:	Store in dark container, at < 8°C

Analyzed By:

John E. Fryman

Released By:

Joseph B. Henry

Manager,

Analytical Development

TC 8002 Revision 1.2

Table with results, questionnaire (page 1) and chromatograms of partner 17

CANFAS

Development and Validation of HPLC-methods for the official control of Coccidiostats and Antibiotics used as Feed Additives (SMT4-CT98-2216)

Subtitle:

Task 4 COLLABORATIVE STUDY

Lab-name:

Contact person:

e-mail:

fax:

telephone:

Date of analysis:

Analyte:

MAD	URAM	ICIN	

	Unit	Result (mg/kg)
Sample code		•
172238		2,51
172242		4,94
172269		0
172271	·	4,97
172273		2,67
172294		4,75
172298		9,38
172303		4,71
172344		O
172371	<u> </u>	9,41

Unit	Result 1	Result 2
Sample	(mg/kg)	(mg/kg)
Premixture	514	503

CANFAS COLLABORATIVE STUDIES OCTOBER 2000 - MADURAMICIN

Annex 4 - Questionnaire

Date(s) of analysis:
Dilution factor of the samples: Feed samples (specify for which feed samples): 1 (109/50 ml)
• Premixture: 100 (1g/50ml/1ml/10ml)
Chromatographic conditions:
• Column:
X As described in the method
•
Mobile phase:
X As described in the method
• Other:
Flow-rate:
Injection volume:50µl
Retention time of maduramicin: 24,5 min
Chromatograms: Please include representative chromatograms of:
Blind positive feed samples
Blind blank feed sample
Premixture
Please indicate the maduramicin peak with an arrow

Spiking level 2,5 mg/kg Perc. recovery 96%, 100%)

Single / duplicate determinations: □ single duplicate
 If duplicate, please give both percentages: 99.4% and 100.0%

• Percentage recovery: 99.7%

Recovery results:

D-7000 HSM: MAD./ SAL./ MON.

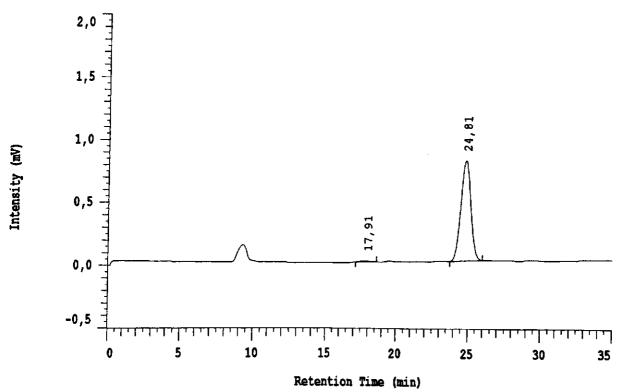
Series: 0559

Sample Name: Premix

Sample Description:

Analyzed: 28.11.00 15:35

Reported: 30.11.00 10:38 Processed: 30.11.00 10:38


Data Path: C:\Win32App\HSM\MADURAMYCIN\DATA\0559\

Application: MAD./ SAL./ MON. Injection from this vial: 1 of 1

Vial Number: 4 Vial Type: UNK Volume: 50,0 ul

Sample Description:

Chrom Type: HPLC Channel: 1

Acquisition Method: Maduramycin

Column Type: Hypersil BDS

Pump A Type: L-7100 Peak Quantitation: AREA Calculation Method: EXT-STD Solvent A: MeOH/Buffer Sample Amount: 1,000 Scale Factor 1: 1,000

Name	RT	Area	Height	Conc 1	BC
Maduramycin	17,91 24,81	475 37452	9 79 4	0,000 1,179	BB BB
		37927	803	1,179	

Peak rejection level: 0

HPLC-pump: 0,4ml/min Reagent-pump: 0,4ml/min Collumn-temperature: 40°C Reactor-temperature: 95°C D-7000 HSM: MAD./ SAL./ MON.

Series: 0560

Sample Name: 172238

Sample Description:

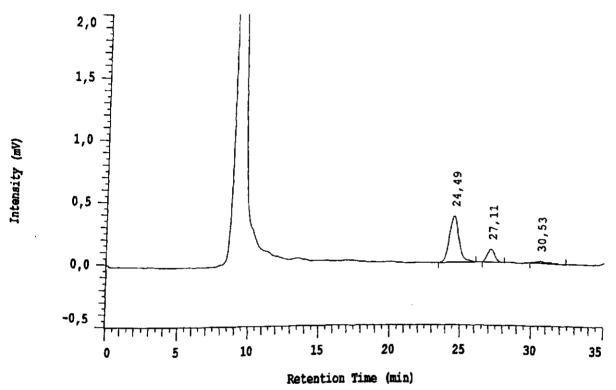
Analyzed: 28.11.00 22:11

Reported: 30.11.00 10:46

Processed: 30.11.00 10:45

Data Path: C:\Win32App\HSM\MADURAMYCIN\DATA\0560\

Application: MAD./ SAL./ MON.


Vial Number: 13 Vial Type: UNK

Injection from this vial: 1 of 1

Volume: 50,0 ul

Sample Description:

Chrom Type: HPLC Channel: 1

Acquisition Method: Maduramycin

Column Type: Hypersil BDS Pump A Type: L-7100

Peak Quantitation: AREA

Calculation Method: EXT-STD

Solvent A: MeOH/Buffer Sample Amount: 1,000 Scale Factor 1: 1,000

Name	RT	Area	Height	Conc 1	вс
laduramycin	24,49 27,11 30,53	16924 3760 835	370 103 13	0,549 0,000 0,000	BB BB BB
		21519	486	0,549	

eak rejection level: 0

HPLC-pump: 0,4ml/min Reagent-pump: 0,4ml/min Collumn-temperature: 40°C Reactor-temperature: 95°C D-7000 HSM: MAD./ SAL./ MON.

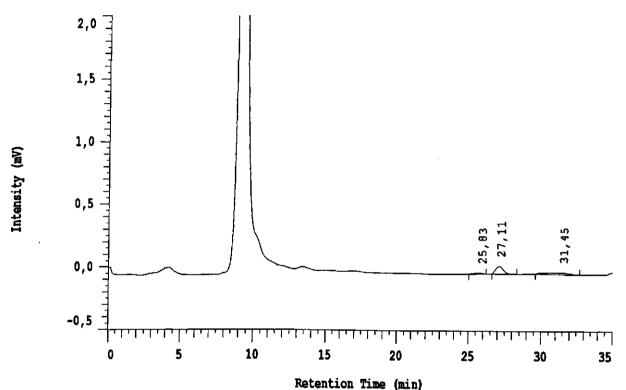
Series: 0560

Sample Name: 172269

Sample Description:

Analyzed: 28.11.00 23:23

Reported: 30.11.00 11:03 Processed: 30.11.00 11:03


Data Path: C:\Win32App\HSM\MADURAMYCIN\DATA\0560\

Application: MAD./ SAL./ MON. Injection from this vial: 1 of 1

Vial Number: 15 Vial Type: UNK Volume: 50,0 ul

Sample Description:

Chrom Type: HPLC Channel: 1

Acquisition Method: Maduramycin

Column Type: Hypersil BDS

Pump A Type: L-7100
Peak Quantitation: AREA

Calculation Method: EXT-STD

Solvent A: MeOH/Buffer Sample Amount: 1,000 Scale Factor 1: 1,000

Name	RT	Area	Height	Conc 1	ВС
	25,83 27,11 31,45	348 2273 1599	6 60 14	0,000 0,000 0,000	BB BB BB
		4220	80	0,000	

Peak rejection level: 0

HPLC-pump: 0,4ml/min Reagent-pump: 0,4ml/min Collumn-temperature: 40°C Reactor-temperature: 95°C

Table with results, questionnaire (page 1) and chromatograms of partner 22

CANFAS

Development and Validation of HPLC-methods for the official control of Coccidiostats and Antibiotics used as Feed Additives (SMT4-CT98-2216)

Subtitle:

Task 4 COLLABORATIVE STUDY

Lab-name:

Contact person:

e-mail:

fax:

telephone:

Date of analysis:

Analyte:

MADURAMICIN

	Unit	Result (mg/kg)
Sample code		
222252		2,64
222263		2,57
222267		4,87
222275		< 1
222280		< 1
222287		9,44
222337		5,52
222341		5,08
222350		5,04
222365		9,52

Unit Sample	Result 1 (mg/kg)	
Premixture	485	510

CANFAS COLLABORATIVE STUDIES OCTOBER 2000 - MADURAMICIN

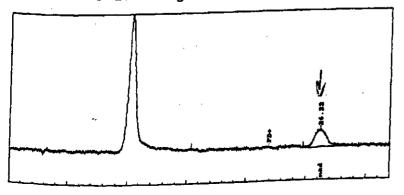
Annex 4 - Questionnaire

Date(s) of analysis: 00 11 23 /25
Dilution factor of the samples:
• Feed samples (specify for which feed samples): T = 1
• Premixture: F=10
Chromatographic conditions:
• Column:
As described in the method
• □ Other:
Mobile phase: ,
X As described in the method
• □ Other: Flow-rate: O, 4 ml/min
• Injection valume: .8.0µl
• Retention time of maduramicin: 26 min
Chromatograms: Please include representative chromatograms of:
Blind positive feed samples
• Blind blank feed sample
Premixture Please indicate the maduramicin peak with an arrow
Recovery results:
Percentage recovery: O %
Single / duplicate determinations: single / duplicate
If duplicate, please give both percentages: 99, % and 103, % Spiking level: 5, 1 mg/kg

