

Joined spray drift curves for boom sprayers in The Netherlands and Germany

J.C. van de Zande, D. Rautmann, H.J. Holterman & J.F.M. Huijsmans

Report 526

Joined spray drift curves for boom sprayers in The Netherlands and Germany

J.C. van de Zande¹, D. Rautmann², H.J. Holterman¹ & J.F.M. Huijsmans¹

- ¹ Wageningen UR
- ² JKI Braunschweig

Plant Research International, part of Wageningen UR Business Unit Agrosystems March 2015

Report 526

© 2015 Wageningen, Foundation Stichting Dienst Landbouwkundig Onderzoek (DLO) research institute Plant Research International. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the DLO, Plant Research International, Business Unit Agrosystems.

The Foundation DLO is not responsible for any damage caused by using the content of this report.

Copies of this report can be ordered from the (first) author.

Plant Research International, part of Wageningen UR Business Unit Agrosystems

Address	:	P.O. Box 16, 6700 AA Wageningen, The Netherlands
	:	Wageningen Campus, Droevendaalsesteeg 1, Wageningen, The Netherlands
Tel.	:	+31 317 48 06 88
Fax	:	+31 317 41 80 94
E-mail	:	info.pri@wur.nl
Internet	:	www.wageningenUR.nl/en/pri

Table of contents

page

Pref	ace		1	
Abst	ract		3	
1.	Introdu	iction	5	
2.	Materi	als and methods	7	
3.	Result	5	11	
	3.1 3.2	 Spray drift spraying a bare soil surface and low crop 3.1.1 Spray drift data from Germany and The Netherlands 3.1.2 Combined spray drift data from Germany and The Netherlands Spray drift spraying a crop 3.2.1 Spray drift data from Germany and The Netherlands 3.2.2 Combined spray drift data from Germany and The Netherlands 	11 11 14 20 20 23	
4.	Discus	sion	29	
5.	Conclu	sions and recommendations	37	
Sum	mary		39	
Sam	envattin	g	41	
Liter	ature		43	
Арр	endix I.	Spray drift deposition data for the bare soil surface or short crop situation (DE and NL)	11	pp.
Арре	endix II.	Spray drift deposition data for the crop situation (DE and NL)	11	pp.
Арр	endix III.	Presentations of the results of the questionnaire by participants of the Workshop Harmonisation of Drift	8	pp.

Preface

In the near future harmonised approaches to the zonal evaluation and authorisation of Plant Protection Products will be implemented in the EU. Currently, in the Netherlands and in other countries, national specific spray drift deposition data of plant protection products are used for the authorisation of PPP. At the workshop 'Harmonisation of drift' (Wageningen, December 2010) it was concluded that the Netherlands and Germany would take the lead to further analyse and develop a harmonized spray drift curve for boom sprayers (to investigate possible options that may be expanded to account for other available datasets). In these two countries a large number of spray drift experiments have been carried out and they have many field conditions in common. However, these two data sets cover different crops and conditions, wind speeds, and vary in details of the trial protocols. Combining these data to cover more conditions and crops than are individually covered requires an analysis of their similarities and differences. The analysis is reported here and forms the basis of a possible methodology for combining other spray drift data sets (*e.g.*, from Belgium, France, Italy, UK) in a coherent and reproducible manner. The analysis gives insights into the research work required in order to attempt large-scale combinations of spray drift data sets.

It should be noted that this analysis is only a first, but important, step towards the possible combining of drift data to create EU harmonized spray drift curves that cover crops as well as bare ground. This report clearly highlights deficiencies in our understanding of spray drift, and on the basis of those insights, recommends further work that could lead to development of pan-European spray drift curves derived from existing deposition drift data sets, supplemented by new data where needed in order to cover wide ranges of crops and application conditions. It is recommended that further data analysis is done using powerful statistical techniques such as quantile regression analysis to such data.

This report gives a summary of the outcome of the analyses of the spray drift data for boom sprayers from Germany and The Netherlands.

The work presented is financed by the Dutch Ministry of Economic Affairs (projects BO-12.03.09-BTG-003, BO-AGRO M&G-BTG-003).

Wageningen - The Netherlands/ Braunschweig - Germany, March 2015

Abstract

J.C. van de Zande, D. Rautmann, H.J. Holterman & J.F.M. Huijsmans, 2015. Joined spray drift curves for boom sprayers in The Netherlands and Germany. Wageningen UR – Plant Research International, Wageningen UR-PRI Report 526, Wageningen / Julius Kühn Institute, Braunschweig. 2015. 80p.

Spray drift data from Germany and The Netherlands were used to generate spray drift deposition curves for a reference situation spraying a bare soil surface or short crop situation (crop height lower than 20 cm) and a cropped situation (crop height higher than 20 cm). Following ISO22866 (2005) and ISO22369-2 (2006) a reference spray application was defined as a boom spray application with a boom height of 0.50 m above bare soil or crop canopy, a nozzle type close to the BCPC Fine/Medium threshold nozzle, and a driving speed of 6-8 km/h. Spray drift data from a boom sprayer equipped with standard flat fan nozzles (XR11003/XR11004) and a spray boom height of 0.50 m above soil surface or crop canopy were analysed. The analysis of the joined spray drift data results in separate spray drift curves for the bare soil surface or short crop situation and the cropped situation. In contrast to the presently used spray drift curves in the EU authorisation process which are solely based on German data sets, the generated joined spray drift curves give higher spray drift deposition values in general. The reasons for these results are assumed to be due to slightly methodological differences concerning drift measurements in both countries which seem to have high impacts on the achieved results. Especially because spray drift values are evaluated as 90th percentiles the higher Dutch drift results dominate the joined spray drift curves. Against the background of including even more spray drift data sets in order to develop pan-European spray drift curves a further analysis of the presented datasets and additional drift measurements are necessary to explicitly clarify the reasons for the differences in the German and Dutch datasets.

Keywords: spray drift, ISO22866, boom sprayer, spray nozzle, reference situation, bare soil, crop situation

1. Introduction

In the near future the zonal evaluation and authorisation of Plant Protection Products (PPP) will be implemented. This means that the risk assessment methodologies need to be further harmonised and that Member States (MS) will be more restricted in their actions to deviate in their methodology of authorisation. However specific national risk reducing measures may still be in place. Thus, evaluation and authorisation methodologies need to be harmonised as far as possible to prevent work duplicated between Member States.

Currently, in the Netherlands and in other countries, national specific drift deposition data of plant protection products are used for the authorisation of PPP. At the EU workshop 'Harmonisation of Drift' (Huijsmans and Van de Zande, 2011) the background of differences in drift deposition were discussed to achieve further harmonisation. At this workshop the scientific information on the drift issues and the evaluation/ authorisation procedures was addressed with participating representatives from research and assessment agencies of invited Member States, presenting their scientific information and national approach.

Spray drift is in general defined as that part of the applied product that leaves the treated field through the air because of air currents during the application of plant protection products. In the Dutch assessment procedure different spray drift curves are used for arable crops (boom sprayers), fruit crops and nursery trees, all originating from field measurements done in the Netherlands. In the German assessment procedure the Basic Drift Values (Ganzelmeier *et al.*, 1995; Ganzelmeier & Rautmann, 2000; Rautmann *et al.*, 2001) are used differentiated for arable crops, fruit crops, vineyards and hops. The UK, France, Belgium, Poland and Sweden nowadays follow the German drift curves in their assessment procedure for surface water. In the UK these curves are also used for the evaluation of bystander and resident risk for PPP, but soon UK data will be available. Sweden uses Swedish measurement data for boom sprayer evaluation. For orchard crops the German drift curves are used.

An important outcome of the 'Harmonisation of Driff' workshop was that spray drift data originating from recent research in the different Member States may differ considerably from the Basic Drift Values. Most of the countries (NL, DE, UK, PL, BE, SE) use a flat fan (FF) nozzle of size 03/04 as a reference nozzle operated at 3.0 bar spray pressure (Table 1). France uses finer spray quality nozzles as a reference. In the German data also coarser nozzle types (drift reducing) are included, however with no influence on the basic drift values in Germany (being 90-percentile data). Sprayer boom height is in general 0.50 m above crop canopy, except for France where boom height is 0.70 m for the reference spray application. Therefore spray drift potential is highest for the French reference. Spray drift measurements are done mostly on short cut grass or bare soil surface except for the Netherlands where the standard reference is represented by spraying a potato crop. Therefore drift potential for the Netherlands is higher than in other countries. In the Netherlands a separate spray drift curve for bare soil or small crops (i.e. grass) is suggested besides the curve for a developed (arable) crop situation (Zande *et al.*, 2012; Groot *et al.*, 2012) based on crop height (20 cm).

4	ſ		
1			
	2	-	

Item/country	NL	DE	UK	FR	PL	BE	SE
Nozzle	XR11004	FF 03, 04*)	FF110/1.2/3.0	FF11002	FF03	FF03	F, M. C
Spray pressure (bar)	3	2.0 – 5.0	3	2.5	-	3	-
Spray volume (l/ha)	300	150 - 300	Speed dependent	-	-	-	-
Sprayer speed (km/h)	6.5	6-8	6-12 [12,16] [†]	8	-		7.2
Boom height (m)	0.50	0.50	0.5 [0.7, 1.0]†	0.70	0.50	0.50	0.25, 0.40,
							0.60
Sprayed surface	Potato,	Bare soil,	Short grass – crop	-	-	-	Short grass
	bare soil	Short grass					
Crop height (m)	0.50/0.10	0.10	0.05-2.0	-	-	-	-
Sprayed width (m)	24	20	48	-	-	-	96
Temperature range (°C)	5-25	10-25	-	-	-	-	10, 15, 20
Wind speed range (m/s)	1.5-5.0	1-5	2.5 [2.5, 3.5]†	-	-	-	3.0, 4.5
Wind speed height (m)	2.0	2.0	3	-	-	-	2.0

Table 1.Summary table reference boom sprayer.

*) Basic drift curve contains data from measurements with other flat fan (FF) nozzle types and sizes (coarser sprays – lower drift).

^{*t*} Values in square brackets are recently proposed (not yet adopted) for bystander/resident assessments.

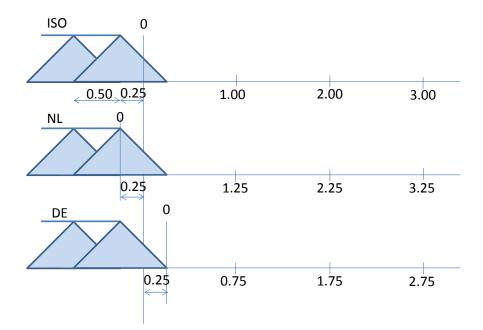
For boom sprayers, only the Netherlands specify the position of the last nozzle relative to the last crop row. This originates from the experience in measuring spray drift in a crop situation where the nozzle position above the last crop row is fixed while the location of the edge of field varies. Other countries measure spray drift in short cereals, on cut grass or bare soil surface, where the edge of field is defined as half a nozzle spacing distance from the last nozzle (following ISO22866, 2005). This corresponds with the working width of the boom to allow neatly joining swaths.

For the MS drift reduction measures follow similar procedures. 50%, 75%, 90% drift reduction classes are generally accepted, a 95% class seems acceptable and it is questioned whether a 99% class still makes sense (following ISO22369-1, 2006). This, of course, depends very much on which reference is chosen for the comparison.

At the 'Harmonisation of Drift' workshop there was a common agreement that general standardised European reference curves should become available. Therefore, all drift data should be analysed and the main affecting influences on the spray drift should be highlighted. Thus, the effect of spray drift mitigation measures (sometimes country specific) could be presented relatively to this reference curve. It was decided that the analysis of the EU drift data would firstly focus at the reference curves for field crops (boom sprayers), based on the spray drift data from Netherlands and Germany, as from these countries most data are available. This report shows the outcome of the analysis, including a statistical investigation of the combined data sets, and includes observations on the work required in order to not only reliably combine these two data sets, but also to enable inclusion of other data from other EU countries.

2. Materials and methods

Spray drift data


In order to come to a harmonised spray drift curve as a first step spray drift data from Germany and The Netherlands were put together and analysed based on earlier published data (Ganzelmeier *et al.* 1995; Ganzelmeier & Rautmann, 2000; BBA, 2000; Huijsmans *et al.*, 1997; Rautmann *et al.*, 2001; Zande *et al.*, 2000; Zande *et al.*, 2012). From the available spray drift datasets a selection was made (subset) for only those trials with boom sprayers specifying a reference spray application. Following ISO22866 (2005) and ISO22369-2 (2006) a reference spray application was defined as a boom spray application with a boom height of 0.50 m above bare soil or crop canopy, a nozzle type close to the BCPC Fine/Medium threshold nozzle (Southcombe *et al.*, 1997), and a driving speed of 6-8 km/h. The nozzle type was further specified. In the joint German and Dutch database the spray drift measurements were done using either an XR11003 or an XR11004 flat fan nozzle. Liquid pressure used was predominantly between 2.5 and 3.5 bar. A distinction was made in spray drift from spraying a bare soil surface or a short crop (max 20 cm crop height) and a developed crop situation (following Zande *et al.*, 2012 and Groot *et al.*, 2012). Furthermore only those data were selected where wind speed during the spray drift measurements was lower than 5 m/s (measured at 2 m height) and the wind direction was between plus and minus 30° from perpendicular to the driving direction of the sprayer.

From the German spray drift database a selection following these criteria for the reference sprayer resulted in 20 experiments with 200 measurements for the bare soil or short crop situation and 3 experiments with 18 measurements for the crop situation. In this case a 'measurement' corresponds with a single series of downwind deposition samples (see below). The selection of the reference situation for the Dutch database of spray drift measurements resulted in 24 experiments with 48 measurements for the bare soil and short crop situation and 125 experiments with 250 measurements for the crop situation, respectively. Consequently, the joint analysis was done on 248 spray drift measurements in the bare soil surface and short crop situation and on 268 measurements in the crop situation.

Spray drift measurements

Spray drift measurements were performed using standardised spray drift measuring protocols. In a spray drift measurement the amount of applied spray volume blown away downwind of a treated area and deposited on soil surface next to the field is collected on collectors. Generally, a fluorescent tracer (Brilliant Sulpho Flavine) is used to quantify the amount of spray deposition. In order to mimic a spray solution of a plant protection product (PPP) a non-ionic surfactant is added in the Netherlands. Small differences do occur between the spray drift measuring protocols, especially the placement of the collectors and the presentation of the spray drift deposition data. In the Netherlands spray drift is measured using two arrays of collectors (synthetic filter material; Camfil CM-380, Technofil TF290 of 0.5 m x 0.1 m or 1.0 m x 0.1 m size) placed on soil surface next to a sprayed field relative to the position of the last nozzle on the spray boom (Huijsmans *et al.*, 1997; CIW, 2003). The German spray drift is measured using two arrays of the filter as 0.50 m from the position of the last nozzle on the spray boom. Examples of the field setup and the collector lay-out are given in Figure 2 and Figure 3 for the Dutch and German field measurements of spray drift, respectively.

Following ISO22866 (2005) the spray drift deposition data in this study are presented as spray drift deposition at a distance relative to the edge of the treated zone which is defined as half a nozzle spacing distance (0.25 m) from the last nozzle. The German and the Dutch spray drift deposition data are adapted accordingly to the distances defined in ISO22866 (2005) and ISO22369-2 (2006). The 0-points of the drift curves relative to the last nozzle position and the collector positions are for the spray drift measurements in the Netherlands and in Germany and the ISO22866 standard schematically presented in Figure 1.

Figure 1. Schematic presentation of the last nozzle position and defined 0-points of the spray drift curve for the ISO22866 standard and the spray drift measurements in the Netherlands and Germany.

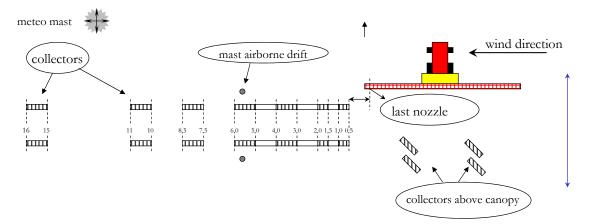
Spray drift measurements in Germany were performed with boom sprayers having a working width of 10 m spraying the 20 m downwind edge of the field in two swaths. Average weather conditions during spraying the two swaths are used in this study. In the Netherlands a single swath spraying was done with boom sprayers having a working width of 21 m, 24 m and 27 m. The bare soil surface spray drift measurements were in Germany done on cereal stubble, mowed short grassland and bare soil (200 measurements). In the Netherlands the bare soil surface measurements (48 measurements) were done on bare soil surface, and less than 20 cm high crops sugar beet, maize, and wheat. For the cropped situation spray drift data originate from measurements with cereals in Germany (18 measurements) and with the crops potato, wheat, sugar beet, lilies, and mustard (as green manure crop) in the Netherlands (250 measurements).

Weather conditions during spray drift measurements

The weather conditions during the spray drift measurements in the bare soil surface and short crop situation (max. crop height 20 cm) are summarised in Table 2. Wind speed is comparable for the German and Dutch data: 3.1 m/s and 2.9 m/s, respectively. Relative humidity is similar as well: 74% and 78% for Germany and the Netherlands, respectively. Average temperature during spray drift measurements was 18 °C in the Netherlands and 14°C in Germany. Average wind direction during spray drift measurements in the bare soil situation was almost perpendicular to the driving direction: 8° in the Netherlands and 16° in Germany.

		Ge	ermany		Netherlands					
	Temp.	RH	Wind-	Wind	Temp.	RH	Wind-	Wind		
	°C	%	Direction	Speed [m/s]	°C	%	Direction	Speed [m/s]		
Avg	17.7	74	16	3.1	14.0	78	8	2.9		
Std	5.3	16	8	0.8	4.4	11	17	0.9		
Median	19.6	71	15	2.9	14.2	76	11	3.0		
Min	9.1	52	4	1.1	7.5	57	-30	0.9		
Max	24.5	98	29	4.3	21.7	97	28	4.9		

Table 2.Weather conditions during spray drift measurements in the bare soil surface and short crop situation
in Germany and The Netherlands.


In the developed crop situation (crop height higher than 20 cm) wind speed during spray drift measurements (Table 3) was higher in the Netherlands (3.3 m/s) than in the German measurements (1.7 m/s). In both countries, wind direction again was almost perpendicular to the driving direction. Average temperature during the spray drift measurements was in the Netherlands higher (19 °C) than in the German measurements (14 °C).

		Ge	rman		Netherlands					
	Temp.	RH	Wind-	Wind	Temp.	RH	Wind-	Wind		
	°C	%	Direction	Speed [m/s]	°C	%	Direction	Speed [m/s]		
Avg	14.0	69	12	1.7	18.8	65	3	3.3		
Std	3.0	10.6	7.2	0.4	3.3	15.6	18.3	0.9		
Median	15.0	67.0	10.0	1.7	19.0	66.0	5.1	3.3		
Min	10.0	57.0	4.0	1.2	10.4	0.0	-30.3	0.8		
Max	17.0	82.0	21.0	2.1	25.8	96.0	31.0	5.2		

Table 3.Weather conditions during spray drift measurements in the developed crop situation in Germany and
The Netherlands.

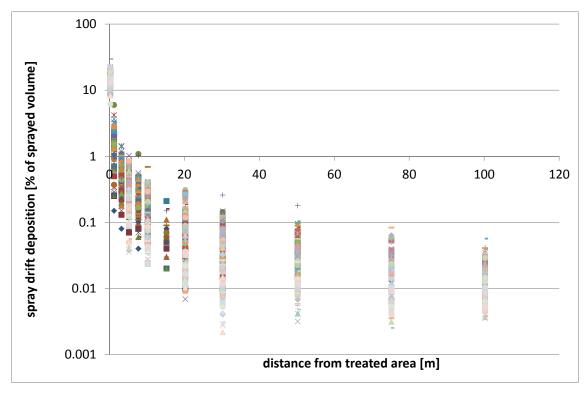
Data analysis

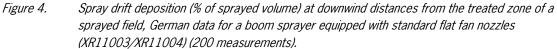
Due to the different trial designs – 6 to 10 filter paper strips per distance in the DE data, 2 lines of filter strips in the NL data – the individual subsets of the data are perhaps correlated with the individual drift trials from which they are drawn. However, there is substantial variability in downwind spray drift deposition within a single trial (e.g., Schad and Gao, 2011 in Schad, 2013; Zande *et al.*, 2006; Groot *et al.*, 2014) such that there is a good argument against averaging data from each individual trial. For the purposes of maximising the power of the data set at this early, exploratory level, the individual data points have been considered as independent of each other. Data are analysed and curve fitting is done using a double exponential curve function (Zande *et al.*, 2012; Groot *et al.*, 2012) and a power-law function (Rautmann *et al.*, 2001).

Figure 2. Collector lay-out for spray drift experiments in the Netherlands. Starting point of distance measurements (0-point) is last nozzle on the spray boom of the sprayer.

Figure 3. Collector lay-out for spray drift experiments in Germany. Starting point of distance measurements (*0-point*) was 0.50 m from the last nozzle on the spray boom of the sprayer (nowadays 0.25 m from last nozzle).

3. Results

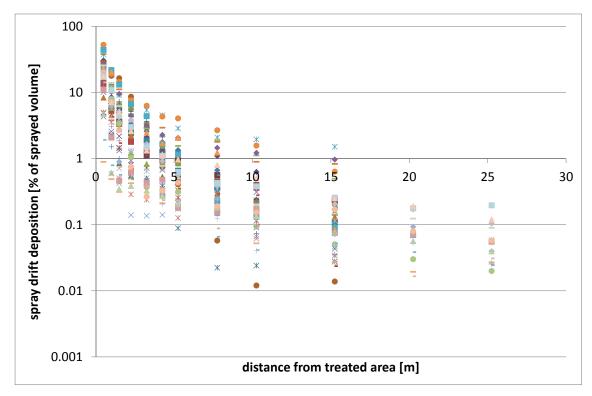

The spray drift database is split up in a part dealing with spray drift measurements done on bare soil surface and low crops (maximum crop height 20 cm) (Section 3.1) and a fully developed crop (Section 3.2). The original data are listed in the Appendices A and B.


3.1 Spray drift spraying a bare soil surface and low crop

3.1.1 Spray drift data from Germany and The Netherlands

Spray drift data from Germany

The German spray drift measurements for the boom sprayer equipped with standard flat fan nozzles XR11003 and XR11004 are presented in Figure 4 and Table 4. Measurements were done down to a distance of 100 m from the field edge.



Based on the German data for bare soil surface spraying spray drift deposition at 1 m distance from the edge of the short crop or the field (Table 4) is on average 1.5% ranging from 0.15% to 6.0%, at 5 m distance spray drift deposition is reduced to 0.35% (0.04%-1.0%) and at 10 m and 20 m distance to respectively 0.17% (0.02%-0.7%) and 0.08% (0.0%-0.3%).

Spray drift data from The Netherlands

The Dutch spray drift measurements for the boom sprayer equipped with standard flat fan nozzles XR11004 are presented in Figure 5 and Table 5. Measurements were done down to a distance of 25 m from the field edge.

Figure 5. Spray drift deposition (% of sprayed volume) at downwind distances from the crop edge of a sprayed field, Dutch data for a boom sprayer equipped with standard flat fan nozzles (XR11004) (48 measurements).

Based on the Dutch data for bare soil surface spraying spray drift deposition at 1.0 m distance from the edge of the short crop or the field (Table 5) is on average 7.7% ranging from 0.49% to 21.9%, at 5 m distance spray drift deposition is reduced to 0.8% (0.09%-4.0%) and at 10 m and 15 m distance to respectively 0.3% (0.01%-1.9%) and 0.08% (0.01%-1.5%).

Clearly, close to the treated area the spray drift depositions from the Dutch dataset are higher than those of the German dataset. Whereas the weather conditions during the spray drift measurements in the bare soil surface and short crop situation were comparable for the German and Dutch data. In general the Dutch data are in a similar range as the German data although average spray drift deposition is at the 1 m distance 5 times higher than the German. For the distances 5 m to 15 m Dutch spray drift deposition is two to three times higher than the German spray drift deposition at those distances from the field edge. From 20 m onwards Dutch spray drift data are equal or lower than the German data.

	0.25 m	1.25 m	3.25 m	5.25 m	7,75 m	10.25 m	15.25 m	20.25 m	30.25 m	50.25m	75.25m	100.25m
Nr meas.	110	90	90	200	90	200	30	200	200	170	110	110
Avg	15.6	1.5	0.58	0.35	0.27	0.17	0.063	0.081	0.045	0.033	0.017	0.015
Std	4.1	0.98	0.32	0.21	0.18	0.12	0.046	0.074	0.037	0.025	0.014	0.010
Median	15.6	1.5	0.50	0.30	0.24	0.13	0.050	0.053	0.038	0.028	0.012	0.011
Min	6.1	0.150	0.080	0.036	0.040	0.024	0.020	0.000	0.000	0.003	0.001	0.004
Max	29.7	6.0	1.4	1.0	1.1	0.69	0.21	0.31	0.26	0.18	0.083	0.057

 Table 4.
 Spray drift deposition (% of sprayed volume) at downwind distances from the treated zone of a sprayed field, German data for a boom sprayer equipped with standard flat fan nozzles (XR11003/XR11004), and its standard deviation, median, minimum and maximum values.

 Table 5.
 Spray drift deposition (% of sprayed volume) at downwind distances from the treated zone of a sprayed field, Dutch data for a boom sprayer equipped with standard flat fan nozzles (XR11004), and its standard deviation, median, minimum and maximum values.

	0.5	1.0	1.5	2.25	3.25	4.25	5.25	7.75	10.25	15.25	20.25	25.25
Nr. Meas	48	48	48	48	48	48	48	48	48	48	16	16
Avg	19.4	7.7	4.5	2.5	1.6	1.0	0.77	0.50	0.31	0.19	0.082	0.061
Std	10.5	5.8	3.8	2.1	1.5	0.97	0.77	0.58	0.40	0.27	0.055	0.047
Median	18.1	6.4	3.6	2.0	1.2	0.81	0.51	0.29	0.17	0.11	0.069	0.047
Min	0.89	0.49	0.31	0.14	0.14	0.14	0.088	0.022	0.012	0.014	0.017	0.020
Max	52.6	21.9	16.4	8.6	6.3	4.5	4.0	2.7	1.9	1.5	0.19	0.20

3.1.2 Combined spray drift data from Germany and The Netherlands

The German and Dutch spray drift datasets are joined together. The deposition values for the German, the Dutch and the joined dataset are presented as a double exponential curve fit (Figure 6) and a power-law curve fit (Figure 7) showing the average, median and 90th percentile data. The power-law curve fit is similar to those presented as the Basic Drift Values (Rautmann *et al.*, 2001). The double exponential curve fit is similar to those presented in Holterman & Zande, 2008; Groot *et al.*, 2012 and Zande *et al.*, 2012.

Double exponential curve fit

From the spray drift analysis of Zande *et al.* (2012) the double exponential curve appeared to fit the experimental data well. Especially because of the steep decline of the spray drift deposition close to the field edge the double exponential curve appeared to fit better than the earlier used power law function. Therefore the double exponential curve fit is used in this analysis also.

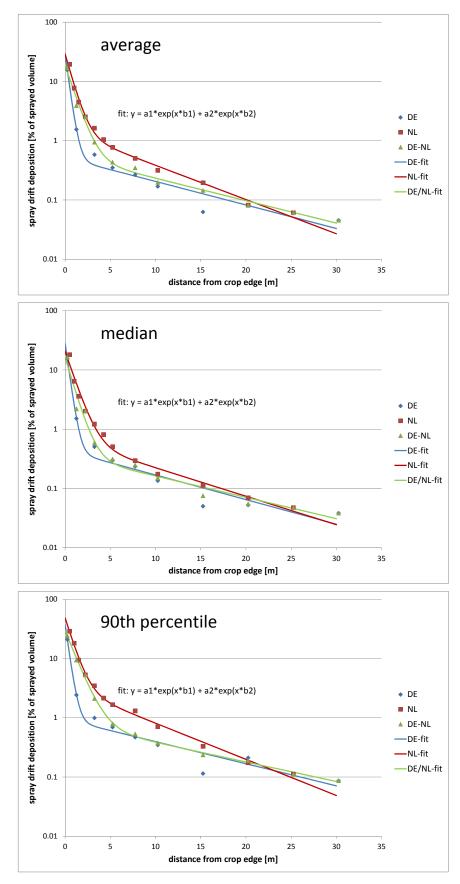
The double exponential curve fit is expressed as:

$y = a1 \exp(x b1) + a2 \exp(x b2)$ where y = spray drift deposition (%); x = distance from treated area and a1, a2, b1 and b2 function parameters

Average, median and 90th-percentile spray drift deposition at different distances from the treated zone of the sprayed low crop (<20 cm) or bare soil surface from Germany, The Netherlands and the joined datasets and their spray drift curves fitted as double exponential functions are presented in Figure 6 and Table 7. The parameters of the double exponential functions are presented in Table 6. As expected, based on the number of measurements done in Germany (200) and in The Netherlands (48) the joined spray drift curve is somewhere in between the curves for both countries separately. Up to 3 m distance from the edge of the crop or the field the joined spray drift curve follows closer to the Dutch curve, at distances from 3 onward the spray drift curve is more or less in the middle of the two separate datasets, whereas from 10 m onwards the curve follows the German data.

		DE-fit	NL-fit	DE/NL-fi
Average	al:	28.2753	27.7898	18.1851
	b1:	-2.5730	-1.2939	-1.0701
	a2:	0.5128	1.4546	0.5553
	b2:	-0.0915	-0.1331	-0.0871
Median	al:	27.9175	20.0271	15.9274
	b1:	-2.5275	-1.0581	-1.1852
	a2:	0.4395	0.6751	0.3720
	b2:	-0.0957	-0.1106	-0.0829
90-percentile	al:	36.8158	45.3763	28.7358
	b1:	-2.4921	-1.1768	-0.8884
	a2:	0.9337	3.2938	0.8165
	b2:	-0.0860	-0.1405	-0.0758

 Table 6.
 Fitted parameters for the double exponential function of the average, median and 90th-percentile spray drift curves of the sprayed low crop (<20 cm) or bare soil surface from Germany, The Netherlands and the joined datasets. Curves are fitted down to 30 m.</th>


Table 7.Average, median and 90th-percentile spray drift deposition (% of sprayed volume) from fitted double
exponential spray drift curves based on the spray drift data from Germany, the Netherlands and the
joined German-Dutch data ((DE-NL data) spraying a bare soil surface or short crop (<20 cm) using a
boom sprayer equipped with standard flat fan nozzles (XR11003/XR11004) and a boom height of
0.50 m at different distances form the treated zone.

	1 m	3 m	5 m	10m	15 m	20 m	25 m	30 m
Average								
Germany	2.626	0.402	0.325	0.205	0.130	0.082	0.052	0.033
Netherlands	8.893	1.549	0.791	0.385	0.198	0.102	0.052	0.027
DE-NL data	6.746	1.161	0.446	0.233	0.150	0.097	0.063	0.041
Median								
Germany	2.629	0.344	0.272	0.169	0.105	0.065	0.040	0.025
Netherlands	7.556	1.322	0.489	0.224	0.128	0.074	0.042	0.024
DE-NL data	5.211	0.745	0.288	0.162	0.107	0.071	0.047	0.031
90-percentile								
Germany	3.903	0.742	0.608	0.395	0.257	0.167	0.109	0.071
Netherlands	16.850	3.490	1.758	0.809	0.400	0.198	0.098	0.049
DE-NL data	12.576	2.650	0.897	0.386	0.262	0.179	0.123	0.084

Typically, the German and Dutch spray drift curves approach each other at 20 m and beyond. The decline of the curves originating from the Dutch dataset is slightly steeper than of the German dataset.

For the joined dataset average spray drift deposition values are 0.4% at 5 m, 0.23% at 10 m, 0.10% at 20 m and 0.04% at 30 m distance from the treated area. The 90th-percentile values are at 5 m distance 0.9%, at 10 m 0.39%, at 20 m 0.18% and at 30 m distance from the treated area 0.08%.

In general the 90th-percentile spray drift deposition values of the joined German-Dutch dataset are two times higher than the average data.

Figure 6. Average, median and 90th-percentile spray drift deposition at different distances form the edge of the sprayed low crop (<20 cm) or bare soil surface from Germany, The Netherlands and the joined datasets and their spray drift curves fitted as double exponential functions.

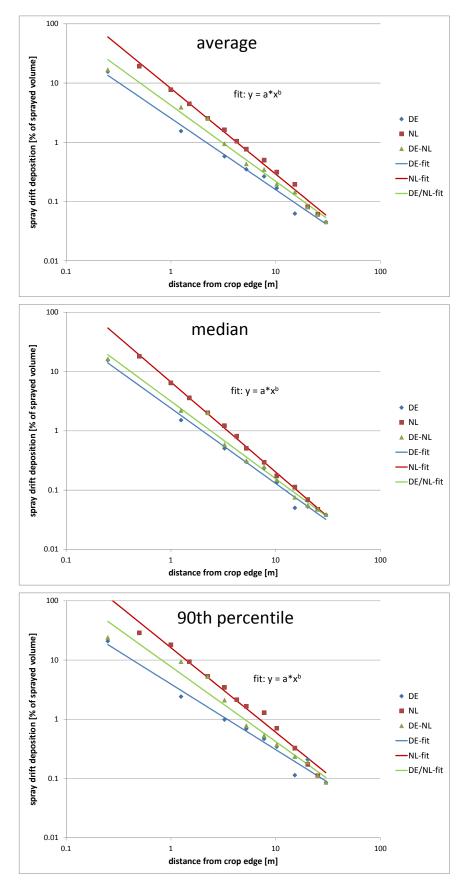
Power Law function curve fit

As presented by Rautmann *et al.* (2001) the results are also presented as a power law function (Figure 7). The Power Law function is expressed as:

$$y = a \cdot x^{D}$$

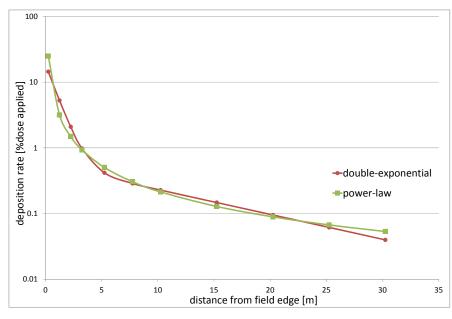
where y = spray drift deposition (%); x = distance from treated area; a and b are constants.

