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Brassicas and their economic importance 

The mustard family (Brassicaceae) is a large angiosperm plant family with over 300 genera 

and over 3500 species, which are distributed worldwide (Al-Shehbaz et al., 2006). It includes 

several species with economic value, and accounts for approximately 10% of the world’s 

vegetable crop production and 12% of the edible oil supplies, after sunflower and soybean 

(Economic Research Service, 2008). Apart from the commercial use of many Brassica 

species, their high genetic resemblance to the model species Arabidopsis thaliana has made 

them attractive model systems to study plant evolution and plant development. 

The Brassica genus consists of six economically important species: the diplod species B. rapa 

(2n = 20, AA), B. nigra (2n = 16, BB) and B. oleracea (2n = 18, CC), and their natural inter-

specific hybrids B. juncea (2n = 36, AABB), B. napus (2n = 38, AACC) and B. carinata (2n = 34, 

BBCC) (Lukens et al., 2004). B. rapa and B. oleracea are mainly grown as vegetable crops, B. 

napus and B. juncea as sources of vegetable oil and B. nigra for condiment (mustard) (Mun 

et al., 2011). The cytogenetic relationships between the genomes of Brassica crop species 

are referred to as U’s triangle (U, 1935) (Figure 1). 

Brassicas are consumed for a wide range of plant parts. For example, B. rapa ssp. pekinensis 

(Chinese cabbage) and ssp. chinensis (pak choi) are consumed as leafy vegetables in Asia, 

while B. rapa ssp. trilocularis (Yellow sarson) and B. rapa ssp. dichotoma (brown sarson or 

toria) have been cultivated historically for seed oil in the Indian subcontinent, and the tubers 

of turnips (B. rapa ssp. rapa) are used as fodder and vegetables. From B. oleracea, the 

inflorescences are consumed in cauliflower and broccoli, leaves are consumed from non-

heading kales and the heading cabbages, and the stem tuber of kohlrabi is consumed as a 

vegetable. Canola (B. napus), one of the descendants of B. rapa, is one of the most 

important sources of vegetable seed oil in the world. 

 

The origin and diversity of Brassica rapa 

B. rapa was the first domesticated Brassica species and has been cultivated for over 4,000 

years from the highlands near the Mediterranean region to Scandinavia, Germany and 

Central Europe, and eventually to Central Asia (Bonnema et al., 2011). The Swedish botanist 

Linnaeus first described B. rapa as a turnip forming species and B. campestris as a wild 

weedy species, but in 1833, Metzger concluded that they represent the same species, which 

was then called B. rapa (CFIA, 2014). B. rapa has a long cultivation history and breeding for 

different consumable plant parts resulted in the selection of different morphotypes (Zhao et 

al., 2007). Based on earlier studies of morphological characteristics, geographic distribution 

and molecular variation, two independent centres of origin have been hypothesized 

(Denford and Vaughan, 1977; Song et al., 1988; Gómez-Campo, 1999). Europe has been 

considered as one of the centers of diversity for turnip rape, broccoletto and turnip types 

and it is generally assumed that from there the species spread to Russia, Central Asia and 

the Near East (Bonnema et al., 2011). Eastern Asia has been considered as the other centre 

of diversity and gave rise to Asian leafy vegetables. Turnip is believed to have originated 
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directly from the wild progenitor that came from the Iranian region to Europe (Reiner et al., 

1995). De Candolle (1959) reported that turnip has been cultivated since 2500-2000 BC and 

its cultivation spread to Asia after 1000 BC. In Asia or India the oil types B. rapa ssp. 

trilocularis, known as “yellow sarson” and ssp. dichotoma known as “toria” and “brown 

sarson” diversified (Prakash and Hinata, 1980). In molecular analyses, these oil types form a 

eparate subgroup suggesting the Indian subcontinent as a third centre of origin (Zhao et al., 

2005; Warwick et al., 2008). 

 

Figure 1: The “Triangle of U”, showing the genetic 
relationship between six Brassica species (U, 
1935). Chromosomes from each of the genomes 
A, B and C are represented by different colours. 
Three diploid species (B. rapa, B. nigra and B. 
oleracea) are marked by black-circles and three 
tetraploid species (B. carinata, B. juncea and B. 
napus) are with purple circles. 2n indicate diploid 
chromosome number (U, 1935). 
 

Polyploidization, genome duplication and comparative mapping 

Brassica species and A. thaliana diverged from a common ancestor with karyotype (n=8) 

approximately 14.5-20.4 million years ago (Bowers et al., 2003; Yang et al., 2006; Hong et al., 

2008; Cheng et al., 2013a). All Brassica species have complex genomes with whole genome 

duplications with intra- and inter- genomic conservation of chromosomal blocks (Prakash 

and Hinata, 1980; O'Neill and Bancroft, 2000; Town et al., 2006; Yang et al., 2006). Schranz 

et al. (2006) defined 24 conserved chromosomal blocks (coded as A-X) with naming, order 

and orientation between A. thaliana and B. rapa species. The ancestral genomic blocks of A. 

thaliana are generally replicated three times on different chromosomes of B. rapa (Schranz 

et al., 2006; Wang et al., 2011a). As the rate of gene loss in these three ancestral blocks 

differ, the Brassica genomic blocks are classified according to their rate of gene loss into the 

Least Fractionated (LF), medium fractionated (MF1) and Most Fractionated genomes (MF2) 

(Cheng et al., 2012; Liu et al., 2014; Parkin et al., 2014). Co-linearity of chromosomal 

segments between the two species allows for the possibility of comparative mapping, 

inferring knowledge from the model species A. thaliana and functional characterization of 

genes of interest based on annotation of genes in A. thaliana (Schmidt et al., 2001). 

 

Seed development in B. rapa 

Brassica seeds are non-endospermic, which means that the endosperm is not retained in the 

mature seeds and the embryo is enclosed by the seed coat. Seed development consists of 

embryogenesis followed by seed desiccation (Yu et al., 2010; Li et al., 2012a). In 

embryogenesis two overlapping phases are distinguished: morphogenesis and seed filling 

(Sabelli, 2012). Embryogenesis starts after the double fertilization process of fusion of two 

sperm nuclei with the egg cell and the central cell nuclei, respectively; the zygote then goes 
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through a series of cell divisions and differentiation events during morphogenesis; from a 

pre-globular and globular embryo stage, a heart stage, a torpedo stage, a bent-cotyledon 

stage to the mature embryo, with the basic body plan that perpetuates throughout the life 

of the plant  (Angelovici et al., 2009; Le et al., 2010; Li et al., 2012a). During seed filling the 

seed accumulates storage compounds in the embryo. In this stage, the endospermic starch is 

consumed by the embryo and converted into proteins and oils (Basnet et al., 2013; Borisjuk 

et al., 2013a). Once the seed filling ends, the embryo stops growing and becomes 

metabolically quiescent. Seed desiccation, the final stage of seed development, is the bridge 

between maturation and germination (Angelovici et al., 2009). During this phase, the seed 

moisture content declines, this makes the seed able to withstand desiccation and to enter 

into a state of developmental and metabolic quiescence (Sabelli, 2012). The seed reserves 

are an essential source of energy during seed germination and early seedling growth. 

Therefore, unravelling the genetics of transcriptional regulation of seed metabolism and of 

metabolic switches in the seed is of great interest, not only for breeding oil content and 

improving seed quality but also for early seedling vigour. 

 

Seed quality and seedling vigour traits 

Seed is the basic and most critical input for most of the agricultural crops and seed quality 

determines plant establishment, growth and development in natural or agricultural 

ecosystems. In practice, definitions of seed quality vary according to the end users (Joosen, 

2013) and there are different approaches to measure it. Seed quality attributes include seed 

germination, dormancy, seed viability, physical and genetic purity, seed size, seed weight, 

storability, being free of pathogens, normal embryo and seedling morphology and ability to 

develop into a normal plant under optimal and sub-optimal conditions (Ellis, 1992; El-

Kassaby et al., 2008; Angelovici et al., 2009; Finch-Savage et al., 2010). The protrusion of the 

radicle from the seed is termed seed germination. Seedling vigour refers to the ability of a 

seed or seed lot to establish seedlings under a wide range of growing conditions (Foolad et 

al., 2007; Finch-Savage et al., 2010). In general, the higher the seed quality is, the higher the 

seedling vigour.  

In the last few decades, the seed industry has played a vital role in agri-bussiness and 

sustainable food production by ensuring efficient seed trade with continuous supply of high-

yielding and disease resistant varieties suitable for different environmental conditions and 

consumers’ demands. However, most of the seed companies and breeding centres hardly 

prioritize their breeding programs for high seed quality and seedling vigour related traits. 

Instead, seed size selection, disinfection, priming and coating have become the most 

common practices to ensure high and uniform seed germination and vigorous seedling 

growth of marketable seeds. The main bottleneck for studying the genetics of traits related 

to seed quality and seedling vigour is their complex genetic architecture and the large 

influence of the environment. Due to technological advances in high- throughput 

phenotyping and genomics, it is now better feasible to study the molecular aspects of seed 
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quality and seedling growth and it has become possible to incorporate tools like marker-

assisted breeding in breeding programs. Many genetic studies of seed quality and seedling 

vigour have been conducted in A. thaliana (Koornneef et al., 2002; Fait et al., 2006; Joosen, 

2013). Many transcription factors as well as structural genes were reported for their role in 

seed maturation and dormancy during seed development (reviewed by Koornneef et al., 

2002; Bentsink and Koornneef, 2008).   

In this thesis, five seed germination parameters were used to quantify different aspects of 

seed quality while root and shoot length and seedling biomass at multiple time points in 

different environments were used to assess seedling vigour. The seed germination 

parameters were T10 (time to reach 10% germination, onset of germination), T50 (time to 

reach 50% germination), U7525 (time interval between 25% and 75% germination, 

uniformity), Gmax (maximum germination percentage) and AUC (Area Under the 

germination Curve) (Joosen et al., 2010). Generally, large seed size and high seed weight 

supports seedling growth, especially during the heterotrophic stage (before photosynthesis 

starts) (Cheng et al., 2013b). High and uniform seed germination and good seedling vigour 

have great impact on crop establishment and therefore contribute directly to the economic 

success of commercial crops (Finch-Savage et al., 2010). 

Seed germination and seedling vigour are governed by complex genetic architecture (Bettey 

et al., 2000; Koornneef et al., 2002; Finch-Savage et al., 2010; Kazmi et al., 2012; Joosen, 

2013) and influenced by many non-genetic factors, such as the environmental conditions 

during seed production, the physiological stages of the seed at harvesting, processing, 

storage, germination and during early growth. Many efforts have been made to improve 

seed germination and seedling vigour by optimizing the non-genetic factors; however, the 

genetic factors to improve seed germination and seedling growth deserve attention as well. 

Genetic factors such as mutation, recombination and natural selection make plants adaptive 

to local conditions to continue their development and life cycle (Anderson et al., 2011). The 

ability of a plant (or any organism) to adjust its physiology and morphology in response to 

the biotic and abiotic environment is named phenotypic plasticity (Schlichting, 1986). 

Genotypes respond to environments differently; therefore, phenotypic plasticity has a 

genetic basis (Kooke, 2014). Salinity is a major abiotic stress that delays the onset of 

germination and decreases the rate of both seed germination, and seedling growth and 

establishment. Genetic aspects of salinity tolerance have been reported in different crops 

(Csanádi et al., 2001; Foolad et al., 2007; Kazmi et al., 2012; Wang et al., 2012; Joosen, 

2013). One of the aims of this thesis was to identify genome regions and possibly causal 

genes involved in seed germination and seedling vigour traits under non-stress and salt-

stress conditions. 

 

Seed content determines seed quality and seedling vigour 

The seed reserve consists of seed storage proteins (SSPs), carbohydrates (mostly starch) and 

storage lipids (mainly triacylglycerols (TAGs)) (Baud and Lepiniec, 2010). About 35-40% of 
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the total seed weight in A. thaliana and 35 to 52% in B. napus is composed of TAGs (Chia et 

al., 2005; Graham, 2008; Rahman et al., 2013). In germinating seeds, TAG lipases oxidize 

TAGs into free fatty acids (FAs) and glycerol, and, through a series of enzymatic reactions, 

free fatty acids are later converted into sugars. This breakdown process of TAGs results in 

energy and provides the carbon skeletons to support seed germination and seedling growth 

until photosynthesis becomes efficient (Miquel and Browse, 1995; Quettier and Eastmond, 

2009; Baud and Lepiniec, 2010). Several studies in A. thaliana describe mutants with altered 

ability to degrade TAGs, and phenotypes range from increased dormancy, decreased 

germination and early seedling growth, up to effects on the later seedling stages (Hayashi et 

al., 2001; Baker et al., 2006; Fait et al., 2006; Quettier and Eastmond, 2009; 

Pracharoenwattana et al., 2010; Kelly et al., 2011). Elliott et al. (2007) observed large 

cotyledons, higher shoot dry weight, better seedling establishment and higher seedling 

vigour being associated with larger seed size and weight in summer turnip rape (B. rapa). 

Seed weight is highly correlated with seed size (Bagheri et al., 2013). The quantity and 

composition of seed reserves is regulated by biosynthetic processes during seed 

development (Baud et al., 2008), and subsequent mobilization of seed reserves during 

imbibition determines seed germination and the potential of seedling vigour (Fait et al., 

2006; Cheng et al., 2013b). While many studies focus on seed development and germination, 

only few try to link metabolite variation in the mature seed with transcriptional regulation 

during the seed filling process and germination and seedling vigour. In this thesis, a systems 

genetics approach was used to integrate different ~omics datasets and to construct a gene 

regulatory network for fatty acids, that can be associated with genetic variation of seed 

germination and seedling vigour. 

 

Natural variation in B. rapa and genetic studies of seed quality traits 

Genetic variation is the basis for breeding improved cultivars for agricultural production. 

Major breakthroughs in molecular marker technologies and development of statistical 

methods enabled the construction of linkage maps and analysis of quantitative trait loci 

(QTL). A linkage map is a representation of the chromosomes with ordered genetic markers, 

based on recombination frequencies between pairs of markers. QTLs are the genomic 

regions that account for natural genetic variation of quantitative traits of interest. If QTLs for 

seed quality traits are identified, markers closely linked to such QTLs could potentially be 

used in marker-assisted selection (MAS) for seed quality traits in breeding programs. The 

advantage of MAS (relative to selection on phenotype) is that these markers themselves are 

not influenced by the environment, so that they can be more effective targets of selection. 

In addition, QTL regions can be the starting points for fine mapping and the identification of 

candidate genes and possibly for cloning of the causal genes of a trait. Basically, there are 

two approaches to identify and localize QTLs that might contain genes causing genetic 

variation of the traits: linkage mapping and association mapping.  
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Linkage mapping 

Linkage mapping is an approach for mapping QTLs in a bi-parental population, developed 

from a cross of two genotypes with contrasting phenotypes. In plants that allow inbreeding, 

the most commonly used bi-parental populations for QTL mapping are F2, doubled haploid 

(DH) and recombinant inbred line (RIL) populations. F2 and DH populations have only one 

round of recombination (meiosis of the F1), but take less time to create than a RIL 

population. A RIL population, on the other hand, has had several rounds of recombination, 

and therefore the mapping resolution is improved. In an F2 population, both additive and 

dominance effects can be estimated while only additive effects can be estimated in DH and 

RIL populations with (almost) only homozygotes. DH and RIL populations are considered 

immortal populations, since they can be reproduced identically; this enables studying 

genotype-by-environment (GxE) and QTL-by-environment (QTLxE) interaction, which is not 

possible in an F2 population, where the genotypes are mortal (unless F2 plants are 

vegetatively propagated). In this thesis, a population of 175 DH lines was used for studying 

genetics of seed quality and seedling vigour under non-stress and salinity conditions. This 

population was developed from a cross of two contrasting B. rapa parents, an oil-type 

yellow sarson (YS143; accession number FIL500) and a vegetable-type pak choi (PC175; 

Accession number VO2B0226) and seeds harvested in two years from the DH population 

(Figure 2). 

 

Association mapping (AM) 

Association mapping (AM), also called linkage disequilibrium (LD) mapping, is another 

approach to find QTLs for traits. This method seeks to identify the genetic variants (i.e. loci 

and alleles at these loci) linked to phenotypic variation in a natural population or core 

collection of germplasm. Unlike bi-parental populations, a core collection can be used that 

represents the historic genetic variation and recombination events present in the germplasm 

collection. Therefore, it is not necessary to make a cross, create large segregating 

populations and produce a large number of progeny. In linkage mapping QTLs are mapped 

with low resolution, so that approximate confidence intervals are generally very large: 

sometimes even a whole linkage group. Markers that are far from QTLs are still strongly 

associated, especially when only one or just a few recombination rounds have taken place. 

Contrastingly, in association mapping, resolution of identified QTLs is much higher and, 

consequently, a much narrower window size of the genome will show the association with 

the phenotype. Ideally, association panels are composed of unrelated individuals that 

capture a wide genetic diversity, genotyped with a large number of markers; however, in 

such cases, the power to detect QTL(s) will be reduced if marker alleles are rare. One major 

drawback of an association panel is generally the presence of unequal relatedness (also 

called kinship) and population structure between individuals, which may lead to false 

positive marker-trait associations (Pino Del Carpio et al., 2011a). Statistical methods have 

been developed that take population structure (Q-matrix) and/or kinship (K-matrix) into 
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account that aim to optimize the balance between false-positives and false-negatives of 

marker-trait associations. In this study, an AM approach was followed for detection of QTLs 

for carotenoids and tocopherols and the power of QTL detection using this approach was 

assessed (Figure 2). 

 

 

Figure 2: Strategy for systems 
genetics study of seed quality 
and seedling vigour related 
traits in B. rapa. Solid arrows 
indicate the methods 
implemented in this study and 
dotted arrows for future 
possibilities. Numbers on the 
left side of each box indicates 
different steps involved in the 
study. 
 

 

 

 

 

 

 

 

 

The lipid metabolism and fatty acids biosynthesis pathway in Brassica 

Brassica species are widely cultivated as oil crops and seed oil quality depends on the 

relative proportions of FAs, mainly erucic (C22:1), oleic (C18:1), linoleic (C18:2), linolenic 

(C18:3) acids (Jagannath et al., 2011). In oilseed breeding for human consumption, one of 

the important objectives is to increase the levels of C18:1 and C18:2 and decrease C22:1, 

while high C18:3 reduces the storability and causes rancidity upon deep frying (Töpfer et al., 

1995). Brassica seed oil content and FA composition of seeds are quantitative in nature with 

a complex genetic basis (Barker et al., 2007). A general overview of lipid metabolism is 

depicted in Figure 3; it includes metabolic processes such as FA biosynthesis, FA elongation, 

FA desaturation, lipid degradation, triacylglycerol (TAG) synthesis, glycolipid biosynthesis 

and biosynthesis of storage proteins. In order to unravel the genetics of seed oil formation, a 

comprehensive study of lipid metabolism at both the genetic and biochemical levels is 

needed. In this thesis, the integration of information at the molecular, biochemical and 

transcriptomic levels is used as an approach to bridge the gap between gene function and 

biochemical processes.  
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Figure 3: General overview of lipid metabolism showing fatty acid (FA) biosynthesis, FA 
elongation, lipid desaturation, triacylglycerol (TAG) biosynthesis and glycolipid biosynthesis. 
 

Figure 4: Fatty acid biosynthesis pathway known to occur within the Brassicaceae (Source: 
Barker et al., 2007).  
 

Description of the fatty acids biosynthesis pathway 

In plants, the FA biosynthesis starts in the plastids, followed by FA elongation and TAG 

assembly in the endoplasmic reticulum (ER) (Figure 4; Barker et al., 2007). FAs are a group of 

compounds that consist of a long hydrocarbon chain and a terminal carboxylate group. They 

are symbolized by the number of carbons and double bonds present in the carbon chain: for 
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example, oleic acid is denoted as C18:1 indicating 18 carbons and one double bond in its 

carbon chain. The chain length and degree of saturation determine the properties. FAs 

without double bonds are called saturated FAs (SFAs), those with only one double bond are 

mono-unsaturated FAs (MUFAs) and those with more than two double bonds are poly-

unsaturated FAs (PUFAs). MUFAs and PUFAs have a lower melting point than SFAs even 

when they have the same carbon chain length.  

