

D.W.G. van Kraalingen

The FSE system for crop
simulation, version 2.1

ab-dlo

AB-TPE rapport, April 1995

Simulation Reports AB-TT

Simulation Reports AB-TPE is a series giving supplementary information on agricultural simulation
models that have been published elsewhere. Knowledge of those publications will generally be
necessary in order to be able to study this material.

Simulation Reports AB-TPE describe improvements of simulation models, new applications or
translations of the programs into other computer languages. Manuscripts or suggestions should be
submitted to: H. van Keulen (AB) or J. Goudriaan (TPE-WAU).

Simulation Reports AB-TPE are issued by AB-DLO and TPE-WAU and they are available on
request. Announcements of new reports will be issued regularly. Addresses of those who are
interested in the announcements will be put on a mailing list on request.

The DLO Centre for Agrobiological and Soil Fertility Research (AB-DLO) falls under the Agricultural
Research Department (DLO) of the Dutch Ministry of Agriculture, Nature Management and
Fisheries.

The aim of DLO is to generate knowledge and develop expertise for implementing the agricultural
policies of the Dutch government, for strengthening the agricultural industry, for planning and
management of rural areas and for the protection of the environment. At AB-DLO experiments and
computer models are used in fundamental and strategic research on plants. The results are used to:
- achieve optimal and sustainable plant production systems;
- find new agricultural products and improve product quality;
- enhance nature and environmental quality in the countryside.

Address:
AB-DLO
P.O. Box 14
6700 AA Wageningen
The Netherlands

tel. 31.8370.75700
fax. 31.8370.23110
e-mail postkamer@ab.agro.nl

Table of Contents

 page

Samenvatting 1

Summary 1

Acknowledgements 2

1 Introduction 3

Technical Documentation 5

2 Technical principles of FSE 7

3 Implementation of Euler integration in FSE: Task Sequencing 11

3.1 Order of execution 11

4 Outline of FSE-driver and utility system 17

4.1 A simplified FSE driver 17
4.1.1 Loop control 17
4.1.2 Rate calculation after initialization 17
4.1.3 Time control 18

4.2 Initialization of state variables and parameters from external data files 20
4.3 Implementation of reruns 22
4.4 Output of simulation results 24
4.5 Weather data 27

5 Simulation models under the FSE-driver 29

5.1 Communication between FSE-driver and user's model(s) 29
5.2 Use of input files by the FSE-driver 32
5.3 Program skeleton of empty FSE model 32
5.4 Adaption of an empty FSE model or existing FSE model 35

5.4.1 Adaptation of subprocess calculations 35
5.4.2 Adaptation of variables for output 36
5.4.3 Adaptation of finish conditions 36
5.4.4 Adaptation of output titles 36
5.4.5 Adaptation of print plotted variables 36
5.4.6 Adaptation of check on weather variables 37
5.4.7 Adaptation of input file naming 37

6 Main differences between FSE 1.0 and FSE 2.1 39

6.1 Improvements 39
6.2 Changes 39

User Guide 41

7 How to operate FSE and its data files 43

7.1 Modification of data files 43

7.2 The CONTROL.DAT file 44
7.3 The timer file 45

7.3.1 Weather control variables 45
7.3.2 Time control variables 46
7.3.3 Output control variables 46
7.3.4 Optional output control variables 47

7.4 Other data files 47
7.5 The reruns file 48
7.6 Running the model 48
7.7 Examination of output 49
7.8 Errors and warnings from the FSE program 49
7.9 Error recovery 50

8 Installing the FSE program 51

8.1 Requirements for running the FSE program 51
8.2 Contents of the disk 51
8.3 General installation of FSE on IBM-compatibles using Microsoft FORTRAN 5.1 52
8.4 Using the FORTRAN.EXE and LINK.EXE tools to compile and link FSE 53
8.5 Working with other FORTRAN compilers on IBM PC's and compatibles 54
8.6 Working on a VAX/VMS or AXP/VMS computer of AB-DLO or TPE-WAU 54
8.7 Working on another VAX or AXP computer 54
8.8 Working on an Apple Macintosh using MacFortran/020 v2.3 55
8.9 Working on an Apple Macintosh using Language Systems Fortran 55

References and further reading 57

Appendix I: Program and data file listings I-1

File: MODEL.FOR I-2
File: FSE.FOR I-7
File: CONTROL.DAT I-11
File: TIMER.DAT I-11
File: MODEL.DAT I-11
File: NLD1.980 I-12
File: RERUNS.DAT I-12
File: OUTREC.FOR I-12

 1

Samenvatting

Dit rapport beschrijft een FORTRAN 77 programma dat een omgeving vormt voor het ontwikkelen
van continue simulatie modellen. Deze omgeving wordt FSE (FORTRAN Simulation Environment)
genoemd. De omgeving bestaat uit een hoofdprogramma, weersgegevens en verscheidene hulp
programma's voor het uitvoeren van specifieke taken. De feitelijke modelvergelijkingen worden
ondergebracht in één of meer subroutines, die bestuurd worden door het hoofdprogramma. De FSE
omgeving is flexibel van opzet, voert de tijdsbesturing uit, haalt weersgegevens op uit datafiles en
voorziet in de mogelijkheid van eenvoudige invoer van parameters en initiële toestanden en het
maken van reruns hierop. Tevens zijn voorzieningen aanwezig voor het op een eenvoudige manier
maken van uitvoertabellen en grafieken. De FSE omgeving kan zonder wijzigingen op zeer
uiteenlopende computers worden gebruikt.

De FSE omgeving biedt oplossingen voor veel problemen die ondervonden worden door
onderzoekers die in FORTRAN programmeren. Door gebruik te maken van de FSE omgeving kan
de onderzoeker zich beter op de wetenschappelijke aspecten van het model richten zonder
geconfronteerd te worden met de technische problemen van het modelleren in FORTRAN.

Recentelijk is door AB-DLO een vertaler ontwikkeld die programma's geschreven in de simulatietaal
FST (Fortran Simulation Translator) kan vertalen naar complete FSE model routines. De FST taal is
afgeleidt van CSMP en biedt het voordeel van eenvoudigheid voor de beginnende modelleerder, en
de mogelijkheid tot het overgaan naar de meer flexibele FSE omgeving.

Summary

A FORTRAN 77 programming environment for continuous simulation of agro-ecological processes,
such as crop growth and calculation of water balances is presented. This system, called FSE
(FORTRAN Simulation Environment), consists of a main program, weather data and utilities for
performing specific tasks. The model equations have to be defined in one or more subroutines that
are called by the main program. Both simple and complex crop growth models can be written as
model subroutines, driven by FSE. The FSE environment is flexible, retrieves weather data from file,
enables easy input of parameters and initial states and has the capability to carry out reruns on
these parameter values. Facilities are provided for the output of simulation results in the form of
tables or graphs, and time control. The FSE program is highly portable to different computer
platforms.

The FSE program overcomes many programming problems that model developers face when
programming in FORTRAN. By using this environment, crop modellers can concentrate more on the
scientific aspects of modelling than on the technical ones.

Recently a translator program was developed at AB-DLO that is able to translate programs written
in the FST simulation language into FSE model routines. The FST language is derived from the
CSMP simulation language. FST provides easy programming of simulation models and at the same
time allows the user to easily switch to the more flexible FSE environment.

2

Acknowledgements

Many people are acknowledged for their contribution to the FSE program and this manual: Frits
Penning de Vries for creating the possibility to translate the CSMP MACROS programs into
FORTRAN. FSE and this manual is based heavily on this work. Gon van Laar for suggesting the
FSE name and making constructive comments, Martin Kropff for helpful suggestions, Peter Kooman
and Willem Stol for testing the FSE program and making suggestions for improvement, among
others.

 3

1 Introduction

This report presents version 2.1 of the FSE simulation environment for crop growth models in
FORTRAN. The version 2.1 is an improved version of FSE 1 which was documented in Van
Kraalingen (1991).

After discussing the principles of simulation in FORTRAN, a full working program is presented.
Much of this report is based on work done within the SARP project, notably the conversion of the
CSMP MACROS programs into FORTRAN (Van Kraalingen & Penning de Vries, 1990). It is
intended to meet the need expressed by crop modellers at AB-DLO/TPE-WAU to have this
approach further refined and documented, without special reference to the SARP simulation
models, but as a general documentation to the FSE simulation environment.

In this report, no specific crop models are discussed or described. The aim of this report is to
describe the FSE standard for crop simulation as used by AB-DLO/TPE-WAU. In Appendix I and on
the corresponding floppy disk, the SUCROS version as described by Goudriaan and Van Laar
(1994) is given as an example model programmed in FSE. This is by no means the standard
SUCROS version of AB-DLO or TPE-WAU.

In the past, crop simulation models often used CSMP as the simulation language. Some time ago,
however, many crop modellers have switched to FORTRAN. Several reasons have been the cause
of this development, largely because most of the scientific community uses FORTRAN and
therefore it is very difficult to exchange models written in CSMP. Furthermore, CSMP is no longer
available commercially. In fact, CSMP is kept 'alive' by the computer centre at Wageningen
Agricultural University. It is available on only a few computers and requires a considerable
programming effort for maintenance. In contrast, good FORTRAN compilers are widely available
and are easy to purchase. Consequently, crop models in FORTRAN can be exchanged more easily
and can be run on more computers with less maintenance effort. There are also technical reasons
for preferring FORTRAN to CSMP. One is that larger, more flexible and more sophisticated models
can be developed that can run on themselves providing more flexible output, or can be incorporated
into a larger structure, e.g. for parameter optimization, Geographical Information Systems (GIS),
Crop Management systems or Educational software.

A new development at AB-DLO and TPE-WAU is the development of the FST simulation language
(Van Kraalingen, Rappoldt & Van Laar, 1994). This language is based on CSMP but a new
translator has been developed that translates FST programs into FSE-FORTRAN. This provides
modellers the possibility to start writing their scientific problems in FST. When necessary they can
easily switch to FSE-FORTRAN and introduce more complexity if required. FST is also available on
request.

This report begins by describing some principles of simulation in FORTRAN and then goes on with
explaining the FSE simulation environment for crop growth models. This environment consists of a
main model that provides the control structure for reruns, weather data and timing, and a collection
of utilities that perform specific tasks such as parameter reading from files and model output. This
system of main model and utilities is called FSE (FORTRAN Simulation Environment). The
principles of simulation and the simulation environment itself will provide a sound basis for
modellers who are working in FORTRAN. It will save them of having to find out the correct
sequence of calculations, model structure, subprocess communication, etc..

4

This report contains Technical Documentation of how FSE works internally and how a crop modeller
should write his routines to make them compatible with FSE and it contains a Users Guide, which
describes how to operate a working FSE model.

Utility routines from the TTUTIL utility library will be used frequently in this report and in the FSE
program. For a full documentation of TTUTIL, including examples, see Rappoldt & Van Kraalingen
(1990). The same holds for the WEATHER system used within FSE (Kraalingen et al., 1991).

The FSE source program is distributed on floppy disk with the necessary libraries to compile, link
and run the program if you are working with Microsoft Fortran 5.1. (See Chapter 8 for what is
present on the floppy disk).

 5

Technical Documentation

6

 7

2 Technical principles of FSE

In this Chapter the technical principles adhered to in the FORTRAN Simulation Environment other
than the general structure of Euler simulation in FORTRAN will be discussed (this is further outlined
in Chapter 4). Pointwise the main FSE principles are:

• The scientific part of the model is separated from the non-scientific overhead

In general, the contents of any simulation model can be divided into the scientific process equations
(e.g. those for photosynthesis in crop growth) and the non-scientific part for tasks that are not model
specific, e.g. read statements, data outputting, check on weather data. In FSE, these tasks have
been separated rather rigidly so that model developers can concentrate as much as possible on the
scientific content of their model. This way, they are not bothered by solving 'scientifically irrelevant'
programming problems. The scientific contents (actual model) are programmed as a separate
subroutine that is linked with the so-called FSE-driver. This driver takes care of task sequencing
(e.g. initialization, rate and state calculation, output timing), retrieves and checks weather data from
file, controls the time update for dynamic simulation, and takes care of correct integration of various
scientific submodels that may be present (e.g. crop growth and water balance). To do so, the FSE
driver makes calls to the WEATHER system for weather data control, and to the utility library
TTUTIL. In addition, calls to TTUTIL may also be made in the scientific model subroutine for tasks
such as input data reading and output data writing. The general structure of the FSE system is
schematically depicted in Fig. 1, illustrating the separation between the scientific part (model) and
the non-scientific 'overhead' (FSE driver and utility routines).

FSE driver Model

Utility routines: TTUTIL, WEATHER

Figure 1 Simplified structure of FSE

• Complex functionality has been hidden in utility routines

Sometimes complex algorithms are used in the FSE program, for example, the set of routines that is
used to read parameter values from data files, the routines to generate output tables and graphs
and the TIMER2 routine. These routines have a clearly defined task that is easy to understand, but
their implementation in FORTRAN program can be very complex. For example, it is easy to
understand that with the following statement: CALL RDSREA ('WLVI', WLVI) you get the value
of the parameter WLVI from a data file. Rather complicated FORTRAN code underlies this
subroutine and the user of the simulation program should not be bothered by it when using FSE.
These routines are stored in a separate library, TTUTIL, the utility library of the Research Institute
for Agrobiology and Soil Fertility (AB-DLO) and the Department of Theoretical Production Ecology of
the Wageningen Agricultural University (TPE-WAU) (Rappoldt & Van Kraalingen, 1990).

8

• Straightforward program flow

It has been tried to make the program flow straightforward, by minimizing the number of GOTO
statements. In general, the liberal use of GOTO statements is considered a bad programming
practice, because the GOTO and the corresponding CONTINUE labels tend to be confusing. The
problem is actually caused by the CONTINUE statement, because it represents a label to which any
section of the program can jump to. In other words, with the statement GOTO 10, you will know
where the program resumes execution, but at the line 10 CONTINUE you can never be sure from
where in the program a jump is made to that particular CONTINUE statement.

• Calculations are done in the correct sequence

Care has been taken to ensure that a model programmed in FSE is structured such that the
different types of calculations, such as initialization, integration, rate calculation, time update and
output are all done in the right order. Experience learns that this is often not the case in FORTRAN
simulation models. Sometimes the rates and states in the model output do not pertain to the same
TIME, or rate and state calculations are not performed separately; as a result, rates may be derived
partly from state variables at the current time and partly from state variables one time step earlier.
The results produced by a simulation model correctly implemented in the FSE program differ by not
more than a rounding error from the results produced by the same model implemented in a
continuous simulation language such as CSMP.

• Standard FORTRAN 77 is used, and transfer to new FORTRAN language definitions is easy

The FSE program has been written entirely in FORTRAN 77. This language is well defined (better
than Pascal or C) and good compilers are available on many computers and operating systems.
The definition of the language is published in ANSI document X3.9-1978. There are many good
textbooks from which programming in FORTRAN 77 can be learned. Some of these have been
listed in the reference section. For a definition of the language see Ter Haar (1983) among others.

The portability of the program is greatly improved by adhering to the definition of standard
FORTRAN 77, and avoiding extensions that many compilers provide. To further improve portability
among compilers, we have deliberately not used certain features that are part of the standard of the
language (such as nested character operations) but that, in our experience, have sometimes been
wrongly implemented in compilers.

At the time of writing of this document, a new FORTRAN standard has been defined: Fortran-90. It
includes several features that were already defined in other languages or that were sometimes
provided as FORTRAN compiler extensions. For example, advanced control structures such as DO-
WHILE and volatile local variables in subroutines and functions. In the FSE program we have
anticipated on these improvements by following guidelines from Ter Haar (1983, see Listing 1) a
DO-WHILE control structure was emulated with IF-ENDIF statements, and by including a SAVE
statement in all the subroutines and functions to prevent disappearance of local variables upon
return to the calling program. The switch to Fortran-90 as a general programming language is,
however, only worthwhile when good compilers on several computers are widely available. Until
then, we will continue to use FORTRAN 77 as the language for the FSE program. If the DO-WHILE
construct becomes part of the language, the emulated DO-WHILE structure can easily be modified:

 9

Listing 1 The standard FORTRAN structure to emulate a DO-WHILE loop

 Emulated DO-WHILE

10 IF (logical expression) THEN
 ...
 ...
 GOTO 10
 END IF

 True DO-WHILE

 DO WHILE (logical expression)
 ...
 ...
 END DO

• Portability has been increased by not using large amounts of RAM memory

Large arrays are not used, because these increase RAM memory requirements. Although
programming is often much easier, and program execution much faster, when arrays are used to
solve specific problems, the use of arrays limits the number of computers on which the program can
be run and often also the size of the problem that can be handled. Disk memory is often much
larger than RAM memory, and therefore information is stored in temporary files whenever possible.

• The program is safeguarded against inaccurate floating point operations

The definition of standard FORTRAN 77 (like that of most programming languages) does not
specify the algorithms to be used for floating point calculations. Consequently, the results of floating
point operations can differ among compilers. The portability of a program in general is improved if
these problems are anticipated and solved.

This inaccuracy is important in the TIMER2 routine, which should trigger output whenever TIME has
increased by a multiple of PRDEL (PRDEL is the time between successive outputs). Due to floating
point inaccuracy, it is not correct simply to test if TIME is a multiple of PRDEL by using a MOD
function. This problem has been solved by using integer variables (see TIMER2 routine).

10

 11

3 Implementation of Euler integration in FSE:

Task Sequencing

This Chapter introduces the principles of Euler integration and the method adopted to couple
different subprocesses without transgressing the rules of Euler integration. We assume here a basic
knowledge of the state and rate variable approach as it is used in continuous simulation (see e.g. de
Wit & Goudriaan, 1978; Penning de Vries & Van Laar, 1982; Leffelaar, 1993).

Various integration methods can be used in the simulation of continuous systems, ranging from
simple rectangular integration (Euler) to higher order integration algorithms (trapezoidal, Runge-
Kutta, etc.), possibly with a variable time step. From the point of view of program structure, a
program that accommodates only Euler integration is less complicated and easier to understand
than one accommodating higher order methods of integration. Because simulation models of crop
growth in CSMP and FST often use Euler integration with a fixed time step of one day, and because
the program structure is less complicated, this integration method is adopted in the FSE program.

3.1 Order of execution

Fig. 2 shows the correct order in which calculations should be executed when Euler integration is
used:

Integration Driving variables

Rate calculations

Output

time = time+delt

Figure 2 The order in which calculations should be executed when simulating continuous systems using
Euler integration

Note that in this sequence, at the point where output is generated, state variables and rates of
change correspond to the time for which they were calculated. Evidence that this sequence of
calculations gives results in FORTRAN and CSMP that are identical, is shown for a simple
simulation of exponential growth in Listing 2 and Listing 3.

Listing 2 CSMP program of exponential growth and output (only the relevant output is reproduced)

<program>
INCON IH=1.

PARAMETER RGR=0.1

12

H = INTGRL (IH, GR)

GR = RGR*H

METHOD RECT

TIMER TIME=0.0, FINTIM=10., DELT=1.0, PRDEL=1.0

PRINT H, GR

END

STOP

ENDJOB

<output>
0TIMER VARIABLES RECT INTEGRATION START TIME = .00000

 DELT DELMIN FINTIM PRDEL OUTDEL DELT

 1.0000 1.00000E-06 10.000 1.000 .00000 1.0000

1 DEMONSTRATION

0 TIME H GR

 .000000 1.0000 .10000

 1.00000 1.1000 .11000

 2.00000 1.2100 .12100

 3.00000 1.3310 .13310

 4.00000 1.4641 .14641

 5.00000 1.6105 .16105

 6.00000 1.7716 .17716

 7.00000 1.9487 .19487

 8.00000 2.1436 .21436

 9.00000 2.3579 .23579

 10.0000 2.5937 .25937

1$$$ SIMULATION HALTED FOR FINISH CONDITION TIME 10.000

1$$$ CONTINUOUS SYSTEM MODELING PROGRAM III V2.0 EXECUTION OUTPUT

Listing 3 FORTRAN program of exponential growth and output

<program>
 PROGRAM DEMO

 IMPLICIT NONE

 REAL RGR,FINTIM,DELT,H,GR,TIME

 PARAMETER (RGR=0.1, FINTIM=10., DELT=1.0)

 H = 1.0

 GR = 0.0

 TIME = 0.0

 OPEN (20, FILE='RES.OUT', STATUS='NEW')

 WRITE (20,'(A9,2A13)') 'TIME','H','GR'

10 IF (TIME.LE.FINTIM) THEN

 H = H+GR*DELT <--integration
 <--driving variables (none)
 GR = RGR*H <--rate calculation
 WRITE (20,'(3G13.5)') TIME, H, GR <--output
 TIME = TIME+DELT <--time=time+delt
 GOTO 10

 13

 END IF

 STOP

 END

<output>
 TIME H GR

 .00000 1.0000 .10000

 1.0000 1.1000 .11000

 2.0000 1.2100 .12100

 3.0000 1.3310 .13310

 4.0000 1.4641 .14641

 5.0000 1.6105 .16105

 6.0000 1.7716 .17716

 7.0000 1.9487 .19487

 8.0000 2.1436 .21436

 9.0000 2.3579 .23579

 10.000 2.5937 .25937

To ensure that the results of the simulation are correct, the different types of calculations
(integration, driving variables and rate calculations) should be strictly separated. In other words, first
all states should be updated, then all driving variables should be calculated, after which all rates of
change should be calculated. If this rule is not applied rigorously, there is a risk that some rates will
pertain to states at the current time whereas others will pertain to states from the previous time step.