In Figure 7 the fitted power law functions of the average, median and 90th-percentile spray drift deposition values for the bare soil surface/short crop (<20 cm height) are presented. In Table 8 the fitted a and b parameters are presented of the average, median and 90-percentile curves. In Table 9 the estimated values of the average, median and 90th-percentile spray drift deposition at different distances from the treated area are presented based on the fitted power law functions for the German, the Dutch and the joined spray drift data.


Table 8.	Fitted parameters for the power function of the average, median and 90-percentiles spray drift curves
	from Germany, The Netherlands and the joined datasets. For bare soil and short crop; fitted down to
	30 m.

	DE		N	L	DE-NL		
_	а	b	а	b	а	b	
Average	2.5455	-1.205	8.1100	-1.444	4.2133	-1.282	
Median	2.4066	-1.270	6.6449	-1.518	3.1524	-1.307	
90-percentile	3.9399	-1.106	16.187	-1.427	7.7707	-1.266	

Estimated average spray drift deposition values based on the power law curve fit (Table 9) of the joined DE-NL deposition data for the spraying of a bare soil surface or a short crop (< 20 cm height) are 0.54% at 5 m, 0.22% at 10 m, 0.09% at 20 m and 0.05% at 30 m distance from the treated area. The estimated 90th-percentile spray drift deposition values based on the power law fit of the joined DE-NL spray drift deposition data are at 5 m 1.0%, at 10 m 0.42%, at 20 m 0.18% and at 30 m from the treated area 0.11%.


Table 9.	Average, median and 90 th -percentile spray drift deposition (% of sprayed volume) from fitted power
	law function spray drift curves based on the spray drift data from Germany, the Netherlands and the
	joined German-Dutch data ((DE-NL data) spraying a bare soil surface or short crop (<20 cm) using a
	boom sprayer equipped with standard flat fan nozzles (XR11003/XR11004) and a boom height of
	0.50 m at different distances form the treated zone.

	1 m	3 m	5 m	10m	15 m	20 m	25 m	30 m
Average								
Germany	2.546	0.677	0.366	0.159	0.097	0.069	0.053	0.042
Netherlands	8.110	1.660	0.794	0.292	0.162	0.107	0.078	0.060
DE-NL data	4.213	1.030	0.535	0.220	0.131	0.091	0.068	0.054
Median								
Germany	2.407	0.596	0.312	0.129	0.077	0.054	0.040	0.032
Netherlands	6.645	1.254	0.577	0.202	0.109	0.070	0.050	0.038
DE-NL data	3.152	0.750	0.385	0.155	0.092	0.063	0.047	0.037
90-percentile								
Germany	3.940	1.169	0.664	0.309	0.197	0.143	0.112	0.092
Netherlands	16.187	3.375	1.628	0.606	0.340	0.225	0.164	0.126
DE-NL data	7.771	1.934	1.013	0.421	0.252	0.175	0.132	0.105

Figure 7. Average, median and 90th-percentile spray drift deposition at different distances form the treated zone of a sprayed low crop (<20 cm) or bare soil surface from Germany, The Netherlands and the joined datasets and their spray drift curves fitted as power-law functions.

Typically, a double-exponential curve and a power-law curve cross each other four times, due to the different mathematical structure of these curves. As an example, Figure 8 shows the fitted curves for the joined DE/NL data for bare soil. The power-law fits exceed the double-exponential at short distances (<1 m), at intermediate distances (4-8 m) and at large distances (>22 m). The position of these cross-overs may differ for different fits, but they follow the same qualitative pattern. When the fits do not include data points beyond 30 m, the differences appear to be relatively small.

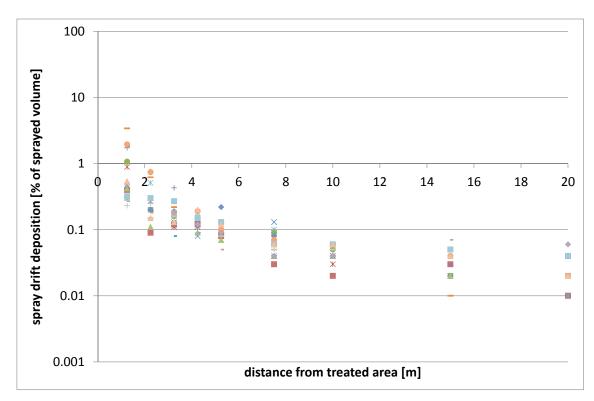
Figure 8. Typical curves for double-exponential and power-law fit, showing four cross-overs (bare soil fits, DE+NL).

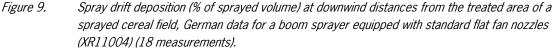
For comparison of the fitted curve types, the average deviation of fitted values from measured depositis can be determined. The RMS value of log-deposits seems appropriate:

RMS = SQRT(SUM($(LN(Y_{fx}) - LN(Y_{mx}))^2) / N_m$)

Where Y_{fx} is the fitted deposit at distance x, Y_{mx} the measured deposit at that distance, N_m the number of deposits (i.e. distances). RMS is a measure of the average deviation in LN(Y). Table 10 shows these RMS values of the fitted curves for bare soil/short crop. For the German data, the RMS for power-law curves is smaller than those for double-exponential curves, indicating that the power-law curves fit slightly better. For the Dutch data and the joined DE-NL data, both curves seem to fit equally well.

RMS	ļ	DE	١	IL	DE-NL		
	Doub-exp	Power-law	Doub-exp	Power-law	Doub-exp	Power-law	
avg	0.30	0.19	0.14	0.14	0.15	0.23	
median	0.33	0.19	0.19	0.06	0.28	0.22	
90 th pct	0.31	0.25	0.10	0.22	0.08	0.33	

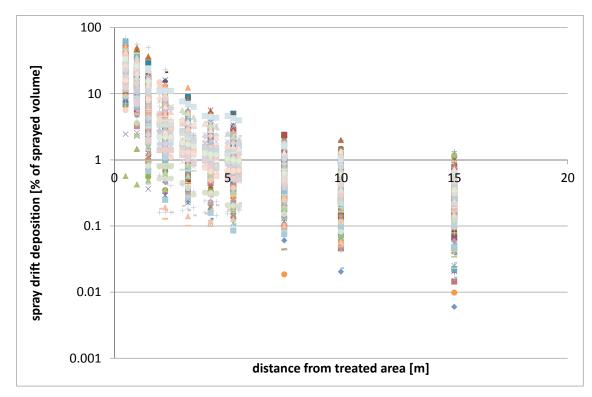

 Table 10.
 RMS of differences in log(deposits) for fitted values compared to measured deposits for spray drift next to bare soil/short crops.

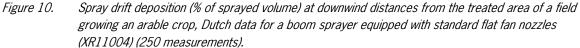

3.2 Spray drift spraying a crop

3.2.1 Spray drift data from Germany and The Netherlands

Spray drift data from Germany

From spraying a cereal crop limited data (3 experiments of 6 repetitions = 18 measurements) are available from the German spray drift database. The measurements for spraying a cropped area with a boom sprayer equipped with standard flat fan nozzles (XR11004) are presented in Figure 9 and Table 11. Measurements were done down to a distance of 30 m from the treated area.





Based on the German data for a crop canopy spraying the average spray drift deposition at 1 m distance from the treated area of the crop is 0.93% ranging from 0.23% to 3.4%. At 5 m distance spray drift deposition is reduced to 0.10% (0.05%-0.22%) and at 10 m and 20 m distances to 0.05% (0.02%-0.06%) and 0.02% (0.01%-0.06%), respectively. In general the German spray drift deposition data spraying a bare soil surface or short cut grass are 3 to 4 times higher than spraying a cereal crop.

Spray drift data from The Netherlands

The Dutch spray drift measurements for the boom sprayer equipped with standard flat fan nozzles XR11004 and a fully developed arable crop (250 measurements) are presented in Figure 10 and Table 12. Measurements were done down to a distance of 15 m from the field edge.

Based on the Dutch data when spraying an arable crop, spray drift deposition at 1 m distance from the treated area of the crop is 17.4% ranging from 0.4% to 66%. At 5 m distance deposition is reduced to 1.2% (0.2%-4.6%) and at 10 m and 15 m distance from the treated area the deposition is 0.5% (0.02%-2.0%) and 0.3% (0.0%-1.3%), respectively.

In general the spray drift deposition from The Netherlands for spraying a cropped field are 2 times higher than that for spraying a bare soil surface or short crop (<20 cm).

Clearly the average spray drift deposition from the Dutch dataset is higher than the average of the German dataset. The Dutch data for the cropped situation are about ten times higher than the German spray drift deposition data at the different distances from the field edge. Close to the field edge (at 1 m and 3 m) the Dutch spray drift deposition data are about 20 to 25 times higher than the German spray drift data.

	1.25 m	2.25 m	3.25 m	4.25 m	5.25 m	7.75 m	10.25 m	15.25 m	20.25 m	30.25 m
Nr meas.	18	18	18	18	18	18	18	18	18	18
Average	0.93	0.31	0.17	0.13	0.10	0.06	0.05	0.03	0.02	0.02
Std	0.88	0.21	0.08	0.03	0.04	0.03	0.01	0.02	0.01	0.02
Median	0.46	0.23	0.16	0.13	0.09	0.06	0.04	0.03	0.02	0.02
Min	0.23	0.09	0.08	0.08	0.05	0.03	0.02	0.01	0.01	0.01
Max	3.4	0.76	0.43	0.20	0.22	0.13	0.06	0.07	0.06	0.07

 Table 11.
 Spray drift deposition (% of sprayed volume) at downwind distances from the treated area of a sprayed field, German data for a boom sprayer equipped with standard flat fan nozzles (XR11004), and its standard deviation, median, minimum and maximum values.

 Table 12.
 Spray drift deposition (% of sprayed volume) at downwind distances from the crop edge of a sprayed field, Dutch data for a boom sprayer equipped with standard flat fan nozzles (XR11004), and its standard deviation, minimum and maximum values.

	0.50 m	1 m	1.75 m	2 m	2.25 m	2.75 m	3 m	3.25 m	3.75 m	4 m	4.25 m	4.75 m	5 m	5.25 m	5.5 m	7.75 m	10 m	15 m
Nr.meas	250	250	250	40	250	40	40	249	40	40	249	40	40	250	40	250	250	250
Average	27.4	17.4	8.0	4.5	3.5	3.1	2.3	2.0	1.9	1.5	1.4	1.3	1.2	1.1	1.1	0.7	0.5	0.3
Std	13.0	9.2	6.8	3.8	3.3	2.5	1.5	1.7	1.2	1.0	1.0	0.9	0.8	0.8	0.7	0.5	0.4	0.2
Median	25.4	16.1	5.8	3.4	2.5	2.6	1.9	1.5	1.7	1.2	1.1	1.1	1.0	0.8	0.9	0.5	0.4	0.2
Min	0.6	0.4	0.4	0.16	0.13	0.16	0.17	0.10	0.14	0.15	0.10	0.14	0.15	0.09	0.17	0.02	0.02	0.00
Max	68.5	56.1	49.7	14.9	22.9	11.1	7.7	12.4	6.3	4.6	5.6	4.3	4.6	5.0	3.9	2.4	2.0	1.3

3.2.2 Combined spray drift data from Germany and The Netherlands

The German and Dutch spray drift datasets are joined together. The average, median and 90th-percentile spray drift deposition values for the German, the Dutch and the joined dataset are presented. A distinction is made in double exponential curve fits and power law function curve fits as earlier presented for presentations of the spray drift data from The Netherlands (Holterman & Zande, 2008; Groot *et al.*, 2012; Zande *et al.*, 2012) and Germany (Rautmann *et al.*, 2001).

Double exponential curve fit

Average, median and 90th-percentile spray drift deposition at different distances form the treated area of the sprayed crop (>20 cm height) from Germany, The Netherlands and the joined datasets are presented in Figure 11 fitted as double exponential functions. The parameters of the double exponential functions are presented in Table 14. In Table 13 the estimated values of the double exponential curve fits of the average, median and 90th-percentile data are presented for the German, the Dutch and the joined DE-NL data. As expected based on the number of measurements done in Germany (18) and in The Netherlands (250) the joined DE-NL spray drift curve is almost identical to the Dutch spray drift curve for a cropped situation.

Table 13.Estimated average, median and 90th-percentile spray drift deposition (% of sprayed volume) from
fitted double exponential spray drift curves based on spray drift data from Germany, the Netherlands
and the joined German-Dutch data ((DE-NL data) spraying a crop (>20 cm) using a boom sprayer
equipped with standard flat fan nozzles (XR11004) and a boom height of 0.50 m above crop canopy
at different distances form the treated area of the crop.

	1.0 m	3.0 m	5.0 m	10.0m	15.0 m	20.0 m	25.0 m	30.0 m
Average								
Germany	0.947	0.229	0.091	0.048	0.037	0.028	0.022	0.017
Netherlands	31.292	2.706	1.076	0.530	0.278	0.146	0.076	0.040
DE-NL data	30.257	2.601	1.020	0.499	0.261	0.136	0.071	0.037
Median								
Germany	0.446	0.191	0.097	0.042	0.030	0.023	0.018	0.014
Netherlands	29.850	1.872	0.895	0.433	0.214	0.106	0.052	0.026
DE-NL data	29.099	1.787	0.853	0.411	0.202	0.099	0.049	0.024
90-percentile								
Germany	2.188	0.362	0.119	0.070	0.058	0.049	0.041	0.034
Netherlands	58.684	5.634	2.154	1.063	0.571	0.306	0.164	0.088
DE-NL data	58.304	5.505	2.108	1.042	0.558	0.299	0.160	0.086

For the average spray drift deposition data the decline of the curve originating from the Dutch dataset is steeper than that of the German dataset. However, the curves approach each other at larger distances.

For the joined DE-NL dataset average spray drift deposition values are 1.0% at 5 m, 0.5% at 10 m, 0.14% at 20 m and 0.04% at 30 m distance from the treated area. The 90^{th} -percentile values are at 5 m distance 2.1%, at 10 m 1.0%, at 20 m 0.3% and at 30 m distance from the treated area 0.09%.

In general the 90th-percentile spray drift deposition values of the joined German-Dutch dataset are two times higher than the average data.

		DE-fit	NL-fit	DE/NL-fit
Average	al:	2.02497	136.182	131.376
	b1:	-0.84347	-1.52627	-1.52284
	a2:	0.07963	1.92730	1.82775
	b2:	-0.05175	-0.12916	-0.12984
Median	a1:	0.64851	178.820	176.568
	b1:	-0.51621	-1.84322	-1.85506
	a2:	0.06176	1.77527	1.70097
	b2:	-0.04902	-0.14108	-0.14201
90-percentile	a1:	5.80034	234.619	235.751
	b1:	-1.02020	-1.44295	-1.45359
	a2:	0.10003	3.69224	3.62703
	b2:	-0.03613	-0.12449	-0.12478

Table 14.Fitted parameters for the double exponential function of the average, median and 90th-percentile spray
drift curves from Germany, The Netherlands and the joined DE-NL datasets.

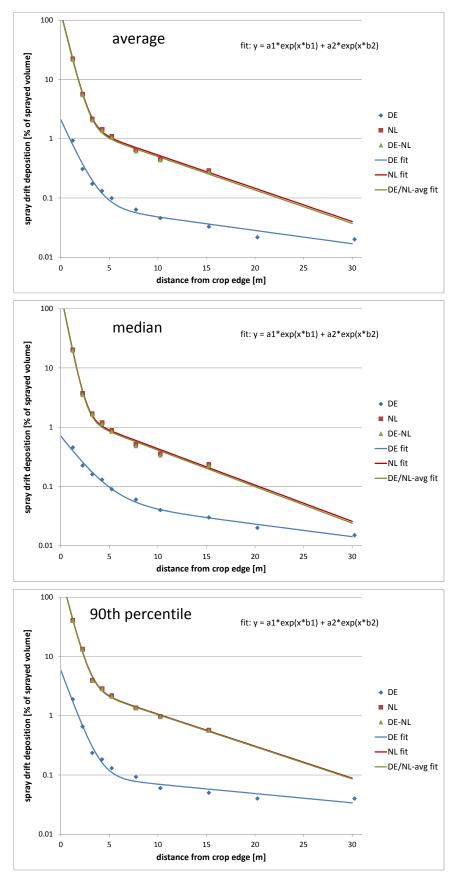
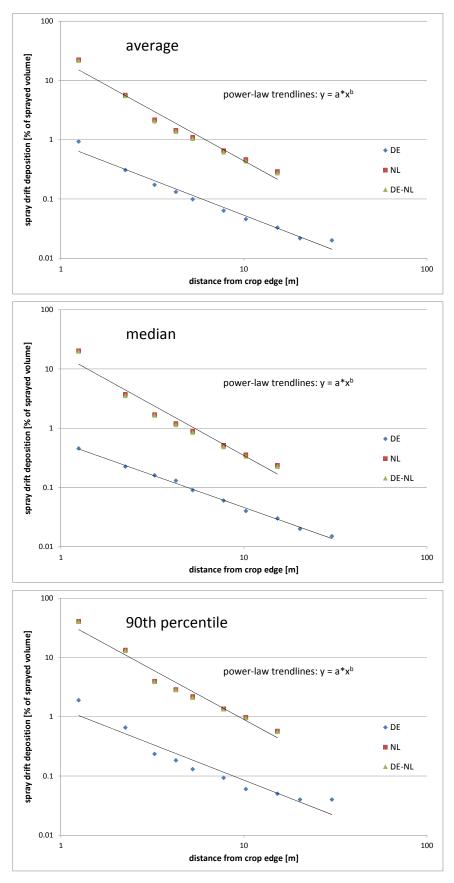


Figure 11. Average, median and 90th-percentile spray drift deposition at different distances form the treated area of the sprayed crop (>20 cm) from Germany, The Netherlands and the joined datasets and their spray drift curves fitted as double exponential functions.

Power law function

As presented by Rautmann *et al.* (2001) the results are also presented as a power function (Figure 12) with the fitted a and b parameters presented of the average, median and 90-percentile curves in (Table 15) spraying a cropped area.

		DE		NL	DE-NL		
	а	b	а	b	а	b	
Average	0.8286	-1.1936	22.032	-1.701	21.422	-1.715	
Median	0.5690	-1.0922	17.630	-1.708	17.111	-1.718	
90-percentile	1.3715	-1.2079	43.102	-1.682	42.476	-1.685	


Table 15.	Fitted parameters for the power law function of the average, median and 90-percentiles spray drift
	curves from Germany, The Netherlands and the joined DE-NL datasets spraying a cropped area.

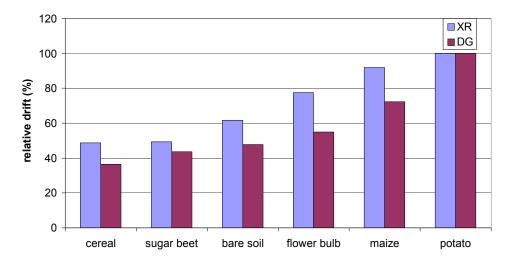
In Table 16 the estimated values of the average, median and 90th-percentile spray drift deposition at different distances from the treated area are presented based on the fitted power law functions for the German, the Dutch and the joined DE-NL spray drift data.

Table 16.Estimated spray drift deposition (% of sprayed volume) from fitted power law function spray drift
curves based on spray drift data from Germany, the Netherlands and the joined German-Dutch data
((DE-NL data) spraying a crop (>20 cm) using a boom sprayer equipped with standard flat fan nozzles
(XR11004) and a boom height of 0.50 m above crop canopy at different distances from the treated
area of the crop.

	1.0 m	3.0 m	5.0 m	10.0m	15.0 m	20.0 m	25.0 m	30.0 m
Average								
Germany	0.829	0.223	0.121	0.053	0.033	0.023	0.018	0.014
Netherlands	22.032	3.400	1.426	0.439	0.220	0.135	0.092	0.068
DE-NL data	21.422	3.255	1.356	0.413	0.206	0.126	0.086	0.063
Median								
Germany	0.569	0.171	0.098	0.046	0.030	0.022	0.017	0.014
Netherlands	17.630	2.700	1.128	0.345	0.173	0.106	0.072	0.053
DE-NL data	17.111	2.592	1.078	0.328	0.163	0.100	0.068	0.050
90-percentile								
Germany	1.372	0.364	0.196	0.085	0.052	0.037	0.028	0.023
Netherlands	43.102	6.792	2.876	0.896	0.453	0.279	0.192	0.141
DE-NL data	42.476	6.671	2.821	0.877	0.443	0.273	0.187	0.138

Estimated average spray drift deposition values based on power law curve fit (Table 16) of the joined DE-NL deposition data for spraying of a cropped area (> 20 cm height) are 1.4% at 5 m, 0.41% at 10 m, 0.13% at 20 m and 0.06% at 30 m distance from the treated area. The estimated 90th-percentile spray drift deposition values based on the power law fit of the joined DE-NL data are at 5 m 2.8%, at 10 m 0.88%, at 20 m 0.27% and at 30 m from the treated area 0.14%.

Figure 12. Average spray drift deposition at different distances form the treated zone of a sprayed crop (crop height >20 cm) from Germany, The Netherlands and the joined datasets and their spray drift curves fitted as power functions.


Similar to the previous Section, RMS values can be determined for deviations in LOG(depositis) in the cropped field situation to compare the drift curve types. Table 17 shows these RMS values of the fitted curves. For the German data, the RMS for power-law curves and double-exponential curves are similar. For the Dutch data, the RMS for the double exponential curves are smaller, indicating that the double exponential curves fit better. The same holds for the joined data, due to the fact that these data are governed by the larger number of Dutch data.

RMS	DE		Ν	IL	DE-NL		
	Doub-exp	Power-law	Doub-exp	Power-law	Doub-exp	Power-law	
avg	0.16	0.19	0.07	0.24	0.07	0.24	
median	0.09	0.06	0.12	0.27	0.12	0.28	
90 th pct	0.16	0.35	0.08	0.25	0.08	0.25	

 Table 17.
 RMS of differences in log(deposits) for fitted values compared to measured deposits for spray drift next to cropped fields.

4. Discussion

The discrimination in a bare soil surface situation and a developed crop situation at a crop height of 20 cm is quite arbitrary and must be seen as a first attempt to introduce spray drift of boom sprayer applications dependent on crop type and growth stages like in dormant and full leaf applications for orchard spraying. Within the bare soil surface and short crop situation data are taken up of bare soil, mowed short grassland and cereal stubble from Germany and bare soil, and less than 20 cm high sugar beet, maize and wheat crops. Spray drift for these individual crops do differ however also within the dataset meaning that a future analysis can also be done taking these differences into account. Similarly for the crop growth situation the spray drift data from Germany are from cereal spraying and from the Netherlands contain data from potato, wheat, sugar beet, lilies and mustard. Zande et al. (2006) showed that the spray drift deposition at 2-3 m from the last nozzle is significantly different for these crop types with the highest spray deposition for a potato crop followed by maize, flower bulb, bare soil, sugar beet and cereal (Figure 13). Also for the crop situation a future analysis on this or an expanded dataset can be done taking these crop type differences into account. As nozzle position differs for these different crop types as it is related to the nozzle spacing on the spray boom (50 cm) and the position relative to the crop rows having a row spacing of 75 cm (potatoes, maize), 50 cm (sugar beet) and 25 cm (cereals) the edge of the crop canopy relative to the last nozzle differs per crop type. Moreover crop canopy structure and density differs also and filters spray and spray drift therefore also in different ways at the edge of the field. All of these aspects are to be looked upon in detail in further data analysis when more data are taken up in a future analysis.

relative spray drift deposition at 2-3m weather restrictions T<25oC; wind <5 m/s; angle < +/- 30o

Figure 13. Effect of crop type on spray drift deposition at 2-3m distance from the last nozzle for a standard flat fan (XR11004; 300 l.ha-1) and a pre-orifice flat fan nozzle (DG11004; 300 l.ha-1) (after Zande et al., 2006).

For the bare soil surface situation the spray drift depositions from the Dutch dataset are close to the treated area higher than those of the German dataset. In general the Dutch data are in a similar range as the German data although average spray drift deposition is at the 1 m distance 5 times higher than the German. For the distances 5 m to 15 m Dutch spray drift deposition is two to three times higher than the German spray drift deposition at those distances from the field edge. From 20 m onwards Dutch spray drift data are equal or lower than the German data.

For the cropped situation the average spray drift deposition from the Dutch dataset is higher than the average of the German dataset. For the cropped situation the spray drift deposition values for the Dutch dataset are about ten times higher than those for the German dataset. Especially close to the field edge (at 1 m and 3 m distances) the Dutch deposition data are about 20 to 25 times higher than the German spray drift data.

Estimated average, median and 90th-percentile values are presented for spraying a bare soil surface or short crop (<20 cm crop height) and spraying a developed crop (> 20 cm crop height), based on two curve fit procedures: double exponential and power law.

The estimated spray drift deposition data based on the double exponential curve fit is presented in Table 18 and Figure 15 for the average, median and 90th-percentile values with distance from the treated field. For the power law function the estimated spray drift deposition are presented in Table 19 and Figure 16.

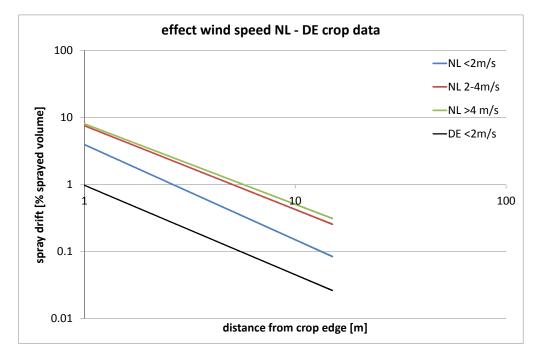
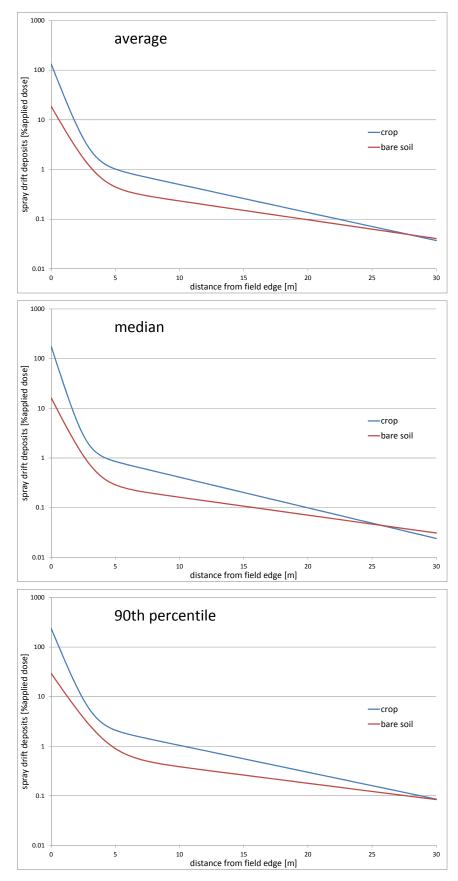

	Germany and The	Netherland.	s (double ex	ponential cu	rve fit).		Germany and The Netherlands (double exponential curve fit).										
	1 m	3 m	5 m	10m	15 m	20 m	25 m	30 m									
Average																	
Bare soil	6.7	1.2	0.4	0.23	0.15	0.10	0.06	0.04									
Crop	30.3	2.6	1.0	0.5	0.26	0.14	0.07	0.04									
Median																	
Bare soil	5.2	0.7	0.3	0.16	0.11	0.07	0.05	0.03									
Crop	29.1	1.8	0.9	0.41	0.20	0.10	0.05	0.02									
90-percentile																	
Bare soil	12.6	2.7	0.9	0.39	0.26	0.18	0.12	0.08									
Crop	58.3	5.5	2.1	1.0	0.56	0.30	0.16	0.09									

Table 18.Estimated average, median and 90th-percentile spray drift deposition (% of sprayed volume) downwind
of a sprayed bare soil surface/short crop and a crop situation based on joined spray drift data from
Germany and The Netherlands (double exponential curve fit).


The remarkable difference in spray deposition from the Dutch and German dataset spraying a crop may be due to weather conditions during measurements (mean wind speed Germany 1.7 m/s and the Netherlands 3.3 m/s, the wind angle and temperature), but crop types differ as well (Germany cereals GS42-45 and The Netherlands mainly potatoes (crop height 50-80 cm). Comparative measurements in different crop types showed that spray drift with a cereal crop was about 50% lower than that with a sprayed potato crop (Zande *et al.*, 2006).

In order to know whether the difference in amount of spray drift deposition between the Dutch and the German crop dataset can be caused by a difference in wind speed the Dutch dataset is grouped in measurements with wind speeds < 2m/s, 2-4 m/s, and >4 m/s (Figure 14). Whereas the maximum wind speed in the German crop dataset is 2 m/s similar data are taken from the Dutch data set showing that spray drift is lower with reduced wind speeds. Although the Dutch spray drift curve for the wind speed lower than 2 m/s comes closer to the German one but is still 3 times higher. This means other factors are still relevant. Factors affecting the spray drift data may also origin from the field conditions; sprayer type (DE: mounted, NL: trailed), spray boom width (DE: 10 m, NL 24 m), width sprayed area (DE: 20 m – 2 swaths of 10 m, NL 24 m – 1 swath), sprayer boom movement during application, crop and ground conditions over which the measurements were made. Another source for different spray drift deposition values may be the spray solutions used during the spray drift measurements. The DE spray drift measurements were done with just water (BBA, 1992) whereas the NL measurements were done using water and a surfactant (TCT, 2003; ISO 22866). As water gives less drops < 100 µm than water + surfactant (Agral; IPARC, 2014) spray drift potential is for the DE measurements also lower than for the NL situation. Also the sizes and characteristics of the collectors used (DE: filter paper strips, NL: filter collector) and measurement methodologies used in the two studies may be a source of differences in height of the spray drift deposition values. Mathers et al., 2000 and DEFRA (2003) show that the spray drift deposition at ground surface was for filter paper strips 3 to 13 times higher than for petri dishes depending on distance from the treated field. It is therefore recommended to make comparative drift

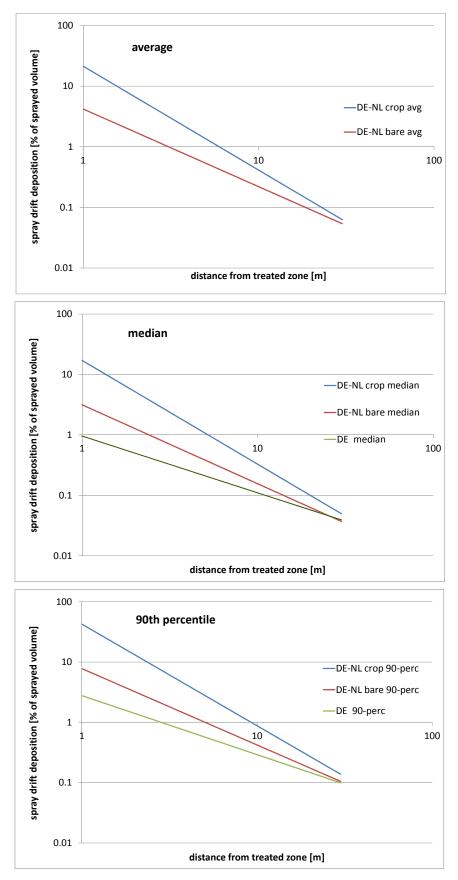

measurements with the same sprayer and spray drift protocols (ISO22866) and collectors as used (petri dishes, filter paper strips, filter material) in both studies on bare soil and a crop situation to clarify any differences of this source.

Figure 14. Effect of wind speed (< 2 m/s, 2-4 m/s, >4 m/s) on spray drift deposition for the Dutch crop situation compared to the German crop data (wind speed max 2 m/s).

Figure 15. Average, median and 90th-percentile spray drift deposition next to sprayed bare soil surface/short crop and a crop situation based on joined drift data from Germany and The Netherlands (double exponential curve fit).

Figure 16. Power law function of average, median, 90th-percentile spray drift deposition next to sprayed bare soil surface/short crop and a crop situation based on joined drift data from Germany and The Netherlands in comparison with German basic drift values (median, 90-percentile).

In Table 19 and Figure 16 a comparison is made between the German median and 90th percentile spray drift values (Rautmann *et al.*, 2001) and the joined German-Dutch drift values. The values of the basic drift values are very similar to those found now for the median values of the bare soil situation. The now generated 90th-percentile values for the bare soil situation are in general for the distances of 1 m to 5 m from the treated area 2.5 times to 2 times higher than the basic drift values at those distances. From 15 m onwards the spray drift values for the bare soil situation generated in this study are similar to the basic drift values. For the cropped situation the spray drift values are 15 times higher at 1 m distance from the treated area and decreasing to similar values at 20 m and further distances from the treated area.

