
i 
 

Laboratory of Geo-Information Science and Remote Sensing 

Thesis Report GIRS-2015-20 

 

Forecasting and classifying potato yields for precision 

agriculture based on time series analysis of multispectral 

satellite imagery  

 

Tziolas Nikolaos 

 

 

 

 

 

 

 

 

 

M
ay

 2
0

1
5

 

 



ii 
 

  



iii 
 

Forecasting and classifying potato yields for precision 

agriculture based on time series analysis of multispectral 

satellite imagery  

 

 

 

 

Tziolas Nikolaos 

 
Registration number 89 07 08 846 040 

 

 

 

 

 

Supervisors: 

 

Dr. ir. Lammert Kooistra 

ir. Gerbert Roerink 

 

 

 

 

 

A thesis submitted in partial fulfilment of the degree of Master of Science  

at Wageningen University and Research Centre,  

The Netherlands. 
 

 

 

 

 

 

May, 2015 

Wageningen, The Netherlands 

 
 
 
 

Thesis code number:  GRS-80436 
Thesis Report:   GIRS-2015-20 
Wageningen University and Research Centre 
Laboratory of Geo-Information Science and Remote Sensing  



iv 
 

 

 

 

 

 

 

 

 

  



v 
 

Acknowledgement 
First of all, I would like to thank my supervisor Lammert Kooistra for guiding this research 

and leaving me the free to explore several ideas and provided me with feedback in such 

detail way. Further thanks go to Gerbert Roerink for valuable discussions about approaches 

to extract representative NDVI temporal profiles. This helped me to see the fitting process 

with more critical eyes. He also offered the pre-processed RS data.  

This research would not have been possible without the detailed ground based data kindly 

provided by Mr. Jacob van den Borne.  

Another gratitude goes to Andreas Matalis and Ioannis Moutsinas were kind enough to 

proofread the manuscript, before I submitted the latest version of this research. 

I would also like to mention the open source communities for providing most all of my 

research tools: RStudio and GDAL, to name only some. Nowadays, freely accessible software 

tools enable anyone to solve complex problems more feasible and faster. 

Furthermore I want to thank my parents for their unconstrained support during my studies. 

Finally, my parents and all my friends for supporting and encouraging me during the times 

when I lose my motivation and get distracted. 

 

  



vi 
 

  



vii 
 

Abstract 
Since, March 2012 the National Satellite Dataportal of the Netherlands provides Disaster 

Monitoring Constellation (DMC) images with a time resolution of 2 days and sufficient 

spatial resolution of 22m, making it an ideal data source for application in precision 

agriculture sector. For a farm spanning between Belgium and the Netherlands as a research 

area data from two growing seasons (2013 and 2014) were analyzed, in order to determine 

if potato yield potential could be estimated utilizing an in-season estimation of normalized 

difference vegetative index (NDVI) and meteorological data. This research provides 

important insight into availability of cloud free satellite images during critical periods of 

agricultural growing season emphasizing that is a key for agricultural monitoring and yield 

prediction. In this research, inclusion of information related to crop phenology showing 

significantly improved model performance. Several methods used to provide 

recommendations for the estimation of yield at the field scale. Linear regression models 

developed using parameters of NDVI time series profiles were evaluated as a stand-alone 

yield predictor. Additionally, multivariate regression models were developed introducing 

bio-climatic variables (solar radiation, temperature and precipitation) in conjunction with 

NDVI. Beyond the regression models, decision trees were used to analyze a qualitative 

relationship between yield NDVI and meteorological variables. In general the results were 

significant and promising. The resulting yield maps provide a unique opportunity to inform 

agricultural management decisions. Future satellite missions should permit estimation of 

potato yields using image resolutions that facilitate extraction of information in more 

frequent times. This analysis has also described cloud cover frequency throughout the 

agricultural growing season, providing insight into how yield forecasting approach could be 

impacted by cloud cover.  
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1 Introduction  

1.1 Context and Background 

The world population exceeds the 7 billion and according to the current birth rates it 

appears to rise by approximately 1 billion over the next several decades and finally surpass 9 

billion in 2050 (United Nations, 2013). At the same time the demand for agricultural 

products is expected to double, according to recent estimations (FAO, 2009). 

The agricultural sector is facing one of the largest challenges, being necessary to meet the 

growing demand for food, and at the same time halting agriculture expansion and 

eliminating the environmental impacts (Godfray et al., 2010). Since the end of the last 

century there studies have indicated that both intensification of the agricultural production 

systems and expansion of arable land contribute to anthropogenic effects on the Earth’s 

biogeochemical cycles (Vitousek et al., 1997). In particular, agriculture is estimated as the 

direct driver for around 80% of deforestation worldwide (Kissinger et al., 2012) resulting in 

biodiversity loss and climate change. Likewise, the excessive application of fertilizers, 

pesticides and water for irrigation use affect negatively the environmental quality and 

ecosystem services (Matson et al., 1997; Gregory et al., 2002). 

All these developments reinforce the importance to pursue an ecological intensification of 

agriculture to increase current yield levels of existing crops on the same number of hectares 

and simultaneously protect the environment and the natural resources for the next 

generations (Cassman, 1999). Hence, the question arises, can we ensure food security using 

more sustainable ways in agricultural production systems? 

Radical changes in agriculture have been introduced over the past century. Mechanized 

agriculture, advancements and innovations in breeding resulted in increased crop 

production and productivity from the late 1960s and beyond. Nowadays, advances in global 

positioning systems (GPS), geographic information systems (GIS), remote sensing (RS) and a 

series of several sensors can be a new inflection point in agricultural sector (Blackmore, 

1994). 

All these technologies found in precision agriculture (PA) provide large amount of data that 

is currently recognized to be the next step of providing a timely and reliable picture of actual 

field conditions(Robert, 2002). The collection, processing, analysis and understanding of that 

time series data can enable monitoring agricultural production, estimating variations in crop 

productivity among fields by making a yield prediction, during and throughout the growing 

season. Hence, farmers can be assisted to establish proper management action plans about 

their operations that will drive in significant increases in crop production alone on existing 

areas by using resources more efficiently. 

So, there is need to attempt good techniques for early crop prediction in order to minimize 

the yield gap by identifying the potential scope for raising average yields via optimization of  

spatially explicit irrigation, fertilization and application of pesticides(Pinter Jr et al., 2003).  

However, the necessity of estimating agricultural production is broadened in a wider variety 
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of applications as it can have a direct influence in marketing and logistical issues and 

determine of pricing policies of food (Lobell et al., 2003). 

1.2 Problem definition 

Agricultural vegetation develops from sowing to harvest as a function of meteorological 

driving variables (e.g., temperature, sunlight, and precipitation). Since the early days of earth 

observation satellites , RS data has a emerged as a feasible tool to the monitoring task by 

providing timely, synoptic and repetitive information about agricultural vegetation 

(Atzberger, 2013). Several previous studies illustrated examples of RS in agricultural sector 

and a general review is given by Atzberger (2013). For the purpose of this research a brief 

summary of yield estimation and assessment of crop phenological development is provided 

below. 

Numerous studies (Yang and Anderson, 2000; Lyle et al., 2013) in literature dealing with the 

estimation of yield heterogeneity via RS have been presented as an alternative to laborious 

and time consuming field measurements or to complex crop growth models. In summary, 

past predictions of yield, which incorporated a variety of approaches have ranged from 

simple statistical relationships (Bolton and Friedl, 2013; Lyle et al., 2013); more advanced 

relationships, using multivariate linear regression models (Prasad et al., 2006; Balaghi et al., 

2008), based on remotely sensed and meteorological data; as well as recent intelligent data 

mining techniques like artificial neural network, decision trees, and feature selection 

algorithms, which have the capability to involve hundreds or even thousands of variables 

(Panda et al., 2010; Fernandes et al., 2011; Gonzalez-Sanchez et al., 2014; Johnson, 2014). 

The availability of RS time-series data enable for delineating spatial and temporal patterns of 

crop phenology on a per pixel basis. Taking advantage of this application, recent studies 

(Funk et al., 2007; Bolton and Friedl, 2013; Wang et al., 2014b) highlighted that the 

correlation of yield performance both differ between vegetation indices and varies through 

the crop cycle. Results from these studies have indicated that the perspective of forecasting 

yield is enhanced by using particular information related to crop phenology.  

Although, the potential value of field level evaluation is commonly recognized by the 

researchers, the majority of the above mentioned studies present approaches for yield 

estimation at scales broader than individual fields. Two are the main reasons for this. On the 

one hand, the evaluations of approaches at scales broader than individual fields performed 

by comparing reported yields for counties or crop reporting districts with the average of RS 

yields over these domains (Doraiswamy et al., 2005; Becker-Reshef et al., 2010; Lobell et al., 

2010). On the other hand, RS estimation of crop yields at field level has been hindered due 

to the difficulty for access to sufficient data that reflect the production and productivity of 

actual farmer fields.  

A second hindrance, up to now, was located in the limitation to obtain images at sufficient 

spatial resolution to delineate individual fields (Figure 1). Hence, those studies have 

employed low resolution sensors because of their availability and frequent revisit time. 

Landsat imagery allows yield predictions at a higher spatial resolution by distinguishing fields 

that are roughly 1 ha in size or greater and it has also extensively used in RS applications in 

several agricultural areas (Lyle et al., 2013). However, with a 16 days temporal resolution the 
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problem of obtaining satellite imagery in cloudy locations, like the Netherlands, acts as an 

obstacle for precision farming applications (Zhang and Kovacs, 2012). Moving forward, the 

innovations in RS technology have positive effect on lower cost and increased number of 

fine spatial resolution sensors helping to partly mitigate the inherent tradeoff between 

spatial and temporal resolution. In the light of the above, high spatiotemporal data are 

becoming  available and can be used to monitor crop growth in real-time detection. Thanks 

to these developments RS has shown great expectations for quantifying yield variations both 

within and between fields. Although many studies have employed RS in precision agriculture 

to analyze variations within individual fields (Kooistra et al., 2012; Gevaert et al., 2015) few 

have been addressed between yield variations across the landscape facing each field as a 

single unit (Lyle et al., 2013). 

However, RS data are still not available on a daily basis, hence some interpolation is 

recommended to estimate daily VI values. Some researchers proposed to resolve the 

compromising between spatial and temporal resolution by performing interpolation based 

on some statistical function such as a local linear interpolation (Mingwei et al., 2008; Pan et 

al., 2015) or fitting double logistic curves (Zhang et al., 2003; Beck et al., 2006). Extensive 

description of these methods is provided in the second chapter. 

 
Figure 1: Examples of the effect of image resolution on the ability of remote sensing to monitor individual 

fields. The left image displays a 2.5 km×2.5 km section of a Rapid Eye 5m x 5m resolution image on agriculture 
area in Kings County, United States. Moving right, images resampled to represent the coarser resolutions of 
some common sensors: ASTER ( 15m, second), Landsat (30m, third) and MODIS (250m, last) are presented 

(Lobell, 2013). 

Finally, most of the above mentioned studies for crop prediction give more emphasis on 

cereals and rice, as over half of the global population relies on them for their nutrition. 

However, studies over the past decade demonstrating a slowing of crop yield rates of grain 

both  in farmers field's (Lin and Huybers, 2012) and on broader scales (Cassman et al., 2003; 

Brisson et al., 2010) raise the concerns for ensuring equitable food production. Possible 

shortages could be covered by other type of crops like tuber crops (potatoes) which are very 

easy to grow everywhere and don't have a lot of requirements. In addition, the Netherlands 

is a world leading country as far as it concerns potato production. The subsequent 

knowledge and experience in the field of potato growing, harvesting techniques, storage, 

transport and processing can also offer solutions to overcome food security issue. In general, 

potato has been also mentioned in few studies (Bala and Islam, 2009; Ramírez et al., 2014) 

but the number of crop prediction studies focusing on potato is significant limited.  

In general, there is clear evidence that the availability of time-series data, with a high spatial 

and temporal resolution to detect variations in crop productivity and production, is a critical 
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user requirement for the application of remote sensing in precision agriculture (Hatfield and 

Prueger, 2010). Crop yield estimation with good accuracy provides an insight on how to face 

field as a single unit across the landscape in order to improve management and maximize 

field productivity. For instance, this information on emerging problems like water stress or 

possible diseases, could be indicated during the growing season. All the above can assist the 

farmers to make appropriate crop management such as selecting the optimal rate and time 

of fertilization and irrigation, for optimizing the yield quantity and quality (Wu et al., 2007).  

1.3 Research objectives & questions 

This research focuses on the development and evaluation of a method to estimate potato 

yields from remote sensing time-series at the field level, for 2013 and 2014 growing seasons. 

The aim is twofold, as research is done on both the entire growing season and in several 

time steps. On the basis of DMC's multispectral remote sensing data, the quantitative 

relationship between the NDVI and potato yield was analyzed and additionally the optimal 

period for predicting potato yield within the growing season was determined. Due to the 

changes of crop phenology among the years, an approach using information related to this 

phenomenon was investigated, aiming to enhance the performance of yield forecasting 

models. Having explored how far NDVI can be used as a stand-alone yield predictor, 

regression models were developed by incorporating meteorological factors. Additionally, 

besides the regression models, decision trees were used to analyze a qualitative relationship 

between yield and NDVI metrics, providing means to assess the relative performance of each 

technique in the context of explaining the yield variability of fields across the landscape. 