NEW TIMED EVENTS FROM MADURAMI ****** EXTERNAL STANDARD TABLE ****** ************* 12-08-2000 11:55:16 Version 5.1 *************** * Sample Name: prov nr 4 Data File: D:madu012 * Date: 11-23-2000 21:42:21Method: MADURAMI 12-06-2000 09:00:18 # 847 * Interface: 0 Cycle#: 1 Operator ann Channel#: 0 Vial#: * Starting Peak Width: 50 Threshold: .05 Area Threshold: 50 ************* Starting Delay: 0.00 Ending retention time: 32.00 One sample per 0.200 sec. Area reject: 50 Amount injected: 80.00 Dilution factor: 1.00 1.00000 Sample Weight: CONCENTRATION in NORMALIZED AREA/ PEAK RET PRAK REF * DELTA NUM TIME ug/ml conc area height height el PEAK RET TIME NAME CONC/AREA 0.0000 TOTAL AMOUNT = PEAKS NOT FOUND IN THIS RUN

NAME ADJUSTED RET.TIME. REFERENCE PEAK m_| 26.54 mad

Data File = D:madu012.PTS Printed on 12-08-2000 at 11:55:20 Start time: 0.00 min. Stop time: 32.00 min. Offset: 0 mv Low Value: 0 uv High Value: 6102 uv Scale factor: 1.0

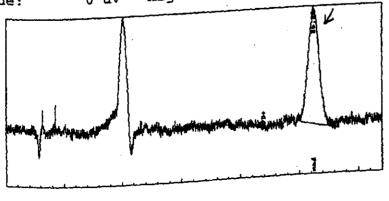

Sample 222275

```
NEW TIMED EVENTS FROM MADURAMI
              ****** EXTERNAL STANDARD TABLE ******
 * Sample Name: prov nr 1
                                               Data File: D:madu041
 * Date: 11-25-2000 20:54:40Method: MADURAMI 11-30-2000 08:27:00 # 806
 * Interface: 0 Cycle#: 1 Deperator ann Channel#: 0 Vial#: * Starting Peak Width: 50 Threshold: .05 Area Threshold: 50
 ********
Starting Delay: 0.00
Area reject: 50
Amount injected: 8
Sample Weight:
                                        Ending retention time: 32.00
                                        One sample per 0.200 sec. Dilution factor: 1.00
                    80.00
                     1.00000
PEAK RET PEAK CONCENTRATION in NORMALIZED
                                           AREA/
                                                  rep
                                                           * DELTA
              CONCENTRATION in NORMALIZED AREA, REF & DELTA

ug/ml CONC AREA HEIGHT HEIGHT BL PEAK RET TIME CONC/AREA
 NUM TIME NAME
                   0.6149 100.0000% 35895 530 67.7 1 1 0 1.7132E-05
 1 26.218 mad
       TOTAL AMOUNT =
                    0.6149
  TART TIME= 25.106 START HEIGHT=
                                        69
  STOP TIME= 27.442 STOP HEIGHT=
AREA = 32658
OLD AREA FOR PEAK# 1 = 35894.98 NEW AREA = 32658
OLD HEIGHT FOR PEAK # 1 = 529.881 NEW HEIGHT= 483.9104
REPRINT AREA REPORTS FOR NEW TABLES.
        ****** EXTERNAL STANDARD TABLE ******
* Sample Name: prov nr 1
                                             Data File: D:madu041
* Date: 11-25-2000 20:54:40Method: MADURAMI 11-30-2000 08:27:00 # 806 *
* Interface: 0 Cycle#: 1 Operator ann Channel#: 0 Vial#:

* Starting Peak Width: 50 Threshold: .05 Area Threshold: 50
Starting Delay: 0.00
Area reject: 50
Amount injected: 80.00
Sample Weight: 1.0000
                                      Ending retention time: 32.00
                                      One sample per 0.200 sec.
Dilution factor: 1.00
                   1.00000
                                          ARRA/
                                                 REF
      PEAK CONCENTRATION in NORMALIZED
             ug/ml comc area height be peak ret time
     Name
1 26.218 mad
                  0.5595 100.0000% 32658 484 67.5 1 1
      TOTAL AMOUNT -
                  0.5595
```

ata File = D:madu041.PTS Printed on 11-30-2000 at 08:30:10 tart time: 0.00 min. Stop time: 32.00 min. Offset: 0 mv. 0 uv High Value: 4119 uv Scale factor: ow Value:


Sample 222252

```
NEW TIMED EVENTS FROM MADURAMI
               ****** EXTERNAL STANDARD TABLE ******
 ************ 11-30-2000 08:33:57 Version 5.1 ****************
 * Sample Name: prov nr 3
                                                 Data File: D:madu043
 * Date: 11-25-2000 22:02:03Method: MADURAMI 11-30-2000 08:27:00 # 806
 * Interface: 0 Cycle#: 1 Operator ann Channel#: 0 Vial#: * Starting Peak Width: 50 Threshold: .05 Area Threshold: 50
 ****************
Starting Delay: 0.00
Area reject: 50
Amount injected: 80.00
Sample Weight: 1.0000
                                          Ending retention time: 32.00
                                          One sample per 0.200 sec.
                                          Dilution factor: 1.00
                      1.00000
        PEAK CONCENTRATION in NORMALIZED AREA/ REF 1 DELTA
NAME ug/ml CONC AREA HEIGHT HEIGHT BL PEAK RET TIME CONC/AREA
 NUM TIME
                             0.9352 100.0000% 54586
                                           842 64.81 1 0
  1 26.208 mad
                                                                       1.7132E-0
        TOTAL AMOUNT =
                     0.9352
  TART TIME= 25.078 START HEIGHT=
                                          130
  STOP TIME= 27.829 STOP HEIGHT=
AREA = 57044
OLD AREA FOR PEAK# 1 = 54586.44 NEW AREA= 57044
OLD HEIGHT FOR PEAK # 1 = 841.9047 NEW HEIGHT= 821.1857
REPRINT AREA REPORTS FOR NEW TABLES.
              ****** EXTERNAL STANDARD TABLE ******
************* 11-30-2000 08:34:38 Version 5.1 *****************
* Sample Name: prov nr 3
                                                 Data File: D:madu043
* Date: 11-25-2000 22:02:03Method: MADURAMI 11-30-2000 08:27:00 # 806
* Interface: 0 Cycle#: 1 Operator ann Channel#: 0 Vial#: 
* Starting Peak Width: 50 Threshold: .05 Area Threshold: 50
*************
Starting Delay: 0.00
                                          Ending retention time: 32.00
                                           One sample per 0.200 sec. Dilution factor: 1.00
Area reject: 50
Amount injected: 80.00
                      1.00000
Sample Weight:
PEAK RET PEAK CONCENTRATION in NORMALIZED AREA/ REF & DELTA
TIME NAME Ug/ml CONC AREA HEIGHT HEIGHT BL PEAK RET TIME
                                                                      CONC/AREA
             ......
                     0.9773 100.0000% 57044 821 69.5 1 1
                                                               0 1.71326-0
 1 26.208 mad
        TOTAL AMOUNT = 0.9773
Data File = D:madu043.PTS Printed on 11-30-2000 at 08:34:40 Start time: 0.00 min. Stop time: 32.00 min. Offset:
                                                               0 mv.
Low Value:
               0 uv High Value: 4036 uv Scale factor:
                                                                222267
                                                      Sample
```

```
****** EXTERNAL STANDARD TABLE ******
NEW TIMED EVENTS FROM MADURAMI
* Date: 11-24-2000 04:26:35Method: MADURAMI 11-29-2000 14:41:00 # 801 *
* Interface: 0 Cycle#: 1 Operator ann Channel#: 0 Vial#:
* Starting Peak Width: 50 Threshold: .05 Area Threshold: 50
Starting Delay: 0.00
Area reject: 50
                                          One sample per 0.200 sec.
                                          Dilution factor:
Area reject:
                     80.00
Amount injected:
                     1.00000
Sample Weight:
                                                              DELTA
PEAK RET PRAK CONCENTRATION IN NORMALIZED AREA/
NUM TIME NAME UG/NL CONC AREA HEIGHT BL
                                                     rep
                                              ARRA/
                                                             RRT TIME
                                                     PEAK
                                                                     CONC/AREA
                     0.9566 100.0000% 60803 930 65.4 1 1
 1 26.224 mad
                     0.9566
        TOTAL AMOUNT .
 START TIME= 24.714 START HEIGHT=
TOP TIME= 28.055 STOP HEIGHT=
                                         153
                                    123
OLD AREA FOR PEAK# 1 = 60803.27 NEW AREA = 65598
OLD HEIGHT FOR PEAK # 1 = 929.8368 NEW HEIGHT = 938.3638
REPRINT AREA REPORTS FOR NEW TABLES.
        ****** EXTERNAL STANDARD TABLE ******
* Date: 11-24-2000 04:26:35Method: MADURAMI 11-29-2000 14:41:00 # 801
* Interface: 0 Cycle#: 1 Operator ann Channel#: 0 Vial#:

* Starting Peak Width: 50 Threshold: .05 Area Threshold: 50

* Starting Peak Width: 50 Threshold: .05 Area Threshold: .05
*****************************
Starting Delay: 0.00
Area reject: 50
Amount injected: 80.00
Sample Weight
                                          One sample per 0.200 sec.
                                         Dilution factor: 1.00
                     1.00000
Sample Weight:
                                              area/
                                                              * DELTA
                                                     RRF
              CONCENTRATION IN AUGUSTA HEIGHT HEIGHT BL PEAK RET TIME
       PEAK CONCENTRATION in NORMALIZED
                            NOM TIME
       NAME
                1.0320 100.0000% 65598 938 69.9 1 1
   1 26.226 mad
                                                                 1 a > 50 m
        TOTAL AMOUNT = 1.0320
                                                                 del ×10
Data File = D:madu024.PTS Printed on 11-29-2000 at 16:04:07
Start time: 0.00 min. Stop time: 32.00 min. Offset:
Stow Value: 0 uv High Value: 1096 uv Scale factor
                                                     Offset:
                                                               0 mv.
                                     1096 uv Scale factor: 1.0
```