			D	istance fro	m treated a	area [m]		
	1	3	5	10	15	20	25	30
DE-NL crop avg	21.4	3.3	1.4	0.41	0.21	0.13	0.09	0.06
DE-NL bare avg	4.2	1.0	0.54	0.22	0.13	0.09	0.07	0.05
DE-NL crop median	17.1	2.6	1.1	0.33	0.16	0.10	0.07	0.05
DE-NL bare median	3.15	0.75	0.38	0.16	0.09	0.06	0.05	0.04
DE mean	0.97	0.34	0.21	0.11	0.07	0.06	0.05	0.04
DE-NL crop 90-perc	42.5	6.7	2.8	0.88	0.44	0.27	0.19	0.14
DE-NL bare 90-perc	7.77	1.93	1.01	0.42	0.25	0.18	0.13	0.10
DE 90-perc	2.77	0.95	0.57	0.29	0.20	0.15	0.12	0.10

 Table 19.
 Estimated average, median and 90th-percentile spray drift deposition (% of sprayed volume) downwind of a sprayed bare soil surface/short crop and a crop situation based on joined spray drift data from Germany and The Netherlands (power law function) and German basic drift values.

Differences in spray drift between spraying a bare soil surface or a cropped situation is probably mainly caused by the higher release height of the spray in the cropped situation. Sprayer boom height of 50 cm above a crop height of e.g. 50-70 cm height releases the spray at 1.2m height. Average wind speed at 1.2 m height (even above a crop canopy) is higher than that at 50 cm height above a bare soil surface due to a logarithmic increasing wind speed profile with height. Apart from the wind speed effect also the nozzle position relative to the crop border influences spray drift deposition next to the treated field. Overspray of the spray fan of the outside nozzle is likely to occur in the first 2 m next to the sprayed crop, because of the wide top angle of the nozzles used (110°). From a study comparing spray drift with a cereal crop and a bare soil surface it was concluded that spraying a cereal crop higher spray drift values are observed than spraying a bare soil surface under similar weather conditions (Stallinga *et al.*, 1999).

In this study a compilation is done based on spray drift field measurements for boom sprayers equipped with standard flat fan nozzles (XR11003/XR11004) and a spray boom height of 50 cm from Germany and The Netherlands. An expansion of this dataset with spray drift data from other member states (e.g. UK, BE, DK, SE, FR, IT) is possible and will lead to a more robust set of general spray drift curves. Further statistical analysis is than needed also on the preference of the curve-fit procedures.

If the estimated curves for deposition of spray drift based on the joined data of Germany and The Netherlands as described in this study, are to be used in the authorisation process, consequently the drift mitigation measures start at a higher reference level of spray drift. When the double exponential curves for the bare soil surface and the cropped situation are used a 90% drift reducing technology will be evaluated with a spray drift deposition value of 0.1% at 5 m distance for the bare soil surface situation and 0.2% for the cropped situation.

In the bare soil surface situation a 1% level of the standard spray technique is met at 5 m distance whereas in the cropped situation it is met at 10 m distance. Similar differences in buffer zone width can occur for drift reducing

technologies depending on the spray drift threshold level to be met between cropped and bare soil surface situations.

Recommendations

- 1. An understanding of the effect of collector type on drift values is long overdue. Clearly the NL approach (filter material) captures more of the depositing spray drift than the DE approach (filter paper strips or nowadays petri dishes). However, there is currently no way to decide which is the more appropriate for the purpose of developing a risk assessment (surface water, non-target plants). There are clear differences, supported by some limited research (DEFRA, 2003, Mathers *et al.*, 2000). Very clearly, this subject needs to be properly understood if any attempt is to be made to properly combine all the EU drift data.
- 2. The effect of crop whether a cover such as stubble or mown grass, or a true crop such as cereals or sugar beet or potatoes has a very large effect on spray drift. Some crops clearly increase the spray drift (e.g., potatoes); others filter drift (e.g., cereals).

However, there is no data covering the range of growth stages in a given crop and this is a seriously large information gap. At the moment, without going into, say, the Belgian, UK, or French drift data sets in detail, only potatoes at a full canopy have been explored fully. Assessments of the influence of crop should consider, at a minimum;

- i. Foliar morphology effects on filtering
- ii. Foliar influences of spray drift dynamics beyond end nozzle.
- iii. Relationship to definition of edge of field
- iv. Crop influences on air flow turbulence (particularly in the 'near Edge of field' range)
- 3. Location of the last nozzle to the edge of field or crop is clearly very important for boom spray drift from arable crops. As the spray deposition at 1 m to 2 m downwind is largely driven by overspray, this issue becomes important and is another area that urgently needs research. The 'oversprayed' area is likely even greater with increasing wind speed.

Further research on the above topics would not only give the research and regulatory community a clearer view of what drift really is, but it should open up three important possibilities:

- 1. The ability to reliably combine more data sets from other countries, covering different climates and crops, as well as the protocols used in the measurements.
- 2. How to address the issue of overspray versus spray drift.
- 3. Calibration of spray drift models such that drift data can be interpolated perhaps even extrapolated to cover crops, growth stages, equipment, and spraying conditions not originally covered.

5. Conclusions and recommendations

The work reported here is, to the authors knowledge, the first large scale attempt to consider two large drift data sets, both designed for the common purpose of providing drift values for environmental fate risk assessments, and to determine whether or not it is possible to combine such national data sets to provide pan-European drift values. As a starting point, two well-known drift data sets – from Germany and the Netherlands – were combined as a basis for illustrating the possible path forward and in order to enable a better understanding of key limitations that will need to be overcome in future.

Following ISO22866 (2005) and ISO22369-2 (2006) a reference spray application was defined as a boom spray application with a boom height of 0.50 m above bare soil or crop canopy, a nozzle type close to the BCPC Fine/Medium threshold nozzle, and a driving speed of 6-8 km/h. Spray drift data from a boom sprayer equipped with standard flat fan nozzles (XR11003/XR11004) and a spray boom height of 0.50 m above soil surface or crop canopy were analysed. The analysis of the joined spray drift data for this subset of data results in separate spray drift curves for the bare soil surface (crop height < 20 cm) or short crop situation and the cropped situation (crop height > 20 cm).

Results from the joined spray drift datasets show average spray drift deposition values are 0.51% for the bare soil surface and 1.0% for the crop situation at 5 m distance from the treated area using the double exponential curve fit. Similarly, using a power-law curve fit, spray drift deposition values of 0.54% for the bare soil surface and 1.4% for the developed crop situation are obtained.

The newly generated spray drift curves result in a 90^{th} -percentile spray drift deposition value at 5 m distance from the treated area of 1.0% in the bare soil situation and 2.1% in the developed crop situation when using the double exponential curve fit and 1.0% and 2.8%, respectively, when using the power-law curve fit. The presently used German Basic Drift Values, which are also used in the EU authorisation procedure, show a spray drift deposition value of 0.57% at this distance.

Several clear lessons were learned from this exercise, which lead directly into important research questions if arable crop spray deposition is to be properly explored and understood.

<u>First</u>, protocol differences can have a large effect on spray drift deposition capture (filter paper strips vs synthetic filter material). However, it is not clear at all if one protocol is to be preferred over another, nor if one protocol is suitable for all off-crop situations (*e.g.*, surface water ν . capture by low vegetation ν . capture by hedges). There is a clear research need.

<u>Second</u>, the effect of even a cover crop is variable and poorly understood. Even small differences in cover crop (*e.g.*, from bare soil to mown grass) would appear to affect spray drift deposition from bare ground. Much larger differences were observed when spray drift was measured from applications over crops. Some crops increased spray drift deposition, others filtered spray drift. A clear research need is to understand spray drift over crops, and to determine effect of growth stage of crop on spray drift. It is recommended that representations of influence of crop on spray drift needs a more thorough investigation and further statistical analyses (e.g. mixed model analysis) to incorporate the effects of crop type, crop growth stage and wind speed and wind direction on spray drift deposition.

<u>Third</u>, the effect of where the last nozzle is located differs per crop type and has important implications on spray drift deposition downwind of the sprayed field. As the spray deposition at 1 m to 2 m downwind of the field edge is largely driven by overspray. The effect of crop foliar morphology and canopy filter needs further research.

<u>Fourth</u>, to the authors knowledge, powerful statistical techniques have not been attempted on spray deposition drift values for the simple reason that powerful statistical tools tend to need large data sets. However, as there are clear

dynamic differences between the two data sets assessed, whether between countries (*i.e.*, protocols) or between crops, an important first step is to assess the differences between protocols and find a means of bridging the data. Only then can the data sets be reliably combined, and this applies especially to further combining other EU data sets.

As a next step in this research, the authors would recommend a focussed attempt at understanding the differences between the various data sets. This would include the following:

- 1. An assessment of at least two more large scale arable crop spray drift deposition data sets to see if the lessons learnt from this analysis also applies to other work.
- 2. A set of highly targeted field trials in different parts of the EU, under a tightly specified protocol, looking at the various deposition drift capture approaches. With this research, it may be possible to 'standardise' various existing data sets, with a view to a standard data set for modelling calibration and validation.
- 3. An EU-wide workshop bringing all the available data and new research together to decide if pan-EU spray drift values (as a first step for arable crops) can be derived by combining different spray drift data sets.

Summary

The work reported here is, to the authors knowledge, the first large scale attempt to consider two large spray drift data sets, both designed for the common purpose of providing spray drift values for environmental fate risk assessments, and to determine whether or not it is possible to combine such national data sets to provide pan-European spray drift values. As a starting point, two well-known spray drift data sets – from Germany and the Netherlands – were combined as a basis for illustrating the possible path forward and in order to enable a better understanding of key limitations that will need to be overcome in future.

Spray drift data from Germany and The Netherlands were used to generate spray drift deposition curves for a defined reference situation spraying a bare soil surface or short crop situation (crop height lower than 20 cm) and a cropped situation (crop height higher than 20 cm). Following ISO22866 and ISO22369-2 a reference spray application was defined as a boom spray application with a boom height of 0.50 m above bare soil or crop canopy, a nozzle type close to the BCPC Fine/Medium threshold nozzle, and a driving speed of 6-8 km/h. Spray drift data from both the Netherlands and Germany from a boom sprayer equipped with standard flat fan nozzles (XR11003/XR11004) and a spray boom height of 0.50 m above soil surface or crop canopy were analysed. The analysis of the joined spray drift data results in separate spray drift curves for the bare soil surface or short crop situation and the cropped situation. The data for the cropped situation are however merely from The Netherlands.

The here generated spray drift curves result in a 90th-percentile spray drift deposition value at 5 m distance from the treated area of 1.0% in the bare soil situation and 2.1% in the developed crop situation when using a double exponential curve fit and 1.0% and 2.8%, respectively, when using a power-law curve fit. The presently used German Basic Drift Values, which are also used in the EU authorisation procedure, show a spray drift deposition value of 0.57% at this distance. Especially because spray drift values are evaluated as 90th percentiles the higher Dutch spray drift results dominate the joined spray drift curves and lead to higher spray drift values.

Although sources of differences between the datasets can be related to e.g. the measuring methodology, wind speed effects during measurements, last nozzle position and field edge effects when spraying a crop, further research work is necessary to clarify the reasons why such big differences between spray drift curves are found under nearly similar conditions and nearly similar trial designs. The expansion of the currently used dataset with spray drift data from other EU Member States is highly recommended to learn more about the real spray drift level (for the central zone e.g. with data from UK, BE).

Samenvatting

Dit rapport beschrijft een eerste poging om twee grote datasets met drift getallen samen te voegen. Beide datasets zijn opgezet om de milieurisico's door spuitdrift bij de toepassing van gewasbeschermingsmiddelen te onderbouwen. Eerst werden de datasets gebruikt voor het genereren van driftcurves voor de nationale beoordeling maar ze kunnen ook gebruikt worden op een Europese schaal. De drift datasets van Nederland en Duitsland zijn samengevoegd om te illustreren wat de mogelijkheden zijn en tegen welke beperkingen men aanloopt en nog opgelost moeten worden, als men op basis van de gezamenlijke data gemeenschappelijke driftcurves wil bepalen.

De spuitdrift data van Duitsland en Nederland zijn gebruikt om drift depositie curves op te stellen voor een gedefinieerde referentie situatie bij de bespuiting van een kale grond of kort gewas (gewashoogte lager dan 20 cm) en een gewas situatie (gewashoogte hoger dan 20 cm). Op basis van ISO22866 en ISO22369-2 is een referentie spuittechniek gedefinieerd als een veldspuit met een spuitboomhoogte op 50 cm boven het gewas of de grond, een spuitdop dicht bij de BCPC Fijn/Midden grensdop en een rijsnelheid van 6-8 km/h. Van de beschikbare Duitse en Nederlandse data zijn alleen die data gebruikt van een veldspuit uitgerust met standaard spleetdoppen (XR11003/XR11004) bij een druk van 3 bar, een spuitboomhoogte van 50 cm boven gewas of grond en een rijsnelheid van 6-8 km/h. De analyse van de samengevoegde data heeft geleid tot een aparte driftcurve voor de kale grond of kort gewas situatie en een gewas situatie. De data voor de gewas situatie is vooral gebaseerd op de Nederlandse dataset.

De in deze rapportage opgestelde drift curves resulteren in een 90-percentiel drift depositie op 5 m afstand van het behandelde oppervlak van 1.0% voor de kale grond situatie en van 2.1% voor de gewas situatie wanneer van een dubbel-exponentiële curvefit procedure gebruik gemaakt wordt. Wordt van een machtsfunctie curvefit gebruik gemaakt dan zijn deze waarden respectievelijk 1.0% en 2.8%. De op dit moment gebruikte Duitse Basic Drift Values, die ook in de EU toelatingsprocedures van gewasbeschermingsmiddelen gebruikt worden, geven op deze afstand een drift depositie van 0,57%.

Hoewel verschillen tussen de datasets terug te voeren zijn naar o.a. de meetmethodologie, de wind snelheid tijdens de drift metingen, de positie van de laatste spuitdop ten opzichte van de rand van het bespoten gewas is er meer onderzoek nodig om de redenen van verschil op te kunnen helderen voor de gevonden grote verschillen tussen de driftcurves onder vrijwel gelijke omstandigheden uitgevoerd en met een bijna vergelijkbare meetopzet. De uitbreiding van de gebruikte dataset met meer drift data van andere EU lidstaten wordt aanbevolen om meer inzicht te krijgen in de voorkomende spuitdrift tijdens de bespuiting van gewasbeschermingsmiddelen (voor de centrale zone bv. met data van UK en BE).

Literature

BBA, 1992.

Richtlinien für die Prüfung von Pflanzenschutzgeräten Teil VII 2-1.1. Messung der direkten Abtrift beim Ausbringen von flüssigen Pflanzenschutzmitteln im Freiland. Biologischen Bundesanstalt Abteilung für Pflanzenschutzmittel und Anwendungstechnik, Braunschweig. 1992.

BBA, 2000.

Procedure for the registration of plant protection equipment in the chapter 'drift' of the register 'loss reducing equipment' 1-2.3.3. Department of Plant Protection Products and Application Techniques of the Biologische Bundesanstalt Braunschweig, Braunschweig. 2000.

CIW, 2003.

Beoordelingsmethodiek emissiereducerende maatregelen Lozingenbesluit open teelt en veehouderij. Commissie Integraal Waterbeheer, Ministerie van Verkeer en Waterstaat, Werkgroep 4 Water en Milieu, Den Haag. 2003. 82 pp.

DEFRA, 2003.

Assessing the validity of current approaches for calculating off-crop exposure to pesticides. DEFRA Project Code PS2001. Available at:

http://sciencesearch.defra.gov.uk/Default.aspx?Menu=Menu&Module=More&Location=None&Completed=0&P rojectID=11803

- Ganzelmeier, H., D. Rautmann, R. Spangenberg, M. Streloke, M. Hermann, H.J. Wenzelburger & H.F. Walter, 1995. Untersuchungen zur Abtrift von Pflanzenschutzmitteln. Ergebnisse eines bundesweiten Versuchsprogrammes. Mitteilungen aus der Biologische Bundesanstalt für Land- und Forstwirtschaft, Heft 304, Berlin. 1995. 111p.
- Ganzelmeier, H. & D. Rautmann, 2000.

Drift, drift reducing sprayers and sprayer testing. Aspects of Applied Biology 57, Pesticide application, 2000. 1-10.

Groot, T.T., H.J. Holterman & J.C. van de Zande, 2012.

A drift-calculation tool based on spray drift field measurements in field crops. Aspects of Applied Biology 114, International Advances in Pesticide Application. 2012. p. 215-223

Groot, T.T., H. Stallinga, J.M.G.P. Michielsen, P. van Velde & J.C. van de Zande, 2014.

The effect of sprayer boom movement and windvector on spray drift deposition alongside the edge of field. Measurements 2007-2008. Wageningen UR Plant Research International, WUR-PRI Report 605, Wageningen. 2014. 56p.

Holterman, H.J. & J.C. van de Zande, 2008.

iDRIFT, a new versatile tool to compute off-target deposits of spray drift. International Advances in Pesticide Application, Aspects of Applied Biology 84(2008): 139-144

Huijsmans, J.F.M., H.A.J. Porskamp & J.C. van de Zande, 1997.

Spray drift reduction in crop protection application technology. Evaluation of spray drift in orchards, field crops and nursery tree crops spraying (state-of-the-art December 1996). Institute of Agricultural and Environmental Engineering, IMAG-DLO Report 97 04, Wageningen. 1997. 41p. (in Dutch with English summary).

```
Huijsmans, J.F.M. & J.C. van de Zande, 2011.
```

Workshop Harmonisation of drift and drift reducing methodologies for evaluation and authorization of plant protection products. Wageningen UR Plant Research International, WUR-PRI Report 390, Wageningen. 2011.

IPARC, 2014.

Sprayer Evaluation and Droplet Size Measurements at IPARC: hydraulic atomisers.

http://www.dropdata.net/bcpc_ewg/IPARC_spray_protocol_hyd.pdf

ISO 22369, 2006.

Crop protection equipment – Drift classification of spraying equipment. Part 1. Classes. International Organization for Standardization, Geneva.

ISO 22866, 2005.

Equipment for crop protection – Methods for the field measurement of spray drift. International Standardisation Organisation, Geneva. 2005.

Mathers, J.J., S.A. Wild & C.R. Glass, 2000.

Comparison of ground deposit collection media in field drift. Aspects of Applied Biology, 57, Pesticide Application 131 – 139

Rautmann, D., M. Streloke & R. Winkler, 2001.

New basic drift values in the authorization procedure for plant protection products. In: R. Forster & M. Streloke, Workshop on Risk Assessment and Risk Mitigation measures in the context of the authorization of plant protection products (WORMM) 27.-29. September 1999. Mitteilungen aus der Biologischen Bundesanstalt für Land- und Forstwirtschaft, Berlin-Dahlem, Heft 381. 2001. 133-141.

Schad, T., 2013.

Xplicit – A Modelling Framework for Ecological Risk Characterisation at Landscape-scales in Regulatory Risk Assessment and Risk Management of Plant Protection Products. Dissertation Doktors der Naturwissenschaften. Fachbereich 7: Natur- und Umweltwissenschaften. Universität Koblenz-Landau. 2013. 300p.

- Southcombe, E.S.E., P.C.H. Miller, H. Ganzelmeier, J.C. van de Zande, A. Miralles & A.J. Hewitt, 1997. The international (BCPC) spray classification system including a drift potential factor. Proceedings of the Brighton Crop Protection Conference - Weeds. 1997. November 1997. Brighton. UK. p.371-380.
- Stallinga, H., J.M.G.P. Michielsen & J.C. van de Zande, 1999. Effect van gewashoogte op de drift bij een bespuiting in een graangewas. Instituut voor Milieu- en Agritechniek, IMAG-DLO Nota P99-71, Wageningen. 1999. 23pp.
- Zande, J.C. van de, H.A.J. Porskamp, J.M.G.P. Michielsen, H.J. Holterman & J.F.M. Huijsmans, 2000. Classification of spray applications for driftability, to protect surface water. Aspects of Applied Biology 57, International Advances in Pesticide Application, 2000. 57-65.

Zande, J.C. van de, Holterman, H.J., Michielsen, J.M.G.P. & H. Stallinga, 2006. Temporal and spatial variability of spray drift around a sprayed field. Aspects of Applied Biology 77, International Advances in Pesticide Application, 2006. 295-302.

Zande, J.C. van de, H.J. Holterman & J.F.M. Huijsmans, 2012. Spray drift assessment of exposure of aquatic organisms to plant protection products in the Netherlands. Part 1: Field crops and downward spraying. Wageningen UR Plant Research International, Plant Research International Report 419, Wageningen. 84p. Appendix I.

Spray drift deposition data for the bare soil surface or short crop situation (DE and NL)

		Versuchs-Nr.:	,	/ersuchs-Dati Kulturar	··· Kulturar	Entwicklungsst	adium: ssigkeit: Hersteller/ boor	n widt treat	ed wir Düsentyn:	Fahrgeschwindig Gestä	ngehöhe Sprit	tzdruck	repetition	Temp row °C	. LFrel. %	
entry	country	entry nr orig	year c				ay volur machine/ty (m)	(m)	nzzle type	sprayer speed spray			repetition	1 or 2 Temp		
Chiry	country	dbase	year e	ate experim	circiop	cm	ay volui machine/ ty(m)	(11)	hzzie type	sprayer specal spray	boominespia	y pressure		ror 2 remp	N.I	
	1 DE	214	1991	13-6-1991 Ackerba	ı hare	0	300 Hardi 361 *	*	XR 11004	6	50	2.5	1	1	16	80
	2 DE	214	1991	13-6-1991 Ackerba		0	300 Hardi 361 *	*	XR 11004	6	50	2.5	1	2	16	80
	3 DE	214	1991	13-6-1991 Ackerba		0	300 Hardi 361 *	*	XR 11004	6	50	2.5	1	3	16	80
	4 DE	214	1991	13-6-1991 Ackerba		0	300 Hardi 361 *	*	XR 11004	6	50	2.5	1	4	16	80
	5 DE	214	1991	13-6-1991 Ackerba		0	300 Hardi 361 *	*	XR 11004	6	50	2.5	1	5	16	80
	6 DE	214	1991	13-6-1991 Ackerba		0	300 Hardi 361 *	*	XR 11004	6	50	2.5	1	6	16	80
	7 DE	213	1990	12-9-1990 Ackerba		0	300 Hardi 361 *	*	XR 11004	6	50	2.5	1	1	16	79
	8 DE	213	1990	12-9-1990 Ackerba		0	300 Hardi 361 *	*	XR 11004	6	50	2.5	1	2	16	79
	9 DE	213	1990	12-9-1990 Ackerba		0	300 Hardi 361 *	*	XR 11004	6	50	2.5	1	3	16	79
	10 DE	213	1990	12-9-1990 Ackerba		0	300 Hardi 361 *	*	XR 11004	6	50	2.5	1	4	16	79
	11 DE	213	1990	12-9-1990 Ackerba		0	300 Hardi 361 *	*	XR 11004	6	50	2.5	1	5	16	79
	12 DE	213	1990	12-9-1990 Ackerba		0	300 Hardi 361 *	*	XR 11004	6	50	2.5	1	6	16	79
	13 DE	212	1990	12-9-1990 Ackerba		0	300 Hardi 361 *	*	XR 11004	6	50	2.5	2	1	15	81
	14 DE	212	1990	12-9-1990 Ackerba		0	300 Hardi 361 *	*	XR 11004	6	50	2.5	2	2	15	81
	15 DE	212	1990	12-9-1990 Ackerba		0	300 Hardi 361 *	*	XR 11004	6	50	2.5	2	3	15	81
	16 DE	212	1990	12-9-1990 Ackerba		0	300 Hardi 361 *	*	XR 11004	6	50	2.5	2	4	15	81
	17 DE	212	1990	12-9-1990 Ackerba		0	300 Hardi 361 *	*	XR 11004	6	50	2.5	2	5	15	81
	18 DE	212	1990	12-9-1990 Ackerba		0	300 Hardi 361 *	*	XR 11004	6	50	2.5	2	6	15	81
	19 DE	211	1990	10-10-1990 Ackerba		0	300 Hardi 361 *	*	XR 11004	6	50	2.5	1	1	15	81
	20 DE	211	1990	10-10-1990 Ackerba	u bare	0	300 Hardi 361 *	*	XR 11004	6	50	2.5	1	2	15	81
	21 DE	211	1990	10-10-1990 Ackerba	u bare	0	300 Hardi 361 *	*	XR 11004	6	50	2.5	1	3	15	81
	22 DE	211	1990	10-10-1990 Ackerba		0	300 Hardi 361 *	*	XR 11004	6	50	2.5	1	4	15	81
	23 DE	211	1990	10-10-1990 Ackerba		0	300 Hardi 361 *	*	XR 11004	6	50	2.5	1	5	15	81
	24 DE	211	1990	10-10-1990 Ackerba		0	300 Hardi 361 *	*	XR 11004	6	50	2.5	1	6	15	81
	25 DE	210	1990	10-10-1990 Ackerba		0	300 Hardi 361 *	*	XR 11004	6	50	2.5	2	1	14	83
	26 DE	210	1990	10-10-1990 Ackerba	u bare	0	300 Hardi 361 *	*	XR 11004	6	50	2.5	2	2	14	83
	27 DE	210	1990	10-10-1990 Ackerba	u bare	0	300 Hardi 361 *	*	XR 11004	6	50	2.5	2	3	14	83
	28 DE	210	1990	10-10-1990 Ackerba	u bare	0	300 Hardi 361 *	*	XR 11004	6	50	2.5	2	4	14	83
	29 DE	210	1990	10-10-1990 Ackerba	u bare	0	300 Hardi 361 *	*	XR 11004	6	50	2.5	2	5	14	83
	30 DE	210	1990	10-10-1990 Ackerba	u bare	0	300 Hardi 361 *	*	XR 11004	6	50	2.5	2	6	14	83
	31 DE	XR04306b	1997	1-4-1997 Fläche	Gras	5	300 Holder ES3	10	20 XR 110 04	6	50	2.5	1	1	17.65	57.5
	32 DE	XR04306b	1997	1-4-1997 Fläche	Gras	5	300 Holder ES3	10	20 XR 110 04	6	50	2.5	1	2	17.65	57.5
	33 DE	XR04306b	1997	1-4-1997 Fläche	Gras	5	300 Holder ES3	10	20 XR 110 04	6	50	2.5	1	3	17.65	57.5
	34 DE	XR04306b	1997	1-4-1997 Fläche	Gras	5	300 Holder ES3	10	20 XR 110 04	6	50	2.5	1	4	17.65	57.5
	35 DE	XR04306b	1997	1-4-1997 Fläche	Gras	5	300 Holder ES3	10	20 XR 110 04	6	50	2.5	1	5	17.65	57.5
	36 DE	XR04306b	1997	1-4-1997 Fläche	Gras	5	300 Holder ES3	10	20 XR 110 04	6	50	2.5	1	6	17.65	57.5
	37 DE	XR04306b	1997	1-4-1997 Fläche	Gras	5	300 Holder ES3	10	20 XR 110 04	6	50	2.5	1	7	17.65	57.5
	38 DE	XR04306b	1997	1-4-1997 Fläche	Gras	5	300 Holder ES3	10	20 XR 110 04	6	50	2.5	1	8	17.65	57.5
	39 DE	XR04306b	1997	1-4-1997 Fläche	Gras	5	300 Holder ES3	10	20 XR 110 04	6	50	2.5	1	9	17.65	57.5
	40 DE	XR04306b	1997	1-4-1997 Fläche	Gras	5	300 Holder ES3	10	20 XR 110 04	6	50	2.5	1	10	17.65	57.5
	41 DE	XR04306a	1996	9-10-1996 Fläche	Gras	10	300 Holder ES3	10	20 XR 110 04 VS	6	50	2.6	1	1	12.6	96.5
	42 DE	XR04306a	1996	9-10-1996 Fläche	Gras	10	300 Holder ES3	10	20 XR 110 04 VS	6	50	2.6	1	2	12.6	96.5
	43 DE	XR04306a	1996	9-10-1996 Fläche	Gras	10	300 Holder ES3	10	20 XR 110 04 VS	6	50	2.6	1	3	12.6	96.5
	44 DE	XR04306a	1996	9-10-1996 Fläche	Gras	10	300 Holder ES3	10	20 XR 110 04 VS	6	50	2.6	1	4	12.6	96.5
	45 DE	XR04306a	1996	9-10-1996 Fläche	Gras	10	300 Holder ES3	10	20 XR 110 04 VS	6	50	2.6	1	5	12.6	96.5
	46 DE	XR04306a	1996	9-10-1996 Fläche	Gras	10	300 Holder ES3	10	20 XR 110 04 VS	6	50	2.6	1	6	12.6	96.5
	47 DE	XR04306a	1996	9-10-1996 Fläche	Gras	10	300 Holder ES3	10	20 XR 110 04 VS	6	50	2.6	1	7	12.6	96.5

48 DE	XR04306a	1996	9-10-1996 Fläche	Gras	10	300 Holder ES3	10	20 XR 110 04 VS	6	50	2.6	1	8	12.6	96.5
49 DE	XR04306a	1996	9-10-1996 Fläche	Gras	10	300 Holder ES3	10	20 XR 110 04 VS	6	50	2.6	1	9	12.6	96.5
50 DE	XR04306a	1996	9-10-1996 Fläche	Gras	10	300 Holder ES3	10	20 XR 110 04 VS	6	50	2.6	1	10	12.6	96.5
51 DE	XR03256b	1996	7-10-1996 Fläche	Gras	10	250 Holder ES3	10	20 XR 110 03	6	50	3.4	1	1	9.7	97
52 DE	XR03256b	1996	7-10-1996 Fläche	Gras	10	250 Holder ES3	10	20 XR 110 03	6	50	3.4	1	2	9.7	97
53 DE	XR03256b	1996	7-10-1996 Fläche	Gras	10	250 Holder ES3	10	20 XR 110 03	6	50	3.4	1	3	9.7	97
54 DE	XR03256b	1996	7-10-1996 Fläche	Gras	10	250 Holder ES3	10	20 XR 110 03	6	50	3.4	1	4	9.7	97
55 DE	XR03256b	1996	7-10-1996 Fläche	Gras	10	250 Holder ES3	10	20 XR 110 03	6	50	3.4	1	5	9.7	97
56 DE	XR03256b	1996	7-10-1996 Fläche	Gras	10	250 Holder ES3	10	20 XR 110 03	6	50	3.4	1	6	9.7	97
57 DE	XR03256b	1996	7-10-1996 Fläche	Gras	10	250 Holder ES3	10	20 XR 110 03	6	50	3.4	1	7	9.7	97
58 DE	XR03256b	1996	7-10-1996 Fläche	Gras	10	250 Holder ES3	10	20 XR 110 03	6	50	3.4	1	8	9.7	97
59 DE	XR03256b	1996	7-10-1996 Fläche	Gras	10	250 Holder ES3	10	20 XR 110 03	6	50	3.4	1	9	9.7	97
60 DE	XR03256b	1996	7-10-1996 Fläche	Gras	10	250 Holder ES3	10	20 XR 110 03	6	50	3.4	1	10	9.7	97
61 DE	XR03256a	1996	7-10-1996 Fläche	Gras	10	250 Holder ES3	10	20 XR 110 03	6	50	3.4	2	10	9.3	98
62 DE	XR03256a	1996	7-10-1996 Fläche	Gras	10	250 Holder ES3	10	20 XR 110 03	6	50 50	3.4	2	2	9.3	98
63 DE	XR03256a	1996	7-10-1996 Fläche	Gras	10	250 Holder ES3	10	20 XR 110 03	6	50	3.4	2	3	9.3	98
64 DE	XR03256a	1996	7-10-1996 Fläche	Gras	10	250 Holder ES3	10	20 XR 110 03	6	50	3.4	2	4	9.3	98
									6	50 50			4		
65 DE	XR03256a	1996	7-10-1996 Fläche	Gras	10	250 Holder ES3	10	20 XR 110 03	-		3.4	2	-	9.3	98
66 DE	XR03256a	1996	7-10-1996 Fläche	Gras	10	250 Holder ES3	10	20 XR 110 03	6	50	3.4	2	6	9.3	98
67 DE	XR03256a	1996	7-10-1996 Fläche	Gras	10	250 Holder ES3	10	20 XR 110 03	6	50	3.4	2	7	9.3	98
68 DE	XR03256a	1996	7-10-1996 Fläche	Gras	10	250 Holder ES3	10	20 XR 110 03	6	50	3.4	2	8	9.3	98
69 DE	XR03256a	1996	7-10-1996 Fläche	Gras	10	250 Holder ES3	10	20 XR 110 03	6	50	3.4	2	9	9.3	98
70 DE	XR03256a	1996	7-10-1996 Fläche	Gras	10	250 Holder ES3	10	20 XR 110 03	6	50	3.4	3	10	9.3	98
71 DE	XR03206b	1996	7-10-1996 Fläche	Gras	10	200 Holder ES3	10	20 XR 110 03	6	50	2.1	3	1	9.15	98
72 DE	XR03206b	1996	7-10-1996 Fläche	Gras	10	200 Holder ES3	10	20 XR 110 03	6	50	2.1	3	2	9.15	98
73 DE	XR03206b	1996	7-10-1996 Fläche	Gras	10	200 Holder ES3	10	20 XR 110 03	6	50	2.1	3	3	9.15	98
74 DE	XR03206b	1996	7-10-1996 Fläche	Gras	10	200 Holder ES3	10	20 XR 110 03	6	50	2.1	3	4	9.15	98
75 DE	XR03206b	1996	7-10-1996 Fläche	Gras	10	200 Holder ES3	10	20 XR 110 03	6	50	2.1	3	5	9.15	98
76 DE	XR03206b	1996	7-10-1996 Fläche	Gras	10	200 Holder ES3	10	20 XR 110 03	6	50	2.1	3	6	9.15	98
77 DE	XR03206b	1996	7-10-1996 Fläche	Gras	10	200 Holder ES3	10	20 XR 110 03	6	50	2.1	3	7	9.15	98
78 DE	XR03206b	1996	7-10-1996 Fläche	Gras	10	200 Holder ES3	10	20 XR 110 03	6	50	2.1	3	8	9.15	98
79 DE	XR03206b	1996	7-10-1996 Fläche	Gras	10	200 Holder ES3	10	20 XR 110 03	6	50	2.1	3	9	9.15	98
80 DE	XR03206b	1996	7-10-1996 Fläche	Gras	10	200 Holder ES3	10	20 XR 110 03	6	50	2.1	3	10	9.15	98
81 DE	XR03206a	1996	7-10-1996 Fläche	Gras	10	200 Holder ES3	10	20 XR 110 03	6	50	2.1	4	1	9.1	97.6
82 DE	XR03206a	1996	7-10-1996 Fläche	Gras	10	200 Holder ES3	10	20 XR 110 03	6	50	2.1	4	2	9.1	97.6
83 DE	XR03206a	1996	7-10-1996 Fläche	Gras	10	200 Holder ES3	10	20 XR 110 03	6	50	2.1	4	3	9.1	97.6
84 DE	XR03206a	1996	7-10-1996 Fläche	Gras	10	200 Holder ES3	10	20 XR 110 03	6	50	2.1	4	4	9.1	97.6
85 DE	XR03206a	1996	7-10-1996 Fläche	Gras	10	200 Holder ES3	10	20 XR 110 03	6	50	2.1	4	5	9.1	97.6
86 DE	XR03206a	1996	7-10-1996 Fläche	Gras	10	200 Holder ES3	10	20 XR 110 03	6	50	2.1	4	6	9.1	97.6
87 DE	XR03206a	1996	7-10-1996 Fläche	Gras	10	200 Holder ES3	10	20 XR 110 03	6	50	2.1	4	7	9.1	97.6
88 DE	XR03206a	1996	7-10-1996 Fläche	Gras	10	200 Holder ES3	10	20 XR 110 03	6	50	2.1	4	8	9.1	97.6
89 DE	XR03206a	1996	7-10-1996 Fläche	Gras	10	200 Holder ES3	10	20 XR 110 03	6	50	2.1	4	9	9.1	97.6
90 DE	XR03206a	1996	7-10-1996 Fläche	Gras	10	200 Holder ES3	10	20 XR 110 03	6	50	2.1	4	10	9.1	97.6
91 DE	S97BBA 15	1997	8-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	1	1	23.85	59.75
92 DE	S97BBA 15	1997	8-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR 20 110 03 XR	6	50	3.5	1	2	23.85	59.75
93 DE	S97BBA 15	1997	8-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	1	3	23.85	59.75
94 DE	S97BBA 15	1997	8-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	1	4	23.85	59.75
					8	254 Holder ES3			6	50		1	4		
95 DE	S97BBA 15	1997	8-10-1997 Freiland	Brache			10	20 110 03 XR	-		3.5		-	23.85	59.75
96 DE	S97BBA 15	1997	8-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	1	6	23.85	59.75
97 DE	S97BBA 15	1997	8-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	1	7	23.85	59.75
98 DE	S97BBA 15	1997	8-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	1	8	23.85	59.75