The following research questions were leading this research in order to meet the objectives 

of this study : 

RQ1  Can remotely sensed information related to crop phenology be used to improve the 

 predictions of yield ? 

RQ2  Does the number of satellite images influence the estimated yield accuracy ? 

RQ3  How can the meteorological factors be incorporated in a VI-yield prediction model ?  

RQ4 Which classification accuracy can decision trees provide a qualitative yield 

 estimation ? 

1.4 Thesis outline  

This report is structured as follows: Chapter 1, context and background of the research were 

discussed and the problem definition was introduced. Chapter 2 contains a description  of 

yield prediction methods, crop phenology of the investigated plant and several phenological 

metrics that can be derived by analyzing remotely sensed times series. Consequently, a brief 

description of method in order to obtain daily basis VIs time series and an introduction in 

data mining techniques are presented. Chapter 3 describes the study area and takes a closer 

look in all data sets used. Also it deals with the methods used to analyze the data to offer 

answers for the research questions. Chapter 4 summarizes the results from each proposed 

method, while the results are discussed in a broader context taking into account other 

limitations and results from other studies are presented in Chapter 5. Finally, Chapter 6 

contains an overall conclusion and recommendations for further studies.   
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2 Literature review 

In this chapter a closer look at the theoretical framework is presented, providing a synoptic 

literature review on the main topics of this study.  

2.1 Yield prediction 

In general, several methods have been developed and implemented for estimating 

agricultural production on regional, national and global scale. Each method displays 

advantages and disadvantages in forecasting the crop yield precisely. Conventional methods 

based on crop data collection from field visits (Cassman et al., 2003) or surveys using 

questionnaires among farmers to assess future yields are costly, time consuming, prone to 

errors and leading to inaccurate crop estimations (Reynolds et al., 2000). Furthermore, many 

yield forecasting approaches involve the use of mechanistic crop growth models (Grassini et 

al., 2011; Laborte et al., 2012). However, such models require a large volume of specific 

inputs which are available for only a limited number of farmers. Subsequently, they need to 

be calibrated and validated always for robust simulations from different crop types and 

environmental parameters. Their complexity and high input data requirements have been 

considered as the main limitations for application of these models at a field level. Remotely 

sensed data also applied into mechanistic crop growth models offering a chance to enhance 

yield prediction (Doraiswamy et al., 2005; Chahbi et al., 2014). Due to the fact that RS can 

provide with timely information at a range of scales, accurate yield prediction is feasible 

using only RS data, as a consequence crop yield reference data are necessary only in the 

validation phase. The overview of Gallego et al. (2010) presented several approaches for 

estimating crop yields with RS. The majority of these studies based on the relationship of VIs 

or other biophysical parameters, such as LAI to the yield with a focus on wheat, corn, rice 

and soybeans. One obvious reason is that these crops are found in quantity around the 

world, however an additional cause could be that there have been found better success in 

yield prediction against crops, like potato or sugar beet, which are grown below ground.  

However,  in literature some examples for potato are demonstrated. For instance, Bala and 

Islam (2009) developed linear regression models in Bangladesh between potato yield and  

NDVI, LAI and the fraction of  Photosynthetically Active Radiation (fPAR) using coarse spatial 

resolution data imagery from Moderate Resolution Imaging Spectroradiometer (MODIS). 

Performing the analysis for two growing seasons (2006-2007), they found a strong 

correlation between NDVI, LAI and fPAR during the growing season with an average error of 

estimation was about 15% . Neale and Sivarajan (2011) compared potato yield for a total of 

15 fields to the Soil Adjusted Vegetation Indices (SAVI), at three stages in the growing 

season. Also they integrated the entire area under the VI curve (AUC) and then finally 

regressed it with yield, in order to estimate the yield prediction for the whole growing 

season. Their results showed that the three integrated SAVI yield model developed using 

airborne and multispectral satellite (Landsat TM5) images resulted in good prediction for 

most of the fields, with a root mean square error (RMSE) of 0.29 and 0.24 kg/sq.m, 

respectively. The analyses in above mentioned studies were performed using VIs data across 

a wide range of spatial resolutions and regression models. The main drawback of these 

regressions is that cannot be utilized in a general manner because are only applicable to the 
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spatial and temporal extent of the specific study regions. This is caused by the variability of 

the relations between crop types, growth conditions and meteorological factors (Rudorff 

and Batista, 1990).  

To date, studies at a scale that is relevant for management at field level are limited due to 

the availability of ground based yield data at a sufficient spatial resolution for discriminating 

the individual fields. In general, yield research at field level scale seems to have quite good 

accuracies with root mean square errors RMSE smaller than 10% comparing with studies 

that make use of low spatial resolution data (Lobell et al., 2005). However, nowadays, more 

and more studies are performed at field scale level. For instance, Morel et al. (2014) 

compared sugarcane to integrated NDVI that was obtained from SPOT-4 and SPOT-5 time 

series images. Lyle et al. (2013),  explored the variation, across three farms, in wheat yield 

with NDVI of individual images over 5 growing seasons. Although there are few examples for 

potato forecasting via RS , no studies performed at fields level scale in order to meet the 

scope of PA. 

Finally, significant results of previous studies (Funk and Budde, 2009; Bolton and Friedl, 

2013; Wang et al., 2014b) indicated that crop phenology-tuned VIs present an enhanced 

correlation with yield. The authors attempt to relate the crop yield with several vegetation 

indices by developing empirical models specifying the start of photosynthetically growing 

season by using the onset of rainy season or the date of onset of VIs increase at each pixel. 

In summary, the results by Bolton and Friedl (2013) showed that yield forecast models based 

on phenologically adjusted VIs present better performance of approximately 10%, versus 

approach using a fixed calendar date to estimate remote sensing-based yield prediction 

models. 

It is well known that yield is affected by several parameters. Previous studies have 

highlighted the strong dependency of agriculture vegetation on weather. For example, 

Prasad et al. (2006) developed crop yield prediction models based on corn and soybean 

crops, implementing NDVI and meteorological factors by using a piecewise linear regression 

method. Balaghi et al. (2008) also make use of rainfall and temperature for wheat yield 

forecasting by means of ordinary least squares regressions. Both studies indicated that 

weather parameters could be beneficial for yield prediction models. However, the models 

developed in the above studies were implemented in broader scales than individual fields. 

Both showed  promising results indicating that incorporating weather parameters should 

have positive effect in yield estimation area.  

The increased availability of survey datasets on weather, management practices, and time 

series of vegetations indices and the derivatives of them generate an issue for handling and 

smart using of big data for agriculture applications, such as yield estimation. Besides, the 

methods described in the previous paragraphs numerous methods have been reported and 

found suitable for crop yield forecasting such as, neural networks (Uno et al., 2005) and 

decision tree type models (Fernandes et al., 2011; Johnson, 2014).  
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2.2 Crop phenology 

2.2.1 General features 

Phenology is defined as the study of observing the changes in life stages of biological events 

in relation to the temporal occurrence (Menzel, 2003). According to White et al. (1997) 

climate variations cause changes in crop phenology as they are considered significant 

indicators on the impact of natural ecosystems. This is also confirmed by recently studies 

(Tao et al., 2006; Heumann et al., 2007) where, plant phenologies affected by factors such as 

soil and air temperature, photoperiod and precipitation vary depending upon the species, 

year and location. Agronomists consider any agricultural crop as a system that interact with 

all the factors of its physical environment.  

From this point of view, variations on timing of growth stages of crop activity may be 

important for the agriculture science as can be an indicator of the impact of inter and intra-

seasonal variations of the above mentioned factors. Previous studies demonstrated that this 

information assist to evaluate properly the crop condition and facilitate in supporting 

decisions and management practices (Pan et al., 2015). 

2.2.2 Potato phenology 

Growth of a potato plant occurs in several stages: sprout emergence and development, 

plant establishment, tuber initiation, tuber filling, and tuber maturity (Figure 2). Timing of 

these growth stages can vary depending on environmental factors, such as elevation and 

temperature, soil type, adequate water levels in soil, cultivar selected, and geographic 

location (Coelho and Dale, 1980).  

 

Figure 2: Growth stages of potato.  The green line represents the vegetative growth coinciding with the aerial 
development, while the yellow line illustrates the reproductive growth coinciding with the development of the 

tubers, source: (Sqm.com, 2015) 
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The period of establishment followed by the vegetative phase in which the tuber initiation 

starts and then a yield formation during the tubers filling phase is taken place. Subsequently, 

at the start of the senescence characteristics and the end of the period of the potato cluster, 

the majority of the products of photosynthesis are transferred into the tubers with the 

duration of this period displaying an positively relation to tuber yield.  

The effect of temperature on crop phenology was examined during the potato growing 

season by agronomists. However, field experiments (Sarquís et al., 1996) in potato indicated 

that the magnitude of final yield was not directly related to temperature but was 

determined by an intricate interaction between all the meteorological factors. In general, 

the tuber initiation and the growing phase require temperatures between 18° to 20°C. 

Temperatures over 25° C increase the respiration rate therefore, the net assimilation rate is 

decreased, with dramatically effects in the photosynthetic process. Photoperiod influences 

the tuber filling rate, and it should be taking into account that this rate is significant high in 

the study area of this research (section 3.1) as it has few light hours during the day. Previous 

studies, showed that increases in solar irradiance led to significant potato yield 

improvements (Stutte et al., 1996). Finally, it is important to avoid variation in the soil 

humidity levels during the crop growing period, particularly at the phase of tuber initiation, 

when good humidity level should be constant. This will influence the increment of stems, 

foliage density, weight and tubers number. Likewise, availability of soil moisture during the 

tuberization phase, eliminating the risk of diseases.  

2.2.3  Monitoring crop phenological development using remote sensing 

Remote sensing, due to the very good correspondence between signal and measures of 

vegetation and the repeated temporal sampling of satellite observations used for monitoring 

vegetation dynamics. Previously vegetation index time series analysis, in scope of crop 

phenology study, performed using data were obtained from sensors like AVHRR (Advanced 

Very High-Resolution Radiometer) (Jakubauskas et al., 2002; White et al., 2009) and MODIS 

(Zhang et al., 2003; Sakamoto et al., 2005) as their high temporal resolution benefits the 

monitoring of ecological process that occurred in crop plantation land (Wu et al., 2010). 

However, their coarse spatial resolution is the intrinsic drawback of these sensors for 

applications in the sector of PA, such as is less capable of detecting small scale disturbances 

like those from agriculture activities scheduling (Estrella et al., 2009; Begue et al., 2014).  

Studies (Lobell et al., 2005; Lyle et al., 2013) dealing with agriculture application, overcame 

this limitation by utilizing data from Landsat in order to achieve a finer spatial resolution. 

However, cloudiness conditions during different portions of the agricultural growing season 

display difficulties in the construction of time series. Specifically, yield forecasting 

applications require high frequency data during agricultural growing season (Becker-Reshef 

et al., 2010) such as high spatial resolution in order to delineate small fields.  

Few studies have been reported to resolve the issues of required high spatiotemporal 

resolution in agricultural applications. Some researchers introduced data fusion technologies 

in order to simulate high spatiotemporal resolution images (Hankui et al., 2014; Gevaert and 

García-Haro, 2015), while others proposed interpolation techniques (Zhang et al., 2003; Beck 
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et al., 2006). The first approach is out of the scope of this study, hence only the second one 

will be discussed below. 

Numerous methods for interpolating and reconstructing VIs time-series have been proposed 

and  several reviews on this topic are available (White et al., 2009; Cong et al., 2012). Only a 

brief summary of these approaches with their advantages and limitations is given here. They 

range from simple to more sophisticated techniques, mainly including: Harmonic Analysis of 

Time Series (HANTS) (Roerink et al., 2000), curve fitting (e.g. double logistic and asymmetric 

Gaussian function) (Jonsson and Eklundh, 2002; Zhang et al., 2003; Beck et al., 2006; Julien 

and Sobrino, 2010), signal smoothing (e.g., Fourier analysis) (Mingwei et al., 2008; Sakamoto 

et al., 2010) and signal smoothing integrated with linear interpolation (Pan et al., 2015). 

Several of the aforementioned methods require representation of a time-series that is 

continuous and evenly interval (Jönsson and Eklundh, 2004; Zhu et al., 2012). The  eight-day 

composites from MODIS meet this requirement, hence several studies performed utilizing 

this kind of data. However, satellites (e.g., DMC or Chinese HJ-1A and HJ-1B satellites) with 

finer resolution than MODIS provide data having irregular availability over the year, 

especially in areas with frequent cloud cover, such as the Netherlands. Hence, when utilizing 

time-series data with irregular equidistantly spacing, the major problem is reconstructing 

the completeness of time-series dataset. Pan et al. (2015) claimed that methods to 

manipulate unevenly spaced time-series data (Baisch and Bokelmann, 1999) may not work 

well in non equidistantly spaced time-series data derived from Chinese HJ-1A and HJ-1B 

satellites which have similar characteristics with the DMC satellite which covers the Dutch 

territory.  