Premix

Table with results, questionnaire (page 1) and chromatograms of partner 23

CANFAS

Development and Validation of HPLC-methods for the official control of Coccidiostats and Antibiotics used as Feed Additives (SMT4-CT98-2216)

Subtitle:

Task 4 COLLABORATIVE STUDY

Lab-name:

Contact person:

e-mail:

fax:

telephone:

Date of analysis:

Analyte:

MADURAMICIN

	Unit	Result (mg/kg)
Sample code	Offic	(mg/kg/
232237		12,07
232240		3,18
232253		5,91
232254		6,76
232259		6,49
232260	ļ	6,44
232281		3,28
232299		< 0,39
232336		12,9
232353		< 0,39

Unit Sample	Result 1 (mg/kg)	
Premixture	506,91	501,15

Table with results, questionnaire (page 1) and chromatograms of partner 26

CANFAS

Development and Validation of HPLC-methods for the official control of Coccidiostats and Antibiotics used as Feed Additives (SMT4-CT98-2216)

Subtitle:

Task 4 COLLABORATIVE STUDY

Lab-name:

Contact person:

e-mail:

fax:

telephone:

Date of analysis:

Analyte:

MADURAMICIN

	Unit	Result (mg/kg)
Sample code		
262250		4,0
262261		3,3
262266		4,0
262268		0,8
262277		6,2
262279		7,5
262309		2,2
262354		0,7
262355		3,7
262368		1,9

Ur Sample	Result 1 it (mg/kg)	
Premixture		340,8

CANFAS COLLABORATIVE STUDIES OCTOBER 2000 - MADURAMICIN

Annex 4 - Questionnaire

C	Pate(s) of analysis: 4/12/10
D	ilution factor of the samples: Feed samples (specify for which feed samples):
•	Premixture:
•	Column: As described in the method Other: 51 HLNC1 SoveB ODS Z Mobile phase: As described in the method Other: Flowrate: On ml/min for post column respect as well. Injection volume: 600 100 Retention time of maduramicin: 235 min
• E	Pinatograms: Please include representative chromatograms of: Blind positive feed samples Blind blank feed sample Premixture Se indicate the maduramicin peak with an arrow
Recovered to the second	very results: ercentage recovery: 50 % ingle / duplicate determinations: single duplicate duplicate, please give both percentages: % and %

262 268

Chromatogram

Page 1 of 1

Sample Name : A3011167 FileName

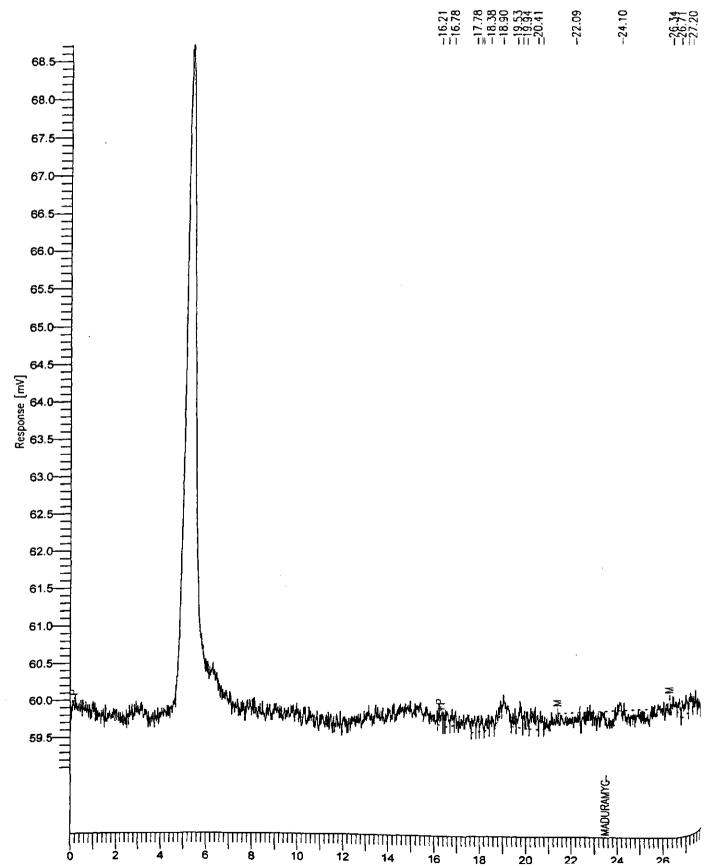
: C:\TC4\CANFAS\MADURA~1\DATA037.RAW

dethod Start Time : 0.00 min

Scale Factor: 0.0

End Time : 28.00 min Plot Offset: 59 mV

Date : 06/03/01 09:37


Sample #: 19

Time of Injection: 06/12/00 07:38

Low Point : 59.04 mV

High Point : 68.71 mV

Plot Scale: 9.7 mV

762309

Chromatogram

lample Name : A3011170

ileName : C:\TC4\CANFAS\MADURA-1\DATA051.RAW

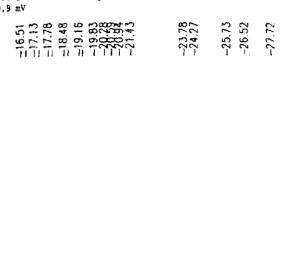
Start Time : 0.00 min 0.0 Scale Factor:

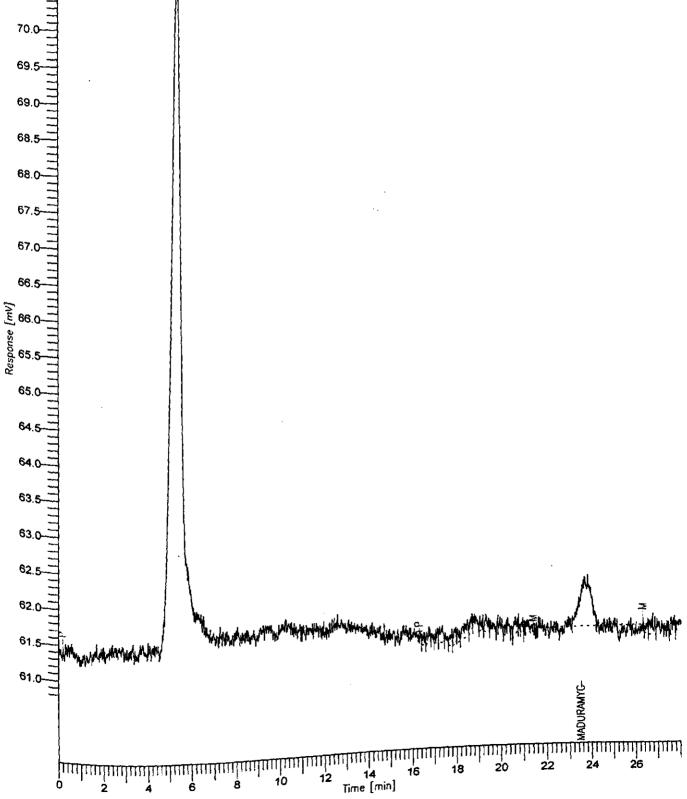
fethod

70.5

End Time : 28.00 min

Plot Offset: 61 mV


Sample #: 26


Page 1 of 1

Date: 06/03/01 09:38

Time of Injection: 06/12/00 14:34
Low Point: 60.72 mV High
Plot Scale: 9.9 mV

High Point : 70.65 mV

762355

Chromatogram

Sample Name : A3011172

FileName : C:\TC4\CANFAS\MADURA-1\DATA055.PAW

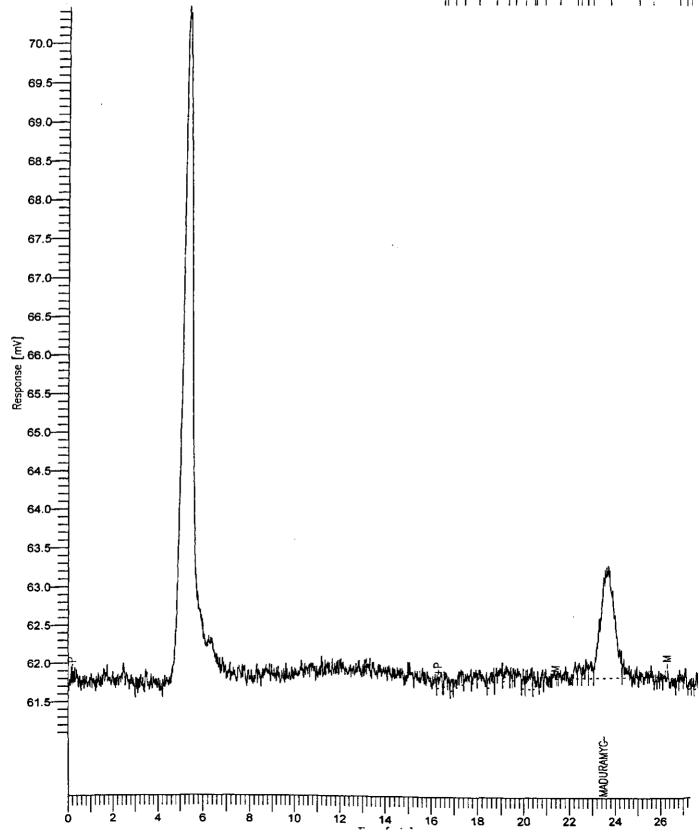
Method

Start Time : 0.00 min

Scale Factor: 0.0

: 28.00 min End Time Plot Offset: 61 mV


Page 1 of 1


Date: 06/03/01 09:38

Time of Injection: 06/12/00 16:33

Low Point : 61.08 mV High Point : 70.46 mV

Plot Scale: 9.4 mV

Sample Name : A3011175

FileName : C:\TC4\CANFAS\MADURA-1\DATA021.RAW

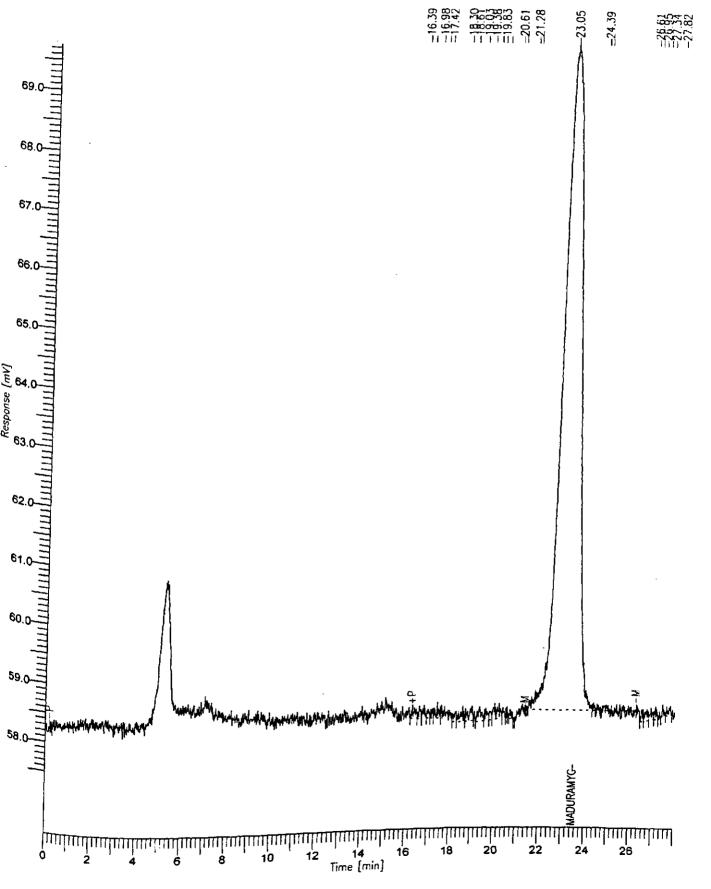
Method : MADUR.MTH

Start Time : 0.00 min Scale Factor: 0.0

End Time : 28.00 min

Plot Offset: 58 mV

Sample #: 11 Date : 06/03/01 11:23


Page 1 of 1

Time of Injection: 05/12/00 23:42

Low Point : 57.50 mV

High Point : 69.75 mV

Plot Scale: 12.2 mV

Table with results, questionnaire (page 1) and chromatograms of partner 27

CANFAS

Development and Validation of HPLC-methods for the official control of Coccidiostats and <u>Antibiotics used as Feed Additives</u> (SMT4-CT98-2216)

Subtitle:

Task 4 COLLABORATIVE STUDY

Lab-name:

Contact person:

e-mail:

fax:

telephone:

Date of analysis:

Analyte:

MADURAMICIN

	Unit	Result (mg/kg)
Sample code		
272234		not detectable
272241		9,56
272257		4,77
272276		not detectable
272278		5,21
272292		4,90
272300		2,65
272323		2,67
272338		4,73
272370		9,56

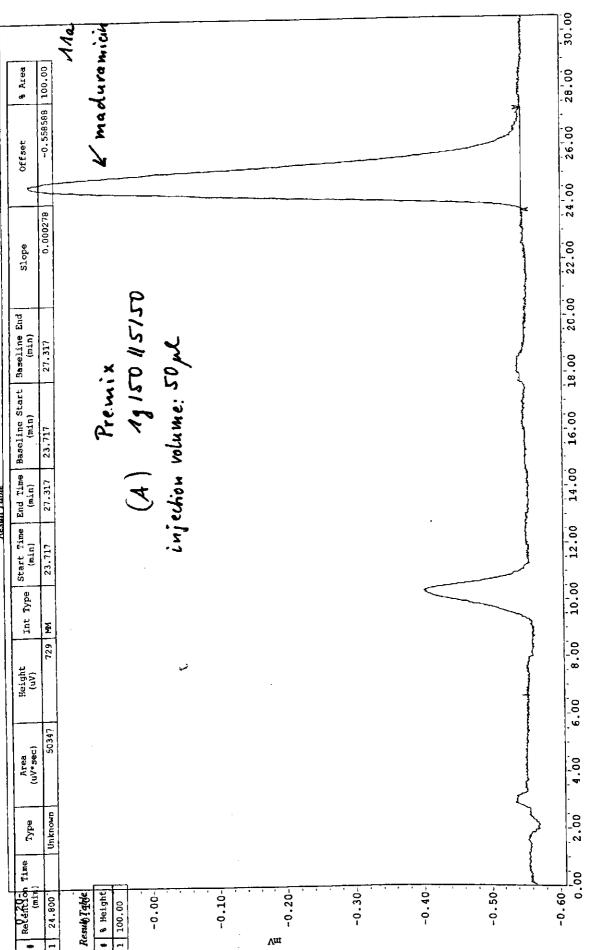
Unit Sample	Result 1 (mg/kg)	
Premixture	456,1	474,4

CANFAS COLLABORATIVE STUDIES OCTOBER 2000 - MADURAMICIN

Annex 4 - Questionnaire

Recovery results:

Percentage recovery: 4.2.9%


Single / duplicate determinations: ★ single □ duplicate

If duplicate, please give both percentages: % and %

Date(s) of analysis: 16.11. +0 24.11. 2000
Dilution factor of the samples: • Feed samples (specify for which feed samples): • Premixture: $F = 10$
Chromatographic conditions:
• Column:
XAs described in the method
• 🗆 Other:
Mobile phase:
XAs described in the method
• Flow-rate:
• Injection volume:SRul
injection volume:
• Injection volume: 50
the shape of
Chromatograms: Please include representative chromatograms of:
Blind positive feed samples
Blind blank feed sample
• Premixture
Please indicate the maduramicin peak with an arrow

cammianame: MAD 1 Vial: 9 Ini: 1 Ch: SATIN Type: Unknown

SampleName: MAD 5 Vial: 10 Inj: 1 Ch: SATIN Type: Unknown

12 4. NOV. 2000

Samplename: MAD Pre A Vial: 7 Inj: 1 Ch: SAIIN Type: UnknownPa

APPENDIX 5

Table with results, questionnaire (page 1) and chromatograms of partner 29

CANFAS

Development and Validation of HPLC-methods for the official control of Coccidiostats and Antibiotics used as Feed Additives (SMT4-CT98-2216)

Subtitle:

Task 4 COLLABORATIVE STUDY

Lab-name:

Contact person:

e-mail:

fax:

telephone:

Date of analysis:

Analyte:

MADURAMICIN

	Unit	Result (mg/kg)
Sample code		
292246		2,41
292262		2,84
292295		0
292305		5,01
292322		10,90
292325		0
292330		5,79
292342		10,63
292343		5,25
292361		5,57

Unit Sample	Result 1 (mg/kg)	
Premixture	643,60	710,50

CANFAS COLLABORATIVE STUDIES OCTOBER 2000 - MADURAMICIN

Annex	4	-	Ou	esti	oni	naire
--------------	---	---	----	------	-----	-------

	4.		12.00
	* *	2.4.	. 44.7
	24.	100	150
	3.4		100
:	1.3		25

Chromatograms: Please include representative chromatograms of:

- Blind positive feed samples
- Blind blank feed sample
- **Premixture**

Please indicate the maduramicin peak with an arrow

Recovery results:

- Percentage recovery: %
- Single / duplicate determinations: □ single 💆 duplicate
- If duplicate, please give both percentages: .45 % and .140%
- Spiking level: mg/kg

Maduramicin Report

Project Name: Maduramicin

INFORMATION SAMPLE

Sample Name:

Sample 292325

Sample Type:

Unknown

Vial: Injection #:

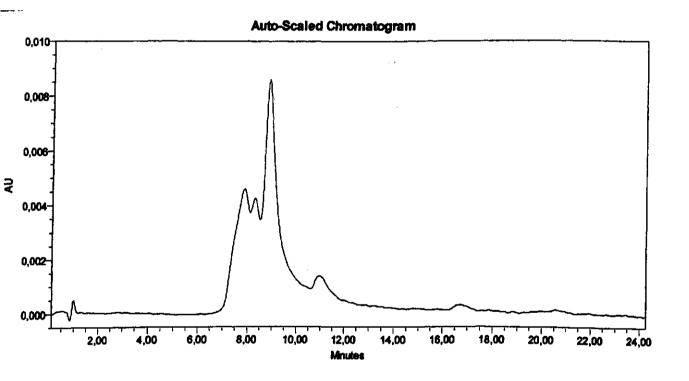
Injection Volume: Run Time:

200,00 ul

30.0 Minutes

Date Acquired:

Acq. Method Set:


Date Processed:

Processing Method: MAD 16 01 2001 Proc. Chnl. Descr.:

16-01-2001 19:47:26

Maduramicin CANFAS 16-01-2001 20:22:46

PDA 520,0 nm

 	P	eak R	esults		
Name	RT	Агеа	Height	Amount	Units
MAD	20,432				

Blind blank feed sample

Maduramicin Report

Project Name: Maduramicin

SAMPLE INFORMATION

Sample Name: Sample Type:

Sample 292262

Vial:

Unknown

Injection #:

Injection Volume:

200,00 ul

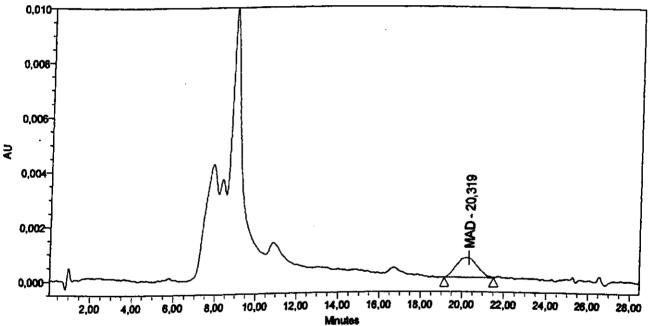
Run Time:

30.0 Minutes

Date Acquired:

16-01-2001 19:13:37

Acq. Method Set: Date Processed:


Maduramicin CANFAS 16-01-2001 20:22:47

Processing Method: MAD 16 01 2001

Proc. Chnl. Descr.:

PDA 520.0 nm

Peak	Rest	ılts
------	------	------

- 1	Name				Amount	
1	MAD	20,319	51066	729	0,568	ug/mi

2,84 mg/hg.
Blind positive feed sample

Maduramicin Report

Project Name: Maduramicin

SAMPLE INFORMATION

Sample Name:

PM 12 II

Sample Type: Vial:

Unknown 36

Injection #: Injection Volume:

200,00 ul

Run Time:

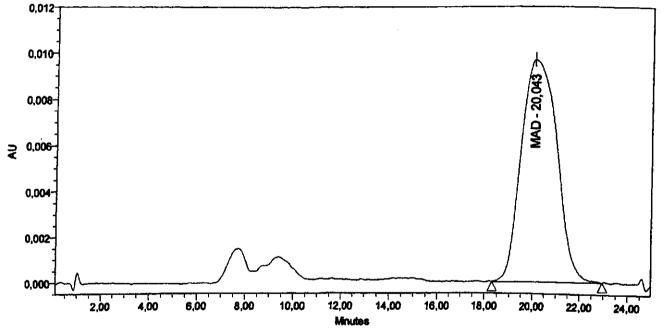
30,0 Minutes

Date Acquired:

Acq. Method Set:

Date Processed:

Maduramicin CANFAS 16-01-2001 20:22:46


Processing Method: MAD 16 01 2001

Proc. Chnl. Descr.:

PDA 520,0 nm

16-01-2001 15:29:50

Peak Results

ı		Neme	RT	Area	Height	Amount	Units
	1	MAD	20,043	1021690	9658	12,872	ug/mi
Ī						-	

643,60 mg/hy Poemixture

APPENDIX 5

Table with results, questionnaire (page 1) and chromatograms of partner 30

CANFAS

Development and Validation of HPLC-methods for the official control of Coccidiostats and <u>Antibiotics</u> used as <u>Feed Additives</u> (SMT4-CT98-2216)

Subtitle:

Task 4 COLLABORATIVE STUDY

Lab-name:

Contact person:

e-mail:

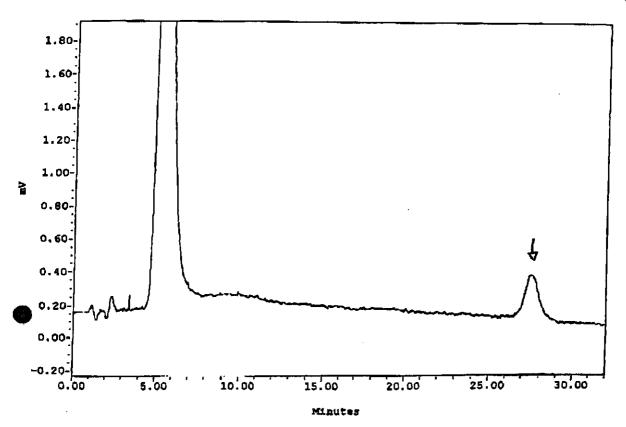
fax:

telephone:

Date of analysis:

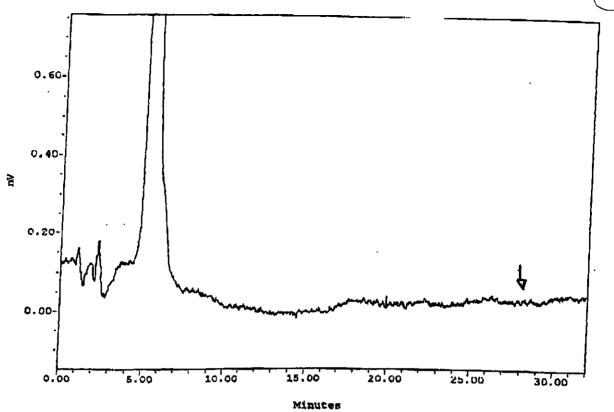
Analyte:

MADURAMICIN

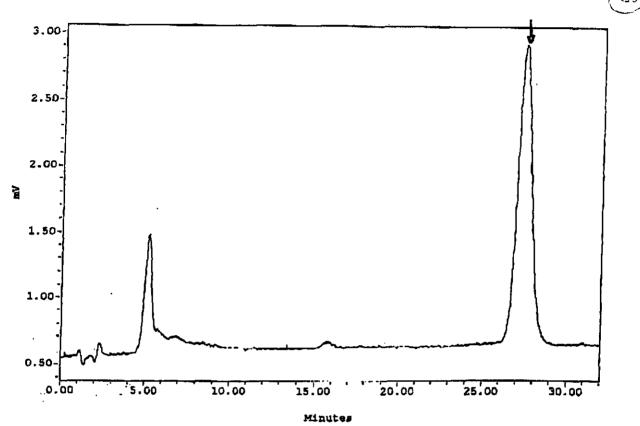

	Unit	Result (mg/kg)
Sample code		
302274		3,0
302290		8,9
302296		6,6
302315		< 1
302316		2,4
302318		10,4
302324		3,1
302328		5,3
302329		1,7
302356		< 1

Unit Sample	Result 1 (mg/kg)	
Premixture	491	511

CANFAS COLLABORATIVE STUDIES OCTOBER 2000 - MADURAMICIN


Annex 4 - Questionnaire

Datc(s) of analysis:12119/0.A
Delicity of displayers.
Dilution factor of the samples:
• Feed samples (specify for which feed samples): 108 to 50 ml.
• Premixture:d.sta50ml
Chromatographic conditions:
Column:
As described in the method
Other: K.Co.Masif. CAS ASO. x. 4.6. mm. 5, um.
Mobile phase:
As described in the method
Other:
• Flowrate:Q.,.4 ml/min
• Injection volume: .52µl
Retention time of maduramicin: 23,4 min
Chromatograms: Please include representative chromatograms of:
Blind positive feed samples
Blind blank feed sample
Premixture
Flease indicate the maduramicin peak with an arrow
Recovery results:
Percentage recovery: 49.3. %
Single / duplicate determinations: Ksingle
If duplicate, please give both percentages: % and %
Spiking level;5 mg/kg


SampleName: 302328 Vial: 10 Inj: 1 Ch: SATIN Type: Unknown

Positive feed sample (5,3 ppm)

SampleName; 302356 Vigl; 12 Inj; 1 Ch; SATIN Type: Unknown

blank food sample

SampleName: PREMIX 1 Vial: 16 Inj: 1 Ch: SATIN Type: Unknown

Premixture (491 ppm)

APPENDIX 5

Table with results, questionnaire (page 1) and chromatograms of partner 31

CANFAS

Development and Validation of HPLC-methods for the official control of Coccidiostats and Antibiotics used as Feed Additives (SMT4-CT98-2216)

Subtitle:

Task 4 COLLABORATIVE STUDY

Lab-name:

Contact person:

e-mail:

fax:

telephone:

Date of analysis:

Analyte:

MADURAMICIN

	Unit	Result (mg/kg)
Sample code		
312233		4,9
312247		0
312264		
312307		9,0
312331	:	2,3
312334		4,4
312357		4,9
312359		3,0
312362		4,9
312367		9,1

Unit Sample	Result 1 (mg/kg)	
Premixture	469	444

CANFAS COLLABORATIVE STUDIES OCTOBER 2000 - MADURAMICIN

Annex 4 - Questionnaire

,	
Date(s) of analysis:6 - 12 - 2000 t 7 -	12-2000
Dilution factor of the samples:	
Feed samples (specify for which feed samples):	
• Premixture: $F = 10$	
Chromatographic conditions:	
Column:	
 As described in the method 	
• D Other:	•
Mobile phase:	
 B As described in the method 	
• □ Other:	***************************************
• Flow-rate:Q. 4 ml/min	
 Injection volume:\QQμl 	
Retention time of maduramicin: 23.5. min	
Chromatograms: Please include representative chromat	ograms of:
Blind positive feed samples	
Blind blank feed sample	
Premixture	
lease indicate the maduramicin peak with an arrow	
6-12-2000	7-12-2000
ecovery results: Day 1	Day 2
Percentage recovery:	100,4%
Single / duplicate determinations: □ single Ø duplicate	
If duplicate, please give both percentages: 9日 k and 10つん	110,5 -166201
Spiking level:5 mg/kg	5 mg/lg
	s mg/lg

Software Version: 6.1.1.0.0:K20 Sample Name

: 24860 .

