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Parameterizing the soil – water – plant root system 
 
 
R.A. Feddes# and P.A.C. Raats## 
 
Abstract 
 

Root water uptake is described from the local scale, to the field scale and to the 
regional and global scales. Locally, water uptake can be considered at two different 
Darcian scales, referred to as the mesoscopic and the macroscopic scales.  

At the local mesoscopic scale, root water uptake is represented by a flux across 
the soil–root interface, resulting from the mesoscopic Richards equation describing 
the flow of water from soil to plant root, supplemented by appropriate initial and 
boundary conditions. The mesoscopic model involves two characteristic lengths 
describing the root-soil geometry, and two characteristic times describing, 
respectively, the capillary flow of water from soil to plant roots and the ratio of 
supply of water in the soil and demand by plant roots. Generally, at a certain critical 
time, uptake will switch from plant-atmosphere demand-driven to soil supply-
dependent. The resulting expressions for the evolution of the average water content 
can be used as a basis for upscaling from the mesoscopic to the macroscopic scale.  

At the local macroscopic scale, the root water uptake is represented by a sink 
term in the macroscopic Richards equation. Reduction of water uptake due to water 
and salinity stresses is incorporated by either linear or non-linear response functions. 
The root water uptake is strongly related to root length density, but it is easier to 
obtain root mass density, and therefore a conversion relationship has been established 
between the bulk root mass and root length densities, both in space and in time. The 
local macroscopic model can be incorporated in Soil–Plant–Atmosphere Continuum 
(SPAC) numerical models, like the SWAP, HYSWASOR, HYDRUS, ENVIRO-GRO 
and FUSSIM models. These SPAC models in turn can be used for upscaling, first to 
the field scale and from there to the regional and global scales. As Global Climate 
Models (GCMs) show a strong sensitivity to continental evaporation, closer root 
water-uptake modeling might improve soil vegetation control instead of uncontrolled 
continental evaporation. 

It is concluded that the relationships between mesoscopic and macroscopic 
descriptions of water uptake provide a useful framework for interpreting laboratory 
and field data and formulating macroscopic sink terms. One-dimensional analysis of 
the root-zone water balance is now well developed and has strong computational 
capabilities. Joint stresses can be computed easily by multiplication of water stress 
with salinity stress. The implementation at the macroscopic scale of the mesoscopic 
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description of simultaneous uptake of water and solutes is promising. Present Soil–
Vegetation–Atmosphere Transfer (SVAT) schemes should be improved with respect 
to root water-uptake descriptions, using existing global data sets of root and soil 
properties. A first priority is to establish firmly the relationships of root biomass, 
rooting depth, root distribution and root functions with land-use type, soil type, soil 
texture, topography and climate. 
 
Introduction 
 
 Water for evapotranspiration from land surfaces is supplied mainly by the soil. 
The soil water reservoir balances the episodic excesses of water supply from rainfall 
against the more smoothly varying atmospheric demand for evapotranspiration. The 
role of soil water within the soil–plant–atmosphere system depends on the size of the 
soil water reservoir and the availability of water in that reservoir which, in turn, 
depends on the texture, structure and organic matter of the soil and the characteristics 
of the root system. 
 One key function of plant roots is their ability to link the soil, where water and 
nutrients reside, to the organs and tissues of the plant, where these resources are used. 
Hence roots serve to connect the soil environment to the atmosphere by providing a 
link in the pathway for water fluxes from the soil through the plant to the atmosphere. 
Fluxes along the soil–plant–atmosphere continuum are regulated by above-ground 
plant properties like the leaf stomata, which can regulate plant transpiration when 
interacting with the atmosphere, and plant root-system properties like depth, 
distribution and activity of roots, as well as soil properties like the soil water retention 
and hydraulic conductivity characteristics. 
 Plant root systems show a remarkable ability to adapt to soil depth and to changes 
in the availability of water and nutrients and the chemical properties (e.g. salinity) in 
soils. Root response to soil properties, in turn, affects the uptake of soil water and 
nutrients and the storage of carbon below ground. Root distribution may change when 
ecosystems respond to greenhouse warming and carbon-dioxide fertilization. For 
example, at higher atmospheric CO2 concentrations, stomata of plants can contract 
somewhat for a given influx of CO2. Transpiration thus decreases and, coupled with 
generally higher photosynthesis at higher atmospheric CO2 concentration, water-use 
efficiency can increase dramatically (Field, Jackson and Mooney 1995). Increased 
water-use efficiency will potentially feed back to changes in root characteristics 
(Chaudhuri, Kirkham and Kanemasu 1990), with the possibility of further substantial 
changes in the water and energy balances. Exploration of such feedbacks has only 
begun. 
 Generally one is interested in water movement and solute transport at local, field 
and regional to global scales, with appropriate models for each scale (see Raats, 
Smiles and Warrick 2002):  
- The local scale (approximately 1 m2) refers to several scales: the microscale of 

solid particles and pores and of plant roots at the tissue and cellular level, the 
mesoscale of soil structural elements and of individual roots and associated 
volumes of soil, and the macroscale of the soil profile, including the entire root 
system; 

- The field scale (approximately hectares) is the scale of farm management, i.e. of 
maintaining an optimal soil structure, adjusting the availability of water and 
nutrients, applying pesticides and herbicides, etc.; 
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- The regional to global scale (larger than 1 km2) is the scale at which e.g. pollution 
of ground and surface water becomes evident, but which also is of interest in land 
surface modeling from the perspective of the hydrological cycle and climate. 

Temporal scales range from below hourly in fundamental studies, to diurnal and 
seasonal in agricultural applications, to annual and decadal in climate studies. 
 Within this context, one objective of this position paper is to explore the level of 
detail that needs to be included to parameterize properly models of water and energy 
flux at the local, field,  regional and global scales. In particular, we will investigate 
whether the concept of a single one-dimensional (1D) root water-uptake model with 
effective parameters is feasible for application at regional scales. Toward this goal we 
also examine the existing databases on plant rooting depth and distribution, and some 
of the key models that can use these data. 
 
Liquid water flow inside the plant: soil and plant resistances 
 
 A simple electric analogue can be used to describe water flow through the entire 
soil–plant–atmosphere system (Van den Honert 1948; Kirkham 2002). This model 
assumes that the water-flux density v (cm3 cm-2 s-1) through the rooted soil zone and 
the root–stem–leaf–stomata path is proportional to the total water potential, i.e. head 
difference ∆htotal (cm) and inversely proportional to the total resistance totalR  
(expressed in seconds) of the system. Thus considering a one-dimensional steady-
state flow in a series network, the liquid flow equation is: 
 

( ) ( )root soil leaf roottotal leaf soil

total soil plant soil plant

h h h hh h hT v
R R R R R

− −∆ −
= = − = − = − =

+
 (1) 

 
where T (cm s-1) is the transpiration rate, hsoil, hroot and hleaf (cm) are pressure heads in 
the soil, at the root surface and in the leaves, respectively, Rsoil and Rplant (s) are liquid-
flow resistances of the soil and the plant. Hence Rplant does not include stomatal 
resistance. When the transpiration demand of the atmosphere on the plant system is 
high or when the soil is rather dry, Rsoil and Rplant influence hleaf in such a way that 
transpiration is reduced by closure of the stomata. Eq. (1) can be applied to the root 
system as a whole by measuring T, hsoil, and hleaf during two periods, thus obtaining 
two equations with two unknowns, from which Rsoil and Rplant can be computed. The 
relative magnitude of Rsoil and Rplant  is an important object of study. Under wet 
conditions Rsoil is close to zero. Generally one can state, except for very dry soil, that 
Rplant > Rsoil. Most of the plant resistance is concentrated in the roots, to a lesser 
extent in the leaves, and a minor part in the xylem vessels, although in some 
monocotyledonous crops longitudinal resistance may hamper the uptake of water 
from deeper layers (Wind 1955; Richards and Passioura 1989). Feddes and Rijtema 
(1972, Table 5) have concluded that Rplant increases with progressive drying of the soil 
and decreases when the transpiration rate is higher. This finding (see Figure 1) has 
been confirmed by e.g. Hansen (1974). It must be emphasized that this is a 
controversial issue as other researchers think that Rplant depends neither on soil water 
content nor on transpiration rate. 
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Figure 1. Plant resistance Rplant versus transpiration rate T as computed from an 
Italian-ryegrass column experiment, showing the inverse proportionality of Rplant with 
T (after Hansen 1974) 
 
 About 30 years ago it was already realized that the uptake of water is complicated 
by the presence of solutes in the water. On the one hand solutes tend to be sieved out 
by root membranes; on the other hand they may be actively taken up by the plant. 
Inspired by the partly analogous problem of simultaneous flow of water and  solutes 
in clays (Bolt and Groenevelt 1969), Dalton, Maggio and Piccinni (2000) and Fiscus 
(Fiscus 1975) formulated a model for simultaneous uptake of water and solutes by 
plant roots, accounting both for salt sieving and active uptake of salt. Dalton, Maggio 
and Piccinni (Dalton, Maggio and Piccinni 2000) found qualitative agreement 
between calculations based on these equations and a variety of observations on 
simultaneous uptake of water and solutes. In particular the theory accounts for the 
often observed nonlinear relationship between the volume flux of the aqueous solution 
and the salt concentration difference between the soil–root interface and the xylem. In 
recent years the model has been used in mechanistic studies of salt tolerance (e.g. 
Dalton, Maggio and Piccinni 2000) and water and nutrient management of greenhouse 
crops (Van Ieperen 1996). Extensions of the theory are possible, including a 
description of the accumulation of solutes at the soil–root interface and the polarity of 
transport processes associated with series arrays of membranes (Raats in prep.). 