99 DE	S97BBA 15	1997	8-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	1	9	23.85	59.75
100 DE	S97BBA 15	1997	8-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	1	10	23.85	59.75
101 DE	S97BBA 14	1997	8-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	2	1	22.05	67.6
102 DE	S97BBA 14	1997	8-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	2	2	22.05	67.6
103 DE	S97BBA 14	1997	8-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	2	3	22.05	67.6
104 DE	S97BBA 14	1997	8-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	2	4	22.05	67.6
105 DE	S97BBA 14	1997	8-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	2	5	22.05	67.6
106 DE	S97BBA 14	1997	8-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	2	6	22.05	67.6
107 DE	S97BBA 14	1997	8-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	2	7	22.05	67.6
108 DE	S97BBA 14	1997	8-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	2	8	22.05	67.6
109 DE	S97BBA 14	1997	8-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	2	9	22.05	67.6
110 DE	S97BBA 14	1997	8-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	2	10	22.05	67.6
111 DE	S97BBA 13	1997	8-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	3	1	21.15	67.8
112 DE	S97BBA 13	1997	8-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	3	2	21.15	67.8
113 DE	S97BBA 13	1997	8-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	3	3	21.15	67.8
114 DE	S97BBA 13	1997	8-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	3	4	21.15	67.8
115 DE	S97BBA 13	1997	8-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	3	5	21.15	67.8
116 DE	S97BBA 13	1997	8-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	3	6	21.15	67.8
117 DE	S97BBA 13	1997	8-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	3	7	21.15	67.8
118 DE	S97BBA 13	1997	8-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	3	8	21.15	67.8
119 DE	S97BBA 13	1997	8-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	3	9	21.15	67.8
120 DE	S97BBA 13	1997	8-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	3	10	21.15	67.8
121 DE	S97BBA 12	1997	8-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	4	1	20.05	67.8
122 DE	S97BBA 12	1997	8-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	4	2	20.05	67.8
123 DE	S97BBA 12	1997	8-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	4	3	20.05	67.8
124 DE	S97BBA 12	1997	8-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	4	4	20.05	67.8
125 DE	S97BBA 12	1997	8-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	4	5	20.05	67.8
126 DE	S97BBA 12	1997	8-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	4	6	20.05	67.8
127 DE	S97BBA 12	1997	8-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	4	7	20.05	67.8
128 DE	S97BBA 12	1997	8-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	4	8	20.05	67.8
129 DE	S97BBA 12	1997	8-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	4	9	20.05	67.8
130 DE	S97BBA 12	1997	8-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	4	10	20.05	67.8
131 DE	S97BBA 11	1997	8-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	5	1	20.15	70.15
132 DE	S97BBA 11	1997	8-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	5	2	20.15	70.15
133 DE	S97BBA 11	1997	8-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	5	3	20.15	70.15
134 DE	S97BBA 11	1997	8-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	5	4	20.15	70.15
135 DE	S97BBA 11	1997	8-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	5	5	20.15	70.15
136 DE	S97BBA 11	1997	8-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	5	6	20.15	70.15
137 DE	S97BBA 11	1997	8-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	5	7	20.15	70.15
138 DE	S97BBA 11	1997	8-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	5	8	20.15	70.15
139 DE	S97BBA 11	1997	8-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	5	9	20.15	70.15
140 DE	S97BBA 11	1997	8-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	5	10	20.15	70.15
141 DE	S97BBA 10	1997	8-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	6	1	20.1	71.45
142 DE	S97BBA 10	1997	8-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	6	2	20.1	71.45
143 DE	S97BBA 10	1997	8-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	6	3	20.1	71.45
144 DE	S97BBA 10	1997	8-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	6	4	20.1	71.45
145 DE	S97BBA 10	1997	8-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	6	5	20.1	71.45
146 DE	S97BBA 10	1997	8-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	6	6	20.1	71.45
147 DE	S97BBA 10	1997	8-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	6	7	20.1	71.45
148 DE	S97BBA 10	1997	8-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	6	8	20.1	71.45
149 DE	S97BBA 10	1997	8-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	6	9	20.1	71.45

150 DE	S97BBA 10	1997	8-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	6	10	20.1	71.45
151 DE	S97BBA 09	1997	8-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	7	1	19.2	71.9
152 DE	S97BBA 09	1997	8-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	7	2	19.2	71.9
153 DE	S97BBA 09	1997	8-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	7	3	19.2	71.9
154 DE	S97BBA 09	1997	8-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	7	4	19.2	71.9
155 DE	S97BBA 09	1997	8-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	7	5	19.2	71.9
156 DE	S97BBA 09	1997	8-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	7	6	19.2	71.9
157 DE	S97BBA 09	1997	8-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	7	7	19.2	71.9
158 DE	S97BBA 09	1997	8-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	7	8	19.2	71.9
159 DE	S97BBA 09	1997	8-10-1997 Freiland	Brache	- 8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	7	9	19.2	71.9
160 DE	S97BBA 09	1997	8-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	7	10	19.2	71.9
161 DE	S97BBA 07	1997	7-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	2	1	24.5	52.1
162 DE	S97BBA 07	1997	7-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	2	2	24.5	52.1
163 DE	S97BBA 07	1997	7-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	2	3	24.5	52.1
164 DE	S97BBA 07	1997	7-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	2	4	24.5	52.1
165 DE	S97BBA 07	1997	7-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	2	5	24.5	52.1
166 DE	S97BBA 07	1997	7-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	2	6	24.5	52.1
167 DE	S97BBA 07	1997	7-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	2	7	24.5	52.1
168 DE	S97BBA 07	1997	7-10-1997 Freiland 7-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR 20 110 03 XR	6	50	3.5	2	8	24.5	52.1
169 DE	S97BBA 07	1997	7-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	2	9	24.5	52.1
170 DE	S97BBA 07	1997	7-10-1997 Freiland 7-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	2	10	24.5	52.1
170 DE 171 DE	S97BBA 06	1997	7-10-1997 Freiland		8	254 Holder ES3	10	20 110 03 XR 20 110 03 XR	6	50	3.5	2	10	24.3	52.1
171 DE 172 DE	S97BBA 06	1997	7-10-1997 Freiland 7-10-1997 Freiland	Brache Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	3	2	24.4	52
172 DE 173 DE	S97BBA 06	1997	7-10-1997 Freiland 7-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR 20 110 03 XR	6	50	3.5	3	2	24.4	52
173 DE 174 DE	S97BBA 06	1997	7-10-1997 Freiland 7-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR 20 110 03 XR	6	50	3.5	3	3	24.4	52
					-				6			3	4 5		
175 DE	S97BBA 06	1997	7-10-1997 Freiland	Brache	8 8	254 Holder ES3	10	20 110 03 XR	6	50 50	3.5	3	6	24.4	52
176 DE	S97BBA 06	1997	7-10-1997 Freiland	Brache		254 Holder ES3	10	20 110 03 XR	6	50	3.5	3	7	24.4 24.4	52
177 DE	S97BBA 06	1997	7-10-1997 Freiland	Brache	8 8	254 Holder ES3	10	20 110 03 XR	6	50	3.5 3.5	3	8		52
178 DE	S97BBA 06	1997	7-10-1997 Freiland	Brache	-	254 Holder ES3	10	20 110 03 XR	-	50	3.5	3	8	24.4	52
179 DE	S97BBA 06	1997	7-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6					24.4	52
180 DE	S97BBA 06	1997	7-10-1997 Freiland	Brache	8 8	254 Holder ES3	10	20 110 03 XR	6	50 50	3.5	3 4	10	24.4	52
181 DE	S97BBA05 S97BBA05	1997	7-10-1997 Freiland	Brache	-	254 Holder ES3	10	20 110 03 XR	6	50 50	3.5 3.5	4	1 2	23.55	54.1 54.1
182 DE		1997	7-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6					23.55	
183 DE	S97BBA05	1997	7-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	-	50	3.5	4	3	23.55	54.1
184 DE	S97BBA05	1997	7-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	4	4	23.55	54.1
185 DE	S97BBA05	1997	7-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	4	5	23.55	54.1
186 DE	S97BBA05	1997	7-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	4	6	23.55	54.1
187 DE	S97BBA05	1997	7-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	4	7	23.55	54.1
188 DE	S97BBA05	1997	7-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	4	8	23.55	54.1
189 DE	S97BBA05	1997	7-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	4	9	23.55	54.1
190 DE	S97BBA05	1997	7-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	4	10	23.55	54.1
191 DE	S97BBA 02	1997	7-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	5	1	22.8	55.65
192 DE	S97BBA 02	1997	7-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	5	2	22.8	55.65
193 DE	S97BBA 02	1997	7-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	5	3	22.8	55.65
194 DE	S97BBA 02	1997	7-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	5	4	22.8	55.65
195 DE	S97BBA 02	1997	7-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	5	5	22.8	55.65
196 DE	S97BBA 02	1997	7-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	5	6	22.8	55.65
197 DE	S97BBA 02	1997	7-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	5	7	22.8	55.65
198 DE	S97BBA 02	1997	7-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	5	8	22.8	55.65
199 DE	S97BBA 02	1997	7-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	5	9	22.8	55.65
200 DE	S97BBA 02	1997	7-10-1997 Freiland	Brache	8	254 Holder ES3	10	20 110 03 XR	6	50	3.5	5	10	22.8	55.65

201	NL	541	2000	15-06-2000 ferentiatie	kaal	0	300 Hardi Comi	24	24	XR 110.04	6	50	3	2	1	13.6	71
202	NL	542	2000	15-06-2000 ⁻ ferentiatie	kaal	0	300 Hardi Comi	24	24	XR 110.04	6	50	3	2	2	13.6	71
203	NL	543	2000	16-06-2000 Ferentiatie	kaal	0	300 Hardi Comi	24	24	XR 110.04	6	50	3	3	1	15.6	60
204	NL	544	2000	16-06-2000 ⁻ ferentiatie	kaal	0	300 Hardi Comi	24	24	XR 110.04	6	50	3	3	2	15.6	60
205	NL	545	2000	17-08-2000 Ferentiatie	kaal	0	300 Hardi Comi	24	24	XR 110.04	6	50	3	4	1	21.7	*
206	NL	546	2000	17-08-2000 ferentiatie	kaal	0	300 Hardi Comi	24	24	XR 110.04	6	50	3	4	2	21.7	*
207	NL	547	2000	17-08-2000 Ferentiatie	kaal	0	300 Hardi Comi	24	24	XR 110.04	6	50	3	5	1	20.9	*
208	NL	548	2000	17-08-2000 ⁻ ferentiatie	kaal	0	300 Hardi Comi	24	24	XR 110.04	6	50	3	5	2	20.9	*
209	NL	549	2000	30-08-2000 [:] ferentiatie	kaal	0	300 Hardi Comi	24	24	XR 110.04	6	50	3	6	1	17.4	64
210	NL	550	2000	30-08-2000 Ferentiatie	kaal	0	300 Hardi Comi	24	24	XR 110.04	6	50	3	6	2	17.4	64
211	NL	551	2000	30-08-2000 ferentiatie	kaal	0	300 Hardi Comi	24	24	XR 110.04	6	50	3	7	1	16.1	72
212	NL	552	2000	30-08-2000 ferentiatie	kaal	0	300 Hardi Comi	24	24	XR 110.04	6	50	3	7	2	16.1	72
213	NL	553	2000	05-09-2000 ⁻ ferentiatie	kaal	0	300 Hardi Comi	24	24	XR 110.04	6	50	3	8	1	20.3	91
214	NL	554	2000	05-09-2000 Ferentiatie	kaal	0	300 Hardi Comi	24	24	XR 110.04	6	50	3	8	2	20.3	91
215	NL	555	2000	05-09-2000 ferentiatie	kaal	0	300 Hardi Comi	24	24	XR 110.04	6	50	3	9	1	17.8	71
216	NL	556	2000	05-09-2000 ferentiatie	kaal	Ō	300 Hardi Comi	24	24	XR 110.04	6	50	3	9	2	17.8	71
217	NL	557	2000	03-10-2000 ferentiatie	kaal	0	300 Hardi Comi	24	24	XR 110.04	6	50	3	10	1	14.9	*
218	NL	558	2000	03-10-2000 ferentiatie	kaal	0	300 Hardi Comi	24	24	XR 110.04	6	50	3	10	2	14.9	*
219	NL	969	2001	29-05-2001 'ferentiatie	kaal	0	300 Hardi Comi	24	24	XR 110.04	6	50	3	2	1	*	57
220	NL	970	2001	29-05-2001 ferentiatie	kaal	Ő	300 Hardi Comi	24	24	XR 110.04	6	50	3	2	2	*	57
221	NL	973	2001	16-08-2001 ⁻ ferentiatie	kaal	0	300 Hardi Comi	24	24	XR 110.04	6	50	3	6	1	18.9	75
222	NL	974	2001	16-08-2001 ferentiatie	kaal	0	300 Hardi Comi	24	24	XR 110.04	6	50	ŝ	6	2	18.9	75
223	NL	979	2001	17-10-2001 ferentiatie	kaal	0	300 Hardi Comi	24	24	XR 110.04	6	50	3	7	1	15.7	81
223	NL	980	2001	17-10-2001 ferentiatie	kaal	0	300 Hardi Comi	24	24	XR 110.04	6	50	3	7	2	15.7	81
224	NL	981	2001	17-10-2001 ferentiatie	kaal	0	300 Hardi Comi	24	24	XR 110.04 XR 110.04	6	50	3	8	1	16.1	78
225	NL	982	2001	17-10-2001 Terentiatie	kaal	0	300 Hardi Comi 300 Hardi Comi	24	24	XR 110.04 XR 110.04	6	50	3	8	2	16.1	78
220	NL	982 1219	2001	15-10-2001 ferentiatie		10	300 Hardi Comi 300 Hardi Comi	24 24	24 24	XR 110.04 XR 110.04	6	50	3	6	2	10.1	78
		1219			maïs	10			24 24		6	50	3	6	1	*	73
228	NL		2001	15-10-2001 ferentiatie	maïs		300 Hardi Comi	24		XR 110.04	6	50	3	5	2		
229	NL	1221	2001	02-11-2001 ferentiatie	maïs	15	300 Hardi Comi	24	24	XR 110.04	6		3	7	-	11.5	82
230	NL	1222	2001	02-11-2001 ferentiatie	maïs	15	300 Hardi Comi	24	24	XR 110.04	-	50	-		2	11.5	82
231	NL	1223	2001	05-11-2001 ferentiatie	maïs	15	300 Hardi Comi	24	24	XR 110.04	6	50	3	8	1	10.3	67
232	NL	1224	2001	05-11-2001 ferentiatie	maïs	15	300 Hardi Comi	24	24	XR 110.04	6	50	3	8	2	10.3	67
233	NL	2012-1	2012	09-11-2012 velddrift	kaal	0	329 John Deere	27	27	XR 110.04	5.87	50	3.0	1	1	10.0	76
234	NL	2012-2	2012	09-11-2012 velddrift	kaal	0	329 John Deere	27	27	XR 110.04	5.87	50	3.0	1	2	10.0	76
235	NL	2012-3	2012	09-11-2012 velddrift	kaal	0	329 John Deere	27	27	XR 110.04	5.87	50	3.0	2	1	10.1	76
236	NL	2012-4	2012	09-11-2012 velddrift	kaal	0	329 John Deere	27	27	XR 110.04	5.87	50	3.0	2	2	10.1	76
237	NL	2012-5	2012	13-11-2012 velddrift	kaal	0	335 John Deere	27	27	XR 110.04	5.76	50	3.0	3	1	7.5	97
238	NL	2012-6	2012	13-11-2012 velddrift	kaal	0	335 John Deere	27	27	XR 110.04	5.76	50	3.0	3	2	7.5	97
239	NL	2012-7	2012	13-11-2012 velddrift	kaal	0	335 John Deere	27	27	XR 110.04	5.76	50	3.0	4	1	7.6	97
240	NL	2012-8	2012	13-11-2012 velddrift	kaal	0	335 John Deere	27	27	XR 110.04	5.76	50	3.0	4	2	7.6	97
241	NL	2012-9	2012	13-11-2012 velddrift	kaal	0	326 John Deere	27	27	XR 110.04	5.92	50	3.0	5	1	9.0	93
242	NL	2012-10	2012	13-11-2012 velddrift	kaal	0	326 John Deere	27	27	XR 110.04	5.92	50	3.0	5	2	9.0	93
243	NL	2012-11	2012	13-11-2012 velddrift	kaal	0	326 John Deere	27	27	XR 110.04	5.92	50	3.0	6	1	9.0	93
244	NL	2012-12	2012	13-11-2012 velddrift	kaal	0	326 John Deere	27	27	XR 110.04	5.92	50	3.0	6	2	9.0	93
245	NL	2012-13	2012	20-11-2012 velddrift	kaal	0	340 John Deere	27	27	XR 110.04	5.68	50	3.0	7	1	11.5	78
246	NL	2012-14	2012	20-11-2012 velddrift	kaal	0	340 John Deere	27	27	XR 110.04	5.68	50	3.0	7	2	11.5	78
247	NL	2012-15	2012	20-11-2012 velddrift	kaal	0	340 John Deere	27	27	XR 110.04	5.68	50	3.0	8	1	11.6	77
248	NL	2012-16	2012	20-11-2012 velddrift	kaal	0	340 John Deere	27	27	XR 110.04	5.68	50	3.0	8	2	11.6	77

ntung Wind d direct wind 19 19 19 19 19 19 29 29 29		25 m 0.25 *		1 m	1.25 m 1.5 1 1.25	5m 2		25 m /	1 3 5										
19 19 19 19 19 19 29 29	1.1 1.1 1.1	*	0.5		1 1.25								15.25 m 2						
19 19 19 19 19 29 29	1.1 1.1					1.5	2.25	3.25	4.25	5 5.25	7.75	10.25	15.25	20.25	25.25	30.25	50.25	75.25	100.25
19 19 19 19 19 29 29	1.1 1.1	*	•	*	1.04	*	*	0.26	*	0.13	0.09	0.1	0.08	0.15		0	*	*	*
19 19 19 19 29 29	1.1		*	*	1.43	*	*	0.3	*	0.27	0.19	0.13	0.05	0.01	*	0.01	*	*	*
19 19 19 29 29		*	*	*	1.49	*	*	0.49	*	0.22	0.17	0.15	0.05	0.02	*	0	*	*	*
19 19 29 29		*	*	*	1.66	*	*	0.92	*	0.29	0.18	0.07	0.02	0	*	0	*	*	*
19 29 29	1.1	*	*	*	2.31	*	*	0.46	*	0.33	0.15	0.11	0.05	0.01	*	0	*	*	*
29 29	1.1	*	*	*	2.33	*	*	0.22	*	0.16	0.11	0.07	0.06	0.04	*	0.01	*	*	*
29	1.4	*	*	*	1.1	*	*	0.34	*	0.17	0.04	0.06	0.03	0.01	*	0.01	*	*	*
~~	1.4	*	*	*	1.19	*	*	0.36	*	0.21	0.06	0.05	0.02	0	*	0.01	*	*	*
29	1.4	*	*	*	1.55	*	*	0.34	*	0.2	0.11	0.06	0.02	0.01	*	0.01	*	*	*
29	1.4	*	*	*	1.76	*	*	0.6	*	0.39	0.1	0.05	0.02	0.01	*	0.01	*	*	*
29	1.4	*	*	*	2.22	*	*	0.72	*	0.29	0.08	0.06	0.02	0.01	*	0.01	*	*	*
29	1.4	*	*	*	2.35	*	*	0.85	*	0.32	0.09	0.05	0.03	0.01	*	0.01	*	*	*
6	1.7	*	*	*	0.29	*	*	0.19	*	0.12	0.07	0.04	0.04	0.04	*	0.03	*	*	*
6	1.7	*	*	*	0.34	*	*	0.23	*	0.12	0.11	0.15	0.04	0.02	*	0.02	*	*	*
6	1.7	*	*	*	0.37	*	*	0.6	*	0.39	0.13	0.12	0.05	0.03	*	0.02	*	*	*
6	1.7	*	*	*	0.51	*	*	0.46	*	0.3	0.2	0.24	0.09	0.05		0.04	*	*	•
6	1.7	*	*	*	0.58	*	*	0.48	*	0.29	0.15	0.15	0.09	0.04	*	0.02	*	*	*
6	1.7	*	*	*	0.6	*	*	0.27	*	0.19	0.09	0.08	0.09	0.05	*	0.02	*	*	*
4	2	*	•	*	0.15	*	*	0.08	*	0.08	0.04	0.04	0.04	0.02	*	0.01	*	*	*
4	2	*	*	*	0.25	*	*	0.13	*	0.07	0.08	0.05	0.04	0.03	*	0.02	*	*	*
4	2	*	*	*	0.26	*	*	0.2	*	0.12	0.06	0.06	0.02	0.02	*	0.02	*	*	*
4	2	+	*	*	0.26	+	+	0.15	*	0.16	0.08	0.05	0.04	0.02	•	0.03	*	*	•
4	2	*	*	*	0.27	*	*	0.26	*	0.26	0.13	0.15	0.07	0.04	*	0.04	*	*	*
4	2	+		*	0.37	+	+	0.28	*	0.22	0.22	0.08	0.07	0.04	•	0.04	*	*	*
9	1.9	*	*	*	0.5	*	*	0.37	*	0.27	0.29	0.26	0.15	0.08	*	0.06	*	*	*
9	1.9	*	*	*	0.65	*	*	0.6	*	0.59	0.32	0.23	0.16	0.05	*	0.03	*	*	*
9	1.9	*	•	*	0.67	*	*	0.37	*	0.15	0.11	0.16	0.07	0.02	*	0.01	•	*	*
9	1.9	*	•	*	0.72	*	*	0.32	*	0.27	0.14	0.08	0.05	0.01	*	0.01	*	*	*
9	1.9	*	*	*	1.3	*	*	0.4	*	0.31	0.23	0.27	0.21	0.09	٠	0.03	*	*	*
9	1.9	*	•	*	1.31	*	*	0.78	*	0.53	0.18	0.19	0.11	0.12	*	0.01	*	*	*
18	4.3	*	*	*	3.27	*	*	1.42	*	0.54	0.27	0.21	*	0.16	*	0.14			*
18	4.3	*	*	*	4.18	*	*	1.43	*	0.30	0.34	0.16	*	0.09	•	0.06	0.04		•
18	4.3	*	•	*	5.98	*	*	1.07	*	0.32	1.09	0.25	*	0.08	*	0.14			*
18	4.3	*	*	*	2.22	*	*	0.54	*	0.39	1.03	0.21	*	0.09	*	0.11			*
18	4.3	*	*	*	1.66	*	*	0.47	*	0.82	0.52	0.21	*	0.11	*	0.09			*
18	4.3				1.76			0.45		0.87	0.52	0.69		0.15		0.10			
18	4.3				2.34			0.42		0.55	0.42	0.34		0.11		0.05	0.03		
18	4.3				1.83			0.52		0.39	0.47	0.23		0.12		0.06			
18	4.3				2.04			0.61		0.46	0.26	0.16		0.16		0.07	0.02		
18	4.3		-		1.05	*		0.81		0.85	0.44	0.14		0.09	~	0.06	0.03		~
28.5	2.8	*	*	*	0.90	*	*	0.56	*	0.22	0.16	0.16		0.05	*	0.04	0.06		*
28.5	2.8	*	*	*	0.90	*	*	0.32	*	0.40	0.13	0.13	*	0.03	*	0.08			*
28.5	2.8	*	*	*	0.63	*	*	0.26	*	0.41	0.25	0.12	*	0.03	*	0.02			*
28.5	2.8	*	*	*	0.94	*	*	0.26	*	0.22	0.26	0.17	*	0.04	*	0.02			*
28.5	2.8	*	*	*	0.61	*	*	0.36	*	0.24	0.24	0.21	*	0.03	*	0.02			*
28.5 28.5	2.8 2.8	*	*	*	0.73 0.70	*	*	0.30 0.27	*	0.21 0.20	0.18 0.17	0.16 0.15	*	0.04 0.05	*	0.03 0.03	0.02 0.02		*

28.5	2.8	•		*	1.04	*	*	0.18	*	0.17	0.13	0.17	*	0.06	*	0.02	0.02	*	*
28.5	2.8	*	•	*	0.71	*	*	0.25	*	0.18	0.11	0.08	*	0.06	*	0.03	0.05	*	*
28.5	2.8	*	*	*	0.65	*	*	0.22	*	0.16	0.14	0.08	*	0.08	*	0.06	0.06	*	*
12	2.8	*	*	*	1.38	*		0.59	٠	0.38	0.31	0.19	٠	0.07	*	0.08	0.05	*	*
12	2.8	+	٠	*	0.98	+	•	0.42	*	0.25	0.14	0.16	+	0.08	٠	0.06	0.04	*	•
12	2.8	*		*	0.96	*	*	0.40	*	0.21	0.13	0.10	•	0.06	*	0.05	0.09	*	*
12	2.8	*		*	1.09	*	*	0.37	*	0.17	0.14	0.11	*	0.06	*	0.05	0.04	*	*
12	2.8	*	*	*	1.06	*	*	0.28	*	0.26	0.17	0.09	*	0.06	*	0.05	0.04	*	*
12	2.8	*	*	*	0.50	*	٠	0.30	٠	0.24	0.17	0.10	*	0.07	*	0.04	0.04	*	*
12	2.8	*	*	*	0.63	*	+	0.27	*	0.20	0.17	0.10	*	0.04	*	0.05	0.04	*	*
12	2.8	*		*	0.65	*	+	0.34	*	0.22	0.19	0.10	•	0.05	*	0.06	0.04	*	•
12	2.8	*		*	1.58	*	*	0.58	*	0.34	0.17	0.10	*	0.05	*	0.05	0.03	*	*
12	2.8	*		*	1.49	*	*	0.80	*	0.35	0.19	0.16	*	0.08	*	0.04	0.04	*	*
7	2.4	*	*	*	1.70	*	*	0.67	*	0.47	0.39	0.29	*	0.12	*	0.08	0.06	*	*
7	2.4	*	*	*	2.24	*	+	0.90	*	0.65	0.40	0.37	*	0.11	*	0.06	0.05	*	*
7	2.4		*	*	1.90	*	•	0.86	*	0.85	0.48	0.37	+	0.12		0.05	0.05	*	
7	2.4			*	2.01	*	*	0.59	*	0.52	0.37	0.27	*	0.13	*	0.06	0.05	*	*
7	2.4	*		*	2.10	*	*	0.57	*	0.42	0.31	0.19	*	0.13	*	0.06	0.05	*	*
7	2.4		*	*	2.68	*	*	0.67	*	0.56	0.28	0.19	*	0.11	*	0.08	0.05	*	*
7	2.4	*	*	*	1.72	*	*	0.75	*	0.44	0.41	0.24	*	0.13	*	0.03	0.05	*	*
7	2.4	*		*	2.13	+	+	0.82	*	0.69	0.47	0.33	+	0.12		0.09	0.05	*	
7	2.4			*	1.32	*	*	0.73	*	0.55	0.29	0.18		0.12	*	0.07	0.05	*	*
7	2.4	*		*	3.33	*	*	0.86	*	0.49	0.23	0.23	*	0.13	*	0.07	0.06	*	*
9.5	2.45	*	*	*	2.12	*	*	0.98	*	0.48	0.34	0.25	*	0.16	*	0.10	0.08	*	*
9.5	2.45		*	*	2.12	*	*	1.15	*	0.48	0.34	0.28	*	0.18	*	0.10	0.08	*	*
	2.45			*	1.87	*	*	1.13	*	0.78	0.23	0.24	*	0.13	*	0.12	0.07	*	*
9.5				*		*	*								*			*	
9.5	2.45				2.24			0.53		0.57	0.47	0.38	*	0.10	*	0.09	0.06		
9.5	2.45			-	1.87	*	*	0.96		0.78	0.51	0.36	*	0.12	*	0.07	0.07	*	
9.5	2.45			-	2.08	*	-	1.19		1.02	0.56	0.41	Ū.	0.15	*	0.15	0.07	*	
9.5	2.45			*	3.66	*	-	1.40		0.76	0.52	0.39	*	0.14	*	0.08	0.08	*	
9.5	2.45				2.81			0.85		0.61	0.35	0.40		0.14		0.08	0.08	*	
9.5	2.45				2.24		*	0.95		0.72	0.42	0.24	*	0.19	*	0.08	0.07	*	:
9.5	2.45	:		*	2.19	-	*	1.01	-	0.63	0.33	0.40		0.19	*	0.12	0.08	*	
6.5	2.7	-	-	*	1.63	÷	-	0.59	-	0.51	0.31	0.24	*	0.11	*	0.10	0.10	-	
6.5	2.7			*	2.07	*		0.99		0.61	0.46	0.40	*	0.09	*	0.08	0.07	*	
6.5	2.7				2.39			0.97		0.68	0.45	0.37	*	0.11		0.12	0.07	*	
6.5	2.7				1.31	*		0.82		0.49	0.45	0.33		0.15	*	0.07	0.06	*	
6.5	2.7			*	2.20	*	*	0.94	*	0.56	0.33	0.24	*	0.11	*	0.07	0.06	*	
6.5	2.7	Ē.	•	*	1.55	Ť	•	0.42	Ĩ	0.53	0.25	0.20		0.11	*	0.07	0.06	•	
6.5	2.7	•	÷.	*	1.54	*	*	0.45		0.34	0.17	0.17	*	0.16		0.07	0.07	*	*
6.5	2.7	*	*	*	1.81	*	*	0.47		0.32	0.28	0.25	*	0.12	*	0.26	0.18	*	*
6.5	2.7	*	*	*	3.21	*	*	0.80	*	0.36	0.24	0.17	*	0.11	*	0.08	0.10	*	*
6.5	2.7	*	*	*	2.65	*	*	1.02	*	0.70	0.29	0.22	*	0.16	*	0.11	0.09	*	*
15	3.65	16.70	*	*	*	*	*	*	*	0.29	*	0.08	*	0.022	*	0.020	0.016	0.010	0.017
15	3.65	19.62	*	*	*	*	*	*	*	0.27	*	0.08	*	0.040	*	0.015	0.015	0.009	0.011
15	3.65	19.49	*	*	*	*	*	*	*	0.34	*	0.07	*	0.025	*	0.015	0.054	0.007	0.012
15	3.65	18.26	*	*	*	*	*	*	*	0.34	*	0.08	*	0.029	*	0.015	0.029	0.012	0.008
15	3.65	22.34	*	*	*	*	*	*	*	0.29	*	0.08	*	0.027	*	0.059	0.014	0.014	0.008
15	3.65	20.20	*	*	*	*	*	*	*	0.25	*	0.10	*	0.027	*	0.018	0.012	0.015	0.010
15	3.65	18.32	*	*	*	*	*	*	*	0.23	*	0.15	*	0.032	*	0.013	0.013	0.010	0.011
15	3.65	20.39	*	*	*	*	*	*	*	0.26	*	0.12	*	0.026	*	0.015	0.013	0.009	0.009