Instrument Name: HPLC-1 Rack/Vial

: 0/0

Sample Amount

Cycle

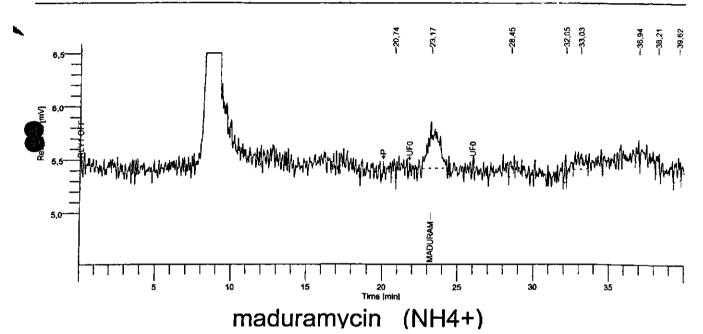
: 1,000000

: 13

Date

: 8-12-2000 9:20:49

Data Acquisition Time: 7-12-2000 17:04:44


Channel . A

Operator

Dilution Factor

: 1,000000

Result File: \\I Sequence File: \\

8 eak	Time [min]	Component Name	Area [µV·s]	Height [µV]	Area [%]	Norm. Area [%]	BL	Area/Height [s]
1	20,74		2163,00	188,18	5,43	5,43	ВВ	11,4944
	23,17	maduramycin	20915,41	436,55	52,49	52,49	MM	47,9102
3	28,45	•	2067,00	139,01	5,19	5,19	BB	14,8694
4	32,05		1478,00	234,63	3,71	3,71	BB	6,2992
5	33,03		4980,00	97,19	12,50	12,50	BB	51,2401
6	36,94		1907,50	221,36	4,79	4,79	BB	8,6171
7	38,21		2413,00	176,27	6,06	6,06	BB	13,6896
8	39,62		3919,00	208,73	9,84	9,84	BB	18,7751
			39842,91	1701,93	100,00	100,00		

Missing Component Report Component Expected Retention (Calibration File)

All components were found

Software Version: 6.1.1.0.0:K20

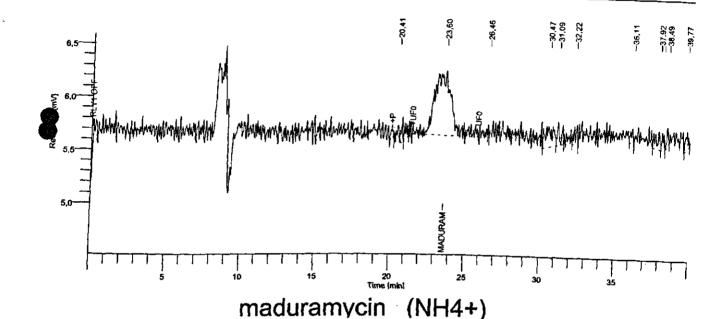
Sample Name : 24863-b :

Instrument Name: HPLC-1 Rack/Vial : 0/0

Sample Amount : 1,000000

Cycle : 17 Date

: 8-12-2000 9:27:17 Data Acquisition Time: 7-12-2000 19:51:21


Channel Operator

Dilution Factor

: 1,000000

Result File: \\

Sequence File: \\.

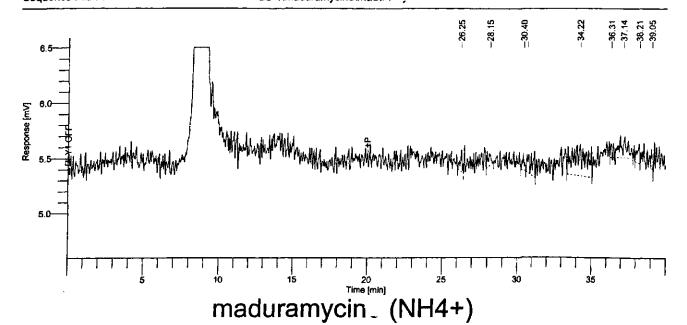
Beak #	Time [min]	Component Name	Area [µV·s]	Height [µV]	Area [%]	Norm. Area [%]	BL.	Area/Height
	20,41		3649,00	7	-	5,09	BB	22,6829
	23,60	maduramycin	45399,16	•	•	63,33	MM	75,3313
3	26,46		383,00	108,15	•	0,53	BB	3,5412
4	30,47		7126,63	201,58	9,94	9,94	BV	35,3539
5	31,09		3012,87	209,37	4,20	4,20	VΒ	14,3901
6	32,22		2429,00	178,60	3,39	3,39	BB	13,6004
7	36,11		1702,50	156,83	2,37	2.37	BB	10,8559
	37,92		2979,30	172,37	4,16	4,16	BV	17,2845
	38,13		1660,20	167,09	2,32	2,32	VB	9,9358
	38.49		1240,00	176,03	1,73	1.73	BB	7,0443
	39,77		2110,00	145,53	2,94	2,94	BB	14,4991
			71691.66	2279.08	100.00	100.00		

Missing Component Report Component Expected Retention (Calibration File)

All components were found

Software Version : 6.1.1.0.0:K20 Sample Name 24858 ..

Instrument Name : HPLC-1 Rack/Vial : 0/0 : 1.000000 : 11 Sample Amount Cycle


: 12/7/00 4:21:33 PM

Data Acquisition Time : 12/7/00 3:41:25 PM Channel : A Channel

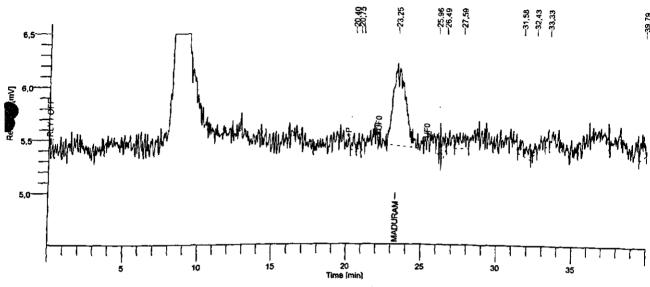
Operator

Dilution Factor : 1.000000

Result File : \\ (Sequence File : \

Peak #	Time [min]	Component Name	Area [µV·s]	Height [µV]	Area [%]	Norm. Area [%]	BL	Area/Height [s]
	23.00	maduramycir.	0.00	0.00	0.00	0.00		
1	26.25		1751.00	104.94	4.86	4.86	BB	16,6863
2	28.15		1725.50	111.39	4.79	4.79	BB	15.4901
3	30.40		1338.50	145.41	3.72	3.72	BB	9.2052
4	30.65		4127.00	152.17	11.47	11.47	BB	27.1208
5	34.22		16368.00	270.34	45.47	45.47	BB	60.5451
6	36.31		1295.63	122.70	3.60	3.60	ΒV	10.5595
7	37.14		6454.80	98.28	17.93	17.93	VΒ	65.6773
8	38.21		1971.00	167.86	5.48	5.48	BB	11.7419
9	39.05		965.00	164.66	2.68	2.68	BB	5.8605
			35996.43	1337.75	100.00	100.00		

Missing Component Report


Component Expected Retention (Calibration File)

maduramycir 23.000

blanco voer

Sample Amount	: 24861 : HPLC-1 : 0/0	Data Acquisition Time Channel Operator	: 8-12-2000 11:04:04 : 7-12-2000 17:46:23 : A :
Offic	. 17	,	

Result File: \\ \tag{\pi} \tag{\pi}

maduramycin (NH4+)

Pak #	Time [min]	Component Name	Area [µV·s]	Height [µV]	Area [%]	Norm. Area [%]	BL	Area/Height [s]
1	20.40		1446,57	148,58	2,12	2,12	BV	9,7363
	20.75		1028,11	158,51	1,51	1,51	VB	6,4859
	20.96		1204,00	147,81	1,76	1,76	BB	8,1454
4	23,25	maduramycin	45697,05	774,05	66,95	66,95	MM	59,0359
5	25,96		1511,00	155,96	2,21	2,21	BB	9,6881
	26,49		2652,00	181,97	3,89	3,89	BB	14,5741
	27,59		4840,50	50,46	7,09	7,09	BB	95,9245
	31,58		4084,00	146,25	5,98	5,98	BB	27,9257
	32,43		868,50	106,17	1,27	1,27	BB	8,1805
	33,33		1246,00	150,36	1,83	1,83	BB	8,2869
	39,79		3680,00	198,86	5,39	5,39	BB	18,5059
			68257,73	2218,98	100,00	100,00		

Missing Component Report Component Expected Retention (Calibration File)

APPENDIX 5

Table with results, questionnaire (page 1) and chromatograms of partner 35

CANFAS

Development and Validation of HPLC-methods for the official control of Coccidiostats and Antibiotics used as Feed Additives (SMT4-CT98-2216)

Subtitle:

Task 4 COLLABORATIVE STUDY

Lab-name:

Contact person:

e-mail:

fax:

telephone:

Date of analysis:

Analyte:

MADURAMICIN

	Unit	Result (mg/kg)
Sample code		
352256		4,5
352265		< 2
352284		4,0
352310		2,2
352314		1,9
352320		3,9
352332		8,7
352348	k	3,8
352358		7,3
352366		< 2