Macroscopic description of root water uptake 
 
 The more hydrologically oriented approach at the macroscale regards the root 
system as a diffuse sink that penetrates each layer of soil uniformly, though not 
necessarily with a constant strength throughout the root zone. Root water uptake can 
then be represented as a sink term that is added to the vertical water-flow equation. 
One has to realize, however, that 1-D root-system models may fail when lateral 
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transport of water by subsurface or overland flow occurs. In case of catchments with 
complex sloping terrain and groundwater tables, a vertical flow model has to be 
coupled with either a process or a statistically based scheme that incorporates lateral 
water transfer. 
 The macroscopic way of solving the root water-uptake problem is to introduce in 
the differential form of the water mass balance a sink term representing water 
extraction by plant  roots: 
 

z
z

v S
t z
θ∂ ∂
= − −

∂ ∂  
 (2) 

 
where z (cm) is the vertical co-ordinate taken positively upward, vz (cm d-1) is the 
Darcian soil water-flux density taken positively upward, and Sz (cm3 cm-3 d-1) is the 
root water-uptake rate. Sz thus depends on depth, time, soil water pressure head, root 
density or a combination of these variables. 
  The volumetric flux vz is given by Darcy’s law: 
 

( ) 1z
hv k h
z
∂⎛ ⎞= − +⎜ ⎟∂⎝ ⎠

  (3) 

 
where k is hydraulic conductivity (cm d-1) and h is soil water pressure head (cm). As 
written, (2) and (3) refer to a one-dimensional, homogeneous system, but these 
limitations are easily removed, particularly in the transition to numerical 
formulations. 
 Root water uptake Sz generally can be derived by applying the water-
conservation equation to a given volume of soil. Commonly it is assumed that, in an 
unsaturated soil, water flows only in the vertical direction z. Let us consider a volume 
of soil of unit cross-sectional area in the horizontal plane, bearing vegetation, with a 
lower boundary at z = 0 (for example at the groundwater table or a level with constant 
pressure head) and an upper boundary at the soil  surface at z = z (where z is both the 
vertical co-ordinate and the position of the soil surface). Water flow through the roots 
( roots )v can then be calculated as the measured total flow through soil and roots ( totalv ) 
diminished with the calculated flow through the soil ( soilv ). Based on (1) the water-
conservation equation can then be written for every height z and for a short time 
interval t2 - t1 as 
 

[ ]2 1

2

0
0

0
1

roots total soil
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z
z z

t t z
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θ θ−
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−
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∫
∫

  (4) 

 
where zS (cm3 cm-3 d-1) is the time-averaged volume of water taken up by the roots 
per unit bulk volume of soil in unit time and considered positive from the soil into the 
roots, 0v (cm d-1) is the time-averaged volumetric flux density through the lower 
boundary, θ (cm3 cm-3) is the bulk volumetric soil water content, zv (cm d-1) the time-
averaged volumetric flux density through the upper boundary. 
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 For the calculation of root water-uptake patterns, one needs to know the k(h) 
curve and the profiles of θ and h. The latter two can be measured by well-known 
methods such as time domain reflectometry and soil water tensiometry. When the 
moisture retention curve is used, it suffices to measure either θ or h and infer the 
unknown one via the retention curve. The flux 0v at the bottom should be derived 
from either measurements (e.g. a lysimeter) or by means of (3). In some experiments 
use was made of a zero-flux plane (e.g. Richards, Gardner and Ogata 1956; Cooper 
1979; 1980). Application of (4) gives the integrated root water uptake over a given 
depth interval in the root zone. Differentiation of (4) gives the water uptake rate by 
the roots at height z. A sample of calculation of water extraction by roots at depth z is 
given for red cabbage on clay for the period of 18 through 25 July 1967 (Feddes 
1971). 
 

 
 
Figure 2. Profiles of time-averaged pressure head h (A); time-averaged cumulative 
water withdrawal of both a cabbage crop and clay soil totalv , of soil only soilv  and of 
roots only rootv  (B); time-averaged extraction rate S (C); for red cabbage on clay for 
the period of 18 through 25 July 1967  (after Feddes 1971) 
 
The mean pressure head during this period is given in Figure 2A, the time-averaged 
cumulative withdrawal patterns of both crop and soil totalv , soil only soilv , and crop 
only rootsv  are presented in Figure 2B, while the time-averaged extraction rate at 
heights z, S(z), is given in Figure 2C. From Figures 2B and 2C it follows that the 
effective rooting depth can be found at the height where the cumulative withdrawal 
function of total flow and soil flow intercept. From Figure 2C it can be seen that the 
maximum extraction rate occurs at a height of 0.30 to 0.35 m below the soil surface. 
 The root extraction rate is generally small near the top of the profile, unless the 
soil is wet just after rainfall or irrigation. Downwards, the extraction rate increases to 
a certain maximum and then decreases to zero at the bottom of the root zone. 
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Figure 3. Example of measured variations of root water uptake with depth and time of 
red cabbage grown on a clay soil with the groundwater table at 90-110 cm depth and 
obtained from water-balance studies over 4 consecutive weeks (after Feddes 1971) 
 

As the soil dries (Figure 3) the zone of maximum root water uptake moves from 
smaller to larger depths in dynamic correspondence with the downward progression 
of roots into deeper moist soil. The maximum extraction rate appears to depend on the 
demand the atmosphere exerts on the plant system, on the depth to which the roots 
penetrate, and on the soil water pressure-head distribution. Later water uptake from 
the upper layers becomes relatively less important. Most of the water is absorbed 
from the zone of low tensions near the groundwater table. Thus, a relatively small part 
of the root system can be responsible for most of the plant water uptake. 
 
Modeling root water uptake at mesoscopic and macroscopic scales 
 
Introduction 
 For overviews of root water-uptake models the reader may refer to Feddes 
(1981), Molz (1981), Hopmans and Bristow (2002). Uptake of water by plant roots 
can be considered at two different Darcian scales, referred to as the mesoscopic and 
macroscopic scales (Raats 1990; 2002; Raats, Smiles and Warrick 2002). At the 
macroscopic scale, the uptake of water by plant roots is represented by a sink term in 
the volumetric mass balance Eq. (2). 
 At the mesoscopic scale, this same uptake is represented by a flux across the soil–
root interface. That flux is a consequence of the interaction of processes in the soil 
and in the plant. In the soil, flow of water towards or away from individual plant roots 
may be described by a nonlinear diffusion equation, subject to appropriate initial and 
boundary conditions. The mesoscopic model involves at least two characteristic 
lengths describing the root–soil geometry and two characteristic times describing, 
respectively, the capillary flow of water from soil to plant roots and the ratio of 
supply of water in the soil and uptake by plant roots. Generally, at a certain critical 
time, uptake will switch from demand-driven to supply-dependent. The resulting 
mesoscopic expressions for the evolution of the average water content can be used as 
a basis for upscaling to the macroscopic scale. 
 The mesoscopic analysis considers the convergent radial flow of soil water 
toward and into a representative individual root, taken to be a line or narrow-tube sink 
uniform along its length, i.e. of constant and definable thickness and absorptive 
properties. The macroscopic root system as a whole can then be described as a set of 



Chapter 4 

102 

such individual roots, assumed to be regularly spaced in the soil at specified distances, 
that may vary within the soil profile. The Richards equation for flow of water at the 
mesoscale is solved for the distribution of soil water pressure heads, water contents, 
and fluxes from the root outward. In cylindrical co-ordinates, the pressure head (h ), 
water content (θ ), and matric flux potential ( )d dk h Dϕ θ= =∫ ∫  forms of the 

Richards equation are: 
 

( ) ( )1h hrk h
t r r r

∂θ ∂ ∂
∂ ∂ ∂

⎧ ⎫
= ⎨ ⎬

⎩ ⎭
,    ( )1 rD

t r r r
∂θ ∂ ∂θθ
∂ ∂ ∂

⎧ ⎫
= ⎨ ⎬

⎩ ⎭
,    ( ) 1 r

t r r r
∂θ ϕ ∂ ∂ϕ
∂ ∂ ∂

⎧ ⎫
= ⎨ ⎬

⎩ ⎭
 (5) 

 
where r is the radial coordinate  from the center of the root. 
 
Geometrical and mass-based parameters describing root systems 
 Depending on the scale of interest and the purpose, a variety of parameters have 
been introduced to describe aspects of the spatial–temporal distribution of plant roots. 
In the following we give definitions of some commonly used parameters and 
relationships among these. In particular, we describe relationships among the 
geometrical parameters used in soil–water–plant–atmosphere models and relate these 
to the root mass-based parameters often measured by ecologists. 
 For an individual plant root in soil, two characteristic lengths can be identified 
(Figure 4): 
- r0 (cm), radius of the plant root and also the internal radius of the equivalent 

cylindrical shell of soil associated with the plant root; 
- r1 (cm), external radius of the equivalent cylindrical shell of soil associated with 

the plant root. 
The following parameters can be used to characterize the root system in the soil: 
- rL  (cm cm-3  =  cm-2), the root length per unit volume of soil; 
- rσ  (cm2 cm-3 = cm-1), the root surface area per unit volume of soil; 
- rφ  (cm3 cm-3 = -) and sφ  (cm3 cm-3 = -), the root and soil volume fractions, being 

subject to the constraint: 
r s 1φ φ+ =   (6) 

 

 
Figure 4. Two characteristic lengths for an individual plant root: the internal radius of 
the plant root r0  and the external radius of the soil associated with the plant root r1 
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 For uniformly distributed roots, the root length density is the inverse of the 
volume of root plus soil, associated with unit length of root: 
 

( ) 12
r 1L rπ

−
=   (7) 

 
The root volume fraction φr  is equal to the ratio of the volume of a unit length of root 
and the volume of this unit length of root plus the cylindrical shell of soil associated 
with it: 
 

( )2 2
r 0 1 0 rr r r Lφ π= =   (8) 

 
The constraint (6) on the volume fractions implies 
 

( )2 2
s r 0 1 0 r1 1 1r r r Lφ φ π= − = − = −   (9) 

 
The specific root surface area rσ  is the ratio of the surface area of a unit length of 
root divided by the volume of root plus the cylindrical shell of soil associated with 
unit length of root: 
 

( )1 22
r 0 1 0 r r r2 2 2r r r L Lσ π πφ= = =   (10) 

 
From (7) and (10) it follows that: 
 

( ) 1
0 r r2r Lσ π −=  ( )

1 2
1 2 0

1 r
r

2rr Lπ
σ

− ⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
 (11) 

 
Clearly, the characterization of a uniform root system by the radii r0  and r1  is 
equivalent to the characterization by the root length density rL  and the specific root 
surface area rσ . Solving (8) for r0 r1 : 
 

( )1 21 2
0 1 r s1r r φ φ= = −   (12) 

 
 Thus, to characterize the geometry of a uniform root system, either the radii r0 
and r1 or two of the parameters rL , rσ , and rφ  or sφ  can be used. In experimental 
practice, the root length density, and the root radius r0  are usually measured. Then 
(7) can be used to calculate r1 and (9), (8), and (9) can in turn be used to calculate σ , 
and rφ  or sφ . 
 The nature of all the parameters just introduced is geometrical. The bulk root 
mass density rρ  i.e. the mass of roots per unit volume bulk soil, can be obtained by 
multiplying the root volume fraction rφ  by the intrinsic root density rγ , i.e. the mass 
of roots per unit volume of root: 

( )2 2
r r r r 0 1 r 0 rr r r Lρ γ φ γ γ π= = =   (13) 
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 A complicating factor related to the intrinsic density rγ  is the often considerable 
gaseous volume fraction of root tissue, in particular in plants adapted to growing in 
wet soils. Eq. (13) relates the geometrical parameters root radius r0 and root length 
per unit volume rL , used in water-uptake models, to the bulk root mass volumetric 
density rρ , often measured by ecologists. From this it follows that root-system 
databases for use in specific types of soil–water–plant–atmosphere models should 
contain, in addition to the spatial–temporal distribution of ( )r ,z tρ , some information 
on the intrinsic density rγ  and the root radii r0. Mathematical expressions and 
databases for ( )r ,z tρ  are discussed later. 
 