15	3.65	20.33	*	*	*	*	*	*	*	0.27	*	0.14	*	0.035	*	0.020	0.016	0.015	0.008
15	3.65	19.16	*	*	*	*	*	*	*	0.43	*	0.15	*	0.030	*	0.029	0.015	0.028	0.011
23	3.45	16.05	*	*	*	*	*	*	*	0.23	*	0.14	*	0.079	*	0.041	0.023	0.033	0.014
23	3.45	15.04	*	*	*	*	*	*	*	0.49	*	0.12	*	0.053	*	0.022	0.023	0.011	0.010
23	3.45	16.49	•	*	*	+	•	+	*	0.40	*	0.13	٠	0.110	•	0.022	0.027	0.032	0.013
23	3.45	15.04	*	*	*	*	*	*	*	0.30	*	0.07	•	0.045	*	0.020	0.032	0.020	0.017
23	3.45	19.84	*	*	*	*	*	*	*	0.22	*	0.07	*	0.048	*	0.027	0.023	0.017	0.031
23	3.45	21.03	*	*	*	*	*	*	*	0.18	*	0.06	*	0.052	*	0.038	0.028	0.011	0.041
23	3.45	18.89	*	*	*	*	*	*	*	0.21	*	0.08	*	0.071	*	0.049	0.043	0.017	0.057
23	3.45	20.34	*	*	*	*	*	*	*	0.20	*	0.13	*	0.049	*	0.030	0.022	0.014	0.041
23	3.45	20.53	*	*	*	*	*	+	*	0.32	*	0.26	•	0.057	*	0.026	0.036	0.013	0.011
23	3.45	17.56	*	*	*	*	*	*	*	0.57	*	0.27	*	0.066	*	0.039	0.072	0.053	0.025
5.5	3.6	13.69	*	*	*	*	*	*	*	0.31	*	0.06	*	0.018	*	0.034	0.037	0.029	0.011
5.5	3.6	16.44	*	*	*	*	*	*	*	0.31	*	0.05	*	0.007	*	0.019	0.020	0.010	0.007
5.5	3.6	10.29	*	*	*	*	*	*	*	0.31	*	0.06	*	0.014	*	0.022	0.017	0.009	0.008
5.5	3.6	15.13	*	*	*	*		+	*	0.29	*	0.05	+	0.017		0.021	0.016	0.010	0.007
5.5	3.6	14.28	*	*	*	*	*	*	*	0.30	*	0.07	*	0.021	*	0.022	0.016	0.007	0.010
5.5	3.6	13.23	*	*	*	*	*	*	*	0.29	*	0.07	*	0.020	*	0.026	0.019	0.008	0.009
5.5	3.6	16.18	*	*	*	*	*	*	*	0.32	*	0.08	*	0.027	*	0.033	0.018	0.013	0.007
5.5	3.6	13.69	*	*	*	*	*	*	*	0.35	*	0.13	*	0.024	*	0.024	0.029	0.025	0.007
5.5	3.6	12.32	*	*	*	+	+	*	*	0.30	*	0.08	+	0.015		0.022	0.018	0.007	0.009
5.5	3.6	10.16	*	*	*	*	*	*	*	0.35	*	0.10	+	0.009	*	0.027	0.017	0.022	0.008
10.5	3.9	16.35	*	*	*	*	*	*	*	0.70	*	0.35	*	0.248	*	0.118	0.041	0.030	0.031
10.5	3.9	18.24	*	*	*	*	*	*	*	0.63	*	0.38	*	0.266	*	0.085	0.025	0.032	0.035
10.5	3.9	17.74	*	*	*	*	*	*	*	0.71	*	0.34	*	0.309	*	0.118	0.026	0.059	0.029
10.5	3.9	11.76	*	*	*	*	*	*	*	0.73	*	0.38	*	0.260	*	0.134	0.033	0.025	0.025
10.5	3.9	18.24	*	*	*	*	*	*	*	0.66	*	0.31	+	0.289	*	0.116	0.028	0.054	0.039
10.5	3.9	21.32	*	*	*	*	*	*	*	0.78	*	0.27	*	0.262	*	0.125	0.031	0.083	0.029
10.5	3.9	21.01	*	*	*	*	*	*	*	0.69	*	0.28	*	0.288	*	0.083	0.031	0.026	0.031
10.5	3.9	18.11	*	*	*	*	*	*	*	0.69	*	0.32	*	0.275	*	0.071	0.027	0.038	0.029
10.5	3.9	21.32	*	*	*	*	*	*	*	0.78	*	0.32	*	0.217	*	0.060	0.035	0.025	0.017
10.5	3.9	20.88	*	*	*	*	*	*	*	0.78	*	0.34	*	0.228	*	0.066	0.035	0.040	0.018
12.5	3.85	15.56	*	*	*	*	*	*	*	0.28	*	0.27	*	0.213	*	0.069	0.038	0.025	0.023
12.5	3.85	14.21	*	*	*	*	*	*	*	0.32	*	0.33	*	0.218	*	0.077	0.028	0.019	0.020
12.5	3.85	17.95	*	*	*	ж	*	*	*	0.30	*	0.31	*	0.244	*	0.069	0.028	0.032	0.019
12.5	3.85	13.90	*	*	*	*	*	*	*	0.36	*	0.31	*	0.243	*	0.067	0.034	0.023	0.018
12.5	3.85	9.67	*	*	*	*	*	*	*	0.46	*	0.30	*	0.247	*	0.073	0.029	0.028	0.021
12.5	3.85	14.76	*	*	*	*	*	*	*	0.47	*	0.25	*	0.241	*	0.104	0.024	0.023	0.021
12.5	3.85	8.94	*	*	*	*	*	*	*	0.40	*	0.40	*	0.260	*	0.065	0.030	0.020	0.020
12.5	3.85	12.37	٠	*		*	*	*	*	0.30	*	0.38	*	0.210	*	0.071	0.023	0.022	0.022
12.5	3.85	9.73	*	*		*	*	*		0.30	*	0.38	*	0.212	*	0.072	0.030	0.018	0.021
12.5	3.85	13.41		*	*	*	*	*	*	0.31	*	0.33	*	0.238	*	0.080	0.031	0.027	0.038
28.5	2.8	11.62	*	*	*	*	*	*	*	0.53	*	0.39	*	0.081	*	0.054	0.022	0.005	0.020
28.5	2.8	16.25	*	*	*	*	*	*		0.52	*	0.33	*	0.074		0.073	0.005	0.001	0.020
28.5	2.8	22.97	*	*	*	*	*	*	*	0.49	*	0.31	*	0.085	*	0.075	0.005	0.001	0.021
28.5	2.8	15.38	*	*	*	*	*	*	*	0.49	*	0.31	*	0.085	*	0.003	0.003	0.003	0.008
28.5	2.8	10.55		*	*	*	*	*		0.30	*	0.29	*	0.105	*	0.072	0.008	0.004	0.000
28.5	2.8									0.33		0.29		0.123		0.067	0.043	0.009	0.010
		12.16 12.29								0.38		0.30		0.123		0.052	0.043	0.018	0.011
28.5	2.8									0.81		0.38				0.043	0.004		
28.5 28.5	2.8 2.8	10.88 18.74								0.72		0.36		0.162 0.117		0.042	0.003	0.006 0.004	0.014 0.025
20.3	2.0	10.74								0.70		0.29		0.117		0.079	0.004	0.004	0.023

28.5	2.8	21.29								0.84		0.29		0.118		0.054	0.008	0.010	0.006
26.5	2.9	15.22	*	*	*	*	*	*	*	0.23	*	0.18	*	0.052	*	0.064	0.037	0.022	0.029
26.5	2.9	29.70	*	*	*	*	*	*	*	0.34	*	0.20	*	0.037	*	0.050	0.031	0.026	0.032
26.5	2.9	19.89	*	*	*	*	*	*	*	0.31	*	0.14	*	0.059	*	0.043	0.056	0.014	0.034
26.5	2.9	19.96	*	*	*	*	*	*	*	0.22	*	0.09	*	0.060	*	0.069	0.038	0.064	0.018
26.5	2.9	11.28	*	*	*	*	*	*	*	0.25	*	0.08	*	0.073	*	0.045	0.025	0.021	0.015
26.5	2.9	17.95	*	*	*	*	*	*	*	0.30	*	0.10	*	0.064	*	0.041	0.027	0.018	0.019
26.5	2.9	21.03	*	*	*	*	+	*	*	0.24	*	0.10	+	0.056	+	0.046	0.035	0.033	0.018
26.5	2.9	11.48	٠	*	*	*	*	*	*	0.21	*	0.12	*	0.073	*	0.047	0.068	0.030	0.015
26.5	2.9	16.82	*	*	*	*	*	*		0.27	*	0.20	*	0.089	٠	0.046	0.026	0.024	0.029
26.5	2.9	16.22	*	*	*	*	*	*	*	0.43	*	0.19	*	0.088	٠	0.048	0.037	0.050	0.019
12.0	3.5	12.17	٠	*	*	*	+	+	*	0.11	*	0.05	•	0.024	٠	0.008	0.011	0.013	0.012
12.0	3.5	9.66	•	+	•	+	•	+	•	0.09	•	0.04	+	0.017	•	0.010	0.006	0.006	0.006
12.0	3.5	10.39	*	*	*	*	*	*	*	0.09	•	0.03	*	0.016	*	0.004	0.007	0.007	0.005
12.0	3.5	13.00	٠	*	*	*	*	*	*	0.13	*	0.02	*	0.014	*	0.008	0.009	0.017	0.007
12.0	3.5	13.22		*	*	*		+	*	0.04	*	0.02		0.014	٠	0.008	0.008	0.003	0.004
12.0	3.5	9.05	•	*	*	+	•	+	*	0.04	*	0.03	+	0.013	•	0.008	0.009	0.008	0.004
12.0	3.5	12.02	*	*	*	*		*	*	0.04		0.04	*	0.016	*	0.006	0.010	0.006	0.004
12.0	3.5	13.43		*		*		*	*	0.05	*	0.05	*	0.017	*	0.007	0.010	0.006	0.004
12.0	3.5	16.01	*	*	*	*	*	*	*	0.10	*	0.07	*	0.023	*	0.013	0.011	0.009	0.006
12.0	3.5	16.30	*	*	*	*	*	+	*	0.06	*	0.09	+	0.026	*	0.015	0.013	0.004	0.004
22.5	2.95	16.66	*	*		*	+	*	•	0.15	*	0.03	*	0.024	*	0.021	0.014	0.011	0.014
22.5	2.95	16.40	*	*	*	*		*		0.16	*	0.06	*	0.021	*	0.011	0.010	0.009	0.010
22.5	2.95	15.29		*	*	*	*	*		0.18	*	0.06	*	0.020		0.010	0.009	0.009	0.013
22.5	2.95	16.33	*	*	*	*	*	*	*	0.15	*	0.09	*	0.016	*	0.012	0.009	0.005	0.011
22.5	2.95	10.69	*	*	*	*	*	*	*	0.16	*	0.05	*	0.022	*	0.008	0.010	0.005	0.007
22.5	2.95	12.99	*	*	*	*	*	*	*	0.14	*	0.05	*	0.015	*	0.007	0.009	0.014	0.007
22.5	2.95	17.00	*	*	*	*	*	*	*	0.17	*	0.04	*	0.020	*	0.009	0.005	0.006	0.015
22.5	2.95	18.96	*	*	*	*	*	*	*	0.14	*	0.04	*	0.020	*	0.007	0.015	0.003	0.010
22.5	2.95	16.88	*	*	*	*	*	*		0.14	*	0.05	*	0.018	*	0.010	0.015	0.019	0.010
22.5	2.95	20.15		*	*	*	*	*		0.15	*	0.06	*	0.020	*	0.012	0.018	0.013	0.007
22.5	4.3	11.98	*	*	*	*	*	*		0.25	*	0.06	*	0.020	*	0.032	0.013	0.014	0.014
21	4.3	11.54	*	*	*	*	*	*	*	0.23	*	0.08	*	0.018	*	0.032	0.009	0.011	0.004
21	4.3	11.84	*	*	*	*	*	*	*	0.25	*	0.08	*	0.013	*	0.018	0.009	0.010	0.008
21	4.3	8.60	*	*	*	*	*	*	*	0.25	*	0.06	*	0.015	*	0.019	0.010	0.005	0.004
21	4.3	10.97		*	*	*	*	*		0.23	*	0.08	*	0.015	*	0.025	0.009	0.008	0.008
21	4.3	14.31	٠	*		*	*	*		0.17	*	0.09	*	0.036	*	0.014	0.003	0.004	0.009
21	4.3	13.56		*	*	*	*	*		0.17	*	0.10	*	0.039	*	0.014	0.011	0.004	0.003
21	4.3	20.88		*		*	*	*	*	0.23	*	0.10	*	0.039	*	0.021	0.0014	0.005	0.013
21	4.3	18.85	*	*	*	*	*	*	*	0.22	*	0.10	*	0.029	*	0.013	0.007	0.005	0.013
			*	*		*		*	*	0.28	*		*	0.030	*				
21	4.3	22.65										0.11				0.021	0.011	0.014	0.007
22	4.1	12.49								0.09		0.02		0.011		0.006	0.011	0.010	0.010
22	4.1	8.31								0.05		0.03		0.010		0.002	0.013	0.005	0.009
22	4.1	20.22								0.13		0.02		0.016		0.003	0.010	0.006	0.009
22	4.1	9.99								0.18		0.03		0.019		0.003	0.011	0.007	0.008
22	4.1	6.12								0.12		0.04		0.022		0.005	0.014	0.005	0.006
22	4.1	9.77	*	*	*	*	*	*	*	0.10	*	0.04	*	0.053	*	0.007	0.005	0.010	0.006
22	4.1	12.17	*	*	*	*	*	*	*	0.12	*	0.03	*	0.017	*	0.003	0.011	0.009	0.007
22	4.1	15.60	*	*	*	*	*	*	*	0.09	*	0.05	*	0.016	*	0.027	0.025	0.010	0.005
22	4.1	14.67	*	*	*	*	*	*	*	0.09	*	0.04	*	0.017	*	0.004	0.012	0.005	0.005
22	4.1	13.39	*	*	*	*	*	*	*	0.09	*	0.04	*	0.033	*	0.012	0.012	0.009	0.005

5	3.5	*	30.45	12.89	*	5.31	2.62	1.42	1.09	0.98	0.49	0.24	0.23	*	*	*	*	*	*
5	3.5	*	27.82	7.40	*	3.63	1.80	1.11	1.23	0.96	0.56	0.40	0.24	*	*	*	*	*	*
-3	3.4	*	17.31	6.11	*	0.85	0.55	0.50	0.53	0.50	0.23	0.23	0.15	*	*	*	*	*	*
-3	3.4	*	18.58	5.11	*	2.18	0.80	0.33	0.27	0.33	0.33	0.23	0.23	*	*	*	*	*	*
-20	3.6	*	24.06	13.09	*	6.41	2.70	1.14	0.38	0.09	0.02	0.02	0.03	*	*	*	*	*	*
-20	3.6	*	28.16	17.86	*	16.43	8.62	2.93	0.74	0.41	0.06	0.01	0.01	*	*	*	*	*	*
-30	3.5	*	17.04	6.45	*	6.42	4.29	2.17	1.06	0.51	0.15	0.07	0.04	*	*	*	*	*	*
-30	3.5	*	10.28	6.72	*	5.60	4.33	2.98	1.28	0.87	0.35	0.10	0.02	*	*	*	*	*	*
23	2.8	*	24.80	6.41	*	4.94	2.74	1.82	1.34	1.31	0.36	0.23	0.14	*	*	*	*	*	*
23	2.8	*	25.40	8.43	*	5.72	3.12	2.08	1.38	0.88	1.09	0.63	0.11	*	*	*	*	*	*
28	1.8	*	13.92	5.65	*	3.35	2.41	1.87	1.15	0.65	0.35	0.17	0.11	*	*	*	*	*	*
28	1.8	*	8.37	4.52	*	3.32	2.23	1.58	0.85	0.85	0.30	0.23	0.13	*	*	*	*	*	*
6	2.1	*	4.32	2.24	*	1.44	0.71	0.44	0.30	0.21	0.16	0.09	0.04	*	*	*	*	*	*
6	2.1	*	4.97	2.12	*	1.45	1.24	0.72	0.35	0.26	0.16	0.11	0.16	*	*	*	*	*	*
21	2.1	*	25.42	10.44	*	6.48	5.56	3.37	1.54	0.84	0.46	0.15	0.20	*	*	*	*	*	*
21	2.1	*	24.05	10.04	*	7.28	5.16	3.66	2.16	0.50	0.15	0.15	0.07	*	*	*	*	*	*
-29	3.3	*	23.89	7.67	*	5.80	4.34	2.86	1.68	1.21	0.56	0.34	0.18	*	*	*	*	*	*
-29	3.3	*	37.79	3.78	*	11.11	3.64	4.37	2.93	1.91	1.78	0.89	0.83	*	*	*	*	*	*
11	3.7	*	11.09	7.55	*	5.17	3.32	2.59	1.78	1.34	0.67	0.38	0.17	*	*	*	*	*	*
11	3.7	*	13.30	5.30	*	3.55	1.80	1.30	0.95	0.56	0.44	0.36	0.23	*	*	*	*	*	*
-19	2.9	*	24.54	5.83	*	2.80	1.20	0.83	0.90	0.53	0.28	0.17	0.09	*	*	*	*	*	*
-19	2.9	*	10.13	2.57	*	1.32	0.94	1.13	0.67	0.48	0.47	0.31	0.16	*	*	*	*	*	*
8	4.4	*	37.31	18.59	*	9.10	7.30	5.40	4.51	2.86	2.09	1.95	1.51	*	*	*	*	*	*
8	4.4	*	52.60	19.16	*	14.41	7.58	6.29	4.32	4.05	2.68	1.57	0.63	*	*	*	*	*	*
11	4.9	*	14.17	1.51	*	0.99	0.55	0.50	0.41	0.49	0.27	0.24	0.11	*	*	*	*	*	*
11	4.9	*	14.93	4.28	*	1.71	0.71	0.40	0.28	0.35	0.29	0.28	0.11	*	*	*	*	*	*
*	*	*	20.68	12.64	*	9.29	4.70	2.86	2.15	1.55	1.89	1.11	0.50	*	*	*	*	*	*
*	*	*	27.03	21.89	*	9.50	4.45	3.19	2.28	2.06	1.45	1.22	0.97	*	*	*	*	*	*
27	0.9	*	44.03	21.71	*	13.10	6.65	4.38	1.65	1.14	0.23	0.13	0.09	*	*	*	*	*	*
27	0.9	*	23.60	20.45	*	4.84	2.59	2.47	1.70	2.07	1.23	0.17	0.08	*	*	*	*	*	*
27	2.8	*	21.58	2.36	*	0.42	0.14	0.14	0.14	0.17	0.17	0.06	0.05	*	*	*	*	*	*
27	2.8	*	25.03	3.54	*	0.50	0.29	0.24	0.28	0.13	0.25	0.07	0.03	*	*	*	*	*	*
8	3.42	*	17.12	7.97	*	3.40	1.03	0.38	0.33	0.31	0.15	0.09	0.05	0.03	0.02	*	*	*	*
8	3.42	*	12.10	3.08	*	1.85	0.88	0.46	0.26	0.18	0.14	0.09	0.03	0.05	0.03	*	*	*	*
12	3.41	*	1.92	0.79	*	0.57	0.48	0.46	0.26	0.20	0.07	0.04	0.05	0.04	0.02	*	*	*	*
12	3.41	*	0.89	0.49	*	0.31	0.42	0.37	0.21	0.20	0.17	0.05	0.03	0.02	0.03	*	*	*	*
22	2.03	*	17.58	6.12	*	0.89	0.74	0.27	0.28	0.18	0.25	0.13	0.07	0.09	0.04	*	*	*	*
22	2.03	*	11.01	2.08	*	0.46	0.62	0.42	0.48	0.18	0.15	0.17	0.07	0.07	0.06	*	*	*	*
21	1.79	*	4.70	0.61	*	0.35	0.39	0.33	0.27	0.21	0.18	0.14	0.08	0.06	0.04	*	*	*	*
21	1.79	*	4.81	0.59	*	0.71	0.52	0.51	0.31	0.23	0.15	0.15	0.07	0.07	0.06	*	*	*	*
9	2.06	*	23.71	7.91	*	3.96	1.33	0.65	0.71	0.62	0.35	0.19	0.11	0.07	0.06	*	*	*	*
9	2.06	*	20.04	7.20	*	2.68	0.74	0.26	0.33	0.43	0.19	0.15	0.17	0.08	0.06	*	*	*	*
12	1.92	*	17.08	4.13	*	2.81	1.31	0.38	0.20	0.19	0.12	0.04	0.05	0.05	0.03	*	*	*	*
12	1.92	*	14.16	3.35	*	0.75	0.55	0.39	0.24	0.23	0.09	0.09	0.02	0.02	0.03	*	*	*	*
22	3.42	*	25.53	13.69	*	6.22	3.69	1.67	0.78	0.50	0.45	0.20	0.15	0.12	0.09	*	*	*	*
22	3.42	*	18.69	11.35	*	5.14	3.84	1.66	0.92	0.56	0.39	0.37	0.21	0.17	0.10	*	*	*	*
22	3.02	*	17.42	10.79	*	4.41	2.99	1.48	1.09	0.63	0.43	0.38	0.26	0.18	0.20	*	*	*	*
22	3.02	*	17.67	7.10	*	5.03	2.61	1.32	1.15	0.97	0.80	0.50	0.25	0.19	0.12	*	*	*	*

I-12

Appendix II.

Spray drift deposition data for the crop situation (DE and NL)

		Versuchs-Nr.:																
		entry nr orig	Kulturart:	Kulturart:	Versuchs-D	repetition	code	row	tijd	locatie	grond/	boom width		treated width				boom
entry	country	dbase	year experiment	/:crop	date			1 or 2			machine/type	(m)	nzzle type	(m) spray	pressure spraye	r spespray volume	crop height developme	e height [cm]
	1 DE	222	1990 Ackerbau	crop	26-4-1990	3		1			Hardi 361		XR 11004	20	2.5	6 300	42/45	50
	2 DE	222	1990 Ackerbau	crop	26-4-1990	3		2			Hardi 361		XR 11004	20	2.5	6 300	42/45	50
	3 DE	222	1990 Ackerbau	crop	26-4-1990	3		3			Hardi 361		XR 11004	20	2.5	6 300	42/45	50
	4 DE	222	1990 Ackerbau	crop	26-4-1990	3		4			Hardi 361		XR 11004	20	2.5	6 300	42/45	50
	5 DE	222	1990 Ackerbau	crop	26-4-1990	3		5			Hardi 361		XR 11004	20	2.5	6 300	42/45	50
	6 DE	222	1990 Ackerbau	crop	26-4-1990	3		6			Hardi 361		XR 11004	20	2.5	6 300	42/45	50
	7 DE	223	1990 Ackerbau	crop	26-4-1990	4		1			Hardi 361		XR 11004	20	2.5	6 300	42/45	50
	8 DE	223	1990 Ackerbau	crop	26-4-1990	4		2			Hardi 361		XR 11004	20	2.5	6 300	42/45	50
	9 DE	223	1990 Ackerbau	crop	26-4-1990	4		3			Hardi 361		XR 11004	20	2.5	6 300	42/45	50
	10 DE	223	1990 Ackerbau	crop	26-4-1990	4		4			Hardi 361		XR 11004	20	2.5	6 300	42/45	50
	11 DE	223	1990 Ackerbau	crop	26-4-1990	4		5			Hardi 361		XR 11004	20	2.5	6 300	42/45	50
	12 DE	223	1990 Ackerbau	crop	26-4-1990	4		6			Hardi 361		XR 11004	20	2.5	6 300	42/45	50
	13 DE	224	1990 Ackerbau	crop	18-6-1990	1		1			Hardi 361		XR 11004	20	2.5	6 300	42/45	50
	14 DE	224	1990 Ackerbau	crop	18-6-1990	1		2			Hardi 361		XR 11004	20	2.5	6 300	42/45	50
	15 DE	224	1990 Ackerbau	crop	18-6-1990	1		3			Hardi 361		XR 11004	20	2.5	6 300	42/45	50
	16 DE	224	1990 Ackerbau	crop	18-6-1990	1		4			Hardi 361		XR 11004	20	2.5	6 300	42/45	50
	17 DE	224	1990 Ackerbau	crop	18-6-1990	1		5			Hardi 361		XR 11004	20	2.5	6 300	42/45	50
	18 DE	224	1990 Ackerbau	crop	18-6-1990	1		6			Hardi 361		XR 11004	20	2.5	6 300	42/45	50
	19 NL	115	1999 vergelijking			6	III,-	1	19:30	OWH	grond nder Twin Force	conv 2			3	6.1 312 w+0,1%Ag		
	20 NL	116	1999 vergelijking			6	III 	2	19:30	OWH	grond nder Twin Force	conv 2			3	6.1 312 w+0,1%Ag	•	
	21 NL 22 NL	117	1999 vergelijking 1999 vergelijking			7	III,- III -	1		OWH OWH	grond nder Twin Force	conv 2 conv 2	4 XR 110.0 4 XR 110.0		3	6.1 312 w+0,1%Ag 6.1 312 w+0,1%Ag		
	22 NL 23 NL	118				8	10 10	2		OWH	grond nder Twin Force grond nder Twin Force	conv 2 conv 2			3	6.1 312 w+0,1%Ag 6.1 312 w+0,1%Ag	,	
	23 NL 24 NL	119				8	ш,- Ш	2		OWH	grond nder Twin Force		4 XR 110.0		3	6.1 312 w+0,1%Ag 6.1 312 w+0,1%Ag		
	24 NL 25 NL	120	1999 vergelijking 1999 vergelijking			3	ш,- Ш	2	16:15	OWH	grond nder Twin Force	conv 2			3	6.1 312 w+0,1%Ag		
	26 NL	121	1999 vergelijking			3	1072 1112	2	16:15	OWH	grond nder Twin Force		4 XR 110.0		3	6.1 312 w+0,1%Ag	•	
	27 NL	123	1999 vergelijking			4	III.e	- 1	13:38	OWH	grond nder Twin Force	conv 2			3	6.1 312 w+0,1%Ag		
	28 NL	124	1999 vergelijking			4		2	13:38	OWH	grond nder Twin Force		4 XR 110.0		3	6.1 312 w+0,1%Ag		
	29 NL	125	1999 vergelijking			9	Ш	1	19:34	OWH	grond nder Twin Force	conv 2			3	6.1 312 w+0,1%Ag		C 50
	30 NL	126	1999 vergelijking			9		2	19:34	OWH	grond nder Twin Force	conv 2			3	6.1 312 w+0.1%Ag	•	C 50
	31 NL	127	1999 vergelijking		03-09-1999	10	Ш	1	14:05	OWH	grond nder Twin Force	conv 2	4 XR 110.0	14 24	3	6.1 312 w+0,1%Ag	gral 65 C	C 50
	32 NL	128	1999 vergelijking	g aardappe	03-09-1999	10	Ш	2	14:05	OWH	grond nder Twin Force	conv 2	4 XR 110.0	4 24	3	6.1 312 w+0,1%Ag	gral 65 C	C 50
	33 NL	129	1999 vergelijking	g aardappe	03-09-1999	11	Ш	1	14:49	OWH	grond nder Twin Force	conv 2	4 XR 110.0	4 24	3	6.1 312 w+0,1%Ag	gral 65 C	C 50
	34 NL	130	1999 vergelijking	g aardappe	03-09-1999	11	ш,-	z	14:49	OWH	grond nder Twin Force	conv 2	4 XR 110.0	14 24	3	6.1 312 w+0,1%Ag	grat 65 C	C 50
	35 NL	131	1999 vergelijking	g aardappe	03-09-1999	12	10.×	1	16:14	OWH	grond nder Twin Force	conv 2	4 XR 110.0	14 24	3	6.1 312 w+0,1%Ag	gral 65 C	C 50
	36 NL	132	1999 vergelijking	g aardappe	03-09-1999	12	Ш,-	2	16:14	OWH	grond nder Twin Force	conv 2	4 XR 110.0	14 24	3	6.1 312 w+0,1%Ag	gral 65 C	C 50
	37 NL	197	1999 puitboomhoogt	e aardappe	24-09-1999	2	St	1	•	OWH	grond nder Twin Force	conv 2	4 XR 110.0	14 24	3	5.9 300 w+0,1%Ag	gral 40 C	C 50
	38 NL	198	1999 puitboomhoogt	e aardappe	l 24-09-1999	2	St	2	,	OWH	grond nder Twin Force	conv 2	4 XR 110.0	14 24	3	5.9 300 w+0,1%Ag	gral 40 C	C 50
	39 NL	199	1999 puitboomhoogt	e suikerbie		3	St	1	•	OWH	grond nder Twin Force		4 XR 110.0		3	5.9 300 w+0,1%Ag		
	40 NL	200	1999 puitboomhoogt			3	St	2	,	OWH	grond nder Twin Force		4 XR 110.0		3	5.9 300 w+0,1%Ag		
	41 NL	201	1999 puitboomhoogt			4	St	1		OWH	grond nder Twin Force		4 XR 110.0		3	5.9 300 w+0,1%Ag		
	42 NL	202	1999 puitboomhoogt			4	St	2	,	OWH	grond nder Twin Force	conv 2			3	5.9 300 w+0,1%Ag		
	43 NL	203	1999 puilboomhoogl			5	si	1		OWH	grond nder Twin Force	conv 2			3	5.9 300 w+0,1%Ag	•	
	44 NL 45 NL	204 205	1999 puitboomhoogt 1999 puitboomhoogt			5	st	2	,	OWH	grond nder Twin Force grond nder Twin Force	conv 2			3	5.9 300 w+0,1%Ag 5.9 300 w+0,1%Ag		
	45 NL 46 NL	205	1999 puitboomhoogt			6	St	2		OWH	grond nder Twin Force		4 XR 110.0		3	5.9 300 w+0,1%Ag 5.9 300 w+0,1%Ag		
	40 NL 47 NL	206	1999 puitboomhoogi			7	St	∠ 1		OWH	grond nder Twin Force	conv 2			3	5.9 300 w+0,1%Ag	•	
	48 NL	208	1999 puitboomhoogt			7	St	2		OWH	grond nder Twin Force	conv 2			3	5.9 300 w+0,1%Ag		
	49 NL	200	1999 puitboomhoogt			, 8	St	1		OWH	grond nder Twin Force	conv 2			3	5.9 300 w+0,1%Ag		
	50 NL	210	1999 puitboomhoogt			8	St	2	•	OWH	grond nder Twin Force	conv 2	4 XR 110.0	4 24	3	5.9 300 w+0,1%Ag	gral 55 E	B 50
	51 NL	211	1999 pultboomhoogt			9	St	1		OWH	grond nder Twin Force	conv 2			3	5.9 300 w+0,1%Ag		
	52 NL 53 NL	212 213	1999 puitboomhoogt 1999 puitboomhoogt			9 10	St	2		OWH	grond nder Twin Force grond nder Twin Force	conv 2 conv 2			3	5.9 300 w+0,1%Ag 5.9 300 w+0,1%Ag		
	54 NL	214	1999 puitboomhoogt	e mostero	12-10-1999	10	St	2		OWH	grond nder Twin Force	conv 2	4 XR 110.0	14 24	3	5.9 300 w+0,1%Ag	gral 55 E	B 50
	55 NL	275	1999 vanggewa			1	geen	1	16:11	OWH	grond nder Twin Force	conv 2			3	6.0 316 w+0,1%Ag		
	56 NL 57 NL	276 277	1999 vanggewa 1999 vanggewa			1	geen geen	2	16:11 18:05	OWH	grond nder Twin Force grond nder Twin Force	conv 2 conv 2			3	6.0 316 w+0,1%Ag 6.0 316 w+0,1%Ag		
	58 NL	278	1999 vanggewa			2	geen	2	18:05	OWH	grond nder Twin Force	conv 2			3	6.0 316 w+0,1%Ag		
	59 NL	285	1999 vanggewa	is suikerbie		6	geen	1	16:12	OWH	grond nder Twin Force	conv 2	4 XR 110.0	4 24	3	6.0 316 w+0,1%Ag	gral 55 E	
	60 NL 61 NL	286 411	1999 vanggewa 2000 vanggewa			6	geen	2	16:12 9:00	OWH OWH	grond nder Twin Force grond nder Twin Force	conv 2 conv 2	4 XR 110.0 4 XR 110.0		3	6.0 316 w+0,1%Ag 5.8 320 w+0,1%Ag		
	62 NL	411 412	2000 vanggewa 2000 vanggewa			1	geen geen	2	9:00	OWH	grondinder Twin Force	conv 2 conv 2			3	5.8 320 w+0,1%Ag 5.8 320 w+0,1%Ag		
	63 NL	413	2000 vanggewa			2	geen	1	13:30	OWH	grond nder Twin Force	conv 2	4 XR 110.0	14 24	3	5.8 320 w+0,1%Ag		C 50