Unit Sample	Resuit 1 (mg/kg)	
Premixture	385	378

CANFAS COLLABORATIVE STUDIES OCTOBER 2000 - MADURAMICIN

Annex 4 - Questionnaire

Date(s) of analysis:	
Dilution factor of the samples: Feed samples (specify for which feed samples):5.0	•
• Premixture: 500	•
Chromatographic conditions: Column: As described in the method Other: Lichlespher 100 RP.18 (S.M.) Mobile phase: Mobile phase:	• • •
• D Other:	
Flow-rate:O, \(\text{\tint{\text{\tint{\text{\tin\text{	
Thromatograms: Please include representative chromatograms of:	

- Blind positive feed samples
- Blind blank feed sample
- Premixture

Please indicate the maduramicin peak with an arrow

Recovery results:

- Percentage recovery: 95.3. %
- Single / duplicate determinations: □ single ★ duplicate
- If duplicate, please give both percentages: 97.7. % and 95.3. %
- Spiking level: ..19.... mg/kg

Maduramycin

= 352265

Gebruiker:

asc

Runtijdstip:

01-09-2001 13:43:47

Inweeg:

9.9859

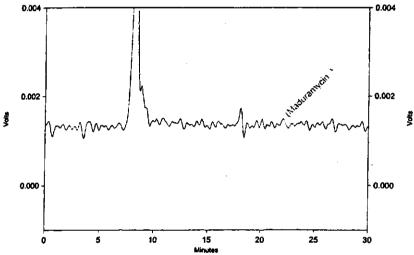
Verdunning: 50

Methode:

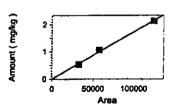
\\Fs_1

\VOLI\DATA\Elite_Admin\Projects\Testlab\Method\I

File:


\\Fs

\VOL1\DATA\Elite_Admin\Projects\Testlab\Data


Sequence:

\\Fs_

\VOL1\DATA\Elite_Admin\Projects\Testlab\Sequence.

Peak: Maduramycin -- ESTD -- UV-Detector

UV-Detector Results

Name

Retention

Area

Height

ESTD

Units

concentration

Maduramycin

Time

0.000 BDL

Maduramycin

352256 Monster: 3 49-0512

Gebruiker:

Runtijdstip:

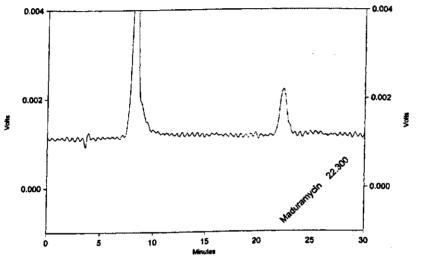
01-09-2001 13:43:38

Inweeg:

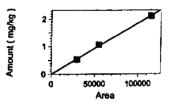
10.1907

Verdunning: 50

Methode:


\\VOL1\DATA\Elite_Admin\Projects\Testlab\Method\Maduramycin

File:


\\Fs ____\\VOL1\DATA\Elite_Admin\Projects\Testlab\Data\Maduramycin

Sequence:

\VOL1\DATA\Elite_Admin\Projects\Testlab\Sequence\Maduramycin

Peak: Maduramycin - ESTD - UV-Detector

UV-Detector

Kesuits	Name	Retention Time	Area	Height	ESTD concentration	Units	
Madur	amycin	22.300	49658	1036	4.549	mg/kg	

Maduramycin

Monster: 23 49-0522 pr. = premix

Gebruiker:

asc

Runtijdstip:

01-09-2001 13:44:06

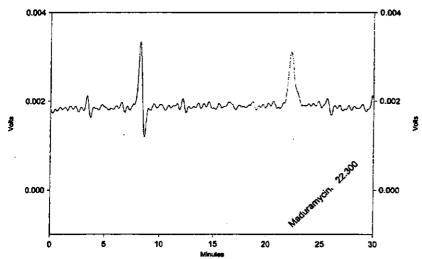
Inweeg: Verdunning: 500

1.0425

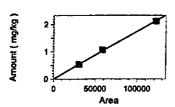
Methode:

Fs_

File:


\\Fs .

\VOL1\DATA\Elite_Admin\Projects\Testlab\Data\?


Sequence:

\\Fs_ i

\VOL1\DATA\Elite_Admin\Projects\Testlab\Sequence\>

Peak: Maduramycin . -- ESTD -- UV-Detector

UV-Detector

Results

Roduits	Name	Retention Time	Area	Height	ESTD Units concentration	
Madu	ramycin	22.300	45712	1160	384.558 mg/kg	

APPENDIX 5

Table with results, questionnaire (page 1) and chromatograms of partner 36

CANFAS

Development and Validation of HPLC-methods for the official control of Coccidiostats and Antibiotics used as Feed Additives (SMT4-CT98-2216)

Subtitle:

Task 4 COLLABORATIVE STUDY

Lab-name:

Contact person:

e-mail:

fax:

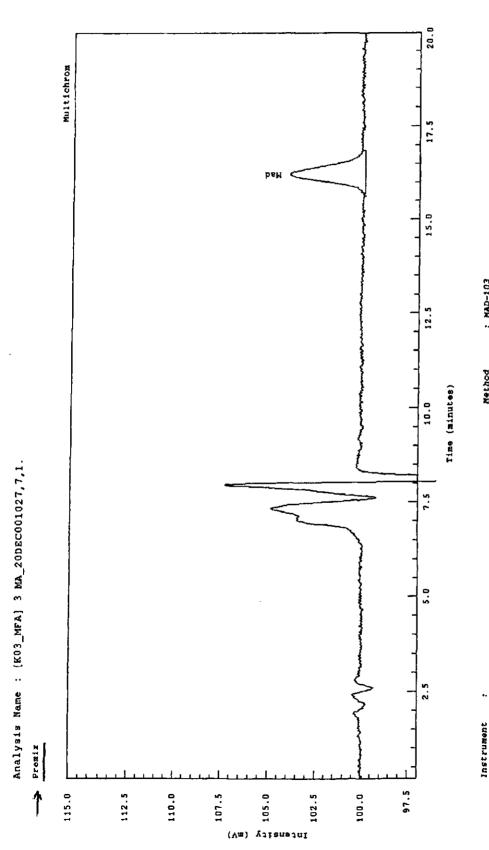
telephone:

Date of analysis:

Analyte:

MADURAMICIN

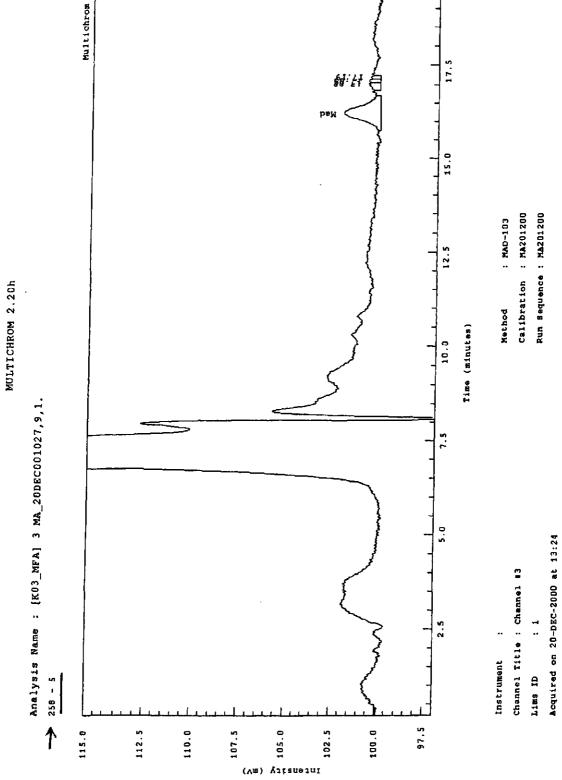
	Unit	Result (mg/kg)
Sample code		
362258		2,8
362270		8,6
362288		4,7
362291		5,0
362297		O
362313		5,1
362317		3,8
362340		0
362351		2,5
362363	:	8,4

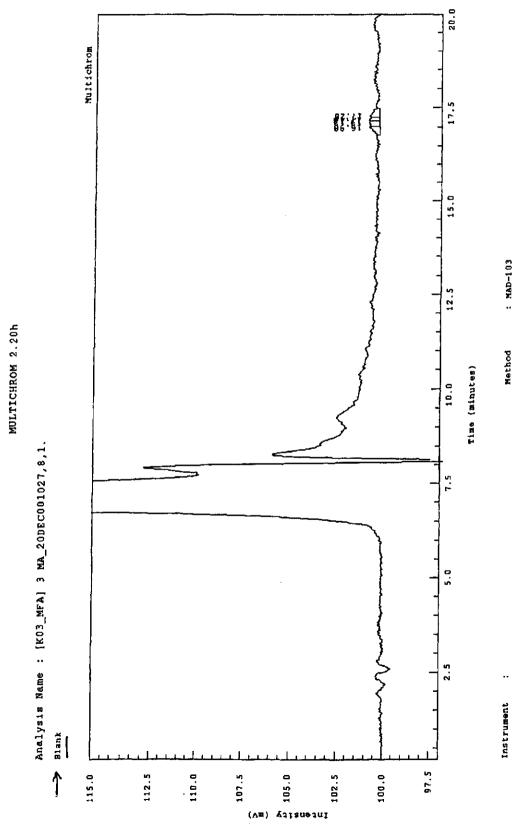

Unit Sample	Result 1 (mg/kg)	
Premixture	444	479

CANFAS COLLABORATIVE STUDIES OCTOBER 2000 - MADURAMICIN

Annex 4 - Questionnaire

	Date(s) of analysis: 20.12.2000
ļ	Dilution factor of the samples:
	Feed samples (specify for which feed samples): 10 g in 50 ml
•	Premixture: 1.0 g in 100 ml / 5 ml diluted to 20 ml
9	thromatographic conditions:
•	Column:
	• ½ Other:Hypersil.ODS,5.microm,250.x.4.mm
	Mobile phase:
	As described in the method
	 M Other: .100.mlphosphate.bufferpH4,80.mltetrahydrofurarane,to1000 ml
•	Flow-rate:Q.4 ml/min Wivith methanol
•	Injection volume: .50µl
•	Retention time of maduramicin: .15 min
C	romatograms: Please include representative chromatograms of:
•	Blind positive feed samples
•	Blind blank feed sample
•	Premixture
Ple	ease indicate the maduramicin peak with an arrow
Re	covery results:
•	Percentage recovery: %
•	Single / duplicate determinations: □ single □ duplicate
•	If duplicate, please give both percentages: % and %
•	Spiking level: mg/kg