Since the calculations of rates and states cannot be mixed during a time step but should be
executed separately, all the state calculations have to be grouped into one block as do all the rate
calculations. Often, different subprocesses are interacting (e.g. a plant extracting water from the
soil). In many cases these interactions among subprocesses involve only a few state variables. The
water content at different depths in the soil is needed for the plant/soil system in the plant submodel.
This is then used to determine water uptake for transpiration in dependence of rooting depth. The
submodels for the plant and soil water thus exchange a limited amount of information, but they may
contain very detailed descriptions of plant growth and soil moisture redistribution with many different
rate and state calculations.

In view of this, it is not a good solution to combine all the state calculations from the different
subprocesses into one large section and all the rate calculations in another. But it is feasible to
separate the state and rate calculations within the subprocess descriptions (such as the plant) and
have a calling program (what will be called the FSE-driver hereafter) to decide which of the two (rate
or state section) to execute. With this method, the states can be calculated separately from the
rates, whereas rates and states pertaining to the same subprocess are within the same
subprogram. This technique is also discussed by Van Kraalingen and Rappoldt (1989). This
concept of 'task-controlled execution' is illustrated in Fig. 3. The program lines of the plant and soil
water subprocesses are separated into rate and state sections and only one of these is executed
during a single call. Note that this program structure performs the calculations in exactly the same
order as the circle given in Fig. 2.

So far, we have not discussed how to initialize the states, or where to enter the simulation circle and
where to leave it (see Fig. 2).

It is convenient to leave the circle somewhere between time update and integration, because there
the time and corresponding rates have been written to the output device and after the time update it

14

seems logical to check whether the finish time (FINTIM) has been exceeded or whether further
simulation is required. The most convenient way to initialize the subprocesses is to have this
operation controlled by the FSE driver. This makes reruns possible, because in the main program
the whole model can be reset to its initial state and be run again, with different weather data for
instance. After initialization, it is most convenient to proceed with "Driving variables" and "Rate
calculations" instead of entering the circle with "Integration". Entering the circle with "Driving
variables" has clear advantages because in that case the rate variables do not have to be set to
zero in the "Initialization" section to avoid that values from the last rate call are used in the first
integration of the next run. These refinements to Fig. 2, among others, are shown in Fig. 4.

Integration Driving variables

Rate calculations

Output

time = time+delt

Plant

State section

Rate section

Soil

State section

Rate section

User models:

Figure 3 General structure for incorporating several subprocesses illustrated for a plant and a soil routine
containing integration and rate calculation into a single simulation model

The question mark between "time = time+delt" and integration indicates the point at which it is
decided whether or not to execute another time step. If the decision is "no", (possibly because time
has reached the finish time or when another finish condition has been met) the model proceeds to
the terminal section; if it is "yes" the circle is run once again. After proceeding to the terminal
section, it must be decided whether a rerun is required. If the decision is "yes" the model has to be
re-initialized after which a new simulation run is started.

Often simulation has to be terminated because of crop ripeness or when some other criterion has
been met instead of a finish time that is exceeded. This test of finish conditions is positioned before
"Output" in the circle, because, sometimes output is not done each time that the circle is run and it is
convenient to have output from the last time that the circle was executed.

As shown in Fig. 3, the modularity of the subprocess descriptions is preserved by introducing the
concept of task-controlled execution. To enable reruns, the various subprocess descriptions have to

 15

be initialized externally, and sometimes terminal calculations (e.g. harvest index) have to be done.
Consequently, a subprocess description in the FSE program should recognize four different tasks:
initialization, integration, rate calculation and terminal calculation (driving variables are calculated in
the rate section).

?

Initialization

Terminal

Start

Rerun ?

End
Integration Driving variables

Rate calculations

Output

time = time+delt Test finish conditions

Figure 4 The order in which calculations are executed when simulating continuous systems using Euler
integration, illustrating where to enter and leave the circle and how reruns are implemented

In the next Chapter we will discuss how this theory of continuous simulation using Euler integration
has been implemented in FSE.

16

 17

4 Outline of FSE-driver and utility system

In this Chapter the principles of Fig. 3 and Fig. 4, discussed in the previous Chapter, are
implemented into a simplified FSE-driver and model routine. Specific aspects of the FSE-driver will
be explained such as parameter input from file, reruns and output of results. For a full definition of
the utility subroutines and functions, see Rappoldt & Van Kraalingen (1990), and for a full
description of the weather subprogram and its corresponding data files, see Van Kraalingen et al.
(1990).

By the end of this Chapter the reader should have a fair understanding of the FSE program (both
the driver and underlying models). More technical details on the use of subprograms in simulation
models can also be found in Van Kraalingen & Rappoldt (1989).

4.1 A simplified FSE driver

In Listing 4 a simplified FSE-driver is shown 'driving' the exponential growth program from Listing 3.
This is not yet the full version of the FSE-driver but this version illustrates several of the important
principles and features. These will be discussed below.

4.1.1 Loop control

After each time step it must be decided whether another time step is required or whether the
simulation should proceed to the terminal section. One of the criteria to stop the simulation is that
the finish time (FINTIM) has been exceeded. In crop growth simulation however, simulation is more
often terminated because the crop is mature or some other criterion has been met. In other words, it
should be possible to terminate the simulation loop from within each of the subprocesses. This is
most conveniently done with a global variable called TERMNL of type LOGICAL, that indicates
whether the loop should be terminated. The simulation loop should continue as long as TERMNL =
.FALSE. This criterion is programmed as an emulated DO-WHILE loop. This is shown in the
example program in Listing 4. Note that this program is conceptually similar to the program in
Listing 3. (The implementation of the rerun facility is not shown here.)

The task-controlled execution concept discussed in the previous Chapter is implemented using an
INTEGER variable ITASK that can have four different values, indicating the action required of the
subroutines: 1=initialization, 2=rate calculation, 3=integration and 4=terminal. Within the loop, rate
calculation and integration calls are done before and after the loop initial and terminal calls are
done.

4.1.2 Rate calculation after initialization

As discussed in the previous Chapter, an integration call after initialization requires all rates to have
been set at zero during initialization. With large models containing many rate variables this would
require a long list of assignments to zero. We consider this an inelegant solution that is also error-
prone (if the list is incomplete). A better solution is to perform rate calculations as the first step
directly after initialization. The states have been initialized in the initial section, so it is permissible to
compute rates of change from the states directly after initialization. In the dynamic section of the

18

FSE-driver therefore, an IF-ENDIF has been put around the integration section. The integration is
now done only if a rate calculation has been carried out previously. This is also shown in Listing 4.

4.1.3 Time control

The control of time in a simulation program is more complicated than simply the increase of TIME
with DELT and therefore it has been hidden in a subroutine called TIMER2, together with the control
of output, updating of other time variables such as day and year, and the setting of the TERMNL flag
when FINTIM is reached. Leap years are also recognized by this routine. Note that in FSE 1.0 a
slightly different subroutine (TIMER) was used for time control in the simulation, the difference
mainly being that with TIMER, TIME always begins at zero, while with TIMER2 it always begins at
the start time STTIME.

The output of the example program of Listing 4 shows how TIMER2 works on the time control
variables. For clarity, the output flag is ignored so that output is done at every time step to
demonstrate that the output flag is switched on and off.

Listing 4 Simplified FSE-driver 'driving' a model routine that performs output only

 PROGRAM SMALL

 IMPLICIT NONE

 LOGICAL TERMNL, OUTPUT

 INTEGER ITASK , IDOY, IYEAR

 REAL STTIME,DELT,PRDEL,FINTIM,TIME,DOY

* initialization of time variables

 ITASK = 1

 STTIME = 360.

 DELT = 1.0

 PRDEL = 5.0

 FINTIM = 372.

 IYEAR = 1984

* initialization of TIMER2 and MODEL subroutines

 CALL TIMER2 (ITASK, STTIME, DELT, PRDEL, FINTIM,

 & IYEAR, TIME , DOY , IDOY , TERMNL, OUTPUT)

 CALL MODEL (ITASK , DELT ,TIME, IYEAR, IDOY, DOY,

 & OUTPUT, TERMNL)

* run loop as long as TERMNL is .FALSE.

10 IF (.NOT.TERMNL) THEN

 IF (ITASK.EQ.2) THEN

* integration

 ITASK = 3

 CALL MODEL (ITASK , DELT ,TIME, IYEAR, IDOY, DOY,

 & OUTPUT, TERMNL)

 END IF

* driving variables (none)

* rate calculation and output

 19

 ITASK = 2

 CALL MODEL (ITASK , DELT ,TIME, IYEAR, IDOY, DOY,

 & OUTPUT, TERMNL)

* time update, update output flag, finish time reached ?

 CALL TIMER2 (ITASK, STTIME, DELT, PRDEL, FINTIM,

 & IYEAR, TIME , DOY , IDOY , TERMNL, OUTPUT)

 GOTO 10

 END IF

* terminal calculations

 ITASK = 4

 CALL MODEL (ITASK , DELT , TIME, IYEAR, IDOY, DOY,

 & OUTPUT, TERMNL)

 END

*---

 SUBROUTINE MODEL (ITASK , DELT ,TIME, IYEAR, IDOY, DOY,

 & OUTPUT, TERMNL)

 IMPLICIT NONE

* Formal parameters

 LOGICAL TERMNL, OUTPUT

 REAL DELT,TIME, DOY

 INTEGER ITASK, IYEAR, IDOY

* Local variables

 SAVE

 IF (ITASK.EQ.1) THEN

* initialization of states and parameters

 WRITE (*,'(T11,6A7,/)')

 & 'TIME','IYEAR','IDOY','DOY','OUTPUT','TERMNL'

 WRITE (*,'(A,F7.0,2I7,F7.0,2L7)')

 & ' Initial :',TIME,IYEAR, IDOY, DOY, OUTPUT, TERMNL

 ELSE IF (ITASK.EQ.2) THEN

* rate calculation, finish conditions and output

 WRITE (*,'(A,F7.0,2I7,F7.0,2L7)')

 & ' Rate :',TIME,IYEAR, IDOY, DOY, OUTPUT, TERMNL

 ELSE IF (ITASK.EQ.3) THEN

* integration

 WRITE (*,'(A,F7.0,2I7,F7.0,2L7)')

 & ' State :',TIME,IYEAR, IDOY, DOY, OUTPUT, TERMNL

 ELSE IF (ITASK.EQ.4) THEN

* terminal calculations

 WRITE (*,'(A,F7.0,2I7,F7.0,2L7)')

 & ' Terminal:',TIME,IYEAR, IDOY, DOY, OUTPUT, TERMNL

20

 END IF

 RETURN

 END

Listing 5 Output of the program from Listing 4

 TIME IYEAR IDOY DOY OUTPUT TERMNL

Initial : 360. 1984 360 360. T F

Rate : 360. 1984 360 360. T F

State : 361. 1984 361 361. F F

Rate : 361. 1984 361 361. F F

State : 362. 1984 362 362. F F

Rate : 362. 1984 362 362. F F

State : 363. 1984 363 363. F F

Rate : 363. 1984 363 363. F F

State : 364. 1984 364 364. F F

Rate : 364. 1984 364 364. F F

State : 365. 1984 365 365. T F

Rate : 365. 1984 365 365. T F

State : 366. 1984 366 366. F F

Rate : 366. 1984 366 366. F F

State : 367. 1985 1 1. F F

Rate : 367. 1985 1 1. F F

State : 368. 1985 2 2. F F

Rate : 368. 1985 2 2. F F

State : 369. 1985 3 3. F F

Rate : 369. 1985 3 3. F F

State : 370. 1985 4 4. T F

Rate : 370. 1985 4 4. T F

State : 371. 1985 5 5. F F

Rate : 371. 1985 5 5. F F

State : 372. 1985 6 6. T F

Rate : 372. 1985 6 6. T F

Terminal: 372. 1985 6 6. T T

4.2 Initialization of state variables and parameters from

external data files

Three of the four sections distinguished in the plant submodel (integration, rate calculation and
terminal) usually consist of relatively straightforward calculations. The initalization section, however,
requires a separate explanation.

As explained in Chapter 3, model parameters have to be given values and states have to be
initialized. As shown in Listing 3, this can be done by simple assignments such as RGR = 0.1. Any
change in the value of one of the parameters or initial states, however, would then require
compilation and linking of the model, a serious drawback compared with for instance CSMP and
FST. In CSMP the user can run the model with different parameter sets automatically (after the END

 21

statement) or after parameter valueshave been changed in the CONTRO.SYS file. To introduce that
option in the FSE program too, values of parameters and initial states are read from data files.

The values are extracted from the data files using a set of subroutines whose names all begin with
RD (e.g. RDSREA means 'read a single real value'). With these routines the user can request the
value from the datafile by supplying the name of the requested variable (of course after having
defined which data file is used). The statement:

CALL RDSREA ('WLVI', WLVI)

requests the subroutine RDSREA to extract the value of WLVI from the data file and assign it to the
variable WLVI. It does so by searching for the line: WLVI = <value> in the data file (in fact, the
procedure is slightly different but that does not affect the understanding of the concept of the RD
routines: the values are actually read from a temporary file which is created after syntax check and
analysis of the data file). Consequently, the data file consists of the names and values of variables.
An example datafile is given in Listing 6.

Listing 6 Example datafile. The syntax of data files is explained in more detail in Chapter 7

WLVI = 10.; PLMXP = 38.

PLMTT = 0.,0., 10.,1., 30.,1., 50.,0.

ILEAF = 218

Listing 7 shows part of the initialization section of a plant model reading the datafile from Listing 6.
An explanation is given below the listing.

Listing 7 Example illustrating the use of some RD routines

 ...

 IF (ITASK.EQ.1) THEN

 CALL RDINIT (IUNITD, IUNITL, FILEP)

 CALL RDSREA ('WLVI', WLVI)

 WLV = WLVI

 CALL RDSINT ('ILEAF', ILEAF)

 CALL RDAREA ('PLMTT', PLMTT, ILAR, IPLMTN)

 ...

 CLOSE (IUNITD)

 ELSE IF (ITASK.EQ.2) THEN

 ...

The statement:

CALL RDINIT (IUNITD, IUNITL, FILEP)

calls a subroutine that 1) opens the file with variable name FILEP using unit=IUNITD+1 (FILEP is
a character string that has been assigned the string PLANT.DAT in the calling program), 2) analyses
the data file, 3) creates a temporary file from the data file using unit=IUNITD, 4) closes the data file
(leaving IUNITD used for the temporary file !!), and 5) sends all error messages that have been
created to a log file (with unit=IUNITL).

22

After this RDINIT call, the plant subroutine can retrieve the numerical values (including arrays)
through several RD routines available in the library TTUTIL. These are given in Table 1. The CLOSE
statement simply closes the temporary file that is created by the RD routines.

Table 1 Available input routines in the TTUTIL library for parameter input

Subroutine name Meaning

RDINQR Test if variable is in datafile (LOGICAL result !)

RDSREA Read single real
RDSINT Read single integer
RDSCHA Read single character
RDSDOU Read single double precision real

RDAREA Read a not previously known number of reals
RDAINT Read a not previously known number of integers
RDACHA Read a not previously known number of characters
RDADOU Read a not previously known number of double precision reals

RDFREA Read a previously known number of reals
RDFINT Read a previously known number of integers
RDFCHA Read a previously known number of characters
RDFDOU Read a previously known number of double precision reals

N.B. For details, see the TTUTIL documentation (Rappoldt & Van Kraalingen, 1990).

4.3 Implementation of reruns

Often, several runs with a crop growth simulation model are required. Examples are the study of
crop yields for a number of years, or analysis of the effect of a different value of an input parameter.
In CSMP and FST this can be done by repeating the parameter that is to be changed after an END
statement. In Listing 8, weather data from 1984 are used in the first run; additional runs are made
using weather data from 1985 and 1986. This facility is called the rerun facility. The output of the
different runs is merged in the same output file, for easy comparison.

Listing 8 Example of the rerun facility in CSMP

TITLE DEMONSTRATION

PARAM YEAR=1984.

< model description etc. >

END

PARAM YEAR=1985.

END

PARAM YEAR=1986.

STOP

ENDJOB

We have included a similar rerun facility in the FSE system. By doing so, we prevent the user from
making changes in the data files and run the model again (but, without compiling and linking). Each

 23

new run would also have deleted existing output files. This would have been an inconvenient way to
do multiple runs.

The general idea behind the rerun facility in FSE is that the data files remain unchanged and that
the changes in the data are specified in a separate file e.g. RERUNS.DAT, which may contain the
names and values of variables from any of the 'standard' data files that are read by the program.
Thus, the file RERUNS.DAT may contain parameters from soil, plant and timer data files. In the first
run using FSE, the values from the standard data files will be used. In subsequent runs those
values are then automatically replaced by the values from the rerun file. Execution will continue until
all the combination sets from RERUNS.DAT have been used. The output of the different runs is
merged into one output file. An example rerun file is:

WLVI = 8.0; DSI = 0.18

WLVI = 6.8; DSI = 0.25

WLVI = 8.0; DSI = 0.25

This specifies three reruns with different values of WLVI and DSI. Unlike in CSMP and FST,
variables have to be repeated even if their value does not need to change (like with DSI). (This is
explained in more detail in Chapter 7.

It may be deduced from Fig. 4 that the control structure for the reruns should be programmed as a
loop around the actual model. In Listing 9 the principle of the reruns is illustrated, using the main
program of Listing 4 as a basis. To shorten the text, the contents of the main loop (IF... until END IF)
have not been repeated.

Listing 9 Program skeleton showing the implementation of reruns

 PROGRAM RERUN

 IMPLICIT NONE

 LOGICAL TERMNL,OUTPUT

 INTEGER I1,ITASK,INSETS,IYEAR,IDOY

 REAL STTIME,DELT,PRDEL,FINTIM,DOY,TIME

 CALL RDSETS (...,'RERUNS.DAT', INSETS)

 DO 5 I1=0,INSETS

 CALL RDFROM (I1, ...)

* initialization of time variables

 TERMNL = .FALSE.

 ITASK = 1

 STTIME = 10.0

 DELT = 1.0

 PRDEL = 5.0

 FINTIM = 100.

 IYEAR = 1984

 CALL TIMER2 (ITASK, STTIME, DELT, PRDEL, FINTIM,

 & IYEAR, TIME , DOY , IDOY , TERMNL, OUTPUT)

 CALL MODELS (ITASK, OUTPUT, TERMNL, TIME, DOY, DELT, ...)

* run loop as long as TERMNL is not .TRUE.

10 IF (.NOT.TERMNL) THEN

 < main loop contents not repeated here, see Listing 4 >

24

 GOTO 10

 END IF

 ITASK = 4

 CALL MODELS (ITASK, OUTPUT, TERMNL, TIME, DOY, DELT, ...)

5 CONTINUE

 STOP

 END

The call to RDSETS detects the possible presence of the RERUNS.DAT file and analyses this data
file if it exists. The return variable INSETS contains the number of rerun sets present in the rerun
file; its value is zero if the rerun file is absent or empty. The subsequent DO-loop runs INSETS+1
times, because there is always one more than the number of sets in the rerun file (one run with
standard data files + INSETS reruns). The value of the DO-loop counter (I1, the set number) is then
used in the call to RDFROM to select a parameter set for the simulation. For I1 is zero, the standard
data files will be used by the RD routines, for I1 larger than zero, the RD routines will automatically
replace values with values from the rerun file. No changes are necessary in the subprocess
descriptions, as these replacements are made internally in the RD routines. To the plant or the soil
water balance routines it appears as if the values that are returned by the RD call originate from the
standard data files !!! Therefore no changes are necessary in the calls to make reruns possible.