Mesoscopic analysis of uptake by a single root and its macroscopic implications 
 To get some insight into the acquisition of water from soil, both Philip (1957b) 
and Gardner (1960) considered uptake of water by a plant root with radius r0 
surrounded by a cylindrical shell of soil with outer radius r1. Linearizing (5) and 
assuming r0 << r1, they considered an approximate solution of (5) subject to a 
constant flux into a line sink (see Raats, Smiles and Warrick 2002). 
 Philip (1957b) used this solution to analyse the time course of the water content 
θ0  at the soil–root interface, in particular the instant tw  at which this water content 
reaches the critical value θ0w  at which the plant wilts. He demonstrated that the 
average water content θ w  at wilting does not only depend on θ0w , but also on the soil 
water diffusivity D , the geometrical parameters r0 and r1, and the water demand u . 
Thus, from such an analysis at the mesoscale, he concluded that “uncritical use of the 
‘wilting point’ as an invariant index of the lower limit of the availability of soil 
moisture to plants can be very misleading”. 
 Denmead and Shaw (1962) verified the predictions that water was not equally 
available to plants in the range between field capacity and the permanent wilting 
point, and that transpiration could be restricted and plants could wilt over a wide 
range of soil water contents, depending on root density, the soil hydraulic properties, 
and last but not least, on the transpiration demand of the atmosphere. 
 Tanner (1967, his Figure 5) nicely summarized other data available at that time 
relating the ratio of actual and potential evapotranspiration to the amount of water in 
the soil. 
 
Transient soil water depletion regarded as a succession of steady-state profiles 
 Gardner (1960) used the line sink solution to calculate water-depletion patterns 
around individual roots. But more importantly, he also used it as a point of departure 
for the formulation of a simpler model, in which the depletion resulting from uptake 
by a single root is treated as a series of steady flows in the cylindrical shell of soil 
surrounding the root, with the soil–root interface at the inner edge and the water 
coming from the outer edge. This simple model has been used ever since as a point of 
departure for more sophisticated mesoscopic as well as macroscopic models of water 
uptake. 
 In the single-root model of Gardner (1960), the root is viewed as a cylinder of 
uniform radius r0 and infinite length having uniform water-absorbing properties. For 
steady-state conditions ( )0t∂θ ∂ =  in the soil shell surrounding the root with water 
flowing from the outer cylindrical surface at r = r1 to the inner cylindrical soil–root 
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interface at r = r0 , the solution of (5)1 under the assumption of constant k gives the 
following expression for the flux rq at the soil–root interface at the mesoscale: 
 

( )r 1 0q Bk h h= −   (14) 
 
where rq (cm3 cm-1 d-1) is the rate of water uptake per unit length of root, h1(cm) is 
pressure head of the soil at r = r1, h0 (cm) is the pressure head at the soil–root interface, 
and the dimensionless geometric and root distribution factor B  is given by: 
 

B =
2π

ln r1 r0( )
  (15) 

 
In hydrology, an equation analogous to (14) is used for the steady-state flux towards a 
well per unit length of well. 
 Cowan (1965) realized that the assumption of constant k  used in deriving (14) 
can be avoided. In essence, he replaced (14) by: 
 

( ) ( ) ( )r 1 0 1 0 1 0q Bk h h BD Bθ θ ϕ ϕ= − = − = −  (16) 
 
where the average hydraulic conductivity k  and average diffusivity D  are defined by: 
 

( )
( )

( )
( )

1 1

0 0

1 01 0

d d
,      =

h

h
k h D

k D
h h

θ

θ
θ

θ θ
=

−−

∫ ∫
  (17) 

 
The integrals in (17) can be easily evaluated for any of the commonly used expressions 
to represent the k h( ) and ( )D θ  relationships for specific classes of soils. 
 At the macroscale, for a discrete soil layer of thickness ∆ z and with root length 
density rL  (cm cm-3), the water-uptake rate rv∆  (cm d-1) can be written as: 
 

r r rv L zq∆ = ∆   (18) 
 
Introducing Eq. (16)1 in (18) gives: 
 

( )r r 1 0v BL zk h h∆ = ∆ −   (19) 
 
In an attempt to account for the location of the soil layer, one might be tempted to 
replace h0 in (19) by hrootsystem − z , where hrootsystem  is the pressure head in the root 
system evaluated at the soil surface. However, as will become apparent from an analysis 
of the hydraulic connection between the soil–root interface and the xylem discussed 
later on, this cannot be justified. 
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Transient soil water depletion as a succession of steady-rate profiles 
 An attractive alternative, to the depletion approach as a succession of steady state 
profiles, is to regard the withdrawal of water to be uniformly distributed over the 
cylindrical shell of soil. In fact, if the Richards equation were linear and the water 
demand were constant, there would be a solid basis for this at intermediate times when 
the memory of the details of the initial spatial distribution of the water content has 
already disappeared and the constant demand can still be met. 
 Assuming steady-rate conditions ( )constantt∂θ ∂ =  and with zero flux at the 
outer cylindrical surface at r = r1 of the soil shell surrounding the root, the solution of 
(5) for the flux rq  at the soil–root interface is (cf. Jacobsen 1974): 
 

( ) ( ) ( )r 1 0 1 0 1 0* * *q B k h h B D Bθ θ ϕ ϕ= − = − = −  (20) 
 
where the dimensionless geometric and root distribution factor *B  is given by: 
 

[ ] ( )1
0 1 1 0

2*
1 ( / ) ln 1 2

B
r r r r

π
−=

− −
  (21) 

 
The corresponding steady-rate mesoscopic expression for rv∆  is: 
 

( )r r 1 0*v B L zk h h∆ = ∆ −   (22) 
 
For r0 << r1, the factor *B  can be approximated by: 
 

( ) ( )1 0 1 0

2 2*
ln 1 2 ln 0.6064

B
r r r r

π π
≈ ≈

−
 (23) 

 
Comparison of the expressions for B  in (15) and for B * in (23) shows that whereas in 
the steady-state approximation all the water is assumed to originate from r = r1, in the 
steady-rate approximation it seemingly originates from 10.6064r r= . 
 The steady-rate feature has long been known as an important term in the full 
solutions of linear equations subject to flux boundary conditions for heat conduction and 
flow to wells. Cowan (1965) demonstrated its relevance for flow to plant roots, even for 
a diurnally varying, but on average constant demand. Passioura and Cowan (1968) 
compared the predictions of the water content at the soil–root interface based on the 
approximate steady-state and steady-rate solutions and the exact numerical solution, 
finding reasonable agreement among them, with the steady-rate method being 
somewhat more accurate than the steady-state one. 
 The steady-rate approximation has been extensively used by De Willigen and Van 
Noordwijk (1987; 1995), De Willigen et al. (2000), Heinen (1997), and Heinen and De 
Willigen (1998; 2001) not only for uptake of water, but also for the uptake of nutrients. 
They have also considered extensions to cases where the flow to the individual roots is 
not radially symmetric, either due to partial soil–root contact or due to spatially non-
uniform root distributions. 
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Constant and falling rate phases of uptake 
 If the Richards equation were linear, the distribution of the water content around 
an individual root resulting from a constant rate of uptake would be the sum of two 
parts: 
- an exponentially fading infinite series with characteristic diffusion time 

td = r1
2 D , which guarantees that the initial condition is satisfied; 

- a water-content profile of time-invariant form, with the water content decreasing 
linearly with time everywhere at the same rate, corresponding to the steady-rate 
profile discussed above. 

The deviation from this simple structure will depend on the degree of nonlinearity. In 
any case, linear or nonlinear, the constant-rate phase can only last up to the instant 
that the water content at the soil–root interface reaches a critical value θ0w  and the 
falling-rate phase starts. If the Richards equation were linear, the solution in the 
falling-rate phase would again be the sum of two parts: 
- an exponentially fading infinite series with characteristic diffusion time 

td = r1
2 D , which guarantees that the intermediate condition at the transition from 

the constant-rate phase to the falling-rate phase is satisfied; 
- a term that has the form of the product of two terms, one depending on the radial 

co-ordinate and one depending exponentially on time, again involving the 
characteristic diffusion time td = r1

2 D . 
 The change from the constant-rate phase to the falling-rate phase is basically a 
change from the plant-dominated boundary condition to the soil-dominated boundary 
condition. Similar switches of boundary conditions are well known in other 
environmental physics problems. For example, evaporation  from a saturated bare 
soil, starting at a constant rate being determined only by atmospheric conditions, may 
at a certain instant switch to a falling-rate phase in which the evaporation rate depends 
only on the hydraulic properties of the soil (Philip 1957a). For infiltration of water 
into soil, an analogous switch occurs at the so-called ponding time (see e.g. 
Broadbridge and White 1988). 
 
Hydraulic connection between the soil–root interface and the xylem 
 Taylor and Klepper (1975) used a steady-state single-root model to interpret 
experimental data for uptake of water by cotton root systems. Specifically, they used 
the following equation of the same form as (14) and (16): 
 

( )r soil-rootsystem soil-rootsystem 1 xylemq B k h h= −  (24) 
 
where hxylem is a value obtained from shoot water-potential measurements, soil-rootsystemk  
is the hydraulic conductivity of the combined soil–root pathway, and the dimensionless 
geometric and root distribution factor soil-rootsystemB  is given by: 
 

Bsoil-rootsystem =
2π

ln r1 rstele( )
  (25) 

 
where rstele  is the radius of the root stele, which includes all of the tissues inside the 
cortex. The analysis of the data gave ksoil- rootsystem  as a function the water content θ . 
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Figure 5. A comparison of the hydraulic conductivity of a soil–cotton root system 
obtained at various depths with the soil hydraulic conductivity (k) for various soil 
moisture contents (after Taylor and Klepper 1975) 
 
Figure 5 shows that in the wet range ( )soil-rootsystemk θ  is up to six orders of magnitude 
smaller than k θ( ) for just the soil. This strongly suggests that most of the resistance 
resides in the plant root, except when the soil is very dry and ksoil- rootsystem  becomes 
comparable to k  given by (17)1. 
 Herkelrath, Miller and Gardner (1977a) investigated the influence of θ  and h  
upon root water uptake in a laboratory experiment with winter wheat. They used wax 
layers, penetrable by roots but not by water, to divide their soil column in different 
sections. Their observations imply a large resistance between the soil–root interface and 
the xylem and a small resistance between the xylem and the leaves. Water uptake began 
to decrease rapidly when θ  fell below about 0.10, corresponding to about h = -100 cm, 
in agreement with the data of Taylor and Klepper (1975) for cotton. 
 To account for their observations, Herkelrath, Miller and Gardner (1977b) 
proposed to complement the steady-state models (16-19) or the steady-rate models (20-
23) with the following expression to describe the flow from the soil–root interface to the 
xylem: 
 