In general the selection of method for creating an inter-annual curve fit, is not always 

straightforward (Hird and McDermid, 2009). It is recommended prior the processing to 

construct a complete time-series dataset, the researcher consider carefully the objectives of 

the study and the availability of satellite data, in order to select the most appropriate 

method fitting study's demands. Moreover, the researchers must be careful about the 

maintenance of original characteristics of time-series profile in order to avoid errors later in 

yield estimation (Lobell et al., 2010). 

Modeling the whole time series giving the advantage of obtaining a maximum amount of 

information in the VI data (Jönsson and Eklundh, 2004). Few studies taking this advantage 

determine the timing of vegetation greenup and senescence date and simultaneously 

extract several phenological metrics. Therefore, phenology monitoring and extraction of 

time series parameters are high significant  over agricultural areas as they represent the 

impact of inter and intra-seasonal variations of climate.  

In general useful information can be extracted and used in further analysis are spring of 

season (SOS), length of season (LOS), maximum NDVI value (maxNDVI), and cumulated NDVI 

over the season (cum-NDVI).  These are illustrated in Fig. 3 and are the same as in Brown et 

al. (2010). In several studies SOS mentioned as greenup date, hence this term will be used 

hereafter in this research. 
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Figure 3: Phenological metrics, source: (Brown et al., 2010) 

2.3 Data mining approaches for data classification 
Data mining provides the opportunity for knowledge discovery among large sets of data, in 

order to extract useful and important information. Data mining by artificial neural network, 

decision trees, and feature selection algorithms have been applied in agriculture, however it 

is a relatively new approach for forecasting the crop yield.  Some of the techniques, such as 

the k-means (Shekoofa et al., 2014), the k support vector machines (Löw et al., 2013), 

decision tree (Fernandes et al., 2011) have been applied in the field of agriculture for crop 

type and crop yield classifications.  

A prerequisite of these techniques is the extraction of a specific dimensional features vector 

in order to reflect different aspects of the features with a class label attached. In a few 

studies (Deelers et.al, 2007, Sarangi et.al, 2013), the simple K means algorithm was used for 

this purpose. K-means clustering is a partitioning based clustering technique of grouping 

items into a specified number of cluster groups. There are two approaches to cluster center 

initialization either to select the initial values randomly (Sarangi et.al 2013), or to choose the 

first k samples of the data points (Deelers et.al, 2007). 

After attaching a specific class label application of a classifier method is followed for 

prediction of the class label of the features input. The decision tree algorithm (Dancey et al., 

2007) has the capability to predict the value of a discrete dependent variable with a finite 

set from the values of a set of independent variables. The decision tree algorithm displays 

several advantages such as short computational time, ability to attain nonlinear mapping for 

feature selection. The decision tree approach is most useful in classification problem since it 

presents hierarchical ranking of important features and provides a clear image of effective 

factors(Lobell et al., 2005; Fernandes et al., 2011). For the purpose of this study J48 classifier  

(Quinlan, 1996) is selected hence, it is the only method that will be explained in this section.  

J48 classifier is a simple C4.5 decision tree for classification, the rationale is the creation of a 
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binary tree. With this technique, the constructed tree models the entire classification 

process. Once the tree is built, it is applied to each label in the entire database and results in 

classification for that label.  

Finally, evaluation of the prediction performance is calculated and also its validity using cross 

validation technique or an independent evaluation dataset. Many studies dealing with 

classification used for this purpose a confusion matrix which illustrates the accuracy of the 

solution.  
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3 Study Area and Data Description 

3.1 Study area 

The study area spans between the northern Belgium and south part of the Netherlands 

incorporating, the Van den Borne Aardappelen farm (Figure 4). The study area was selected 

due to the farmer was able to provide a large amount of agronomic data for each field (e.g. 

yield, plant and harvest dates, agricultural practices) collected over two growing seasons 

(2013, 2014). 

 
Figure 4: Location of the study area with potato fields on the border of Netherlands and Belgium. 

The ground data set was composed of 122 fields spread over the two seasons with a mean 

area of the studied fields was 4.1 ha and four different potato cultivars were used: Fontane, 

Miranda, Ludmilla and Lady Anna.  The fields used in this study were rain fed and irrigated as 

illustrated in Table 1 

Table 1: Number and type of test fields for the two agricultural seasons 

Agricultural year Number and type of fields 

2013 Non-irrigated:31 
 Irrigated: 25 
2014 Non-irrigated: 31 
 Irrigated: 35 

Τhe farmer in order to calculate the production of each field makes use of a net to remove 

debris such as stones pieces of vegetation etc, then the remainder is weighted and is 

recorded as the actual yield of field. The weighted yields were similar in both seasons. 

Among all the fields, the weighted yields for 2013 ranged between 40.5  t·ha−1 and 84.23 

t·ha−1 and the mean yield was 60.77 t·ha−1, while for 2014 the yields recorded between 40.9 

t·ha−1 and 83.39 t·ha−1 with a mean value of 58.94 t·ha−1 (Figure 5). For rain fed and irrigated 
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fields there were no significant differences in yields, with them displayed an average value of 

58.84 t·ha−1 and 60.82 t·ha−1, respectively. A shapiro - test resulted a p-value equal to 0.2686 

and 0.2005 for 2013 and 2014, respectively, as a result the yield for both years data are 

normally distributed. 

 
Figure 5: Yield statistics for 2013 (left) and 2014 (right) 

3.2 Remote sensing data 

Since, March 2012 the National Satellite Dataportal (NSD) of the Netherlands is active and 

provides Disaster Monitoring Constellation (DMC) images free available. DMC satellite has 

such capability to ensure sufficient repeat cycle, meeting the needs for higher temporal 

resolution during critical periods of crops growth cycle. Additionally, the spatial resolution of 

22m, makes it appropriate for detailed analysis within fields for actual precision applications. 

A total of 30 and 35 DMC images covering the study area were acquired for 2013 and 2014, 

respectively. Pre-processing procedures have already performed in satellite images by 

Alterra. Pre-processing procedures have included the conversion of raw data to reflectance, 

the removal of cloud effects and orthorectification. The NDVI was also computed for each 

available site image. Further details regarding the processing of satellite imagery can be 

found in www.groenmonitor.nl, in which time series of multispectral satellites vegetation 

imagery are provided since 2012. 

The spatial variability in an agricultural field is inevitable in most cases due to various factors 

causing the variability. Some of the main causes of variability in crop growth are due to 

natural soil variability or impacts of erosion, land and crop management practices, and relief 

of the land. The other factors affecting the crop growth include fertilizer deficiencies causing 

soil nutrient variability, variability due to pest/disease attacks and water application non-

uniformity during the crop growing season. An example of the variation of the NDVI values 

within a specific field is illustrated in Figure 6. 
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Figure 6: Variation of NDVI values within a specific field in three different DMC images 

3.3 Meteorological data 

The most important climatic variables for the vegetation are the daily maximum and 

minimum temperature, precipitation and global radiation Figure 7. All the meteorological 

data used in this study were obtained from the closest KNMI meteorological station in 

Eindhoven (KNMI 2014).  

 

Figure 7: Accumulative temperature, precipitation and global radiation as recorded from KNMI meteorological 
station in Eindhoven The orange and green line correspond to 2013 and 2014, respectively 

The meteorological data of the last 30 years (1984-2014) indicate that the mean averages 

temperatures display the minimum value in January (3.1 oC) while the maximum in July (18.2 
oC). In addition, mean precipitation display a minimum value in April (43.5 mm) while the 

maximum in July (79.7 mm). In general, 2013 was cooler than 2014 however, both years 

were close to the average. The total annual rainfall of the two studied years does not explain 

the actual conditions observed during the respective growing seasons. The total annual 

rainfall amounted to 699 mm in 2013 and 806 mm in 2014. In 2014 most of the rain falling 

occurred between July and August whereas in 2013, it happened in August during the late 

growing season of potato crop. In 2013, rainfall occurring between planting and harvest 

(112-280 DOY) represented 45% (316 mm) of the annual total. By contrast, rainfall from 98 

DOY to 281 DOY in 2014 represented only 63% (509 mm) of the annual total. In both years 

mean temperature rose gradually from the beginning of the growing season reaching a peak 

during July and then falling again towards the end. In details, in 2013 average temperature 

was 2°C below of 2014 during the period between respective planting and harvest dates. 

Finally, the cumulative global radiation in active growing period was 2687 and 2811 MJ/m2 

for 2013 and 2014, respectively.  
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3.4 Data pre-processing 

Prior to the analysis, for each field an average NDVI time series profile was extracted by 

using a script initially developed in R Programming Language. For this reason, the data of 

field boundaries were utilized in the form of shape files, as provided from the farmer and 

the satellite data provided by WUR. A negative buffer distance of 20m was used to reduce 

the field boundaries in order to remove the tractor driving paths in the perimeter of the 

fields and also to eliminate the effect of mixed vegetation reflectance with neighboring 

fields. An average NDVI profile and standard deviation for all fields for both growing seasons 

are presented in Figure 8. 

 

Figure 8: Average NDVI profiles and standard deviation for 2013 (left) and 2014 (right) cropping seasons and 
definition of estimated greenup and senescence boundaries and planting and harvesting dates as provided by 

the farmer 

Another critical point is that several fields were covered by green vegetation before the 

cultivation of the potato. Therefore, in their temporal profiles high NDVI values observed 

ranging from 0.4-0.5 before the establishment and after the harvesting of potato crop.  

This research only focused in the general characteristics of the main growth period of 

potato, as these explained by the unimodal shape of each field's NDVI curve. As a 

consequence, the aforementioned NDVI values, prior the establishment and after the 

harvesting of potato crop, were replaced with NDVI value of bare soil (Figure 9). The 

establishment date for each growing season defined as the average date of the planting 

dates as they provided by the farmer. 
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Figure 9: The dotted horizontal line corresponds with the bare soil NDVI, the solid pink represents high values 
before the establishment or after the harvesting of potato crop  while the black solid symbols represent the 

NDVI values were adjusted 
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4 Methodology 

This chapter describes the methods used in this research. Section 4.1 contains the methods 

used for the reconstruction of NDVI time series. In Section 4.2 the derivation of the 

phenological metrics is explained. These steps were necessary to perform later analysis as 

well as judge the reliability of results. Finally, the core analyses are explained in Section 4.3 

to 4.5, following the logical order of the research questions in Chapter 1. Finally, Section 4.6 

contain a short description about the yield maps. In general all methods presented here 

were developed around the average NDVI time series profiles which were obtained for each 

of  the studied potato fields as described in Section 3.4.  

4.1 Reconstructing of NDVI time series 

As mentioned already in Section 2.1 there are several requirements and constraints to 

construct a complete time series dataset from remote sensing data. The use of NDVI time 

series of DMC data in this research need further processing to obtain an annual NDVI 

temporal profile for each field. Hence, two techniques from the literature were selected that 

had indicated successful application for describing vegetation dynamics: (i) a methodology 

including signal smoothing, and daily NDVI time-series interpolation (Pan et al., 2015) and (ii) 

a method using a double logistic function (Beck et al., 2006). From now on, these fitting 

approaches will be referred as SavGol and DL, respectively. 

4.1.1 Savitzky Golay filtering and linear interpolation 

The Savitzky and Golay (1964) smoothing algorithm has been used in several studies for data 
filtering and reconstruction of VI time series (White et al., 2009; Chen et al., 2011). A 
mathematical description of this process can be summarized as: 
 

      
        

  
     

 
 

(Eq.1) 

 
where, VI(t) is the fitted VI value, Cn is the filtering coefficient for the VIi point, n is equal to 
the width of moving window to perform filtering and nL and nR correspond to the left and 
the right edge of the signal component, respectively.  

For each point VIi, I implemented a least-square fit using a quadratic polynomial to all points 
within the moving window, and then I set VI(t) to be the value of that polynomial at position 
t. The idea of this polynomial is to preserve high moments within the data (Press, 1992). 
Subsequently, in order to complete the integrity of VI time series I used a linear 
interpolation method. Hence, a daily basis VI time series is obtained and be processed in the 
further steps. 

4.1.2 Double logistic function 

Among the models that have been developed and make use of different temporal template 

shapes, Beck et. al (2006) introduced a double logistic model. Their approach utilized in 

order to  in this research to describe the unimodal crop growth period as follows: 

               
 

               
 

 

               
    

 

(Eq.2) 
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The model effectively has 6 parameters, two of which relate to the variation in the 

vegetation index (VI0, the minimum value of the VI, and ΔVI, the difference between 

maximum and minimum VI). The other parameters relate to the shape of the ascending 

logistic function that models greening up senescence (ms, s, ma and a). The parameters s and 

a are related to the beginning and end of the photosynthetically active period 

while, ms and ma to the location of the inflexion point in the logistic curves. These starting 

parameters were specified, as a=90, s=320 and ms=ma=0.1 as introduced by Beck et al. 

(2006). In order to estimate the parameters of the logistic model and their prediction 

intervals of each field's NDVI time profile a nonlinear least-squares estimation was used 

(Bates and Watts, 1988) and executed in R (nls function) (R Development Core Team, 2011). 

4.1.3 Evaluation of the methods 

Outside the growing season, both methods should fit the observed NDVI values well, as it 

also include the bare soil NDVI as a parameter. Hence, the fit of the NDVI profiles was only 

quantified, during the growth cycle. The planting and harvesting DOYs, as provided by the 

farmer, were used to delimit this period for each field. When these information were not 

available, the median DOY value of the respective agronomic observation (planting or 

harvesting) of the year, was used as a replacement. The RMSE was calculated among the 

actual NDVI values from DMC images, Oi, and the estimated NDVI values after performing 

the interpolation approaches, Pi,  as described in section 4.1.1 and 4.1.2, then it was used as 

a measure of model performance (Eq.3).  