Before a rerun is started, a check is done to see if all the variables of the preceding set were used.
If this is not the case, it is assumed that there is a typing error in the reruns file and the simulation is
stopped.

4.4 Output of simulation results

As shown in Listing 4, output is organized from each subroutine separately. This avoids large
argument lists to communicate output variables to the main program and limits the number of
changes in the main program when, for instance, another plant model with different output variables
is used.

By using a set of special subroutines (the OUT routines), output from different models running under
the FSE-driver, can be written to the same output file in the form of tables. It is also possible to add
print plots of selected variables to that output file. The use of the OUT routines considerably
simplifies the generation of output files. The available routines are OUTDAT for output of single real
variables, OUTARR for one-dimensional arrays of real variables and OUTPLT for print plots of
selected variables. Note that OUTPLT can only be used for variables that have been 'dumped' with
either the OUTDAT or OUTARR routines. The basic operations are shown in Listing 10. In this
example, a table and a print plot of the function y = sin (x), y = cos (x), for x=0, π (with steps of
π/20) are created. Also, both values are stored in an array of two elements which is written to the
output table with a single OUTARR call.

Listing 10 Example program showing calling conventions of the OUT routines

Program
 PROGRAM SINE

 IMPLICIT NONE

 REAL PI,X,SINX,COSX,A(2)

 25

 INTEGER I1

 PARAMETER (PI=3.141597)

 CALL OUTDAT (1, 20, 'X', 0.) <- define X as independent variable,
 DO 10 I1=0,20 use unit=20 for output file
 X = REAL (I1)*PI/20.

 SINX = SIN (X)

 COSX = COS (X)

 A(1) = SIN (X)

 A(2) = COS (X)

 CALL OUTDAT (2, 0, 'X', X) <- store value of X
 CALL OUTDAT (2, 0, 'SINX', SINX) <- store value of SINX
 CALL OUTDAT (2, 0, 'COSX', COSX) <- store value of COSX
 CALL OUTARR (A, 'A', 1, 2) <- store array A from 1st to 2nd element
10 CONTINUE

 CALL OUTDAT (4, 0, 'sin + cos', 0.) <- create normal output table
 CALL OUTPLT (1, 'SINX') <- define SINX to be plotted
 CALL OUTPLT (1, 'A(2)') <- define A(2) to be plotted
 CALL OUTPLT (6, 'sin + cos') <- create printplot with title
 CALL OUTDAT (99, 0, ' ', 0.) <- delete temporary file
 STOP

 END

Output
 *--

 * Run no.: 1, (Table output)

 * sin + cos

 X SINX COSX A(1) A(2)

 .00000 .00000 1.0000 .00000 1.0000

 .15708 .15643 .98769 .15643 .98769

 .31416 .30902 .95106 .30902 .95106

 .47124 .45399 .89101 .45399 .89101

 .62832 .58779 .80902 .58779 .80902

 .78540 .70711 .70711 .70711 .70711

 .94248 .80902 .58778 .80902 .58778

 1.0996 .89101 .45399 .89101 .45399

 1.2566 .95106 .30902 .95106 .30902

 1.4137 .98769 .15643 .98769 .15643

 1.5708 1.0000 -0.21895E-05 1.0000 -0.21895E-05

 1.7279 .98769 -.15644 .98769 -.15644

 1.8850 .95106 -.30902 .95106 -.30902

 2.0420 .89101 -.45399 .89101 -.45399

 2.1991 .80902 -.58779 .80902 -.58779

 2.3562 .70710 -.70711 .70710 -.70711

 2.5133 .58778 -.80902 .58778 -.80902

 2.6704 .45399 -.89101 .45399 -.89101

 2.8274 .30901 -.95106 .30901 -.95106

 2.9845 .15643 -.98769 .15643 -.98769

 3.1416 -0.43790E-05 -1.0000 -0.43790E-05 -1.0000

26

 sin + cos

 Variable Marker Minimum value Maximum value

 -------- ------ ------------- -------------

 SINX 1 -0.4379E-05 1.000

 A(2) 2 -1.000 1.000

 Scaling: Individual

 X

 .00000 1---2

 .15708 I 1 I I I 2

 .31416 I I 1 I I 2 I

 .47124 I I 1 I I 2 I

 .62832 I I I 1 I 2 I

 .78540 I I I 1 I 2 I

 .94248 I I I I 21 I

 1.0996 I I I 2I 1 I

 1.2566 I I I 2 I 1 I

 1.4137 I I I 2 I 1I

 1.5708 I-------------------------------2-------------------------------1

 1.7279 I I 2 I I 1I

 1.8850 I I 2 I I 1 I

 2.0420 I I2 I I 1 I

 2.1991 I 2 I I I 1 I

 2.3562 I 2 I I 1 I I

 2.5133 I 2 I I 1 I I

 2.6704 I 2 I 1 I I I

 2.8274 I 2 I 1 I I I

 2.9845 2 1 I I I I

 3.1416 *---I

The OUTDAT and OUTPLT routines also have a task parameter as input (the first argument in the call
statement), similar to the subprocess descriptions. The first call (with ITASK=1) to OUTDAT specifies
that X will be the independent variable and that unit=20 can be used for the output file. Subsequent
calls with ITASK=2 instruct the subroutine OUTDAT to store the incoming names and numerical
values in a temporary file (with unit=21). The number of name-value combinations that can be
stored depends solely on free disk space and not on RAM memory. The first call to OUTDAT below
the DO-loop (with ITASK=4) instructs the routine to create an output table using the data values
stored in the temporary file. Different output formats may be chosen, dependent on the value of the
task variable. Tab-delimited format (e.g. for spreadsheet programs such as EXCEL) can be
generated with ITASK=5, two-column format (for TTPLOT) with ITASK=6. With any of these
ITASK values, the string between quotes is written above the output.

The OUTARR routine (see Listing 10) is actually an 'interface' routine to OUTDAT. The routine
internally generates names (like A(1) and A(2)) and calls OUTDAT repeatedly for each of these
name-value combinations. The range of subscripts that should be generated by OUTARR is specified
by the third and the fourth (last) subroutine arguments.

The first and second calls to OUTPLT define that SINX and A(2) should be plotted (up to 25
variables can be plotted per graph). The third call to OUTPLT (ITASK=6) instructs the routine to
create a graph using the variable(s) that were defined with ITASK=1. Two different options for the
width of the plot are available, 80 and 132 columns, and two different scalings, a common scale for

 27

all variables or individual scaling for each of the variables (see Table 2). This procedure can be
repeated several times. Separate print plots can be made of dry weights, weather data etc.

Table 2 Task variable options that should be supplied
to OUTPLT to generate the different print plot
types

Scaling Width

 132 80

Individual 4 6
Common 5 7

4.5 Weather data

The weather data used in FSE are read from external files. The weather data file definition,
however, is different from those for the RD routines. The weather data system used (called
WEATHER), has been developed jointly by AB-DLO and TPE-WAU. It is especially suited for use in
crop growth simulation models and has been documented in a separate report that can be obtained
from the same sources as this documentation (Van Kraalingen et al., 1991). It is an easy system to
understand and it will outlined briefly using some introductory paragraphs from Van Kraalingen et al.
(1991). A list of weather data from all around the world that are currently available on request is
given in Stol (1994).

The weather data system basically consists of two parts: the weather data files and a reading
program to retrieve data from those files. A single data file can contain, at the most, the daily
weather data from one meteorological station for one particular year. The country name
(abbreviated), station number and year to which the data refer are reflected in the name of the data
file. An example weather data file can be found in Appendix I.

The reading program consists of a set of subroutines and functions, only two of which are intended
to be called by the user (Listing 11, STINFO and WEATHR). The others are internal to the reading
program.

A call to the first subroutine (STINFO) defines the country (CNTR), station code (ISTN), year number
(IYEAR) and the name of the directory containing the weather data (WTRDIR). A control parameter
(IFLAG) should also be supplied to indicate where possible messages of the system should be
directed to (screen and/or log file), in addition a name must be given to the log file if that name
should differ from the default name WEATHER.LOG. The subroutine STINFO returns the location
parameters (longitude, LONG, latitude, LAT and altitude, ELEV) of the selected meteorological
station, and two coefficients of the Ångström formula (ANGA and ANGB) pertaining to the selected
station, the latter only if the irradiation data are derived from sunshine hours. The value of a status
variable (ISTAT) indicates a possible error or warning (e.g. the requested data file does not exist).
The location parameters can later be used to calculate e.g. daylength (from latitude) or average air
pressure (from altitude).

After this initialization, weather data for specific days can be obtained by calls to the second
subroutine (WEATHR) with day numbers starting from January 1st as 1, as input parameter. The
output of WEATHR consists of six weather variables for that day and the value of the status variable
ISTAT indicating a possible error or warning (e.g. missing data, data obtained by interpolation,

28

requested day is out of range, etc.). The six weather variables are daily shortwave irradiation (RDD),
minimum and maximum air temperature (TMMN and TMMX), vapour pressure (VP), wind speed (WN)
and rainfall (RAIN). In Listing 11, the weather data for 1985 from the meteorological station in
Wageningen are extracted from the file NL1.985.

Listing 11 Example of use of the weather data system

 PROGRAM EXTR

 IMPLICIT NONE

 INTEGER IFLAG, ISTN, IYEAR, ISTAT, IDOY

 REAL LONG,LAT,ELEV,A,B,RDD,TMMN,TMMX,VP,WN,RAIN

 CHARACTER WTRDIR*80, CNTR*6

 IFLAG = 1101 <- errors to screen and log file, warnings to log file
 WTRDIR = ' ' <- weather files stored on current directory
 CNTR = 'NLD' <- country code of The Netherlands
 ISTN = 1 <- station number of met station in Wageningen
 IYEAR = 1985 <- year number

 CALL STINFO (IFLAG, WTRDIR, ' ', CNTR, ISTN, IYEAR,

 & ISTAT, LONG , LAT, ELEV, A, B)

 < location parameters of station are now available to the program >

 DO 10 IDOY=1,365

 CALL WEATHR (IDOY, ISTAT, RDD, TMMN, TMMX, VP, WN, RAIN)

 < weather for day= IDOY is known, calculations can be done >
10 CONTINUE

 STOP

 END

Subroutine STINFO can be called again at any time during program execution to change any of its
input parameters. A call to subroutine STINFO with identical input parameters is also permitted (in
fact this is done regularly in the FSE-driver). Similarly, subroutine WEATHR can be called repeatedly
with any day number between 1 and 365 (or 366 in the case of a leap year and the data file indeed
contains 366 records).

 29

5 Simulation models under the FSE-driver

5.1 Communication between FSE-driver and user's

model(s)

Chapter 4 dealt with a simplified FSE-driver and descriptions of some of the utility routines that the
FSE-driver and submodels can use. Part of that Chapter was written to increase the understanding
of how the FSE-driver works. A modeller, however, does not need to know the FORTRAN details of
what is going on in the FSE-driver. He or she normally should only be bothered with how the FSE-
driver drives one or more models. This Chapter therefore describes the information that is passed
from the FSE-driver to the model and vice versa. Unlike the strongly simplified FSE driver of
Chapter 4 we will discuss here the communication between the full FSE-driver and the model.

The procedure with the older FSE 1.0 version to drive a specific model, was to include CALL
statements in four different places in the FSE 1.0 driver. Experience has learnt however, that this
method was error-prone. In FSE 2.1 this has been changed. The FSE 2.1 driver now calls a
MODELS interface routine and transfers relevant 'environment' variables (such as TIME, OUTPUT
etc.) to this routine. The user now has to include only one CALL statement to his specific model in
this MODELS routine instead of four times in the FSE 1.0 driver itself. This greatly simplifies
coupling of different models to each other. This principle is shown in Fig. 5 in a somewhat more
elaborated scheme as in Fig. 1:

FSE driver MODELS
subroutine

WEATHER and TTUTIL library

e.g. above ground
model

e.g. below
ground model

MAIN

File: CONTROL.DAT Timer file

Weather data file

Figure 5 Schematic layout of the components of the FSE system

30

All execution starts with the MAIN program, this is, however, a one-line program with nothing more
than a single call to the FSE-driver. The FSE-driver takes care of the following actions:

• reading of input and output file names from input file CONTROL.DAT
• reading of start and end rerun numbers from input file CONTROL.DAT
• running a loop across each rerun if a reruns file was found, the name of the reruns file is

specified in input file CONTROL.DAT
• reading of time control, output control and weather control variables from the timer file, the

name of the timer file is specified in input file CONTROL.DAT
• initialization of all models (through MODELS call with ITASK=1)
• running the dynamic simulation of all models while providing updated time variables (year, day

etc.) and weather variables (through MODELS call with ITASK=2 in case of rate calculation,
ITASK=3 in case of integration)

• termination of all models (through MODELS call ITASK=4), either when FINTIM is reached or
when a model termination condition is fulfulled

• creation of output tables in the right format in an output file, the name of the output file is
specified in input file CONTROL.DAT

The contents of the standard MODELS routine is given in Listing 12. The dummy arguments of this
subroutine summarize the communication between the user's model and the FSE-driver. In Table 3
the dummy arguments of Listing 12 are explained.

Listing 12 Contents of the MODELS routine

 SUBROUTINE MODELS (ITASK , IUNITD, IUNITO, IUNITL,

 & FILEIT, FILEI1, FILEI2, FILEI3, FILEI4, FILEI5,

 & OUTPUT, TERMNL,

 & DOY , IDOY , YEAR , IYEAR, <- dummy arguments
 & TIME , STTIME, FINTIM, DELT , (explained in Table 3)
 & LAT , LONG , ELEV , WSTAT, WTRTER,

 & RDD , TMMN , TMMX , VP , WN, RAIN)

 IMPLICIT NONE

* Formal parameters

 INTEGER ITASK, IUNITD, IUNITO, IUNITL, IDOY, IYEAR

 CHARACTER FILEIT*(*), FILEI1*(*), FILEI2*(*)

 CHARACTER FILEI3*(*), FILEI4*(*), FILEI5*(*)

 LOGICAL OUTPUT, TERMNL, WTRTER

 CHARACTER WSTAT*6

 REAL DOY,YEAR,TIME,STTIME,FINTIM,DELT

 REAL LAT,LONG,ELEV,RDD,TMMN,TMMX,VP,WN,RAIN

* Local variables

* <none>

 SAVE

 CALL MODEL (ITASK , IUNITD, IUNITO, IUNITL, <- here calls can be put to the specific
 & FILEIN, (user-made) simulation models, e.g.
 & OUTPUT, TERMNL, of crop growth or soil water balance.
 & DOY , IDOY , YEAR , IYEAR,

 & TIME , STTIME, FINTIM, DELT ,

 & LAT , LONG , ELEV , WSTAT, WTRTER,

 31

 & RDD , TMMN , TMMX , VP , WN, RAIN)

 RETURN

 END

Table 3 Meaning of the variables that are communicated between the FSE-driver and the MODELS
subroutine

Variable Type Meaning Unit Input or
Output

ITASK I4 Task that subroutine should perform (1 = initialization, 2
= rate calculation, output and finish conditions, 3 =
integration, 4 = model termination)

- I

IUNITD I4 Unit number that can be used for reading of input files
through call to RDINIT routine of TTUTIL

- I

IUNITO I4 Unit number used for output file - I
IUNITL I4 Unit number used for log file - I
FILEIT C* Name of timer file (name originates from

CONTROL.DAT)
- I

FILEI1 C* Name of input file no. 1 (if present in CONTROL.DAT) - I
FILEI2 C* Name of input file no. 2 (if present in CONTROL.DAT) - I
FILEI3 C* Name of input file no. 3 (if present in CONTROL.DAT) - I
FILEI4 C* Name of input file no. 4 (if present in CONTROL.DAT) - I
FILEI5 C* Name of input file no. 5 (if present in CONTROL.DAT) - I
OUTPUT L4 Flag to indicate if output should be done (either .TRUE.

or .FALSE), should not be set by user's model(s)
- I

TERMNL L4 Flag to indicate if simulation should stop (either .TRUE.
or .FALSE), can be set by user's model(s)

- I/O

DOY R4 Day number within year of simulation (REAL) d I
IDOY I4 Day number within year of simulation (INTEGER) d I
YEAR R4 Year of simulation (REAL) y I
IYEAR I4 Year of simulation (INTEGER) y I
TIME R4 Time of simulation d I
STTIME R4 Start time of simulation d I
FINTIM R4 Finish time of simulation d I
DELT R4 Time step of integration d I
LAT R4 Latitude of site dec.degr. I
LONG R4 Longitude of site dec.degr. I
ELEV R4 Elevation of site m I
WSTAT C6 Status code from weather system, six digit string

variable, each digit corresponds with weather variable
- I

WTRTER L4 Flag whether weather can be used by model, is used
by the FSE-driver to determine whether a model
terminated itself because of missing weather

- O

RDD R4 Daily global shortwave radiation J/m2/d I
TMMN R4 Daily minimum temperature degrees °C I
TMMX R4 Daily maximum temperature degrees °C I
VP R4 Early morning vapour pressure kPa I
WN R4 Average wind speed m/s I
RAIN R4 Daily amount of rainfall mm/d I

32

Most of the variables are relevant at specific tasks only. For instance, names of the input files are
only relevant at initialization. See Listing 14 and Appendix I for examples of this communication.

5.2 Use of input files by the FSE-driver

The FSE-driver needs three inputfiles. The most essential file is CONTROL.DAT. This file contains
the names of the remaining input files for the FSE-driver (the timer file and the reruns file,see
Appendix I for examples). This file also contains names of input files for the user's model(s) and the
names of the output files. These names however are passed only to the MODELS routine. From the
weather control variables of the timer file, the weather system determines which weather data file is
required.

5.3 Program skeleton of empty FSE model

It will have become clear from the previous Chapters, that if a new subprocess is implemented
within the FSE program, the new subroutine should distinguish the four different tasks. Listing 13
shows an empty subroutine that can be used as a starting point for a new subprocess description.
This routine is the one that is called from the MODELS routine in Listing 12. Listing 13 is available
on the floppy as the file SKELETON.FOR. The call to the new subroutine should be inserted in the
MODELS subroutine once.

Listing 13 Empty subroutine that can be used to write a new model

 SUBROUTINE MODEL (ITASK , IUNITD, IUNITO, IUNITL,

 & FILEIN,

 & OUTPUT, TERMNL,

 & DOY , IDOY , YEAR , IYEAR,

 & TIME , STTIME, FINTIM, DELT ,

 & LAT , LONG , ELEV , WSTAT,

 & WTRTER, RDD , TMMN , TMMX ,

 & VP , WN , RAIN)

<- Standard input and output
variables. The name FILEIN is
used here instead of FILEI1,
because there is only "the"
input file.

* Title of the program

* <fill in your title here>

<- Write the program's title here
as comment

 IMPLICIT NONE <- Use this to avoid errors
* Formal parameters

 INTEGER ITASK , IUNITD, IUNITO, IUNITL

 INTEGER IDOY, IYEAR

 LOGICAL OUTPUT, TERMNL, WTRTER

 CHARACTER*(*) FILEIN, WSTAT

 REAL DOY, YEAR, TIME, STTIME, FINTIM, DELT

 REAL LAT, LONG, ELEV

 REAL RDD, TMMN, TMMX, VP, WN, RAIN

<- Declaration of every variable
in call definition

 33

* Standard local declarations

 INTEGER IWVAR

 CHARACTER WUSED*6

 REAL INTGRL

* State variables, initial values and rates

* Model parameters

* Auxiliary variables

* LINT functions

* Declarations and values of constants

<- Fill in model variable names
here

<- Declare arrays here for

interpolation with e.g. LINT.
Also declare actual and
maximum length of arrays
here.

* Used functions

<- Write here declarations of
functions such as LINT,
INTGRL etc.

 SAVE <- Avoid disappearance of
variable values

* Code for the use of RDD, TMMN, TMMX, VP, WN, RAIN

* (in that order) a letter 'U' indicates that the

* variable is Used in calculations

 DATA WUSED/'------'/

<- Definition of which weather
variables are required by this
model, in this example none

* Check weather data availability

 IF (ITASK.EQ.1.OR.ITASK.EQ.2.OR.ITASK.EQ.4) THEN

 DO 10 IWVAR=1,6

* is there an error in the IWVAR-th weather

* variable ?