During seed development, sugar and other carbon sources obtained from photosynthesis 

and other processes are converted into acetyl-CoA in the plastids. Acetyl-CoA carboxylase 

(ACCase) catalyzes acetyl-CoA into malonyl CoA and the latter donates two carbons to 

growing FA chains, which are covalently attached to the acyl-carrier protein (ACP) of the FA 

synthase complex (Barker et al., 2007; Weselake et al., 2009). Acyl-ACP desaturase catalyzes 

the formation of C16:0 to C18:0 acyl-ACP pools by a series of keto-acyl ACP synthase (KAS) 

enzymes. Thioesterase (acyl-ACP hydrolase) hydrolyzes those ACP pools to produce FAs, 

SFAs palmate (C16:0) and MUFA oleate (C18:1). The FAs move out from the plastidial 

envelope to the cytoplasm by two classes of fatty acyl-ACP thioesterases (FAT-A and FAT-B) 

and those FAs are reactivated as acyl-CoAs. FAT-A preferentially hydrolyses oleoyl-ACP 

whereas FAT-B hydrolyses saturated acyl-ACPs (Harwood, 2005). In the ER, elongation of FAs 

occurs using acyl-CoA substrates by a series of FA dehydrogenase and FA elongase (FAE) 

enzymes resulting in very long chain FAs (VLCFAs) and PUFAs. The pool of acyl-CoA FAs is 

then converted into diacylglycerols (DAGs) in the ER and, finally, DAGs and acyl-CoA FAs are 

condensed to triacylglycerol (TAG) (Barker et al., 2007; Tan et al., 2011). The glycerol 

backbone for TAG assembly is derived from sn-glycerol-3-phosphate (G3P). Schwender et al., 

(2004) reported that over 50% of the carbon flux in developing B. napus seed is consumed 

by TAG synthesis. The rate of FA synthesis depends on the carbon flux; therefore, 

biosynthesis of FAs and TAG is linked to the photosynthesis capacity and carbohydrate 

metabolism during the seed filling and maturation processes (Tan et al., 2011). TAGs are 

accumulated in the ER and stored in oil bodies in seed embryo cotyledons. Seed oil 

accumulates mainly in the form of TAG, which primarily serves as an energy reserve for 

germinating seeds (Sharma et al., 2008).  

 

Linking a phenotypic trait to an ~omics data set 

A systems genetics approach 

The information obtained from QTL analysis or association mapping enables the detection of 

genomic regions and variants associated with traits. However, these provide little insight 

into the genes underlying this variation, nor in their regulatory mechanisms. To unravel the 

molecular basis of the genetic architecture of complex traits, systems genetic approaches 

are used, since they allow the integration of intermediate phenotypes at the metabolite, 

transcript and/or protein levels with the phenotypic trait(s) of interest. Molecular 

interactions of intermediate phenotypes can be studied with multiple genetic perturbations 
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already present in natural populations, rather than just an individual genetic perturbation as 

present in transgenic individuals (Civelek and Lusis, 2014). 

Systems genetics analyses use different ways to integrate these different layers of 

information, such as simple correlation analyses, genetic mapping and network approaches 

(Civelek and Lusis, 2014). In this thesis, we applied all these different approaches to 

integrate genetic information about transcripts and fatty acids (Figure 2). Two traits can be 

correlated if they influence each other or if they are affected by a common factor or just by 

random association. Similarly, traits can be mapped to the same genomic region if one trait 

is the cause of the other, but also due to the influence of a common genetic factor or just 

because of linkage without any causal relationship. Network analysis can be used to 

construct regulatory gene networks, with genes as nodes and their expression networks, 

which can be inferred from high-throughput experimental data from a natural population. 

This approach allows the discovery of novel genes (genes not reported before) or the 

prediction of gene functions and gene interactions. Weighted gene co-expression network 

analysis (WGCNA) utilizes the Pearson correlation coefficients between transcript abundance 

of genes to identify gene modules (groups of co-expressed genes) that have similar 

expression patterns and possibly share common cis-regulatory elements. A cis-regulatory 

element is a short sequence of DNA, where a transcription factor binds the gene’s regulatory 

elements to regulate its transcription. In addition, a network characteristic called “degree of 

connection” can be calculated for each gene, which refers to the possible interactions of 

genes in the network underlying a metabolic pathway or a biological system. Genes with a 

high degree of connection indicates essential genes with evolutionary conserved functions in 

the pathway, whereas genes with a low degree of connection are likely to be associated 

genes that can contribute to the expression of other genes and also to the regulation of 

phenotypic trait values (Khurana et al., 2013). Those associated genes could be interesting 

from a breeding perspective to improve a trait while essential genes could have a role to 

modify complete pathways. 

 

Transcriptomics 

The term transcriptome refers to the complete set of messenger RNA (mRNA) transcripts 

that are produced from genes of a genome in specific biological and/or environmental 

conditions (Feltus, 2014). The transcriptome is very dynamic, depending on specific 

circumstances: specific to cell, tissues, developmental stages or environmental conditions. 

Therefore, transcriptomics has been very popular in the last few decades to study the global 

expression of genes involved in biological processes and their functional annotation (Feltus, 

2014). The mRNA transcripts can be quantified using high-throughput methods, such as 

microarrays and RNA-seq.  
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Microarray 

Microarray analysis is a high-throughput technology to quantify the transcript abundance of 

genes as an indication of their relative expression. The probes on a microarray are designed 

from the coding sequence (CDS) of genes. There are broadly two types of microarrays – two-

colour microarrays and one-colour microarrays. In two-colour microarrays, two samples are 

hybridized to one array using two dyes (Cy5 and Cy3), whereas only one sample is hybridized 

in a one-colour array. Microarrays are used to compare global gene expression levels across 

developmental stages, or between different genotypes or in different conditions such as 

different biotic or abiotic environments.  

For microarrays probes need to be designed specifically for the target species of interest. 

When we started this study, no microarray was available for B. rapa. Due to the availability 

of the whole genome sequence of B. rapa Chinese cabbage var. Chiifu (Wang et al., 2011a), 

we could design a custom microarray (8 x 60K) containing 60,000 features in a two colour 

Agilent platform using 60-mer probes designed based on predicted gene models for B. rapa.  

 

Experimental design for microarray gene expression 

Microarray experiments are still costly and time consuming, which may limit sample sizes 

and as a result statistical power. Because of its high-throughput nature and high sensitivity 

(in the laboratory), it is crucial to optimize experimental design by carefully choosing the 

subjects to be assayed and cautiously controlling systematic factors affecting the experiment 

and the system. An optimal experimental design should allocate mRNA samples across the 

assay batches, slides and dye labelling so that effects of interest are not confounded with 

nuisance factors. Also, a good experimental design should be cost efficient while including 

biological replicates, technical replicates and spike-in controls. In this thesis, we used two 

types of experimental designs. Firstly, a double loop design was developed to study the 

global gene expression patterns across seed developmental stages in different genotypes: 

inner and outer loops were used for genotypes and developmental stages. The other design, 

used for an eQTL mapping study with a genetical genomics approach, was a distant-pair 

design (Fu and Jansen, 2006) with selected pairs of individuals hybridized in each array; in 

this design the pairs were chosen to maximize genetic dissimilarity and a higher number of 

recombination events (Figure 5).  

 

Genetic architecture of gene expression variation: genetical genomics Cis- / trans- 

regulation 

In genetical genomics studies, eQTLs can be categorized as local eQTLs (cis-acting) and 

distant eQTLs (trans-acting) depending on the distance between the physical position of a 

gene and its eQTL location. An eQTL mapped near the location or just upstream of a gene 

itself is called a cis-eQTL (Figure 6). In this case, sequence variation in the promoter of the 

gene may cause heritable variation in its expression. Alternatively, an eQTL might be 

mapped distantly from the gene, either in the same chromosome or in a different 
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chromosome; this is called a trans-eQTL (Figure 6). In case of a trans-eQTL, a polymorphism 

in a gene encoding a transcription factor may affect the expression of the target gene. In 

eQTL studies, the terms cis- and trans-regulation of eQTLs do not refer to the mechanism of 

gene action, but to the genomic position of the eQTL relative to the physical position of the 

gene of which the transcript is studied.  

 

Figure 5: Distant-pair design applied 
for microarray hybridization for eQTL 
mapping. Graphical genotype of DH 
lines used as pair of samples in 
microarray hybridization.   
 

 

 

In eQTL analysis, cis-eQTLs generally explain more variation than trans-eQTL, suggesting a 

stronger regulatory ability than trans-eQTL (Xiao et al., 2013). Mapping and positional 

cloning of a cis-eQTL may lead to the identification of structural genes, whereas trans-eQTLs 

may identify master regulators, such as transcription factors or small regulatory RNA 

(Holloway et al., 2011) that control the regulation of multiple genes in a pathway. Systems 

genetics or eQTL mapping studies allow the identification of novel functional pathways, 

genetic variants or gene-gene regulatory networks to better understand the underlying 

genetic regulation of the traits (Calabrese et al., 2012; Mäkinen et al., 2014).  

Sequence variation in a master regulator, such as a transcription factor, usually regulates the 

expression of many genes. As a result a large number of trans-eQTLs co-localize at the 

position of a master regulator, yielding an eQTL hotspot. Genes from such an eQTL hotspot 

might be sharing their regulatory functions and be expressed simultaneously. The genetic 

study of co-expression patterns and their biological significance therefore is of great interest 

for functional studies and for the identification of genes involved in processes of interest. 

 

 

 

Figure 6: Types of eQTLs based on the physical position of gene and eQTL position (under 

study). A. cis-eQTL, result from allelic variation of the gene under study. B. distant trans-
eQTL, gene is physically located in different location from its eQTL.  
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Scope of the thesis 

The objective of this thesis is to unravel the genetics of seed quality and seedling vigour 

traits in B. rapa using a systems genetics approach. Brassica seeds are of high economic 

importance due to multiple uses as vegetable oil or condiments and as starting point of the 

crop’s life cycle. B. rapa is an extremely diverse Brassica species which includes many 

vegetable and oilseed crops. At present, B. napus is the most important source of vegetable 

oil worldwide, but B. rapa is often introgressed to broaden its narrow genetic base resulting 

in genetic improvements. Therefore, the acquired knowledge is useful for the scientific 

community working in B. napus as well as other Brassica species.  

Our hypothesis for this thesis is that transcriptional regulation of genes during seed 

development determines the composition and content of seed reserves, and that these seed 

reserves play a major role in seed germination and seedling growth, especially at the 

heterotrophic stage under optimal and sub-optimal conditions. Therefore, transcript 

profiling was carried out in the developing seeds, using genetical genomics. Fatty acids (FAs) 

were measured in ripe dry seeds of doubled haploid (DH) lines and integrated with 

transcriptome data using a systems genetic approach. The DH population was developed 

from a cross of two contrasting B. rapa parents, an oil-type yellow sarson (YS143; accession 

number FIL500) and a vegetable-type pak choi (PC175; Accession number VO2B0226). These 

two genotypes YS143 and PC175 are contrasting in their phylogenetic, morphological, 

metabolites and transcriptome characteristics (Zhao et al., 2005; Pino Del Carpio et al., 

2011a; Pino Del Carpio et al., 2011b; Basnet et al., 2013). YS143 has yellow seed colour, large 

seed size, high oil content, faster germination rate, longer root and shoot length and is 

sensitive to salt stress, while PC175 has brown or black seeds, smaller seed size, slower 

germination rate, and shorter root and shoot length, but it is less sensitive to salt stress. 

QTLs were detected for traits related to seed germination and seedling vigour under 

different conditions.  

Chapter 2 introduces the genetic diversity of B. rapa and identifies distinct groups in a core 

collection of 168 accessions. The genetic distances of accessions were compared with 

metabolic and morphological distances using multivariate statistical approaches. The 

geographical distribution of the accessions was very much congruent with genetic, metabolic 

and morphological diversity. Association studies were performed to find marker-metabolite 

associations for carotenoids and tocopherols. Knowledge of genetic relatedness allowed the 

choice of parents to create a segregating population for QTL analyses by maximizing genetic 

variation between the parents. 

Chapter 3 describes the morphological development and the transcriptional signatures of 

developing seeds from yellow- and brown/black-seeded genotypes. Gene modules with 

different co-expression patterns, associated with temporal and/or genotypic contrasts, are 

shown. The variation in gene expression is shown to be due to developmental stages rather 

than morphotype differences. Finally, we focus on co-expression patterns of genes related to 

lipid metabolism and identify putative cis-regulatory elements (also called motifs). 
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Chapter 4 studies the genetic variation of traits related to seed germination and seedling 

vigour under non-stress and salinity stress in the doubled haploid population. We identify 

the QTL regions, where QTLs for seed germination and/or seedling vigour traits under both 

non-stress and salt stress conditions are co-located. Co-localization of eQTLs of two 

candidate genes, selected based on similar studies in the model species A. thaliana and 

closely related species B. napus, with QTL hotspots suggest a role of these genes in the trait 

variation. 

Chapter 5 is a systems genetics study of fatty acid composition and transcriptional variation 

of genes related to lipid metabolism. Fatty acid QTLs (faQTLs) and eQTLs are mapped; for 

some FAs, major faQTLs co-localize with eQTL hotspots. Gene regulatory networks 

constructed for the economically most important fatty acids oleic-, erucic-, linoleic- and 

linolenic- acids, allow the identification of major hub genes possibly regulating lipid 

metabolism. 

Chapter 6 summarizes and discusses the most important findings from this thesis. Finally, in 

this chapter we give suggestions for future studies of the genetic inheritance of complex 

traits, such as seed quality and seedling vigour. 
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Abstract 

Association mapping is a statistical approach combining phenotypic traits and genetic 

diversity in natural populations with the goal of correlating the variation present at 

phenotypic and allelic levels. It is essential to separate the true effect of genetic variation 

from other confounding factors, such as adaptation to different uses and geographical 

locations. The rapid availability of large datasets makes it necessary to explore statistical 

methods that can be computationally less intensive and more flexible for data exploration. A 

core collection of 168 Brassica rapa accessions of different morphotypes and origins was 

explored to find genetic association between markers and metabolites: tocopherols, 

carotenoids, chlorophylls and folate. A widely used linear model with modifications to 

account for population structure and kinship was followed for association mapping. In 

addition, a machine learning algorithm called Random Forest (RF) was used as a comparison. 

Comparison of results across methods resulted in the selection of a set of significant markers 

as promising candidates for further work. This set of markers associated to the metabolites 

can potentially be applied for the selection of genotypes with elevated levels of these 

metabolites. The incorporation of the kinship correction into the association model did not 

reduce the number of significantly associated markers. However incorporation of the 

STRUCTURE correction (Q matrix) in the linear regression model greatly reduced the number 

of significantly associated markers. Additionally, our results demonstrate that RF is an 

interesting complementary method with added value in association studies in plants, which 

is illustrated by the overlap in markers, identified using RF and a linear mixed model with 

correction for kinship and population structure. Several markers that were selected in RF 

and in the models with correction for kinship, but not for population structure, were also 

identified as QTLs in two bi-parental DH populations. 

 

Key words: Brassica rapa, core collection, metabolites, population structure, association 

studies, random forest. 
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Introduction 

In plants association mapping has been developed as a tool to relate genetic diversity, 

expressed as allelic polymorphisms, to the observed phenotypic variation in complex traits 

without the need to develop mapping populations. Results obtained with association 

mapping methods in various crops indicate that this technique can be successful in the 

identification of markers linked to genes and/or genomic regions associated to a desirable 

trait (Remington et al., 2001; Simko et al., 2004; Thornsberry et al., 2001; Agrama et al., 

2007; Kraakman et al., 2006; Zhao et al., 2007). 

However, one of the most important constraints in the use of association mapping in crop 

plants is unidentified population sub-structure, which arises as a result of adaptation, 

genetic drift, domestication or selection (Thornsberry et al., 2001; Wright and Gaut, 2005). 

Spurious associations due to population structure may lead to false positive associations, if 

the cause of the correlation is not tight genetic linkage between polymorphic locus and the 

locus involved in the trait, but disproportional representation of the trait in one 

subpopulation (Breseghello and Sorrells, 2006). 

As a consequence, when association mapping is used to identify genes responsible for 

quantitative variation in a group of accessions, there is enough evidence that confounding 

will be a significant problem, especially if the trait varies geographically, as is the case for 

example of flowering time (Thornsberry et al., 2001; Aranzana et al., 2005; Yu et al., 2006). 

Several methods can be used to infer multiple levels of relatedness in a population (Ritland 

et al., 1996; Yu et al., 2006). The STRUCTURE program uses a Bayesian approach to cluster 

accessions of a collection into subpopulations on the basis of multilocus genotype data 

(Pritchard et al., 2000; Falush et al., 2003, 2007). Designed statistical tests using PCA have 

also been used to check for the existence of population structure in a data set and monitor 

the number of significant principal component axes (Price et al., 2006; Reeves and Richards, 

2009; Patterson et al., 2006). Similarly, kinship coefficients approximate identity by descent 

between pairs of accessions. In several association studies information about population 

structure and/or kinship has been included into the general linear regression and mixed 

linear models (Pritchard et al., 2000; Zhao et al., 2007; Yu et al., 2006; Malosetti et al., 2007). 

Results obtained in some studies suggest that the method that accounts both for sub-

populations and kinship (also called the “QK method”) is the most appropriate for 

association mapping (Yu et al., 2006).  

A different statistical approach, which carries one or more advantages above most other 

methods, is the Random Forest (Breiman, 2001). This is a tree-based method that has been 

used for marker trait associations with human disease data, because it allows the ranking 

and selection among very large sets of predictor variables (markers) that best explain the 

phenotype (Lunetta et al., 2004; Ye et al., 2005). This method is computationally very fast, 

scale-free and makes no strong assumptions about the distribution of the data. For emerging 

types of datasets like metabolite profiles, transcript profiles and the very large SNP datasets 

that emerge due to the rapid development of whole genome sequencing technology, it is 
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necessary to consider and validate association methods that can handle these high 

dimensional data sets. 

Furthermore, the power to detect epistasis in moderately sized populations in general is low, 

while Random Forest can implicitly use interactions among regressor variables to predict the 

phenotype and can help identify multi-locus epistatic interactions (Jiang et al., 2009; Chen et 

al., 2007a). 

For this study we choose to work with a core collection of 168 Brassica rapa accessions, 

representing the wide variation in crop types (hereafter called morphotypes) and 

geographical origins. B. rapa has been cultivated for many centuries in different parts of the 

world, increasing the variation within the species as a result of breeding. B.rapa is a diploid 

species which includes vegetable-, fodder- and oil crops. The leafy vegetables include both 

heading types (Chinese cabbage) and non-heading types (among others pak choi, mizuna, 

mibuna, komatsuna and broccoletti, consumed for its inflorescenses), the turnips include 

vegetable and fodder turnips, and the oil crops include both annual and biannual crops. 

Most leafy vegetables, turnips and biannual oil types are self-incompatible and as a 

consequence the genebank accessions of this type are heterogeneous and plants are 

heterozygous. A smaller group of B. rapa is formed by the sarsons (brown sarson 

(dichotoma), toria (dichotoma) and yellow sarson (trilocularis)) characterized by very early 

flowering and self-compatibility of many accessions, which results in heterogeneouw 

accessions with merely homozygous plants (Zhao et al., 2005). Modern cultivars and 

breeding lines from seed companies are homogenous heterozygous hyrids and homozygous 

inbred lines.  

In a previous study the genotypic fingerprinting of a large collection of 160 accessions 

showed that there is considerable genotypic variation within the B. rapa gene pool (Zhao et 

al., 2005). The hierarchical cluster analysis revealed that accessions from the same 

geographical origin (Europe, Asia and India) are more related to each other genetically than 

accessions representing similar morphotypes from different geographical regions. These 

accessions from the same origin are genetically related possibly because they share part of 

their breeding history (Zhao et al., 2005).  