       
 

 
         

 

 

   

 

(Eq.3) 

4.2 Deriving NDVI time series metrics 

The real curves of NDVI time-series are not regularly perfect, hence fitting precision have a 

directly influence in the acquisition of the phenological metrics. Comparing the RMSE 

between the SavGol and DL function the method that displayed the smallest RMSE was 

selected for the further steps of analysis. For this reason, in this section the daily NDVI 

modeled values after applying the DL method are utilized. 

One of the advantages of using the double logistic function for describing an unimodal 

growing season is that the estimated parameters can be directly interpreted in terms of 

vegetation phenology (Fischer, 1994). In particular, the fitting parameters s and a (Section 

4.1.2) provide the two inflection points of the fitted curve corresponding to the onset of 

NDVI increase (greenup) and NDVI decrease (senescence), respectively. In this research, 

these two dates of onset were used in order to demonstrate the start and the end of the 

actual potato growth process for each field. Subsequently, crop phenology parameters were 

extracted for the potato growth cycles for each field: greenup date, senescence date, 

maximum NDVI date, and length of growth season (summarized in Figure 10), all of which 

represent critical growth stages of potato. Finally, the integrated NDVI values were 

computed by integrals between greenup and senescence date of each field. 
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Figure 10: Phenology parameters of potato field in modeled NDVI time-series The points marked with red 

circle mean:(a) greenup date of (b) maximum NDVI (c) senescence date (d) length of growth duration (from 
greenup to senescence) 

For validation, I based on the assumption that estimated greenup and senescence dates 

should be related with the relative planting and foliage killing, respectively. Therefore, I 

assessed the relationship among the phenological and agronomic dates by calculating the 

regression of determination (R2). 

4.3 Statistical Analyses 

4.3.1 Estimate yield prediction models 

The method that is proposed  here, in order to forecast yield, is based on the findings of 

previous studies which indicated the importance of using “phenologically adjusted” spectral 

indices in yield forecast models (Bolton and Friedl, 2013; Mulianga et al., 2013; Wang et al., 

2014b). Specifically, linear regressions models were compiled between potato yield 

measured on each field with NDVI derived information related to timing of crop phenology. 

The rationale behind this was that variability in the start of photosynthetical growing season 

at each field should have an instantaneous impact on the final yield prediction. 

The strength of these relationships was tested at different times within the season as well 

for the entire potato growth season. For analyzing and forecasting yields within season, time 

series of averaged NDVI values were extracted for each 5 day intervals starting from the 

greenup date, as it estimated for each field in Section 4.2,  and stopping 150 days after the 

greenup date. The result of this preprocessing step was a time series consisting of 31 NDVI 

values, with the starting point depends on the time of greenup of each field (Figure 11). 

Then the annual coefficients of determination between the NDVI and yields were computed 

in order to calculate a multi-year average coefficients of determination. The higher value of 
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R2 indicates that the NDVI on the given date is a good predictor of final yield. Finally, linear 

regression models based on all the years were developed for the selected time step.  

 

Figure 11: A schematic representation demonstrating the average NDVI values which were extracted at five 
day intervals, indicated by the solid symbols, starting from the greenup date until the 150 following days for 

two adjacent fields from two different growing seasons. 

In addition, NDVI integrated over growing period has been found to be a relevant measure 

to study crop production (Mulianga et al., 2013; Morel et al., 2014). Therefore, the relation 

between measured yields and time integrated NDVI has been calculated also in this study. 

The integrated NDVI of the crop growing period, as estimated in Section 4.2 for each field, 

was adopted as well. 

Predicted yields from the yield-NDVI models were then compared to the actual measured 

yield of each field. For this purpose an external validation was performed. This was 

accomplished by splitting the whole dataset in 70% for training the model in order to 

underlying the distribution between the years and testing the results with the remaining 

30%. Two criteria were used to assess the performance of the models, the root mean square 

error (RMSE) and the mean absolute error (MAE) that can be computed using the following 

formula: 

      
 

 
     

     
 

 

   

 

Eq.3 

     
 

 
     

     

 

   

 
Eq.4 

where n is the number of districts used for validation, y'i is the predicted yield, and yi is the 

measured potato yields. RMSE and MAE also converted to percentages (i.e. %RMSE, %MAE) 

by dividing each by the mean of measured yield statistics (Noorian et al., 2008) and used in 



21 
 

combination to measure the accuracy of the established model. RMSE and MAE values of 

<10% indicate consistency between the actual yield statistics and predicted yields, values of 

10–20% indicate a good predicted result, and values of 20–30% or higher indicate large 

variations between the predicted and measured yields.  

The extensive and varied set of field data were used in this study , allows for further analyses 

to enhance understanding of results from regression analysis. Hence, several analyses were 

performed by diving the fields into subgroups. 

Sibley et al. (2014) indicated that irrigation has been shown to affect the relationship 

between NDVI and crop yield. Α mixture of both irrigated and rain fed fields, allowed an 

evaluation of the performance under different water conditions in this study. So, the fields 

were aggregated, as irrigated and non-irrigated according to farmer's description, and linear 

regression models were developed for each water regime, independently. A second 

stratification was by grouping the fields according to their cultivated potato varieties. The 

objective here was to evaluate the performance of several potato varieties in  final yield. 

Both approaches were developed, following the same procedure as described above. 

Previous studies (Mkhabela et al., 2011) utilized a fixed calendar day of the year (DOY) to 

estimate remote sensing based yield predictions models without taking into account the 

variations in crop phenology among fields. Hence, linear regression based on NDVI was 

established for a period spanning from mid spring (120 DOY) to late autumn (310 DOY) for 

each five day interval. Besides, the approaches that used adjusted NDVI values based on 

phenology metrics or fixed calendar DOYs several studies in field level utilized information 

related to planting and harvesting DOYs (Bala and Islam, 2009; Bégué et al., 2010). However, 

the risk in these cases is that the availability of labor or farming machines could be strongly 

define the agricultural scheduling, having also critical influence on phenology cycle (Pan et 

al., 2015). Thus, the models were re-estimated using as starting point the planting date of 

each field as recorded by the farmer and the integrated NDVI values were computed by 

integrals between the planting and the harvesting DOYs of each parcel, as recommended in 

previous studies. The aim here was to provide a comparison of the predictive performance 

when information related to crop phenology are used in yield prediction.  

4.3.2 Influence of the Number of Satellite Images 

As it was stated (Section 4.1.2), for the curve fitting procedure six parameters should be 

estimated, this is substantial, considering the number of observations per year per field. 

Hence, the methodology for yield estimation relies on the availability of cloud free images 

during the crop's growth cycle. The phenological characteristics of each crop are determined 

the important growth stages in their crop cycles as a consequence there are considered as 

important periods for acquisition of satellite observations. This section focuses on the 

upward and downward slope of the fitted curve which coincides with the parts of the 

growth cycle where the crop develops, grows and matures.  

In general, fields whose time series consisted of too few observations within the growing 

period failed to be successfully modeled. These parcels enables to test the sensitivity of the 

proposed methods (Section 4.3.1) to the number of cloud free satellite images used in yield 

prediction process. For this purpose, the method of integrated values of the NDVI was 
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selected due to it cover and as it gives an overview of the growing season from emergence 

to plant kill date for the 122 studied fields. 

Using the acquired green-up and senescence dates (Section 4.2) as center points, a time 

period spanning from -10 to 10 days was specified, in order to count the number of the 

satellite occurrences within this time period (Figure 12). 

 
Figure 12: Dotted line represents the NDVI time profile, open symbols represent the estimated greenup and 
senescence points, solid symbols represent the DMC images and the shaded areas of a 20-days time frame 

Subsequently, the fields were grouped into two classes according to the included number of 

observations within these periods per field. The first class contained all fields which were 

detected with no observations within 20-days time frame, while the second class contained 

all fields which were detected with at least one observation within the same period. Then, 

an empirical linear relationship was developed which takes into consideration the whole 

dataset of fields. To determine if the number of satellite images had a significant effect in 

prediction approach the coefficients of determination of the two classes were compared. 

Simultaneously, using the equation obtained when all the fields were grouped together, the 

yield of each field, as well as the absolute error were computed to perform an analysis of 

variance (ANOVA) for each class.  

4.4 Influence of meteorological factors 

The interaction of the meteorological factors with the crop responses is rather complex. 

However, by means of studies on determination techniques for assessing physiological crop 

responses to environmental factors under field conditions it is possible to come up with 

mathematical models to estimate crop production as a function of meteorological variables. 

Hence, another possible option for more accurate yield prediction is the incorporation of 

meteorological factors such as rain, temperature and global radiation who act as regulators 

by affecting the vegetative development and growth, such as the final yield (Section 2.2.2).   
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Prior the analysis, the meteorological factors were grouped by 5-day intervals in the same 

time windows as for each of the 5-day NDVI time steps starting from the greenup DOY of 

each field(4.3.1). The resulting table, contained field level averages for NDVI, precipitation, 

temperature and global radiation. In summary, for each field 128 variables were derived. 

Then, I separately analyzed each of the 5 day time steps by means of stepwise regression 

models to determine the relationship among yield and the independent variables. 

Therefore, a subset of explanatory variables, which best explained the potato yield was 

defined for each of the  5 day intervals. The probability significance threshold of candidate 

predictors were set to a = 5%  and a = 10% for entry and exit in the stepwise regression 

model, respectively.  

Here, the developed stepwise multivariate regression models utilized NDVI and 

meteorological input parameters and were tested in order to evaluate if the models have 

been improved compared to linear models where NDVI was used as a standalone yield 

prediction. I performed the judgment of the best fit based on the estimated R2 values. 

However, models with high R2 in this calibration step, do not necessarily have high predictive 

power. Therefore, I  checked  the prediction performance of the models using RMSE and 

MAE.  

In a second approach I included the whole time series of the explanatory variables . It was 

fully anticipated that having the full season's information than only from a unique time step 

(5 day intervals) the modeling efforts would be improved due to the accumulation of 

information. Furthermore, the multivariate regression analysis was performed once again 

using the integrated NDVI values and the mean weather values in order to give an indication 

of prediction of yield for the whole growing season.  

4.5 Qualitative crop yield classification by data mining techniques 

To deal with data mining techniques, such as attribute selection and classification by 

decision tree, the observed yield data were discretized in three classes, Low-medium (LM), 

Medium (M) and Medium-high (MH) (Table 2). The discretization performed by K-means 

technique due to it gives more accurate result than others (Narenda, 2012). In several 

studies the centroids are specified randomly. In this study the selection of centroids 

performed based on the actual recorded crop yields from the studied growing seasons. The 

rationale behind this is that the magnitude of historic crop yields can provide an insight of 

yield productivity within a specific area. Previously, several studies (Lobell et al., 2002; Lobell 

et al., 2010) defined the maximum yield as high (e.g., 95th) percentile of the yield distribution 

for several study regions and crop types. According to the authors, assumed that this 

approach is a good approximation of the most productive farm within a study area. 

Extending this approach, the low (e.g., 5th) percentile of the historic yields express in general 

less efficient fields. Finally, the mean value coincide with the 50th percentile also is 

calculated. Therefore, I set of the 5th 50th and 95th percentiles of the historic yield data, as 

initial values of centroid for each cluster, respectively.  

Table 1 shows the three classes of yields after discretization, as well as their respective lower 

and upper limits and number of occurrences. I defined the classes according to historical 

data of two previous years using k-means simple technique. The centroid of each class 
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specified as the 42.45, 58.28, 79.97 which are corresponded with the 5th 50th and 95th 

percentiles of the historic yield data.  

Table 2: Limits of classes for the field yield and number of occurrences 

Class Number of 
occurrences 

Lower limit Upper limit 

  ton/ha 

Low medium 22 40 54 
Medium 54 54 69 
Medium high 14  >69 

Then, NDVI and meteorological data, allowing for the generation of spectral and 

meteorological attributes for each 5 day intervals after the estimated greenup dates, as well 

as for the whole cropping season, resulting in 132 attributes for each field. 

In this context, the Weka tool (Witten and Frank, 2005) is utilized, which allows to perform 

data mining to perform classifications using historical crop yields as input attributes. The 

accumulation of information for each field over the season can be described as a pooled 

data. In order to determine the more significant attribute the Wrapper’s method was used, 

prior the classification.  

Wrapper methods (Kohavi and John, 1997) consider the selection of a set of features as a 

search problem, where different combinations are prepared, evaluated and compared to 

other combinations. A predictive model us utilized to evaluate a combination of features and 

assign a score based on model accuracy. In this research the search process defined as a 

best-first search. Subsequently, the classification of yield attribute class carrying out by using 

J48 decision tree algorithm. J48 decision tree algorithm was applied in order to determine 

the relations and hierarchy of selected attributes. 

A first classification was performed using the entire time series of 5 day intervals in order to 

evaluate the potato yield with a small number of diagnostic features in particular times 

during the growing season. Additionally, a second classification was performed incorporating 

also the integrated NDVI and the mean values of rain, temperature and global radiation for 

the entire growing season, in order to investigate the relevance for the whole period. 