 IF (WUSED(IWVAR:IWVAR).EQ.'U' .AND.

 & WSTAT(IWVAR:IWVAR).EQ.'4') THEN

 WTRTER = .TRUE.

 TERMNL = .TRUE.

 RETURN

 END IF

10 CONTINUE

 END IF

<- The weather status code
supplied by the FSE-driver is
compared with the weather
data this model requires. To
achieve this, positions 1 to 6 in
WUSED string are compared
with positions 1-6 in WSTAT
string. These six positions
correspond with the six
weather variables. If in
WSTAT a particular position
equals '4', then this weather
variable is missing. If that
position equals 'U' in WUSED,
than this weather variable is
essential for this model and
the run should terminate.

 IF (ITASK.EQ.1) THEN

* Initial

* =======

<- Begin of initialization section

* Open input file

 CALL RDINIT (IUNITD, IUNITL, FILEIN)

<- Open the input data file. Use
FSE-supplied units and
filename.

34

* Read initial states <- Reading of initial state
variables can be done with:

 CALL RDSREA ('state',state),
e.g.:

 CALL RDSREA ('WLVI',WLVI)
* Read model parameters <- Idem model parameters

* Read LINT functions <- Reading of AFGEN functions

can be done with RDAREA
calls

 CLOSE (IUNITD) <- Close datafile

* Initial calculations <- Calculation of variables that
have to be carried out only
one

* Initially known variables to output <- Write variables to output file
that do not change during
simulation, use subroutine
OUTDAT

* Send title(s) to OUTCOM <- You can send titles to the
output file by: CALL OUTCOM
('title')

* Initialize state variables <- Assign state variables their
initial value. E.g. WLV = WLVI
(weight of leaves equals initial
leaf weight)

 ELSE IF (ITASK.EQ.2) THEN

* Rates of change

* ===============

<- Begin of rate section

<- Write here the rate and driving

variable equations, make sure
that the order of calculations is
correct.

* Finish conditions

* IF (DVS.GT.2.) TERMNL = .TRUE.

<- Add finish conditions here
such as the one shown here
as a comment line.

* Output section

 IF (OUTPUT) THEN

* CALL OUTDAT (2, 0, 'variable',variable)

 END IF

<- Send output variables to
subroutine OUTDAT, use the
call that is shown here as a
comment line.

 ELSE IF (ITASK.EQ.3) THEN

* Integration

* ===========

* state_var = INTGRL (state_var,rate_var,DELT)

<- Beginning of integration
section.

<- Use INTGRL function calls as

shown here as a comment
line.

 ELSE IF (ITASK.EQ.4) THEN

* Terminal

* ========

<- Begin of terminal section

* Terminal calculations <- Carry out terminal calculations
such as harvest index etc.

 35

* Terminal output

 CONTINUE

 END IF

<- Send terminal calculations to
output, use subroutine
OUTDAT calls as shown
above

 RETURN

 END

5.4 Adaption of an empty FSE model or existing FSE

model

In this section possible modifications will be discussed to a FSE skeleton routine or an existing FSE
routine. Changes in model behaviour caused by changes in one of the datafiles are discussed in
Chapter 7.

You are strongly advised not to make changes in the subroutine structure and FSE-driver unless
you are well acquainted with the theory underlying that structure. Changes will more often be made
in the description of the plant or soil subprocesses. In general, you have to be more careful
changing a FORTRAN program than one in CSMP or FST. If you understand the principles of the
program, however, it is not difficult to implement modifications correctly and FORTRAN provides a
much greater flexibility. A list of possible modifications will be discussed here. We assume that you
know the syntax rules of FORTRAN.

5.4.1 Adaptation of subprocess calculations

• Begin by defining or modifying the integration section;
• initialize the state variables in the initial section;
• define the driving variables and the rate variables in the rate section;
• define the parameters in the initial section;
• check thoroughly that each of the rates that is used in the integral section appears to the left of

an '=' sign in the rate section;
• check thoroughly from the top to the bottom that the sequence of the rate assignments in the

rate section is correct. Each variable appearing to the right of an '=' sign must have been
defined earlier in the subroutine (either in the rate section or in the initial section), or defined
through the formal parameters of the subroutine.

If new variables are local to the subroutine, determine the exact position in the program where each
variable should be assigned a value. Parameters and initial values of states are likely to be given
their values in the initialization section, using one of the RD routines (see Chapter 4). These
routines can extract the values of variables by their name from a data file. Different RD routines can
be used depending on the data type of the variable (see Table 1). The routines RDSREA, RDSINT,
and RDAREA, enable single reals, single integers and arrays of reals to be read. Driving variables
should be assigned a value at the top of the rate section, rates should be defined in the proper order
in the rate section. States should be integrated in the integration section.

It is especially important that rate calculations appear in the correct order. So any variable that
appears to the right of the '=' sign of the modification you are making, and that is assigned a value in
the rate section, should have been assigned a value above the line of the modification, i.e.:

36

Wrong
 ...

ELSE IF (ITASK.EQ.2) THEN

 ...

 A = B*...

 B = ...

ELSE IF (ITASK.EQ.3) THEN

 ...

Correct
 ...

ELSE IF (ITASK.EQ.2) THEN

 ...

 B = ...

 A = B*...

ELSE IF (ITASK.EQ.3) THEN

 ...

If variables are to be communicated among subprocesses, include them in the list of formal
parameters too.

5.4.2 Adaptation of variables for output

In general the output list should appear at the end of the ITASK=2 section. Output however, should
only be generated if the output flag (OUTPUT) is on. Rates, states, and driving variables should be
output here. A variable can be added to the output list by simply adding another call to OUTDAT (or
OUTARR, if you want to output an array) in the output list, between the IF-END-IF lines. The names
of variables in the output file will be in the same order as in the output list.

To obtain values of rate and state variables at every PRDEL and to have both pertain to the same
time, it is essential thatthe location where output is generated is not changed.

5.4.3 Adaptation of finish conditions

Each subprocess can terminate the run by setting logical variable TERMNL to .TRUE.. However, in
each subprocess description there is only one place where this can be done in such a way that
corresponding states, driving variables, and rates are all output to file. This place is at the end of the
ITASK=2 section, as shown in Listing 4. Any additional finish condition should be added there,
similar to the existing ones.

5.4.4 Adaptation of output titles

As shown in the listings of the modules, in the initial section the subroutine, OUTCOM is called that
accepts a text string. This string is handled as a title by the output routines. Several subprocesses
can send their title to the output routines and these titles are printed above each output table. There
is no objection to several titles from a subprocess. The call to OUTCOM can be repeated several
times with different text strings. A total of 25 titles can be handled by the output routines (identical
ones are discarded).

5.4.5 Adaptation of print plotted variables

In the terminal sections of the subprocesses, calls to subroutine OUTPLT can be given. The calls
with a '1' as the first argument define the list of variables to be print plotted. The call to OUTPLT with
'4', '5', '6', or '7' as the first argument, actually creates the print plot for the selected variables. This
has been described in more detail in Chapter 4.4. Variables can simply be modified or added in this
section. Up to 25 variables can be print plotted in the same graph. More than one print plot can be
made immediately after the first print plot by specifying a new set of variables to be plotted (with

 37

ITASK=1 calls). Variables that have been written through OUTARR can be print plotted with the
names under which they appear in the output table (e.g. RDF(1), RDF(2)). Print plots appear
above output tables in the output file.

5.4.6 Adaptation of check on weather variables

The FSE 2.1 driver supplies to the model a single character string (WSTAT*6) from which each
element represents the status code for a weather variable. Which weather variable must be
available and which not is coded within the model subroutine with the WUSED character variable.
Each position (1-6) corresponds with one of the six weather variables (irradiation (1), minimum
temperature (2), maximum temperature (3), windspeed (4), vapour pressure (5) and rainfall (6)). A
'U' on a particular location means that the corresponding variable is Used and therefore may not be
missing, a '-' allows that variable to be missing.

5.4.7 Adaptation of input file naming

The user can have the FSE driver provide the name(s) of the data file(s) to be used by the model(s)
in the RDINIT calls. The names of five different data files are passed to the MODELS routine by the
FSE driver through the character variables FILEI1, FILEI2, FILEI3, FILEI4 and FILEI5. These
variables are read from the CONTROL.DAT file. It is however not essential to use the FILEI*
variables. A data file names between quotes is also valid, it disables reruns on input file names
however.

38

 39

6 Main differences between FSE 1.0 and FSE

2.1

6.1 Improvements

• Reruns continue when errors have occurred in a particular run.
• Check on availability of weather data is now carried out in the user routine instead of in the

driver program.
• All datafiles are now opened using one unit number, supplied by the driver.
• Output is now dependent only on the OUTPUT flag (in FSE 1.0, output was also dependent on

the TERMNL flag).
• A real variable representing the year of simulation is available (YEAR), next to an integer

variable (IYEAR).
• A file is opened to which routines can write logging information.
• Calls to user subroutines now don't have to be done from within the driver. A special subroutine

(MODELS) is supplied from where this can be done.
• Initial and terminal output is possible.
• Names of weather variables have now been standardized.
• After reading a datafile with the RD routines, the CLOSE statement does not have to have a

DELETE keyword. Leaving out the DELETE speeds up reruns because datafiles that have
been parsed in the default run are not parsed again in reruns.

• Several output control variables have been added.
• Start and end run number of a series of runs can now be defined in the CONTROL.DAT file.

For example one can omit the default run if required.
• All file names for input and output are now read from a control file (CONTROL.DAT). This

increases flexibility.
• Input data can now be organized in tables.
• Variable names of input files can now be 31 characters long.

6.2 Changes

• A new timer subroutine with a different functionality is used (TIMER2). As a consequence of
this, the variable DAYB is renamed to STTIME (STart TIME). The variable TIME itself now
doesn't start at zero anymore but at STTIME. The following replacements have to be made in
any model subroutine that is converted from FSE 1.0 to FSE 2.1:
occurrence: must be replaced by:
DAYB -> STTIME
TIME -> TIME-STTIME
FINTIM -> FINTIM+STTIME

• Finish conditions now have to be put at the end of the rate sections.
• The variable DOY is no longer sent to OUTDAT by the FSE-driver.

40

 41

User Guide

42

 43

7 How to operate FSE and its data files

This Chapter describes how to operate a ready to use model and explains the syntax of the
corresponding data files. Chapter 5 explained how to modify the source code of the program. We
assume here that you have successfully compiled and linked the FSE program and that you know
how to start the execution of the model and are able to use an editor to create and modify data files.

As illustration, a complete FSE model, SUCROS , is given in Appendix I together with a listing of all
input files.

7.1 Modification of data files

Most of the parameters and initial values of the state variables of the various subprocesses are read
from data files. This has the advantage that the model does not have to be recompiled and linked if
changes are applied only to data .

The data files that are needed to run the standard version of FSE are shown in Table 4.

Table 4 Data files necessary for using FSE

Name Read by Contents

CONTROL.DAT FSE-driver (RDINIT) Names of input and output files to be used.
TIMER.DAT FSE-driver (RDINIT) Time variables (year, time step, etc.),

weather station, country, output control
variables.

PLANT.DAT MODEL (RDINIT) Plant parameters and initial values of state
variables.

Weather data files FSE-driver (STINFO, WEATHR) Daily weather data.
RERUNS.DAT (optional) FSE-driver (RDSETS) Defines reruns: either TIMER and plant

parameters or name(s) of plant and timer
data file.

Note: When models other than the ones supplied on the floppy disk are used with the FSE program it is
possible that more data files are used with different names; see Paragraph 7.2.

The data files CONTROL.DAT, TIMER.DAT and PLANT.DAT have identical formats, and each
variable in them may appear only once. The file RERUNS.DAT has basically the same syntax,
except that it should consist of sets of identical variable names. Each such a set defines a rerun.

Syntax rules of CONTROL.DAT, TIMER.DAT and PLANT.DAT files:

• the file consists of variable names and one or more integer, real, double precision or string

values, separated by an '=' sign. So: PLMX = 20., is a valid specification, as is:
WTRDIR = 'NLD';

• the name of a variable cannot exceed 31 characters;
• for array variables, more than one value may follow the equal sign, separated by commas or

spaces;
• identical numerical array values may be given as n*<numerical value>;

44

• variables may appear in the file in any order as long as this name is unique;
• comment lines start with '*' in the first column, or '!' in any column (the rest of the line is

ignored);
• continuation character is ',' on preceding line, applies to arrays only;
• names of variables and numerical values can be given on the same line if separated by a

single semicolon ';';
• Only the first 80 characters of each line on the data file are read;
• Supported data types are REAL, INTEGER and CHARACTER;
• Arrays may be organised in tables;
• No tabs or other control and extended ASCII characters are allowed in the file.

The syntax rules are illustrated in Listing 14.

Listing 14 Example data file

* example data file

A = 10. ! single real value

B = 0., 2., 3., 4. ! array of four real values

C = 10., 20., ! array continued on next line

 30., 40.

D = 100*10. ! array of 100 real values

E = 10.; F = 20.; G = 30. ! more than one parameter on single line

H = 'PIET' ! string value

I = 5*'KLAAS' ! array of string values

VOLGN OBS CALC REM ! table

 1 10.4 10.1 'prachtig'

 2 7.8 8. 'te hoog'

 3 2.3 2.4 'ook mooi'

7.2 The CONTROL.DAT file

The CONTROL.DAT file contains the file names that are used during the execution of an FSE
model. Also start and end rerun number can be defined in the rerun file. The CONTROL.DAT file
was not present in the 1.0 version of FSE which made it impossible to do reruns on the names of
input files. In FSE 2.1 reruns can now also be done on the names of all input files specified in the
CONTROL.DAT except the name of the reruns file itself. In this file a distinction is made between
names of input files (beginning with FILEI) and names of output files (beginning with FILEO). An
example CONTROL.DAT is given in Appendix I.

FILEON and FILEOL
The FILEON and FILEOL variables are assigned the names of 1) the normal output file (containing
the output table) and 2) the log file, respectively. Both FILEON and FILEOL may be set to the same
file name.

FILEIT, FILEIR and FILEIn
The FILEIT and FILEIR variables are assigned the names of the timer file and the reruns file
respectively. The file names mentioned above are used by the FSE-driver. The file names that can
be used by the model(s) are specified through the variable names FILEI1, FILEI2, FILEI3,
FILEI4, FILEI5. These names are optional and can be specified only when they are needed.

 45

STRUN and ENDRUN
STRUN is an integer variable and specifies the run number of the first run. If STRUN is set to zero,
execution will start with the default run, if set to 1, execution will start with the first rerun. The
ENDRUN variable specifies the number of the last run. These names are optional and are specified
only when they are needed.

7.3 The timer file

This data file specifies variables for:
• Weather control

- directory in which the weather data are stored
- country code
- station number

• Time control
- start time and finish time
- time step of integration
- start year

• Output control
- time between different outputs
- format of the output file
- selection of output variables

An example file is given in Appendix I.

7.3.1 Weather control variables

Unlike in FSE 1.0, strings such as the weather directory and the country name can now be read by
the RD routines. Consequently these strings can now be used in reruns, unlike in FSE 1.0. For a
complete list of available weather data files, their corresponding country codes and station numbers,
see Van Kraalingen et al. (1990) and Stol (1994).

WTRDIR
This line contains the weather directory. Very often, many weather data files will be used. For this
reason it is convenient to store these data in a separate data directory. By supplying a directory
name for the WTRDIR variable, you can direct the weather system to read weather data from that
directory. Examples are:

WTRDIR = ' ' <- use current directory
WTRDIR = 'WEATHER_DATA:' <- example directory for AB-DLO/VMS system

WTRDIR = 'C:\SYS\WEATHER\' <- example directory for IBM-PC and compatibles
WTRDIR = 'HD40:WEATHER:' <- example directory for Apple Macintosh

CNTR
This line contains the abbreviated country code which is standardized as a 3 character ISO code.
Examples are:

CNTR = 'NLD' <- country code for The Netherlands
CNTR = 'GBR' <- country code for United Kingdom

CNTR = 'ITA' <- country code for Italy

46

ISTN
This variable indicates the station number that should be used from the specified country. For
example, when the country code is NLD (The Netherlands), ISTN=1 and IYEAR=1984 (from the
timer control variables below), the daily weather data from Wageningen 1984 will be used by the
model. During execution, the weather system will try to open a file by the name of NLD1.984 on the
directory specified by WTRDIR.

IFLAG
This variable specifies what should be done with errors and warnings from the weather system. The
IFLAG variable is an integer consisting of four digits:

 Digit value

 0 1

first digit warnings not to log file warnings to log file
second digit errors not to log file errors to log file
third digit warnings not to screen warnings to screen
fourt digit errors not to screen errors to screen

For example when IFLAG = 1101 (the default value), it means that warnings and errors go to the log
file, warnings are not sent to the screen and errors are sent to the screen.

7.3.2 Time control variables

STTIME, FINTIM, DELT and IYEAR
These variables represent the time parameters of the model. STTIME is the start time of the
simulation; its value should be in between 1 and 365. In FSE 1.0 this variable was called DAYB.
FINTIM is the finish time of the simulation (not the duration of the simulation). For example when
STTIME = 93., and FINTIM = 103., TIME will start at 93 and the simulation will continue until
TIME = 103. Note that in the FSE-driver various derived time variables are available such as the
the day of the year (DOY). When a year boundary is crossed, IYEAR in the model is automatically
increased (update of TIME and related variables is carried out by subroutine TIMER2). DELT is the
time step of integration. The value of DELT cannot be chosen freely. Its value should be either a
multiple of 1 (e.g. 2 or 10) or a multiple of DELT should equal 1 (e.g. 0.25, 0.10, 0.5). Often DELT is
determined by the model that you are using. For SUCROS a value of one day is required.

7.3.3 Output control variables

PRDEL
The variable PRDEL indicates the time between consecutive outputs to file (the output interval). For
example, when PRDEL = 5., output is given each time that TIME has increased by the value of
PRDEL (when STTIME = 93. output is at TIME = 93.,98.,103. etc.). Output can be fully
suppressed by giving PRDEL the value 0. When PRDEL > 0 output is always given at the start of
the simulation (TIME = STTIME) and when the simulation is terminated (either when TIME
= FINTIM or some other finish criterion). So, by giving PRDEL a high value (e.g. 1000) intermediate
outputs are suppressed and only the initial and terminal rates and states will be output.

 47

IPFORM
The variable IPFORM defines whether an output table is required (no output table: IPFORM = 0)
and if so in which format. A multiple column table (IPFORM = 4) is sufficient for normal printing and
viewing. The normal table format is not very suitable to be imported in spreadsheet or graphics
programs. Using IPFORM = 5, a tab-delimited multiple column table which is easily imported in
programs such as Excel is generated.

DELTMP
The variable DELTMP defines whether the file with temporary output data (RES.BIN) should be
deleted at termination of the simulation (DELTMP = 'N', do not delete, DELTMP = 'Y', delete).
This file is built during the dynamic phase of the simulation and is read during the terminal phase of
the simulation to generate the output file from. The temporary file is not of great value for normal
purposes and can be deleted. However, there is the option of generating graphs directly from the
RES.BIN file after termination of the simulation with the TTSELECT program. (TTSELECT is a
graphical visualization tool for IBM-PC's and compatibles, available on request). For this special
purpose the temporary file should not be deleted.

COPINF
The variable COPINF determines whether the input files mentioned in the CONTROL.DAT file must
be copied to the output file. In FSE 1.0, input files were always copied to the output file before
simulation started. In FSE 2.1, when copying is choosen (COPINF = 'Y'), input files are copied to
the output file after writing the simulation results.

7.3.4 Optional output control variables

The above mentioned variables must all be present in the timer file, two variables, however, are
optional.

PRSEL
The variabel PRSEL can be used to select a subset of the normal output variables without having to
change the model. With PRSEL, e.g. several tables can be generated below each other. For
example:

PRSEL = 'WSO','TADRW','<TABLE>','DVS','<TABLE>'

generates a table with WSO and TADRW after which a separate table with DVS is printed.