( )0
r 0 xylem

s

q C h hθ
θ

= −   (26) 

 
where C (s-1) is the conductance of the region between the soil and the xylem. The 
degree of saturation θ0 θs  of the soil at the soil–root interface is a factor accounting for 
the contact between the soil and the root. In view of the θ0  proportionality in (26), it is 
interesting to note that for θ >0.03, Taylor and Klepper (1975) found a more or less 
linear increase of the rate of uptake with θ . Eq. (26) is similar to an equation commonly 
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used to describe the steady flow of water across a surface crust into the underlying soil 
where the water is at a uniform water content and pressure head and steadily flows 
downward under the influence of gravity. Raats (1974) described a simple graphical 
procedure to analyse such steady infiltration into a crusted soil. Van Noordwijk (1983;  
see also De Willigen and Van Noordwijk 1987; and Raats 1990) used a similar 
procedure to analyse the implications of (26). For a critical value of hxylem = hxylemw  at 
which wilting starts, it follows from (17) that: 
 

s r
0w xylemw

0w

qh h
C

θ
θ

= +   (27) 

 
 The graphical or equivalent iterative procedure consists of reducing the seemingly 
infinity of possible pairs h0w,θ0w( ) to a single pair by determining the intersection of 
(27) with the soil water-retention curve: 
 

h0w = h θ0 w( )  (28) 
 
The root contact model (26) has been used extensively by Jensen et al. (Jensen, Henson 
and Hansen 1990; 1993). The concept of contact resistance is also relevant for heavier 
textured soils in which the roots have a strong tendency to grow at the surface of 
aggregates. 
 In view of (18), (22) and (26) the flow from the soil to the xylem can be described 
by 
 

( ) ( )0
r 1 0 0 xylem* r r

s

v B kL z h h C L z h hθ
θ

∆ = ∆ − = ∆ −  (29a) 

 
 Assuming that the soil conductance is large in comparison with the root 
conductance, i.e. ( )0* r s rB kL z C L zθ θ∆ >> ∆  or B * k >>C θ0 θs( ), then the water 
status around the individual roots is nearly uniform, i.e. h0 ≈ h ≈ h1 and θ0 ≈ θ ≈ θ1, 
where h  is the pressure head and θ  is the water content at the macroscopic scale. Eq. 
(26) may then be replaced by 
 

( )r xylem
s

v C h hθ
θ

∆ = −   (29b) 

 
 If the xylem conductance is large in comparison with the root conductance 
( )0 s rC L zθ θ ∆ , so that the xylem pressure head hxylem  at depth z  can be written as the 

sum of the root pressure head rh  evaluated at the soil surface and the gravitational head 
z , i.e. xylem rh h z= + , then (26) reduces to: 
 

( )root rootr
s

v C L z h h zθ
θ

∆ = ∆ − +   (30) 
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Clearly, (30) should only be used if the soil resistance and the xylem resistance are 
negligible. 
 An alternative method for dealing with limited soil–root contact was explored by 
De Willigen and Van Noordwijk (1987, Chapter 10). The fraction of the potentially 
available water that can be acquired by the root system at a certain rate decreases with 
decreasing soil–root contact and increasing spatial clustering of roots. Veen et al. 
(1992) showed that limited soil–root contact leads to a decrease of uptake of water 
and nitrate, explaining the existence of an optimum in the response curve of crops to 
soil compaction. 
 Rappoldt (1992) developed a practical method for the description of transport 
processes at the mesoscale in aggregated soils. The method is based on a 
simplification of the complex geometry of natural structural soils, in such a manner 
that the essential geometric and structural characteristics governing the diffusion 
process are preserved. This is done as follows. The geometry of the natural system is 
replaced by a model system of cylinders. The distribution of the radii of the cylinders 
is chosen such that the structured soil and the model system have the same distance 
distribution. Finally calculations of diffusion processes are carried out in the model 
system. On this basis, Rappoldt (1992) analysed in detail various aspects of aeration 
of heterogeneous soils (see also Rappoldt 1990; Rappoldt and Verhagen 1999). To 
illustrate the generality of the method, he also used the method to analyse the uptake 
of water and nutrients by an irregularly distributed root system (Rappoldt 1992, 
Chapter 7). 
 
Hydrologically oriented modeling approach for root water uptake at 
macroscale 
 
Introduction 
 We now return to the macroscopic description of root water uptake based on the 
mass-balance equation (2) and the Darcy equation (3). Combination of (2) and (3) 
results in the Richards equation: 
 

( ) 1
( ) ( , )

hk h
zhC h S z t

t t z
θ

⎡ ∂ ⎤⎛ ⎞∂ +⎜ ⎟⎢ ⎥∂∂ ∂ ⎝ ⎠⎣ ⎦= = −
∂ ∂ ∂

 (31) 

 
where C = dθ /dh (cm-1) is the differential water capacity, i.e. the slope of the soil 
water characteristic. Van Genuchten (1980) has provided analytical expressions for 
the non-linear soil hydraulic characteristics θ (h) and K(h). To obtain a solution of 
(31) one has to supplement it with conditions for the initial situation and for the upper 
and lower boundary of the flow system. A major difficulty in solving (31) for θ (z,t) 
stems from the unknown form of the function ( , )S z t . Feddes, Bresler and Neuman 
(1974) assumed S(z) to be proportional to k, the difference between 1 0h h−  as in (14), 
and to an empirical  root effectiveness function b'. This function is proportional to 
root mass and varies nearly exponentially with depth. They found from 1-D finite 
difference simulations that calculated cumulative transpiration was in good agreement 
with measured field data. Neuman, Feddes and Bresler (1975) extended the 1-D flow 
expression (31) to 2-D flow for rigid unsaturated or partly saturated soils by means of 
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the finite-element method. Feddes, Neuman and Bresler (1975) showed the 
capabilities of this method in applications to complex but realistic 2-D flow situations. 
 At the upper boundary the vegetation plays a dominant role in the partitioning of 
the various fluxes. Hence, in solving (31) one needs in principle a coupling of the soil 
water-balance model with a daily vegetation-growth model. Only in this way can a 
proper prediction of vegetation development and growth dependent on  the actual 
prevailing soil water conditions be obtained, thus assuring the proper feedback. 
 
Reduction of water uptake due to water stress 
 Under optimal water conditions the maximum possible root water extraction rate 
Sp(z), integrated over the rooting depth, is equal to the potential transpiration rate, Tp 
(cm d-1), which is governed by atmospheric conditions. Feddes et al. (1976) first 
described  S (for each time t) as a function of soil water content θ, and  improved this 
later (Feddes, Kowalik and Zaradny 1978) as a function of soil water pressure head h 
according to: 
 

( ) ( ) pS h h Sα=   (32) 
 
where α (h) is a dimensionless prescribed function of soil water pressure head and Sp 
is the potential, i.e. maximal possible, water extraction by roots (cm3 cm-3 d-1). 
 Under non-optimal conditions, i.e. either too dry or too wet, Sp is reduced by 
means of the factor α (h). The shape of this function has been proposed by Feddes, 
Kowalik and Zaradny (1978) as shown in Figure 6. 

 
 
Figure 6. Dimensionless sink term variable α as a function of the soil water pressure 
head h (after Feddes, Kowalik and Zaradny 1978) 
 
 Water uptake below ⏐h1⏐ (oxygen deficiency, as shown in wheat experiments by 
Yang and De Jong (1971) and Ehlers (1976) with h1 approaching zero in sandy soils) 
and above ⏐h4⏐ (wilting point) is set equal to zero. Between ⏐h2⏐ and ⏐h3⏐ 
(reduction point) water uptake is maximal. Between ⏐h1⏐ and ⏐h2⏐ and between 
⏐h3⏐ and ⏐h4⏐ a linear variation is assumed. The value of h3 depends on the water 
demand of the atmosphere (compare with Denmead and Shaw 1962) and thus varies 
with Tp. For an indication of these h1 - h4 values for 5 crops see Table 1. Kroes and 
Van Dam (2003, Appendix 3) give high and low estimates of h3 for a large number of 
crops, based on a compilation by Taylor and Ashcroft (1972, Table 14.3) of pressure 
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heads at which “water should be applied for maximum yields of various crops grown 
in deep, well-drained soil that is fertilized and otherwise managed for maximum 
production”. 

 
Table 1. Critical pressure-head values h (cm) of the sink-term function α (h) depicted 
in Figure 6 for some main agricultural crops (after Wesseling 1991) 
Crop h1 h2 h3, high h3, low h4 
Potatoes -10 -25 -320 -600 -16000 
Sugar beet -10 -25 -320 -600 -16000 
Wheat 0 -1 -500 -900 -16000 
Pasture -10 -25 -200 -800 -8000 
Corn -15 -30 -325 -600 -15000*) 

*) after Veenhof and McBride (1994) 
  
 A more detailed discussion on the modeling  of reduction of root water uptake not 
only by water stress α (h), but also by salinity stress α ( oh ) and by combined water 
and salinity stress α ( oh ) will be given later on (see 38 etc.). 
 As in the past detailed data on root-system properties like root mass, root length 
density and their variations with depth and time were hardly available,  Feddes, 
Kowalik and Zaradny (1978) assumed a homogeneous root distribution over the 
rooting depth and defined Sp according to Figure 7): 
 

 
 
Figure 7. Schematic view of root water uptake under a homogeneous (left) and a 
heterogeneous (right) root distribution, both under optimal soil water conditions 
 

p
p

r

T
S

z
=   (33) 

 
where Tp is the potential transpiration rate (cm d-1) and ⏐zr⏐ is the root-zone depth 
(cm). Hoogland, Feddes and Belmans (1981), Prasad (1988) and Hayhoe and De Jong 
(1988) took care of the fact that in a moist soil the roots can mainly extract water from 
the upper soil layers, leaving the deeper layers relatively untouched. Taking root 
water uptake at the bottom of the root zone (zr) equal to zero, Prasad’s description 
reads as (Figure 7): 
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( ) p
p

r r

2
1

T z
S z

z z
⎧ ⎫⎪ ⎪= −⎨ ⎬
⎪ ⎪⎩ ⎭

  (34) 

 
 The potential root water extraction rate at a certain depth, Sp(z) (d-1), may for 
non-homogeneous root distributions be determined by either the root mass or the root 
length density, Lr (z) (cm cm-3), as fraction of the total root length density over the 
rooting depth ⏐zr⏐ (e.g. Nimah and Hanks 1973) 
  

( ) ( )
( )

r

r
p p0

r d
z

L z
S z T

L z z
=
∫

  (35) 

 Assuming that changes in storage of water in the vegetation are negligible, the 
actual rate of transpiration T at time t is given by the spatial integral of the volumetric 
rate of water uptake ( )S z  over the entire profile: 

( )
r

0
( )d

z
T t S z z= ∫   (36) 

 
Root water uptake under minimum energy conditions 
 Under conditions of high evaporative demand of the atmosphere, i.e high Tp, 
and/or conditions of water and/or salinity stress, limited availability of water in part of 
the root zone may be compensated by uptake in the remainder at a rate that is higher 
than would be expected on the basis of the relative root length density distribution 
only. In that case ( )r profileL z L  still is a good initial estimate in an iterative procedure 
to determine all factors in (32) and (35). 