Previously, in a collection of 160 B. rapa accessions association analysis with correction for 

population structure led to the identification of 27 AFLP markers, related to the variation in 

leaf and seed metabolites as well as morphological traits (Zhao et al., 2007). In the present 

study we consider the genetic association between markers and tocopherols, carotenoids, 

chlorophylls and folate in a core collection of 168 B. rapa accessions of different 

morphotypes and origin. We explore the results obtained with association methods that 

correct for kinship and population structure which mainly aim to reduce the rate of false-

positive associations, and in addition we make use of Random Forest for comparison to the 

commonly used association methods. 
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Materials and methods 

Plant material 

The B. rapa core collection included a total of 168 accessions of diverse morphotype and 

origin (Supplementary Table S1). The leafy vegetables, (Chinese cabbage, pak choi and 

Japanese cultivars), neep greens, turnip rape, brocoletto (turnip tops) and turnip types are 

mainly self-incompatible and as a consequence the accessions are heterogeneous and 

heterozygous. The annual yellow sarson oil seed accessions are self-compatible, which 

results in homozygous plants. The modern cultivars and breeding lines from seed companies 

are homogeneous hybrids and inbred lines. 137 accessions were obtained from the Dutch 

Crop Genetic Resources Center (CGN) in Wageningen, the Chinese Academy of Agricultural 

Sciences (CAAS)-Institute for Vegetable and Flowers (IVF) and the CAAS Oil Crop Research 

Institute (OCRI) genebanks and the Osborn Lab, while six different breeding companies 

(Supplementary Table S1) provided 31 accessions. For the metabolite profiling two plants 

per accession were sown in the greenhouse (2006) under the following conditions: 16 hours 

light and temperature fluctuation between 18 and 21°C. The plants were distributed over 

two tables in a randomized design with one plant per accession on each table. In the 5th 

week after transplanting the leaf material (youngest expanded leaves) was harvested per 

plant. Upon harvesting, all plant materials were snap-frozen in liquid nitrogen and ground 

into a fine powder using an IKA A11 grinder cooled with liquid nitrogen. Frozen powders 

were stored at -70°C until analyses. DNA was extracted from the ground and frozen material 

with the DNAeasy kit (Qiagen, USA). 

 

Metabolite analyses 

Folate extraction and analysis  

From each frozen powder, 0.15 g was weighed and 1.8 ml of Na-acetate buffer containing 

1% ascorbic acid and 20 µM DTT, pH 4.7, was added. After sonication for 5 min and heating 

at 100°C for 10 min, total folate content of samples was quantified using a Lactobacillus 

casei–based microbiological assay, after enzymatic deconjugation for 4 hours at 37°C pH 4.8, 

with human plasma as a source of -glutamyl hydrolase activity (Sybesma et al., 2003). Each 

extract was assayed in 4-6 replicates using different dilutions. The total technical variation of 

this analysis was determined using 7 replicate extractions from the same frozen powder of 

two different randomly chosen genotypes, and was 5.5% and 6.9%, respectively. 

 

HPLC analyses of lipid-soluble phytonutrients 

Extraction and analyses of carotenoids, tocopherols and chlorophylls were performed as 

described in Bino et al. (2005). In short, 0.5 g of FW of frozen powder was taken and 

extracted with methanol-chloroform-Tris buffer twice, the chloroform fraction was dried 

using nitrogen gas and taken up in 1 ml of ethylacetate. The chromatographic system 

consisted of a W600 pump system, a 996 PDA detector and a 2475 fluorescence detector 

(Waters Chromatography), and an YMC-Pack reverse-phase C30 column (250 x 4.6 mm, 
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particle size 5 µm) at 40°C was used to separate the compounds present in the extracts. Data 

were analyzed using Empower Pro software (Waters Chromatography). Quantification of 

compounds was based on calibration curves constructed from respective standards. The 

total technical variation was between 2 and 8 percent, depending on compound, as was 

established using 12 extractions of the same frozen powder from a randomly chosen 

genotype.  

Genotypic data 

The AFLP procedure was performed as described by Vos et al., (1995). Total genomic DNA 

(200 ng) was digested with two restriction enzymes Pst I and Mse I and ligated to adaptors. 

Pre amplifications were performed in 20 l volume of 1x PCR buffer, 0.2 mM dNTPs, 30 ng of 

adaptor primer, 0.4 Taq polymerase and 5 l of a 10x diluted restriction ligation mix, using 

24 cycles of 94 C for 30 seconds, 56 C for 30 seconds and 72 C for 60 seconds. Pre-

amplifications products were used as template for selective amplification with three primer 

combinations (P23M48, P23M50 and P21M47).  

For the Myb family targeted profiling, total genomic DNA was digested using the following 

enzymes per reaction: Hae III, Rsa I, Alu I and Mse I and ligated to an adaptor. Pre 

amplifications with one primer directed to a common myb motif (Dr. Gerard van der Linden, 

Wageningen UR Plant Breeding, unpublished results) and one adaptor primer were 

performed in 25 l of 1X PCR buffer (with 15 Mm MgCl2), 0.2 mM dNTPs, 0.8 pMol Gene 

specific primer, 0.8 pMol Adapter primer, U Hotstar Taq polymerase (Qiagen) and 5 l of a 

10X diluted restriction ligation mix. Amplification products were used as template for 

selective amplification. 

AFLP and Myb profiling images were analyzed using Quantar ProTM software. This marker 

dataset (359 polymorphic bands) was scored as present (1) or absent (0) and treated as 

dominant markers. A map position could be assigned for 69 markers from this dataset; these 

markers were distributed over different positions in the linkage groups of a doubled haploid 

population (Pino Del Carpio, unpublished results). 

For microsatellite (SSR) screening, 28 primers were selected for amplification in the 

accessions of the core collection. From the primers 10 were genomic and 18 were new Est 

based SSRs (Dr. Ma RongCai, Dr Tang Jifeng (WUR-PBR)). The primers were selected because 

of their map position in different maps of B. rapa and distribution over all the linkage groups 

(A01-A10) (Pino Del Carpio et al., 2011b). Microsatellites scores were converted to binary 

data per observed allele (194 fragments of defined size) as present (1) or absent (0) and 

were also treated as dominant markers. 

 

Assessment of population structure  

Marker data (AFLP, Myb and SSR) were used to identify the different subgroups and 

admixture within the accessions of the core collection through a model of Bayesian 

clustering for inferring population structure. For the SSRs only the most frequent SSR allele 

was taken into account to avoid over representation of the SSR loci. 
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A total of 539 markers was included in the analysis, and ploidy was set to one. The number 

of subpopulations was determined using the software STRUCTURE 2.2 

(http://pritch.bsd.uchicago.edu/software), by varying the assumed number of 

subpopulations between one and ten, with a total of 300,000 iterations for Markov Chain 

Monte Carlo repetitions and 100,000 burns-in. 

In addition, we also followed the procedure PCO-MC as described in Reeves and Richards 

(2009), to assess population structure. The method uses principal coordinate analysis (PCO) 

and clustering methods to infer subpopulations in a collection of accessions. We chose this 

method to complement the analysis performed by STRUCTURE because it is computationally 

efficient and model free and has been shown to be capable of capturing subtle population 

structure (Reeves and Richards, 2009). We used software NTSYS version 2.2 (Rohlf, 1998) to 

produce pairwise distances, among all accessions, based on the Jaccard measure. Principal 

coordinates were obtained based on the distance matrix as described by Reeves and 

Richards (2009). Then procedure PROC MODECLUS in SAS 9.1 software (SAS Institute, Cary, 

NC) was used to group the accessions into subpopulations according to kernel density 

estimates in the PCO space. Subpopulations were formed by decreasing order of the kernel 

densities, starting with the largest estimated kernel density (by setting method = 6 at PROC 

MODECLUS). We performed a test to determine which subpopulations were significantly 

distinct from the rest, using PROC MODECLUS, and estimated stability values for the 

subpopulations using the PCO-MC software 

(http://lamar.colostate.edu/~reevesp/PCOMC/PCOMC.html) (Reeves and Richards, 2009). 

The PCO plot of the first two components was drawn in DARwin software version 5.0.155 

(Perrier and Jacquemoud-Collet, 2006). 

 

Summary statistics of metabolite variation  

Box plots were chosen as a tool to explore the variation of metabolite concentrations 

according to different STRUCTURE subpopulations. One-way ANOVA was performed for each 

metabolite to find the mean differences among the four STRUCTURE subpopulations. Least 

significant differences (LSD) were calculated to compare the differences of means of 

metabolite content between the four subpopulations obtained with STRUCTURE. Boxplots, 

ANOVA and LSD calculations were performed using R statistical software. 

 

Association analysis 

Association analysis was performed in several steps of increasing complexity; with and 

without correction for population structure (Yu et al. 2006) using TASSEL 

(www.maizegenetics.net). A total of 243 markers, with an allelic frequency higher than 10%, 

were included in the association analysis. Since AFLP and Myb markers gave dominant 

marker scores and TASSEL works with co-dominant data, within TASSEL we set the ploidy to 

one to work with dominant scores as we had done with STRUCTURE. In the case of the 28 

http://lamar.colostate.edu/~reevesp/PCOMC/PCOMC.html
http://www.maizegenetics.net/
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microsatellites all alleles were included within TASSEL in a different run as codominant 

markers. 

In the first step a “naïve” model was used to associate each marker to the trait, 

trait = marker + error         (1) 

This model was fitted by a least squares fixed effects linear model in TASSEL where the 

markers are considered as a factor taking the value 0 (fragment absent) or 1 (fragment 

present). In this case a t-test could also have been used to test association since we only 

have two classes for the marker. In this “naïve” model population substructure was not 

taken into account. 

In the second step the vector of subpopulations memberships Q obtained from STRUCTURE 

was added as a fixed term to the previous model 

trait = marker + Q + error         (2) 

In the third step we corrected for kinship using a linear mixed model available in TASSEL. The 

model can be written as  

trait = genotype + marker + error        (3) 

where random terms are underlined. Genotype is a random factor with the different 

genotypes or accessions in the population. Kinship coefficients were calculated using 

SPAGeDi (Hardy and Vekemans, 2002). Like for the calculation of STRUCTURE, for the SSRs 

only the most frequent SSR allele was taken into account to avoid representation of the SSR 

loci. We have VG=σ2K; VG is the variance-covariance matrix of the random genotype effects, K 

is the matrix of kinship coefficients and σ2 is the additive genetic variance. 

In the fourth and final step we correct for kinship as well as population structure using a 

linear mixed model that combines the information contained in the two previous models. It 

is also known as the Q+K method (Yu et al., 2006). 

trait = genotype + Q + marker + error        (4) 

As before, genotype is a random factor, with covariances given by the kinship matrix K and Q 

is a fixed term containing the subpopulation memberships. The model is similar to those 

described by Yu et al., (2006) and Malosetti et al., (2007). Here we used the same set of 

AFLP, Myb and SSRs data to estimate both K and Q. The percentage of variation was also 

implemented in TASSEL and extracted from the output for further analysis and comparison. 

 

Correction for multiple testing 

The p-values resulting from all the models for association analysis were corrected for 

multiple testing using a resampling method as implemented in the R package “multtest” 

(Pollard et al., 2005). 

 

Random Forests  

Random Forests (RF) regression (Breiman, 2001) was used in this study to find markers 

(among the 243 AFLP and Myb, and 28 SSR marker set) associated to the tocopherol, 

carotenoids, flavonoids and folate metabolites. This method uses a bagging approach by 
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bootstrapping samples (Gislason et al., 2006) and gives the relative importance of each 

marker in the regression of metabolites. In this study, RF was performed using 5,000 

regression trees for each analysis. Each tree is formed on a bootstrap sample of the 

individuals (the training dataset), while individuals that are not in the bootstrap sample (out-

of-bag samples = OOB), are used for estimation of the mean squared error of prediction. 

Within each regression tree, at each split of the tree, a random subset of the markers is 

considered as a candidate set of markers for a binary split among the set of individuals. The 

partitioning of the samples is continued until homogeneous groups of small number of 

samples remain. 

This procedure is fast and can handle high dimensional data (predictor variables >> number 

of samples). Each tree is fully grown (unpruned) to obtain low-bias, high variance (before 

averaging) and low correlation among trees. Finally, RF averages are calculated over all the 

trees and results in low-bias and low variance of predictions of the trait based on the 

markers used in the Random Forests (Svetnik et al., 2003). This method has an internal 

cross-validation (using the OOB samples) and has only a few tuning parameters which, if 

chosen reasonably, do not change results strongly (Gislason et al., 2006). 

The parameter “mtry”, which indicates the number of random variables considered at each 

split node, was optimized by choosing the “mtry” with the highest percentage of explained 

variation among separate RF analyses done on “mtry” values 3, 6, 12, 24, 48 and 96 

successively on the same dataset.  The variance explained in RF is defined as 1-(Mean square 

error (MSE) / Variance of response), where MSE is the sum of squared residuals on the OOB 

samples divided by the OOB sample size (Pang et al., 2006). The “mean decrease in MSE” 

(InMSE) was considered to quantify the importance of each marker. The higher the “InMSE” 

value of the marker, the greater the increase in explained variation when it is included in the 

model. 

In general, RF yields only the relative importance of markers that explain the variation 

present in metabolites, but does not give a significance threshold level to select a subset of 

associated markers. Therefore, a permutation method was used to calculate the significance 

of each marker association in this study (Wang et al., 2010a). All the observations of a 

metabolite (the response in the regression) were permuted to destroy the association 

between markers and metabolite, and RF analyses were repeatedly conducted on the 

permuted metabolite data 1000 times. For each metabolite, the ‘‘IncMSE’’ values of each 

marker from 1000 RF runs on permuted metabolites were stored, and uses as a ‘‘null 

distribution’’ of the IncMSE value to assess the significance threshold of each marker. Then, 

the IncMSE values of each marker obtained from RF analysis on the original unpermuted 

metabolite dataset was compared to this ‘‘null distribution’’ at 0.05 level of significance to 

determine significantly associated markers. 

RF regressions of metabolites on markers were conducted using the “RandomForest” 

package of the R-software (Liaw and Wiener, 2002).  
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Network visualization of metabolite and marker correlation 

A network is an extended graph, which contains additional information on the vertices and 

edges of the graph (de Nooy et al., 2005). We used full-order partial correlation coefficients 

to construct correlation network of metabolites to remove the correlation between 

metabolites due to direct and indirect dependencies on the upstream metabolites in the 

pathway. We included in the network graph all the markers that were associated to the 

metabolites after correction for multiple testing (α = 0.05). Since we are focusing on the 

tocopherols, carotenoids and folate pathway, correlation analysis can give spurious 

correlation between the metabolites due to the effect of upstream metabolites of the 

pathway. Partial correlation measures only the direct or unique parts of relation between 

metabolites controlling the effects of other metabolites of the pathway (Opgen-Rhein and 

Strimmer, 2007). The only significant non-zero pairwise partial correlation coefficients (α = 

0.05) between metabolites were shown in network. The vertices of the network are the 

metabolites, in this case tocopherols, carotenoids, chlorophylls and folate, and associated 

markers, whereas the edges correspond to metabolite-metabolite partial correlations and 

marker-metabolite association. For the visualization of the marker-metabolites association, 

the p-values obtained from model (4) were transformed into –log10(p-value). The network 

was constructed using the Pajek graph drawing software (Batagelj and Mrvar 2003). 

 

Results  

Principal coordinate analysis (PCO) and population structure of the core collection 

The genetic population structure of the core collection of 168 accessions was inferred using 

553 markers (AFLP, Myb and SSR polymorphic bands). The Bayesian clustering method as 

implemented in STRUCTURE revealed four subpopulations. Subpopulation 1 included oil 

types of Indian origin, spring oil (SO), yellow sarson (YS) and rapid cycling (RC) (SO, YS and 

RC); subpopulation 2 included several types from Asian origin: pak choi (PC), winter oil, 

mizuna, mibuna, komasuna, turnip green, oil rape and Asian turnip (PC+T); subpopulation 3 

included mainly accessions of Chinese cabbage (CC) and subpopulation 4 included mostly 

vegetable turnip (VT), fodder turnip (FT) and brocoletto accessions from European origin 

(VT+FT) (Figure 1B). 

There was a high level of admixture between the different subpopulations. Of the 168 

accessions, 109 were assigned to a subpopulation with a membership probability of p>0.70. 

Fifty-nine accessions were assigned to more than one subpopulation and had membership 

probabilities below 0.7 corresponding to several subpopulations (Supplementary Table S1). 

The PCO-MC method couples principal coordinate analysis to a clustering procedure for the 

inference of population structure from multi-locus genotype data. The PCO and STRUCTURE 

output produced comparable results. After the PCO analysis, in the second dimension one 

small distinct, statistically significant subpopulation, corresponding to oil types of Indian 

origin, could be distinguished. This subpopulation corresponds to subpopulation 1 (SO, YS 

and RC) as identified in STRUCTURE (Figure 1A). In the first dimension, the three 
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subpopulations as defined in STRUCTURE form three clusters with overlap. On the right, the 

cluster of yellow dots corresponds to accessions in subpopulation 4 (VT and FT from Europe) 

as defined in STRUCTURE, and on the left the blue dots represent the accessions 

corresponding to subpopulation 3 (CC), while the green dots represent accessions that 

correspond to subpopulation 2 (PC and T from Asia). When the top 5 components are 

calculated, they together account for 30% of the total variation present in the core 

collection. As many principal component loadings would have been needed to account for 

the variation within this collection, we decided to include STRUCTURE output into the 

association model to correct for population structure. 

In figure 2 we show the frequencies of the different kinship coefficient classes. The highest 

frequency was found for values between 0–0.05 (79.47%) while the second highest 

frequency was found for values between 0.05–0.1 (11.21%). These values are similar to the 

ones obtained in Brassica napus (Jestin et al., 2011) in which the kinship calculation indicates 

a low level of relatedness between the accessions, with only few accessions being more 

related to each other. 

 

Figure 1: Principal co-ordinate analysis (PCO) - scatter plot (A) and STRUCTURE (B) results. 
Colors define subpopulations: red (oil: subopulation 1), green (PC+T: subpopulation 2), blue 
(CC: subpopulation 3) and yellow (VT+FT: subpopulation 4).  
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Metabolite variation 

To estimate the variation within and between the different B. rapa morphotypes, boxplots 

were constructed based on the total content value per metabolite in each subpopulation as 

defined by STRUCTURE (Figure 3). Visual inspection of the box plots and the least significant 

differences (LSD) in metabolite content between subpopulations showed variation in the 

amount of most of the carotenoids and folate between these subpopulations. Conversely, 

the content of chorophyll b and lutein was significantly different between few 

subpopulations and the content of tocopherols was just significantly different between the 

Chinese cabbage (CC) subpopulation 3 compared to the other subpopulations 

(Supplementary Table S2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Distribution of kinship coefficients among 168 accessions of the B. rapa core 
collections. 

Figure 3: Boxplots of metabolite content variation present in sub-populations. The numbers 
indicate subpopulations as defined with STRUCTURE. Oil: subpopulation 1, PC+T: 
subpopulation 2, CC: subpopulation 3 and VT+FT: subpopulation 4. 
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δ-tocopherol γ-tocopherol β-tocopherol α-tocopherol Lutein β-carotene Neoxanthin Violaxanthin Chlorophyll b Chlorophyll a Folate

Model (1)* 2 24 55 32 22 97 89 92 22 28 112

Model (2) 0 0 0 0 0 0 0 4 0 0 2

Model (3) 2 26 56 34 22 98 88 96 22 23 109

Model (4) 0 0 0 0 0 5 0 5 0 0 1

RF 16 24 12 8 16 36 39 34 32 17 28

RF-Model (4)** 0 0 0 0 0 3 0 3 0 0 1

RF-Model (1)** 1 11 4 2 6 31 26 30 9 7 21
RF-Model (3)** 1 11 4 2 6 32 26 30 9 7 21

Tocopherols Carotenoids Chlorophylls

Note: *Model (1): naïve model; model (2) correction for Q; model (3) correction for K; model (4) correction for K and Q; RF: Random Forest. ** - number of 

markers identified in both methods are listed.

Association analysis 

Using linear and linear mixed models 

Because many of the phenotypic trait values showed a distribution highly correlated to the 

underlying population structure it was expected that the number of significantly associated 

markers would differ to a large extent between different metabolites and between analysis 

methods, as shown in Table 1. 

Table 1: Association mapping results from the different linear models and Random forests 
(RF) indicating the numbers of significant markers after correction for multiple testing (FDR 
p-value ≤ 0.05) for each metabolite. 

 
To test for marker-trait associations we first applied an approach that did not include any 

correction for the level of relatedness or structure between accessions (model 1). As a result 

the number of significantly associated markers to a specific metabolite after multiple test 

correction was strongly inflated and ranged from 2 (for δ tocopherol) to 98 (for folate) per 

metabolite. The highest numbers of significant markers associated to a trait (>.80) were 

found for β-carotene, neoxanthin, violaxanthin and folate; these metabolites also showed 

the greatest variation in content between subpopulations. 

To account for the level of relatedness between individuals we included the kinship 

correction (K matrix) in model (3). However, with the inclusion of this correction the number 

of significantly associated markers remained high (2-94). The results of these two models 

were highly similar not only in number but also in the identity of the significant markers for 

each metabolite.  