IOBSD
The variable IOBSD can be used to force output at days on which experimental observations were
made. In many cases these observation data will not coincide with output intervals in the model
unless PRDEL is set to unity (which may cause large output files to be generated). The IOBSD
variable should be specified as a list of <observation_year>, <observation_day> combinations. A
maximum of 50 <year, day> combinations can be defined here. Examples are:

IOBSD = 1984, 11, 1985, 117 <- Output is forced on day 11 in 1984 and day 117 in 1985

7.4 Other data files

The name and definition of other data files depend on the model used in conjunction with the FSE
program. If you are working with a model like SUCROS, you are likely to be using a data file

48

PLANT.DAT. When simulating how lack of water limits growth, by adding a water balance
subroutine, a file named SOIL.DAT containing soil parameters and initial values, may have to be
present in the appropriate format. Normally, the general syntax rules as discussed above will apply
to these data files.

7.5 The reruns file

If the reruns file is absent or empty, the model will execute only one single run, using the data from
the standard data files. By creating a rerun file, the model will execute additional runs with different
parameter combinations and/or initial values for the state variables (or even different input files).
Therefore, the total number of runs made by the model is always one more than the number of
rerun sets. Names of variables originating from different data files can be redefined in the same
rerun file (see example). The format of the rerun files is identical to that of the other data files,
except that the names of variables may appear in the file more than once. Arrays can also be
redefined in a rerun file. The order and number of the variables should be the same in each set. A
new set starts when the first variable is repeated. This is shown in the following example:

* example rerun file redefining the single variable DAYB from file

* TIMER.DAT and NPL from file PLANT.DAT

DAYB = 90.; NPL = 250. ! 1st rerun set

DAYB = 110.; NPL = 210. ! 2nd rerun set

DAYB = 110.; NPL = 250. ! etc.

DAYB = 130.; NPL = 210.

DAYB = 130.; NPL = 250.

Unlike reruns in the simulation languages CSMP or FST, each variable whose value is changed
somewhere in the rerun file should be assigned a value in each set, even if that value is identical to
the value in the previous set. An advantage of the method of defining reruns in FSE 2.1 is that it is
much easier to identify the values of the parameters used by the model in a certain rerun (the
parameters from the standard datafiles, modified by the parameters specified at that particular
rerun). In CSMP or FST one has to inspect also previous reruns to see if parameters were modified
there. The method of CSMP or FST clearly is a drawback when many reruns are required. Note that
we discussed the implementation of reruns in the source code of the program in Chapter 4.

A feature of FSE 2.1 is that also the names of all input files (except the name of the reruns file and
the output file) can be used in reruns. In this case not simply a few parameters are changed but
whole parameter sets are swapped between reruns. This is shown in the following example:

FILEI1 = 'MODEL2.DAT'; FILEI2 = 'SOIL2.DAT' ! 1st rerun set

FILEI1 = 'MODEL3.DAT'; FILEI2 = 'SOIL3.DAT' ! 2nd rerun set

FILEI1 = 'MODEL4.DAT'; FILEI2 = 'SOIL4.DAT' ! etc.

7.6 Running the model

The model does not require interactive input during execution. The runs have been specified
completely in the data files. During execution, the model will display run number, year number and
day number on the screen every time output to file is done. During execution, errors and warnings
may occur from the weather system and/or from the other modules of the model. They generally
consist of one line of text. If simulation is terminated by an error during the dynamic section of the

 49

run, the outputs generated before the error in that particular run occurred, are written to the
temporary file but are not yet written to the output file until the terminal section of the model. If this
occurs, data can be recovered from the temporary file, using the OUTREC program (OUTput
RECovery, see the section on Error Recovery in this Chapter).

7.7 Examination of output

The standard model typically creates three output files: RES.DAT, MODEL.LOG and
WEATHER.LOG.

RES.DAT
The RES.DAT file contains the output of the model with the output of reruns merged below each
other in the file. The internal format of the output file RES.DAT depends on the value of the variable
IPFORM from the timer file. If printplots were made with the OUTPLT routine, they appear before
the output tables. If the COPINF variable was set to 'Y' in the timer file, also copies of the input files
mentioned in CONTROL.DAT will be present in the RES.DAT output file.

MODEL.LOG
This file may contain error and warning messages from routines used during the simulation.
Messages about input variables whose values have been replaced by the rerun facility can be
particularly useful. To make sure the execution of the model was without errors one has to inspect
this file.

WEATHER.LOG
This file contains all the messages generated by the weather system. By default, all the comment
headers of the data files, all warnings and all errors from the weather system are written to this log
file. If shortly before termination of the model a message is displayed about possible errors and
warnings from the weather system one has to look into this file and interpret the messages.
Messages may be as unimportant as rainfall not being available when it was not used by the model
but they can also be of a much more severe type.

It is also possible to view the output graphically on IBM-PC's and compatibles. This can be done
with the TTSELECT program, provided DELTMP is set to 'N' in the timer file. TTSELECT, however,
is not part of the FSE standard distribution software.

7.8 Errors and warnings from the FSE program

Errors are defined as conditions that make it impossible to continue simulation. Examples are: a
parameter value not found in a data file, or weather data not available for the year requested. A
warning occurs in the case of unlikely events that do not, however, prevent continuation. Examples
are: an attempt to search outside the range of the independent variable in a LINT function table, or
one or more weather data that are not available for the requested day but are provided by
interpolation.

All errors terminate model execution and a message to that effect is displayed on the screen. In
some cases the error is also written to the output file. Warnings are displayed on the screen and are
sometimes also written to the output file (remember, warnings allow simulation to continue).

The weather system can also generate errors and warnings. Unlike errors from other sections of the
model, the weather system itself never terminates execution of the model. It is the FSE-driver that

50

subsequently terminates the simulation run. The default is that errors from the weather system are
written to the screen and the log file WEATHER.LOG. Warnings are written to the log file only.

The general syntax of errors and warnings is similar:

ERROR in <module name>: <error text>

WARNING from <module name>: <warning text>

for example:

ERROR in LIMIT: argument error, MIN = 10.5, MAX = 8.3

WARNING from OUTDAT: zero length variable name

7.9 Error recovery

If a run is terminated by some error from the model, the output file RES.DAT will not contain the
results of that specific run. But the results up till the error occurred are written to the temporary file
RES.BIN. This file can be converted into an output table by running the output recovery program
OUTREC. This program requests an integer number from the user. A standard output table of every
run stored in RES.BIN is generated by '14' (the default), '15' generates a tab-delimited table (meant
to be imported in Excel), '16' generates an output of only two columns at a time. The output table
will be written to the file RECOVER.DAT so that any existing RES.DAT file is not deleted.

The listing of the OUTREC program is given in Appendix I.

 51

8 Installing the FSE program

8.1 Requirements for running the FSE program

There are few requirements for running the FSE program. Any standard FORTRAN-77 compiler on
any computer should be able to compile the program successfully, because it has been developed
and tested using DEC Fortran on VAX and AXP systems using Open VMS for VAX and Open VMS
for AXP respectively, Apple Macintosh using Language Systems Fortran, IBM compatible PC's
using Microsoft Fortran 5.1 and Microsoft Professional Powerstation 1.0 and Atari 520ST+ using
PROFortran.

The minimum RAM memory requirement and the necessity of a separate floating point processor
depends on the computer and the compiler. Free RAM memory should be at least 512 kb. A
mathematical coprocessor is in general not required but will often speed up calculations
considerably. A free hard disk space of about 1 Mb is required.

If you intend to do serious development work with the FSE program or any other FORTRAN
program, we recommend you to use the FORCHECK program to check your source code for errors
(see references). In FORCHECK the syntax, variable declaration, argument passing and standard
FORTRAN checking capability is much better than in most compilers and this will save you much
time instead of debugging any FORTRAN program.

The FSE 2.1 program relies heavily on the TTUTIL and WEATHER utility libraries. On the floppy
you find ready-made versions of the TTUTIL and WEATHER object libraries for Microsoft
FORTRAN 5.1 on IBM-PC or compatible computers. For each library there is a separate floppy disk
available with source files that you can use to build your own TTUTIL or WEATHER libraries. Send
in a request to the suppliers of FSE to obtain them (mentioned in the Summary).

If you are working on an IBM-PC or compatible computer, you are advised to use Microsoft
FORTRAN 5.1 or any later version. Two utility programs FORTRAN.EXE and LINK.EXE are
available on the floppy disk to be used with this compiler (to simplify compilation and linking). Any
other standard FORTRAN 77 compiler on any machine with at least 512 kb RAM can also be used,
but this requires renewed compilation of the TTUTIL and WEATHER source files, also you will not
be able to use the userfriendly FORTRAN and LINK programs.

8.2 Contents of the disk

The disk you receive is a 3.5" high density disk and has been formatted for IBM-PC's and
compatibles. If you are working on another machine and have no way to transfer the source files to
your machine, send a request to one of the addresses mentioned in the introduction to obtain the
programs in another disk format (do not forget to specify your hardware configuration).

In the following we assume that you have received the FSE program with the spring wheat version
of SUCROS as a plant routine. Any other model that is programmed using FSE will have a
comparable directory structure on the floppy disk. The contents of the disk is:

52

Directory Filename Contents of the file

A:\ MODEL.FOR Spring wheat SUCROS subroutines
 MODEL.EXE Executable file
 FSE.FOR Source of FSE-driver program as subroutine
 CONTROL.DAT Data file with names of input and output files
 MODEL.DAT Data file with plant parameters and initial state variables
 TIMER.DAT Data file with weather, time and control variables
 RERUNS.DAT Data file with example rerun file
 SKELETON.FOR Empty FSE model, to be adapted by the user
A:\TOOLS FORTRAN.EXE Tool for easy compilation (for MS-Fortran 5.1)
 LINK.EXE Tool for easy linking (for MS-Fortran 5.1) (warning: not identical to

LINK.EXE from MS-Fortran 5.1)
 OUTREC.EXE Tool for output recovery after a program crash
 OUTREC.FOR Source of OUTREC program
A:\LIBS TTUTIL.LIB TTUTIL object library (for MS-Fortran 5.1)
 DRIVERS.LIB Drivers library containing FSE 2.1 driver (for MS-Fortran 5.1)
 WEATHER.LIB WEATHER object library (for MS-Fortran 5.1)
A:\WEATHER NLD1.... Weather data, Netherlands, Wageningen, ...1970-1990

N.B.:
- The SUCROS crop growth model is put on the floppy only for illustration purposes. This is not,

by definition, the latest release of SUCROS. To obtain the latest version of SUCROS send in a
written request to AB-DLO or TPE-WAU.

- The source file of the FSE-driver is supplied as a separate file.
- The FORTRAN.EXE and LINK.EXE tools are meant for easy compilation and linking (provided

the compiler is installed following the requirements below). It is, however, not necessary to use
them if you are an experienced user of the Microsoft compiler.

8.3 General installation of FSE on IBM-compatibles

using Microsoft FORTRAN 5.1

This section explains the installation of FSE and the required installation of Microsoft FORTRAN
5.1.

1) Install the compiler on the directory C:\SYS\F77. Make sure you have also installed the

compiler's library on the directory C:\SYS\F77 as follows: large memory model, floating point
emulator, no C and no MS FORTRAN 3.30 compatibility. This library will have the name:
LLIBFORE.LIB. Make sure that the directory of the compiler files (FL.EXE, etc.) is not 'in' the
PATH, contrary to what is suggested by the Microsoft installation procedure.

2) Create a new directory on your hard disk and move the files to that directory. For example:
 MD FSE2_1 <Enter>

 CD FSE2_1 <Enter>

3) Now install FSE 2.1 by typing:

 XCOPY A:*.* C: /S <Enter>

 (The XCOPY /S command copies the files and directory structure to the hard disk.)

 53

4) Move the files from the A:\LIBS directory to the directory C:\SYS\F77.

5) After installation move the files from the TOOLS directory to a directory that is in the PATH or

add the TOOLS directory to the PATH (not necessary if you will use your own utilities to
compile and link).

6) Create a directory C:\TMP.

7) Add to your C:\AUTOEXEC.BAT file the following statements:
 SET LIB=C:\SYS\F77

 SET TMP=C:\TMP

8) Restart your PC.

8.4 Using the FORTRAN.EXE and LINK.EXE tools to

compile and link FSE

If you would like to use the FORTRAN.EXE and LINK.EXE tools it is important to follow the
installation instructions of the previous Chapter carefully. After successfull installation you can
compile the FORTRAN files, link with the object libraries, and run the program using the following
commands (in these examples "MODEL" stands for the name of the actual simulation model):

FORTRAN MODEL <Enter> <- normal compilation of MODEL
LINK MODEL,DRIVERS/L,TTUTIL/L,WEATHER/L <Enter> <- linking of MODEL.OBJ with

DRIVERS.LIB, TTUTIL.LIB and
WEATHER.LIB

MODEL <- running of MODEL.EXE

Preparation for debugging with CodeView (the debugger of the Microsoft programming languages)
can be done with:

FORTRAN MODEL /DEBUG <Enter> <- debug compilation of MODEL
LINK MODEL,DRIVERS/L,TTUTIL/L,WEATHER/L /DEBUG<Enter> <- linking of MODEL.OBJ

with DRIVERS.LIB, TTUTIL.LIB
and WEATHER.LIB with debug
options

CV MODEL <- debugging of MODEL.EXE

After successful compilation and linking, repeated execution can be invoked by typing the name of
the program (e.g. MODEL).

The executable files, created by these tools, will run on any IBM-compatible computer provided the
proper amount of RAM memory is present. They do not require a coprocessor but will use one if it is
present.

The FORTRAN.EXE and LINK.EXE tools have many more features that cannot be described in this
short Chapter. Additional documentation about these tools can be requested from the suppliers of
FSE (address given in the Introduction).

54

8.5 Working with other FORTRAN compilers on IBM

PC's and compatibles

We have no experience with other compilers on IBM-PC's and compatibles. You will probably have
to obtain the source files from the TTUTIL and WEATHER library and create object libraries from
them. Also, you will have to figure out how to link the FSE program with these newly created object
libraries.

8.6 Working on a VAX/VMS or AXP/VMS computer of

AB-DLO or TPE-WAU

The first step is to transfer the source files from the root of the floppy disk to your work directory on
the VMS machine. Files from other directories on the floppy are not useful on these systems.

Simple compilation, linking and execution can be done with :

$ FORTRAN/CHECK=BOUNDS/STANDARD MODEL,FSE <- compilation of MODEL.FOR and FSE.FOR
$ LINK MODEL,FSE,TTUTIL/L,WEATHER/L <- linking of MODEL.OBJ with FSE.OBJ,

TTUTIL.LIB and WEATHER.LIB
$ RUN MODEL <- running of MODEL.EXE

(If necessary consult somebody from the computer department of AB-DLO or TPE-WAU to find out
how to define the TTUTIL and WEATHER logicals).

The TTUTIL and WEATHER object libraries can be linked automatically after the following
commands are given (include these in your LOGIN.COM for permanent use. Be aware, however,
that from then on these two libraries are always used during linking even if you don't need them):

$ DEFINE LNK$LIBRARY TTUTIL:

$ DEFINE LNK$LIBRARY_1 WEATHER:

The link command is now shorter:

$ LINK file

Weather data can be accessed directly by specifying the logical name WEATHER_DATA: as the
value of the WTRDIR directory variable in the TIMER.DAT file.

8.7 Working on another VAX or AXP computer

Before you can start work with the FSE program you should obtain the source files of TTUTIL and
WEATHER. These can be sent to you either by ordinary mail or by e-mail. Refer to the Introduction
of this manual for the ordinary and e-mail addresses.

 55

8.8 Working on an Apple Macintosh using

MacFortran/020 v2.3

Generally the easiest solution is to obtain the two object libraries compiled for MacFortran/020 v2.3
from the suppliers of FSE (address is mentioned in the Introduction) and link these to the main
program (it is difficult to create a library yourself because the routines have to be inserted in a
specific order as the linker cannot resolve backward references). Another solution is to add
INCLUDE statements to the required routines at the end of your program, although this may give
problems with the debugger.

The object library and/or source files of TTUTIL and WEATHER can be obtained by submitting a
request to the AB-DLO address mentioned in the Introduction (specify your processor and
coprocessor type !).

8.9 Working on an Apple Macintosh using Language

Systems Fortran

The object library and/or source files of TTUTIL and WEATHER for this compiler can be obtained by
submitting a request to the AB-DLO address mentioned in the introduction (specify your processor
and coprocessor type !).

56

 57

References and further reading

IBM, 1975.
Continuous System Modeling Program III. General system information manual (GH19-7000)
and users manual (SH19-7001-2). IBM Data Processing Division, White Plains, New York.

FORCHECK (no year).
A FORTRAN-77 Verifier and Programming aid, E.W. Kruyt, Dept. of Physiology. Leiden
University, PO Box 9604, 2300 RC Leiden, The Netherlands.

Goudriaan, J. & H.H. van Laar, 1994.
Simulation of crop growth processes. J. Goudriaan & H.H. van Laar (Eds), Kluwer Academic
Publishers, Dordrecht, The Netherlands, 238 pp.

Haar, L.G.J. ter, 1983.
FORTRAN 77, programmers pocket guide. Nederlands Normalisatie Instituut, 47 pp.

Kraalingen, D.W.G. van, 1991.
The FSE system for crop simulation. Simulation Report CABO-TT nr. 23. Centre for
Agrobiological Research and Dept. of Theoretical Production Ecology. Wageningen, The
Netherlands, 77 pp. (available on request).

Kraalingen, D.W.G. van, C. Rappoldt & H.H. van Laar, 1994.
The Fortran Simulation Translator (FST), a simulation language. In: J. Goudriaan & H.H. Van
Laar (Eds), Simulation of crop growth processes, Kluwer Academic Publishers, Dordrecht, The
Netherlands, 238 pp.

Kraalingen, D.W.G. van & F.W.T. Penning de Vries, 1990.
The FORTRAN version of CSMP MACROS. Simulation Report CABO-TT nr. 21. Centre for
Agrobiological Research and Dept. of Theoretical Production Ecology, Wageningen, The
Netherlands, 145 pp. (available on request).

Kraalingen, D.W.G. van & C. Rappoldt, 1989.
Subprograms in simulation models. Simulation Report CABO-TT nr. 18. Centre for
Agrobiological Research and Dept. of Theoretical Production Ecology, Wageningen, The
Netherlands, 54 pp. (available on request).

Kraalingen, D.W.G. van, W. Stol, P.W.J. Uithol & M. Verbeek, 1991.
User Manual of CABO/TPE Weather System, CABO/TPE internal communication, 27 pp.
(available on request).

Leffelaar, P.A.L., 1993.
On systems analysis and simulation of ecological processes, with examples in CSMP and
FORTRAN, Kluwer Academic Publishers, Dordrecht, The Netherlands, 294 pp.

Meissner, L.P. & E.I. Organick, 1984.
FORTRAN 77, featuring structured programming. Addison-Wesley publishing company, 500
pp.

Penning de Vries, F.W.T. & H.H. van Laar, 1982.
Simulation of plant growth and crop production. Simulation Monograph, PUDOC, Wageningen,
308 pp.

Rappoldt, C. & D.W.G. van Kraalingen, 1990.
FORTRAN utility library TTUTIL. Simulation Report CABO-TT no. 20. Centre for Agrobiological
Research and Dept. of Theoretical Production Ecology, Wageningen, The Netherlands, 54 pp.
(available on request).

Stol, W., 1994.
Synoptic and climatic data for agro-ecological research. The AB-MET database. Simulation

58

Report CABO-TT, no. 37. Centre for Agrobiological Research and Dept. of Theoretical
Production Ecology, Wageningen, The Netherlands, 103 pp. (available on request).

Wagener, J.L., 1980.
FORTRAN 77, principles of programming. John Wiley & Sons, New York, 370 pp.

Wit, C.T. de & J. Goudriaan, 1978.
Simulation of ecological processes. Simulation Monograph, PUDOC, Wageningen, 175 pp.

 I-1

Appendix I: Program and data file listings

The file order in this Appendix is as follows:

MODEL.FOR Main program and SUCROS subroutines,
FSE.FOR FSE-2.1-driver,
CONTROL.DAT Data file containing names of input and output files,
TIMER.DAT Data file containing time, weather and output control variables,
MODEL.DAT Data file containing parameters and initial values of the states for a crop,
NLD1.980 Weather data file
RERUNS.DAT Data file with some reruns,
OUTREC.FOR Program to recover output after an unexpected model crash.

