An H_{∞} -observer at the boundary of an infinite dimensional system

D. Vries and K.J. Keesman,	H. Zwart
Wageningen University	University of Twente,
P.O. Box 17,	P.O. Box 217,
6700 AA Wageningen, NL,	7500 AE Enschede, NL,
$\{\tt dirk.vries,\tt karel.keesman\}@wur.nl$	h.j.zwart@utwente.nl

Abstract

We design and analyze an H_{∞} -observer which works at the boundary of an infinite dimensional system with scalar disturbances. The system is a model of a UV disinfection process, which is used in water treatment and food industry.

Keywords

Robust filter design, observers, boundary control theory, H_{∞} -optimization

1 Introduction

In many (control) applications where (bio)chemical reactions and transport phenomena occur, measurement and control actions take place at the boundaries. While a theoretical framework already exist ([1] and references therein), there is little attention to apply this theory in practice, as far as we know.

In [2], the analysis and design of a Luenberger observer for a UV disinfection example is explored. In this paper, we analyze a robust Luenberger-type observer for the same system with boundary inputs and boundary outputs, see [2] for physical background,

$$\frac{\partial x}{\partial t}(\eta, t) = \alpha \frac{\partial^2 x}{\partial \eta^2}(\eta, t) - v \frac{\partial x}{\partial \eta}(\eta, t) - bx(\eta, t), \quad x(\eta, 0) = 0$$
(1)

$$x(0,t) = w_1(t), \quad \frac{\partial x}{\partial \eta}(1,t) = 0, \quad y(t) = x(\eta_1,t) + w_2(t),$$
 (2)

on the interval $\eta \in (0, 1)$. Furthermore, α , v, and b are positive constants and corresponding to the diffusion constant, constant flow velocity and micro-organism light susceptibility constant, respectively. The signals u(t), $w_1(t)$, $w_2(t)$ and y(t) represent a scalar input, disturbance (or error) at the inlet boundary ($\eta = 0$), disturbances or errors on the output and a scalar output, respectively.

We design a dynamic Luenberger-type observer,

$$\frac{\partial \hat{x}}{\partial t}(\eta, t) = \alpha \frac{\partial^2 \hat{x}}{\partial \eta^2}(\eta, t) - v \frac{\partial \hat{x}}{\partial \eta}(\eta, t) - b \hat{x}(\eta, t), \quad \hat{x}(\eta, 0) = 0$$
(3)

$$\hat{x}(0,t) = 0, \quad \frac{\partial \hat{x}}{\partial \eta}(1,t) = K(t) * (y(t) - \hat{y}(t)), \quad y(t) = \hat{x}(\eta_1,t),$$
 (4)

with K to be designed, and * denotes the convolution product. As a consequence, the dynamics for the error $\varepsilon(\eta, t) = x(\eta, t) - \hat{x}(\eta, t)$ is written as

$$\frac{\partial \varepsilon}{\partial t}(\eta, t) = \alpha \frac{\partial^2 \varepsilon}{\partial \eta^2}(\eta, t) - v \frac{\partial \varepsilon}{\partial \eta}(\eta, t) - b\varepsilon(\eta, t), \quad \varepsilon(\eta, 0) = 0$$
(5)

$$\varepsilon(0,t) = w_1(t), \quad \frac{\partial \varepsilon}{\partial \eta}(1,t) = K(t) * \left(\varepsilon(\eta_1,t) + w_2(t)\right).$$
(6)

Please notice that the correction to possible disturbances w takes place at the boundary.

2 H_{∞} -filter problem

The aim is now to design a K such that the disturbances w_1 and w_2 have hardly any influence on $\varepsilon(1,t)$. This would enable us to predict the value of x at $\eta = 1$ accurately. Since the future of the output cannot be used, we see that K must be causal. We can write this problem as a standard H_{∞} -filtering problem, i.e.,

$$\inf_{K \text{ causal } w} \sup_{w} \frac{\|\varepsilon(1)\|_2}{\|w\|_2}$$

with $w(t) = \begin{pmatrix} w_1(t) & w_2(t) \end{pmatrix}^\top$.

In [2], we already explored the exponential stability for the error dynamics (5)–(6) with constant gain. In the talk we shall further outline the procedure of how K is designed for the UV-disinfection example.

References

- R.F. Curtain and H. Zwart. An Introduction to Infinite Dimensional Linear Systems Theory. Springer-Verlag, New York, 1995.
- [2] D. Vries, K. Keesman, and H. Zwart. A Luenberger observer for an infinite dimensional bilinear system: a UV disinfection example. Accepted for SSSC'07, Foz de Iguassu, Brazil.