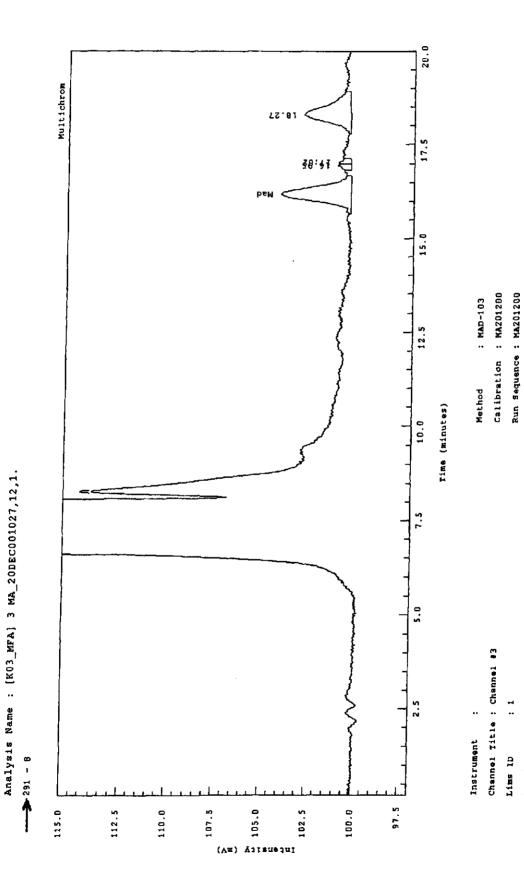

1



Instrument : MaD-103
Channel Title : Channel #3
Calibration : MaZ01200
Lims ID : 1
Run Sequence : MaZ01200

Acquired on 20-DEC-2000 at 12:41 Reported on 21-DEC-2000 at 16:08

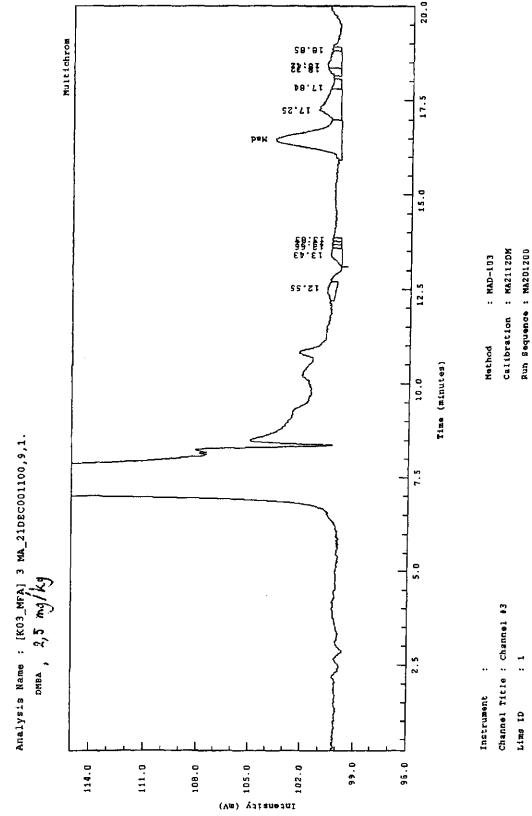
Reported on 21-DEC-2000 at 16:08



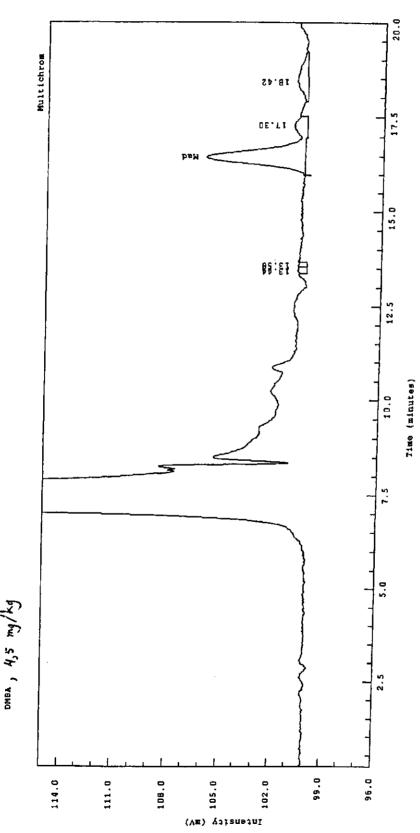
Calibration : MA201200 Run Sequence : MA201200 : MAD-103 Channel Title : Channel #3 Lins id

Acquired on 20-DEC-2000 at 13:02 Reported on 21-DEC-2000 at 16:08

Acquired on 20-DEC-2000 at 14:39 Reported on 21-DEC-2000 at 16:10



Appendix 6


Results of special requests:

Results of Hoffmann-La Roche applying post-column derivatisation with DMAB

Acquired on 21-DBC-2000 at 14:37 Reported on 21-DBC-2000 at 16:05

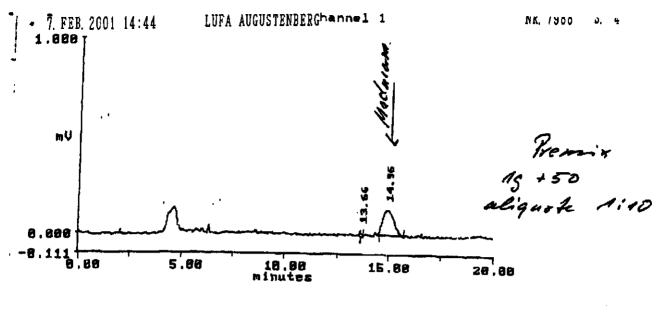
Analysis Name : [K03_MFA] 3 MA_21DEC001100,7,1.

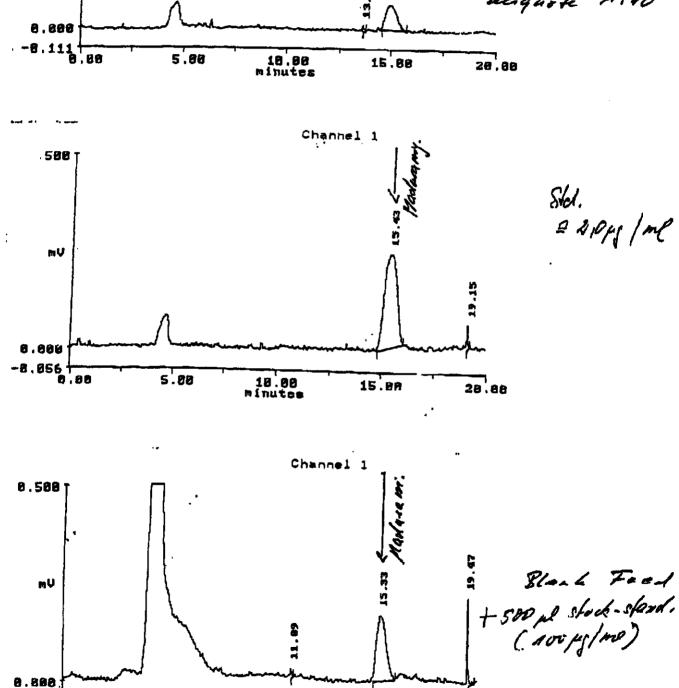
Method : MaD-183 Calibration : Ma21125M

Run Sequence : MA201200

Acquired on 21-DEC-2000 at 13:48 Reported on 21-DEC-2000 at 16:04

Channel Title : Channel #3


Line ID


Instrument

Appendix 6 Results of special requests: Results of LUFA-Augustenberg applying post-column derivatisation with DMAB

CANFAS COLLABORATIVE STUDIES OCTOBER 2000 - MADURAMICIN

Annex 4 - Questionnaire
Laboratory: LUFA Karls rule Contact person: THULMAIUN
Contact person: THULTINIO
Date(s) of analysis:
Dilution factor of the samples:
Feed samples (specify for which feed samples):
Feed samples (specify for which feed samples): Nie Immeria
Chromatographic conditions:
• Column:
O As described in the method
• Cother: Hype ISIL ODS 5.4. 250 × 4.6.
Mobile phase:
As described in the muthod
• Flowrate: 9,7,7, ml/min
injection volume: 105 Lul
njection volume:
Chromatograms: Please include representative chromatograms of:
Blind positive feed samples
Blind blank feed sample
Premixture
lease indicate the maduramicin peak with an arrow
ecovery results:
Percentage recovery: %
Single / duplicate determinations: a single duplicate
If duplicate, please give both percentages: % and % Spiking level:
Spiking level:5 mg/kg 103,98 / 99,66

20.00

15.88

-0.856 |

5.00

18.88 minutes