As a training set, a cross validation method with 10 folds was used. Accuracy assessment 

should be an important part of any classification, as it allows quantification of the 

classification errors. In this section, the accuracy assessment was performed with a 

confusion matrix in which I compared the classification with the predefined classes after 

applying K-means technique.  

4.6 Yield maps 
In the previous sections, approaches have been described for providing qualitative 

indications of estimated potato yields and for quantifying the expected yields ( e.g. ton/ha) 

during and for the total crop cycle. Both approaches provide useful information about the 

yield variability among the fields that can be expressed in the form of colorized maps. 

In the first place, the maps were developed using the functions derived from the best 

performing regression models, at specific time steps during the growing season, both purely 
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NDVI-based and mixed approach where additional meteorological predictor variables were 

utilized. The best models were assessed using relatively low RMSE of the prediction. This 

approach is commonly used in order to illustrate the spatial distributions of several crop 

yields in previous studies (Wang et al., 2014a). Moreover, yield maps were extracted using 

the results of classification accuracy after applying the data mining techniques. Maps using 

information for the whole growing period of potato were also developed.  

Maps using information for the whole growing season give an approximated picture of the 

expected yield. In contrast to the yield potato maps for the entire growing season, the 

within season signaling areas with a color ramp  declares the fields that required additional 

attention and farming actions.  
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5 Results  

The results are based on the methods described in the methodology. The datasets for which 

the results are presented in sections 5.1 through 5.2 are acquired through the procedure as 

explained in section 3.4. Sections 5.3 to 5.5 follow the order of the research questions given 

in Chapter 1. 

5.1 NDVI Temporal Profile 
The number of available DMC observations for the planted potato fields varied widely 

between 18 and 26. Especially when observations at the start of the growing season are 

missing, some of the time series consisted of too few observations to be successfully 

modelled with the DL and SavGol method. Hence, a total of 31  (10 and 22 for 2013 and 

2014, respectively) fields from the total of 122 fields were excluded from the evaluation part 

(Figure 13). The availability on cloud free DMC images in certain periods, during key parts of 

the growing season, taking into account in order to remove the aforementioned fields. 

Complete details are provided in Section 4.3.2.  

The RMSE of the two methods, DL and SavGol, estimated for each field within the growth 

cycle are presented in Table 3. Firstly, the RMSE for a total of 55 for 2013 and 67 for 2014 

fields are presented. The average RMSE for the two years for the DL method is 0.0346 and it 

is ranging from 0.0018 and 0.1281. On the other hand, performance of SavGol method was 

slightly lower with a range 0.0286 to 0.1012 with a average value of 0.0482. Secondly, fields 

with not enough observations during key parts of the growing season were removed and 

RMSE was calculated again for fields that remained (45 for both 2013 and 2014). The 

adjustments showed positive agreements with the data of DMC for all fields when adequate 

observations existed to fit the curve. The average RMSE for the two years for the DL method 

is 0.0212 and it is ranging from 0.0018 and 0.0663. On the other hand, performance of 

SavGol method was slightly lower with a range 0.0247 to 0.0709 with a average value of 

0.0438.  

 

Figure 13: Model fitting results applying DL to available DMC observations for a field containing enough 
observations (left) and another one containing limited observations (right) 
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Table 3: RMSE for DL and SavGol method for reconstructing NDVI time series for 2013 and 2014. For each year 
the RMSE calculated for all the fields and after removing fields with not enough observations to adequately fit 
curve.  

Method Year n RMSE 

   min max mean 

Double logistic 2013 55 0.0018 0.1997 0.0306 
  45 0.0018 0.0405 0.0193 
 2014 67 0.0112 0.1281 0.0386 
  45 0.0112 0.0663 0.0230 
Savitzky Golay 2013 55 0.0286 0.0851 0.0558 

  45 0.0408 0.0709 0.0506 

 2014 67 0.0247 0.1012 0.0406 
  45 0.0247 0.0466 0.0369 

Figure 14 shows NDVI modelled values with DL method compared with those of  SavGol 

method, at an example field. It is illustrated that the Savitzky Golay method displays a 

limitation to mimic the shape of the annual NDVI curves as well as the double logistic 

function can. 

 
Figure 14: Annual NDVI time series for an example field in the study area using a double logistic function (blue 
dotted line) and Savitzky Golay with interpolation (red dashed line). Solid symbols represent the DMC images 

5.2 Deriving of NDVI time series metrics 
Box plots (Figure 15) shows the distribution of estimated greenup and senescence dates, 

compared with Van den Borne's calendar comments of the planting and foliage killing dates,  

as they are recorded for each growing season. 
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Figure 15: Box plots of seasonality extracted phenological metrics (greenup and senescence) based on DL 

modeled values in comparison with the recorded agronomic dates (planting and harvesting) as provided by the 
farmer for 2013 and 2014 

The year 2014 had an earlier average greenup onset on 148 DOY than 2013 which had the 

average detected greenup on 165 DOY. On the other hand the average senescence DOYs 

were recorded as 244 and 251 DOY for 2014 and 2013, respectively. The inter annual 

variability in potato greenup dates was large for both years, ranging from DOY 151 to 184 for 

2013 and from DOY 135 to 167 from 2014. 

The greenup onset dates identified for potato fields showed that there were consistent with 

the relative planting. In particular, correlation was relative strong with 2013 showing the 

strongest correlation (R2 = 0.80), followed by 2014 (R2 = 0.72). The relationship between 

foliage killing and senescence dates had a high correlation (R2 = 0.77) for 2014, but for 2013 

was significant lower (R2 = 0.14). 

Using the generated crop phenology parameters, maps were created indicating the spatial 

distribution of the date of crop greenup/senescence, and duration of season length. These 

parameters indicate actual crop growth process in a field level. In Appendix A, the phenology 

parameters of potato in 2013 (Figure 30 a,b,c) and 2014(Figure 31 a,b,c) are presented.  

5.3 Statistical Analyses 

5.3.1 Estimate yield prediction models 

Figure 16 displays the coefficients of determination after linear regression models were 

compiled for the relation between NDVI and yield, for both growing seasons. Both curves of 

the coefficient of determination indicated similar patterns and relationships, however, it is 

obvious that there is a time variation in these patterns between the two years. Various 

planting dates and contrasting meteorological conditions mainly accounted for this 

difference. Specifically, maximum correlation for 2013 occurred 70 days after greenup with 

NDVI showing a strong correlation (R2=0.67) with potato yield. In 2014, NDVI shows a slightly 

lower correlation with yield (R2= 0.63) peaked at 95 dates after greenup.   
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Figure 16: The coefficient of determination (R
2
) for a simple regressions between yields and NDVI on each 5 

day time step after the greenup date for the two growing seasons. Orange solid line and blue dashed line 
corresponds with 2013 and 2014 year, respectively 

The results also showed a strong relationship between potato yield and integrated NDVI 

throughout the growing period, as specified by greenup and senescence DOY. In particular, a 

significant correlation was obtained, with R2 ranging  from 0.71 to 0.63 for 2013 and 2014, 

respectively. 

The scatter plots during the peak correlation time for adjusted NDVI and integrated NDVI 

with yield are shown in Figure 17. Scatter plots seems to confirm a simple linear regression 

of potato yield versus NDVI at dates of maximum correlation such as for the whole growing 

season. Significant relationships of NDVI with yield (p<0.001), were observed both for 

integrated NDVI and for NDVI values at peak correlation time.  
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Figure 17: Relationships between NDVI and potato yield at the point of peak correlation (upper left) for 2013 , 

70 days after greenup, (upper right) for 2014, 95 days after greenup. Integrated NDVI for 2013 and 2014 are 
presented in scatter plots in the lower left and right parts, respectively. 

The average of coefficients of determination for all the studied years peaked 90 days after 

the greenup date, showing a significant correlation (R2=0.61), indicating that the NDVI on the 

given date is a good predictor for the final field. Hence, this time step was selected and a 

linear regression model was developed considering all fields together. 

Figure 18 shows the scatter plots, when the whole dataset is aggregated over all of the years 

(2013–2014), The correlation between yield and NDVI at peak time step reached a 

significant R2 equal to 0.48 while for integrated NDVI is slightly higher (R2= 0.65). 

 

Figure 18: Relationship between measured yield and (left) NDVI 90 days after greenup and (right) integrated 
NDVI for all studied years and fields. Blue triangles and orange circles correspond with fields of 2013 and 2014, 

respectively.  Best-fit regression lines and associated R
2
 are indicated, along with the 1:1 line in blue 
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Table 4 provides an overview of the estimated linear regression models using the 

phenologically adjusted NDVI 90 days after greenup and the integrated NDVI, including R2, R2 

adjusted, p-value, and the equation. 

Table 4: Linear regression models for predicting potato yield with NDVI at the time of peak correlation and 
integrated NDVI.  

Method Equation R
2
 R

2
 adjusted p-value 

Days after greenup Y = 69.6NDVI90 + 21.71 0.48 0. 468 *** 

Integrated NDVI Y = 2.27iNDVI + 22.5 0.65 0.6485 *** 

The predictive accuracy of the models estimated in validation phase resulting in RMSE and 

MAE values which provide an overview of how accurate can models predict yields using an 

external dataset. Comparison between the observed and predicted yield leads to acceptable 

results (Figure 19). For, model using the NDVI at peak correlation time, RMSE and MAE were 

5 (8.36%) and 4.05(6.78%), respectively, while the estimated values using the integrated 

NDVI with the measured yield were 5.96 (9.97%) and 4.91 (8.23%). Both models 

demonstrate consistency between the actual and predicted yields. Linear models for all time 

steps including their prediction performance, RMSE and MAE, are presented analytically in 

Appendix B. 

 

Figure 19: Comparison of measured yields with yields predicted from the linear regression models using an 
independent test of 27 fields, (left) using NDVI 90 days after greenup and (right) using the integrated NDVI. 

Blue and orange squares correspond with fields of 2013 and 2014, respectively. Best-fit regression lines (blue 
line) and RMSE, MAE and model's equation are indicated, along with the 1:1 line in blacked dashed. 

The coefficients of determination between NDVI and potato yields observed lower by 

approximately 15% using a fixed DOY where variations in crop phenology not taken into 

account. In 2013, NDVI showed a moderate correlation with potato yield (R2= 0.47) at DOY 

245, while in 2014 was five days later reaching a higher correlation (R2= 0.53). Figure 20 

illustrates the annual coefficients of determination between NDVI and potato yield based on 

fixed calendar dates. For all fields over all years, results showed a maximum correlation (R2= 

0.5) between NDVI and yield at DOY 250. The timing of peak correlation coincides with the 

tuber filling phase for both years.  
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Figure 20: The coefficient of determination (R
2
) for a simple regressions between yields and NDVI on each 5 

day time step after a fixed calendar day (120 DOY) for the two growing seasons. Orange solid line and blue 
dashed line corresponds with 2013 and 2014 year, respectively 

Finally, R2 values were estimated using as starting point the planting dates for each fields as 

provided by farmer's dataset. From the regression analysis with potato yield against NDVI 

for the entire growing season indicating a variation of R2 during the different growing 

seasons. Specifically, the R2 values for the NDVI ranged from 0 to 0.55 and from 0 to 0.40 for 

2013 and 2014, respectively. The peaks were attained 120 and 150 days after potato 

plantation, respectively. In general, dates when I enumerated the highest values of R2 

corresponds also with the end of tuber filling phase of potato crop as has been recorded 

using both greenup and a fixed calendar date as starting points in previous sections. Also, it 

is worth mentioning at this point, that in both years an early peak correlation was detected 

50-55 days after plantation, giving a R2 equal to 0.2 and 0.22 for 2013 and 2014, respectively. 

Although these correlation coefficients were significant low, this result is in agreement with 

results reported by Bala and Islam (2009) for potato crops in Bangladesh. In particular, they 

found that R2 values of potato yield for the NDVI peaked 48 days after potato plantation, 

displaying a high correlation (R2= 0.79). The annual coefficients of determination between 

NDVI and potato yield based on plantation dates of each field are illustrated in Figure 21. 
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Figure 21: The coefficient of determination (R
2
) for simple regressions between yields and NDVI on each 5 day 

time step after plantations dates of fields for the two growing seasons. Orange solid line and blue dashed line 
corresponds with 2013 and 2014 year, respectively 

From this point on and for the rest of the analysis, only the NDVI values from each five day 

time step between 0 and 150 days after greenup were used. Subsequently, a variety of 

several factors that affect model performance were examined. 

Firstly, the potato fields were further analyzed on influence of their irrigation regime. 

Surprisingly, NDVI perform almost equally in irrigated and rain fed fields when linear 

regression models were compiled between NDVI values 90 days after the greenup and 

integrated NDVI with yields. Scatter plots (Figure 22) confirm  that both rain fed (R2 = 0.52 

and R2 = 0.64, p< 0.001) irrigated fields(R2 = 0.45 and R2= 0.55, p<0.001) had a good 

correlation and were statistically significant, using both NDVI metric values. An adequate 

relationship between NDVI and yield for irrigated fields was expected and it has been 

reported before in literature (Sibley et al., 2014). However, the strong correlation for the 

rain fed fields was unacceptable. In this part it should be taken into account the high 

recorded precipitation values during both growing seasons (Figure 7). Figure 22 illustrates 

that the relationship between NDVI and yield are not significantly varied as function of water 

regime when there are not obviously variations between statistic yield among irrigated and 

non irrigated fields. 
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Figure 22: Scatter plots between measured yield and (left) phenologically adjusted NDVI 90 days after greenup 
and (right) integrated NDVI for all study years (2013-2014). Blue triangles and orange circles correspond with 
rain fed and irrigated fields, respectively. The best fits are also indicated with relevant colors as well as the 

best fit for all the fields with the dashed black line. 