Experimental evidence by Dirksen (1985) on alfalfa plants grown in intermediate 
ranges of salinity and water content, showed that these plants took up water according 
to distributions that kept the uptake-weighted mean total (= pressure + osmotic ) head 
as high as possible. In other words: plant water uptake occurs with the minimum 
amount of work possible. Hence, if the osmotic head is uniform, plants will extract 
relatively more water from the wetter than from the drier soil water zones. To account 
for this plant behavior, a mathematical (numerical) procedure needs to be developed 
that minimizes the total rate of energy expenditure during root water uptake. 

Ghali (1986; 1989) assumes that the entire root zone is divided into n concentric 
cylinders of very small radial thickness. If the total root extraction from cylinder k is 
denoted Dk and the corresponding work to be done by plants is Wk, then total 
volumetric root extraction Dr and the total work to be done by plants Wr  to extract 

this amount can be expressed by r

1
k

n

k
D D

=

=∑   and  r

1
k

n

k
W W

=

= ∑ . According to this 

concept the objective is to maximize the state variable Dr  subject to a set of 

constraints i.e. r
1

Max 
n

k
k

D D
=

=∑  subject to max
k kD D< and max

k kW W= , where 

max
pkD T=  from cylinder k and min

kW  is the minimum possible work to be done to 

extract max
kD . For the constraints above, each of the concentric cylinders is subdivided 

into ln  finite cylinders stacked in vertical direction. If the rate of extraction from each 
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subcylinder i is represented by a sink term Si , then 
1

k

l

i i
i

n
D S V⋅

=

= ∑  where V  is the 

volume of subcylinder i. To satisfy the first constraint, Si should not exceed an upper 
value, i.e. p for 1,2 ...... .i lS S i n< = The minimization process can finally be expressed 

by: r 
1

Min =
n l

i
i

W W
=
∑  subject to 0i ih W h≤ ≤ , where 0h is the initial value and criW h≥ , 

being the critical pressure head. To complete the minimization process, weights 
(pressure-head-dependent) must be selected and applied to Si to ensure that in each 
zone i the root extraction is proportional to the work to be done. 
 Adiku et al. (2000) applied a Gardner (1960) type of root uptake model (i.e keeping 
the pressure head at the root surface constant throughout the root zone), and solved the 
minimization problem by a so-called dynamic-programming framework. They showed 
that in uniform wet soils root water extraction patterns follow the root distribution, but 
when the top soil dries out increased root activity occurs at greater soil depths. 
 Li, De Jong and Boisvert (2001) pursued a different approach. They modified an 
exponential root water-uptake model by incorporating an extra parameter, i.e. a 
weighted-stress index, which accounts for both root distribution and soil water stress. 
This model was represented as a function of pT , soil water availability and root length 
density. Simulated soil water contents improved considerably with the new model. 
 Van Wijk and Bouten (2001) considered actual root distributions as a reflection 
of the optimization strategy of the plant. They defined ‘optimal root distribution’ of 
trees as the one that maximizes root water uptake over a period of 10 years. They 
tested this assumption by means of 10-year simulations with a root water-uptake 
model based on (35) and the function depicted in Figure 6. Preferential water uptake 
from wetter soil layers was a main factor in the interpretation of the simulated root 
distribution. 
 
Reduction of water uptake due to combined water and salinity stress 
 
Introduction 
 For crops subject to water stress, Hanks (1983) found the relative actual/potential 
yield pY Y  to be equal to the relative transpiration pT T : 
 

p p

Y T
Y T
=   (37) 

 
Please note that in (37) the magnitudes of Tp and pY differ from year to year according 
to the prevailing meteorological conditions, and that relative yield is related to water 
availability as well as to salinity stress. The yield reduction due to salinity stress also 
leads to a reduction of the water uptake. Therefore, water uptake depends on both 
water availability and salinity stress. Hence, our task is to relate the local water uptake 
rate on the one hand to the demand at the vegetation scale and on the other hand to the 
limitations imposed by local water availability and salinity stress. 
 In analogy with (32 and 33) the local sink strength ( )S z  at any time t may thus 
be assumed to be given by 
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( ) [ ]o( ), ( )S z h z h zα=  Sp(z )= [ ]o( ), ( )h z h zα ( )
( )

r

r
p0

rz

L z
T

L z z
−

∂∫
 (38) 

 
where [ ]o( ), ( )h z h zα  is the water and salinity stress reduction function which will 
depend on both the distributions of the water pressure head h z,t( )  and the osmotic 
pressure head ho z, t( ). 
 In the absence of water and salinity stress anywhere in the root zone, i.e. if 
[ ]o( ), ( ) 1h z h zα = , an obvious choice for the potential rate of water-uptake function 

( )p ,S z t  is the relative root length density distribution function r profileL L . It will be 
shown later on that for r profileL L various expressions can be obtained from (72-76). 
 
Root water uptake due to water and salinity stress: linear reduction functions 
 To account for the influence of the composition of the soil solution in the 
macroscopic expressions, Nimah and Hanks (1973) just replaced the pressure head in 
the soil h by the sum of h and oh , being sometimes referred to as an ‘additive model’. 
The basic problem with this model is that it lacks a proper theoretical justification. 
Feng, Meiri and Letey (2003) write about the Nimah-Hanks model: “…this type of 
water-uptake function was shown to be insensitive to salinity and generally 
inadequate to properly evaluate plant water uptake under saline conditions”. It is 
unfortunate that the extrapolation of the Gardner (14) / Cowan (16) model beyond its 
intended range of application in the Nimah-Hanks model seems to discourage the 
further development and use of the mesoscopic/macroscopic approach to 
simultaneous flow of water and transport of solutes in soil–plant root system. 
 The piecewise linear reduction function of Feddes, Kowalik and Zaradny (1978), 
Figure 6, is given by: 
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 (39) 

 
Inserting (39) in (38) yields the root water uptake at the various pressure-head ranges. 

The representation of crop salt-tolerance data in terms of relative yields by Maas 
and Hoffman (1977) has served as a point of departure for describing reduction of 
water uptake due to salinity stress. 
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Figure 8. Reduction coefficient for root water uptake, α rs, as function of the electrical 
conductivity EC of the soil saturation extract (after Maas and Hoffman 1977). To 
convert the EC-based slope into an osmotic-head-based slope one may apply a factor 
360 (Richards 1954) 

 
The response function can be written in terms of concentration, or electrical 

conductivity (see Figure 8) of either the soil water or the soil saturation extract, or 
osmotic pressure head (Maas 1986; 1990; Maas and Grattan 1999; Maas and Hoffman 
1977; Van Genuchten and Hoffman 1984). In terms of osmotic pressure heads, the 
piecewise linear yield response function of Maas and Hoffman (1977) is given by: 
 

( ) ( ) ( )
( )

o ot
o o ot o

ot o o0
p p ot o0

o0 o

1
0

1          

0

h h
Y h T h h h

h h h
Y T h h

h h

⎧
≥ ≥⎪ −⎪= = − > ≥⎨ −⎪ >⎪⎩

 (40) 

 
where Y ho( ) is the yield at the osmotic pressure head ho, pY  is the potential yield, hot  
is the threshold value of ho above which ( )o pY h Y=  and ho0 is the threshold value of 
ho below which Y ho( )= 0  is zero. 

 Just as (37) served to justify the water-stress reduction function ( ), ph Tα  given 
by (39), the yield response function (40) may serve as the basis for formulating the 
salinity-stress reduction function ( )ohα  for the macroscopic rate of water uptake: 
 

( ) ( )
( )

o ot
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o ot o o0
ot o0

o0 o

1
0

1          

0

h h
h h

h h h h
h h

h h
α

⎧
≥ ≥⎪ −⎪= − > ≥⎨ −⎪ >⎪⎩

 (41) 

 
Such a correspondence between the yield response and water-uptake reduction 
functions due to salinity stress were first proposed by Van Genuchten (1987), who, 
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from the start however, emphasized the nonlinear reduction functions that will be 
discussed in the following subsection. 
 
Root water uptake due to water and salinity stress: non-linear reduction 
functions 
 Alternative, nonlinear S-shaped and exponential yield response functions due to 
salinity stress were proposed and tested by Van Genuchten and Hoffman (1984). The 
S-shaped salinity-stress yield reduction function is given by: 
 

( )
( )

o

p o0.5

1
1 p

Y h
Y h h

=
+

  (42) 

 
where at ho0.5  is the value of ho at which the yield has declined by 50% and p  is an 
empirical parameter. Re-analysis of the Maas-Hoffman data set showed that for most 
crops p = 3, which gives very satisfactory results (see Van Genuchten and Hoffman 
1984; Van Genuchten 1987, viz. in particular the 1984 USSL Annual Report in 
Appendix A). Van Genuchten and Gupta (1993) found that the S-shaped response 
function (42) is equally good or better than the piecewise linear equation (41) of Maas 
and Hoffman. 
 This nonlinear response function can also be used as the basis for formulating the 
reduction function ( )ohα  due to salinity stress for the macroscopic rate of water 
uptake. In fact, Van Genuchten (1987) proposed the following pair of S-shaped 
reduction functions ( )hα  for water stress and ( )ohα  for salinity stress: 
 

( ) ( )0.5

1
1 ph

h h
α =

+
 ( ) ( ) oo

o o0.5

1
1 ph

h h
α =

+
 (43) 

 
where h0.5  and ho0.5  are the values of h  and ho at which ( )hα  and ( )ohα  are 
reduced to 0.5. 
 Dirksen and Augustijn (1988) and Dirksen et al. (1993) modified the nonlinear 
S-shaped functions of Van Genuchten (1987) by introducing values *h  and *

oh  of h  
and ho above which there is no reduction of uptake: 
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*
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1
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h h
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*
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h h
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⎛ ⎞−

+ ⎜ ⎟⎜ ⎟−⎝ ⎠

 (44) 

 
 Homaee (1999;  see also Homaee, Dirksen and Feddes 2002; Homaee, Feddes 
and Dirksen 2002a) further modified the equation of Dirksen and Augustijn (1988) 
and Dirksen et al. (1993) by introducing maximum values hmax  and homax  at which the 
reduction factors reach minimum values: 
 



Chapter 4 

118 

( )
( )
( )

*
max

*
maxmax

1

1
1

ph
h h h

h hh

α
α

α

=
⎛ ⎞− −

+ ⎜ ⎟⎜ ⎟−⎝ ⎠

 ( )
( )