In addition to the K matrix we introduced the STRUCTURE Q matrix as a correction. After 

accounting for population structure in model (2) the number of significant markers found 

per metabolite after a multiple correction step was dramatically reduced. Only for 

violaxanthin and folate few markers were identified. This drop down was as strong for the 

metabolites with subpopulation variation (carotenoids and folate) as for the tocopherols, 

which showed significant variation only between the CC subpopulation and the other 

subpopulations. 

When we combined the information from the Q matrix and the K matrix in the full model (4), 

following the described approach (Yu et al., 2006), the performance is comparable to model 

(2), which includes the Q matrix only, in both the obtained number of associations and the 

identity of associated markers, except for β-carotene with five markers identified in model 4. 
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After correcting for multiple testing in the QK correction model, only ten markers remained 

significantly associated with metabolites: Alu_M476_0, pTAmCAC_148_3, Hae_M294_2, 

pGGmCAA_335_2 and pTAmCAT_312_3 for β-carotene; Alu_263_6, pTAmCAC_101_7 and 

pTAmCAC_270_9, Br13 and Br46 for violaxanthin and pGGmCAA_335_2 for folate. 

To summarize the results obtained from the full model (4), we constructed a network with a 

total of three Myb, five AFLP and two microsatellite markers significantly associated to the 

metabolites (p < 0.05). The network allowed us to connect the metabolites of similar 

pathways through markers (Figure 4). The overlap of significant associated markers between 

all the pathways (carotenoids, tocopherols, chlorophylls and folate) was very limited as 

expected if we consider that biochemically different precursors are involved. We found only 

one marker (pGGmCAA_335_2) that was significantly associated to folate and β -carotene. 

Figure 4: Network of partial correlation between metabolites, and marker-metabolite 
association under model 4 (QK correction). The thicker the line is the stronger the 
correlation and or association. Shape and color of vertices indicate metabolites and 
associated markers: β-carotenoids – round-orange; chlorophylls – triangle-red; folate - 
diamond-purple; lutein - round-yellow; neoxanthin - diamond-brown; tocopherols round - 
black; violaxanthin - diamond-yellow and associated markers (model 4)- square-green. The 
allele frequency distribution of each associated marker according to STRUCTURE sub-
populations is illustrated with barplot. Colours in barplots represent different marker alleles. 
*- indicates markers that are common between model 4 (QK correction) and RF. 
 

Random Forests (RF) 

The number of significantly associated markers per metabolite ranged from eight for α-

tocopherol to 39 for neoxanthin. Interestingly, when compared to the simple model (1), the 

number of significant markers obtained with the RF approach was much lower for all the 

metabolites except for δ-tocopherol. 



Comparative study of association mapping 

 39 

Nonetheless, the overlap of significant markers between methods is large; many of the 

significant markers found with RF were also significant with the simple model (1) and with 

the model with correction for kinship (3). For example, an overlap between 20% and 30% of 

significant markers was observed for β-carotene, neoxanthin, violaxanthin, folate, α-

tocopherol and β-tocopherol (Table 1; Supplementary Table S3).  

In contrast, when the results obtained with Random Forest are compared to the results 

obtained with the full model (4) six out of the ten markers from this model are included in 

the Random Forest output. In the case of the microsatellite markers the overlap between 

significantly associated markers in Random Forest and in model (1) was high and almost 

complete for both markers except for those identified for δ-, β- and α-tocopherol. 

Additionally, one out of two significant SSR markers from model (4) was found also 

significant in the Random Forest output. 

 

Discussion 

An important consideration for the use of association mapping in crop plants is the presence 

of population structure. If a group of diverse accessions is chosen for this type of studies the 

risk exists that some of the accessions are more closely related to each other than the 

average pair of individuals taken at random in a population (Breseghello and Sorrells, 2006). 

In our study we identified with STRUCTURE the presence of 4 subpopulations, which showed 

correlation with the origin and morphotypes of B. rapa. Results from both principal 

coordinate analysis (PCO) and STRUCTURE illustrate the highly admixed nature of the 

accessions within this collection. We decided to use membership probabilities obtained from 

STRUCTURE in the association mapping model to correct for populations structure, as it is 

widely used method. In addition, correction for kinship was included in other models. 

In the four models we explored the impact from STRUCTURE (model 2), kinship coefficients 

(model 3) or both (model 4) in the association models. 

Correcting for the level of relatedness using the Q matrix from the STRUCTURE output, 

resulted in a significant reduction of the number of marker-trait associations as shown by 

comparing model (1) and both models (2) and (4). Although there was always some overlap 

between the marker-trait associations identified by these models, new associations arose 

with models (2) and (4). 

The inclusion of the kinship matrix in models (3) and (4) did not reduce the number of 

significant marker-trait associations. This was most likely due to the fact that kinship values 

were very low and the accessions of the core collection showed similar levels of relatedness. 

The results from STRUCTURE and the identical levels of relatedness as observed in K seem to 

contradict. Similarities based on the Jaccard measure were also tested in model (3), with the 

same results as obtained with the similarities obtained from SPAGeDi. 

We tested thereafter both corrections in phenotypic models identical to models (2) and (3) 

but without the marker effect, and compared the resulting residual variance with the 

‘‘empty’’ model: trait = error. We found that whereas Q explained the phenotypic variation 
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by as much as 60% for some traits, the K matrix did not seem to explain any part of the 

phenotypic variation, for all traits. This seems to support earlier evidence that K alone in 

some cases may not correct for population structure (Jestin et al., 2011). In terms of how 

these methods performed in reducing the false positive rate, we observed that metabolites 

with a distribution highly correlated to the underlying population structure, like for example 

the carotenoids, still retained the highest number of associated markers in all the statistical 

models. As a result, in spite of introducing a correcting term in our models we still expect 

some false positives within this list of significant markers. Even in association studies with 

Arabidopsis inbred lines it is difficult to distinguish true associations from false ones because 

of confounding by complex genetics and population structure (Atwell et al., 2010). 

In the present study we considered the use of Random Forests (RF) as a complementary 

method to our association study. The performance of this method in association analysis has 

been recently tested in Arabidopsis (Nemri et al., 2010). Within that study the overlap of RF 

and Fisher’s exact test was considerable. 

In our study we evaluated the RF results in comparison to the results obtained with the 

already validated and widely used model (4) and the simple model (1). One striking result of 

the RF analysis is the small number of associated markers that are found for all the 

metabolites in comparison to model (1). Random Forests is rather robust to outliers, as 

opposed to linear models, making it an attractive alternative to the traditional linear models. 

We decided to evaluate the overlap of RF and the simple model (1), which does not include 

any correction, and the full model, which includes the Q and K matrix correction (4). Seven 

out of eleven marker-trait associations found significant after multiple test correction with 

model (4) were also found significant with RF, while also many Random Forest markers were 

identified with models 1 and 3 (K correction). 

Several markers that are associated with the metabolites studied, were also identified in QTL 

studies for the same metabolites in DH populations derived from crosses between two 

accessions yellow sarson (YS143) and pak choi (PC175) and their reciprocal cross 

(Supplementary Table S3), or map to regions that harbour structural genes in the metabolic 

pathway based on Arabidopsis- B. rapa genome synteny (data not shown). This is a 

confirmation of the effect of the marker-trait association and makes these markers 

important candidate genes for further study. 

For eight of the eleven metabolites analyzed, Random Forest selected at least one marker 

that mapped in the QTL interval for the respective metabolites in the biparental QTL studies. 

For several metabolites except the tocopherols, these markers were also identified in model 

1 (no correction) and 3 (kinship correction) but not in models 2 and 4 (with Q correction). 

In these same two doubled haploid populations QTL for lutein and chlorophyll-a and -b 

overlap in the region where the marker pTAmCAC_148_3 is located and identified as 

significant for β-carotene by all models. In this genomic region of linkage group A03 the 

genes ε-cyclase, β-carotene hydroxylase and carotenoid isomerase are predicted based on 

synteny with Arabidopsis (Schranz et al., 2006) and represent potential candidate genes for 
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β-carotene and lutein. In the case of violaxanthin the marker Alu_263_6 was identified as 

associated in model 4 (K and Q correction). Alu_263_6 is 5 cM apart from the structural gene 

Phytoene desaturase that we mapped in the biparental DH population. For most markers 

map positions are not available, however the linked microsatellite marker Br13 and marker 

Alu_263_6 on A08, were both associated to violaxanthin. 

In this study we have identified several markers that can be applied to screen B. rapa 

collections or breeding populations to identify genotypes with elevated levels of important 

metabolites that are considered as healthy compounds. While further validation of these 

markers for marker assisted selection in B. rapa is needed, at least the eight Myb and AFLP 

markers and two microsatellites markers found significant with model (4), after multiple 

testing correction (Benjamini and Hochberg, 1995), and also with Random Forest, plus the 

markers identified using both Random Forest and the models (1) and (3) should be 

considered as likely candidates for further work. 

At present we are in the process of expanding the core collection so that association 

mapping within the four subpopulations becomes feasible and to increase the power of the 

statistical analysis. In an attempt to separate true from spurious associations and/or false 

negatives in future association studies using the present core collection we will follow a 

similar approach, which takes into account the level of relatedness between individuals (K 

and Q) and the use of Random Forest. 
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Abstract 

Brassica seeds are important as basic units of plant growth and sources of vegetable oil. 

Seed development is regulated by many dynamic metabolic processes controlled by complex 

networks of spatially and temporally expressed genes. We conducted a global microarray 

gene co-expression analysis by measuring transcript abundance of developing seeds from 

two diverse B. rapa morphotypes: a pak choi (leafy-type) and a yellow sarson (oil-type), and 

two of their doubled haploid (DH) progenies, (1) to study the timing of metabolic processes 

in developing seeds, (2) to explore the major transcriptional differences in developing seeds 

of the two morphotypes, and (3) to identify the optimum stage for a genetical genomics 

study in B. rapa seed. Seed developmental stages were similar in developing seeds of pak 

choi and yellow sarson of B. rapa; however, the colour of embryo and seed coat differed 

among these two morphotypes. In this study, most transcriptional changes occurred 

between 25 and 35 DAP, which shows that the timing of seed developmental processes in B. 

rapa is at later developmental stages than in the related species B. napus. Using a Weighted 

Gene Co-expression Network Analysis (WGCNA), we identified 47 “gene modules”, of which 

27 showed a significant association with temporal and/or genotypic variation. An additional 

hierarchical cluster analysis identified broad spectra of gene expression patterns during seed 

development. The predominant variation in gene expression was according to 

developmental stages rather than morphotype differences. Since lipids are the major 

storage compounds of Brassica seeds, we investigated in more detail the regulation of lipid 

metabolism. Four co-regulated gene clusters were identified with 17 putative cis-regulatory 

elements predicted in their 1000 bp upstream region, either specific or common to different 

lipid metabolic pathways. This is the first study of genome-wide profiling of transcript 

abundance during seed development in B. rapa. The identification of key physiological 

events, major expression patterns, and putative cis-regulatory elements provides useful 

information to construct gene regulatory networks in B. rapa developing seeds and provides 

a starting point for a genetical genomics study of seed quality traits. 

 

Key words: Brassica rapa, Leafy vegetables, Oil-seed, Seed development, Microarray, Co-

expression network analysis, Transcript abundance, cis-regulatory elements.
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Introduction 

Brassica rapa (2n = 2x = 20; AA) is an important crop that consists of diverse morphotypes 

(also called crop types), including oilseed (annual crops yellow sarson and brown sarson, and 

biannual winter oils), leafy vegetables (Chinese cabbage, pak choi and many non-heading 

leafy types), turnip (fodder and vegetable turnip) and broccoletto. It contributes the A-

genome to the amphidiploid oil crop canola (B. napus L; n = 19; AACC). Yellow sarson and 

brown sarson are grown for oil production in the Indian sub-continent, and in Canada, 

because of their early maturity and shatter resistance. Brassica seed is important for both 

plant propagation and oil production. 

Brassica seed is non-endospermic, which means that the endosperm is not retained in 

mature seeds and only the embryo is enclosed by the seed coat (Sabelli, 2012). Seed 

development goes through basically three overlapping stages: morphogenesis, seed filling 

and seed desiccation (Li et al., 2012b; Yu et al., 2010). Embryo development, also known as 

embryogenesis, starts after the double fertilization process of fusion of two sperm nuclei 

with the egg cell and the central cell nuclei, respectively, and the zygote goes through a 

series of cell divisions and differentiation events from a pre-globular and globular embryo 

stage, a heart stage, a torpedo stage, a bent-cotyledon stage to the mature embryo (Li et al., 

2012b; Le et al., 2010). Embryogenesis consists of two phases; morphogenesis and seed 

filling, as the seeds are non-endospermic. 

Seed development goes through a complex network of many dynamic developmental, 

biochemical and metabolic processes such as cell division and differentiation, carbohydrate, 

protein, cell wall, lipid, amino acid, hormone and secondary metabolite biosynthesis (Baud 

et al., 2002). Several hundreds of genes are reported to be involved in spatial and temporal 

regulation of these metabolic processes. A systematic overview of metabolic processes and 

gene expression patterns during seed development has been well documented for the 

closely related model plant Arabidopsis thaliana (Baud et al., 2002; Girke et al., 2000; Peng 

and Weselake, 2011). In B. napus, transcript profiling was mainly reported in relation to oil 

biosynthesis and storage seed reserves (Yu et al., 2010; Jolivet et al., 2011). For oil 

biosynthesis, starch is synthesized at the early seed developmental stage, but after 

intermediate processes such as malonyl-CoA and fatty acid biosynthesis, converted into 

triacylglycerol (TAG), lipids and storage proteins during the seed-filling phase at a later stage 

of seed development in both A. thaliana and B. napus (Baud et al., 2002; Jiang et al., 2012; 

Niu et al., 2009). A starchless mutant contained up to 40% less lipids in mature Arabidopsis 

seed than the wild-type, while starch was undetectable (Andriotis et al., 2012). Starch 

turnover, breakdown of cytosolic and plastidic glycolytic pathways, malonyl-CoA and fatty 

acid (FA) synthesis, TAG assembly and oil body formation takes place during TAG synthesis in 

seed (Jiang et al., 2012). The plant hormones gibberellin, auxin, ethylene and abscisic acid 

(ABA) play key regulatory roles in seed development and growth (Bogatek and Gniazdowska, 

2012; Xue et al., 2012) and changes in hormonal levels affect the seed size and seed number 

in B. napus, especially during the 10–20 days after pollination (DAP) period (Walton et al., 
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2012). Transcription factors, for example, ABI3 (Abscisic acid insensitive-3), ABI4, ABI5, LEC1 

(leafy cotyledon1), LEC2 and FUS3 (FUSCA3) are important regulators of the complex gene 

network during the process of seed development, maturation and germination (Wang et al., 

2007; Santos-Mendoza et al., 2008). 

Understanding the regulatory mechanisms of seed development is essential to identify the 

molecular basis of seed development. Transcript profiling of developing seeds has been a 

widely used strategy to identify functional genes and their regulatory elements for seed 

development that can be used as tools in breeding programs for seed quality traits. 

Transcriptomics provides a powerful tool and is widely used to examine the temporal and 

spatial changes in transcript abundance during seed development in Arabidopsis (Le et al., 

2010; Peng and Weselake, 2011; Niu et al., 2009; Ruuska et al., 2002), B. napus (Yu et al., 

2010; Dong et al., 2004; Beisson et al., 2003), wheat (Laudencia-Chingcuanco et al., 2007; 

Wan et al., 2008), maize (Lee et al., 2002; Liu et al., 2008), barley (Druka et al., 2006), rice 

(Xue et al., 2012; Zhu et al., 2003), soybean (Asakura et al., 2012), Jatropha (Jiang et al., 

2012) and many other crops. So far, we are not aware of any studies connecting global gene 

expression profiles to seed developmental stages in the diploid Brassica species B. rapa. The 

release of the whole-genome sequence of B. rapa morphotype Chinese cabbage var. Chiifu 

(Wang et al., 2011a) facilitates genomic studies, such as gene expression analysis and 

genetical genomics studies (Jansen and Nap; 2001). The knowledge on changes in gene 

expression associated with specific stages of seed development is crucial to unravel the 

molecular and biochemical events that influence optimal seed metabolite composition (Hu 

et al., 2009). Timing of major transition stages differs between metabolic pathways 

(carbohydrates, fatty acids, storage proteins) and also between species. The higher number 

of differentially expressed sequence tags (ESTs) at 15 DAP than at 25 DAP in B. napus suggest 

that most developmental changes take place at 10–20 DAP (Dong et al., 2004). Major 

changes in gene expression profiles of genes involved in protein translation, starch 

metabolism and hormonal regulation were reported between 17–21 DAP in B. napus, 

whereas fatty acid synthesis related genes were highly expressed at 21 DAP as compared to 

earlier and later time points (Niu et al., 2009). In developing B. napus spring cultivar seeds, 

20 DAP was the most active stage to measure variation in transcript abundance of genes 

related to the biosynthesis of starch, lipids, carotenoids, isoprenoids, proteins and storage 

reserves (Yu et al., 2010). 

Recently, genetical genomics has become a powerful tool to find candidate genes for complex 

traits (Jansen and Nap, 2001; Gaffney et al., 2012), such as seed quality and seedling vigour 

traits (Jordan et al., 2007). In this approach variation in transcript abundance is considered as 

quantitative traits in quantitative trait loci (QTL) analyses per gene, resulting in identification 

of genomic regions regulating gene expression (called expression quantitative trait loci: 

eQTL). It is important to find an optimum stage during seed development for eQTL mapping 

studies, where large numbers of genes show differences in transcript abundance between 

genotypes in a segregating population. To obtain a comprehensive insight into transcriptional 
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changes during seed development in B. rapa, we carried out morphological characterization 

and global transcriptome analysis in a time range of developing seeds of a black/brown-

seeded pak choi vegetable-type (PC175), a yellow-seeded oil-type yellow sarson (YS143) and 

both a yellow and a black/brown-seeded doubled haploid (DH) progeny line from their cross. 

In this study, we first describe embryo and seed morphological changes in time. Second, the 

differential expression profiles of genes from different metabolic pathways and transcription 

factors in developing seeds of the four genotypes are presented. Third, a window around the 

optimum seed development stage was defined based on genotypic and developmental 

transcriptomic profiles for more extended gene expression studies. Fourth, we investigated 

the regulation of lipid metabolism in more detail. Using a comparative analysis of gene 

expression networks among these four different genotypes, we explore the differential gene 

expression profiles and conserved regulatory mechanisms for seed development across these 

morphotypes of the diploid crop species B. rapa. 

 

Material and methods  

Plant materials and monitoring seed development 

For this study two different B. rapa morphotypes were used; an oil-type yellow sarson 

(YS143) and a vegetable-type pak choi (PC175), as well as two DH lines (DH42 and DH78) 

from a cross of parental genotypes YS143 and PC175. These two parental morphotypes were 

selected based on their genetic distance, different plant phenology, flowering time and 

metabolite content in the seed (Supplementary Table S6). The two progeny DH lines, which 

also differ in morphological characteristics such as seed colour, flowering time and 

metabolite content were also included in this study (Supplementary Table S6). Three plants 

of parental genotypes and a single plant of each DH line was grown in a heated greenhouse 

under 16/8 hours light/dark from February to June, 2010 at Wageningen UR. Flowers were 

tagged the day they opened, assuming self-pollination on the day of flower opening. PC175 

and other self-incompatible DH lines of the population were manually bud pollinated to get 

enough seed. For each genotype, siliques were harvested at 15 time points: 10, 15, 16, 17, 

18, 20, 21, 25, 30, 35, 40, 45, 50, 55 and 60 DAP. About 100–150 seeds were excised from 

the seed pods, frozen in liquid nitrogen and used for RNA isolation. Randomly five seeds 

from each genotype at each time point (developmental stage) were dissected under the 

binocular stereo microscope at 1.6x magnification and pictures were taken using Axio Vision 

Rel. 4.8 software (Carl Zeiss Imaging Solutions, Wrek, Göttingen, Germany) to observe the 

morphological characteristics of embryos and seeds at each time point. 

 

RNA isolation 

Siliques harvested at defined stages were kept in liquid nitrogen (−196°C), and around 100–

150 seeds were extracted under dry ice and ground in liquid nitrogen (−196°C). For real-time 

PCR, RNA was isolated using KingFisher Flex system (Thermo Scientific, Finland) and 

Ambion’s MagMAXTM-96 Total RNA isolation kit according to the manufacturer’s instruction 
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and RNA pellets were dissolved in nuclease-free water. For microarray, RNA isolation was 

done using Trizol reagent according to the manufacturer’s instructions (Invitrogen, 

Burlington, ON, Canada) followed by DNase treatment (AmpGrade I, Invitrogen, Burlington, 

ON, Canada) and a purification step (RNeasy Mini Kit, Qiagen). The quantity of RNA was 

determined by NanoDrop ND-100 UV–VIS spectrophotometer and quality was assessed by 

A260/A280 and A260/A230 ratio (NanoDrop Technologies, Inc., Wilmington, DE, USA) as well 

as by 1% agarose gel. 