Figure 23 shows how the relationship between the NDVI metrics and yield can vary as 

function of variety. In particular, NDVI values for a Miranda variety were low compared to 

Fontane variety with close similarly yields, indicating that yield could be underestimated 

when all varieties modeled together. However, the relatively small sample of fields with 

Miranda variety (14) can resulted to non representative models. 

 

Figure 23: Scatter plots between measured yield and (left) phenologically adjusted NDVI 90 days after greenup 
and (right) integrated NDVI for all study years (2013-2014). Blue triangles and orange circles correspond with 
Miranda and Fontane variety, respectively. The best fits are also indicated with relevant colors as well as the 

best fit for all the fields with the dashed black line. 

Based on the better understanding of what factors are correlated with crop yields, the next 

step was to put them into practice for forecasting. Therefore, Table 5 provides an overview 

of the estimated linear regression models using the phenologically adjusted NDVI 90 days 

after greenup and the integrated NDVI taking into consideration the several applied water 

regimes and crop varieties in the fields. In the case of Miranda variety no linear relationship 

considered since the number of fields was too small for a relationship to be determined.  
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Table 5: Linear regression models for predicting potato yield with NDVI at the time of peak correlation and 
integrated NDVI for various water regimes and varieties 

Method Model Equation R
2
 R

2
 adjusted p-value 

Days after greenup Irrigated Y = 60.04NDVI90 + 30.04 0.3468 0.3427 *** 

 Rain fed Y = 84.28NDVI90 + 17.19 0.5 0.4842 *** 

 Fontane Y = 72.17NDVI90 + 22.53 0.4201 0.408 *** 

Integrated NDVI Irrigated Y = 1.77iNDVI + 31.85 0.4893 0.4723 *** 

 Rain fed  Y = 2.3iNDVI + 22.95 0.6226 0.6092 *** 

 Fontane Y = 2.53iNDVI + 17.96 0.63 0.6223 *** 

The efficiency of models obtained under the various water regimes and crop varieties was 

evaluated by comparing the predicted results with the actual measured crop yield statistics 

using again RMSE and MAE. Generally, comparison between the actual and estimated yields 

indicated satisfactory results (Table 6). The results achieved using the NDVI value 90 days 

after greenup indicated close prediction results. In irrigated fields, RMSE and MAE for the 

potatoes were 9.62% and 8.43%, respectively, while for rain fed both measurements were 

slightly higher (11.23% and 8.55%). In addition for Fontane variety the RMSE and MAE values 

of were <10% indicating consistency between the actual yield statistics and predicted yields. 

The results achieved using the integrated NDVI also showed good predictions results.  In 

irrigated fields, RMSE and MAE for the potatoes were 8.79% and 7.76%, respectively, while 

those for rain fed were 9.12% and 7.5%. On the other hand Fontane also demonstrated 

satisfactory results with RMSE equal to 9.84% and MAE equal to 8.3%. 

Table 6: RMSE and MAE between predicted and measured yield for water regime and variety models 

Method Model RMSE MAE 

Days after greenup Irrigated 5.86 (9.62) 5.13 (8.43) 
 Rain fed 6.6 (11.23) 5.02 (8.55) 
 Fontane 6.09 (9.91) 4.85 (7.90) 

Integrated NDVI Irrigated 5.35 (8.79) 4.72 (7.76) 
 Rain fed 5.36 (9.12) 4.40 (7.50) 
 Fontane 6.03 (9.81) 5.10 (8.30) 

* percent RMSE and MAE is presented in parentheses 

5.3.2 Influence of the Number of Satellite Images  

From the 122 fields used in this section 32 an 90 were classified as class 1 and class 2, 

respectively. Fields in class 1 have no observations in the upward and downward slope while 

the number of available observations in these parts for class 2 ranging from 1 to 4 cloud free 

images. Appendix D, contains a map (Figure 34)in which is indicated the spatial variability of 

fields that contains cloud free images during the crucial pints and fields that have no 

observations. Observing the map, it is obvious that the fields that have no observations were 

relative close. When the whole dataset is aggregated over all of classes, the correlation 

between yield and integrated NDVI was low (R2=0.3) but still significant.  
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Figure 24: Scatter plots between measured yield and integrated NDVI for all study years (2013-2014). Orange 
circles and blue triangles correspond with classes one and two, respectively. The best fits are also indicated 

with the dashed lines as well as the best fit for all the fields with the blue solid line. 

Figure 24 shows a plot of linear relationship between the measured yield and integrated 

NDVI when both classes presented together. Each point represents one of the studied fields. 

According to the scatter plot there is some visual evidence that by way of increased scatter 

the model is less accurate on the class one comparing with class two. The analysis indicated 

that fields that belong to class one were not well correlated with the measured yield (R2= 

0.045), on the other hand fields which belong in class two were well correlated (R2= 0.65).  

Subsequently, a linear relationship was determined : 

Y= 1.1583 iNDVI + 40.863 Eq.5 

Using Equation 5 to calculate the yield for each field an ANOVA was performed. The result 

shows that the number of available satellite images have a significant influence on the 

accuracy of the estimation of the yield. Particularly, for the class one p-value was equal to 

0.67 while for class two estimated as p<0.001. The above strongly indicates the importance 

of cloud free satellite observations for the developed methodology of this study. 

5.4 Influence of meteorological factors  

The stepwise regression analysis was first applied separately for each  of the 5 day intervals. 

The results are summarized in Table 7 and appear quite positive, with generally improved R2 

and R2adj values compared with the approach when NDVI is used as unique predictor. 

Twenty regression models were developed, based on differing input parameters. Their 

relative importance can be judged via the partial R2values, which are tabulated as well. From 

the wide range of candidate predictors, the stepwise regression always retained at most 

significant the NDVI. Quite significant is that rainfall and global radiation have always 
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positive influence on the final yield while temperature varying among the time steps. Only 

the regression models from 55 to 115 days after greenup are presented due to the rest 

indicated no significant effect of meteorological parameters.  

Table 7: Regression models for the relationship between NDVI (from 30 to 125 days after greenup) and 
weather data (rainfall, temperature, and global radiation) 

Days 
after 

greenup NDVI precipitation temperature radiation Intercept R
2
 R

2
adj 

55 181.4057 0.95389 
  

-67.2051 0.423853 0.404323 

60 147.5244 
 

-1.2924 
 

-18.3541 0.437143 0.418063 

65 107.5604 
   

-13.2099 0.373438 0.362995 

70 105.4637 0.94019 
  

-5.64042 0.449736 0.431083 

75 92.47041 0.99448 1.794223 1.22189 -7.70065 0.523054 0.489584 

80 76.3708 
 

1.034961 
 

-1.6125 0.445005 0.426191 

85 69.59916 
   

21.707 0.47973 0.460392 

90 82.0788 
  

1.62878 37.54174 0.564168 0.549394 

95 81.72176 
  

1.65586 41.36123 0.581576 0.567392 

100 79.7197 
 

-1.43137 
 

47.52461 0.522036 0.505834 

105 93.22957 
 

-1.44742 
 

46.02087 0.492753 0.475558 

110 89.57486 
   

28.73944 0.35804 0.34734 

115 105.0549 
 

-1.06026 
 

40.03229 0.326703 0.30388 

 

The results from the second approach where whole time series of the explanatory variables 

and integrated NDVI among the mean meteorological values for the entire growing season 

used, are summarized in Table 8. The modeling efforts improved due to the accumulation of 

information and the R2 are 0.75 and 0.69, respectively. Despite the fact that there are 

several independent variables, NDVI values are still the most significant in both cases.  

Table 8: Regression models for using the whole time series of predictor variables such as the integrated NDVI 
with the mean weather values. 

Equation R
2
 R2 adjusted 

Y = 66.56NDVI95 + 137.68NDVI95+0.8temp10+1.39rad10-73.34 0.75 0.73 

Y = 2.53iNDVI + 8.82 rain + 44.60 0.69 0.68 

 

The R2 and R2 adjusted values of Table 7 are repeated in Table 9, together with the 

estimated RMSE. Observing the Table 9 it can be concluded that good regression models 

have relatively low errors, however,  also weaker regression models can return a low RMSE 

such as models 80-90 days after greenup. The regression models return a RMSE 4.2 (7%) and 

4.51 (7.6%), respectively.  
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Table 9:Yield estimation root mean square errors for each 5 day interval. R
2
 and R

2
 adj are copied from Table 6 

and results are sorted in the same way. 

Days after 
greenup R

2
 R

2 
adj RMSE RMSE(%) 

30 0.08 0.06 7.07 11.82 

35 0.12 0.11 6.93 11.59 

40 0.19 0.17 6.77 11.33 

45 0.27 0.26 6.73 11.26 

50 0.35 0.33 6.70 11.21 

55 0.42 0.40 6.34 10.61 

60 0.44 0.42 6.53 10.93 

65 0.37 0.36 5.49 9.18 

70 0.45 0.43 6.34 10.61 

75 0.52 0.49 6.60 11.05 

80 0.45 0.43 5.15 8.62 

85 0.48 0.43 4.97 8.31 

90 0.56 0.55 5.91 9.89 

95 0.58 0.57 5.00 8.37 

100 0.52 0.51 5.64 9.44 

105 0.49 0.48 5.64 9.44 

110 0.36 0.35 6.00 10.04 

115 0.33 0.30 6.10 10.21 

120 0.20 0.18 6.76 11.31 

125 0.11 0.10 7.00 11.71 
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5.5 Qualitative crop yield classification by data mining techniques 

From the NDVI, precipitation, temperature and radiation values as derived for each field the 

most significant were selected prior the classification. The Wrapper’s method was used to 

carry out the attribute selection. The aim was to determine which of the attributes had the 

strongest diagnostic features in order to obtain these most relevant attributes to classify 

field yield attribute class. The selected attributes for the first classification were the NDVI 60 

and 65 days after greenup and also the precipitation values 60 days after the greenup. For 

the whole growing season integrated NDVI, NDVI 95 and the average values of the 

precipitation over the season.  

Using the selected attributes, the J48 classification algorithm was applied based on a 

decision tree, in order to perform the first classifications. Figure 25 shows the decision tree 

for determination of yield class, which was resulted using the relative selected attributes as 

presented in previous paragraph. The decision tree includes NDVI values 60 days after 

greenup, precipitation values at the same time step and NDVI values 65 days after greenup 

as root and internal nodes and classes for nodes are Low Medium, Medium and Medium 

High.  

NDVI 60 days after the greenup, is the attribute that contains much more information and 

for this reason it has been selected as the first split criteria. Observing the decision tree it 

can be noticed that if NDVI 60 days after greenup is less than 0.63 then there are 9 out of 

the total objects that fall in Low Medium (LM) class. Otherwise if rainfall values 60 days after 

greenup is smaller than 2.46 then there are 39 out of 90 objects that were split among the 

three classes. The procedure is continued and when the NDVI 65 days after greenup is 

greater than 0.704 26 fields classified mainly in the higher classes M, respectively. By 

contrast, when NDVI 65 days after greenup is smaller than 0.704 a new node is created in 

order to classify the rest of the fields. 

 

Figure 25: Decision tree for yield classification using NDVI 60 and 65 days after greenup and the average value 
of precipitation 60 days after the greenup. 
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Figure 26 shows the decision tree when attributes for the entire growing season are 

included. In this case, the decision tree includes the integrated NDVI, the average 

precipitation values during growing season and NDVI values 95 days after greenup as root 

and internal nodes and classes for nodes are Low Medium, Medium and Medium High.  

 

Figure 26: Decision tree for yield classification using integrated NDVI, NDVI95 days after greenup and the 
average value of precipitation for the entire growing season. 

Observing the decision trees (Figure 25 and Figure 26), it is clear that the NDVI 60 days after 

greenup and the integrated NDVI attributes which are located on top of the trees play the 

most  important role in yield classification, respectively in both cases. 

Table 10 and Table 11 present the confusion matrices and accuracies of the performed 

classifications. The diagonal values represent the correctly classified instances. In the first 

classification from a total of 90 instances, the J48 classifier rated 61 correctly, corresponding 

to 67.78% accuracy. Here, is important to note that only the MH class fail to be classified 

correctly.  Table 11 shows the classification results for the second approach corresponding 

which express the entire growing season. There was a improvement regarding the 

classification of yield within the growing season. Therefore in  this case the classifier rated  

correctly 65 instances, corresponding to 72.2% accuracy.  

Table 10:  Confusion matrix and classification accuracy for yield classification using NDVI60,NDVI65 and rain60 
attributes. 

 LM M MH User's Accuracy [%] 

LM 13 9 0 59.1 

M 6 48 0 88.9 

MH 0 14 0 0 

Producer's 
Accuracy [%] 

68.42 67.60 0  

Overall Accuracy[%]: 67.78 
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Table 11: Confusion matrix and classification accuracy for yield classification using integrated NDVI,NDVI95 and 
average rain over the season attributes. 