64 NL	414	2000 vanggewas	aardappel	12-09-2000	2	geen	2	13:30	OWH	grand nder Twin Force	COLLY	24	XR 110.04	24	3	5.8	320 w+0.1%Aoral	50	с	50
65 NL	415	2000 vanggewas	aardappel	12-09-2000	3	geen	1	14:20	OWH	grond nder Twin Force	conv	24	XR 110.04	24	3	5.8	320 w+0.1%Agral	50	č	50
66 NL	416	2000 vanggewas	aardappel	12-09-2000	3	geen	2	14:20	OWH	grond nder Twin Force	conv	24	XR 110.04	24	3	5.8	320 w+0.1%Agral	50	c	50
67 NL	417	2000 vanggewas	aardappel	12-09-2000	4	geen	1	18:28	OWH	grand nder Twin Force	COLLY	24	XR 110.04	24	а	5.8	320 w+0.1%Agral	50	c	50
68 NL	418	2000 vanggewas	aardappel	12-09-2000	4	geen	2	18:28	OWH	grand nder Twin Force	COTTV	24	XR 110.04	24	3	5.8	320 w+0.1%Agral	50	č	50
69 NL	419	2000 vanggewes	aardappel	15-09-2000	4	geen	1	13:10	OWH	grand nder Twin Force	conv	24	XR 110.04	24	3	5.8	320 w+0.1%Agral	50	č	50
70 NL	420	2000 vanggewas	aardappel	15-09-2000	5	geen	2	13:10	OWH	grond nder Twin Force	conv	24	XR 110.04	24	3	5.8	320 w+0.1%Agral	50	c	50
71 NL	420			15-09-2000	č		1	14:45	OWH	grond nder Twin Force	CONV	24	XR 110.04	24	3	5.8	320 w+0.1%Agral	50	č	50
72 NL	427		aardappel aardappel	15-09-2000	6	geen geen	2	14:45	OWH	grond nder Twin Force	COTV	24	XR 110.04	24	3	5.8	320 w+0.1%Agral	50	c	50
72 NL	423		aardappel	15-09-2000		geen	-	17:00	OWH	grondinder Twin Force	conv	24	XR 110.04	24	3	5.8	320 w+0.1%Agrai	50	č	50
75 NL 71 NL	424				/				OWH				XR 110.04		3			50		50
75 NL	424	2000 vanggewas 2000 vanggewas	aardappel	15-09-2000	,	geen	2	17:00 18:25	OWH	grond nder Twin Force	conv	24 24	XR 110.04	24		5.8 5.8	320 w+0.1%Agral	50	c c	50
			aardappel	15-09-2000	8	geen				grond nder Twin Force	COLLA			24	Э		320 w+0.1%Agral		-	
76 NL	426	2000 vanggewas	aardappel	15-09-2000	8	geen	2	18:25	OWH	grond nder Twin Force	conv	24	XR 110 04	24	з	5.8	320 w+0.1%Agral	50	c	50
77 NL	619	2000 wasdifferentiatie	aardappel	27-06-2000	1		1	13:42	OWH	grond inder Twin Force	conv	24	XR 110.04	24	э	6	300 w+0.1%Agral	40		50
78 NL	620	2000 was differentiable	aardappel	27-06-2000	1		2	13:42	OWH	grond inder Twin Force	CONV	24	XR 110.04	24	3	6	300 w+0.1%Agral	40		50
79 NL	621	2000 wasdifferentiatie	aardappel	27-06-2000	2		1	17;40	OWH	grond inder Twin Force	conv	24	XR 110 04	24	3	6	300 w+0.1%Agral	40	•	50
80 NL	622	2000 wasdifferentiatie	aardappel	27-06-2000	2	-	2	17:40	OWH	grond inder Twin Force	conv	24	XR 110 04	24	з	6	300 w+0.1%Agral	40		50
81 NL	623	2000 wasdifferentiatie	aardappel	28-06-2000	3	-	1	13:21	OWH	grond inder Twin Force	conv	24	XR 110.04	24	з	6	300 w+0.1%Agral	40		50
82 NL	624	2000 was differentiatie	aardappel	28-06-2000	3	· · ·	2	13:21	OMH	grond nder Twin Force	CONV	24	XR 110.04	24	3	6	300 w+0.1%Agral	40		50
83 NL	627	2000 wasdifferentiatie	aardappel	19-07-2000	5		1	13:23	OWH	grond inder Twin Force	conv	24	XR 110 04	24	3	6	300 w+0.1%Agral	50	•	50
84 NL	628	2000 wasdifferentiatie	aardappel	19-07-2000	5		2	13:23	OWH	grond inder Twin Force	conv	24	XR 110 04	24	з	6	300 w+0.1%Agral	50		50
85 NL	631	2000 was differentiatie	aardappel	05-09-2000	7	'	1	13:39	OWH	grond inder Twin Force	conv	24	XR 110.04	24	3	6	300 w+0,1%Agral	30		50
86 NL	632	2000 was differentiatie	aardappel	05-09-2000	7	'	2	13:39	OWH	grond nder Twin Force	conv	24	XR 110.04	24	3	6	300 w+0,1%Agral	30		50
87 NL	633	2000 wasdifferentiatie	aardappel	05-09-2000	8	•	1	17:16	OWH	grond rider Twin Force	conv	24	XR 110 04	24	3	6	300 w+0.1%Agral	30	•	50
88 NL	634	2000 wasdifferentiatie	aardappel	05-09-2000	8	'	2	17:16	OWH	grond inder Twin Force	conv	24	XR 110.04	24	3	6	300 w+0,1%Agral	30		50
89 NL	683	2000 was differentiatie	suikerbiet	04-08-2000	1	'	1	9:47	OWH	grond nder Twin Force	conv	24	XR 110.04	24	3	6	300 w+0,1%Agral	30		50
90 NL	684	2000 masdifferentiatie	suiterbiet	04-08-2000	1	•	2	9.47	OWH	groud uder Twin Force	COLIN	24	XR 110.04	24	э	6	300 w+0.1%Ayral	30		50
91 NL	685	2000 was differentiatie	suikerbiet	09-08-2000	2		1	11:55	OWH	grond rider Twin Force	conv	24	XR 110 04	24	3	6	300 w+0,1%Agral	40		50
92 NL	686		suikerbiet	09-08-2000	-	,		11:55	OWH				XR 110.04	24	3			40		50
		2000 was differentiatie			2		2			grond nder Twin Force	conv	24				ь	300 w+0.1%Agral			
93 NL	687	2000 was differentiable	sukerblet	10-08-2000	3		1	13:17	OW/H	grond inder Twin Force	conv	24	XR 110.04	24	з	6	300 w+0.1%Agral	65		50
94 NL	668	2000 wasdifferentiatie	suikerbiet	10-08-2000	3	· ·	2	13:17	OWH	grond rider Twin Force	conv	24	XR 110.04	24	3	6	300 w+0,1%Agral	65		50
95 NL	691	2000 was differentiatie	suikerbiet	17-08-2000	6		1	13;49	OWH	grond nder Twin Force	COTTV	24	XR 110.04	24	з	6	300 w+0.1%Agral	65		50
					5												•			
96 NL	692	2000 was differentiatie	suikerbiet	17-08-2000	\$	·	2	13:49	OWH	grond nder Twin Force	conv	24	XR 110.04	24	3	6	300 w+0.1%Agral	65		50
97 NL	693	2000 was differentiatie	suikerbiet	18-09-2000	6	,	1	11:26	OWH	grand inder Twin Force	conv	24	XR 110.04	24	3	6	300 w+0.1%Agral	50	٩	50
98 NL	694	2000 wasdifferentiatie	suikerblet	18-09-2000	6		2	11:26	OW/H	grond inder Twin Force	conv	24	XR 110 04	24	з	6	300 w+0.1%Agral	50		50
99 NL	695	2000 wasdifferentiatie	suikerbiet	18-09-2000	7	,	-	15:01	OWH	grond nder Twin Force	conv	24	XR 110.04	24	3	6	300 w+0,1%Agral	50		50
					,					•						u	-			
100 NL	696	2000 was differentiable	suikerblet	18-09-2000	7		2	15:01	OWH	grond inder Twin Force	COULA	24	XR 110.04	24	з	6	300 w+0.1%Agral	50		50
101 NL	697	2000 was differentiatie	suikerbiet	03-10-2000	8	· ·	1	11:37	OWH	grond nder Twin Force	conv	24	XR 110.04	24	3	6	300 w+0,1%Agral	80		50
102 NL	698	2000 wasdifferentiatie	suikerbiet	03-10-2000	8	,	2	11:37	OWH	grand inder Twin Force	conv	24	XR 110.04	24	3	6	300 w+0.1%Agral	80		50
103 NL	747		ielle	21-06-2000				13:28	OWH	•	conv		XR 110 04	24	3			30		50
		2000 wasdifferentiatle			1		1			grond nder Twin Force		24				6	300 w+0.1%Agral			
104 NL	748	2000 wasdifferentiatie	lelie	21-06-2000	1	,	2	13:28	OWH	grond rider Twin Force	conv	24	XR 110.04	24	3	6	300 w+0.1%Agral	30		50
105 NL	749	2000 was differentiable	lelle	21-06-2000	2		1	16:51	OW/H	grond inder Twin Force	conv	24	XR 110.04	24	з	6	300 w+0.1%Agral	30		50
105 NL	750	2000 wasdifferentiatie	lelie	21-06-2000	2	,	2	16:51	OWH	grond nder Twin Force	conv	24	XR 110 04	24	3	6	300 w+0,1%Agral	30		50
					2		-			•					-					
107 NL	751	2000 was differentiatie	lelie	27-06-2000	3		1	13:48	OWH	grond nder Twin Force	COTV	24	XR 110.04	24	3	6	300 w+0.1%Agral	40		50
108 NL	752	2000 was differentiable	el e	27-06-2000	3	•	2	13;48	OWH	grond rider Twin Force	conv	24	XR 110 04	24	3	6	300 w+0.1%Agral	40	•	50
109 NL	753	2000 was differentiatie	lelie	27-06-2000	4	,	1	16:45	OWH	grand inder Twin Force	conv	24	XR 110.04	24	3	6	300 w+0.1%Agral	40		50
110 NL	754	2000 was differentiable	lelle	27-06-2000			2	16:45	OW/H	grond inder Twin Force	conv	24	XR 110.04	24	3	4	300 w+0,1%Agral	40		50
					4		4			-							-			
111 NL	755	2000 wasdifferentiatie	lelie	09-08-2000	6	· · ·	1	11:51	OWH	grond nder Twin Force	conv	24	XR 110.04	24	3	6	300 w+0,1%Agral	40		50
112 NL	756	2000 was differentiatie	lelie	09-08-2000	5	•	2	11:51	OWH	grond inder Twin Force	COLLY	24	XR 110.04	24	э	6	300 w+0.1%Agral	40		50
113 NL	757	2000 wasdifferentiatie	elie	10-08-2000	6		1	13:12	OWH	grand inder Twin Force	conv	24	XR 110 04	24	3	6	300 w+0,1%Aaral	25	•	50
114 NL	758	2000 wasdifferentiatie	ielie	10-08-2000	6	,	2	13:12	OWH	grond inder Twin Force	conv	24	XR 110.04	24	3	6	300 w+0.1%Agral	25		50
										•					-		-			
115 NL	761	2000 wasdifferentiatie	elle	04-09-2000	8		1	14 (47	OWH	grond inder Twin Force	conv	24	XR 110.04	24	3	6	300 w+0.1%Agral	30		50
116 NL	762	2000 wasdifferentiatie	lelie	04-09-2000	6	· ·	2	14:47	OWH	grond inder Twin Force	conv	24	XR 110.04	24	3	6	300 w+0,1%Agral	30	•	50
117 NL	763	2000 was differentiatie	ielle	04-09-2000	9		1	16:32	OWH	grond inder Twin Force	conv	24	XR 110.04	24	з	6	300 w+0.1%Agral	30		50
118 NL	764	2000 was differentiatie	lelie	04-09-2000	9	,	2	16:32	OWH	grond inder Twin Force	conv	24	XR 110.04	24	3		300 w+0.1%Agral	30		50
							4									0	-			
119 NL	765	2000 wasdifferentiatie	lelie	18-09-2000	10	,	1	11:27	OWH	grond nder Twin Force	COTV	24	XR 110.04	24	3	6	300 w+0.1%Agral	40	,	50
120 NL	766	2000 was differentiable	lelle	18-09-2000	10		2	11:27	OW/H	grond inder Twin Force	conv	24	XR 110 04	24	з	6	300 w+0.1%Agral	40		50
121 NL	767	2000 was differentiatie	lelie	16-09-2000	11	,	1	15:03	OWH	grond inder Twin Force	conv	24	XR 110.04	24	3	6	300 w+0,1%Agral	40		50
122 NL	768			18-09-2000						•					3	6		40		50
		2000 was differentiable	lelle		11		2	15:03	OWH	grond inder Twin Force	COUL	24	XR 110.04	24		6	300 w+0.1%Agral			
123 NL	827	2000 was differentiatie	maïs	19-07-2000	2	· · · ·	1	16:42	OWH	grond inder Twin Force	conv	24	XR 110.04	24	3	6	300 w+0,1%Agral	70	•	50
124 NL	828	2000 wasdifferentiatie	maïs	19-07-2000	2	,	2	16:42	OWH	grond nder Twin Force	COTTV	24	XR 110.04	24	3	6	300 w+0.1%Agral	70	,	50
125 NL	831	2000 wasdifferentiatle	maïs	20-07-2000			4	14:46	OWH	grond inder Twin Force	conv	24	XR 110 04	24	3	6	300 w+0.1%Agral	70		50
					•											0				
126 NL	832	2000 wasdifferentiatie	maïs	20-07-2000	4	,	2	14:46	OWH	grond nder Twin Force	conv	24	XR 110.04	24	3	6	300 w+0.1%Agral	70	'	50
127 NL	833	2000 was differentiable	maïs	30-08-2000	5		1	17:08	OWH	grond inder Twin Force	conv	24	XR 110.04	24	з	6	300 w+0.1%Agral	20		50
128 NL	834	2000 wasdifferentiatie	maïs	39-08-2000	6		2	17:08	OWH	grond nder Twin Force	conv	24	XR 110.04	24	3	6	300 w+0,1%Agral	20		50
129 NL	835	2000 was differentiatie	maïs	30-08-2000	6	,	1	18:49	OWH	2	COLL	24	XR 110.04	24	3		-	20	,	50
					0					grond nder Twin Force					*	0	300 w+0.1%Agral			
130 NL	836	2000 wasdifferentiatie	maïs		6	•	2	18;49	OWH	grond rider Twin Force	conv	24	XR 110 04	24	3	6	300 w+0.1%Agral	20	•	50
131 NL	839	2000 was differentiatie	maïs	04-09-2000	8	,	1	14:49	OWH	grond inder Twin Force	conv	24	XR 110.04	24	3	6	300 w+0.1%Agral	20	•	50
132 NL	840	2000 wasdifferentiatie	mais	04-09-2000	8		2	14:49	OWH	grond inder Twin Force	conv	24	XR 110.04	24	з	6	300 w+0.1%Agral	20		50
					-		-		- ////	,				- '	•	•				

133 NL	841	2000 wasdifferentiatie		04-09-2000	9		1	16:33	OWH	grond nder Twin Force	conv	24	XR 110.04	24	3	6	300 w+0,1%Agral	20	•	50
134 NL	842	2000 wasdifferentiatie	maïs	04-09-2000	9	,	2	16:33	OWH	grond nder Twin Force	conv	24	XR 110.04	24	3	6	300 w+0,1%Agral	20		50
135 NL	891	2000 wasdifferentiatie	tarwe	15-06-2000	1	'	1	16:46	OWH	grond nder Twin Force	conv	24	XR 110.04	24	3	6	300 w+0,1%Agral	55	,	50
136 NL	892	2000 wasdifferentiatie	tarwe	15-06-2000	1	,	2	16:46	OWH	grond nder Twin Force	conv	24	XR 110.04	24	3	6	300 w+0,1%Agral	55		50
137 NL	893	2000 wasdifferentiatie	tarwe	15-06-2000	2		1	20:28	OWH	grond nder Twin Force	conv	24	XR 110.04	24	3	6	300 w+0,1%Agral	55		50
138 NL	894	2000 wasdifferentiatie	tarwe	15-06-2000	2	,	2	20:28	OWH	grond nder Twin Force	conv	24	XR 110.04	24	3	6	300 w+0,1%Agral	55	,	50
139 NL	895	2000 wasdifferentiatie	tarwe	16-06-2000	3		1	21:38	OWH	grond nder Twin Force	conv	24	XR 110.04	24	3	6	300 w+0,1%Agral	55	,	50
140 NL	896	2000 wasdifferentiatie	tarwe	16-06-2000	3		2	21:38	OWH	grond nder Twin Force	conv	24	XR 110.04	24	3	6	300 w+0,1%Agral	55		50
141 NL 142 NL	897 898	2000 wasdifferentiatie	tarwe	21-06-2000	4		1	13:30 13:30	OWH OWH	grond nder Twin Force	conv	24 24	XR 110.04 XR 110.04	24 24	3	6	300 w+0,1%Agral	60 60		50 50
142 NL 143 NL	898	2000 wasdifferentiatie	tarwe tarwe	21-06-2000	4 5		2	13:30	OWH	grond nder Twin Force	conv	24	XR 110.04 XR 110.04	24	3	6	300 w+0,1%Agral	60		50
143 NL 144 NL	900	2000 wasdifferentiatie 2000 wasdifferentiatie	tarwe	21-06-2000	5		2	16:53	OWH	grond nder Twin Force arond nder Twin Force	CONV	24	XR 110.04 XR 110.04	24	3	6	300 w+0,1%Agral 300 w+0,1%Agral	60		50
144 NL 145 NL	901	2000 wasdifferentiatie	tarwe	28-06-2000	5		2	13:26	OWH	grond nder Twin Force	conv	24	XR 110.04 XR 110.04	24	3	6	300 w+0,1%Agral	70		50
146 NL	902	2000 wasdifferentiatie	tarwe	28-06-2000	6	,	2	13:26	OWH	grond nder Twin Force	conv	24	XR 110.04	24	3	6	300 w+0,1%Agral	70		50
147 NL	903	2000 wasdifferentiatie	tarwe	28-06-2000	7	,	1	14:20	OWH	grond inder Twin Force	conv	24	XR 110.04	24	3	6	300 w+0.1%Agral	70	,	50
148 NL	904	2000 wasdifferentiatie	tarwe	28-06-2000	7		2	14:20	OWH	grond nder Twin Force	conv	24	XR 110.04	24	3	õ	300 w+0,1%Agral	70	,	50
149 NL	907	2000 wasdifferentiatie	tarwe	20-07-2000	9		1	14:43	OWH	grond inder Twin Force	conv	24	XR 110.04	24	3	õ	300 w+0.1%Agral	70		50
150 NL	908	2000 wasdifferentiatie	tarwe	20-07-2000	9		2	14:43	OWH	grond nder Twin Force	conv	24	XR 110.04	24	3	6	300 w+0,1%Agral	70		50
151 NL	909	2000 wasdifferentiatie	tarwe	04-08-2000	10		1	9:48	OWH	grond nder Twin Force	conv	24	XR 110.04	24	3	6	300 w+0,1%Agral	80		50
152 NL	910	2000 wasdifferentiatie	tarwe	04-08-2000	10	,	2	9:48	OWH	grond nder Twin Force	conv	24	XR 110.04	24	3	6	300 w+0,1%Agral	80	,	50
153 NL	1031	2001 wasdifferentiatie	aardappel	25-07-2001	1		1	15:23	OWH	grond nder Twin Force	conv	24	XR 110.04	24	3	6	300 w+0,1%Agral	30		50
154 NL	1032	2001 wasdifferentiatie	aardappel	25-07-2001	1	•	2	15:23	OWH	grond nder Twin Force	conv	24	XR 110.04	24	3	6	300 w+0,1%Agral	30		50
155 NL	1033	2001 wasdifferentiatie	aardappel	25-07-2001	2	,	1	16:31	OWH	grond nder Twin Force	conv	24	XR 110.04	24	3	6	300 w+0,1%Agral	30	,	50
156 NL	1034	2001 wasdifferentiatie	aardappel	25-07-2001	2	,	2	16:31	OWH	grond nder Twin Force	conv	24	XR 110.04	24	3	6	300 w+0,1%Agral	30	,	50
157 NL	1035	2001 wasdifferentiatie	aardappel	27-08-2001	6		1	16:57	OWH	grond nder Twin Force	conv	24	XR 110.04	24	3	6	300 w+0,1%Agral			50
158 NL	1036	2001 wasdifferentiatie	aardappel	27-08-2001	6		2	16:57	OWH	grond nder Twin Force	conv	24	XR 110.04	24	3	6	300 w+0,1%Agral			50
159 NL	1037	2001 wasdifferentiatie	aardappel	27-08-2001	7	,	1	19:15	OWH	grond nder Twin Force	conv	24	XR 110.04	24	3	6	300 w+0,1%Agral	,	,	50
160 NL	1038	2001 wasdifferentiatie	aardappel	27-08-2001	7		2	19:15	OWH	grond nder Twin Force	conv	24	XR 110.04	24	3	6	300 w+0,1%Agral	,	,	50
161 NL	1075	2001 wasdifferentiatie	suikerbiet	24-07-2001	1	•	1	17:22	OWH	grond nder Twin Force	conv	24	XR 110.04	24	3	6	300 w+0,1%Agral	30		50
162 NL	1076	2001 wasdifferentiatie	suikerbiet	24-07-2001	1		2	17:22	OWH	grond nder Twin Force	conv	24	XR 110.04	24	3	6	300 w+0,1%Agral	30		50
163 NL	1077	2001 wasdifferentiatie	suikerbiet	24-07-2001	2		1	18:14	OWH	grond nder Twin Force	conv	24	XR 110.04	24	3	6	300 w+0,1%Agral	30	,	50
164 NL	1078	2001 wasdifferentiatie	suikerbiet	24-07-2001	2	,	2	18:14	OWH	grond nder Twin Force	conv	24	XR 110.04	24	3	6	300 w+0,1%Agral	30	,	50
165 NL	1079	2001 wasdifferentiatie	suikerbiet	17-08-2001	3		1	11:52	OWH	grond nder Twin Force	conv	24	XR 110.04	24	3	6	300 w+0,1%Agral	60		50
166 NL 169 NL	1080	2001 wasdifferentiatie	suikerbiet	17-08-2001	3		2	11:52 14:03	OWH	grond nder Twin Force	conv	24 24	XR 110.04	24 24	3	6	300 w+0,1%Agral	60 50		50 50
109 NL 170 NL	1085	2001 wasdifferentiatie 2001 wasdifferentiatie	suikerbiet suikerbiet	15-10-2001 15-10-2001	6		1	14:03 14:03	OWH	grond nder Twin Force grond nder Twin Force	conv	24	XR 110.04 XR 110.04	24	3	6	300 w+0,1%Agral 300 w+0,1%Agral	50		50
170 NL 171 NI	1066	2001 wasdifferentiatie	suikerbiet	02-11-2001	8		2	14:03	OWH	grond inder Twin Force	CONV	24	XR 110.04 XR 110.04	24	3	6	300 w+0,1%Agrai	70		50
172 NL	1090	2001 wasdifferentiatie	suikerbiet	02-11-2001	8	,	2	17:18	OWH	grond nder Twin Force	conv	24	XR 110.04	24	3	6	300 w+0,1%Agral	70	,	50
173 NL	1091	2001 wasdifferentiatie	suikerbiet	05-11-2001	q		1	14:47	OWH	grond nder Twin Force	conv	24	XR 110.04	24	3	6	300 w+0.1%Agral	70		50
174 NL	1092	2001 wasdifferentiatie	suikerbiet	05-11-2001	9		2	14:47	OWH	grond nder Twin Force	conv	24	XR 110.04	24	3	6	300 w+0,1%Agral	70		50
175 NL	1147	2001 wasdifferentiatie	lelie	29-05-2001	2	,	1	20:22	OWH	grond nder Twin Force	conv	24	XR 110.04	24	3	6	300 w+0,1%Agral	55	,	50
176 NL	1148	2001 wasdifferentiatie	lelie	29-05-2001	2	,	2	20:22	OWH	grond nder Twin Force	conv	24	XR 110.04	24	3	6	300 w+0.1%Agral	55		50
177 NL	1149	2001 wasdifferentiatie	lelie	30-05-2001	3		1	10:37	OWH	grond nder Twin Force	conv	24	XR 110.04	24	3	6	300 w+0,1%Agral	55		50
178 NL	1150	2001 wasdifferentiatie	lelie	30-05-2001	3		2	10:37	OWH	grond nder Twin Force	conv	24	XR 110.04	24	3	6	300 w+0,1%Agral	55	,	50
179 NL	1151	2001 wasdifferentiatie	lelie	30-05-2001	4	,	1	13:55	OWH	grond nder Twin Force	conv	24	XR 110.04	24	3	6	300 w+0,1%Agral	55	,	50
180 NL	1152	2001 wasdifferentiatie	lelie	30-05-2001	4		2	13:55	OWH	grond nder Twin Force	conv	24	XR 110.04	24	3	6	300 w+0,1%Agral	55		50
181 NL	1153	2001 wasdifferentiatie	lelie	04-07-2001	5		1	20:41	OWH	grond nder Twin Force	conv	24	XR 110.04	24	3	6	300 w+0,1%Agral	50		50
182 NL	1154	2001 wasdifferentiatie	lelie	04-07-2001	5	,	2	20:41	OWH	grond nder Twin Force	conv	24	XR 110.04	24	3	6	300 w+0,1%Agral	50	,	50
183 NL	1155	2001 wasdifferentiatie	lelie	05-07-2001	6		1	10:37	OWH	grond nder Twin Force	conv	24	XR 110.04	24	3	6	300 w+0,1%Agral	50	,	50
184 NL	1156	2001 wasdifferentiatie	lelie	05-07-2001	6	,	2	10:37	OWH	grond nder Twin Force	conv	24	XR 110.04	24	3	6	300 w+0,1%Agral	50	,	50
185 NL	1157	2001 wasdifferentiatie	lelie	24-07-2001	7		1	17:24	OWH	grond nder Twin Force	conv	24	XR 110.04	24	3	6	300 w+0,1%Agral	55		50
186 NL	1158	2001 wasdifferentiatie	lelie	24-07-2001	7	•	2	17:24	OWH	grond nder Twin Force	conv	24	XR 110.04	24	3	6	300 w+0,1%Agral	55	•	50
187 NL	1159	2001 wasdifferentiatie	lelie	24-07-2001	8		1	18:15	OWH	grond nder Twin Force	conv	24	XR 110.04	24	3	6	300 w+0,1%Agral	55		50
188 NL	1160	2001 wasdifferentiatie	lelie	24-07-2001	8		2	18:15	OWH	grond nder Twin Force	conv	24	XR 110.04	24	3	6	300 w+0,1%Agral	55	,	50
189 NL	1209	2001 wasdifferentiatie	maïs	04-07-2001	1		1	20:42	OWH	grond nder Twin Force	conv	24	XR 110.04	24	3	6	300 w+0,1%Agral	25		50
190 NL	1210	2001 wasdifferentiatie	maïs	04-07-2001	1		2	20:42	OWH	grond nder Twin Force	conv	24	XR 110.04	24	3	6	300 w+0,1%Agral	25		50
191 NL	1211	2001 wasdifferentiatie	maïs	05-07-2001	2		1	10:38	OWH	grond nder Twin Force	conv	24	XR 110.04	24	3	6	300 w+0,1%Agral	25		50
192 NL	1212	2001 wasdifferentiatie	maïs	05-07-2001	2		2	10:38	OWH	grond nder Twin Force	conv	24	XR 110.04	24	3	6	300 w+0,1%Agral	25		50
193 NL 194 NI	1275 1276	2001 wasdifferentiatie	tarwe	30-05-2001 30-05-2001	1		1	10:39 10:39	OWH	grond nder Twin Force	conv	24 24	XR 110.04 XR 110.04	24 24	3	6	300 w+0,1%Agral	22.5		50 50
194 NL 195 NL	1276	2001 wasdifferentiatie	tarwe tarwe	30-05-2001	1		2	10:39 13:58	OWH	grond nder Twin Force grond nder Twin Force	conv	24 24	XR 110.04 XR 110.04	24 24	3	6	300 w+0,1%Agral 300 w+0,1%Agral	22.5 22.5		50 50
195 NL 196 NI	1277	2001 wasdifferentiatie 2001 wasdifferentiatie	tarwe	30-05-2001	2		1	13:58	OWH	grond nder Twin Force grond nder Twin Force	conv	24 24	XR 110.04 XR 110.04	24	3	6	300 w+0,1%Agrai 300 w+0,1%Agrai	22.5		50
196 NL 197 NL	1278	2001 wasdifferentiatie 2001 wasdifferentiatie	tarwe	30-05-2001 17-07-2001	2		4	13:58	OWH	grond nder I win Force arond nder Twin Force	conv	24 24	XR 110.04 XR 110.04	24 24	3	6	300 w+0,1%Agral 300 w+0,1%Agral	22.5	,	50