 

Quantitative real-time PCR (qRT-PCR) 

Ten genes involved in major metabolic processes of seed development according to the 

literature were selected to measure transcript abundance across seed development stages 

ranging from 10 to 60 DAP using real time-PCR (Supplementary Table S7). These candidate 

genes represent fatty acid biosynthesis (DGAT1, DGAT2 and FAE1), carbohydrate metabolism 

(GBSSI and SuSy3), storage proteins (12S-CRA1 and LEA), transcription factors (LEC1 and 

Glabra2) and one CHD3-chromatine-remodeling factor (PICKLE). The detailed procedure of 

qRT-PCR and normalization is described in Supplementary Methods S1. The normalized 

transcript abundance (∆∆CT) of each gene for each sample was determined with respect to 

the reference gene β-actin. We use the term gene expression for this normalized transcript 

abundance in this paper. In order to identify common profiles of transcript abundance 

across the seed development stages, genes were grouped using hierarchical cluster analysis 

with Euclidean distance of normalized data (∆∆CT). Transcript abundance of ten genes 

obtained from real-time PCR were visualized using a heatmap tool in Supplementary Figure 

S1. 

 

Microarray probe design 

The whole genome sequence of B. rapa cv. Chiifu (a leafy vegetable inbred line) is publicly 

available (Wang et al., 2011a). We designed microarray probes for two-colour Agilent 

microarray platform based on the predicted gene models of the reference genome 

sequence. In this custom array, 61,654 probes were assembled, which represent 40,879 

(99.74%) B. rapa gene IDs (Bra ID) and 108 (0.26%) scaffold IDs with no assignment of Bra ID 

(Supplementary Table S1). All the probes were annotated into 35 different functional 

categories or “BINS” as defined by MapMan software (Supplementary Methods S1). 

MapMan is an open source software tool to categorize and display functional genomics data 

(Usadel et al., 2005). 

 

Experimental design for microarray hybridization 

Microarray hybridization was done on developing seeds from four genotypes; the two 

parents (YS143 and PC175) and two DH lines (DH42 and DH78) at six time points: 18, 20, 25, 

30, 35 and 40 DAP. Two independent experiments were done to compare two parental 

genotypes (hereafter, called experiment A) and two DH lines (hereafter, called experiment 
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B). Cy3 and Cy5 dyes were incorporated into cRNA samples according to the Agilent two-

colour microarray based gene expression analysis (Low input quick Amp labelling G4140-

90050) protocol (Agilent Technologies, Inc., Santa Clara, CA, USA) and hybridized on arrays 

following a double-loop design (Supplementary Figure S9A-B). In one array, two samples 

from the two consecutive time points of the same genotype or two genotypes from the 

same time point were hybridized. The same hybridization scheme was used for experiment B 

using the two DH lines. In both experiments A and B, each sample was hybridized four times 

generating four technical replicates. Loess was used for within-array normalization and 

quantile normalization for between-array normalization using the limma package in R 

(Smyth, 2005). The normalized Cy3 and Cy5 intensities were used as measures of transcript 

abundance and are sometimes referred to as gene expression in this paper. 

 

Microarray data analysis 

The aim of this study was to explore the effects of seed developmental stages, genotypic 

variation or both on transcript abundance of genes with special focus on important 

metabolic processes. Principal components analysis (PCA) was used to examine the global 

profiles of transcript abundance of the four B. rapa genotypes across six seed developmental 

stages. 

For further analyses, we excluded probes with little variation in transcript abundance across 

seed development as well as between genotypes using a minimum two-fold change 

threshold (in absolute value). Fold change differences were calculated in contrasts between 

two consecutive time points (18 vs. 20, 20 vs. 25, 25 vs. 30 and 35 vs. 40 DAP) as well as 

between two pairs of genotypes (YS143 vs. PC175 and DH42 vs. DH78) per time point. In this 

study, we emphasized the metabolic processes that have either a high number of selected 

probes or apparent changes in the number of selected probes among time point or genotype 

contrasts for further analysis. 

WGCNA is a widely used correlation-based network construction method to construct a 

scale-free network (Horvath and Dong, 2008). A signed WGNCA approach was applied in this 

study to find gene co-expression modules, so-called “gene modules” while keeping track of 

positive or negative correlation coefficients, where each gene module represents a group of 

genes having similar co-expression patterns across seed developmental stages or genotypes 

or their combinations. WGCNA first calculates Pearson’s correlation matrix of all genes, and 

transforms the correlation matrix into an adjacency matrix by raising all values to a soft 

threshold power β (default value 12) to emphasize strong correlations and penalize weaker 

correlations on an exponential scale. Then, the adjacency matrix is transformed into a 

topological overlap matrix (TOM), which summarizes the degree of shared connections 

between any two genes, and then converted into a dissimilarity matrix. A hierarchical cluster 

of genes is created based on a dissimilarity matrix and finally, gene co-expression modules 

were defined from the cluster dendrogram at a threshold of 0.2 dissimilarity value using the 

dynamic tree-cutting algorithm. Once gene modules were identified, the “Module 
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Eigengene” (ME; the first principal component of the expression values across subjects) was 

calculated using all probes in each gene module. The module eigengene represents the 

expression profiles of all probes from a gene module across subjects (i.e. genotypes at each 

time point), and high or low eigengene values of subjects correspond to over- or under 

expression in the corresponding subjects, respectively. The details of this method are 

described in Horvath and Dong (2008) and Mason et al., (2009), and the analysis was 

performed in R software using the WGCNA package (Langfelder and Horvath, 2008). The 

module eigengene of each subject was examined to determine the effects of time or 

genotype or both using an ANOVA test. In this case, genotype and time were two 

independent factors and a module’s eigengene values as the response, consecutively for 

each module. The significance of the effects was determined at 0.001 FDR correction 

proposed by Benjamini and Hochberg (1995). The probes belonging to gene modules 

significant in ANOVA were grouped into three categories according to genotype or time or 

both genotype and time effect. Hierarchical clustering using Euclidean distance as a criterion 

for dissimilarity then was applied independently on the data sets of these three categories. 

From this hierarchical clustering, genes were broadly organized into clusters considering the 

height of the dendrogram, and each category was annotated with MapMan metabolic 

pathways. Fisher’s exact test was used to test for over- and under-representation of 

metabolic pathways in a selected cluster of genes using R software. If a particular pathway 

was significantly over- or under-represented in the gene cluster that indicates a statistically 

significant number of probes from the pathway are present in the gene clusters with specific 

patterns of gene expression across seed development stages over four genotypes (Merico et 

al., 2010). 

 

Motif analysis 

We focused on discovering transcription factor binding sites or DNA motifs for the co-

expressed genes of lipid metabolism. The 1000 bp upstream sequences of co-expressed 

Brassica genes from the transcription start site (TSS) were retrieved from Brassica database 

(http://brassicadb.org/brad/). Conserved DNA motifs were searched in the upstream regions 

using the expectation maximization algorithm implemented in MEME version 4.9.0 (Bailey et 

al., 2009). Motifs with 6–12 nucleotides length were searched on both strands of the input 

sequence using both “zero or one occurrence per sequence” and “any number of 

repetitions” options. Motifs with and E-value ≤ 1 were used to assess similarity to known 

motifs using TOMTOM (Gupta et al., 2007) in the JASPAR plant specific database (Portales-

Casamar et al., 2010). This plant specific JASPAR database was considered because of the 

potential roles of these motifs in regulating lipid metabolism during seed development in 

higher plants. 

 

 

 

http://brassicadb.org/brad/
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Results 

Morphology of developing seeds and embryos 

Morphological changes in developing embryos and seeds were monitored from 10 DAP until 

60 DAP. The images show that seed and embryo structure were visible at 10 and 15 DAP, 

respectively (Figure 1). The colour of the embryo in YS143 was green already at 15 DAP 

(torpedo stage) and changed from green to yellow at 55 DAP, while in PC175 the embryo 

turned green only around 25 DAP (bent-cotyledon) and changed from green to yellow at 40 

DAP (embryo fully fills seed) (Figure 1). In the case of the seed coat, the colour gradually 

turned from pale yellow to greenish or green until 40 DAP, then turned to brown or black in 

pak choi; however, for YS143 the seed coat colour changed from green to yellow from 55 

DAP (Figure 1). Different embryo developmental stages could be defined in time, such as: 

pre-globular, globular, heart shape (<15 DAP), torpedo (15–18 DAP), bent-cotyledon (20–30 

DAP), embryo filling seed completely (30–40 DAP) (Figure 1). 

 

 

 

 

 

 

 

 

 

 

Figure 1: Morphological characterization of embryos and developing seeds of yellow-seeded 
oil-type genotype yellow sarson (YS143), and black/brown-seeded vegetable-type genotype 
pak choi (PC175) of Brassica rapa. Developing seeds represent different developmental 
stages after fertilization to seed maturity. Seed developmental stages are: S0: fertilization; 
S1: pre-globular; S2: globular; S3: heart; S4: torpedo; S5: linear cotyledon; S6: bent-
cotyledon; S7: embryo fully fills seed. 
 

Real-time gene expression profiling in developing seeds 

The transcript abundance of 10 selected genes from a few key metabolic processes and 

transcription factors (Supplementary Figure S1) was measured from 10 to 60 DAP to obtain 

an overview of gene expression patterns during seed development. Three patterns were 

observed, with peak levels at 10–25 DAP, 25–40 DAP and 35–60 DAP which are defined as 

early-, mid- and later- stage, respectively (Supplementary Figure S1). These patterns were 

not very different among the four genotypes tested. Out of the ten genes, transcription 

factors LEC1 and Glabra2 and the starch gene GBSSI were expressed higher during earlier 

stages, lipid metabolism genes DGAT2 and FAE1, and storage protein 12S-CRA1 were 

expressed higher at mid stages, while the lipid metabolism gene DGAT1 (also called TAG1), 
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carbohydrate metabolism gene SUS3, and the storage protein LEA and CHD3-chromatine-

remodeling factor PICKLE were expressed highest at late stages. For the whole genome 

microarray gene expression profiling, six time points were selected: (i) 18 DAP (torpedo), (ii) 

20 DAP (bent-cotyledon), (iii) 25 DAP (transition bent-embryo fully fills seed), and the 

developmental stages where the embryo fully fills the seed, being (iv) 30 DAP (v) 35 DAP and 

(vi) 40 DAP. These time points captured transcriptional changes at early, mid and late stages 

of seed development. 

 

Microarray hybridization and probe annotation 

In a dedicated B. rapa Agilent array, 61,546 probes (99.7% of total 61,654 probes) represent 

42,162 Brassica rapa gene ID (called Bra ID). Out of 42,162 Bra IDs, 30,363 Bra IDs (72%) 

were assigned to 34 MapMan functional annotation categories. The remaining 11,799 (28% ) 

Bra IDs were not assigned to any functional category (Supplementary Table S1). 

Pearson correlation coefficients were calculated to quantify how similar transcript 

abundance was between time-points and also between four replicates in each genotype 

(YS143, PC175, DH42 and DH78). All the replicates of each genotype from each time point 

had high correlations (r > 0.95) in all four genotypes (Supplementary Figure S2A-B). The 

correlation coefficients between time points decrease as the time points increase. Pearson 

correlation coefficients of transcript abundance between time-points were high (r > 0.9) 

from 18 to 25 DAP in PC175, and from 18 to 30 DAP in YS143, DH42 and DH78, but after 

those time points a transition from high (r > 0.95) to lower (r < 0.85) correlation coefficients 

occurs between early and later time points. 

 

Correlation of transcript abundance of genes from real-time PCR and microarray analysis 

Since transcript abundance was measured using two different techniques: qRT-PCR and 

microarray that might lead to a non-linear relationship, Spearman’s rank correlation 

coefficients, which are free from parametric assumptions, were used to compare the 

outcome of these two techniques. The transcript abundance from qRT-PCR and microarray 

of 10 selected genes were significantly and positively correlated except for transcription 

factors LEC1 and CHD3-chromatine-remodeling factor PICKLE. The rank correlation 

coefficients ranged from 0.43 for DGAT2 to 0.94 for LEA protein (Supplementary Table S2). 

 

Genome-wide variation in transcript abundance during seed development 

Principal components analysis (PCA) on transcript abundance of the 61,654 probes showed a 

sequential distribution of the six time points according to seed developmental stages along 

the first principal component (PC1) and separation of the four B. rapa genotypes along PC2. 

PC1 explained 38.8% of total variation, and is associated mostly with variation in transcript 

abundance over the developmental stages, where 18 DAP and 20 DAP form a tight group, 

with 25 DAP more loosely grouped with these earlier stages. Similarly, 35 DAP and 40 DAP 

were grouped together (but distinct from the earlier time points) except in PC175. Major 
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changes in transcript abundance were observed between 25 and 35 DAP (Figure 2), which 

coincides with the period of transition from bent-cotyledon to the stage when the embryo 

fully fills the seed. PC2 explained 15.6% of the total variation, and reflects mostly genotypic 

differences. Interestingly, the two DH lines were grouped in between the two parental 

genotypes (Figure 2). 

Figure 2: Principal components analysis (PCA) of two parental genotypes (YS143 and PC175) 
and two DH lines (DH42 and DH78) based on transcriptional profiles during seed 
development (18–40 DAP). Sample names are a combination of genotypes (YS = yellow 
sarson, PC = pak choi, 42 = DH line 42 and 78 = DH line 78) and time points in days after 
pollination (DAP). The yellow lines represent yellow-seeded genotypes YS143 and DH42, and 
black lines represent black/brown-seeded genotype PC175 and DH78. Parental genotypes 
are indicated with solid lines, and DH lines with dashed lines. Sample labels were coloured 
according to time points: 18 DAP - green, 20 DAP - purple, 25 DAP - blue, 30 DAP - brown, 35 
DAP - pink and 40 DAP – red. 
 

We investigated the loading values of probes on PC1, where probes with very low negative 

loadings were associated with the early stage of seed development (18–25 DAP) while the 

probes with very high positive loading were in response to later stages (35–40 DAP) (Figure 

2). Among 34 MapMan functional categories, probes with high positive or low negative 

loadings mainly belong to metabolic pathways such as photosynthesis, cell wall metabolism, 

lipid metabolism, amino acid metabolism, protein metabolism, signalling, RNA (RNA 

processing, RNA binding and transcription factors), stress, transport, developmental 

processes, hormone metabolism, phosphate metabolism and secondary metabolism 

(Supplementary Figure S3). 
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Apparent changes in numbers of selected probes in contrasts between developmental 

stages or genotypes lead to selection of metabolic pathways 

After excluding probes with rather constant transcript levels (< 2-fold change) across seed 

development and between genotypes, 11,244 probes (18.2% of total 61,554 probes) were 

retained for further analysis (Supplementary Table S3). Based on either a high number of 

selected probes per pathway or apparent changes in the number of selected probes from 

contrasts between consecutive time points or between genotypes at each time point, the 

top thirteen metabolic pathways were emphasized in this study. These top thirteen 

metabolic pathways correspond to metabolic pathways highlighted based on higher PC1 and 

PC2 loadings in PCA analysis. Those top thirteen metabolic pathways are represented by 

9606 probes (i.e. 5520 Bra ID) and used for network analysis to separate the gene clusters 

according to temporal (4178 probes) and/or genotypic variation (3169 probes) during seed 

development (Supplementary Table S4). 

 

Signed weighted gene co-expression network analysis (WGCNA) identifies gene modules 

associated with temporal and or genotype effects 

Signed WGCNA grouped the selected probes (> 2 fold-change) into 47 co-expression gene 

modules, each one containing probes with a similar transcript abundance across genotypes 

and seed developmental stages. In an analysis of variance (ANOVA) test, 17 gene modules 

(3169 probes) showed a genotype effect, 4 modules (4179 probes) a time effect, and 6 

modules (555 probes) a genotype as well as a time effect at 0.001 significance level and the 

remaining 20 gene modules did not show any effect (Supplementary Table S5; 

Supplementary Figure S4A-C). Since some of the gene modules showed similar expression 

patterns with subtle differences, gene modules were combined according to the time or 

genotype or time and genotype effects, and subjected to hierarchical clustering to have a 

broader overview of the patterns of transcript abundance. 

 

Temporal variation across seed development stages 

Using hierarchical clustering, 4179 probes from the four gene modules (associated with 

differential expression in time) were classified into three clusters (Figure 3A-B). Cluster I 

(2043 probes corresponding to 1525 genes) represents genes with higher transcript levels at 

earlier stages (18–25 DAP) from linear cotyledon to bent-cotyledon. Both cluster II (837 

probes or 655 genes) and cluster III (1298 probes or 977 genes) show increased transcript 

abundance in time, from 18 DAP for cluster II and from later stages after the embryo fills the 

seed at 30 DAP for cluster III (Figure 3A-B). 
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Figure 3: Temporal patterns of transcript abundance during seed development stages (18-40 
DAP). A. Hierarchical cluster analysis using Euclidean distance and average linkage of all 
probes belonging to four WGCNA gene modules having a significant effect of developmental 
stages. Vertical white bars separate genotype and horizontal bars separate gene clusters. 
Red colour indicates a higher level of transcript abundance, green colour lower abundance 
and black an intermediate level. Colours of dendrogram branches indicate different gene 
clusters. B. Line graph that shows the expression level (log2 scale) of probes that belong to 
three clusters. The x-axis represents seed development time points (18, 20, 25, 30, 35 and 40 
DAP: Days after pollination). 
 

Genes associated with photosynthesis (Calvin cycle and photosystem-I and –II), Fatty acid 

(FA) synthesis, FA elongation and lipid degradation are over-represented only in cluster I, so, 

these genes are active early in seed development and down-regulated later (Figure 4; 

Supplementary Figure S5). Also genes from tocopherol biosynthesis, mevalonate and 

carotenoids in secondary metabolism, as well as from biosynthesis of serine, glycine, 

cysteine, glutamate, aspartate and alanine amino acids were only over-represented in 

cluster I. Transcription factors (TFs) were mostly under-represented in this cluster I. For 

example, AP2/EREBP, bHLH, C2H2, Myb, and WRKY TFs were under-represented in cluster I, 

and bZIP was overrepresented in cluster II. Genes involved in cell wall metabolism including 

precursor synthesis, cellulose synthesis, cell wall proteins and cell wall degradation, and 

genes in triacylglycerol synthesis (TAG) and FA desaturation were mainly over-represented in 

cluster II, which means that they continuously increase in abundance from 18 DAP till 35 
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DAP. Also, storage protein genes and genes related to the biosynthesis of auxin, 

brassinosteroid and gibberellin and branched-chain and aromatic amino acids 

(Supplementary Figure S5) were over-represented only in this cluster II. Similarly, metabolite 

transporter genes and major intrinsic protein genes from transport metabolism were mainly 

over-represented in both clusters I and II, but receptor kinases and G-proteins genes from 

signaling pathway, and genes involved in protein synthesis, protein posttranslational 

modification, protein degradation, RNA processing and RNA binding were under-

represented in cluster I and or II. Genes related to cytochrome P450 and seed storage (lipid 

transfer protein, LTP) of phosphate metabolism, late embryogenesis abundant (LEA) 

proteins, and ethylene and abscisic acid from hormonal metabolism were over-represented 

in cluster II and or III, so their abundance increased during seed development. Biotic stress 

tolerance genes related to PR-proteins were underrepresented in cluster II and III, but genes 

related to heat shock proteins for abiotic stress tolerance were overrepresented in cluster III. 

Interestingly, cluster II and III had high transcript abundance during late stages of seed 

development with different patterns. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Comparison of numbers of probes belonging to MapMan functional categories in 
three clusters (Cluster I, cluster II and cluster III) showing temporal variation of transcript 
abundance. Fisher’s exact test was carried out for over-representation against total numbers 
of probes annotated in each functional category. The significance level was determined at 
0.01 p-value after FDR correction with the method of Benjamini-Hochberg (1995).  
 