 LM M MH User's Accuracy 
[%] 

LM 7 15 0 31.82 

M 4 49 1 90.74 

MH 0 5 9 64.29 

Producer's 
Accuracy [%] 

63.6 71.01 90  

Overall Accuracy[%]: 72.2 

 

  



42 
 

5.6 Yield maps 

The resulting map using the NDVI values 90 days after the greenup consisted of one layer, 

whereby each field in the map had a value for the predicted potato yield (Figure 27). After 

generating the yield map, it can be observed that  yield variability, ranging from 42.6 to 67.6 

ton/ha. The above could be a valuable source of information for the farmer from the point 

of view of expected yield. In particular, the yield map documented the spatial distribution of 

crop yield, hence provide a kind of priority list with the fields that more action and attention 

are required. In Appendix C, also, a potato yield map generating by the equation making use 

of NDVI and meteorological variables is presented (Figure 32). For the entire growing season 

a map (Figure 33) was generated using the empirical equation of integrated NDVI. 

Moreover, a map making use of qualitative information is also presented in this section 

(Figure 28). In particular, the map indicates which of the fields are classified correctly by the 

J48 classifier during the growing season. The map was generated using the results from the 

confusion matrix (Table 10). Following the same steps and making use of confusion matrix 

presented in Table 11, a map providing information for the whole growing period was 

generated (Figure 29). 

 

Figure 27: Predicted yield (ton/ha) maps for potato, based on linear regression models using NDVI values 90 
days after greenup 
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Figure 28: Yield map as resulted after classification with J48 classifier using NDVI 60 and 65 days after greenup 
and the precipitation values 65 days after greenup 

 

Figure 29: Yield map as resulted after classification with J48 classifier, using integrated NDVI, average 
precipitation values over the growing season and the NDVI values 95 days after greenup 
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6 Discussion 

In this chapter different aspect of this research are critically reviewed, considering the 

research questions proposed in section 1.3. 

6.1 NDVI Temporal Profile 

The current study made use of two data methods for reconstructing annual NDVI time series 

profile: the DL method (Beck et.al 2006) and a method using Savitzky–Golay filters 

smoothing approach combined with a linear interpolation based on the available images 

(Pan et.al, 2015).  

The accuracy of curve fitting depends on a variety of factors including the quality and 

temporal resolution of DMC data. Missing data during key parts of the growing season 

strongly influence the result of curve fitting (Figure 13). Limitations imposed by cloud cover 

can be seen in Table 3, where the RMSE for both DL and SavGol method improved when 

fields with missing observations during critical periods of growth cycle were removed. The 

results were similar to a study conducted by Zhang et al. (2006) where they concluded that it 

does not make sense to apply algorithms for noise reduction in cases where are there are 

more than two consecutive missing 16-day MODIS composites during snow free periods. 

The DL function describes the NDVI data better than the SavGol method during the growth 

cycle for both study years (RMSE (DL) < RMSE (SavGol), p <0.001 in all cases) (Table 3). Figure 

14 illustrated that the Savitzky Golay method displays a limitation to mimic the shape of the 

annual NDVI curves as well as the double logistic function can. The previous studies (Beck et 

al., 2006; Julien and Sobrino, 2010) indicated that the use of a double logistic function is 

appropriate for observing unimodal NDVI curves, hence the function as outlined in these 

papers can also describe well the growth cycle of the potato crop. In addition, double logistic 

is demonstrated as more able and efficient to preserve the high NDVI values than the 

Savitzky Golay method which tended to overestimate them during the growing season. 

These findings are in accordance with those of (Hird and McDermid, 2009), where they 

compared several techniques for noise reduction of NDVI time series. 

The DL function showed significant small RMSE in previous studies (Julien and Sobrino, 2010)  

working fine for regional vegetation, the findings of this research show that it is also 

applicable for crop monitoring in agricultural areas at field level. 

6.2 Deriving of NDVI time series metrics 

Assessment of field-level phenology detection results showed that DMC time series data can 

provide a good detection of phenological metrics (Figure 15). An evaluation demonstrated 

that the greenup date at field level were consistent with the relative planting for both years. 

The unexpected low correlation between senescence and foliage killing dates for 2013 

generate some undesirable inconsistencies. One possible explanation may arise by taking 

into account two important factors. First of all, in this research the senescence date was 

estimated as the inflection point in the downward slope of the annual NDVI curve. From this 

definition the senescence date corresponds to the time when the growing rate of the crop is 
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minimum, which is before the complete maturation of the crop. This is why the senescence 

date is earlier than the foliage killing dates. Additionally, it should be considered that foliage 

killing procedure is highly dependent on the agricultural scheduling of the farmers. Hence, 

the agricultural scheduling are eventually resulting in the end of crop season from the 

agronomist point of view. 

A closer assessment of the results, indicates that the greenup onset dates of  2013 were 

much later than the relative dates of 2014 (Figure 15). Subtle shift in timing of crop 

phenology reveals annual variations of crop growth and that can be due to the variation of 

climatic conditions or the schedule of the agricultural activities.  

As explained in section 3.3 there are differences among the meteorological factors of two 

studied years (Figure 7) hence, the contrasting meteorological conditions result to specify 

the agricultural scheduling having also a directly effect to the phenology metrics. 

The earlier planting dates in 2014 may prolonged the rest period until more favorable 

conditions for growth occur, while in 2013 a rapid increase of NDVI values occurred from the 

emergence point (greenup) until the time when NDVI reach the maximum value. Based on 

the above and observing the results in section 5.2, it can be concluded that growing periods 

estimated quite satisfactory for both years. Mapping results in Appendix A indicate also the 

different  range among the growth periods for 2013 and 2014. 

Additionally, the magnitude of the variations (~30days) among the greenup dates of the 

fields highlights the important role of using phenologically adjusted VIs in order to fulfill 

agricultural applications through time series remote sensing data, as also observed in 

previous studies (Bolton and Friedl, 2013; Mulianga et al., 2013; Wang et al., 2014b). 

To conclude, the results were acceptable ranging within a specific range of values which 

doesn't exceed the limits of whole crop season, as delimited by planting and foliage killing 

dates. The detection phenology of metrics (green up, senescence and growing period) was 

satisfactory in field level using the daily NDVI time series of 2013 and 2014 deriving from the 

DL method. DMC provide the necessary spatial, spectral and temporal resolution for 

precision farming applications overcoming limitations of large satellites (Sandau et al., 

2010).  

6.3 Statistical Analyses 

6.3.1 Yield prediction models 

The main objective of this study is to provide recommendations for the optimal time period 

for the estimation of yield during the growing season, such as for the entire season prior to 

harvest. Additionally, aim of the study was to test how integrated NDVI can be used for 

potato yield assessment before the harvest. In general, yield prediction based on remotely 

sensed vegetation indices like NDVI indicates the amount of existing biomass and the vigor 

of the crops. However, forecasting below ground crop yields such as potato displayed some 

difficulties, due to the indirect relation between the belowground yield and spectral data 

related to aboveground green biomass (Hayes and Decker 1996). 
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The idea of using 5 day time intervals for investigate the best time step within the growing 

season was first applied in the study conducted by Bolton and Friedl (2013). Although, 

studies focus on potato have not been carried out following the proposed methodology, the 

results are in agreement with several studies where phenologically adjusted time series 

were used for other crops yield forecasting (Bolton and Friedl, 2013; Wang et al., 2014b). 

Comparing results of Figure 16, Figure 20 and Figure 21, It can be summarized that the 

particular models based on phenologically adjusted NDVI values can provide substantial 

benefits for yield prediction models, result in a general improvement of 15% in the 

correlation coefficient  values. 

The results showed that phenologically adjusted NDVI 90 days after greenup and integrated 

NDVI resulted in a good correlations  (Table 4 and Figure 19) with the yield and  gave 

comparable  RMSE at the field level (<10%). The MAE values demonstrated a similar trend 

but were slightly lower than the RMSE values(Figure 19Figure 21). However, NDVI shows a 

limitation to capture the biomass variations when the full canopy was developed and also 

influenced by the soil background reflectance. In general, during the end of tubers filling 

phase and extending to early maturity phase, the leaves tends to be yellowish due to the 

degradation of the amounts of chlorophyll. It can be concluded that these changes in the 

color of leaves influence the reflectance in visible bands with a result to better capture of 

the yield variations. The above seems to be confirmed by the fact that annual NDVI curves 

for both growing seasons displayed a high standard deviation in their NDVI values in period 

following the maximum NDVI until the foliage killing dates (Figure 8).  

This piece of information could be useful in precision agriculture point of view where the 

farmers can assess to delay the last application of fertilizers in the fields, in order to 

distinguish those fields that really need additional management for increasing the final yield. 

Although the results show a possibility of using remote sensing data to correlate and 

forecast field level yield within season, the contrasting meteorological conditions between a 

two year-study don't provide an ideal scenario to achieve accurate results regarding the 

exact time for early yield predictions. A more effective research should contain images and 

yield data for more than two growing seasons. 

It is also important to note that the NDVI values acquired during leaf development and 

extending to tuber initiation phase resulted in achieving low accuracy for estimation of yield, 

0.2 and 0.22 for 2013 and 2014, respectively (Figure 21). These results are in disagreement 

with the findings of Bala and Islam (2009), who concluded that  the use of a single image 

acquired 48 or 64 days after the plantation were well correlated and can substantially 

predict the final yields with a moderate accuracy (RMSE > 15%). However, the statistical 

significance of the obtained regression model was not investigated in their research. In this 

sense it is necessary to take a closer look into the differences in methodologies to find 

possible reasons of deviations.  

Knowing that 50% of the studied fields were irrigated combined with the high rainfall levels 

recorded during the two growing seasons, the effects of soil reflectance could be significant 

due to the varying surface soil moisture levels among the fields. An enhanced yield 

prediction can theoretically be achieved by developing models using vegetation indices that 
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can reduce the effect of background soil reflectance. SAVI as introduced by Huete (1988) can 

be an alternatively and it had been already tested in previous studies (Neale and Sivarajan 

et. al 2011)  capturing better the yield variations. 

Previous studies (Neale and Sivarajan et. al 2011) indicated that capturing  the final yield in 

potato crops is mainly related to the duration of the green leaf area and not only to the peak 

leaf area index. This condition can be seen in the good relationship which is obtained when 

the yield is related to the integrated area under the NDVI curve (Figure 19). 

The findings of this study are in agreement with others (Bégué et al., 2010; Morel et al., 

2014) which previously have shown that early season NDVI values alone were not accurate 

estimators for crop yields and especially for tuber crops. The above rationale suggests that a 

large aboveground biomass, early in the season is not a determinant of the final yield and 

vice versa. Earlier studies (Gomez-MacPherson and Richards, 1995) also concluded that 

vegetation development prior to the tuber filling phase determines mainly the plant 

structure but not definitely the final production. Several factors occur later in the season 

such as meteorological factors or potentially diseases could have an impact in yields to a 

greater extent.  

It was concluded from the results (Table 5)that there existed a good correlation for both rain 

fed and irrigated fields, in this research. On the other hand, (Sibley et al., 2014), indicated 

that irrigated yield variations can more successfully captured than rain fed yields for maize. 

A noticeable point was the equal performance in the final yields for irrigated and non 

irrigated here as explained in Section 3.1, while Sibley et al. (2014) explained their results 

mainly due to the relatively poor performance in rain fed fields. Inconsistencies between the 

two results lead to question the performance of stratification approach in general. It should 

be taken account that farmers should make more efficient application of water in their 

fields.  Yuan et al. (2003) confirmed that water stress is one of most crucial factor that 

affects the final yield and is related not only to applied irrigation regimes but also to the soil 

water storage. Hence, soil type of the fields need to be considered as an important factor in 

estimating the yield accurately in future studies. At the same time, the relatively small 

sample of fields cultivated with Miranda variety didn't permit extraction of clear conclusions 

on whether the stratification of potato varieties give a better estimation or not. 

6.3.2 Influence of the Number of Satellite Images 

The second objective in this research was to explore the influence of available cloud free 

images in yield estimation accuracy. In general, limited references in the literature citing the 

influence of the number of satellite images in yield forecasting. Morel et al. (2014), have 

been shown that a minimum of 5 satellite images during the growing season have to be 

acquired in order to correctly describe the dynamic of the NDVI for utilizing in yield 

prediction applications. Their results are in agreement with the results from the ANOVA. In 

addition, the presence of fields with no satellite observations in crucial points of the growing 

season seems to affect in the relationship between NDVI and measured yield (R2 = 0.3) 

(Figure 24). 
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In the light of the above, the importance of cloud free satellite observations for the 

developed methodology of this study was indicated. The problem of obtaining satellite 

imagery in cloudy locations often is cited as an obstacle for precision farming applications 

(Zhang and Kovacs, 2012). Previous studies indicated that the over mentioned problem can 

be partially overcome by using multiple sensory platforms (Gevaert et al., 2015) or by 

utilizing Unmanned Aerial Vehicle (UAV) imagery during the cloudy days. Forthcoming 

satellite systems, such as Sentinel-2, with a 10m spatial resolution, and a high visiting 

frequency, will provide a better access to farm level information.  