( )

oo
*

omax o o
*

omax o omax

1

1
1

ph
h h h

h h h

α
α

α

=
⎛ ⎞− −

+ ⎜ ⎟−⎝ ⎠

. (45) 

 
The curves ( )hα  and ( )0hα  pass through the cut-off points [hmax, α(hmax)] and 

[homax, α(homax)]. However, the experimental proof of the existence of this cut-off 
point is rather weak. Also equations (45) can be rewritten in the forms of (44) with 
h0.5  and ho0.5  defined as: 
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 (46) 
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In other words, the Eqs. (45) are equivalent to the Eqs. (44) with cut-off points [hmax, 
α(hmax)] and [homax, α(homax)]. 
 We now consider reduction factors that depend on both h  and ho: 
 

( )o,h hα α=   (47) 
 
In line with early concepts of simultaneous water and salinity stress, Van Genuchten 
(1987) considered a root water-uptake reduction function with a dependence on a 
weighted sum a1h + a2ho( ) of h  and ho: 
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1
ph h

a h a h
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  (48) 

 
where a1  and a2 , respectively, are the weighting factors of h  and ho, p  is an 
empirical parameter, and h0.5  is the value of the hydraulic pressure head h  at which 
( )o, 0 0.5h hα = = . This reduction function is not separable in the multiplicative form 

( ) ( ) ( ) ( )o o, , , , ,h z t h z t h z t h z tα α α⎡ ⎤=⎡ ⎤⎣ ⎦ ⎣ ⎦ . But it is not simply additive either, as is 

the Nimah-Hanks model. In Eq. (48), setting 1 1a = , 21 a a=  and 

0.5 2 0.5 o0.5h a ah h= =  gives: 
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where ho0.5  is the value of the osmotic pressure head ho at which ( )o0, 0.5h hα = = . 
 Cardon and Letey (1992a) showed that the combined water and salinity stress 
reduction function (49) gives more satisfactory results than the Nimah-Hanks model. 
Based on the salt-tolerance data for corn given by Maas (1986), they assumed 

o0.5 4300 cmh = − . Based on data of Ehler (1983), they expected h0.5  to be in the range 
of -2500 to -6500 cm.  Since a sensitivity test showed that the simulation results were 
rather insensitive to the choice of h0.5  in the range of -2500 to -6500 cm, Cardon and 
Letey (1992a) adopted o0.5 0.5 4300cmh h= = − , thus setting a = 1 in (49). The same 
values were used by Cardon and Letey (1992b) in a test of the model using field data 
for sweet corn reported by Shalhevet, Vinten and Meiri (1986) for alfalfa. Cardon and 
Letey (1992c) evaluated a greenhouse experiment. Again based on Maas (1986), they 
adopted o0.5 6400 cmh = − . 
 According to (49) the water and salinity stress reduction function α  is less than 
unity, except for h = ho = 0 . Seemingly inspired by Feddes et al. (1976) and the 
Maas-Hoffman yield response data, Pang and Letey (1998) introduced threshold 
values ht  and hot  of h  and ho above which there is no reduction of uptake. They also 
gave a recipe for estimating ht , h0.5 , hot , and ho0.5 , and hence the value of a  in (49). 
For corn they give the following estimates: t 500cm,h =−  0.5 1376cm, h =−  

ot 1224cmh =−  and o0.5 4250cm.h =−  This implies o0.5 0.5h 3.09a h= = . Pang and 
Letey (1998) also used a procedure for compensating for reduced uptake due to water 
and/or salinity stress in part of the root zone by removing extra water from the 
remainder. The value o0.5 0.5h 3.09a h= =  in (49) contrasts with the assumed value 
a = 1 in Cardon and Letey (1992a; 1992b; 1992c). In line with this, Feng, Meiri and 
Letey (2003) used the methods of Pang and Letey (1998) to re-evaluate the 
experiment reported by Shalhevet, Vinten and Meiri (1986). 
 Van Genuchten (1987) also proposed, “as an equally plausible approach”, a root 
water-uptake reduction function with a multiplicative dependence on the pressure h  
and the osmotic head hoi.e. ( ) ( ) ( )o o,h h h hα α α= . Hence 
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1 1

1 1
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h h
h h
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 (50) 

 
where p  and po  are empirical parameters, and h0.5  and ho0.5  are empirical parameters 
at which, respectively, ( ) 0.5hα =  and ( )o 0.5hα = . This combined water and 
salinity stress reduction factor was used by Šimůnek, Suarez and Sejna (1996). 
 Dirksen and Augustijn (1988) and Dirksen et al. (1993) modified (50), by 
introducing values *h  and *

oh  of, respectively, h  and ho above which there is no 
reduction: 
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 (51) 
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This in effect anticipated the introduction of the similar threshold values ht  and hot  by 
Pang and Letey (1998) discussed above. 
 Based on (45) Homaee (1999), Homaee and Feddes (2001) and Homaee, Dirksen 
and Feddes (2002; 2002b; 2002c; 2002a) proposed: 
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 (52) 

 
However, (52) reduces to (51) with h0.5  and ho0.5  given by (46). In other words, these 
equations are equivalent with cut-off points [hmax, α(hmax)] and [homax, α(homax)]. 
 Shani and Dudley (1996) and Dudley and Shani (2003) compared (49) with the 
Nimah-Hanks model and also with a multiplicative model like (50) with the water 
stress factor replaced by the Gardner / Cowan model. 
 Van Dam et al. (1997;  see also Van Dam 2000) proposed a root water-uptake 
reduction function with a multiplicative dependence on the pressure h  and the 
osmotic head ho by multiplying the Feddes water stress reduction function and the 
Maas-Hoffman-Van Genuchten salinity stress reduction function. In its most general 
form this reduction function is obtained by multiplying (39) and (41): 
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(53) 

 
Van Dam et al. (1997;  see also Van Dam 2000) wrote this multiplicative model in the 
simple form: 
 

( ) ( ) ( )14
o ot o

3 4

* 1h hh h b h h
h h

α α −⎛ ⎞− ⎡ ⎤= − −⎜ ⎟ ⎣ ⎦−⎝ ⎠
 (54) 

 
where ( )1

ot o0b h h− = −  is a crop-dependent parameter, and the expression is valid for 
h3 ≥ h ≥ h4  and hot ≥ ho . In this form it is also used in the current version of SWAP 
(Kroes and Van Dam 2003). 
 Homaee (1999) and Homaee, Dirksen and Feddes (2002; 2002b; 2002c; 2002a) 
modified (53) to account for the fact that plants wilt at higher water pressure head in 
the presence of salinity than without salinity. To this end they shifted the wilting point 
by an amount equal to ho and thus proposed (see Figure 9): 
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Figure 9. Sketch of the multiplicative reduction factor ( ) ( ) ( )0 0,h h h hα α α=  
according to the equations (53) and (55) 
 

( ) ( ) ( ) ( )
( ) ( )( )4 o

o o ot o
3 4 o

, * 1
h h h

h h h h b h h
h h h

α α α
⎛ ⎞− −

= = − −⎜ ⎟⎜ ⎟− −⎝ ⎠
 (55) 

 
They also pointed out three alternatives resulting from replacement of the factor 

( )( )1
ot o1 b h h−− −  by the osmotic reduction factors ( )ohα  in, respectively, (43), (44) 

and (45). 
 
Spatial–temporal description and interconversion of bulk root mass 
density and root length density data 
 
Spatial–temporal description of bulk root biomass density 

 Earlier we discussed that root water uptake is strongly related to root length 
densities. Such data are often not available. Root mass, however, is easier to obtain 
and, therefore, we investigate the relationship between root mass and root length 
density. Moreover, it may elucidate the different ways researchers characterize root 
systems. 
 Gale and Grigal (1987) introduced the following expression for a time-invariant 
cumulative root biomass fraction [ ]Y −  as a function of depth [ ]cmz : 
 

( ) ( )
( )
,

1 zB z t
Y z

B t
γβ

∞

= = −   (56) 

where ( ),B z t  is the root biomass per unit area of land above z  at time t , B∞(t) = B 
(∞,t) is the total root biomass per unit area of land at time t , and β [–] and γ [cm-1] 
are vegetation-dependent parameters. Higher values of γβ  correspond to a deeper 
root system. 
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 To render those data useful in root water-uptake models, they should be 
converted first to spatial–temporal distributions of the bulk root mass density ( ),z tρ  

and next to spatial–temporal distributions of the root length density ( )r ,L z t . In the 

following first the bulk root mass density ( ),z tρ  corresponding to (56) is derived 
and interpreted. Next the reformulation and generalization of the root distribution 
model in exponential form by Arora and Boer (2003) is presented and interpreted. 
 Partial differentiation of ( ),B z t  with respect to z  gives an expression for 

( ),z tρ : 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( )

, d
,

d
ln ln 1z

B z t Y z
z t B t

z z
B t Y z B tγ γ γ

∂
ρ

∂
β β β

∞

− −
∞ ∞

= = =

= = −
 (57) 

 
Eq. (57) implies that the surface root biomass density ( )0, tρ  = ( ) ( )ln B tγβ −

∞ . Note 
that an equivalent uniform root system with root biomass density 
( ) ( ), ln ( )z t B tγρ β −

∞=  in the depth range of ( ) 1
0 lnz γβ

−−≤ ≤  will have the same 

total root biomass B∞ t( ) . Thus the inverse of lnβ−γ  in (57) can be interpreted as the 
characteristic rooting depth based on the surface root biomass density and the total 
root biomass. Furthermore (57) implies that, at any time t  and at any position z , the 
relative time rate of change of the root biomass density ( ),z tρ  is equal to the relative 
time rate of change of the total root biomass B∞ t( ) : 
 

( )
( )

( )
( ), d1 1

, d
z t B t

z t t B t t
∂ρ

ρ ∂
∞

∞

=   (58) 

 
Eq. (58) shows that the model of Gale and Grigal (1987) implies a spatially uniform 
allometric relationship between ( ),z tρ  and B∞ t( ) , independent of time and depth. 
Note that the model of Gale and Grigal (1987) also implies that roots are present at 
all depths at all times t > 0 . For crops and vegetations in the early stages this is not 
realistic. 
 Arora and Boer (2003) developed a more versatile root distribution model. First 
they rewrote the model of Gale and Grigal (1987) in exponential form (cf. Gerwitz 
and Page 1974). To this end they replaced in (57) and (58) the two-parameter factor 
βγ  by e−a , so that the inverse length ln lna γβ γ β−= = − . The bulk root mass density 
( ),z tρ  then reads: 

 
( ) ( ) ( ), expz t aB t azρ ∞= −   (59) 

 
Note that (59) implies that ( )0, tρ  = aB∞ t( ). The cumulative root biomass fraction 
Y(z) can then be formulated as: 
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Y z( ) = B z, t( )
B∞ t( )

= 1− exp −az( )   (60) 