Putative cis-regulatory elements underlying co-expressed genes of lipid metabolism 

We looked in more detail to changes in transcript abundance related to lipid metabolism 

because oil is the major storage compound of Brassica seeds. B. rapa and B. napus are 

widely grown for oil production, while B. rapa is also grown as vegetable crop. Therefore, it 

is interesting to know the variation in transcript abundance of genes related to oil 

biosynthesis during seed development in oil-type and non-oil type morphotypes. For this 

study, two genotypes: a yellow-seeded oil-type genotype YS143 and a black/brown-seeded 

vegetable-type genotype PC175 were chosen. In addition, two DH progeny lines, a yellow-

seeded and a black/brown-seeded line, resembling the two parental lines were also used to 
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develop ideas on segregation of transcript abundance of oil biosynthesis genes. In 

Supplementary Figure S6, the pathway for oil biosynthesis is depicted, with acetyl-CoA as the 

main precursor for the synthesis of fatty acids (FA), triacylglycerol (TAG) and phospholipids. 

Transcript abundance was visualized separately for genes involved in FA synthesis, FA 

elongation, lipid degradation, FA desaturation, biosynthesis of TAG and phospholipids, and 

oleosin (oil bodies). 

Figure 5: Graph showing motifs (TFBS: transcription factor binding sites) identified in sets of 
co-expressed genes from different metabolic processes of lipid metabolism. The elliptic 
shaped node represents genes, the triangular node represents conserved motifs, the edge 
between motif and gene represents the presence of a motif in a particular gene. The colour 
of nodes indicates co-expressed genes from different metabolic processes of lipid 
metabolism while the same colour of the edges indicates genes have same motif. An arrow-
up symbol indicates high transcript abundance of a gene. 
 

In the process of FA synthesis and elongation, transcript abundance of genes revealed 

patterns with either a clear temporal effect or with a clear genotype effect (Supplementary 

Figure S7A:I-II). Transcript abundance of 63% of FA synthesis and FA elongation related 

probes was high at early stages (18–30 DAP), followed by a gradual decrease, while other 

probes (37%) show clear genotype differences with higher transcript abundance in the two 

progeny lines (DH42 and DH78) as compared to the parental genotypes. FA desaturation 

genes such as ADS1, FAD6 and FAD7 were up-regulated before 30 DAP, but FAD3 and ADS2 

genes including FAD6 and FAD7 paralogs were up-regulated after 25 DAP (Supplementary 
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Figure S7B). Triacylglycerides are the main constituents of vegetable oil and expressed at 

late stages of seed development. Genes involved in triacylglycerol biosynthesis, such as 

DGAT-1 and −2, GRP (glycine rich protein) and oleosin (storage proteins) were mainly up-

regulated after 25 DAP (Supplementary Figure S7D). 

For lipid degradation, four different patterns of transcript abundance were observed. A set 

of probes (18.5%) had high transcript abundance at later stages of seed development (after 

25 DAP) (Supplementary Figure S7C: I-IV), while a larger number of probes (40.7%) showed 

higher transcript abundance at earlier stages before 30 DAP (Supplementary Figure S7C: II). 

Supplementary Figure S7C: III consists of a set of probes (13%) with high transcript 

abundance only at 35 and 40 DAP. Probes (27.8%) from Supplementary Figure S7C: IV 

showed genotype differences in transcript abundance with lower levels in parental 

genotypes PC175 and YS143, than in the DH lines. 

A set of the genes functionally related and/or co-expressed often share conserved regulatory 

motifs, which might be responsible for coordinated expression of the set of genes. In this 

study, genes related to lipid metabolism with different co-expression patterns (different 

clusters) were searched to computationally predict cis-acting regulatory elements for 

potential roles in regulating lipid metabolism during seed development in B. rapa species. 

For all the selected 194 B. rapa genes (> absolute 2-fold change), the 1000 bp upstream 

sequence from the gene start were retrieved. 

In total, 17 regulatory motifs were predicted for FA synthesis and elongation (92 genes), lipid 

degradation (74 genes), lipid desaturation (12 genes) and triacylglycerol (16 genes) 

processes considering gene clusters with comparable patterns in transcript abundance 

(Table 1; Figure 5). Co-expressed gene clusters from the FA synthesis and elongation, and 

lipid degradation, and/or other lipid metabolic processes shared most of the motifs (Figure 

5). Each TF (transcription factor) can have more than one putative binding site in each gene. 

The DOF motif family, including DOF2, DOF3, PBF and MNB1A, and MADS motif-squamosa 

were specific to the TAG biosynthesis process but another MADS motif – AG was specific to 

FA desaturation. TGA1A (leucine zipper family) and myb.Ph3 (Myb family) were shared 

among different co-expression groups of lipid degradation genes. The ABI4 transcription 

factor binding site was present in genes involved in TAG biosynthesis, FA desaturation and 

different co-expression groups of lipid degradation, which had high transcript abundance at 

late stages (after 25 DAP) (Figure 5; Supplementary Figure S7A-D). We did not find any motif 

that is specific to the FA synthesis and elongation process. However, six motifs; HMG-1, 

HMG-I/Y, PEND, id1, Gamyb and four unknown motifs were shared between two co-

expression groups of FA synthesis and elongation genes along with genes from other 

processes. Conserved motifs that were not significantly overrepresented in plant-specific TFs 

databases are here indicated as “unknown”. Motifs such as, HMG-1 and PEND were specific 

to only genes involved in TAG biosynthesis, and FA synthesis and elongation process. 

Similarly, Gamyb (Myb-family) and unknown motifs were specific to only lipid degradation 

and FA synthesis and elongation process. Motifs- bZIP911 and EmBP-1 from the leucine 
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zipper family were shared among genes from TAG biosynthesis and lipid degradation (Table 

1; Figure 5). 

 

Table 1: List of overrepresented motifs identified in promoter regions (1000bp upstream) of 
genes involved in FA synthesis and elongation, FA desaturation, FA degradation and 
triacylglycerol (TAG) synthesis. 

Sequence logo Matrix ID TFBS name TFBS family 

   
MA0123.1 abi4 AP2 MBD-like 

    
MA0021.1 Dof2, Dof3, 

MNB1A, PBF 

Dof 

     
MA0097.1 bZIP911 Leucine Zipper 

    
MA0129.1 TGA1A Leucine Zipper 

   
MA0128.1 EmBP-1 Leucine Zipper 

    

MA0127.1 PEND Leucine Zipper 

      
MA0005.1 AG MADS 

      

MA0082.1 Squamosa MADS 

     
Unknown Unknown Unknown 

     
Unknown Unknown Unknown 

 

Unknown Unknown Unknown 

   
Unknown Unknown Unknown 

    

MA0054.1 myb.Ph3 MYB 

     

MA0034.1 Gamyb MYB 

        

MA0045.1 HMG-I/Y High mobility 

group 

     

MA0044.1 HMG-1 High mobility 

group 

       
MA0120.1 id1 Zinc finger 
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Genotypic variation in overall metabolism 

In total 17 modules (3169 probes) were divided into three clusters (cluster IV to VI) in 

hierarchical cluster based on clear contrasts in patterns of transcript abundance only 

between the two parental genotypes. Probes from cluster IV (1054 probes, 851 genes) were 

up-regulated in YS143 and down-regulated in PC175, while probes in cluster V (1149 probes, 

951 genes) had higher transcript abundance in PC175 and lower in YS143 (Figure 6). These 

two clusters differentiate the transcript abundance between the two parental genotypes. 

However, the two DH lines had a mixture of levels of transcript abundance. In contrast, 

genes belonging to cluster VI (966 probes, 878 genes) had low transcript abundance in both 

parents but high in the two progeny DH lines. Genes mainly involved in the synthesis and 

degradation of amino acid, cell wall, hormones, lipids, isoprenoids and ion transport, and 

also different transcription factors were significantly over- or under- represented in those 

three clusters (Supplementary 

Figure S8). 

 

Figure 6: Hierarchical cluster 
analysis (Euclidean distance; 
average linkage) on all probes from 
four WGCNA gene modules with 
significant genotypic effects. 
Vertical white lines separate 
genotypes and horizontal white 
lines separate gene clusters. The 
bright red to bright green colour 
represent high to low abundance 
levels, black for an intermediate 
level of abundance. 
 
 
 
 
 
 
 
 
 
 
 
 

Genotypic as well as temporal variation in overall metabolism 

Six WGCNA modules (555 probes) showed both significant genotypic and temporal variation 

in ANOVA (Supplementary Table S5) and four clusters of probes with different patterns of 

transcript abundance were observed in a hierarchical cluster analysis (cluster VII to X; Figure 

7A-H). Genes in cluster VII (80 probes, 77 genes) reached their maximum at 18 DAP, 

gradually decreasing until 35 DAP (YS143 and DH42) or 40 DAP (PC175 and DH78). Transcript 
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abundance in PC175 was always higher than in other genotypes except at 40 DAP (Figure 7A 

and 7E). Transcript abundance of genes from cluster VIII (73 probes, 64 genes) gradually 

increased until 35 DAP and then started to decrease in all genotypes. Transcript abundance 

in DH78 was highest while it was lowest in YS143 across all the time points. Transcript 

abundance in PC175 was lower than in DH42 during 18–20 DAP but increased to the level of 

DH78 during 25 DAP to 35 DAP (Figure 7B and 7 F). Genes in cluster IX (85 probes, 76 genes) 

had similar transcript abundance compared to cluster VIII with a gradual increase across the 

developmental stages till 35 DAP which then remained constant. However, genes from 

cluster IX had a lower transcript abundance in PC175 across time (Figures 7C and 7G). A 

larger number of probes (317 probes, 267 genes) were grouped in cluster X, which showed a 

maximum at the earlier stages 18–20 DAP, and then a gradual decrease until 35 DAP from 

which time point it remained at a constant level (Figure 7D and 7H). This transcript 

abundance was similar to that of cluster VII except for PC175. Among the four genotypes 

across all the time points, cluster X genes had the lowest transcript abundance. These 

clusters indicate the occurrence of major changes in the transcription profiles between the 

bent-cotyledon to the fully-developed embryo stages of seed development (25–35 DAP). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Characteristics of transcriptional patterns in seed development stages (18 – 40 
DAP) showing genotypic and temporal variation. A-D Hierarchical clustering (Euclidean 
distance, average linkage) on 555 probes from six WGCNA gene modules with both a 
genotype and time effect. Vertical white bars separate genotype and horizontal white bars 
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separate cluster of genes. Colours of dendrogram branches indicate different clusters of 
genes while the colour bar on the right side indicates WGCNA gene modules. Red indicates 
high, green low, black an intermediate level of transcript abundance. E-H mean abundance 
of transcripts on four genotypes (YS143, PC175, DH42 and DH78) representing gene clusters 
A-D respectively. 
 

Discussion  

The understanding of morphological and transcriptional changes during seed development 

has fundamental applications in Brassica breeding, both for high quality vegetable oil 

content and for crop establishment. In this study, we focused on analysis of morphological 

characteristics and global transcriptome analysis in developing seeds of four genotypes 

including two diverse B. rapa morphotypes: a leafy-type pak choi and an annual yellow-

seeded oil-type yellow sarson. We also predict putative regulatory elements for lipid 

metabolism to understand this complex regulatory network during seed development. 

 

Seed morphology varies at the later stages of seed development 

Seed developmental stages, which are defined based on the shape of the embryo, were 

similar in both YS143 and PC175, irrespective of apparent differences in phenological 

characteristics, such as flowering time or seed colour in the two distant morphotypes pak 

choi and yellow sarson (Figure 1). However, the colour of embryo differed among these two 

genotypes at early stages (in period 15–25 DAP, PC175 embryos are yellowish, while YS143 

embryos are green); and at later stages (at 40 DAP PC175 embryo’s turn from green to 

yellow, while YS143 embryo’s turn yellow only at 55 DAP). Also, seed coat colour changes 

differed among these two morphotypes, as the seed coat of PC175 turns from green to 

brownish at 40 DAP, while the YS143 seed coat turns yellowish at 50 DAP (Figure 1). Also in 

the two DH lines, the black/brown-seeded line DH78 lost the green colour earlier than the 

yellow-seeded DH42. Yellow seed colour is a desired quality trait in breeding Brassica oilseed 

species, because of its association with higher oil content and more easily digestible seed 

meal as compared to dark coloured seeds. The accumulation of proanthocyanidins (PAs) in 

the seed coat of immature black/brown seeds (20 DAP) but not in yellow seed (Li et al., 

2012b) might be an explanation for the earlier change in seed colour. In this study, we 

observed that the embryo completely filled the seed at the bent-cotyledon stage (30 DAP); 

also Li et al., (2012a) described that this stage was not yet reached at 25 DAP, but fully 

reached at 35 DAP in B. campestris (Synonymous: B. rapa). Brassica seed is non-

endospermic, so, the endosperm is not retained in mature seeds, but only the embryo is 

enclosed by the seed coat (Sabelli, 2012). Evaluation of transcript abundance using real-time 

PCR was effective to define six time-points when abundance levels of a set of genes 

representative for the seed filling process varied with respect to their morphology: 18 DAP 

(torpedo), 20 DAP (bent- cotyledon), 25 DAP (transition bent-embryo fully fills seed) and 30 

DAP, 35 DAP and 40 DAP (embryo fully fills the seed). 
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Seed developmental stages are the predominant cause for variation in transcript 

abundance 

Genome-wide transcriptome analysis was used to explore global gene expression at six time 

points as representative stages for seed development in four genotypes of B. rapa. Despite 

the fact that B. rapa is an important vegetable and/or oil crop, this is the first study in which 

transcript abundance was profiled genome-wide during seed development in this species. 

The availability of whole genome sequence of B. rapa (Wang et al., 2011a) facilitated the 

design of a 60-mer oligonucleotide microarray platform (62,654 probes targeting 42,162 

Brassica genes) based on predicted gene models from the genome sequence. 

We used four approaches to define sets of genes with different transcript abundance during 

seed development in time (developmental stages) or between genotypes or both. First PCA 

was used to obtain an overview of variation in seed developmental stages and also between 

different genotypes using all the transcripts present in the microarray (Figure 2). The first 

principal component (PC1: 38.8% explained variance) captured mostly temporal variation in 

transcript abundance, supporting the earlier findings that seed developmental stages are 

major sources of transcriptional and metabolic variation in Arabidopsis (Peng and Weselake, 

2011; Fait et al., 2006). A comparative study of the transcript and metabolite profiles in both 

wild-type and transgenic genotypes of Arabidopsis also showed more variation across seed 

developmental stages than changes due to genotypic differences (Angelovici et al., 2009). 

The genotypic variation was captured in PC2 (15.6% explained variance), which suggests that 

metabolic processes inside developing seed are largely conserved, even between yellow-

seeded oil and black/brown-seeded genotypes. Secondly, we selected a subset of genes with 

variation in transcript abundance patterns between developmental stages as well as 

between genotypes based on PCA loadings with a minimum two fold change criterion for 

further analysis. These subsets of genes represent the most active metabolic processes 

occurring in B. rapa developing seeds, such as photosynthesis, hormonal regulation, stress 

tolerance, cell wall, lipid, phosphate, amino acid, protein, signal transduction, transport, 

secondary metabolites, developmental process, and RNA processing and regulation of 

transcription (Supplementary Table S4). Those selected metabolic processes were also 

reported as major metabolic processes during seed development in close relatives A. 

thaliana (Ruuska et al., 2002) and B. napus (Yu et al., 2010), but also in maize (Teoh et al., 

2013). Thirdly, a WGCNA approach was used to discover possible modules consisting of 

groups of genes with similar transcript abundance, either across time or between genotypes 

of both, and 27 modules out of a total of 47 modules showed significant variation in 

transcript abundance across time points or genotypes or their combinations (Supplementary 

Table S5; Supplementary Figure S4A-C). Since WGCNA uses Pearson correlation coefficients 

to identify co-expressed modules, it could not group genes that have similar patterns of 

transcript abundance but different levels into separate modules. So, in addition a separate 

hierarchical clustering using Euclidean distance was done in all gene modules according to 

the type of effects. The combined analysis using both Pearson correlation coefficients with 
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WGCNA and hierarchical clustering with Euclidean distance resulted in clusters that are both 

similar in transcript abundance and level among genotypes across time points. Finally, we 

focused on transcriptional profiling related to lipid metabolism, in order to correlate co-

expression patterns within pathways and to predict putative regulatory elements of lipid 

metabolism. 

 

Global variation in transcript abundance: 25–35 DAP is a key period for major changes in 

B. rapa developing seed 

In PCA, the early time points, before the embryo fills the seed (25 DAP), cluster tightly in PC1 

but the later time points (35–40 DAP) cluster loosely, suggesting that physiological processes 

differentiate more at later stages. Higher correlations (r > 0.9) between the early time-points 

within genotypes and decreasing correlations between later stages also supports that there 

is more variation in transcript abundance at later stages (after 25 DAP) than at earlier stages 

(Supplementary Figure S2A-B). Variation in metabolite content, seed maturity, desiccation 

and dormancy induction occurred during the maturation phase (Sabelli, 2012), which 

corresponds to 25 DAP in this study. Interestingly, sequential changes in transcript 

abundance follow developmental changes in the black/brown-seeded genotypes (PC175 and 

DH78) but an extreme shift from 30 to 35 DAP and reversed at 40 DAP occurred in yellow-

seeded genotypes (YS143 and DH42). This signifies the different transcriptome signatures of 

seed development in different genotypes, especially at the later stage. These findings are in 

agreement with a different timing of seed and embryo colour changes from 40 DAP onwards 

(Figure 1). The spatial position of the two DH lines between the two distant parental 

genotypes in the PC2 dimension points to variation in transcript abundance that can be used 

for genetic studies. 

The largest changes in transcript abundance during seed development were observed during 

25–35 DAP (bent-cotyledon to stage when embryo fully fills the seed), suggesting that this is 

the most optimal stage for genetical genomics studies for mapping eQTL in B. rapa 

developing seeds. In contrast, for B. napus, the major transcriptional transition was reported 

to be much earlier during heart-shaped to torpedo embryo stages i.e. 17–21 DAP, and for FA 

synthesis-related genes at 21 DAP in a spring and winter type B. napus L. cv HuYou15 (Hu et 

al., 2009). 

 

Temporal changes in transcript abundance conserved across different morphotypes 

The WGCNA method is a powerful and widely used tool to identify co-expressed gene 

clusters and to construct scale-free networks using topological properties of network 

construction (Horvath and Dong, 2008). Among 47 gene modules identified, four (4179 

probes) show temporal variation in transcript abundance across seed development 

(Supplementary Table S5, Supplementary Figure S4B), and these were reduced to three 

clusters after hierarchical clustering using Euclidean distance (Figure 3). This result, like PCA, 

confirms that variation in transcript abundance during seed development is predominantly 



Global gene expression analysis during B. rapa seed development 

 65 

conserved across genotypes in B. rapa. Similar observations were made for FA biosynthesis 

genes, which were conserved between B. napus and A. thaliana (Niu et al., 2009). The 

annotations of many genes belonging to these three clusters fitted what is known about 

different processes occurring during seed development. Among the three clusters, cluster I 

(48% genes) had high transcript abundance before 25 DAP with a gradual decrease till 35 

DAP, with genes involved in photosynthesis, secondary metabolic pathways, and 

biosynthesis of tocopherols, mevalonate and carotenoids, and amino acids were over-

represented. Amino acids are known as essential precursors for biosynthesis of secondary 

metabolites, proteins and other metabolic biosynthetic processes. Tocopherols are fat-

soluble antioxidants and are one of the breeding goals to improve oil quality. Tocopherols 

accumulate slowly during 12–41 DAP and reach a maximum concentration during 41-53 DAP 

in developing seeds of B. napus (Goffman et al., 1999). It has been suggested that 

production of tocopherols during seed development might be needed for the protection of 

polyunsaturated fatty acids against peroxidation (Kamal-Eldin and Appelqvist, 1996). In 

cluster II (21% of genes with transcript abundance differences in time) and cluster III (31% 

genes) transcript abundance increased gradually or abruptly at 35–40 DAP, respectively 

(Figure 3). In these clusters, cytochrome P450, late embryogenesis abundant proteins (LEA), 

LTP (lipid transfer protein) and storage proteins, and abscisic acid and ethylene (hormone 

metabolism) were over-represented. This observation is in agreement with a number of 

other studies where storage proteins, abscisic acid and ethylene were highly expressed 

during late seed developmental stages because of their roles in growth and development of 

seed tissues, accumulation of seed reserves, maturation, desiccation tolerance, induction of 

seed dormancy and the utilization of storage reserves to support germination (Sabelli, 2012; 

Yu et al., 2010; Bogatek et al., 2012; Walton et al., 2012; Yang et al., 2011). 