6.4 Influence of meteorological factors 
The third objective of this research was to analyze if the predictive power of regression 

models can be improved by the concomitant use of NDVI together with bio-climatic 

indicators. Although the coefficients of the regression models are restricted to the scope of 

the current study, the parameters included in the stepwise regression are important (Table 

7). In summary, NDVI factor still explains the most of the yield variability, although 

incorporating of meteorological factors led to improved regression models compared with 

those on specific time steps using only NDVI. For instance the stepwise multivariate 

regression models utilized NDVI and global radiation 90 days after greenup resulted a higher 

R2 in comparison with the regression model where NDVI was the unique predictor. This 

could indicate that crop status around 85-95 days after greenup plays an important role in 

potato yield; information which could be useful for PA. The results reinforce that the 

modeling efforts in which meteorological data were incorporated are generally strong with 

more significant correlation to final yield (Prasad et al., 2006; Balaghi et al., 2008) but the 

predictive power wasn't always significant stronger. Furthermore, it is important to note 

that all regression models presented in this section were able to predict the yield to a RMSE 

of between 4.97 and 7.07 ton/ha.  For the whole growing season the integrated NDVI is the 

most significant predictor. However the regression model indicated the strong relation 

between irrigation and in general availability of water with the potato crop due to its crop 

characteristics. 

Furthermore, the 5 day intervals of the meteorological explanatory variables does not 

necessarily result in the highest correlations and enhanced results can be obtained when the 

data are first integrated in more relevant periods during vegetative and growth 

development of potato. The purpose of this study was to examine the most optimal time 

step for accurate forecasting within the growing season. Further analysis can be conducted 

on the relationships of potato yields to when the data are first integrated in more relevant 

periods during vegetative and growth development of potato.  

In summary, the unexplained variance may be due a plethora of other factors , mainly errors 

in the basic inputs (yield statistics, weather and remote sensing data) and effects not 

covered by the regression models (diseases, soils, cultural practices, etc.).  

The multiple stepwise regression approach implemented in this study, apparently displayed 

a drawback for precision agriculture application due to the weather parameters derived 

from the closest KNMI meteorological station in Eindhoven. Recent studies presented 

approaches to overcome the limited spatial coverage of the meteorological stations. 
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Specifically, Carrer et al. (2012) derived solar radiation, while Kloog et al. (2012) estimated 

near surface temperature, utilizing satellite data. Although, the low resolutions of several 

dozen meters still constitute an impediment of the explicitly use of weather spatial data, the 

results can be noticeably improved. Likewise, via the use of advanced technologies daily 

weather records can be obtained by stations located near the farm (Hadders et al., 2009). 

Hence, weather measurements can be provided at a finer scale to characterize the local 

weather conditions, accurately. 

Finally, it must be noted that many meteorological indicators, especially if they are derived 

from satellites as well, are not really independent from vegetation indices(Johnson, 2014). In  

a study conducted by Prasad et al. (2006) multiple regression models were develop by 

introducing environmental information and NDVI, as independent variables. In this study the 

authors checked  the multicollinearity among the variables using the variance inflation 

factor. 

6.5 Qualitative crop yield classification by data mining techniques  

In general, the results presented moderate level of accuracy, however, useful conclusions 

can be extracted taking a closer look. The results obtained using Wrapper’s method with J48 

decision tree algorithm are in agreement with previous studies from the scope of the overall 

accuracy (Fernandes et al., 2011).  Overall, the accuracies of both classifications were over 

65%. Hence, it can be resulted that this approach can provide a good basis for qualitative 

assessment of yield for several crop types and in various region of interests.   

For the entire growing season, integrated NDVI has been found again as the most 

appropriate measure to characterize the crop production (Mulianga et al., 2013; Morel et 

al., 2014). Also the selection of NDVI 95 days after greenup is consistent with previous 

finding where a strong relation 85-95 days after greenup between NDVI and yield is 

illustrated. However, a more interesting and a new knowledge is the finding of the 

classification approach during the growing season. NDVI 60 and 65 days, respectively, 

selected as the most significant attributes. As summarized in earlier studies (Johnson, 2014), 

using entire time series of NDVI in data mining techniques can provide useful information for 

some dates which are not return a high correlation coefficient as single optimal dates.  

Subsequently, the results indicated in both cases a relationship between the precipitation 

and yields due to it is a general dependency that crops need rainfall to thrive. The absence 

of temperature and global radiation selection is probably related with the method used to 

discretize the yield. Three signaling classes obtained from K-means method may not have 

been adequate to relate with the numeric meteorological attributes. 

There was a significant worsening regarding the classification of yield LM, whose hit 

percentage dropped from 59.1 to 31.82 (Table 10 and Table 11). Classification of M class 

yield improved, increasing from 88.9 to 90.74 its accuracy percentage, when the entire 

growing season is studied. To conclude,  for classification of MH class I observed the most 

significant change in the results. Ranging from 0 to 64.29 percentage in user's accuracy it is 

obvious that the yield of potatoes mainly developed during the maturation phases hence 

early predictions can be dramatically failed. Excluding the MH class in the first classification I 
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observed a general balance and coherence of results. However, confusion matrices (Table 10 

and Table 11) indicated that there was more confusion between neighboring classes (LM 

and M or M and MH) than between remote classes (LM and MH). In future studies, subject 

of sentence is missing should be taken into account of other discretization methods or more 

classes. The most important result is that during the growing season and especially using 

attributes 60 and 65 after the greenup we can achieve a significant accuracy for LM class, 

59.81%. All the above can inform the farmers to make appropriate crop management such 

as rate and timing of fertilization and irrigation, for optimizing the yield quantity and quality 

(Wu et al., 2007). 
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7 Conclusions & recommendations  

The aim of the current study was involved to develop and validate methods for prediction 

and classification of potato yields, using imagery from high spatiotemporal DMC data in 

order to inform precision farming applications. 

Firstly, reconstructing NDVI time-series remote sensing data has been proven feasible, using 

the double logistic function. The last one describes the NDVI data better than smoothing-

interpolation approach, as quantified by the RMSE (SavGol>DL). It has also been shown that 

removing fields with missing observations during critical periods of growth cycle result in an 

enhancement of performance of curve fitting methods. 

When enough observations were available then relevant phenology parameters could be 

derived from NDVI time series profiles and be used to develop potato yield prediction 

models, during and over the entire growing season. Meanwhile, a fixed calendar date and 

planting date were also used to propose a yield prediction model and it was compared to 

the above models indicating that  inclusion of information related to crop phenology 

significantly improved model performance. The advantages in yield forecasting depends on 

the available cloud free data during growing season. The correlation coefficient between 

yield and NDVI increased from R2=0.3 to R2=0.65, when fields with adequate number of 

satellite observation used in yield estimation approach.  

Yield prediction models based on the NDVI as a stand-alone predictor resulted in almost the 

same accuracy as yield prediction models based on both NDVI and meteorological factors, 

during the cropping season. In both case reliable estimation achieved at the beginning of 

maturity phase, with RMSE values of 8.36% and 8.31% at model validation, respectively. A 

significant correlation was observed between the estimated yields obtained from NDVI-

based models (p-value < 0.001). 

However, the most promising results were obtained by incorporating the whole growing 

seasons' worth of data in a decision tree model. As a consequence, an earlier estimation was 

achieved, approximately 55-60 days after green-up, during the tuber filling phase. Although, 

the results were more effective for LM and M classes with 59.1% and 88.9% accuracy, 

respectively, the physical dimension of this information will help inform decisions of farmers 

on agronomic management and especially for effectual irrigation and fertilization during the 

formation of the potato bulk.  

Future tasks to improve the framework in this study are summarized below: 

There is a need for further investigation on the soil physical and chemical properties at field 

level. Soil properties such as pH, electrical conductivity, water holding capacity have a 

significant effect on the final yield. All these properties should be taking into consideration in 

order to stratify relevant zones that could considerably improve the prediction for final crop. 

Further research could focus on the investigation of using other vegetation indices, like 

WDVI and SAVI which can be calculated using DMC's satellite bands and test if provide a 

better estimation of the final yields. Future Earth Observing satellite systems, such as 
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Sentinel-2 (ESA), with higher spectral resolution will give access to estimation of a plethora 

of VIs.  

With the abundance of availability of several data and especially for meteorological data the 

interrelation of the different input variables should be considered and corrected when 

integrating bio-climatic and spectral indicators into multiple regression models. This is not 

taking into account in this research. 

Moreover, a limitation of the approach is that for fitting the DL function a true periodic 

length of satellite data is required. As author, I recommend for possible next studies to try to 

fit a logistic function that describes the upward slope of annual NDVI curve in order to 

perform analyses also in the middle of the season. Hence, different starting parameters 

should be selected for curve fitting procedure. 

Finally, the perspectives of UAV imagery offering high spatial data and enabling to flight 

during cloudy days, hence they should be tested as an alternative to overcome the obstacle 

of cloud contamination during the agricultural seasons. 
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Appendices 

Appendix A: Seasonality parameters maps 
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Figure 30: Seasonality parameters extraction for potato in 2013: (a) green-up date, (b) senescence date, (c) 
length of growth duration (from green-up to senescence) 
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Figure 31: Seasonality parameters extraction potato in 2014: (a) green-up date, (b) senescence date, (c) length 
of growth duration (from green-up to senescence) 
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Appendix B: Linear Model Summary 

Table 12: Quantitative relationships between potato yields (Y) and NDVI. Models were developed using a 
training set of 63 fields and validated using an independent test set of 27 fields 

Model calibration Model Validation 

Fitting model R
2
 R

2
adj RMSE MAE RMSE(%) MAE(%) 

Y = 3.55NDVI5 +  62.6 0.03 0.01 7.39 5.68 9.43 12.26 
Y = 51.98NDVI10 +  27.98 0.04 0.02 7.33 5.62 9.32 12.16 
Y = 56.15NDVI15 +  22.2 0.04 0.03 7.25 5.51 9.14 12.03 
Y = 59.45NDVI20 +  18.02 0.05 0.03 7.19 5.43 9.01 11.93 
Y = 66.17NDVI25 +  12.07 0.06 0.04 7.15 5.41 8.98 11.87 
Y = 79.41NDVI30 +  1.7 0.08 0.06 7.07 5.45 9.04 11.73 
Y = 102.41NDVI35 - 15.7 0.12 0.11 6.93 5.46 9.06 11.50 
Y = 136.27NDVI40 - 40.93 0.19 0.17 6.77 5.29 8.78 11.24 
Y = 174.66NDVI45 - 69.1 0.27 0.26 6.73 5.40 8.97 11.17 
Y = 200.83NDVI50 - 87.55 0.35 0.33 6.70 5.54 9.19 11.12 
Y = 199.82NDVI55 -85.3 0.38 0.37 6.35 5.29 8.78 10.54 
Y = 174.15NDVI60 -64.71 0.39 0.38 5.81 4.91 8.15 9.64 
Y =138.71NDVI65 -37.2 0.37 0.36 5.49 4.75 7.88 9.11 
Y = 107.56NDVI70-13.21 0.36 0.35 5.30 4.58 7.60 8.80 
Y = 86.66NDVI75 + 3.19 0.37 0.36 5.12 4.35 7.22 8.50 
Y = 75.16NDVI80 + 12.98 0.40 0.39 5.00 4.13 6.85 8.30 
Y = 70.38NDVI85 +  18.45 0.44 0.43 4.97 4.10 6.80 8.25 
Y = 69.6NDVI90 +  21.71 0.48 0.47 5.00 4.05 6.78 8.36 
Y = 70.52NDVI95 +  24.29 0.49 0.48 5.10 4.15 6.89 8.46 
Y = 72.71NDVI100 +  26.42 0.48 0.47 5.32 4.35 7.23 8.83 
Y = 77.2NDVI105 +  27.62 0.43 0.43 5.63 4.57 7.58 9.34 
Y = 83.92NDVI110 +  28 0.36 0.35 6.00 4.77 7.92 9.96 
Y = 89.57NDVI115 + 28.74 0.28 0.27 6.40 4.94 8.19 10.62 
Y = 94.65NDVI120 +  29.38 0.20 0.18 6.76 5.14 8.53 11.22 
Y = 97.66NDVI125 +  30.33 0.11 0.10 7.01 5.18 8.59 11.63 
Y = 90.05NDVI130 +  34.05 0.03 0. 02 7.04 5.18 8.59 11.68 
Y = 59.57NDVI135 +  43.73 0.00 0.02 6.98 5.31 8.81 11.58 
Y = 5.62NDVI140 +  59.11 0.02 0.00 7.11 5.62 9.33 11.80 
Y = 49.11NDVI145 +  73.9 0.06 0.05 7.36 5.89 9.77 12.21 
Y = 84.36NDVI150+  83.01 0.10 0.08 7.54 6.03 10.00 12.51 
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Appendix C: Yield maps 

 

Figure 32: Predicted yield (ton/ha) maps for potato, based on linear regression models using NDVI and 
meteorological values 85 days after greenup 

 

Figure 33: Predicted yield (ton/ha) maps for potato, based on linear regression models using the integrated 
NDVI 
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Appendix D: Spatial distribution of fields with cloud free images 
 

 

Figure 34: Based on the availability of cloud free images during the growing period fields were illustrated with 
yellow have from 1 to 4 images into the crucial points, while fields with re have no observations 