 
An equivalent uniform root system with ( ), ( )z t aB tρ ∞=  in the depth range of 
0 ≤ z ≤ a−1 will have the same total root biomass B∞ t( ) . Therefore similar to the 
interpretation of (57) the inverse of the parameter a  in (59) can be interpreted as the 
characteristic rooting depth based on the surface root biomass density and the total 
root biomass. The exponential model (59) still satisfies the spatially uniform 
allometric relationship between ( ),z tρ  and B∞ t( )  expressed by (58). Also, (59) still 
implies that at all times t > 0  roots are present at all depths. The cumulative root 
biomass fraction Y z, t( ) in (60) is time-invariant. 
 Next, Arora and Boer (2003) generalized the exponential root growth model (59) 
to allow for the common observation that rooting depth increases in the course of 
time. To this end they introduced a power-law dependence of the parameter a  upon 
the total root biomass B∞ t( ) , namely: 
 

a t( ) = bB∞
−α t( )   (61) 

 
where b  and α  are constants, thus generalizing (59) to: 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )1, exp expz t a t B t a t z bB t bB t zα αρ − −
∞ ∞ ∞

⎡ ⎤= − = −⎡ ⎤⎣ ⎦ ⎣ ⎦  (62) 

 
Eq. (62) implies that the surface root biomass density ( )0, tρ  = a t( )B∞ t( ) = bB∞

1−α( ) . 
An equivalent uniform root system with root biomass density 
( ) ( ) ( ) ( )1,z t a t B t bB αρ −

∞ ∞= =  in the depth range of 0 ≤ z ≤ a−1 t( )= b−1B∞
α t( ) will 

have the same total root biomass B∞ t( ) . Again the inverse of the parameter 
a t( ) = bB∞

−α t( )  in (62) can be interpreted as the time-dependent characteristic 
rooting depth based on the surface root biomass density and the total root biomass. 
 The cumulative root biomass fraction Y z, t( ) corresponding to (62) is: 
 

( ) ( )
( ) ( )( )

( )
,

, 1 exp 1 exp
B z t bY z t a t z z
B t B tα
∞ ∞

⎛ ⎞
= = − − = − −⎜ ⎟⎜ ⎟

⎝ ⎠
 (63) 

 
Note that, unlike in (56) and (60), the cumulative root biomass fraction now depends 
on time, whenever the total root biomass B∞  depends on time. The relative time rate 
of change of the root biomass density corresponding to (62) in place- and time-
dependent form reads as: 
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 (64) 

 
Clearly, unlike in (58), in (64) the relative time rates of change of ( ),z tρ  and B∞ t( )  
are no longer equal to each other. Eq. (64) shows that the model of Arora and Boer 
implies a spatially non-uniform temporally variable allometric relationship between 
( ),z tρ  and B∞ t( ) , depending on α , b , B∞ t( )  and z . Following Huxley (1972), we 

may refer to ( ),g z t  in (64) as the growth coefficient. For a given time and depth, 

( ),g z t  describes the relative time rate of change of the mass density ( ),z tρ  in 
comparison with the relative time rate of change of the total root biomass B∞ t( ) . 
However, note that the generalized model of Arora and Boer (2003) still implies that 
roots are present at all depths and at all times t > 0 . Again, for crops and vegetations 
in the early stages this is not realistic. 
 Two important special cases of (61-64) are: 
- If α = 0 , (61) implies that a = b  and (62) implies that the generalized exponential 

model of Arora and Boer (2003) reduces to the simple exponential model, i.e. (62), 
(63) and (64) reduce to (59), (60) and (58). 

- If α = 1, (61) implies that the characteristic rooting depth a−1 t( ) is proportional to 
the total root mass density B∞ t( )  and (62), (63) and (64) reduce to: 

 
( ) ( )( )1, expz t b bB t zρ −

∞= −   (65) 
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 (67) 

 
Eq. (65) implies ( )0, t bρ = , i.e. the surface root biomass density is constant. An 

equivalent uniform root system with root biomass density ( ),z t bρ =  in the depth 
range 0 ≤ z ≤ b−1B∞ t( ) will have the same total root biomass B∞ t( ) . Thus the inverse 
of bB∞

−1 t( ) in (65) can be interpreted as the time-dependent characteristic rooting 
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depth based on the surface root biomass density and the total root biomass. In other 
words: for α = 1  the surface root density is constant and the characteristic rooting 
depth increases linearly with the total root biomass B∞ t( ) . Note that in (67) the 
growth coefficient ( ),g z t  is proportional to depth z  and inversely proportional to the 
total root biomass B∞ t( ) . 
 
Interconversion of bulk root mass density and root length density data 
 The bulk root mass density ρ  can be obtained by multiplying the root volume 
fraction φr  by the intrinsic root density rγ : 
 

r rρ γ φ=   (68) 
 
where the root volume fraction φr  is the product of the root length density Lr  and the 
root cross section 2rπ : 
 

2
r rr Lφ π=   (69) 

 
Combining (68) and (69) gives: 
 

2r
r

L
r
ρ

π γ
=   (70) 

 
The denominator 2

0 rrπ γ  (m g-1) in (70) represents the root mass per unit length of 
root. Van Noordwijk (1987) refers to it as the specific root length. Van Noordwijk 
and Brouwer (1991) account for two potential sources of error: 
- presence of a potentially significant air-filled volume fraction in root tissue; 
- the variance of the root radius, requiring in (70) the use of the square of the 

quadratic average root radius which is equal to the square of the linear average 
root radius plus the variance of the root radius. 

Thus dividing both sides of (57), (59), (62) and (65) gives the following four 
expressions for the root length density: 
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Note that (71) and (73) correspond, respectively, to the models of Gale and Gringal 
(1987) and Arora and Boer (2003), and that (73) reduces to (72) and (74), 
respectively, if α = 0  and 1α = . Eqs. (71)-(74) can be used to convert bulk root mass 
density data to root length density data and vice versa. 
 Integrating (70) over the entire rooting depth gives an expression for the root 
length Lprofile (cm cm-2) per unit area of land (cf. Newman 1969): 
 

profile 2 20 0
r r

d dr
BL L z z

r r
ρ

π γ π γ
∞ ∞

∞= = =∫ ∫  (75) 

 
Root water uptake at regional and global scales 
 
The importance of roots in atmospheric models 
 Research by Milly and Dunne (1994) suggests a strong sensitivity of continental 
evaporation to water capacity. Hence, closer root modeling in Global Climate Models 
(GCMs) might improve soil–vegetation control instead of uncontrolled continental 
evaporation that extracts water from a deep soil water reservoir. GCMs typically use 
shallow rooting depths around 2 m. However, deep-rooted vegetation (of up to 68 m) 
has been found in the Tropics. Therefore, Kleidon and Heimann (2000) investigated 
the effects of larger rooting depths associated with the incorporation of deep roots, on 
the surface energy balance and the atmosphere using a GCM. The incorporation of 
deep rooted vegetation in the GCM leads to large-scale differences in the simulated 
surface climate and the atmospheric circulation, especially in the seasonal humid 
tropics. 
 Various Soil–Vegetation–Atmosphere Transfer (SVAT) schemes have been 
developed for use in GCMs and numerical weather prediction models. Their weakest 
component remains their link with the lower boundary. These schemes face various 
difficulties, including: comparable complexity between system components; scaling 
incongruities between atmospheric, hydrological and terrestrial components; and 
validation of SVATs at appropriate time and space scales (Kalma et al. 1999). 
SVATs, which sometimes are over-parameterized, use a variety of different methods 
to represent the relationship between roots, soil water and transpiration. Moreover, 
SVAT parameters are generally highly variable in space and difficult to measure. 
 It is therefore not surprising that the Project for Intercomparison of Land-surface 
Parameterization Schemes (PILPS) showed that SVATs/Land Surface Schemes (LSS) 
driven by the same meteorological forcing of air temperature, humidity, wind speed, 
incoming solar radiation, longwave radiation and rainfall, produced remarkably 
different surface energy and water balances (Chen et al. 1997; Koster and Milly 1997; 
Pitman et al. 1999).Therefore the question raised in this context  is: how important is 
the role of roots? 
 Vegetation root distribution is one of the factors that determine the overall water-
holding capacity of the land surface and the relative rates of water extraction from 
different soil layers by  transpiring vegetation. Despite its importance, significantly 
different root distributions are used by different land-surface models. 
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Sensitivity of land-surface models and climate models to the representation of 
roots 
 Using the SWAP-model approach of Van Dam and Feddes (2000), one can 
evaluate the effect of root distribution on the course of actual transpiration in time. 
We take as an example a grass vegetation (covering the soil completely) with a 
rooting depth of 80 cm growing on a loamy sand of 2 m depth containing 10% clay 
(< 2 µm). Free drainage prevails at the bottom. As initial condition throughout the 
profile the soil water pressure head h = -200 cm, implying a rather wet soil. Then at 
the soil surface a potential transpiration rate Tp = 4 mm d-1  is applied for two different 
relative root density distributions: Root 1, where most of the roots are located in the 
topsoil,  the root density decreasing fast with depth, and Root 2 where there is a 
constant, homogeneous root distribution with depth. The results of the simulations are 
shown in Figure 10. 

 
 
Figure 10. (a) Two different relative root density distribution functions (Root 1 and 
Root 2) adopted for grass, with a rooting depth of 80 cm, growing on loamy sand; (b) 
Simulated actual transpiration rate T in time for these two root distribution functions, 
taking potential transpiration rate Tp = 4 mm d-1 as upper boundary condition 
 
 Transpiration is generally more sensitive to the moisture content of the densely 
rooted soil layer than to that in the remainder of the root zone, hence Root 1 produces 
an earlier onset of moisture stress than Root 2. In fact, after 30 days the actual 
transpiration rate of Root 1 is about half that of Root 2. Similar results were reported 
by Desborough (1997). This is a clear demonstration that roots can influence the 
behavior of a land-surface model, the role of roots being particularly important when 
soil water limits evapotranspiration. 
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 De Rosnay and Polcher (1998) have presented root water uptake in the LSS 
Sechiba that receives climatic forcing from the GCM and explicitly takes into account 
sub-grid-scale variability of vegetation and root profiles. Normalized root length 
density ( )r profileL z L  (varying between 0 at the bottom of the rooting zone and 1 at the 
soil surface where z = 0) is here assumed to depend exponentially on positive soil 
depth z as 
 

r

profile

( ) c zL z e
L

−=   (76) 

 
where c is a fitting constant depending on the biome considered. The use of a 
relatively easily observable parameter such as c makes the development of a global 
data set for root water-uptake parameterization feasible. 
 De Rosnay et al. (2002) presented in their new Sechiba scheme soil–plant 
interactions that result from root–soil water profile interactions being represented on a 
rather fine vertical resolution. The grid boxes of the model included different 
vegetations and soil textures. This allowed for a better control of evapotranspiration 
(it reduced the overestimation  of continental evapotranspiration, which typically 
occurs in GCMs when soil water capacity is increased). 
 Overall, there is significant evidence that roots play an important role in the 
simulations by land-surface models. Understanding the interactions of root 
distributions with water use, as well as potential feedbacks with climate, is important 
for climate simulations as we determine which systems in nature actually rely on 
relatively deep soil water (Greenwood 1992; Nepstad et al. 1994; Jackson et al. 2000). 
 Deep roots play a major role in ecosystems such as forests and need to be studied 
globally in more detail. They are likely to have somewhat more effect in the tropics 
than in mid-latitudes. On the other hand, the role of shallow roots seems to be 
overestimated in many land-surface schemes. 
 A number of regional and global soil databases that are currently available are 
listed in Table 1 of Feddes et al. (2001). In addition, see also the website 
http://sis.agr.gc.ca/cansis/. 
 