 

Gene co-expression patterns associated with genotypic differences, or genotype- and 

temporal differences 

WGCNA analysis organized 3169 probes associated with genetic variation into 17 gene 

modules (3169 probes) (Supplementary Table S5; Supplementary Figure S4A), which could 

be represented by three gene clusters (cluster IV to VI) through hierarchical clustering 

(Figure 6). These clusters reveal genetic variation in patterns of transcript abundance during 

seed development, with distinct variation between the two parents with many genes 

showing transgressive segregation in DH lines. 

Similarly, sets of genes (555 probes) displayed variation in transcript abundance due to both 

genotype and time contrasts in six gene modules (Supplementary Table S5; Supplementary 

Figure S4C). Four different patterns were identified in hierarchical clustering, mainly either 

with a gradual decrease in transcript abundance from early stages to late stages or a 

continuous increase across seed development (Figure 7). The leafy-type PC175 usually 

showed different patterns of transcript abundance compared to the other three genotypes 

(Figure 7A, 7C-E, 7G-H), while variation in transcript abundance of the two DH lines is more 
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similar to that of the maternal genotype YS143. This could be due to maternal effects on 

seed and seed characteristics, as reported before in another study (Andriotis et al., 2012). 

 

Predicting cis-regulatory elements for co-expressed genes related to lipid metabolism 

Brassica species are widely cultivated for seed oil, and seed oil is also a major source of 

energy during germination and seedling growth. Thus, we want to get an insight in the 

genetic regulation of lipid metabolism in both oil- and vegetable- morphotypes. First, we 

defined pathways, such as FA synthesis and elongation, FA desaturation, lipid degradation, 

triacylglycerol. The co-expression analysis identified clusters of genes in the respective 

pathways with different transcript abundance. For example, FA synthesis and elongation 

related genes shared a similar time-dependent (high at 18–25 DAP, decrease thereafter) and 

a genotype-dependent transcript abundance (Supplementary Figure S7A). Lipid degradation 

related genes showed four different patterns of transcript abundance. However, 

triacylglycerol and FA desaturation biosynthesis processes were highly conserved with 

similar transcript abundance, increasing during late stages or early to middle stages of 

development respectively, among all four studied genotypes (Supplementary Figure S7B, D). 

All these different sets of co-expressed genes in different pathways can be regulated by 

common or specific regulatory elements. The prediction of putative regulatory elements in 

co-regulated genes can increase our understanding of seed development and results in tools 

to breed for improved oil content. Transcription factors play regulatory roles not only in seed 

development but also in lipid metabolism (Deng et al., 2012) and transcription factor binding 

sites (or cis-regulating elements) are usually located in upstream regulatory regions of genes. 

The ABI4 binding motif was shared by genes from the triacylglycerol biosynthesis pathway, 

FA desaturation and lipid degradation (Supplementary Figure S7C: III-IV), which were all up-

regulated 25 DAP. Motif ABI4 was reported as an important cis-regulator of the DGAT gene 

of triacylglycerol biosynthesis (Yang et al., 2011; Wind et al., 2013) and repressor of lipid 

degradation (Penfield et al., 2006), and is known for its role during seed maturation, seed 

size, seed germination and seedling growth. The AAAG binding domain was conserved in 

motifs Dof2, Dof3, PBF and MNB1A (DOF family) and was found specifically in triacylglycerol 

biosynthesis genes in our seed samples. The roles of DOF genes are in activating seed 

storage protein genes during seed development and germination in rice (Gaur et al., 2011), 

barley (Mena et al., 1998), maize (Vicente-Carbajosa et al., 1997), wheat (Mena et al., 1998) 

and Arabidopsis (Stamm et al., 2012). The interwoven connection of different regulatory 

motifs in Figure 5 supports the fact that target genes are regulated by multiple interacting 

TFs. The interaction between Dof proteins and HMG proteins was reviewed in maize seed 

(Yanagisawa, 2004). Similarly, the other identified motifs, in this study, that belong to the 

bZIP, MADS-box, MYB family, beta-beta-alpha zinc finger families, as well as unknown 

motifs, likely play roles in regulating gene expression during seed development and 

maturation in B. rapa. Some motifs reported in Arabidopsis seed that are similar to our 

findings, such as AG, ABI4, squamosa, bZIP and PEND for triacylglycerol biosynthesis genes, 
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and HMG-1 and Gamyb for FA synthesis genes (Peng and Weselake, 2011). Moreover, they 

also reported many more motifs than our findings, and in addition, several motifs observed 

for triacylglycerol biosynthesis in our study were reported for FA synthesis in this study or 

vice versa. The possible explanations for finding different numbers of motifs with some 

disagreement could be (i) the sequence form 1000 bp upstream plus the UTR region was 

used by Peng and Weselake (2011), but we considered only 1000 bp upstream sequences 

because the majority of cis-regulatory elements are located in this region (Maeo et al., 

2009), and (ii) the use of different motif finding tools; TFBS (Lenhard and Wasserman, 2002) 

and fdrMotif (Li et al., 2008) by Peng and Weselake (2011) but MEME tool (Bailey et al., 

2009) in this study. The different tools use different algorithms and that could lead to some 

differences in finding motifs (Meireles-Filho and Stark, 2009). Besides the UTR region and 

the 1000 bp upstream region, cis-regulatory elements can also be located in the 

downstream sequence, in the gene’s introns or in neighbouring genes’ introns (Meireles-

Filho and Stark, 2009) and consideration of these genomic regions can potentially improve in 

finding TFs binding motifs. 
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Supplementary Figure S1: Transcript abundance profiles of ten genes used in real-time PCR 

gene expression. FAE1, DGAT1, DGAT2 from lipid metabolism, SUS3 and GBSSI from 

carbohydrate metabolism, 12S-CRA1 and LEA from storage proteins, LEC1 and Glabra2 are 

transcription factors and PICKLE as CHD3-chromatine-remodeling factor. The red colour 

indicates a high abundance level, green a low level, and grey for missing values. Vertical white 

lines separate genotypes, yellow-coloured square boxes mark three different groups with 

high abundance level. Purple coloured boxes at the top indicate that those time-points were 

selected for the later microarray experiments 

Supplementary Figure S2: Pearson correlation coefficients between time points with four 

replicates per time point within each genotype using all 61654 microarray probes. A. Upper 

triangle: PC175, lower triangle: YS143. B. upper triangle: DH78, lower triangle: DH42. 

http://www.biomedcentral.com/1471-2164/14/840
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Supplementary Figure S3: Number of probes associated with early stages 18–25 DAP (< −0.01 

PC1 loadings) and late stages 35–40 DAP (> 0.01 PC1 loadings) in principal components 

analysis (PCA). The probes were classified according to MapMan functional categories. 

Supplementary Figure S4: Representative abundance levels of gene transcripts belonging to 

27 WGCNA gene modules that are significantly associated with A. Genotypic differences B. 

temporal differences (time points) C. both genotypic differences and temporal differences. 

Horizontal solid lines separate gene modules and vertical dashed lines separate genotypes. 

Time points are in ascending order in all genotypes. Numbers in the left corner represent 

gene modules. 

Supplementary Figure S5: Over- and under- representation analysis of time dependent 

clusters (Cluster I, II and III) into MapMan functional categories using Fisher’s exact test. Pink 

to red colour indicates increasing significance levels for overrepresentation and purple to blue 

colour increasing significance levels for under-representation. The darker the colour intensity, 

the more significant. Only significance levels with p < 0.05 after FDR correction with the 

Benjamini-Hochberg method are highlighted. The horizontal green lines separate different 

pathways. 

Supplementary Figure S6: General overview of lipid metabolism showing fatty acid (FA) 

biosynthesis, FA elongation, lipid desaturation, TAG biosynthesis and glycolipid biosynthesis. 

Supplementary Figure S7: Heatmap of gene expression values with hierarchical clustering 

(Euclidean distance) of all the selected probes (> absolute 2-fold change) belonging to A. Fatty 

acid (FA) synthesis and elongation B. FA desaturation C. FA degradation D. Triacylglycerol 

(TAG) biosynthesis pathways of lipid metabolism. Vertical white bars separate genotypes (YS: 

yellow sarson, PC: pak choi, DH42: DH line 42 and DH78: DH line 78). Time points are 

arranged in ascending order from 18 to 40 DAP within each genotype. 

Supplementary Figure S8: Over- and under- representation analysis of gene clusters IV, V and 

VI, that showed genotypic differences in expression patterns, into MapMan functional 

categories using Fisher’s exact test. Pink to red colour indicates increasing significance levels 

of overrepresentation and purple to blue colour for increasing significance levels for 

underrepresentation. The darker the colour intensity, the more significant. Only significance 

levels with p < 0.05 after FDR correction with the Benjamini-Hochberg method are 

highlighted. The horizontal green lines separate different pathways. 

Supplementary Figure S9: Double loop design for hybridization of samples on two-colour 

Agilent microarrays. Sample names are a combination of genotypes (YS = yellow sarson, PC = 

pak choi, 42 = DH line 42 and 78 = DH line 78) and time points (18, 20, 25, 30, 35 and 40 Days 

after pollination). The colours of the arrows in the loop indicate Cy3 (green) and Cy5 (red) 

dyes in this microarray experiment. A. Experiment A represents the design for hybridization 

of the parental genotypes (yellow sarson and pak choi). B. experiment B for the two DH lines 

(DH42 and DH78). 

Supplementary Table S1: Number and percentage of Brassica ID (Bra ID) represented in the 

microarrays, annotated according to MapMan defined metabolic processes. 
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Supplementary Table S2: Spearman correlation coefficients between real-time PCR and 

microarray transcript abundance profiles across genotype and seed developmental stages. 

Supplementary Table S3: List of selected probes with genotype contrasts in two experiments 

A and B, as well as time point contrasts in all four genotypes using a minimum 2-fold change 

criterion. 

Supplementary Table S4: Number of selected probes (> absolute 2 fold-change criteria) from 

temporal contrasts and genotype contrasts into MapMan functional categories. Metabolic 

processes in highlighted cells are used for further analysis because of apparent changes in the 

number of selected probes. 

Supplementary Table S5: WGCNA gene modules with a significant association with genotypes 

or time or both genotype and time in ANOVA analyses. The threshold for the level of 

significance was set at the 0.001 FDR level (Benjamini and Hochberg method). The highlighted 

cells indicate significant gene modules selected for further analysis. 

Supplementary Table S6: Morphological and metabolic descriptions of two parental and two 

doubled haploid genotypes. 

Supplementary Table S7: List of genes used for real-time PCR with their gene name, primer 

sequence (forward and reverse primers), melting temperature (Tm), GC content percentage, 

metabolic process and gene ontology biological process (BP). 

Supplementary Method S1: Methods used for quantitative real-time PCR. 

Supplementary Method S2: Method used for annotation of microarray probes into MapMan 

functional categories. 
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Abstract 

The genetic basis of seed germination and seedling vigour is largely unknown in Brassica species. 

We performed a study to evaluate the genetic basis of these important traits. Eight quantitative 

trait loci (QTL) hotspots were identified for seed weight, seed germination, and root and shoot 

lengths under both non-stress and salt stress conditions in a B. rapa doubled haploid population 

from a cross of a yellow-seeded oil-type yellow sarson and a black-seeded vegetable-type pak 

choi. A QTL hotspot for seed germination on A02 co-located with a homologue of the FLOWERING 

LOCUS C (BrFLC2) gene and its cis-acting expression QTL (cis-eQTL). FLC2 is an important repressor 

of flowering in both A. thaliana and B. rapa and recently, FLC2 was reported as a regulator of seed 

germination in A. thaliana. A hotspot on A05 with salt stress specific QTLs co-located with the 

gene and cis-eQTL of FATTY ACID DESATURASE 2 (BrFAD2), which corroborates a reported role of 

FAD2 in seed germination and hypocotyl elongation under salinity in B. napus. The co-localization 

of cis-eQTLs with these two QTL hotspots suggests these genes as possible candidate genes for the 

evaluated traits in Brassica species. Under salt stress, an epistatic interaction of the QTL hotspots 

at the BrFLC2 and BrFAD2 loci was observed. These results contribute to the understanding of the 

genetics of seed quality and seeding vigour in B. rapa and can offer tools for Brassica breeding. 

 

Key words (max. 8): Brassica rapa, BrFAD2, BrFLC2, QTL mapping, eQTL, salt stress, seed 

germination, seedling vigour.  
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Introduction 

Brassica rapa (A genome, 2n = 20) consists of several economically important morphotypes, such 

as leafy vegetables, oilseed types and turnips, with huge morphological and genetic diversity. In 

recent years, the allopolyploid species B. napus (A and B genomes, 2n=38) has replaced B. rapa as 

the main oilseed crop within the Brassica species. B. rapa annual oil seed crops like yellow sarson 

and brown sarson are still grown in regions with short seasons, but B. rapa is also used as an 

important source of genetic variation in B. napus improvement, especially in China and Australia 

(Chen et al., 2007; Rygulla et al., 2007; Chen et al., 2010). Besides the oil content of seeds for 

especially oil crops, good quality seed and vigorous seedling growth are important traits for crop 

establishment and higher yield in any crop (Kazmi et al., 2012; Khan et al., 2012). The protrusion of 

the radicle from the seed is termed seed germination, while seedling vigour refers to the ability of 

a seed lot to establish seedlings after seed germination under a wide range of environmental 

conditions (Foolad et al., 2007; Finch-Savage et al., 2010). Seed germination and seedling vigour 

are very complex traits influenced by different factors, such as the size and composition of the 

seed, physiological state of the seed, environmental effects during seed production, harvesting, 

processing and storage, and conditions during germination and early growth. Many efforts have 

been made to improve seed germination and seedling vigour by optimizing the non-genetic 

factors; however, the paradigm has shifted to investigate also the genetic factors and to use these 

to improve crop performance. In several species studies were done to identify quantitative trait 

loci (QTLs) for seed germination and seedling vigour traits under non-stress and abiotic stress 

conditions, e.g. in tomato (Foolad et al., 2007; Kazmi et al., 2012; Khan et al., 2012), rice (Wang et 

al., 2011; Wang et al., 2012), soy bean (Csanádi et al., 2001), wheat (Bai et al., 2013), barley (Mano 

and Takeda, 1997), Arabidopsis (Galpaz and Reymond, 2010; DeRose-Wilson and Gaut, 2011; 

Bouteillé et al., 2012) and B. napus (Zhang and Zhou, 2006; Yang et al., 2012). These studies have 

reported that seed germination and seedling vigour traits are governed by many genes and are 

strongly affected by environmental conditions (Bettey et al., 2000; Koornneef et al., 2002; Finch-

Savage et al., 2010). 

Environmental conditions will vary in the presence and level of abiotic and biotic stresses that the 

seeds and seedlings have to cope with. Therefore, studies of seeds and seedlings need to be 

carried out under more than only optimal conditions, if they are to be relevant for practical 

growing situations. Salinity stress is becoming one of the most important abiotic stresses affecting 

crop growth and yield (DeRose-Wilson and Gaut, 2011; Zhang et al., 2012). About 20% of 

agricultural land and 50% of irrigated land are affected by salinity (Ren et al., 2010; Su et al., 2013; 

Dang et al., 2013). Salinity stress reduces the plant's ability for water uptake, causing osmotic 

stress. At the same time, the accumulation of ions leads to the disturbance of ion homeostasis of 

plant cells (Wang et al., 2012). Since germinating seeds and establishing seedlings are also 

vulnerable to salinity stress (Ashraf and McNeilly, 2004), crop establishment and yield can be 

greatly affected. Salinity tolerance is related to genetic variation (DeRose-Wilson and Gaut, 2011) 

and thought to be a complex phenomenon controlled by many genes (Ouyang et al., 2007; Galpaz 

and Reymond, 2010; Joosen et al., 2010; DeRose-Wilson and Gaut, 2011). For a number of crops, it 
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has been established that larger seed size and higher seed weight indicate more reserve food and 

contribute positively to seedling establishment (Khan et al., 2012; Ellis, 1992). For the Brassica 

genus, traits such as seed and seedling weight, and seed germination were primarily studied in B. 

napus rather than B. rapa (Zhang and Zhou, 2006; Yang et al., 2012). For B. rapa, knowledge about 

genomic regions responsible for seed germination and seedling vigour is largely lacking as are 

publications describing the molecular basis of seed germination and seedling vigour and response 

of germinating seed and seedlings to salinity. In this study, a B. rapa doubled haploid (DH) 

population from a cross of an oilseed yellow sarson and a vegetable pak choi was used to study 

the genetics of seed weight, seed germination and seedling vigour.  

We identified 26 QTL regions for traits related to seed weight, seed germination and seedling 

vigour under non-stress and stress conditions and QTLs for multiple traits co-localized. We 

identified the candidate genes B. rapa Flowering Locus C (BrFLC2) and B. rapa Fatty acid 

desaturase2 (BraFAD2), homologues of the A. thaliana FLC and FAD2 genes, based on co-location of 

their expression QTLs (eQTLs) with germination and seedling vigour QTL hotspots and supported by 

their described functions in related species. 

 

Materials and Methods 

Plant material and growing conditions 

A B. rapa progeny of 170 DH lines (DH68) was developed from three F1 plants of a cross of a yellow 

sarson (YS143; accession number: FIL500) and a pak choi (PC175 cultivar: Nai Bai Cai; accession 

number: VO2B0226) (Xiao et al., 2013). Yellow sarson is a self-compatible annual oil crop with 

yellow seed colour, while pak choi is a self-incompatible leafy vegetable with black seed colour. 

This DH68 population was sown in the greenhouse on a single day on 25th January 2010 

(18ºC/16ºC day/night temperature, 80% humidity and 16 hrs day light). The DH lines varied in time 

to flowering (43 to 99 days after sowing; DAS) and thus seed maturation was non-synchronous. In 

2011, the DH68 population was sown again, this time however, at five different dates from the 

second week of January to the last week of March to have flowering of all the lines in the same 

period in order to avoid different environmental conditions during seed development. As a result 

all the DH lines started flowering during the first two weeks of April, 2011 (31 to 76 DAS). The 

harvested seeds were stored at 13°C temperature and 30% relative humidity. Germination and 

seedling vigour experiments were carried out with seeds of 120 DH lines for which enough seeds 

were available. In addition, thousand-seed weight, which reflects seed content and seed size, was 

measured. 

 

Pilot study to select NaCl concentrations for salt stress experiments 

A pilot study was conducted to determine the optimum level of NaCl concentration for the 

evaluation of salt stress. The NaCl levels were chosen in such a way that the seedlings could still 

survive. For two parental lines and a small subset (5-7 DH lines) of the DH population, seed 

germination and root- and shoot- lengths were initially screened by germinating 30 seeds per 

genotype in petridishes with two layers of filter papers soaked in seven different NaCl 
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concentrations: 10, 15, 25, 50, 75, 100 and 150 mM NaCl. In case of seedling vigour assay, root and 

shoot lengths were measured at 1, 3, 5, 7 and 9 days after germination (DAGs). The materials and 

methods used for media preparation, seed germination and seedling growth are described in the 

following sections. 

 

Germination conditions and seed sterilization 

Seeds harvested in 2010 and 2011 were used to assess seed germination of the DH lines. Seed 

germination experiments were conducted in petridishes on two layers of filter papers soaked with 

agar (non-stress; 0 mM NaCl) or 50 mM NaCl solution (salt stress). The solutions were autoclaved 

at 120°C and 1.5 bar for 18 minutes. Seeds were sterilized by keeping the seeds overnight in a 

closed container in chlorine gas fumes of a solution of 20 ml demi-water, 3 ml of 37% fuming HCl 

and 80 ml of 12% NaOCl. Per treatment per DH line, one set of 30 sterilized seeds was transferred 

to a petridish. Seeds were all placed between 16:00 and 18:00 hour, so that radicle protrusion 

would start in the morning of the next day. The petridishes were placed in a climate room (21°C) 

with 16/8 hours light/dark conditions. Seeds were considered to have germinated when the 

radicle protrusion had occurred. Starting the next day, the number of germinated seeds in each 

petridish was counted five times per day in three-hour intervals from 9:00 to 21:00 until all seeds 

had germinated. 