198 NL	1280	2001 was differentiable	larwe	17-07-2001	3		2	13:46	OWH	grond rider Twin Force	conv	24	XR 110 04	24	3	6	300 w+0.1%Agral	75		50
199 NL	1285	2001 wasdifferentiatie	larwe	16-08-2001	6	,	1	19:34	OWH	grond inder Twin Force	COLLA	24	XR 110.04	24	3	6	300 w+0.1%Agral	80	,	50
200 NL	1286	2001 wasdifferentiable	larwe	16-08-2001	6		2	19:34	OWH	grond inder Twin Force	conv	24	XR 110 04	24	з	6	300 w+0.1%Agral	80		50
201 NL	1287	2001 wasdifferentiatie	larwe	17-08-2001	7	,	1	11:56	OWH	grond inder Twin Force	conv	24	XR 110.04	24	3	6	300 w+0.1%Agral	80	•	50
202 NL	1288	2001 wasdifferentiatie	larwe	17-08-2001	7		2	11,56	OW/H	grond inder Twin Force	conv	24	XR 110 04	24	з	6	300 w+0.1%Agral	80		50
203 NL	1269	2001 wasdifferentiatie	larwe	17-08-2001	8	,	1	13:32	OWH	grond inder Twin Force	conv	24	XR 110.04	24	3	6	300 w+0.1%Agral	80	•	50
204 NL	1290	2001 was differentiate	larwe	17-08-2001	8		2	13:32	OW/H	grond inder Twin Force	conv	24	XR 110 04	24	з	6	300 w+0.1%Agral	80		50
205 NL	1291	2001 was differentiatie	larwe	26-08-2001	9	,	1	16:35	OWH	grond inder Twin Force	conv	24	XR 110.04	24	3	6	300 w+0.1%Agral			50
205 NL	1292	2001 wasdifferentiatie	larwe	28-08-2001	9		2	16:35	OW/H	grond inder Twin Force	conv	24	XR 110.04	24	з	6	300 w+0.1%Agral			50
207 NL	1455	2002 Rau/Delvano	aardappel	19-07-2002	1	XR-L	1	11:56	OWH	grond nder Twin Force	conv	24	XR 110.04	24	3	6	325 w+0.1%Agral	75	в	50
208 NL	1456	2002 Rau/Delvano	aardappel	19-07-2002	1	XR-L	2	11:56	OWH	grond inder Twin Force	conv	24	XR 110.04	24	з	6	325 w+0.1%Agral	75	8	50
209 NL	1457	2002 Rau/Delvano	aardappel	19-07-2002	2	XR-L	1	14:44	OWH	grond nder Twin Force	conv	24	XR 110.04	24	3	6	325 w+0.1%Agral	75	в	50
210 NL	1458	2002 Rau/Delvano	aardappel	19-07-2002	2	XR-L	2	14:44	OWH	aronal nater Twin Force	conv	24	XR 119.94	24	з	6	325 w+0.1%Agral	75	B	50
211 NL	1461	2002 Rau/Delvano	aardappel	16-08-2002	6	XR-L	1	10:58	OWH	grond nder Twin Force	conv	24	XR 110.04	24	3	6	325 w+0,1%Agral	80	с	50
212 NL	1462	2002 Rau/Delvano	aardappel	15-08-2002	5	XR-I	2	10:58	OWH	grond nder Twin Force	conv	24	XR 110.04	24	з	6	325 w+0.1%Agral	80	с	50
213 NL	1463	2002 Rau/Delvano	aardappel	27-08-2002	6	XR-L	1	16:51	OWH	grond nder Twin Force	conv	24	XR 110.04	24	3	6	325 w+0,1%Agral	60	c	50
214 NL	1464	2002 Rau/Delvano	aardappel	27-08-2002	6	XR-L	2	16:51	OWH	grand inder Twin Force	COLL	24	XR 110.04	24	3	6	325 w+0.1%Agral	60	c	50
215 NL	1465	2002 Rau/Delvano	aardappel	27-08-2002	7	XR-L	1	17:05	OWH	grand inder Twin Force	conv	24	XR 110.04	24	3	6	325 w+0,1%Agral	60	č	50
216 NL	1465	2002 Rau/Delvano	aardappel	27-08-2002	7	XR-L	2	17:05	OWH	grond nder Twin Force	COLLA	24	XR 110.04	24	а	6	325 w+0.1%Agral	60	c	50
217 NL	1467	2002 Rau/Delvano	aardappel	29-08-2002	e	XeJ	1	13:02	OWH	grand inder Twin Force	conv	24	XR 110.04	24	3	6	325 w+0,1%Agral	60	č	50
218 NL	1458	2002 Rau/Delvano	aardappel	29-08-2002	8	XR-L	2	13:02	OWH	grond nder Twin Force	COTV	24	XR 110.04	24	3	6	325 w+0.1%Agral	60	c	50
219 NL	1469	2002 Rau/Delvano	aardappel	29-08-2002	9	XR-L	1	18:06	OWH	grond nder Twin Force	conv	24	XR 110 04	24	3	6	325 w+0.1%Agral	60	č	50
220 NL	1470	2002 Rau/Delvano	aardappel	29-08-2002	a a	XR-I	2	18:06	OWH	grand nder Twin Force	COTV	24	XR 110.04	24	3	6	325 w+0.1%Agral	60	c	50
221 NL	1471	2002 Rau/Delvano	aardappel	30-08-2002	10	XR-L	1	11:37	OWH	grond nder Twin Force	conv	24	XR 110 04	24	3	6	325 w+0.1%Agral	60	č	50
222 NL	1472	2002 Rau/Delvano	aardappel	30-08-2002	10	XR-L	2	11:37	OWH	grand inder Twin Force	conv	24	XR 110.04	24	3	6	325 w+0.1%Agral	60	c	50
223 NL	1473	2002 RauDelvano	aardappel	30-08-2002	11	XR-I	1	15:33	OWH	grond nder Twin Force	conv	24	XR 110.04	24	3	6	325 w+0.1%Agral	60	č	50
224 NL	1474	2002 Rau/Delvano	aardappel	30-08-2002	11	XR-L	2	15:33	OWH	grand inder Twin Force	conv	24	XR 110.04	24	3	6	325 w+0.1%Agral	60	ç	50
225 NL	1475	2002 Rau/Delvano	aardappel	03-09-2002	15	XR-L	-	16:12	OWH	grond nder Twin Force	conv	24	XR 110.04	24	3	6	325 w+0.1%Agral	60	c	50
225 NL	1476	2002 Rau/Delvano	aardappei	03-03-2002	15	XRd	2	16:12	OWH	grond nder Twin Force	conv	24	XR 110 04	24	3	e e	325 w+0.1%Agral	00	č	50
227 NL	1477	2002 Rau/Delvano	aardappel	03-09-2002	16	XR-L	-	16:57	OWH	grond nder Twin Force	conv	24	XR 110.04	24	3	6	325 w+0.1%Agral	60	c	50
227 NL	1476	2002 Rau/Delvano 2002 Rau/Delvano	aardappel	03-09-2002	16	XR-L	2	16:57	OWH	grond nder Twin Force	conv	24 24	XR 110.04	24	3	•	325 w+0.1%Agral	60	c	50
229 NL	1481	2002 Rau/Delvano	aardappel	04-09-2002	18	XR-L	1	17:52	OWH	•	conv	24	XR 110.04	24	3	6	325 w+0.1%Agrai	65	c	50
230 NL	1482	2002 Rau/Delvano	aardappel	04-09-2002	10	XR-L	2	17:52	OWH	grond nder Twin Force grond nder Twin Force	conv	24	XR 110.04	24	3	•	325 w+0.1%Agral	65	c	50
230 NL	1697	2002 Nationalia	aardappel	10-07-2003	10	XR-L-6	2	10:18	OWH	grond nder Twin Force	conv	24	XR 110.04	24	3	6	310 w+0.1%Agral	65	6	50
231 NL	1698	2003 nisnelheid	aardappel	10-07-2003		XR-L-6	2	10:18	OWH	grond inder Twin Force	conv	24	XR 110.04	24	3	6	310 w+0,1%Agral	65	B	50
232 NL 233 NL	1701	2003 njsnemek 2003 njsnemek		31-07-2003		XR-L-6	1	10:52	OWH	grond nder Twin Force	conv	24	XR 110.04	24	3	•	310 w+0,1%Agrai	60	c	50
235 NL 234 NL	1702		aardappel	31-07-2003	4	XR-L- 6	2	10:52	OWH	-	conv	24 24	XR 110.04	24	3	6	310 w+0.1%Agral 310 w+0.1%Agral	60	c	50
234 NL 235 NL	1703		aardappel	31-07-2003	4	XR-L-6	1	16:04	OWH	grond nder Twin Force	conv	24	XR 110.04	24	3	6		60	c	50
235 NL 236 NL	1704		aardappei	31-07-2003	5	XR-L- 6	2	16:04	OWH	grond nder Twin Force grond nder Twin Force	conv	24	XR 110.04	24	3	0	310 w+0.1%Agral	60	c	50
237 NL	1705		aardappel	31-07-2003	6	XR-L- 6	2		OWH	•	COLLA		XR 110.04		3	6	310 w+0.1%Agral	60	c	50
237 NL 238 NL	1706	2003 nijsnelheid 2003 nijsnelheid	aardappei aardappei	31-07-2003	0 6	XR-L- 6	2	16:36 16:36	OWH	grond nder Twin Force grond nder Twin Force	CONV	24 24	XR 110.04	24 24	3	6	310 w+0.1%Agral 310 w+0.1%Agral	60	c	50
239 NL	1707	2003 njsneheid	aardappei	01-08-2003	-	XR-L-6	2	11:38	OWH	grond nder Twin Force	COTV	24	XR 110.04	24	3		310 w+0.1%Agral	60	c	50
240 NL	1707	2003 hjsneheid	aardappei	01-08-2003	7	XR-L-6	2	11:38	OWH	grond nder Twin Force	CONV	24	XR 110.04	24	3	6	310 w+0.1%Agral	60	c	50
240 NL 241 NL	1709	2003 njsneheid	aardappel	01-08-2003	,	XR-L-6	1	13:55	OWH	grand inder Twin Force	COTV	24 24	XR 110.04	24	3	•	310 w+0.1%Agral	60	c	50
242 NL	1710	2003 njsneheid	aardappel	01-08-2003	6	XR-L-6	2	13:55	OWH	grond nder Twin Force	conv	24	XR 110.04	24	3	6	310 w+0.1%Agral	60	c	50
242 NL	1711	2003 nijsnelheid	aardappel	15-08-2003	9	XR-L-6	1	12:06	OWH	grond nder Twin Force	COTV	24	XR 110.04	24	3	6	310 w+0.1%Agral	50	c	50
244 NL	1712	2003 njsnelheid	aardappel	15-08-2003	ý 9	XR-L-6	2	12:06	OWH	grond inder Twin Force	conv	24	XR 110.04	24	3	6	310 w+0.1%Agral	50	c	50
244 NL	1713	2003 njsneheid 2003 njsneheid	aardappel	15-08-2003	9 10	XR-L-6	- 1	13:42	OWH	grond inder Twin Force	COTV	24 24	XR 110.04	24	3	6	310 w+0.1%Agral	50	c	50
246 NL	1713	2003 njsnelheld	aardappel	15-08-2003	10	XR-L-6	2	13:42	OWH	grond inder Twin Force	conv	24	XR 110.04	24	3	6	310 w+0.1%Agral	50	c	50
240 NL	1715	2003 rijsnelheid	aardappel	21-08-2003	10	XR-L-6	1	15:43	OWH	grond inder Twin Force	conv	24	XR 110.04	24	3	6	310 w+0.1%Agral	65	c	50
248 NL	1716	2003 njsnelheid	aardappei	21-08-2003	11	XR-L-6	2	15:43	OWH	grond nder Twin Force	conv	24	XR 110.04	24	3	6	310 w+0.1%Agrai	65	c	50
248 NL	1710	-	aardappel	21-08-2003	12	XR-L-6	1	17:36	OWH	5	conv	24	XR 110.04	24	3	e e	-	65	c	50
245 NL 250 NL	1718	2003 rijsnelheid 2003 rijsnelheid	aardappel	21-08-2003	12	XR-L-6	2	17:36	OWH	grand nder Twin Force arona naer Twin Force	conv	24	XR 110.04	24	3	6	310 w+0.1%Agral 310 w+0.1%Agral	65	c	50
250 NL 251 NL	1873				12		4			5					3		-	65		50
252 NL	1873	2003 sleepdoek	aardappel	26-06-2003 26-06-2003		Hardi-XR Hardl-XR		17:12	OW/H	grond inder Twin Force	conv	21	XR 110.04	21	-	• •	311 w+0.1%Agral		Å	50 50
252 NL 253 NL	1874	2003 sleepdoek	aardappel	25-06-2003 26-06-2003	1	Hardi-XR Hardi-XR	2	17:12	OWH	grond nder Twin Force	conv	21	XR 110.04 XR 110.04		3	6	311 w+0.1%Agral	65	A	50 50
		2003 sleepdoek	aardappel		2		1	17:13	OWH	grond nder Twin Force	conv	21		21	-	6	311 w+0.1%Agral	65	<u>^</u>	50 50
254 NL	1876	2003 sleepdoek	aardappel	26-06-2003	2	Hardl-XR	2	17:13	OM/H	grond nder Twin Force	conv	21	XR 110.04	21	3	6	311 w+0.1%Agral	65	A	
255 NL	1877	2003 sleepdoek	aardappel	26-06-2003	3	Hardi-XR	1	16:56	OWH	grond nder Twin Force	conv	21	XR 110.04	21	3	6	311 w+0,1%Agral	65	<u>^</u>	50
256 NL	1878	2003 sleepdoek	aardappel	25-06-2003	3	Hardl-XR	2	16:56	OWH	grond nder Twin Force	conv	21	XR 110.04	21	3	6	311 w+0.1%Agral	65	A .	50
257 NL	1879	2003 sleepdoek	aardappel	26-06-2003	4	Hardi-XR	1	16:57	OWH	grond nder Twin Force	conv	21	XR 110.04	21	3	6	311 w+0,1%Agral	65	A	50
258 NL	1880	2003 sleepdoek	aardappel	25-06-2003	4	Hardl-XR	2	16:57	OWH	grond nder Twin Force	conv	21	XR 110.04	21	3	6	311 w+0.1%Agral	65	A	50
259 NL	1881	2003 sleepdoek	aardappel	09-07-2003	6	Hardi-XR	1		OWH	grond nder Twin Force	conv	21	XR 110.04	21	3	6	311 w+0,1%Agral	65	8	50
260 NL	1882	2003 sleepdoek	aardappel	09-07-2003	5	Hardi-XR	2	•	OWH	grond nder Twin Force	COLL	21	XR 110.04	21	3	6	311 w+0.1%Agral	65	8	50

261 NL	1883	2003	sleepdoek	aardappel	09-07-2003	6	Hardl-XR	1		OWH	grond nder Twin Force	conv	21	XR 110.04	21	3	6	311 w+0.1%Agral	65	8	50
262 NL	1884	2003	sleepdoek	aardappel	09-07-2003	6	Hardl-XR	2	-	OM/H	grond oder Twin Force	conv	21	XR 110 04	21	з	6	311 w+0.1%Agral	65	8	50
263 NL	1885	2003	sleepdoek	aardappel	24-07-2003	7	Hardi-XR	1	19:31	OWH	grand nder Twin Force	conv	21	XR 110.04	21	3	6	311 w+0.1%Agral	60	с	50
264 NL	1886	2003	sleepdoek	aardappel	24-07-2003	7	Hardl-XR	2	19:31	OWH	grond nder Twin Force	conv	21	XR 110.04	21	3	6	311 w+0.1%Agral	60	с	50
265 NL	1887	2003	sleepdoek	aardappel	24-07-2003	8	Hardi-XR	1	19:32	OW/H	grond nder Twin Force	COLLA	21	XR 110 04	21	з	6	311 w+0.1%Agral	60	c	50
266 NL	1888	2003	sleepdoek	aardeppel	24-07-2003	8	Hardi-XR	2	19:32	OWH	grond nder Twin Force	conv	21	XR 110.04	21	3	6	311 w+0.1%Agral	60	с	50
267 NL	1889	2003	sleepdoek	aardappel	25-07-2003	9	Hardl-XR	1	16:41	OWH	grond nder Twin Force	conv	21	XR 110.04	21	3	6	311 w+0.1%Agral	60	с	50
268 NL	1890	2003	sleepdoek	aardappel	25-07-2003	9	Hardi-XR	2	16;41	OW/H	grond nder Twin Force	COTIV	21	XR 110 04	21	з	6	311 w+0.1%Agral	60	c	50
269 NL	1891	2003	sleepdoek	aardappel	25-07-2003	10	Hardi-XR	1	16:41	OMH	grond nder Twin Force	conv	21	XR 110.04	21	3	6	311 w+0.1%Agral	60	с	50
270 NL	1892	2003	sleepdoek	aardappel	25-07-2003	10	Hardl-XR	2	16:41	OWH	grond nder Twin Force	conv	21	XR 110.04	21	3	6	311 w+0.1%Agral	60	с	50

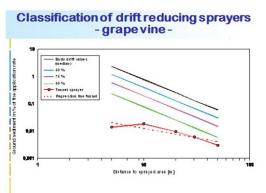
	Temp.	LFrel.	Win	d-																							
	°C	%		tung	W	indgesch	0.50 m	1 m	1.25 m	1.75 m	2 m	2.25 m	2.75 m	3 m	3.25 m	3.75 m	4 m	4.25 m	4.75 m	5 m	5.25 m	5.5 m	7.75 m	10 m	15 m	20 m	30 m
	Temp.	RH		d direction	wi	nd speec	0.5	1	1.25	1.5	2	2.25	2.5	3	3.25	3.5	4	4.25	4.5	5	5.25	5.5	7.75	10.25	15.25	20.25	30.25
		15	67	21	•	1.2			0.44			0.20			0.13			0.08			0.07		0.13	0.04	0.02	0.01	0.02
		15	67	21	;	1.2			0.89			0.27			0.11			0.11			0.08		0.09	0.03	0.02	0.02	0.02
		15 15	67 67	21 21		1.2 1.2			1.07 1.73			0.20 0.76			0.16 0.43			0.13 0.14			0.09 0.08		0.09 0.08	0.05 0.04	0.02	0.02	0.01
		15	67	21		1.2			1.75			0.76			0.43			0.14			0.08		0.08	0.04	0.03	0.01	0.02
		15	67	21		1.2			3.40			0.62			0.22			0.05			0.09		0.04	0.04	0.01	0.01	0.01
		17	57	10	,	1.7			0.31			0.20			0.19			0.13			0.22		0.08	0.04	0.02	0.02	0.01
		17	57	10	•	1.7			0.40			0.09			0.12			0.12			0.08		0.03	0.02	0.03	0.01	0.01
		17	57	10		1.7			0.42			0.11			0.17			0.09			0.07		0.04	0.04	0.02	0.04	0.04
		17	57	10	•	1.7			0.47			0.30			0.12			0.11			0.12		0.04	0.04	0.03	0.01	0.02
		17	57	10		1.7			1.87			0.51			0.18			0.18			0.13		0.10	0.06	0.05	0.01	0.01
		17 10	57 82	10 4	,	1.7 2.1			1.95 0.23			0.74 0.25			0.18			0.19 0.09			0.10 0.08		0.07 0.05	0.06 0.05	0.04 0.04	0.02	0.01 0.04
		10	82	4		2.1			0.23			0.23			0.15 0.13			0.09			0.08		0.05	0.05	0.04	0.04	0.04
		10	82	4	,	2.1			0.28			0.15			0.15			0.15			0.08		0.05	0.05	0.04	0.02	0.02
		10	82	4	,	2.1			0.31			0.30			0.18			0.12			0.09		0.04	0.04	0.05	0.06	0.01
		10	82	4	•	2.1			0.32			0.30			0.27			0.15			0.13		0.06	0.06	0.05	0.04	0.01
		10	82	4	,	2.1			0.54			0.15			0.13			0.20			0.12		0.06	0.06	0.04	0.02	0.01
19.4		18.9	,	4	1.4	1.6	33.84	19.94		10.33		2.75	,		1.27			° 0.99			0.76		0.39	0.22	0.16		
19.4		18.9	•	4	1.4	1.6	38.23	26.20		15.86		0.20			2.92			* 2.16	•		* 0.94	:	0.65	0.44	0.30		
22.5		21.3	67	23	2.0	2.5	27.48	15.40		3.52		1.04			1.24			1.13	•		0.68		0.34	0.22	0.12		
22.5 22.5		21.3 21.7	67 57	23 10	2.0 3.0	2.5 4.4	40.09 53.70	16.57 39.52		4.27 22.81		2.12 7.81			' 1.89 ' 2.37			2.18 1.97			" 1.12 " 2.06		0.34 0.68	0.42	0.13		
22.9		21.7	57	10	3.0	4.4	41.59	16.63		7.85		7.01			* 2.02			1.90			* 1.07		0.88	0.79	0.02		
19.3		19.0	56	-15	2.3	3.1	38.18	23.18		11.14					4.76			2.79			2.02		1.18	0.91	0.54		
19.3		19.0	56	-15	2.3	3.1	53.72	35.05		18.85	,	21.15	,		. 8.21	,		3.22	,		1.94		1.19	0.95	0.71		
19.4		19.2	58	-10	2.2	3.1	43.85	24.18		15.14		4.07			* 2.65			2.14			1.50	•	0.81	0.48	0.36		
19.4		19.2	58	-10	2.2	3.1	59.96	35.79		18.10		0.74	,		2.32			1.35			0.86		0.51	0.35	0.23		
17.9		18.0		-2	2.3	3.0	29.09	19.75		16.96	,	0.07			2.58	,		2.10			1.20		0.82	0.68	0.35		
17.9 24.3		18.0		-2	2.3	3.0	25.83	20.18		13.77			•		1.48			• 0.96 • 1.28	•		* 0.90 * 0.96	:	0.63	0.47	0.31		
24.3	-	23.5 23.5	38 38	7	2.3 2.3	3.1 3.1	45.94 24.28	30.55 19.67		15.40 5.51		7.01			· 2.26			· 1.28			· 0.96		0.45 0.28	0.29	0.20		
24.0		23.4	45	0	2.6	3.4	37.93	22.64		7.41		2.20			* 1.48			• 1.39			* 1.44		0.83	0.24	0.20		
24.1		23.4	45	0	2.6	3.4	60.22	20.68		5.26			,		* 1.40			1.56	,		1.26		0.97	0.82	0.55		
24.4	:	23.6	48	-15	2.2	3.0	42.69	16.80		4.93		4.56	,		4.66			2.88	,		2.53		1.31	1.04	0.88		
24.4	:	23.6	48	-15	2.2	3.0	47.28	33.53		33.70	•	10.01	•		* 2.89	•		* 2.55	•		2.25	•	1.38	0.93	0.51		
19.0		19.3	96	30	2.9	3.9	45.82	21.95		4.32		2.00	'		* 1.11			0.48			0.36		0.23	0.28	0.30		
19.0		19.3	96	30	2.9	3.9	41.77	21.63		6.58		2.27			2.58			2.80			1.23		0.78	0.25	0.23		
14.4 14.4		14.2 14.2	75 75	11 11	2.8 2.8	3.8 3.8	9.59 24.98	25.91 29.31		15.32 17.52		6.87 2.46			* 3.10 * 1.69			* 1.35 * 1.44			* 1.08 * 1.75		0.53 1.01	0.39	0.30		
14.4		14.2	80	13	2.0	2.7	24.98 32.87	33.27		8.72		1.27			0.92			0.62			0.44		0.21	0.54	0.43		
13.5		13.6	80	13	2.2	2.7	28.63	16.95		3.02	,		,		1.09	,		* 0.48	,		· 0.21		0.13	0.18	0.00		
13.2		13.3	84	30	3.1	3.5	30.48	21.69		6.24		1.96			1.53			1.32			1.07		0.66	0.67	0.31		
13.2		13.3	84	30	3.1	3.5	24.52	17.65		5.14	•	2.48	•		* 2.91	•		2.70	•		1.80	•	0.69	0.48	0.27		
12.3		12.5	92	15	3.7	4.4	33.15	42.65		21.29	,	0.00	,		4.56	,		2.43	,		1.65		1.16	0.49	0.14		
12.3		12.5	92	15	3.7	4.4	39.99	41.87		20.83	,	10.41			5.39			2.16	•		2.20	:	0.88	0.47	0.40		
12.9		12.9	79	16	3.2	4.2	21.38	17.20		4.30		1.40			1.03			0.78			0.55		0.41	0.28	0.16		
12.9 11.3		12.9 11.7	79 90	16 12	3.2 2.0	4.2 2.7	34.94 25.79	25.33 17.43		4.51 6.69		0.33			* 0.52 * 0.79			• 0.41 • 0.87			" 0.31 " 0.42		0.18 0.13	0.17	0.10		
11.3		11.7	90	12	2.0	2.7	50.29	34.11		17.36	,	1.00	,		1.07	,		* 0.83	,		0.42		0.13	0.10	0.18		
15.6		14.6	71	14	2.3	3.0	22.00	11.42		3.19		1.20			0.52	:		0.34	:		0.35	:	0.20	0.29	0.20		
15.6 15.5		14.6 14.7	71 71	14 15	2.3 2.3	3.0 3.2	24.71 40.78	14.17 30.18		2.23 13.91	;	0.57 5.08			* 0.82 * 2.58			• 0.50 • 2.07			* 0.28 * 1.63		0.37	0.05	0.12		
15.6		14.7	71	15	2.3	3.2	46.18	43.02		19.59	:	6.59	:		* 3.23			2.82	:		2.34	:	1.07	0.58	0.24		
12.8 12.8		12.8 12.8	82 82	18 18	1.7 1.7	2.3 2.3	22.67 21.56	12.76 8.97		2.78 2.59		1.20			* 0.63 * 0.82	:		• 0.57 • 0.56			* 0.42 * 0.48	:	0.33	0.27	0.21		
11.0		11.2	86	-11	0.7	0.8	23.28	14.28		3.44					• 0.86			° 0.56			• 0.45		0.34	0.23	0.09		
11.0		11.2	86	-11	0.7	0.8	20.64	13.00		2.33		0.73			0.73			• 0.50	•		0.36		0.24	0.16	0.07		
10.8 10.8		10.5 10.5	59 59	19 19	4.1 4.1	5.2 5.2	18.50 24.84	16.89 14.37		6.93 4.94		2.88 2.31			2.93 1.66			" 3.33 " 1.44			" 3.01 " 2.00		2.30 1.34	1.29 1.46	1.07 1.12		
17.4		17.3	92	13	2.0	2.7	32.19	13.26		4.37	,	2.00	,		1.26			0.87			0.77		0.29	0.16	0.29		
17.4 18.3		17.3 18.6	92 92	13 -30	2.0 2.8	2.7 3.5	32.63 28.02	7.47 18.41		1.20 3.98	;	0.96 3.58	;		" 0.47 " 1.68			0.52 0.82	,		" 0.38 " 0.79		0.31	0.21	0.16		
.0.0					2.0	0.0	20.02	10.41		0.00		0.00			1.00			0.02			0.75		0.20	0.04	0.00		

18.3	18.6	92	-30	2.8	3.5	20.68	14.38	7.13		2.72			1.32	,		0.88		,	0.55		0.69	0.15	0.08
18.8	19 D	86	-16	3.4	3.9	43.68	36.46	28.98	-	7.91			9.04			4.65			5.00	•	2.40	131	071
18.8	19.0	86	-16	3.4	3.9	51.03	49.77	36.56	1	9.78		2	8.34	:		5.34	÷	:	3.30	÷	1.35	2.00	0.37
18.3 18.3	18.4 18.4	86 86	-8 -8	3,4 3,4	4.1 4,1	62.99 36.23	34.67 22.89	10.79 10.92		7.25			8.14 3.30			3.37 2.64			2.07		2.07 1.20	1,44	0.68 0.46
20.1	19.6		23	2.9	4.2	47.93	14.14	2.76		1.96	,		0.94			0.99			0.71		0.50	0.43	0.23
20.1	19.6		23	2.9	4.2	38.00	15.98	9.24	-	4.36			2.61			1.46			2.02		0.62	0 53	0 26
21.0	20.5	73	7	3.9	5.0	37.02	20.98	5.95	1	1.83	`		1.76	:	× .	2.42	•	•	1.73	•	0.98	0.96	0.53
21.0	20.5	73	7	3.9	5.0	52.09	21.27	13.90	1	13.33	``	ì	1.03			1.52			1.46	:	0.85	0.47	0.24
19.7 19.7	19.6 19.6	73 73	-5 -5	3.1 3.1	3.9 3.9	29.04 36.33	15.29 16.42	6.33 7.69		2.37 3.33	,		1,00			0.78 1.04			0.66 0.89		0.51	0.37 0.61	0.20
19.6	19.5	84	-22	2.2	2.7	28.30	12.78	5.78		4.15	,	,	2.80			2.18			1.39		0.94	0.63	0.52
19.6	19.5	84	-22	2.2	2.7	36.15	12.99	8.43	-	3.56			2.59		•	2.21	•	•	3.09	•	1.80	1.15	0.68
17.5	15.4	54	-16	3.4	4.4	26.47	5.20	1.14		0.29	· ·	`	0.23		× .	0.45			0.29	•	0.24	0.23	0.22
17.5	15.4	54	-16	3.4	4.4	33.02	13.91	0.91		0.35			0.35			0.60			0.66	:	0.26	0.25	0.45
15.1 15.1	14.2 14.2	58 58	13 13	2.5 2.5	3.1 3.1	33.61 42.27	20.69 21.39	9.02 13.03	÷.	4.03 5.96			2.84 2.62		,	1.98 1.79	;		1.48 1.48	;	0.92 0.72	0.62	0.42
15.9	14.5	53	5	2.8	3.6	37.01	18.19	5.49	-	2.97			2.14			1.39			0.98		0.72	0.34	0.33
15.9	14.5	53	5	2.6	3.6	32.30	15.72	5.53	1.1	2.48			1.86		κ.	1.56			1.50		0.72	0.59	0.53
18.9	17.8	68	-25	3.7	5.1	31.54	14.05	3.12	-	3.52	,	•	3.32	•	,	3.04		,	1.69	:	0.98	0.42	0.30
18.9	17.B	68	-25	3.7	6.1	25.16	7.53	1.03	-	0.97	•	•	0.83			0.83		•	1.11		1.11	0.82	0.43
21.0 21.0	20.1 20.1	89 89	17 17	1.8 1.8	2.1 2.1	27.40 36.90	18.00 16.25	4.87 4.01	÷	2.77			1.44 1.03			0.97 0.74			0.73 0.51		0.33	0.32	0.19 0.14
18.0	17.6	73	18	1.3	1.9	28.12	16.85	2.27	-	0.94			0.64			0.47			0.61		0.29	0.22	0.14
18.0	17.6	73	18	1.3	1.9	27.81	15.27	3.66	-	1.16	٩		0.69		•	0.50			0.36		0.24	0.15	0.10
19.2	18.4	-	4	1.7	2.1	9.31	12.23	3.02	-	1.05			0.99		•	0.72			0.76		0.31	0.27	0.04
19.2	16.4	•	4	1.7	2.1	8.72	10.31	3.01	-	2.38	,	•	0.82	,	•	0.56		1	0.59		0.43	0.35	0.14
22.0	21.6	61	24	1.9	2.5	18.07	16.12	4.26		2.40	`		0.85			0.70	4	٩	0.73	3	0.28	0.17	0.14
22.0	21.6	61	24	1.9	2.5	33.07	19.75	5.78		2.41			1.57			1.22	•		0.74		0.28	0.14	0.07
19.8	19.4	80	15	2.6	3.9	19.33	18.57	4.99		3.44			2.13		,	1.78	•		1.00		1.02	0.65	0.32
19.8	19.4	80	15	2.8	3.9	8.53	12.56	5.59	-	3.51			1,70			1.27			0.94		0.47	031	0 30
22.1	21.0		-22	2.9	3.8	14.36	26.10	4.66	-	1.24			1.18			1.14			1.26		0.85	0.62	0.66
22.1	21.0		-22	2.9	3.8	14.41	13.29	2.65		2.16			1.49			1.06		1	0.67		0.41	0.34	0.26
17.9	17.5		30	3.4	4.1	17.60	11.53	5.52		3.62	,		1.99			1.62			1.08		0.68	0.48	0.29
17.9	17.5					18.81	11.83	4.96		2.71			1.45						0.66		0.68	0.66	
			30	3.4	4.1											2.01							0.36
17.9	17.9		20	3.3	4.2	25.95	11.12	4.40		2.93			1.54	•		1.13			1.05		0.47	0.36	0.19
17.9	179	-	20	3.3	4.2	16,77	12.79	2.44		2.30			1.06			1.33	'		0.93	•	0.62	0 90	0 24
14.9	14.9	-	-26	1.5	1.9	7.19	12.15	3.38		1.95		•	1.01			0.85			0.39	•	0.34	0.28	0,17
14.9	14.9	•	-26	1.5	1.9	7.04	10.27	5.18		3.31	٩	•	1.81	-	•	0.67			0.55		0.40	0.15	0.09
23.8	22.6	53	-17	3.0	3.7	55.10	17.84	2.56	1	1.80	`	`	1.54	•	×	0.74		•	0.74		0.27	0.37	0.50
23.6	22.6	53	-17	3.0	3.7	52.64	20.83	7.13		2.40	`		1.43		·	1.26	4	•	0.74	•	0.50	0.30	0.24
17.8	17.6	78	4	3.5	4.8	54.90	35.10	12.73		9.36	•		5.28	•	•	3.07	•	•	2.54	•	2.19	0.72	0.57
17.8	17.6	78	4	3.5	4.8	48.28	25.05	13.37	-	4.63			2.45		•	1.27			0.91	•	1.06	1 00	0 64
19.5	16.8	53	-27	3.6	4.6	26.01	7.19	1.98		0.69			0.26			0.13			0.13		0.13	0.13	0.02
19.5	16.8	53	-27	3.6	4.6	20.96	6.58	1.83	-	1.77	۰.	•	1.18		•	0.67		•	0.26		0.04	0.05	0.04
15.1	14.2	60	-2	2.0	2.8	21.64	9.68	1.82		1.57	`		1.35			0.91			0.57		0.26	0.25	0.13
15.1	14.2	60	-2	2.0	2.8	22.77	13.13	5.55		2.70			0.81			0.62			0.65		0.26	0.23	0.05
22.1	21.6	60	8	1.7	2.0	22.94	14.70	4.25		2.37			1.39			0.83			0.69		0.32	0.18	0.14
22.1	21.6	60	8	1.7	2.0	25,94	22.06	8.67	-	4.22			2,35			1.59			0.75		0.28	0 27	0 14
19.5	19.1	79	29	4.0	5.1	25.26	15.10	3.38		1.85			1.66			1.12			1.00		0.56	0.42	0.42
19.5	19.1	79	29	4.0	5.1	26.59	10.66	2.28		1.88	,		2.45		,	1.63			1.18		0.75	0.31	0.14
16.9	16.0	63	4	2.5	3.5	36.97	17.35	6.64		3.32	,		3.62			3.23			2.06		1.46	0.57	0.29
16.9	16.0	63	4	2.5	3.5	30.73	19.31	4.45		2.90			1.77			1.56	-		1.66		0.58	0.46	0.40
15.9	15.4	69	-9	2.6	3.5	22.68	21.61	7.33	-	1.84	•		0.85	•	•	0.46	•	•	0.34		0.28	0.23	0.12
15.9	15.4	69	-9	2.8	3.5	24.69	9,31	2.11		2.77			1.62			0.60			0.39		0.24	0.19	0 1 1
17.9	17.6	-	31	3.3	4.3	31.01	9.82	7.21	-	6.49	•		3.81			1.62	•	•	1.36		0.76	0.90	0.49
17.9	17.6	•	31	3.3	4.3	46.66	21.02	14.10	•	4.65	,	•	2.58	,	•	2.56		1	2.41		1.49	1.16	0,60
17.9	18.0		13	3.3	4.2	53.07	28.88	15.75	1	16.11			4.93			4.31	6	•	3.34		1.32	0.23	0.14
17.9	18.0		13	3.3	4.2	43.79	16.17	17.00		9.29	`	`	4.63			5.64	•	•	4.88	•	2.36	0.49	0.14
20.3	18.9		-26	3.1	3.9	37.13	12.46	0.55		0.67	`		0.34	•		0.33	•	•	0.19	•	0.17	0.17	0.12
20.3	18.9	-	-26	3.1	3.9	20.16	9.72	1,34	-	0.68	÷		0.64		÷	0.52			0.34	•	0.18	0.17	0 1 1
22.6	20.7	-	-30	2.9	4.3	20.17	9.64	1.13	-	0.43			0.58			0.64	- e -		0.66		0.74	1.05	0.14
22.6	20.7	-	-30	2.9	4.3	33.38	14.77	5.23		0.87	,		0.44			0.63		,	0.30		0.45	0.58	0.14
17.9	17.3	67	17	2.2	2.6	54.38	30.08	16.59		6.3D			3.55			1.63			2.01		1.74	1.31	0.55
17.9	17.3	67	17	2.2	2.6	34.37	21.84	9.17		5.27			3.71			2.25			2.78		2.37	0.94	0.28
16.2	16.1	71	24	1.3	1.6	47.19	27.80	11.62		4.02			2.91			1.71			1.62		0.82	0.94	0.65
16.2	16.1	71	24	1.3	1.6	39.25	19.62	8.00		3.99			2.98			1.86			1.62		0.90	0.93	0.00
																						0.73	
17.1	16.2	64	1	1.8	2.3	40.35	23.83	13.40		9.01			4.01			2.62			1.93		1.42		0.35
17.1	16.2	64	1	1.8	2.3	39.65	21.24	13.60		11.00			3.79			2.39			1.78		0.91	0.67	0.42