What root information exists? 
 
 Because of the sensitivity of simulated transpiration in climate models, global 
datasets of root and soil properties are increasingly needed. Cumulative root 
distributions Y from the soil surface down to rooting depth here defined as the depth 
where Y reaches an arbitrary value, for example, 99%, have been fitted for various 
biomes with a vegetation-dependent coefficient β to the asymptotic equation of Gale 
and Grigal (1987) as: 
 

1 zY β= −   (56 b) 
 
Eq. (56b) has been widely used to represent cumulative root biomass distribution data 
(Jackson 1999; Jackson et al. 1996; 1997; 2000; Feddes et al. 2001; Zeng et al. 1998; 
Zeng 2001). Values for β (see Figure 11) and properties like the ratio fine/total root 
biomass, root length, maximum rooting depth, root/shoot ratio, and nutrient content of 
different terrestrial biomes, can be found in the above-cited references. 
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Figure 11. Cumulative root distributions as a function of soil depth for 11 terrestrial 
biomes and for the theoretical model of Gale and Grigal (Eq. 56). Crop data are 
simply examples from a few studies (after Jackson 1999) 
 
 To date a root database (Jackson et al. 2000; 2000) of more than 1000 profiles 
exists that covers various combinations of maximum rooting depth of fine and coarse 
roots, root length densities, root biomass (and surface area in a small subset of the 
data), as well as root nutrient concentrations by biome and plant life form (e.g. 
Jackson et al. 1996; 1997; Canadell et al. 1996; Gill and Jackson 2000). There is, 
however, a lack of information on annual crops within the database. This root 
database currently has no spatial expression. 
 Newman’s (1969) expression for Lprofile  per unit area of land (Eq. 75) is related to 
the total live fine root length ( )lfL t∞  reported in Jackson, Mooney and Schulze 
(1997). Newman’s Table 2 shows Lprofile  data from 11 literature sources, giving 
measurements made on plants grown under field conditions in closed or nearly closed 
stands. The values of Lprofile  are largest for gramineous herbs, intermediate for non-
gramineous herbs, and smallest for woody plants. They range from about 5 to 100 cm 
cm-2 for woody plants and from 50 to 4000 cm cm-2 for herbs. 
 Although not available in a formalized and centralized database, many root 
distribution data, rooting-depth data, etc for annual (agricultural) crops can, 
according to R. de Jong (personal communication) be found in numerous published 
manuscripts, reports, books etc. Perhaps there is an opportunity to pull this material 
together in a single data base, along the same lines that Van Genuchten, Leij and Wu 
(1999) did for soil hydraulic properties. Preferably, the climatic, soil and management 
conditions under which the root data were collected should also be recorded in such a 
data base. 
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Analysis of Strengths and Weaknesses, Opportunities and Threats 
(SWOT) 
 
Liquid water flow inside the plant: soil and plant resistances 
S:  The electric-analogue model of Van den Honert (1948) stimulated the evaluation 

of the relative importance of hydraulic resistances to flow in soil and plant roots. 
W: a) Soil and plant resistances are not necessarily constant but depend on the actual 

environmental conditions. 
 b) The strong focus on the hydraulic aspects diverted attention away from the 

osmotic aspects. 
O:  The membrane theory introduced in the 1970s provides an opportunity to avoid 

simple addition of hydraulic and osmotic potentials in theories of flow and 
transport. The membrane theory can possibly also contribute to modeling the 
functioning of aquaporins (Maurel 1997). 

T:  Current organizational and funding structures in the USA, Europe and Australia 
seem not to stimulate close co-operation between plant scientists and 
hydrologists: they appear to be working in parallel rather co-operatively. 

 
Macroscopic description of root water uptake 
S: a) Root water uptake can relatively easily be measured in dependence of depth 

and time. 
 b) Empirical descriptions of root water uptake at the macroscopic scale are 

convenient for use in numerical models. 
W:  Ideally one would derive such macroscopic descriptions from underlying process- 

based mesoscopic and microscopic models. 
O: The ongoing miniaturization of instruments which can be used over a large 

moisture range, such as the osmotic tensiometer, allows one to measure root 
water uptake in great detail. Also the work with e.g mini-rhizotrons and heat-
pulse probes is promising (e.g. Clothier and Green 1997). 

 
Modeling root water uptake at mesoscopic and macroscopic scales 
S: Relationships between mesoscopic and macroscopic descriptions of water uptake 

have been explored much over the last half century. This has provided a useful 
framework for interpreting laboratory and field data and formulating macroscopic 
sink terms. 

W:  a) The focus on the hydraulic aspects of root water uptake seems to have diverted 
attention away from the osmotic aspects. 

 b) The evaluation of degree and implications of limited soil–root contact gives 
only qualitative results. 

 c) The mesoscopic approach requires details about root geometry and soil 
heterogeneity that are usually not available. 

 d) Soil hydraulic properties, like the water-retention and hydraulic-conductivity 
characteristics, at the mesoscale may be quite different from the commonly 
available macroscale soil hydraulic properties. 

 e) Most solutions of the flow equations at the mesoscale involve linearization. 
O:  a) There are several possibilities for coping with limited soil/root contact and/or 

heterogeneity. One way to deal with limited soil–root contact is to define an 
‘effective conductivity’, which represents the conductivity of the soil–root 
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interface and the root tissue. The justification of this should be explored 
further. 

 b) Steady-rate solutions giving water-content distributions of time-invariant 
form, with the water content decreasing linearly with time everywhere at the 
same rate, can also be found for roots that are in contact with the soil over only 
a part of their circumference or roots that are not uniformly distributed in the 
soil. As for the cylindrically symmetric case, an instant at which the constant-
rate phase terminates and the falling-rate phase starts can be evaluated. 

 c) Techniques for measurement of hydraulic properties at the mesoscale should 
be explored further (Hartge and Stewart 1995). 

 d) Linearization can be avoided by relying on numerical solutions. Also, general 
inferences from analytical solutions of the nonlinear diffusion equation remain 
a worthwhile objective. 

T:  Funding of the mechanistic studies needed, including expensive experiments, is 
very problematic. The question arises: why is not sufficient funding forthcoming? 

 
Hydrologically oriented modeling approach for root water uptake at macroscale 
S: a) One-dimensional analysis of the root-zone water balance is well  developed 

and has strong computational capabilities. 
 b) Co-operation between hydrology and meteorology in defining upper boundary 

conditions for root water uptake (i.e. potential transpiration) is well developed. 
 c) Limited availability of water in part of the root zone may be compensated by 

uptake in another, wetter part. Plant water uptake generally occurs with the 
minimum amount of work/energy possible. Different numerical procedures to 
compute root water uptake under those minimum-energy conditions have now 
been developed. 

 d) Joint stresses can be computed easily by multiplication of the water stress with 
the salinity stress. 

 e) Based on salt-tolerance studies, we have a fairly good knowledge of the 
salinity stress reduction function for a wide variety of crop species. 

W: a) Multi-dimensional analysis of the root-zone water balance is often needed, i.e. 
for isolated trees, row crops, patterns in vegetation. 

 b) A sound biophysical theory is lacking. It is not completely clear whether the 
water and salinity stresses are additive or multiplicative. There is a severe lack 
of data for implementing the mesoscopic description of simultaneous uptake of 
water and solutes by a variety of plant species. 

 c) For wild species the salt tolerance has not been established in the same 
systematic fashion as for crops, and hence the salinity stress reduction 
functions are not as easily available. 

 d) Co-operation between hydrology and plant sciences, in particular plant 
nutrition and plant genetics, needs to be strengthened. 

O:  a) The implementation at the macroscopic scale of the mesoscopic description of 
simultaneous uptake of water and solutes is promising. 

 b) The already developed schemes that assure that root water uptake will be 
realized under minimum-energy conditions should be implemented in all 
currently used numerical macroscale models. 

 c) There is a need for further evaluation of the various root water uptake 
reduction functions, but experimental data are lacking. 
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 d) The successful use of combined water and salinity stress reduction functions 
holds promise for the introduction of reduction functions related to nutritional 
status and crop pests. 

T: a) Funding of mechanistic studies is problematic. 
 
Spatial–temporal description and interconversion of bulk root mass density and 
root length density data 
S:  Many empirical data are available on root mass and length distribution. 
W: a) Little is known about the effectiveness of roots as a function of age, size etc. 
 b) Root distribution functions are handled differently by different researchers. 

This causes considerable confusion among the users. However, a general 
framework for a better understanding has been presented in this paper. 

 c) There is a lack of systematic root information on annual vegetations. 
O:  a) The extent and shape of rooting systems and their changes play a major role in 

determining uptake patterns. Root growth evolves in time and space, which in 
models is often not accounted for. Hence, models may fail in predicting spatial 
variations and the dynamics of soil-water – plant-growth interactions. 

 b) Root water-uptake dynamics is usually related to root length density, ignoring 
uptake control by root surface area and root age. 

 c) 3D-modeling is limited by the need of many additional soil and plant 
parameters (Hopmans and Bristow 2002). 

 
Root water uptake at regional and global scales 
S: a) Root water uptake can be represented in Land Surface Schemes (LSS) that 

receive climatic forcing from a GCM and explicitly take into account sub-grid-
scale variability of vegetation and root profiles. 

 b) A number of regional and global soil and root data bases exist that can be 
implemented in present land-surface schemes (e.g. Feddes et al. 2001). These 
should be used in combination with databases on e.g. regional / global land use, 
topography. 

W: Large-scale aggregation of soil and root data that takes into account sub grid 
variability of soil and roots, requires improved root and soil data in combination 
with better knowledge of the interaction of these two systems. 

O: a) As there exists a strong sensitivity of continental evaporation to water 
capacity, closer root modeling in GCMs might improve soil–vegetation 
control instead of uncontrolled continental evaporation that extracts water 
from a deep soil moisture reservoir. 

 b) A first priority is to establish firmly the relationships of root biomass, rooting 
depth, root distribution and root functions with land-use type, soil type, soil 
texture, topography and climate. 
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