I-2

File: MODEL.FOR

 PROGRAM MAIN

 IMPLICIT NONE

 CALL FSE

 END

--

* SUBROUTINE MODELS *

* Authors: Daniel van Kraalingen *

* Date : 5-Jul-1993 *

* Purpose: This subroutine is the interface routine between the FSE- *

* driver and the simulation models. This routine is called *

* by the FSE-driver at each new task at each time step. It *

* can be used by the user to specify calls to the different *

* models that have to be simulated *

* *

* FORMAL PARAMETERS: (I=input,O=output,C=control,IN=init,T=time) *

* name type meaning units class *

* ---- ---- ------- ----- ----- *

* ITASK I4 Task that subroutine should perform - I *

* IUNITD I4 Unit that can be used for input files - I *

* IUNITO I4 Unit used for output file - I *

* IUNITL I4 Unit used for log file - I *

* FILEIT C* Name of timer input file - I *

* FILEI1 C* Name of input file no. 1 - I *

* FILEI2 C* Name of input file no. 2 - I *

* FILEI3 C* Name of input file no. 3 - I *

* FILEI4 C* Name of input file no. 4 - I *

* FILEI5 C* Name of input file no. 5 - I *

* OUTPUT L4 Flag to indicate if output should be done - I *

* TERMNL L4 Flag to indicate if simulation is to stop - I/O *

* DOY R4 Day number within year of simulation (REAL) d I *

* IDOY I4 Day number within year of simulation (INTEGER) d I *

* YEAR R4 Year of simulation (REAL) y I *

* IYEAR I4 Year of simulation (INTEGER) y I *

* TIME R4 Time of simulation d I *

* STTIME R4 Start time of simulation d I *

* FINTIM R4 Finish time of simulation d I *

* DELT R4 Time step of integration d I *

* LAT R4 Latitude of site dec.degr. I *

* LONG R4 Longitude of site dec.degr. I *

* ELEV R4 Elevation of site m I *

* WSTAT C6 Status code from weather system - I *

* WTRTER L4 Flag whether weather can be used by model - O *

* RDD R4 Daily shortwave radiation J/m2/d I *

* TMMN R4 Daily minimum temperature degrees C I *

* TMMX R4 Daily maximum temperature degrees C I *

* VP R4 Early morning vapour pressure kPa I *

* WN R4 Average wind speed m/s I *

* RAIN R4 Daily amount of rainfall mm/d I *

* *

* Fatal error checks: none *

* Warnings : none *

* Subprograms called: models as specified by the user *

* File usage : none *

--

 SUBROUTINE MODELS (ITASK , IUNITD, IUNITO, IUNITL,

 & FILEIT, FILEI1, FILEI2, FILEI3, FILEI4, FILEI5,

 & OUTPUT, TERMNL,

 & DOY , IDOY , YEAR , IYEAR,

 & TIME , STTIME, FINTIM, DELT ,

 & LAT , LONG , ELEV , WSTAT, WTRTER,

 & RDD , TMMN , TMMX , VP , WN, RAIN)

 IMPLICIT NONE

* Formal parameters

 INTEGER ITASK, IUNITD, IUNITO, IUNITL, IDOY, IYEAR

 CHARACTER FILEIT*(*), FILEI1*(*), FILEI2*(*)

 CHARACTER FILEI3*(*), FILEI4*(*), FILEI5*(*)

 LOGICAL OUTPUT, TERMNL, WTRTER

 CHARACTER WSTAT*6

 REAL DOY,YEAR,TIME,STTIME,FINTIM,DELT

 REAL LAT,LONG,ELEV,RDD,TMMN,TMMX,VP,WN,RAIN

* Local variables

* <none>

 SAVE

* Only one model used here

 CALL MODEL (ITASK , IUNITD, IUNITO, IUNITL,

 & FILEI1,

 & OUTPUT, TERMNL,

 & DOY , IDOY , YEAR , IYEAR,

 & TIME , STTIME, FINTIM, DELT ,

 & LAT , LONG , ELEV , WSTAT, WTRTER,

 & RDD , TMMN , TMMX , VP , WN, RAIN)

 RETURN

 END

--

* SUBROUTINE MODEL *

* Authors: *

* Date : *

* Purpose: *

* *

* FORMAL PARAMETERS: (I=input,O=output,C=control,IN=init,T=time) *

* name type meaning units class *

* ---- ---- ------- ----- ----- *

* ITASK I4 Task that subroutine should perform - I *

* IUNITD I4 Unit of input file with model data - I *

* IUNITO I4 Unit of output file - I *

* IUNITL I4 Unit number for log file messages - I *

* FILEIN C* Name of file with input model data - I *

* OUTPUT L4 Flag to indicate if output should be done - I *

* TERMNL L4 Flag to indicate if simulation is to stop - I/O *

* DOY R4 Day number within year of simulation (REAL) d I *

* IDOY I4 Day number within year of simulation (INTEGER) d I *

* YEAR R4 Year of simulation (REAL) y I *

* IYEAR I4 Year of simulation (INTEGER) y I *

* STTIME R4 Start time of simulation (=day number) d I *

* FINTIM R4 Finish time of simulation (=day number) d I *

* DELT R4 Time step of integration d I *

* LAT R4 Latitude of site dec.degr. I *

* LONG R4 Longitude of site dec.degr. I *

* ELEV R4 Elevation of site m I *

* WSTAT C6 Status code from weather system - I *

* WTRTER L4 Flag whether weather can be used by model - O *

* RDD R4 Daily shortwave radiation J/m2/d I *

* TMMN R4 Daily minimum temperature degrees C I *

* TMMX R4 Daily maximum temperature degrees C I *

* VP R4 Early morning vapour pressure kPa I *

* WN R4 Daily average windspeed m/s I *

* RAIN R4 Daily amount of rainfall mm/d I *

* *

* Fatal error checks: if one of the characters of WSTAT = '4', *

* indicates missing weather *

* Warnings : none *

* Subprograms called: models as specified by the user *

* File usage : IUNITD,IUNITD+1,IUNITO,IUNITO+1,IUNITL *

--

 SUBROUTINE MODEL (ITASK , IUNITD, IUNITO, IUNITL,

 & FILEIN,

 & OUTPUT, TERMNL,

 & DOY , IDOY , YEAR , IYEAR,

 & TIME , STTIME, FINTIM, DELT ,

 & LAT , LONG , ELEV , WSTAT, WTRTER,

 I-3

 & RDD , TMMN , TMMX , VP , WN, RAIN)

* Title of the program

* <fill in your title here>

 IMPLICIT NONE

* Formal parameters

 INTEGER ITASK , IUNITD, IUNITO, IUNITL, IDOY, IYEAR

 LOGICAL OUTPUT, TERMNL, WTRTER

 CHARACTER*(*) FILEIN, WSTAT

 REAL DOY, YEAR, TIME, STTIME, FINTIM, DELT

 REAL LAT, LONG, ELEV, RDD, TMMN, TMMX, VP, WN, RAIN

* Standard local declarations

 INTEGER IWVAR

 CHARACTER WUSED*6

* State variables, initial values and rates

 REAL DVS , IDVS , DVR

 REAL LAI , ILAI , RLAI

 REAL EAI , IEAI , REAI

 REAL WRT , WRTI , GRT

 REAL WLVG , WLVI , RWLVG

 REAL WLVD , WLVDI , DLV

 REAL WST , WSTI , GST

 REAL WSO , WSOI , GSO

 REAL TNASS , ZERO , RTNASS

* Model parameters

 REAL AMX , ASRQLV, ASRQRT, ASRQSO, ASRQST

 REAL CFLV , CFRT , CFSO , CFST , DOYEM

 REAL EAR , EFF , FRTRL , KDF , LAICR

 REAL LATT , MAINLV, MAINRT, MAINSO, MAINST

 REAL Q10 , RGRL , SCP , SLA , TBASE

 REAL TREF

* Auxiliary variables

 REAL AMAX , AMDVS , AMTMP , ASRQ , CHKDIF

 REAL CHKFL , CHKIN , CO2LV , CO2RT , CO2SO

 REAL CO2ST , DAVTMP, DAYL , DDTMP , DLAI

 REAL DS0 , DTEFF , DTGA , DTMAX , DTMIN

 REAL DTR , EMERG , FLV , FRT , FSH

 REAL FSO , FST , GLAI , GLV , GPHOT

 REAL GTW , HI , MAINT , MAINTS, MNDVS

 REAL RDR , RDRDV , RDRSH , TADRW , TAI

 REAL TDRW , TEFF , TRANSL, WLV , LA0, NPL

* LINT functions

 REAL AMDVST

 INTEGER IMAMDV, ILAMDV

 PARAMETER (IMAMDV = 40)

 DIMENSION AMDVST(IMAMDV)

 REAL AMTMPT

 INTEGER IMAMTM, ILAMTM

 PARAMETER (IMAMTM = 40)

 DIMENSION AMTMPT(IMAMTM)

 REAL DVRRT

 INTEGER IMDVRR, ILDVRR

 PARAMETER (IMDVRR = 40)

 DIMENSION DVRRT (IMDVRR)

 REAL DVRVT

 INTEGER IMDVRV, ILDVRV

 PARAMETER (IMDVRV = 40)

 DIMENSION DVRVT (IMDVRV)

 REAL FLVTB

 INTEGER IMFLVT, ILFLVT

 PARAMETER (IMFLVT = 40)

 DIMENSION FLVTB (IMFLVT)

 REAL FSHTB

 INTEGER IMFSHT, ILFSHT

 PARAMETER (IMFSHT = 60)

 DIMENSION FSHTB (IMFSHT)

 REAL FSTTB

 INTEGER IMFSTT, ILFSTT

 PARAMETER (IMFSTT = 40)

 DIMENSION FSTTB (IMFSTT)

 REAL RDRT

 INTEGER IMRDRT, ILRDRT

 PARAMETER (IMRDRT = 40)

 DIMENSION RDRT (IMRDRT)

* Declarations and values of constants

* none

* Used functions

 REAL LINT , INSW , LIMIT , NOTNUL, INTGRL

 SAVE

* Code for the use of RDD, TMMN, TMMX, VP, WN, RAIN (in that order)

* a letter 'U' indicates that the variable is Used in calculations

 DATA WUSED/'UUU---'/

* Check weather data availability

 IF (ITASK.EQ.1.OR.ITASK.EQ.2.OR.ITASK.EQ.4) THEN

 DO 10 IWVAR=1,6

* is there an error in the IWVAR-th weather variable ?

 IF (WUSED(IWVAR:IWVAR).EQ.'U' .AND.

 & WSTAT(IWVAR:IWVAR).EQ.'4') THEN

 WTRTER = .TRUE.

 TERMNL = .TRUE.

 RETURN

 END IF

10 CONTINUE

 END IF

 IF (ITASK.EQ.1) THEN

* Initial

* =======

* Open input file

 CALL RDINIT (IUNITD, IUNITL, FILEIN)

* Read initial states

 CALL RDSREA ('IDVS ',IDVS)

 CALL RDSREA ('IEAI ',IEAI)

 CALL RDSREA ('ILAI ',ILAI)

 CALL RDSREA ('LA0 ',LA0)

 CALL RDSREA ('NPL ',NPL)

 CALL RDSREA ('WLVDI ',WLVDI)

 CALL RDSREA ('WLVI ',WLVI)

 CALL RDSREA ('WRTI ',WRTI)

 CALL RDSREA ('WSOI ',WSOI)

 CALL RDSREA ('WSTI ',WSTI)

 CALL RDSREA ('ZERO ',ZERO)

* Read model parameters

 CALL RDSREA ('AMX ',AMX)

 CALL RDSREA ('ASRQLV',ASRQLV)

 CALL RDSREA ('ASRQRT',ASRQRT)

 CALL RDSREA ('ASRQSO',ASRQSO)

 CALL RDSREA ('ASRQST',ASRQST)

 CALL RDSREA ('CFLV ',CFLV)

 CALL RDSREA ('CFRT ',CFRT)

 CALL RDSREA ('CFSO ',CFSO)

 CALL RDSREA ('CFST ',CFST)

 CALL RDSREA ('DOYEM ',DOYEM)

 CALL RDSREA ('EAR ',EAR)

 CALL RDSREA ('EFF ',EFF)

I-4

 CALL RDSREA ('FRTRL ',FRTRL)

 CALL RDSREA ('KDF ',KDF)

 CALL RDSREA ('LAICR ',LAICR)

 CALL RDSREA ('LATT ',LATT)

 CALL RDSREA ('MAINLV',MAINLV)

 CALL RDSREA ('MAINRT',MAINRT)

 CALL RDSREA ('MAINSO',MAINSO)

 CALL RDSREA ('MAINST',MAINST)

 CALL RDSREA ('Q10 ',Q10)

 CALL RDSREA ('RGRL ',RGRL)

 CALL RDSREA ('SCP ',SCP)

 CALL RDSREA ('SLA ',SLA)

 CALL RDSREA ('TBASE ',TBASE)

 CALL RDSREA ('TREF ',TREF)

* Read LINT functions

 CALL RDAREA ('DVRVT ',DVRVT ,IMDVRV,ILDVRV)

 CALL RDAREA ('DVRRT ',DVRRT ,IMDVRR,ILDVRR)

 CALL RDAREA ('AMDVST',AMDVST,IMAMDV,ILAMDV)

 CALL RDAREA ('AMTMPT',AMTMPT,IMAMTM,ILAMTM)

 CALL RDAREA ('FSHTB ',FSHTB ,IMFSHT,ILFSHT)

 CALL RDAREA ('FLVTB ',FLVTB ,IMFLVT,ILFLVT)

 CALL RDAREA ('FSTTB ',FSTTB ,IMFSTT,ILFSTT)

 CALL RDAREA ('RDRT ',RDRT ,IMRDRT,ILRDRT)

 CLOSE (IUNITD)

* Initial calculations

* Initially known variables to output

* Send title(s) to OUTCOM

 CALL OUTCOM ('Crop growth for potential production (SUCROS1)')

* Initialize state variables

 DVS = IDVS

 LAI = ILAI

 EAI = IEAI

 WRT = WRTI

 WLVG = WLVI

 WLVD = WLVDI

 WST = WSTI

 WSO = WSOI

 TNASS = ZERO

 ELSE IF (ITASK.EQ.2) THEN

* Rates of change

* ===============

 EMERG = INSW(DOY-DOYEM, 0., 1.)

 AMDVS = LINT(AMDVST,ILAMDV, DVS)

 MAINTS = MAINLV*WLVG + MAINST*WST + MAINRT*WRT + MAINSO*WSO

* 1.8 DRY MATTER PARTITIONING

 FSH = LINT(FSHTB,ILFSHT, DVS)

 FLV = LINT(FLVTB,ILFLVT, DVS)

 FST = LINT(FSTTB,ILFSTT, DVS)

* 1.10 LEAF AND EAR DEVELOPMENT

 TAI = 0.5 * EAI + LAI

 RDRSH = LIMIT(0., 0.03, 0.03 * (LAI-LAICR) / LAICR)

 WLV = WLVG + WLVD

* DTR = AFGEN(DTRT, DOY) * 1.E06

 DTR = RDD

* DTMAX = AFGEN(TMAXT, DOY)

 DTMAX = TMMX

* DTMIN = AFGEN(TMINT, DOY)

 DTMIN = TMMN

 CHKFL = TNASS * (12./44.)

 CO2RT = 44./12. * (ASRQRT*12./30. - CFRT)

 CO2LV = 44./12. * (ASRQLV*12./30. - CFLV)

 CO2ST = 44./12. * (ASRQST*12./30. - CFST)

 CO2SO = 44./12. * (ASRQSO*12./30. - CFSO)

 TADRW = WLV + WST + WSO

 MNDVS = WLVG / NOTNUL(WLV)

 DAVTMP = 0.5 * (DTMAX + DTMIN)

 DDTMP = DTMAX - 0.25 * (DTMAX-DTMIN)

* 1.13 CARBON BALANCE CHECK

 CHKIN = (WLV - WLVI) * CFLV + (WST - WSTI) * CFST + (WRT -

 $ WRTI) * CFRT + WSO * CFSO

 FRT = 1. - FSH

 FSO = 1. - FLV - FST

 RDRDV = INSW(DVS-1.0, 0., LINT(RDRT,ILRDRT, DAVTMP))

 TDRW = TADRW + WRT

 HI = WSO / NOTNUL(TADRW)

 TEFF = Q10**((DAVTMP-TREF)/10.)

 DVR = INSW(DVS-1., LINT(DVRVT,ILDVRV, DAVTMP)

 $,LINT(DVRRT,ILDVRR, DAVTMP)) * EMERG

 DTEFF = MAX(0., DAVTMP-TBASE)

 AMTMP = LINT(AMTMPT,ILAMTM, DDTMP)

* 1.9 GROWTH OF PLANT ORGANS AND TRANSLOCATION

 ASRQ = FSH * (ASRQLV*FLV + ASRQST*FST + ASRQSO*FSO) +

 $ ASRQRT*FRT

 CHKDIF = (CHKIN-CHKFL)/NOTNUL(CHKIN)

* 1.4 LEAF CO2 ASSIMILATION

 AMAX = AMX * AMDVS * AMTMP

 TRANSL = INSW(DVS-1., 0., WST * DVR * FRTRL)

 CALL SUBEAI(DELT,DVS,EAR,TADRW,RDRDV,EAI, REAI)

 RDR = MAX(RDRDV, RDRSH)

* 1.7 MAINTENANCE

 MAINT = MAINTS * TEFF * MNDVS

 DLAI = LAI * RDR

* 1.5 DAILY GROSS CO2 ASSIMILATION

 CALL TOTASS(DOY,LATT,DTR,SCP,AMAX,EFF,KDF,TAI, DAYL,DTGA,DS0)

* 1.6 CARBOHYDRATE PRODUCTION

 GPHOT = DTGA * 30./44.

 DLV = WLVG * DLAI/NOTNUL(LAI)

 GTW = (GPHOT - MAINT + 0.947*TRANSL*CFST*30./12.) / ASRQ

 GST = FST * FSH * GTW - TRANSL

 GSO = FSO * FSH * GTW

 I-5

 GRT = FRT * GTW

 GLV = FLV * FSH * GTW

 CALL GLA(DOY, DOYEM, DTEFF, DVS, NPL, LA0, RGRL, DELT, SLA ,

 $ LAI, GLV, GLAI)

 RTNASS = ((GPHOT - MAINT)*44./30.) - (GRT*CO2RT + GLV*

 $ CO2LV + (GST+TRANSL)*CO2ST + GSO*CO2SO + (1.-0.947)* TRANSL*

 $ CFST*44./12.)

 RWLVG = GLV - DLV

 RLAI = GLAI - DLAI

* Finish conditions

 IF (DVS.GT.2.) TERMNL = .TRUE.