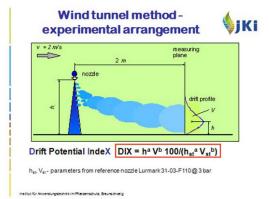
15.8	15.4	69	-9	3.1	4.0	46,39	27,88	10.59		6.60			3.25			2.02			0.85		0.93	0.68	0 47
15.8	15.4	69	-9	3.1	4.0	21.92	15.72	4.37		2.17			1.67			1.21			0.94		0.51	0.23	0.21
16.4	16.8	60	-26	3.7	4.7	15.64	9.07	3.89	•	2.23			0.99	•		0.32		•	0.24	•	0.49	0.49	0.49
18,4	16 B	60	-26	3.7	4.7	9.08	9,39	2.32	-	1.29	-		0.99	•	•	0.74			0.49	•	0.24	0 24	0 30
13.9	13.5	71	7	2.6	3.3	13.45	7.69	2.48		1.25	•		0.55			0.49		,	0.49		0.26	0.24	0.24
13.9	13.5	71	7	2.6	3.3	10.03	3.27	1.25		1.08		,	0.85			0.51			0.41		0.47	0.24	0.22
17.8	15.4	60	8	3.0	3.5	13.63	7.87	2.50		1.75			1.54			0.94			0.63		0.34	0.35	0 16
17.8	15.4	60	8	3.0	3.5	13.00	5.67	1.28	•	1.16	•	•	0.79	•	•	0.68		•	0.47		0.47	0.22	0.16
23.4	22.2	53	-22	3.0	3.9	11.55	8.47	0.94		0.79			0.31			0.18	•	•	0.16	•	0.22	30.0	0.00
23.4	22 2	53	-22	3.0	3.9	9.78	7.40	0.72	-	0.31			0.23			0.18			0.15		0.15	0.15	0.02
17.7	17.4	79	-7	3.5	4.5	16.64	12.91	4.73	-	3.92		,	2.54			1.85			1.74		0.96	0.69	0.62
17.7	17.4	79	-7	3.5	4.5	18.27	11.31	10.32		6.35			3.71			2.04			1.92		1.39	1.17	0.91
									-														
15.1	13.B	53	1	4.0	5.1	8.46	4.74	2.41		2.06			1.49			1.34			1.24		1.41	1.13	0.67
15.1	13.6	53	1	4.0	5.1	10.71	5.89	3.37	•	3.33	¢		3.41		•	1.64		•	1.34		1.09	0.96	0.76
15.4	14.1	50	-20	3.3	4.3	6.88	1.46	0.66		0.57			0.70	•		0.46	•	•	0.45	•	0.28	0.14	0.14
15.4	14.1	50	-20	3.3	4.3	6.97	2.30	0.95	-	0.84	-		1.08			0.51			0.43		0.35	0.28	0.28
22.4	20.7		-24	2.4	3.4	14.09	13.25	4.92		1.01		,	0.24			0.11			0.11		0.12	0.05	0.03
22.4	20.7		-24	2.4	3.4	19.67	13.02	4.96		1.92			0.67			0.21			0.14		0.02	D.06	0.01
19.7	18.7		1	1.8	2.2	19.62	10.51	2.69		2.56			1.03			0.60			0.35		0.29	0.21	0.29
19.7	18.7		1	1.8	2.2	17.04	7.99	3.47		2.37			1.63	r		1.07	e	6	0.60		0.31	0.33	0.29
23.9	22.8	62	-1	2.3	2.9	40.57	29.09	13.04	•	6.28	•	•	1.81	•	•	1.47	•	•	1.34	•	1.09	0.51	0.23
23.9	22.8	62	-1	2.3	2.9	24.36	12.49	7.36	-	6.66		-	2.89			1.70			1.40		0.71	0.58	0.23
22.8	21.6	66	-11	1.6	2.0	22.84	13.12	4.21		1.33			0.71			0.45			0.33		0.18	0.07	0.02
22.8	21.8	66	-11	1.6	2.0	36.52	25.56	8,86		5.41			2.22			0.73			0.26		0,19	0.13	0.05
17.8	17.4	71	-2	2.1	3.4	32.52	20.48	20.38		7.08			3.37			2.23			1.56		1.34	0.90	0.50
17.8	17.4	71	-2	2.1	3.4	25.18	15.38	10.32	•	2.86			2.16	•		2.05	•	•	1.87	•	1.48	1.00	0.60
18.8	17.7	70	-24	2.0	3.4	26.81	10.90	8,87	-	3.23			2.77	•	•	3.30	•	•	2.17	•	1.55	1.33	1.18
18.8	17.7	70	-24	2.0	3.4	27.66	17.58	9.05	•	4.30			3.75			2.86			2.48		2.00	1.99	1.33
24.1	22.5		-7	1.6	2.6	17.46	14.47	3.98		3.79			1.67			1.25			1.00		0.48	0.32	0.17
24.1	22.5	٥	.7	1.6	2.6	10,77	6.24	2.53	-	1.64			1,12			0.79			0.69		0.39	0.33	0.21
		ų																					
22.3	21.4	•	31	1.9	2.3	23.19	23.92	12.94	•	2.92	•	•	0.56	,	•	0.22		,	0.13		0.06	0.02	0.01
22.3	21.4	0	31	1.9	2.3	16.34	18.34	8.42	•	4.40			0.57		•	0.45		,	0.41	•	0.10	0.05	0.01
20.1	19.5	-	-24	2.2	2.9	0.57	0.42	0.48	-	0.36		-	0.31	•	•	0.24	•		0.19	•	0.09	0 07	0 05
20.1	19.5	0	-24	2.2	2.9	2.45	2.56	0.36	-	0.29	,		0.24	,		0.19		,	0.20		0.13	0.13	0.07
	,	73				18.77	14.11	5.72		3.19			1.54			0.99			0.71		0.47	0.31	0.27
		73				20.41		3.56		2.18			1.55			1.20			0.85		0.57	0.37	0 27
							6.10		-														
,	,	82		,		26.75	16.27	3.94	•	0.93	,	•	0.86	,	•	0.70		,	0.52		0.37	0.25	0.16
1		82		· ·		12.57	11.73	4.01		1.24			0.52	•		0.34	•	•	0.38	•	0.32	0.23	0.20
10.5	10.4	67	26	2.4	3.0	25.68	12.18	10.34	-	1.64	-		0.40			0.30			0.20	•	0.13	0.12	0.06
10.5	10.4	67	26	2.4	3.0	12.36	10.82	7.62	•	0.95		•	0.35			0.31			0.21		0.11	0.11	0.09
16.4	,	58	6	3.3	3.9	60.30	37.67	12.50		7.90			3.85			2.79			2.46		1.81	1.03	0.48
16.4		56	6	3.3	3.9	54.14	26.43	17.54	-	13.68			12.40			4.76			2.67		1.66	1.21	0.68
10.9	,	-		0.0	3.5																		
	,			,		43.20	18.97	9.13		4.18			2.76			1.46	•	·	0.85		0.54	0.53	0.39
						46.74	19.70	5.53		2.38	,		1.57			1.12	•		0.82	•	0.70	0.70	0.34
22.7	20.8	50	30	2.8	3.3	44.31	21.85	10.20		6.16	•		2.34			1.75	•		0.92		0.79	0.65	0.56
22.7	20.6	50	30	2.8	3.3	44.37	17.23	9.53	-	4.20	•	•	2.03		•	1.36			1.21		0.87	0.96	0.48
23.7		56	24	1.6	2.2	12.97	9.68	1.30		0.44			0.31			0.30			0.23		0.13	0.06	0.05
23.7		55	24	1.8	2.2	15.56	5.00	2.00	-	0.77	-		0.31			0.21			0.20		0.11	0.08	0.05
	,	69	27	2.5	3.1	14.41	7.76	1.68		0.73			0.85			0.75			0.20		0.46	0.23	0.13
		69		2.5	3.1	16.48	3.22	0.97		1.37			1.66	•		1.67	•	•	0.66	•	0.33	0.33	0.16
23.9	22.6		-1	1.7	2.3	11.65	2.42	1.61	-	1.18	-		0.83	•		0.74			0.63		0.43	0.28	0.19
23.9	22.6	•	-1	1.7	2.3	16.11	5.49	2.24		0.78			0.57		× .	0.56			0.46		0.34	0.23	0.17
22.5	21.6		13	1.4	1,9	21.48	8.93	4.40		1.38			0.80			0.75	•		0.70		1.10	0.46	0.28
22.5	21.6		13	1.4	1.9	26.08	13.10	7.90	-	3.29	-		1.84			1.12			0.80		0.41	0.33	0.38
23.5	, 21.0	56	20	1.9	2.5	21.61	11.90	1.33		0.93			0.38			0.23			0.12		0.07	0.05	
									2		-			-				-					0.06
23.5	•	56	20	1.9	2.5	20.13	9.17	1.23		1.05		•	0.26	•	•	0.28	•	•	0.28	•	0.10	0.05	0.05
•	•	69	•	2.9	3.7	24.75	7.89	0.97	•	0.46		•	0.38			0.29			0.19		0.13	0.09	0.03
1	,	69		2.9	3.7	19.55	5.77	0.74		0.46			0.30			0.23	6		0.23	3	0.14	0.08	0.06
					-	23,40	6.41	1.88		0.95			1,09			0.54			0.60		0.32	0.22	0.21
						49.70	13.80	7.20		3.45						1.98			1.15		0.70	0.60	0.34
02.0	21.3	50	22	0.0	3.1	42.67	20.21	12.42		8,65	,	,	6.04			3.29			1.15		0.81	0.42	0.34
22.6				2.6										-						-			
22.8	21 3	50	22	2.8	3.1	28.62	15.21	7.13	-	3.40		-	2.35			1.21	•		0.90	•	0.95	0.60	0 31
20.0	18.7	-	26	2.1	3.0	32.99	20.26	10.31	-	1.79	•	·	0.81	,	•	0.60		,	0.31		0.18	0.12	0.04

20.0	18.7	•	26	2.1	3.0	34.66	19.01	6.88	•	1.35	•	•	1.08		•	0.71			0.42		0.21	0.15	0.05
19.1	19.0	76	-26	1.9	2.3	20.08	7.24	1,47		0.56			0.28	•		0.17	•	•	0.11	•	0.04	0.02	0.02
19.1	19.0	75	-26	1.9	2.3	14.00	4.82	0.72		0.13		,	0.10		,	0.10			0.09		80.0	0.05	0.02
20.1	19.7	-	-20	2.2	2.8	21.77	10.92	3.92	-	1.86			0.99		-	0.90			0.73		0.53	0.33	0.27
20.1	19.7		-20	2.2	2.8	18.10	8.30	2.70		1.37			1.10			1.05			0.87		0.69	0.53	0.32
				2.9				4.77		0.64			0.57			0.79			0.66		0.51	0.26	0.22
21.3	20.2	61	-27		3.8	19.35	8.98																
21.3	20.2	61	-27	2.9	3.8	15.18	9.65	2.57		0.89	`		0.32			0.23	•		0.19	•	0.27	0.23	0.21
21.1	19.9	58	-12	2.7	3.4	29.01	11.94	4.15	-	1.48	•	•	1.42	,	,	0.79		,	0.68		0.49	0.39	0.29
21.1	19 9	58	-12	2.7	3.4	34.63	19.53	15.99	-	6.92		-	5.07			3.12	•		1.28	•	0.27	0.27	0 17
16.4	17.4	60	-3	2.8	4.1	16.29	15.41	10.35	1.1	5.31	`	`	1.86		× .	0.91	•		0.83	,	0.71	0.43	0.16
18.4	17.4	60	-3	2.8	4.1	27.18	24.02	17.14	-	7.38			2.49		-	0.90			0.47		0.27	0.24	0.16
20.3	18.9		28	2.1	2.8	20.96	19.64	9.65		3.95	,		1.87		ν.	1.69			1.07		0.54	0.34	0.22
20.3	18.9	-	28	2.1	2.8	27.81	21.73	12.97		5.51	,		2.31			4.02			1.39		0.66	0.39	0.22
26.7	25.8		-26	1.7	2.1	14.70	7,60	0.68		0.25			0.28			0.16			0.09		0.08	0 10	0.05
26.7	25.6		-26	1.7	2.1	22.33	14.69	2.62		0.19			0.14		,	0.12			0.13		0.10	0.06	0.10
20,4	20.2	87	28	3.3	4.7	25.55	17.97	5.81		2.62			2.44			2.84			3.18		1.72	1.20	0.62
20.4	20.2	87	28	3.3	4.7	15.56	16.67	6.62		4.12		,	2.96			2.82			1.85	•	1.90	1.40	0.72
20.1	20.1	88	28	3.3	4.7	9.10	3.59	1.83	•	2.68	,	•	1.64	,	*	1.20		1	0.83		0.72	0.65	0.43
20.1	20.1	88	28	3.3	4.7	6.70	1,43	1.41	•	1.66	•		0,93	•	•	0.88	•	•	1.13	•	0.63	0.51	0 36
24.0	22.9	61	-15	2.2	2.7	26.00	19.50	9.63	•	1.35	٩	٩	0.75		•	0.53		•	0.46		0.22	0.18	0.11
24.0	22.9	61	-15	2.2	2.7	23.06	15.74	5.38	-	0.75		-	0.28		-	0.28			0.28		0.20	0.17	0.10
22.9	22.5	61	-7	2.1	2.7	21.59	18.89	12.06	1.1	3.10			1.89		×	1.52	•		1.23	•	0.90	0.51	0.32
22.9	22.5	61	-7	2.1	2.7	19.47	14.82	4.60		1.70			1.53			0.96			0.72		0.50	0.30	0.29
	21.3	90	-12	3.6	4,5	28,72	29.27	12.36		4.05			1,69		κ.	1.16			0.95		0.67	0.46	0.26
,	21.3	80	-12	3.6	4.5	16.73	12.93	3.48		1.79			1.72		,	2.02			1.35		0.74	0.61	0.34
23.7	21.5	71	-22	3.5	4.5	32.18	24,47	9.07		2.93			1.54			0.47			0.38		0.21	0.09	0.04
23.7	22.8	71	-22	3.5	4.5	36.42	23.88	9.15		1.31			1.18	•		0.49	•	•	0.37		0.25	0.11	0.10
24.7	23.7	38	16	2.9	3.7	68.52	56.08	49.66	-	22.94			7.74			3.74			2.62		1.18	0.92	0.73
24.7	23.7	38	16	2.9	3.7	43.49	34.20	20.30		7.93			6.46		× .	4.74	•		3.28	•	1.42	0.64	0.46
26.9	25.4	40	19	2.4	3.0	47.05	41.18	21.99	•	2.71	•	•	0.69	,	•	0.66		,	0.51		0.30	0.19	0.12
26.9	25.4	40	19	2.4	3.0	22.92	30.50	17.87	-	5.54			3.36		•	1.79	•		1.25	•	0.61	0.38	0 21
22.7	21.9	48	11	1.5	2.0	30.66	10.87	3.26		1.11			2.25		κ.	0.76	•		0.78		0.52	0.23	0.10
22.7	21.9	48	11	1.5	2.0	41.14	32.48	11.62	-	4.90			2.51			1.49			1.01		0.39	0.24	0,13
21.3	19.9	62	9	1.6	2.5	23.45	22.80	11.76	3.03	3.03	3.03	2.59	2.40	2.21	1.77	1.83	1.88	1.90	1.88	1.86	0.92	0.61	0.36
21.3	19.9	62	9	1.8	2.5	16.32	28.01	14.08	7.83	7.04	6.25	3.42	2.90	2.38	1.59	1.37	1,15	0.99	0.95	0.91	0.47	0.59	0.24
22.3	19.5	73	29	1.6	2.5	31,75	14,48	4.31	0.79	0.79	0.25	1.42	1,53	1.64	1.18	1.18	1.17	0.92	0.91	0.91	0.58	0.35	0.24
22.3	19.6	73	29	1.8	2.4	16.76	21.87	10.11	5.43	4.01	2.59	3.36	2.84	2.33	1.82	1.25	0.69	0.91	1.06	1.21	0.45	0.41	0.22
25.6	24.B	56	-9	1.9	2.5	32.31	29.14	15.98	6.15	6.15	6.15	4.93	4.37	3.82	2.25	1.93	1.61	1.20	0.86	0.53	0.30	0.19	0.32
25.6	24.8	56	-9	1.9	2.5	16.52	21.13	15.42	2.78	2.44	2.10	1.63	1.54	1.46	1.10	1.11	1.13	0.89	0.74	0.60	0.87	0.66	0.39
23.1	22.5	65	25	2.5	3.3	25.53	22.60	11.00	3.39	3.39	3.39	1.89	1.87	1.85	1.24	1.16	1.08	0.65	0.65	0.65	0.38	0.30	0.25
23.1	22 5	66	25	2.6	3.3	14,94	22.45	11.88	4,71	3.89	3.07	1,73	1,51	1.29	1.01	0.91	0.82	0.97	0.83	0.68	0.60	0.46	0.32
21.2	20.6	60	-18	3.4	4.1	32.54	34.98	24.13	11.09	11.09	11.09	5.63	5.03	4.42	3.57	3.37	3.18	2.49	2.25	2.00	1.07	0.55	0.23
21.2	20.B	60	-18	3.4	4.1	26.45	28.84	17.50	12.19	9.25	6.31	3.76	3.48	3.21	1.80	1.67	1.34	1.47	1.36	1.26	0.78	0.36	0.26
22.6	22.1	58	-27	2.5	3.2	26.01	18.16	8.81	2.60	2.60	2.60	2.73	3.01	3.28	2.39	2.83	3.26	2.43	2.22	2.02	0.51	0.29	0.40
22.6	22.1	58	-27	2.5	3.2	5.66	10.99	15.90	14.93	8.98	3.03	3.68	2.82	1.97	1.48	1.52	1.55	1.49	1.37	1.25	1.74	1.14	0.56
22.3	21.2	51	-28	3.6	4.5	8,65	6.38	0.43	0.16	0.16	0.16	0,17	0,18	0.19	0.16	0.15	0.14	0.15	0.16	0.17	0.09	0.04	0.02
22.3	21.2	51	-28	3.6	4.5	9.31	5.51	0.90	0.18	0.17	0.16	0.20	0.17	0.14	0.15	0.18	0.21	0.18	0.20	0.22	0.23	0.05	0.03
			-17																				
22.9	217	44		3.0	4.1	19.14	9.10	3.08	0.86	0.86	0.86	0.71	0.69	0.68	0.80	0.78	0.77	0.68	0.62	0.56	0.45	0,44	0 22
22.9	21.7	44	-17	3.0	4.1	17.85	10.66	4.05	2.76	2.51	2.26	1.73	1.49	1.25	1.06	0.94	0.83	0.87	0.81	0.76	0.45	0.36	0.29
20.9	20.1	59	12	3.5	4.5	25.85	23.97	10.88	3.42	3.42	3.42	2.67	2.34	2.01	1.44	1.41	1.37	1.25	1.43	1.51	1.12	0.80	0.47
20.9	20.1	69	12	3.6	4.5	43.17	31.00	24.14	13.07	9.19	5.30	2.60	2.06	1.52	1.01	1.05	1.09	1.06	1.09	1.12	0.57	0.67	0.48
20.6	19.9	53	11	2.8	3.5	19.24	26.58	13.33	2.37	2.37	2.37	1.89	1.81	1.74	1.49	1.42	1.35	1.15	1.22	1.26	0.81	0.65	0.26
20.6	19.9	53	11	2.8	3.5	14,74	12.34	6.37	4.43	3.48	2.54	2.04	1,97	1.71	1.22	1.16	1.10	0.97	0.86	075	0.67	0.45	0 33
18.7	17.2		11	2.1	2.6	17.59	8.17	0.81	0.52	0.52	0.52	0.45	0.37	0.30	0.32	0.32	0.31	0.21	0.20	0.20	0.15	0.08	0.14
18.7	17.2	-	11	2.1	2.6	7.06	4.38	1.22	0.59	0.60	0.41	0.42	0.37	0.33	0.24	0.24	0.23	0.16	0.17	0.18	0.15	0.12	0.06
18.7	17.2		10	2.1	2.6	25.70	12.17	4.21	1.83	1.83	1.83	1.68	1.33	0.98	0.97	0.87	0.78	0.78	0.84	0.90	0.54	0.21	0.13
18.7	17.2		10	2.1	2.6	25.29		5.79	4.44	3.22	2.01		1.33		0.95		0.69	0.55	0.53	0.50	0.54	0.40	0.19
							16.47					1.34		1.34		0.82							
25.3	22 8		25	2.2	3.2	16.59	8.65	2.34	1,71	1.71	1.71	1.21	1.20	1.20	0.93	0.83	0.72	0.64	0.66	0.68	0.38	0.33	0 23
25.3	22.6	•	25	2.2	3.2	12.52	7.14	1.98	1.40	1.41	1.41	1.19	1.03	0.87	0.99	0.78	D.57	0.53	0.52	0.51	0.44	0.30	0.22
25.4	22.B		25	2.3	3.1	24.99	17.96	7.94	3.57	3.57	3.57	2.53	2.19	1.84	1.35	1.09	0.84	0.96	0.96	0.96	0.60	0.35	0.23
25.4	22.8		25	2.3	3.1	18.09	12.66	6.90	2.45	2.27	2.09	1.39	1.38	1.37	1.19	0.96	0.74	0.76	0.66	0.56	0.38	0.47	0.21
-	•	•	-	•	-	11.67	15.71	8.82	2.15	2.15	2.15	1.47	1.34	1.21	1.08	1.20	1.32	1.19	1.03	0.86	0.65	0.22	0.30
1				,		15,88	22.66	8.21	3.90	2.50	1.10	1,30	1,28	1.25	0.76	0.66	0.57	0.68	0.69	0.69	0.49	0.44	0.33

1	,			,	•	18.81	15.20	11.74	3.51	3.51	3.51	3.00	2.53	2.06	1.40	1.35	1.31	1.12	1.29	1.47	0.43	0.62	0.31
•	•	-				13.48	22.86	14.26	5.34	4.49	3.64	3.38	3.27	3.15	3.72	3.29	2.86	2.49	2.40	2.30	1.74	1.37	0.60
19.0	18.8	71	0	2.4	3.2	24.66	24.93	21.20	3.93	3.93	3.93	2.44	2.11	1.78	1.36	1.26	1.16	1.22	1.27	1.32	0.72	0.44	0.30
19.0	18.8	71	0	2.4	3.2	22.30	20.90	13.36	10.40	8.17	5.93	4.04	3.63	3.21	2.26	2.30	2.35	1.80	1.79	1.79	1.05	0.86	0.45
19.0	18.6	71	-2	2.3	3.2	33.70	26.56	24.30	11.06	11.06	11.06	7.66	7.00	6.34	4.61	4.47	4.33	4.62	4.28	3.94	1.61	1.00	0.63
19.0	18.8	71	-2	2.3	3.2	27.48	20.70	13.32	8.72	6.35	3.97	4.07	3.76	3.44	3.48	2.83	2.19	1.67	1.58	1.4B	1.30	1.35	0.72
217	20 9	66	19	2.7	3.3	30.41	22.65	11.40	1,94	1.94	1.94	1.35	1.18	1.01	0.93	0.91	0.89	0.87	0.83	079	0.53	041	016
21.7	20.9	66	19	2.7	3.3	23.63	13.64	6.03	1.45	1.32	1.18	0.94	0.87	0.80	0.87	0.80	0.72	0.59	0.53	0.48	0.46	0.25	0.15
21.9	21.0	66	23	2.4	3.1	33.75	25.96	15.30	2.21	2.21	2.21	1.81	1.72	1.62	1.24	1.21	1.19	1.04	1.00	0.96	0.63	0.60	0.35
21.9	21.0	66	23	2.4	3.1	22.66	16.38	10.38	6.50	5.30	4.09	2.54	2.16	1.77	1.94	-	1.67	1.68	1.45	1.23	0.89	0.47	0 5 1

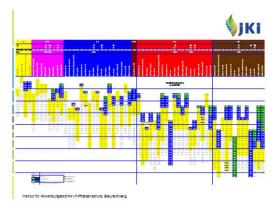

II - 12

Appendix III.

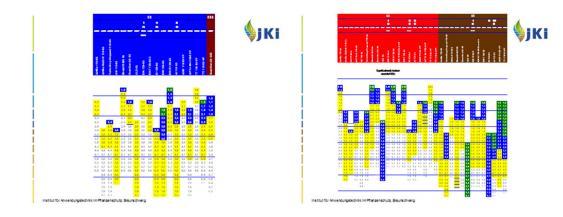

Presentations of the results of the questionnaire by participants of the Workshop Harmonisation of Drift

Distance (m)	Fi	eld cro	ps	Fr	uit cro	ps	G	rape vi	ne		Hops	
	50%	75%	90%	50%	75%	90%	50%	75%	90%	50%	75%	90%
1	1,70	0,85	0,34									
3			. C	12,99	6,49	2,60	3,39	1,70	0,68	10,04	5,02	2,01
5	0,35	0,18	0,07	9,37	4,69	1,87	1,71	0,86	0,34	7,11	3,56	1,42
10	0,18	0,09	0,04	6,02	3,01	1,20	0,68	0,34	0,14	3,82	1,91	0,76
15	0,12	0,06	0,02	2,94	1,47	0,59	0,40	0,20	0,08	1,69	0,85	0,34
20	0,09	0,05	0,02	1,44	0,72	0,29	0,27	0,13	0,05	0,95	0,47	0,19
30	0,06	0,03	0,01	0,53	0,26	0,11	0,16	0,08	0,03	0,42	0,21	0,08
40	0,05	0,02	0,01	0,26	0,13	0,05	0,11	0,05	0,02	0,24	0,12	0,05
50	0,04	0,02	0,01	0,15	0,07	0,03	0,08	0,04	0,02	0,15	0,08	0,03
75	0,02	0,01	0,00				0					
100	0,02	0,01	0,00									

Institut für Anwendungstechnik im Pflanzenschutz, Baurschweig



Institut für Anwendungstechnik im Pflanzenschutz, Bisunschweig



Institut für Anwendungstechnik im Pflanzenschutz, Bieurschweig

∮јкі

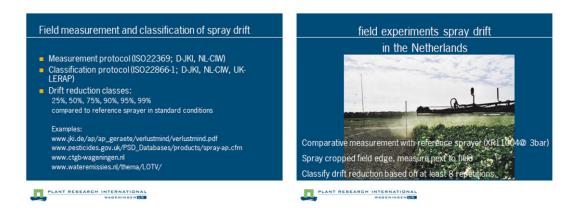
Section 2: Netherlands

Laboratory measurements

Top angle of spray fanDrop sizes in spray fan

Evaporation of drops in air

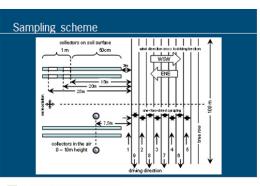
Drop speed

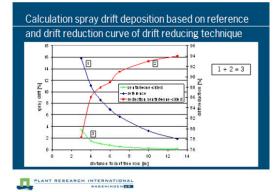

PLANT RESEARCH INTERNATIONAL

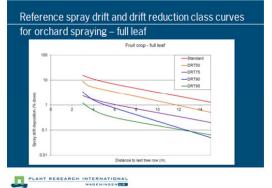
Nozzle type

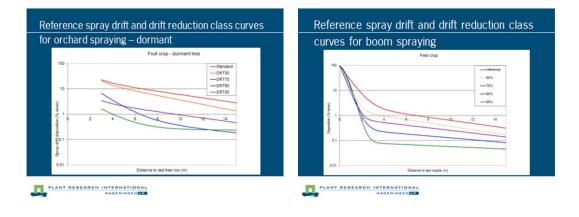
Nozzle type and spray solution affects spray drift

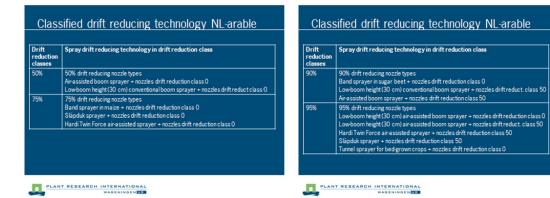
Extended drift protocol (following ISO 22866)

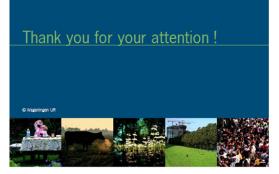

- 2 measuring periods


 < 1 May (dormant or early stages of foliage development)
 > 1 May (fully developed canopy)


 Sprayed area of 20 meters
- At least 8 replicates per period


- At least 8 replicates per period
 Wind speed: 1 5 m/s
 Wind direction: max. 30° of perpendicular
 Temperature: 5 25 ° C
 Collectors: filter cloths (10 cm x 50 cm) or (10 cm x 100 cm)
 Measuring points (1,5 m; 3 10 m; 10 -15 m; 20m; 25m)
 Reference spraying machine (Munckhof cross-flow)


PLANT REBEARCH INTERNATIONAL



Drift reduction classes	Spray drift reducing technology in drift reduction class
50%	50% drift reducing nozzle types sensor sprayer + standard nozzles; reflection shield sprayer + standard nozzles; Wanner crossflow + reflection shield + standard nozzles;
75%	75% drift reducing nozzle types turnel sprayer + standard nozzles;
90%	90% drift reducing nozzle types crossflow + venturi nozzles + one-sided outside row; axial fan sprayer + venturi nozzles + one-sided outside row;
95%	95% drift reducing nozzle types Wanner crossflow +reflection shield + venturi nozzles;

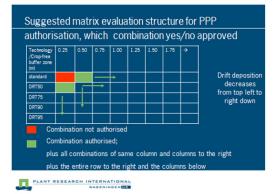
Session 2: Germany

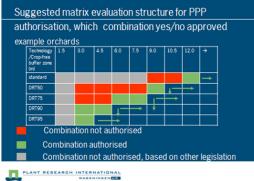
> knapsack sprayers are used or

.

> the adjacent non-target area is smaller than 3 m, A buffer zone alone must not be kept if:

> a sufficient amount of natural/semi-natural areas(habitats) are present in agricultural landscape of a village, > habitats like hedgerows are planted at former fields.


Paralexant for Indexection/child and Indexection/child	General items	Purdexant for Vertracherschutz and Jebersmittrischerheit	Aquatic Organisms - Standard Use Situation
 Very close connection to risk a Usually exposure reduction, Setting of risk mitigation mease getting products and uses author Here only very often used mitig presented – much more in use (Discussion on changes needed phrases of old annex V) underway 	rres is a precondition for rised, ation measures are .g. ground water, B&M), due to 1107/2009/EC (S-	 30 cm deep w Stagnant isok No exposure application are Complete pop Additional me volatilisation, b 	application technique,
nungangan t	Binsicker - December 2010, Wageringerr Bete 3	1.10.10.10.00	Boeloker Decamber 2000, Wageshopen Bete 4
Berdinant for Websacherbalt and Lidenstetricbehet	Label Phrase – Aquatic Organisms	Fordmant Sir Verbrachersbet and Laberauthrischerbet	Terrestrial Life - Invertebrates and Plants
waters - the product must be applied in the index of 'Loss Reducing Equil ('Bundesanzeiger' [Federal Gazette, Depending on the drift reduction clas- below, the following buffer zones in addition to the minimum buffer zone 2nd sentence of the 'PfISchG' (Gem observed for the drift reduction clas- *, 50 %: 10 m) NW 606: The only case in which the procession	ig <u>periodically</u> water bearing surface I with equipment which is registered ment' of 14 October 1993 No 205, p. 9780) as amended. sees for the equipment stated ist be kept from surface waters. In provided for by state law, § 6 (2) an Plant Protection Act y must be ses marked with "*". (90 %: *, 75 %: tuct may be applied <u>without loss</u> east the buffer zone stated below is t only occasionally but including e waters. Violations may be	 FOCUS- spray Correction fact TER-approach, Agricultural lar are not relevant Drift reducing 	nd, streets, industrial plants, pathways etc.
1-2-1-2-1-2-1-2-1-2-1-2-1-2-1-2-1-2-1-2	Steloke-December 2010, Wageringen-Sete S	10,000,000	Biteloker December 2010, Wageningen Bete 6
In case of predicted risk machine 50, 75 or 90 % compared with the		(except agricultur public places). <u>In</u>	Label Phrase – Terrestrial Organisms of at least <u>5 m</u> must be kept from adjacent areas ally or horticulturally used areas, roads, paths and <u>addition</u> , in an adjoining strip of at least <u>20 m</u> , the applied using loss reducing equipment which is
 be used and/or buffer zone of 5 m The use of drift reducing technic necessary if: 		registered in the 1993 (Federal Ga in at least drift red nor a buffer zone	sphiles Using <u>Desting Supportent</u> Million Na index of Loss Reducing Equipment ¹ of 14 October zatete No 205, p. 9780) as amended, and be registered ducing class <u>75 %, Neither</u> Joss reducing equipment of at least 5 m are required if the product is applied to contection equirement or if discipent areas field.


in at least drift reducing class <u>75 %. Neither</u> loss reducing equipment nor a buffer zone of at least 5 m are required if the product is applied with <u>portable plant protection</u> equipment or if <u>adjacent areas</u> (field boundaries, hedges, groups of woody plants) are <u>less than 3 m wide</u> A <u>buffer zone</u> of at least 5 m is also <u>unnecessary</u> if the product is applied in an area which has been declared by the Biologische Bundesanstalt in the <u>"Index</u> of regional proportions of ecotones" of 7 February 2002 (Federal Gazette no. 70 a of 13 April 2002), as amended, as agrarian landscape with a <u>sufficient proportion</u> of <u>natural and semi-natural</u> <u>structures</u>, or if evidence can be shown that adjacent areas (e.g. field boundaries, <u>hedges</u>, groups of woody plants) were <u>planted on</u> <u>agriculturally or horticulturally used areas</u>.

Streloker December 2010, Wageningen- Sete 7

Streloker December 2010, Wapeningen- Sete 8

Harmonisation of the methodology for drift en drift reducing measures at a zonal level

Approach

- Identification of the drift data with differentiation to crops (arable, fruit orchards)
- 2 Identification of main driving factors for drift deposition to surface water or non target zones
- 3 Identification of the most important measures to reduce drift
- 4 Quantification of the main driving factors, reference drift data
- 5 Development of methodology to assess/implement drift reducing measures (drift classes of different measures)

PLANT RESEARCH INTERNATIONAL

Harmonisation of the methodology for drift en drift reducing measures at a zonal level

Workshop

- At 1-2 December 2010 a workshop will be organised in Wageningen, The Netherlands.
- In this workshop the objectives and approach will be addressed.
- For this workshop representatives of the Member States will be invited.
- The focus will be on representatives from research and
- assessment agencies.