* Output section

 IF (OUTPUT) THEN

 CALL OUTDAT (2,0,'DOY ',DOY)

 CALL OUTDAT (2,0,'DTR ',DTR)

 CALL OUTDAT (2,0,'DVS ',DVS)

 CALL OUTDAT (2,0,'TDRW ',TDRW)

 CALL OUTDAT (2,0,'TADRW ',TADRW)

 CALL OUTDAT (2,0,'WLVG ',WLVG)

 CALL OUTDAT (2,0,'WLVD ',WLVD)

 CALL OUTDAT (2,0,'WLV ',WLV)

 CALL OUTDAT (2,0,'WST ',WST)

 CALL OUTDAT (2,0,'WSO ',WSO)

 CALL OUTDAT (2,0,'WRT ',WRT)

 CALL OUTDAT (2,0,'LAI ',LAI)

 CALL OUTDAT (2,0,'EAI ',EAI)

 CALL OUTDAT (2,0,'HI ',HI)

 CALL OUTDAT (2,0,'DTMAX ',DTMAX)

 CALL OUTDAT (2,0,'DTMIN ',DTMIN)

 CALL OUTDAT (2,0,'GPHOT ',GPHOT)

 CALL OUTDAT (2,0,'DAYL ',DAYL)

 CALL OUTDAT (2,0,'DS0 ',DS0)

 CALL OUTDAT (2,0,'TRANSL',TRANSL)

 CALL OUTDAT (2,0,'CHKIN ',CHKIN)

 CALL OUTDAT (2,0,'CHKFL ',CHKFL)

 CALL OUTDAT (2,0,'CHKDIF',CHKDIF)

 END IF

 ELSE IF (ITASK.EQ.3) THEN

* Integration

* ===========

 DVS = INTGRL (DVS ,DVR ,DELT)

 LAI = INTGRL (LAI ,RLAI ,DELT)

 EAI = INTGRL (EAI ,REAI ,DELT)

 WRT = INTGRL (WRT ,GRT ,DELT)

 WLVG = INTGRL (WLVG ,RWLVG ,DELT)

 WLVD = INTGRL (WLVD ,DLV ,DELT)

 WST = INTGRL (WST ,GST ,DELT)

 WSO = INTGRL (WSO ,GSO ,DELT)

 TNASS = INTGRL (TNASS ,RTNASS,DELT)

 ELSE IF (ITASK.EQ.4) THEN

* Terminal

* ========

* Terminal calculations

* Terminal output

 CONTINUE

 END IF

 RETURN

 END

* 1.15 SUBROUTINES

* ---*

* SUBROUTINE GLA *

* Purpose: This subroutine computes daily increase of leaf area index *

* (ha leaf/ ha ground/ d) *

* *

* FORMAL PARAMETERS: (I=input,O=output,C=control,IN=init,T=time) *

* name type meaning units class *

* ---- ---- ------- ----- ----- *

* DOY R4 Day number (Jan 1st = 1) - T *

* DOYEM R4 Day number of crop emergence - T *

* DTEFF R4 Daily effective temperature oC I *

* DVS R4 Development stage of the crop - I *

* NPL R4 Plant density plants m-2 I *

* LA0 R4 Extrapolated leaf area at emergence cm2 plant-1 I *

* RGRL R4 Relative leaf growth rate ha ha-1 I *

* DELT R4 Time step of integration d T *

* SLA R4 Specific leaf area ha kg-1 I *

* LAI R4 Leaf area index ha ha-1 I *

* GLV R4 Growth rate of the leaves kg ha-1 d-1 I *

* GLAI R4 Growth rate of leaf area index ha ha-1 d-1 O *

* ---*

 SUBROUTINE GLA (DOY,DOYEM,DTEFF,DVS,NPL,LA0,RGRL,DELT,SLA,

 $ LAI,GLV, GLAI)

 IMPLICIT REAL (A-Z)

*-----growth during maturation stage

 GLAI = SLA * GLV

*-----growth during juvenile stage

 IF ((DVS.LT.0.3).AND.(LAI.LT.0.75)) THEN

 GLAI = (LAI * (EXP(RGRL*DTEFF*DELT)-1.))/DELT

 ENDIF

*-----growth at day of seedling emergence

 IF ((DOY.GE.DOYEM).AND.(LAI.EQ.0.)) GLAI = (NPL * LA0)/DELT

*-----growth before seedling emergence

 IF (DOY.LT.DOYEM) GLAI = 0.

 RETURN

 END

--

* SUBROUTINE SUBEAI *

* Purpose: This subroutine calculates ear area index *

* *

* FORMAL PARAMETERS: (I=input,O=output,C=control,IN=init,T=time) *

* name type meaning units class *

* ---- ---- ------- ----- ----- *

* DELT R4 Time step of integration d T #

* DVS R4 Development stage of the crop - I *

* EAR R4 Ear area/weight ratio kg ha-1 I *

* TADRW R4 Total above-ground dry weight kg ha-1 I *

* RDR R4 Relative death rate d-1 I *

* EAI R4 Ear area index ha ha-1 I *

* REAI R4 Growth rate ear area index ha ha-1 d-1 O *

--

 SUBROUTINE SUBEAI(DELT,DVS,EAR,TADRW,RDRDV,EAI, REAI)

 IMPLICIT REAL(A-Z)

 IF (DVS.LT.0.8) REAI = 0.

 IF (DVS.GE.0.8 .AND. EAI.EQ.0.) THEN

 REAI = (EAR * TADRW)/DELT

 ELSE

 REAI = 0.

 ENDIF

 IF (DVS.GE.1.3) REAI = -RDRDV * EAI

 RETURN

I-6

 END

--

* SUBROUTINE ASTRO *

* Purpose: This subroutine calculates astronomic daylength, *

* diurnal radiation characteristics such as the daily *

* integral of sine of solar elevation and solar constant. *

* *

* FORMAL PARAMETERS: (I=input,O=output,C=control,IN=init,T=time) *

* name type meaning units class *

* ---- ---- ------- ----- ----- *

* DOY R4 Daynumber (Jan 1st = 1) - T *

* LAT R4 Latitude of the site degrees I *

* SC R4 Solar constant J m-2 s-1 O *

* DS0 R4 Daily extraterrestrial radiation J m-2 d-1 O *

* SINLD R4 Seasonal offset of sine of solar height - O *

* COSLD R4 Amplitude of sine of solar height - O *

* DAYL R4 Astronomic daylength (base = 0 degrees) h O *

* DSINB R4 Daily total of sine of solar height s O *

* DSINBE R4 Daily total of effective solar height s O *

* *

* FATAL ERROR CHECKS (execution terminated, message) *

* condition: LAT > 67, LAT < -67 *

--

 SUBROUTINE ASTRO (DOY, LAT,

 & SC , DS0, SINLD, COSLD, DAYL, DSINB, DSINBE)

 IMPLICIT REAL (A-Z)

*-----PI and conversion factor from degrees to radians

 PI = 3.141592654

 RAD = PI/180.

*-----check on input range of parameters

 IF (LAT.GT.67.) STOP 'ERROR IN ASTRO: LAT> 67'

 IF (LAT.LT.-67.) STOP 'ERROR IN ASTRO: LAT>-67'

*-----declination of the sun as function of daynumber (DOY)

 DEC = -ASIN (SIN (23.45*RAD)*COS (2.*PI*(DOY+10.)/365.))

*-----SINLD, COSLD and AOB are intermediate variables

 SINLD = SIN (RAD*LAT)*SIN (DEC)

 COSLD = COS (RAD*LAT)*COS (DEC)

 AOB = SINLD/COSLD

*-----daylength (DAYL)

 DAYL = 12.0*(1.+2.*ASIN (AOB)/PI)

 DSINB = 3600.*(DAYL*SINLD+24.*COSLD*SQRT (1.-AOB*AOB)/PI)

 DSINBE = 3600.*(DAYL*(SINLD+0.4*(SINLD*SINLD+COSLD*COSLD*0.5))+

 & 12.0*COSLD*(2.0+3.0*0.4*SINLD)*SQRT (1.-AOB*AOB)/PI)

*-----solar constant (SC) and daily extraterrestrial radiation (DS0)

 SC = 1370.*(1.+0.033*COS (2.*PI*DOY/365.))

 DS0 = SC*DSINB

 RETURN

 END

--

* SUBROUTINE TOTASS *

* Purpose: This subroutine calculates daily total gross *

* assimilation (DTGA) by performing a Gaussian integration *

* over time. At three different times of the day, *

* radiation is computed and used to determine assimilation *

* whereafter integration takes place. *

* *

* FORMAL PARAMETERS: (I=input,O=output,C=control,IN=init,T=time) *

* name type meaning units class *

* ---- ---- ------- ----- ----- *

* DOY R4 Day number (January 1 = 1) - T *

* LAT R4 Latitude of the site degrees I *

* DTR R4 Daily total of global radiation J/m2/d I *

* SCP R4 Scattering coefficient of leaves for visible *

* radiation (PAR) - I *

* AMAX R4 Assimilation rate at light saturation kg CO2/ I *

* ha leaf/h *

* EFF R4 Initial light conversion factor kg CO2/J/ I *

* ha/h m2 s *

* KDF R4 Extinction coefficient for diffuse light - I *

* LAI R4 Leaf area index as used for photosynthesis ha/ha I *

* Note: This can involve stem, flower or *

* ear area index!! *

* DAYL R4 Astronomic daylength (base = 0 degrees) h O *

* DTGA R4 Daily total gross assimilation kg CO2/ha/d O *

* DS0 R4 Daily extraterrestrial radiation J/m2/s O *

* *

* *

* SUBROUTINES and FUNCTIONS called : ASTRO, ASSIM *

--

 SUBROUTINE TOTASS (DOY, LAT , DTR, SCP, AMAX, EFF, KDF, LAI,

 & DAYL, DTGA, DS0)

 IMPLICIT REAL(A-Z)

 REAL XGAUSS(3), WGAUSS(3)

 INTEGER I1, IGAUSS

 DATA IGAUSS /3/

 DATA XGAUSS /0.112702, 0.500000, 0.887298/

 DATA WGAUSS /0.277778, 0.444444, 0.277778/

 PI = 3.141592654

 CALL ASTRO(DOY,LAT,SC,DS0,SINLD,COSLD,DAYL,DSINB,DSINBE)

*-----assimilation set to zero and three different times of the day (HOU

 DTGA = 0.

 DO 10 I1=1,IGAUSS

*--------at the specified HOUR, radiation is computed and used to comput

* assimilation

 HOUR = 12.0+DAYL*0.5*XGAUSS(I1)

*--------sine of solar elevation

 SINB = MAX (0., SINLD+COSLD*COS (2.*PI*(HOUR+12.)/24.))

*--------diffuse light fraction (FRDF) from atmospheric

* transmission (ATMTR)

 PAR = 0.5*DTR*SINB*(1.+0.4*SINB)/DSINBE

 ATMTR = PAR/(0.5*SC*SINB)

 IF (ATMTR.LE.0.22) THEN

 FRDF = 1.

 ELSE IF (ATMTR.GT.0.22 .AND. ATMTR.LE.0.35) THEN

 FRDF = 1.-6.4*(ATMTR-0.22)**2

 ELSE

 FRDF = 1.47-1.66*ATMTR

 END IF

 FRDF = MAX (FRDF, 0.15+0.85*(1.-EXP (-0.1/SINB)))

*--------diffuse PAR (PARDF) and direct PAR (PARDR)

 PARDF = PAR * FRDF

 PARDR = PAR - PARDF

 CALL ASSIM (SCP,AMAX,EFF,KDF,LAI,SINB,PARDR,PARDF,FGROS)

 I-7

*--------integration of assimilation rate to a daily total (DTGA)

 DTGA = DTGA+FGROS*WGAUSS(I1)

10 CONTINUE

 DTGA = DTGA * DAYL

 RETURN

 END

--

* SUBROUTINE ASSIM *

* Purpose: This subroutine performs a Gaussian integration over *

* depth of canopy by selecting five different LAI's and *

* computing assimilation at these LAI levels. The *

* integrated variable is FGROS. *

* *

* FORMAL PARAMETERS: (I=input,O=output,C=control,IN=init,T=time) *

* name type meaning units class *

* ---- ---- ------- ----- ----- *

* SCP R4 Scattering coefficient of leaves for visible *

* radiation (PAR) - I *

* AMAX R4 Assimilation rate at light saturation kg CO2/ I *

* ha leaf/h *

* EFF R4 Initial light conversion factor kg CO2/J/ I *

* ha/h m2 s *

* KDF R4 Extinction coefficient for diffuse light I *

* LAI R4 Leaf area index as used for photosynthesis ha/ha I *

* Note: This can involve stem, flower or *

* ear area index!! *

* SINB R4 Sine of solar height - I *

* PARDR R4 Instantaneous flux of direct radiation (PAR) W/m2 I *

* PARDF R4 Instantaneous flux of diffuse radiation(PAR) W/m2 I *

* FGROS R4 Instantaneous assimilation rate of kg CO2/ O *

* whole canopy ha soil/h *

* *

--

 SUBROUTINE ASSIM (SCP, AMAX, EFF, KDF, LAI, SINB, PARDR, PARDF,

 & FGROS)

 IMPLICIT REAL(A-Z)

 REAL XGAUSS(5), WGAUSS(5)

 INTEGER I1, I2, IGAUSS

*-----Gauss weights for five point Gauss

 DATA IGAUSS /5/

 DATA XGAUSS /0.0469101,0.2307534,0.5 ,0.7692465,0.9530899/

 DATA WGAUSS /0.1184635,0.2393144,0.2844444,0.2393144,0.1184635/

*-----reflection of horizontal and spherical leaf angle distribution

 SQV = SQRT(1.-SCP)

 REFH = (1.-SQV)/(1.+SQV)

 REFS = REFH*2./(1.+2.*SINB)

*-----extinction coefficient for direct radiation and total direct flux

 CLUSTF = KDF / (0.8*SQV)

 KBL = (0.5/SINB) * CLUSTF

 KDRT = KBL * SQV

*-----selection of depth of canopy, canopy assimilation is set to zero

 FGROS = 0.

 DO 10 I1=1,IGAUSS

 LAIC = LAI * XGAUSS(I1)

*--------absorbed fluxes per unit leaf area: diffuse flux, total direct

* flux, direct component of direct flux.

 VISDF = (1.-REFH)*PARDF*KDF *EXP (-KDF *LAIC)

 VIST = (1.-REFS)*PARDR*KDRT *EXP (-KDRT *LAIC)

 VISD = (1.-SCP) *PARDR*KBL *EXP (-KBL *LAIC)

*--------absorbed flux (J/M2 leaf/s) for shaded leaves and assimilation

* shaded leaves

 VISSHD = VISDF + VIST - VISD

 IF (AMAX.GT.0.) THEN

 FGRSH = AMAX * (1.-EXP(-VISSHD*EFF/AMAX))

 ELSE

 FGRSH = 0.

 END IF

*--------direct flux absorbed by leaves perpendicular on direct beam and

* assimilation of sunlit leaf area

 VISPP = (1.-SCP) * PARDR / SINB

 FGRSUN = 0.

 DO 20 I2=1,IGAUSS

 VISSUN = VISSHD + VISPP * XGAUSS(I2)

 IF (AMAX.GT.0.) THEN

 FGRS = AMAX * (1.-EXP(-VISSUN*EFF/AMAX))

 ELSE

 FGRS = 0.

 END IF

 FGRSUN = FGRSUN + FGRS * WGAUSS(I2)

20 CONTINUE

*--------fraction sunlit leaf area (FSLLA) and local assimilation

* rate (FGL)

 FSLLA = CLUSTF * EXP(-KBL*LAIC)

 FGL = FSLLA * FGRSUN + (1.-FSLLA) * FGRSH

*--------integration of local assimilation rate to canopy

* assimilation (FGROS)

 FGROS = FGROS + FGL * WGAUSS(I1)

10 CONTINUE

 FGROS = FGROS * LAI

 RETURN

 END

File: FSE.FOR

--

* *

* *

* FORTRAN Simulation Environment (FSE 2.1a) *

* September, 1995 *

* *

* *

* FSE 2.1 is a simulation environment suited for simulation of *

* biological processes in time, such as crop and vegetation growth,*

* insect population development etc. *

* *

* The MAIN program, subroutine FSE and subroutine MODELS are *

* programmed by D.W.G. van Kraalingen, DLO Institute for *

* Agrobiological and Soil Fertility Research (AB-DLO), *

* PO Box 14, 6700 AA, Wageningen, The Netherlands (e-mail: *

* d.w.g.van.kraalingen@ab.agro.nl). *

* *

* FSE version 2.1 is described in: *

* Kraalingen, D.W.G. van, 1995. The FSE system for crop *

* simulation, version 2.1. Quantitative Approaches in Systems *

* Analysis; no.1. DLO Research Institute for Agrobiology and *

* Soil Fertility, Wageningen. The C.T. de Wit Graduate School *

* for Production Ecology. 70 pp. *

* *

I-8

* Data files needed for FSE 2.1: *

* (excluding data files used by models called from MODELS): *

* - CONTROL.DAT (contains file names to be used), *

* - timer file whose name is specified in CONTROL.DAT, *

* - optionally, a rerun file whose name is specified in *

* CONTROL.DAT, *

* - weather data files as specified in timer file *

* Object libraries needed for FSE 2.1: *

* - TTUTIL (at least version 3.2) *

* - WEATHER (at least version from 17-Jan-1990) *

--

 SUBROUTINE FSE

c IMPLICIT NONE

*-----Standard declarations for simulation and output control

 INTEGER ITASK , INSETS, ISET , IPFORM, IL, ILEN

 LOGICAL OUTPUT , TERMNL, RDINQR, STRUNF, ENDRNF

 CHARACTER COPINF*1, DELTMP*1

 INTEGER INPRS , STRUN , ENDRUN

 INTEGER IMNPRS

 PARAMETER (IMNPRS=100)

 CHARACTER PRSEL(IMNPRS)*11

*-----Declarations for time control

 INTEGER IDOY, IYEAR

 REAL DELT, DOY, FINTIM, PRDEL, STTIME, TIME, YEAR

*-----Declarations for weather system

 INTEGER IFLAG , ISTAT1, ISTAT2 , ISTN

 REAL ANGA , ANGB , ELEV , LAT , LONG, RDD

 REAL TMMN , TMMX , VP , WN , RAIN

 LOGICAL WTRMES , WTRTER

 CHARACTER WTRDIR*80, CNTR*7, WSTAT*6, DUMMY*1

*-----Declarations for file names and units

 INTEGER IUNITR , IUNITD , IUNITO , IUNITL , IUNITC

 CHARACTER FILEON*80, FILEOL*80

 CHARACTER FILEIC*80, FILEIR*80, FILEIT*80

 CHARACTER FILEI1*80, FILEI2*80, FILEI3*80, FILEI4*80, FILEI5*80

*-----Declarations for observation data facility

 INTEGER INOD , IOD

 INTEGER IMNOD

 PARAMETER (IMNOD=100)

 INTEGER IOBSD(IMNOD)

*-----For communication with OBSSYS routine

 COMMON /FSECM1/ YEAR,DOY,IUNITD,IUNITL,TERMNL

 SAVE

*-----File name for control file and empty strings for input

* files 1-5. WTRMES flags any messages from the weather system

 DATA FILEIC /'CONTROL.DAT'/

 DATA FILEI1 /' '/, FILEI2 /' '/, FILEI3 /' '/

 DATA FILEI4 /' '/, FILEI5 /' '/

 DATA WTRMES /.FALSE./

 DATA STRUNF /.FALSE./, ENDRNF /.FALSE./

*-----Unit numbers for control file (C), data files (D),

* output file (O), log file (L) and rerun file (R).

 IUNITC = 10

 IUNITD = 20

 IUNITO = 30

 IUNITL = 40

 IUNITR = 50

*-----Open control file and read names of normal output file, log file

* and rerun file (these files cannot be used in reruns)

 CALL RDINIT (IUNITC,0, FILEIC)

 CALL RDSCHA ('FILEON', FILEON)

 CALL RDSCHA ('FILEOL', FILEOL)

 CALL RDSCHA ('FILEIR', FILEIR)

* check if start run number was found, if there, read it

 IF (RDINQR('STRUN')) THEN

 CALL RDSINT ('STRUN',STRUN)

 STRUNF = .TRUE.

 END IF

* check if end run number was found, if there, read it

 IF (RDINQR('ENDRUN')) THEN

 CALL RDSINT ('ENDRUN',ENDRUN)

 ENDRNF = .TRUE.

 END IF

 CLOSE (IUNITC)

*-----Open output file and possibly a log file

 CALL FOPENS (IUNITO, FILEON, 'NEW', 'DEL')

 IF (FILEOL.NE.FILEON) THEN

 CALL FOPENS (IUNITL, FILEOL, 'NEW', 'DEL')

 ELSE

 IUNITL = IUNITO

 END IF

c* initialization of logfile for processing of end_of_run values

c CALL OPINIT

*-----See if rerun file is present, and if so read the number of rerun

* sets from rerun file

 CALL RDSETS (IUNITR, IUNITL, FILEIR, INSETS)

==

==

* *

* Main loop and reruns begin here *

* *

==

==

 IF (.NOT.ENDRNF) THEN

* no end run was found in control.dat file

 ENDRUN = INSETS

 ELSE

 ENDRUN = MAX (ENDRUN, 0)

 ENDRUN = MIN (ENDRUN, INSETS)

 END IF

 IF (.NOT.STRUNF) THEN

* no start run was found in control.dat file

 STRUN = 0

 ELSE

 STRUN = MAX (STRUN, 0)

 STRUN = MIN (STRUN, ENDRUN)

 END IF

 DO 10 ISET=STRUN,ENDRUN

 WRITE (*,'(A)') ' FSE 2.1: Initialize model'

*-----Select data set

 CALL RDFROM (ISET, .TRUE.)

 I-9

==

* *

* Initialization section *

* *

==

 ITASK = 1

 TERMNL = .FALSE.

 WTRTER = .FALSE.

*-----Read names of timer file and input files 1-5 from control

* file (these files can be used in reruns)

 CALL RDINIT (IUNITC,IUNITL,FILEIC)

 CALL RDSCHA ('FILEIT', FILEIT)

 IF (RDINQR ('FILEI1')) CALL RDSCHA ('FILEI1', FILEI1)

 IF (RDINQR ('FILEI2')) CALL RDSCHA ('FILEI2', FILEI2)

 IF (RDINQR ('FILEI3')) CALL RDSCHA ('FILEI3', FILEI3)

 IF (RDINQR ('FILEI4')) CALL RDSCHA ('FILEI4', FILEI4)

 IF (RDINQR ('FILEI5')) CALL RDSCHA ('FILEI5', FILEI5)

 CLOSE (IUNITC)

*-----Read time, control and weather variables from timer file

 CALL RDINIT (IUNITD , IUNITL, FILEIT)

 CALL RDSREA ('STTIME', STTIME)

 CALL RDSREA ('FINTIM', FINTIM)

 CALL RDSREA ('PRDEL' , PRDEL)

 CALL RDSREA ('DELT' , DELT)

 CALL RDSINT ('IYEAR' , IYEAR)

 CALL RDSINT ('ISTN' , ISTN)

 CALL RDSINT ('IPFORM', IPFORM)

 CALL RDSCHA ('COPINF', COPINF)

 CALL RDSCHA ('DELTMP', DELTMP)

 CALL RDSCHA ('WTRDIR', WTRDIR)

 CALL RDSCHA ('CNTR' , CNTR)

 CALL RDSINT ('IFLAG' , IFLAG)

*-----See if observation data variable exists, if so read it

 INOD = 0

 IF (RDINQR('IOBSD')) THEN

 CALL RDAINT ('IOBSD' , IOBSD, IMNOD, INOD)

 IF (IOBSD(1).EQ.0) INOD = 0

 END IF

*-----See if variable with print selection exists, if so read it

 INPRS = 0

 IF (RDINQR('PRSEL')) CALL RDACHA ('PRSEL',PRSEL,IMNPRS,INPRS)

 CLOSE (IUNITD)

*-----Initialize TIMER and OUTDAT routines

 CALL TIMER2 (ITASK, STTIME, DELT, PRDEL, FINTIM,

 & IYEAR, TIME , DOY , IDOY , TERMNL, OUTPUT)

 YEAR = REAL (IYEAR)

 CALL OUTDAT (ITASK, IUNITO, 'TIME', TIME)

*-----Open weather file and read station information and return

* weather data for start day of simulation.

* Check status of weather system, WTRMES flags if warnings or errors

* have occurred during the whole simulation. WTRTER flags if the run

* should be terminated because of missing weather

 CALL STINFO (IFLAG , WTRDIR, ' ', CNTR, ISTN, IYEAR,

 & ISTAT1, LONG , LAT, ELEV, ANGA, ANGB)

 CALL WEATHR (IDOY , ISTAT2, RDD, TMMN, TMMX, VP, WN, RAIN)

 IF (ISTAT1.NE.0.OR.ISTAT2.NE.0) WTRMES = .TRUE.

 WSTAT = '444444'

 IF (ABS (ISTAT2).GE.111111) THEN

 WRITE (WSTAT,'(I6)') ABS (ISTAT2)

 ELSE IF (ISTAT2.EQ.0) THEN

 WSTAT = '111111'

 END IF

c*-----initialize OBSSYS routine

c IF (ITASK.EQ.1) CALL OBSINI

*-----Conversion of total daily radiation from kJ/m2/d to J/m2/d

 RDD = RDD*1000.

*-----Call routine that handles the different models

 CALL MODELS (ITASK , IUNITD, IUNITO, IUNITL,

 & FILEIT, FILEI1, FILEI2, FILEI3, FILEI4, FILEI5,

 & OUTPUT, TERMNL,

 & DOY , IDOY , YEAR , IYEAR ,

 & TIME , STTIME, FINTIM, DELT ,

 & LAT , LONG , ELEV , WSTAT , WTRTER,

 & RDD , TMMN , TMMX , VP , WN, RAIN)

==

* *

* Dynamic simulation section *

* *

==

 WRITE (*,'(A)') ' FSE 2.1: DYNAMIC loop'

20 IF (.NOT.TERMNL) THEN

--

* Integration of rates section *

--

 IF (ITASK.EQ.2) THEN

*--------Carry out integration only when previous task was rate

* calculation

 ITASK = 3

*--------Call routine that handles the different models

 CALL MODELS (ITASK , IUNITD, IUNITO, IUNITL,

 & FILEIT, FILEI1, FILEI2, FILEI3, FILEI4, FILEI5,

 & OUTPUT, TERMNL,

 & DOY , IDOY , YEAR , IYEAR ,

 & TIME , STTIME, FINTIM, DELT ,

 & LAT , LONG , ELEV , WSTAT , WTRTER,

 & RDD , TMMN , TMMX , VP , WN, RAIN)

*--------Turn on output when TERMNL logical is set to .TRUE.

 IF (TERMNL.AND.PRDEL.GT.0.) OUTPUT = .TRUE.

 END IF

--

* Calculation of driving variables section *

--

 ITASK = 2

*-----Write time of output to screen and file

 CALL OUTDAT (2, 0, 'TIME', TIME)

 IF (OUTPUT) THEN

 IF (ISET.EQ.0) THEN

 WRITE (*,'(13X,A,I5,A,F7.2)')

 & 'Default set, Year:', IYEAR, ', Day:', DOY

 ELSE

 WRITE (*,'(13X,A,I3,A,I5,A,F7.2)')

 & 'Rerun set:', ISET, ', Year:', IYEAR, ', Day:', DOY

 END IF

I-10

 END IF

*-----Get weather data for new day and flag messages

 CALL STINFO (IFLAG , WTRDIR, ' ', CNTR, ISTN, IYEAR,

 & ISTAT1, LONG , LAT, ELEV, ANGA, ANGB)

 CALL WEATHR (IDOY, ISTAT2, RDD, TMMN, TMMX, VP, WN, RAIN)

 IF (ISTAT1.NE.0.OR.ISTAT2.NE.0) WTRMES = .TRUE.

 WSTAT = '444444'

 IF (ABS (ISTAT2).GE.111111) THEN

 WRITE (WSTAT,'(I6)') ABS (ISTAT2)

 ELSE IF (ISTAT2.EQ.0) THEN

 WSTAT = '111111'

 END IF

*-----Conversion of total daily radiation from kJ/m2/d to J/m2/d

 RDD = RDD*1000.

--

* Calculation of rates and output section *

--

*-----Call routine that handles the different models

 CALL MODELS (ITASK , IUNITD, IUNITO, IUNITL,

 & FILEIT, FILEI1, FILEI2, FILEI3, FILEI4, FILEI5,

 & OUTPUT, TERMNL,

 & DOY , IDOY , YEAR , IYEAR ,

 & TIME , STTIME, FINTIM, DELT ,

 & LAT , LONG , ELEV , WSTAT , WTRTER,

 & RDD , TMMN , TMMX , VP , WN, RAIN)

 IF (TERMNL.AND..NOT.OUTPUT.AND.PRDEL.GT.0.) THEN

*--------Call model routine again if TERMNL is switched on while

* OUTPUT was off (this call is necessary to get output to file

* when a finish condition was reached and output generation

* was off)

 IF (ISET.EQ.0) THEN

 WRITE (*,'(13X,A,I5,A,F7.2)')

 & 'Default set, Year:', IYEAR, ', Day:', DOY

 ELSE

 WRITE (*,'(13X,A,I3,A,I5,A,F7.2)')

 & 'Rerun set:', ISET, ', Year:', IYEAR, ', Day:', DOY

 END IF

 OUTPUT = .TRUE.

 CALL OUTDAT (2, 0, 'TIME', TIME)

 CALL MODELS (ITASK , IUNITD, IUNITO, IUNITL,

 & FILEIT, FILEI1, FILEI2, FILEI3, FILEI4, FILEI5,

 & OUTPUT, TERMNL,

 & DOY , IDOY , YEAR , IYEAR ,

 & TIME , STTIME, FINTIM, DELT ,

 & LAT , LONG , ELEV , WSTAT , WTRTER,

 & RDD , TMMN , TMMX , VP , WN, RAIN)

 END IF

--

* Time update *

--

*-----Check for FINTIM, OUTPUT and observation days

 CALL TIMER2 (ITASK, STTIME, DELT, PRDEL, FINTIM,

 & IYEAR, TIME , DOY , IDOY , TERMNL, OUTPUT)

 YEAR = REAL (IYEAR)

 DO 30 IOD=1,INOD,2

 IF (IYEAR.EQ.IOBSD(IOD).AND.IDOY.EQ.IOBSD(IOD+1))

 & OUTPUT = .TRUE.

30 CONTINUE

 GOTO 20

 END IF

==

* *

* Terminal section *

* *

==

 ITASK = 4

 WRITE (*,'(A)') ' FSE 2.1: Terminate model'

*-----Call routine that handles the different models

 CALL MODELS (ITASK , IUNITD, IUNITO, IUNITL,

 & FILEIT, FILEI1, FILEI2, FILEI3, FILEI4, FILEI5,

 & OUTPUT, TERMNL,

 & DOY , IDOY , YEAR , IYEAR ,

 & TIME , STTIME, FINTIM, DELT ,

 & LAT , LONG , ELEV , WSTAT , WTRTER,

 & RDD , TMMN , TMMX , VP , WN, RAIN)

*-----Generate output file dependent on option from timer file

 IF (IPFORM.GE.4) THEN

 IF (INPRS.EQ.0) THEN

 CALL OUTDAT (IPFORM, 0, 'Simulation results',0.)

 ELSE

* Selection of output variables was in timer file

* write tables according to output selection array PRSEL

 CALL OUTSEL (PRSEL,IMNPRS,INPRS,IPFORM,'Simulation results')

 END IF

 END IF

 IF (WTRTER) THEN

 WRITE (*,'(/,A,/,/,/)')

 & ' The run was terminated due to missing weather'

 WRITE (IUNITO,'(/,A,/,/,/)')

 & ' The run was terminated due to missing weather'

 IF (IUNITO.NE.IUNITL) WRITE (IUNITL,'(/,A,/,/,/)')

 & ' The run was terminated due to missing weather'

 END IF

*-----Delete temporary output file dependent on switch from timer file

 IF (DELTMP.EQ.'Y'.OR.DELTMP.EQ.'y') CALL OUTDAT (99, 0, ' ', 0.)

10 CONTINUE

 IF (INSETS.GT.0) CLOSE (IUNITR)

*-----If input files should be copied to the output file,

* copy rerun file (if present) and timer file and if there, input

* files 1-5

 IF (COPINF.EQ.'Y'.OR.COPINF.EQ.'y') THEN

 IF (INSETS.GT.0) CALL COPFL2 (IUNITR, FILEIR, IUNITO, .TRUE.)

 CALL COPFL2 (IUNITD, FILEIT, IUNITO, .TRUE.)

 IF (FILEI1.NE.' ') CALL COPFL2 (IUNITD, FILEI1, IUNITO, .TRUE.)

 IF (FILEI2.NE.' ') CALL COPFL2 (IUNITD, FILEI2, IUNITO, .TRUE.)

 IF (FILEI3.NE.' ') CALL COPFL2 (IUNITD, FILEI3, IUNITO, .TRUE.)

 IF (FILEI4.NE.' ') CALL COPFL2 (IUNITD, FILEI4, IUNITO, .TRUE.)

 IF (FILEI5.NE.' ') CALL COPFL2 (IUNITD, FILEI5, IUNITO, .TRUE.)

 END IF

-----Delete all .TMP files that were created by the RD routines

* during simulation

 CALL RDDTMP (IUNITD)

*-----Write to screen which files contain what

 IL = ILEN (FILEON)

 WRITE (*,'(/,3A)') ' File: ',FILEON(1:IL),

 & ' contains simulation results'

 WRITE (*,'(2A)') ' File: WEATHER.LOG',

 & ' contains messages from the weather system'

 IL = ILEN (FILEOL)

 I-11

 WRITE (*,'(3A,/)') ' File: ',FILEOL(1:IL),

 & ' contains messages from the rest of the model'

*-----Write message to screen and output file if warnings and/or errors

* have occurred from the weather system, pause and wait for return

* from user to make sure he has seen this message

 IF (WTRMES) THEN

 WRITE (*,'(/,A,/,A,/,A)') ' WARNING from FSE:',

 & ' There have been errors and/or warnings from',

 & ' the weather system, check file WEATHER.LOG'

 WRITE (IUNITO,'(A,/,A,/,A)') ' WARNING from FSE:',

 & ' There have been errors and/or warnings from',

 & ' the weather system, check file WEATHER.LOG'

 WRITE (*,'(A)') ' Press <Enter>'

 READ (*,'(A)') DUMMY

 END IF

*-----Close output file and temporary file of OUTDAT

 CLOSE (IUNITO)

 CLOSE (IUNITO+1)

*-----Close log file (if used)

 IF (FILEOL.NE.FILEON) CLOSE (IUNITL)

*-----Close log file of weather system

 CLOSE (91)

c*-----Write end_of_run values to file

c CALL OPWRIT (IUNITO)

 RETURN

 END

File: CONTROL.DAT

--

* File names to be used by FSE 2.1 *

* *

* The input files (except FILEIR) may may used in reruns. *

* Up to five input data files may be used (FILEI1-5) *

* Also begin and end run numbers can be given here *

--

 FILEON = 'RES.DAT' ! Normal output file

 FILEOL = 'MODEL.LOG' ! Log file

 FILEIR = 'RERUNS.DAT' ! Reruns file

 FILEIT = 'TIMER.DAT' ! File with timer data

 FILEI1 = 'MODEL.DAT' ! First input data file

* FILEI2 = ' ' ! Second input data file (not used)

* FILEI3 = ' ' ! Third input data file (not used)

* FILEI4 = ' ' ! Fourth input data file (not used)

* FILEI5 = ' ' ! Fifth input data file (not used)

* STRUN = 0 ! Run number where execution should start

* ENDRUN = x ! Run number where execution should end

File: TIMER.DAT

*

* TIMER variables used in GENERAL and FSE translation modes

* ---

STTIME = 80. ! start time

FINTIM = 300. ! finish time

DELT = 1. ! time step (for Runge-Kutta first guess)

PRDEL = 5. ! output time step

IPFORM = 4 ! code for output table format:

 ! 4 = spaces between columns

 ! 5 = TAB's between columns (spreadsheet

 ! output)

 ! 6 = two column output

COPINF = 'N' ! Switch variable whether to copy the

 ! input files to the output file ('N' =

 ! do not copy, 'Y' = copy)

DELTMP = 'N' ! Switch variable what should be done

 ! with the temporary output file ('N' =

 ! do not delete, 'Y' = delete)

IFLAG = 1101 ! Indicates where weather error and

 ! warnings go (1101 means errors and

 ! warnings to log file, errors to screen,

 ! see FSE manual)

*IOBSD = 1991,182 ! List of observation data for which

 ! output is required. The list should

 ! consist of pairs <year>,<day>

 ! combinations

* WEATHER control variables

* -------------------------

WTRDIR = 'WEATHER\'

CNTR = 'NLD' ! Country code

ISTN = 1 ! Station code

IYEAR = 1980 ! Year

File: MODEL.DAT

* Initial constants

* -----------------

 ZERO = 0.

 NPL = 210.

 LA0 = 5.7E-5

 WSTI = 0.

 WRTI = 0.

 WLVI = 0.

 WSOI = 0.

 WLVDI = 0.

 IDVS = 0.

 ILAI = 0.

 IEAI = 0.

* Model parameters

* ----------------

 DOYEM = 90.

 AMX = 40.

 EFF = 0.45

 KDF = 0.60

 SCP = 0.20

 LATT = 52.

 TREF = 25.

 Q10 = 2.

 MAINLV = 0.03

 MAINST = 0.015

 MAINSO = 0.01

 MAINRT = 0.015

 ASRQRT = 1.444

 ASRQLV = 1.463

 ASRQSO = 1.415

I-12

 ASRQST = 1.513

 FRTRL = 0.20

 RGRL = 0.009

 SLA = 0.0022

 EAR = 6.3E-5

 LAICR = 4.0

 TBASE = 0.

 CFSO = 0.471

 CFRT = 0.467

 CFLV = 0.459

 CFST = 0.494

* Interpolation functions

* -----------------------

 DVRVT =

 -10., 0.,

 0., 0.,

 30., 0.027

 DVRRT =

 -10., 0.,

 0., 0.,

 30., 0.031

 AMDVST =

 0.0, 1.0,

 1.0, 1.0,

 2.0, 0.5,

 2.5, 0.0

 AMTMPT =

 -10., 0.,

 0., 0.,

 10., 1.,

 25., 1.,

 35., 0.,

 50., 0.

 FSHTB =

 0.00, 0.50,

 0.10, 0.50,

 0.20, 0.60,

 0.35, 0.78,

 0.40, 0.83,

 0.50, 0.87,

 0.60, 0.90,

 0.70, 0.93,

 0.80, 0.95,

 0.90, 0.97,

 1.00, 0.98,

 1.10, 0.99,

 1.20, 1.00,

 2.50, 1.00

 FLVTB =

 0.00, 0.65,

 0.10, 0.65,

 0.25, 0.70,

 0.50, 0.50,

 0.70, 0.15,

 0.95, 0.00,

 2.50, 0.00

 FSTTB =

 0.00, 0.35,

 0.10, 0.35,

 0.25, 0.30,

 0.50, 0.50,

 0.70, 0.85,

 0.95, 1.00,

 1.05, 0.00,

 2.50, 0.00

 RDRT =

 -10., 0.03,

 10., 0.03,

 15., 0.04,

 30., 0.09

File: NLD1.980

* Country: Netherlands

* Station: Wageningen

* Year: 1980

* Source: Dep. of Meteorology, Wageningen Agricultural

* University.

* Author: Peter Uithol

* Longitude: 05 40 E

* Latitude: 51 58 N

* Elevation: 7 m.

* Comments: Location Haarweg.

*

* Columns:

* ========

* station number

* year

* day

* irradiation (kJ m-2 d-1)

* minimum temperature (degrees Celsius)

* maximum temperature (degrees Celsius)

* vapour pressure (kPa)

* mean wind speed (m s-1)

* precipitation (mm d-1)

 5.67 51.97 7. 0.00 0.00

 1 1980 1 2540. -1.2 1.4 0.620 3.5 6.2

 1 1980 2 3520. -6.5 1.4 0.530 1.7 0.0

 1 1980 3 1510. -8.2 0.1 0.490 2.2 0.2

<continued>

 1 1980 362 3220. -3.3 4.3 0.600 1.1 0.7

 1 1980 363 870. -2.7 3.4 0.620 2.8 0.0

 1 1980 364 350. 3.3 7.2 0.870 3.5 0.0

 1 1980 365 320. 6.4 8.2 0.920 4.3 0.0

 1 1980 366 570. 5.7 8.6 0.820 7.2 2.0

File: RERUNS.DAT

* Example rerun file

NPL = 210.; AMX=30.

NPL = 250.; AMX=40.

NPL = 250.; AMX=30.

File: OUTREC.FOR

 PROGRAM OUTREC

* Creates output tables from RES.BIN files. Use for instance after

* a program crash, leaving you without a formatted output table.

*

* Subroutines and/or functions called:

* - from library TTUTIL: ILEN, FOPENG, ERROR, OUTCOM, UPPERC,

* IFINDC, AMBUSY

*

* Author: Daniel van Kraalingen

* Date : April 1995

* TTUTIL Version 3.4

 I-13

 IMPLICIT NONE

 INTEGER ICH

 WRITE (*,'(A,5(/,A))')

 & ' Normal output table of last set: 4',

 & ' Tab-delimited table of last set: 5',

 & ' Two column output of last set: 6',

 & ' Normal output table of all sets: 14',

 & ' Tab-delimited table of all sets: 15',

 & ' Two column output of all sets: 16'

 CALL ENTDIN ('Your choice please',14,ICH)

 CALL OUTDAT (ICH,20,'Recovered file',0.)

 WRITE (*,'(A)') ' Output successfully recovered'

 END

2-14

Overgebleven tekst

The complexity of the routine that drives the models under FSE (the FSE driver) has also been
hidden by using an interface routine with the introduction of FSE 2.1. This interface routine receives
data from FSE such as day of the year, year etc. and makes these available to the different models
that are called by the interface routine. Also the interface routine can be used to organize
interactions among models more conveniently than with FSE 1.0.