 

Seedling vigour assay 

Seeds harvested in 2010 and 2011 were used to assess seedling vigour of the DH lines. Seedling 

vigour was measured by placing germinated seeds on vertical plates with 0.8% agar-medium 

without NaCl (non-stress) or with 50 mM NaCl (salt stress). About 80-90 ml of the agar medium 

was poured into rectangular plates (12 x 12 x 1.7 cm) in a laminar flow-cabinet. The top one-third 

portion of agar was removed to leave space for shoot growth. Germinated seeds from the DH lines 

and parental accessions were transferred from petridishes of the germination assay onto the agar 

edges of the vertical plates so that all the seedlings in a plate were in the same phase of 

germination. In total, fifteen seeds per DH line (five seeds per plate, three replicate plates per DH 

line) were transferred and spaced equally. The plates were sealed with plastic foil and placed in a 

slanting position at a 60° angle to keep plants growing vertically and to avoid covering of the 

plates with transpired moisture. All the plates were placed in a climate chamber (21°C 

temperature, 16/8 hours of light/dark) according to a randomized complete block design 

(replicates as blocks). Since the study focused on seed germination and early stages of seedling 

establishment, the seedlings were grown for only the first 10 DAGs. Seedling vigour was quantified 

by measuring the lengths of shoot and root at different DAG (during first 10 DAGs) and weighing 

fresh and dry weight of root and shoot per DH line at 10 DAG under both non-stress and salt stress 

conditions. 

In the 2010 assay, the seedlings were grown for ten days, and root length was measured at 3, 5, 7 

and 9 DAGs while the shoot length was measured at 3 and 5 DAGs. The root and shoot lengths 

were measured manually at 3 and 5 DAGs, while image analysis was also done to measure root 
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length at 3 and 5 DAGs for calibration against the manual measurements and then continued to 7 

and 9 DAGs. For image analysis, photos were taken with a digital camera (Nikon D80) as described 

in Joosen et al., (2010). The root length from the digital image was analyzed using the EZ-Rhizo 

software package following the procedure described by Armengaud et al., (2009). In the assay of 

2011, root and shoot length were measured only manually with a ruler at 3, 5, 7 and 9 DAGs. 

 

Seedling dry weight and fresh weight measurements 

At 10 DAG, seedlings were taken out from the agarose-gel and rinsed with water to remove the 

agar from the roots. Root and shoot were separated and wrapped in white tissue paper for two 

hours to absorb adhering water before determination of fresh weights. Root or shoot samples of 

DH lines were pooled over all seedlings of three replicates before taking the weight in order to 

avoid measurement error due to a too low weight of the samples. For each DH line, roots and 

shoots were dried overnight at 1050C, then dry weights were measured. 

 

Calculation of seed germination parameters  

A non-linear germination curve was fitted for each DH line using the Hill function (El-Kassaby et al., 

2008) in the software package Germinator (Joosen et al., 2010); growth curves were not fitted for 

root and shoot length because of the limited number of time points (only 4 time points: 3, 5, 7, 

and 9 DAGs). Five germination parameters were estimated from the non-linear germination 

curves: the onset of germination (T10: time to reach 10% germination, in hr), the rate of 

germination (T50: time to reach 50% germination, hr), uniformity of germination (U7525: time 

between 25 and 75% germination, hr), maximum germination (Gmax: maximum germination, %) 

and area under the germination curve (AUC: area under curve) between time zero and 68 h, the 

latest time point in this study; higher values for AUC correspond to earlier germination, higher 

germination rate and more uniform germination.  

 

Calculation of salt tolerance parameters 

In order to assess the performance of the DH lines for root or shoot length under non-stress and 

salt stress conditions, two different parameters were used: relative salt tolerance (RelST) and a 

salt tolerance index (STI) (Saad et al., 2014). RelST is the ratio of a trait value under salt stress 

versus non-stress conditions (see the formula below), and indicates the relative performance of 

genotypes for their root, or shoot growth across conditions. A genotype with RelST greater than 

one for root length has a longer root under salt stress than under non-stress; a genotype with 

RelST lower than one is sensitive to salt as illustrated by reduced root length under salt stress. A 

value of one for RelST indicates that the root length of the genotype is not affected by the stress. 

The other parameter, Salt Tolerance Index (STI), was calculated by comparing the shoot or root 

length under stress and non-stress conditions, but now relative to the average length under the 

non-stress condition over the whole population using the formula below, as described by 

Fernandez, (1992). An STI equal to one indicates that root or shoot length of a specific genotype 

under stress/non stress is equal to the average length under the non-stress condition over all DH 
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lines. An STI greater than one indicates that the root/shoot length of a DH line is higher in one 

condition, or in both conditions relative to the mean of the population under non-stress 

conditions. If the STI is lower than one, there is lower root/shoot length in one or both conditions 

as compared to the average population under non-stress conditions.  

 

 

 

where Xij = root or shoot length of genotype i at j days after germination (DAG)  

 

Summary statistics, graphical representation and heritability  

Descriptive statistics were calculated for all traits. Box plots were made to visualize the 

distributions of seed germination parameters across the experiments, and shoot and root length 

across growing days and experiments.  

Separate heatmaps were generated to visualize the Pearson correlation coefficients among seed 

germination parameters or shoot and root lengths at different DAGs for two treatments and using 

seed batches of two years. The heatmaps of the correlations were combined with hierarchical 

clustering using Euclidean distances and complete linkage after scaling the traits to zero mean and 

standard deviation one (this is equivalent to clustering on the Pearson correlations). 

As DH lines are genetically fixed homozygotes, there is no variation due to dominance and 

therefore, narrow-sense heritability was estimated as: h2= σ2
a/(σ2

a + σ2
e), where h2 is narrow-sense 

heritability, σ2
a is additive genetic variance and σ2

e = environmental variance (Bernardo, 2002). The 

variance components (σ2
DH and σ2

e) were estimated using a linear model (one-way ANOVA): trait = 

DH line + replication + error. The additive genetic variance (σ2
a) was estimated as σ2

a = σ2
DH/2 

(Bernardo, 2002). The computation of Pearson correlation coefficients, the hierarchical clustering, 

heritability calculation and heatmap visualization were performed using R statistical software (R 

Core Team, 2012). 

 

Genetic map construction 

Linkage analysis and map construction were performed with JoinMap 4.0 (Van Ooijen, 2006) using 

a regression approach and the Kosambi map function. In total 435 markers mainly AFLPs, SSRs, 

Myb targeted markers and gene-targeted markers were mapped in an integrated map of 10 

linkage groups. This integrated map is a slightly modified version of the linkage map presented in 

Xiao et al., (2013), as additional DH lines from two different F1 plants of the same cross were used 

in the present paper. As the parents were not homozygous, these F1 plants were not identical, 

which resulted in minor changes in the genetic maps (Supplementary Figure S4). 

 

QTL analysis 

Single trait QTL analysis was performed to identify genomic regions controlling a trait, using 

interval mapping (IM), and restricted and full multiple QTL model mapping (rMQM and MQM) in 

MapQTL 6.0 (van Ooijen, 2009). Initially peak markers from a map region with LOD score > 2 were 

RelSTij  = 
Xij at stress 

Xij at non-stress 
STIij = 

(Xij at non-stress * Xij at stress) 

(Xaverage (j) at non-stress)2 
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used as cofactors and a final list of cofactors was selected using the automatic cofactor selection 

procedure, which uses a backward elimination approach. The cofactor selection process was 

repeated with different sets of cofactors until the QTL profile was stable. 

QTL mapping was carried out for all the germination parameters, root and shoot length, and fresh 

and dry weight of both the root and the shoot. Similarly, QTL mapping was done for the salt 

tolerance index (STI) and for relative salt tolerance (RelST) of root and shoot length at different 

DAGs. In this study, a genome-wide significance LOD score threshold of 3.0 was derived at the 95 

percentile of 10,000 permutations of each trait. There was hardly any variation in the threshold 

between traits so, this threshold was used for all traits to declare a QTL as significant. QTLs with a 

LOD score between 2 and 3 were considered as putative QTLs. Finally, 1-LOD support intervals 

were determined for the assigned QTLs. The cut-off value for declaring a number of co-locating 

QTLs as a hotspot was calculated using the package “hotspots” in R (Darrouzet-Nardi, 2010). In this 

study, co-localized QTLs were coded as “Co-QTLk-m”, where k indicates for linkage group and m 

for QTL number. 

Based on the observed main effects of significant or putative QTLs, epistatic interactions were 

tested for all possible pairs of two QTLs using the following ANOVA model: traiti= QTL1 + QTL2 + 

QTL1*QTL2 + error. First, an ANOVA model consisting of only the main effects of the QTLs was 

fitted. Then, the QTL*QTL interaction term was added, and this change to the model was tested 

for significance; if significant, the contribution of this epistatic interaction to the phenotypic 

variance was quantified. ANOVA were performed in R. 

 

Quantitative real-time PCR (RT-qPCR) and eQTL analysis 

Transcript abundance of candidate genes BrFLC2 and BrFAD2, was determined in developing seeds 

of the DH population using RT-qPCR. Transcripts of the genes were profiled with two technical 

replicates using RNA samples of seeds harvested 28 days after pollination of the 120 DH lines. RNA 

isolation and purification were done following the same protocol used by Basnet et al., (2013). 

Transcript abundance of these genes was measured in RT-qPCR in 96-well optical reaction plates 

using the iQ™ SYBR® Green Supermix (Bio-Rad, www.Bio-rad.com) according to Xiao et al.,(2013), 

but actin was used as reference gene to calculate the cycle threshold (Ct) values and ΔΔCt values. 

eQTL analyses were done using interval mapping (IM), and restricted and full multiple QTL model 

mapping (rMQM and MQM) in MapQTL 6.0 (van Ooijen, 2009). Molecular markers specific for 

BrFLC2 and BrFAD2 genes were mapped in this population; an eQTL was defined as a cis-eQTL (local 

eQTL) if the edge of a 2-LOD support interval of an eQTL was within 10 cM of the genetic map 

position of the gene, otherwise the eQTL was defined as a trans-QTL (distant eQTL). 

 

Results 

Salt stress conditions and observation time points 

A pilot study showed that seed germination and root and shoot length under salt stress conditions 

at 10, 15 and 25 mM NaCl were comparable to that under non-stress (0 mM NaCl), indicating that 

these concentrations were too low to induce visible symptoms of salt stress. At the concentration 

http://www.bio-rad.com/
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of 100 mM NaCl, seeds hardly germinated; at 75 mM NaCl there was germination, but the 

seedlings did not grow out enough to be able to measure root and shoot length. Therefore, in this 

study, we used 0 mM NaCl (non-stress) and 50 mM NaCl for phenotyping the DH population. As 

roots and shoots had hardly grown at one DAG and showed very little variation among DH lines, it 

was decided to measure these traits at 3, 5, 7 and 9 DAGs under both non-stress and salt stress 

(50 mM NaCl). 

 

Seed weight and seed germination 

Yellow sarson had larger and heavier seeds, which germinated earlier than pak choi seeds; 

generally, germination under non-stress was earlier and more uniform than under salt stress. 

Thousand-seed weight was almost three times higher for yellow sarson than for pak choi: 6.6 g 

and 5.8 g, versus 1.9 g and 1.4 g for seed batches of 2010 and 2011, respectively. As germination 

tests were performed without replicates, differences in the germination parameters between the 

two parents were not tested statistically. The Gmax of two parental genotypes and DH lines varied 

from 26.7% to 100% across conditions (Table 1). Germination of yellow sarson seed was marginally 

more uniform than that of pak choi under non-stress (in 2010 and 2011) and salt stress (in 2010), 

while pak choi germinated more uniformly than yellow sarson under salt stress in 2011 (Table 1). 

Lower T10 and T50 for yellow sarson under both conditions and in both years indicates earlier 

onset as well as faster rate of germination for yellow sarson than for pak choi (Table 1). 

In the DH population, the average T10 and U7525 were lower under non-stress than salt stress, 

which indicates that seed germination started earlier and was more uniform under non-stress 

conditions. T50 and uniformity (U7525) were positively correlated to each other, and negatively 

with Gmax and AUC (Supplementary Figure S1). T10 had a positive correlation with T50, and a 

negative correlation with AUC and Gmax, and no correlation with U7525. Pearson correlation 

coefficients of the same parameter were higher between two seed batches (two growing years) 

than between stress levels (Supplementary Figure S1). Thousand-seed weight was positively 

correlated with AUC (r = 0.25 to 0.37), and Gmax (r = 0.16 to 0.24) and negatively correlated with 

T10 (r = -0.18 to -0.36), T50 (r = -0.25 to -0.31) and U7525 (r = -0.11 to -0.24) under non-stress and 

salt stress conditions across two years’ seed batches. 

 

Root and shoot length of seedlings 

The roots of yellow sarson were longer than roots of pak choi (p ≤ 0.05) on all DAGs and the 

differences in root length between the parents increased over time. The variance of root - and 

shoot- length over the DH lines was increased with time (Figure 1; Supplementary Figure S2). 

Under salt stress, yellow sarson had longer roots than pak choi between 3 and 7 DAGs, while at 9 

DAG root lengths were similar. Root length was reduced under salt stress (Figure 1; 

Supplementary Figure S2). Similar to root length, also shoot length was larger in yellow sarson 

than pak choi but for shoot length the difference between the two parents was smaller under salt 

stress than under non-stress conditions. Large variation in shoot length was observed across the 
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DH lines. In both conditions in both years, a large number of transgressive segregants were 

observed across the DH population for all the seedling traits (Figure 1; Supplementary Figure S2). 

Both fresh and dry weight of root and shoot were higher in yellow sarson than in pak choi, except 

for root fresh and dry weight of the 2011 seed batch at 50 mM NaCl (Table 2). Fresh and dry 

weight of root and shoot decreased under salt stress for the parents as well as the DH population, 

but the decrease was stronger for yellow sarson than for pak choi. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Box plots showing the distributions of root length (RL) and shoot length (SL) at different 
days after germination (DAG) under non-stress (0 mM NaCl) and salt stress (50 mM NaCl) for the 
2011 seed batch. The shaded colour of the boxes indicates the treatments: white for non-stress 
and grey for salt stress. The y-axis indicates root and shoot length (in cm). The x-axis label is the 
combination of RL or SL at 3, 5, 7 and 9 DAG at non-stress and salt stress conditions. Box plots 
showing the distributions of RL and SL for the 2010 seed batch are shown in Supplementary Figure 
S2. 
 

Cluster analysis of root and shoot traits 

In a hierarchical cluster analysis using Pearson correlation coefficients among the traits, two 

clusters were observed, one for root traits, the other for shoot traits, with generally low 

correlation coefficients between the two clusters (Supplementary Figure S3). Within both the root 

and shoot trait clusters, sub-clusters with stronger correlations were observed for the treatments 

followed by years. So, in the cluster analysis first the tissues are separated (root versus shoot), 

then treatments, then seed batches/years.  
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Table 1: Summary statistics of seed germination parameters under non-stress and salt stress conditions of 2010 and 2011 seed 
batches. 

    2010   2011 

  
Parents   DH lines   

 
Parents   DH lines 

Traits Treatment PC175 YS143   Mean ± SD Range   PC175 YS143   Mean ± SD Range 

Gmax (%) Control 100.0 100.0   97.6 ± 10.3 26.7-100   96.5 100.0   96.4 ± 7.7 45.7-100 

 
50mM 100.0 100.0 

 
96.5 ± 9.0 50.0-100 

 
100.0 100.0 

 
95.4 ± 10.4 32.3-100 

U7525 (hr) Control 1.5 1.0 
 

4.2 ± 3.6 0.4-22.7 
 

2.5 2.2 
 

7.8 ± 5.1 1.4-30.9 

 
50mM 1.3 0.7 

 
4.4 ± 3.2 0.7-16.8 

 
4.0 7.9 

 
9.2 ± 5.7 1.8-33.2 

T50 (hr) Control 19.0 15.3 
 

21.9 ± 5.1 11.1-44.7 
 

19.3 15.1 
 

21.4 ± 6.9 10.0-48.6 

 
50mM 17.8 17.0 

 
24.4 ± 6.3 15.1-52.5 

 
22.1 13.9 

 
26.1 ± 10.4 11.4-79.2 

T10 (hr) Control 17.6 14.3 
 

18.5 ± 4.3 7.0-40.5 
 

16.9 13.0 
 

14.8 ± 4.3 4.7-26.3 

 
50mM 16.5 16.3 

 
20.5 ± 5.4 11.3-41.2 

 
18.5 8.0 

 
17.9 ± 6.0 7.8-42.3 

AUC Control 81.0 84.7 
 

75.9 ± 10.1 13.7-88.1 
 

75.6 84.8 
 

73.5 ± 11.0 26.2-88.6 

 
50mM 82.2 83.1 

 
72.7 ± 10.9 29.9-84.9 

 
76.5 84.5   68.9 ± 13.0 15.5-88.0 

Seed weight* - 1.9 6.6 
 

2.5 ± 0.9 0.5 - 5.9 
 

1.4 5.8   2.2 ± 0.8 0.2 - 5.3 

* - 1000 seed weight in gram (g).         
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Table 2: Summary statistics of root and shoot length, and their fresh and dry weight under non-stress and salt stress conditions of 2010 and 2011 seed 
batches. 

 
      Root   Shoot 

    
Parents   DH lines 

 
Parents   DH lines 

Trait Year Day Treatment PC175 YS143   Mean ± SD Range 
 

PC175 YS143   Mean ± SD Range 

Length 
(cm) 

2010 

3 Control 0.6 ± 0.1 1.6 ± 0.1 
 

1.3 ± 0.6 0.2-3.5 
 

0.5 ± 0.1 0.6 ± 0.1 
 

0.6 ± 0.2 0.3-1.5 

3 50mM 0.5 ± 0.1 0.7 ± 0.1 
 

0.5 ± 0.2 0.1-1.2 
 

0.4 ± 0.1 0.5 ± 0.1 
 

0.4 ± 0.1 0.2-0.9 

5 Control 1.3 ± 0.9 5.6 ± 0.1 
 

2.3 ± 1.0 0.3-6.7 
 

0.9 ± 0.2 1.5 ± 0.2 
 

1.0 ± 0.4 0.5-2.7 

5 50mM 1.1 ± 0.2 1.3 ± 0.4 
 

0.9 ± 0.3 0.2-1.8 
 

0.6 ± 0.1 0.7 ± 0.1 
 

0.5 ± 0.1 0.2-1.4 

7 Control 1.9 ± 0.3 7.0 ± 0.1 
 

2.8 ± 1.2 0.7-7.3 
 

- - 
 

- - 

7 50mM 1.8 ± 0.2 1.8 ± 0.7 
 

1.2 ± 0.4 0.3-2.6 
 

- - 
 

- - 

9 Control 1.9 ± 0.3 7.2 ± 0.2 
 

3.3 ± 1.4 0.8-8.6 
 

- - 
 

- - 

9 50mM 2.4 ± 0.2 2.5 ± 1.6   1.5 ± 0.6 0.3-3.9   - -   - - 

2011 

3 Control 0.6 0.6   0.6 ± 0.3 0.1-2.1   0.4 0.5   0.4 ± 0.1 0.1-0.9 

3 50mM 0.3 0.5 
 

0.3 ± 0.1 0.1-0.7 
 

0.2 0.4 
 

0.3 ± 0.1 0.1-0.5 

5 Control 1.7 2.2 
 

1.4 ± 0.8 0.1-6.2 
 

0.7 0.9 
 

0.7 ± 0.2 0.1-2.0 

5 50mM 0.5 0.8 
 

0.6 ± 0.2 0.1-2.0 
 

0.4 0.6 
 

0.5 ± 0.1 0.1-1.0 

7 Control 2.2 4.1 
 

2.2 ± 1.3 0.2-9.0 
 

0.9 1.2 
 

1.0 ± 0.4 0.1-3.0 

7 50mM 0.8 1.1 
 

0.9 ± 0.4 0.2-3.5 
 

0.6 0.8 
 

0.6 ± 0.2 0.1-1.7 

9 Control 3.1 6.3 
 

3.3 ± 1.9 0.3-12.0 
 

1.1 1.5 
 

1.3 ± 0.5 0.4-3.0 

9 50mM 1.4 1.5   1.4 ± 0.7 0.2-0.4   0.6 0.9   0.7 ± 0.2 0.3-2.5 

Weight 
(g) 

2010 

Fresh 
Control 70.0 110.0 

 
69.8 ± 46.2 11.4 - 276.6 

 
357.3 770.0 

 
440.7 ± 133.7 158.6 - 813.3 

50 mM 25.2 40.6 
 

13.5 ± 11.0 1.5 – 72.0 
 

311.2 327.6 
 

226.5 ± 88.8 57.0 – 503.0 

Dry 
Control 9.8 21.0 

 
16.0 ± 15.3 2.1 - 124.8 

 
29.2 72.2 

 
43.0 ± 19.6 15.5 - 114.8 

50 mM 5.8 7.2 
 

4.2 ± 1.9 0.5 - 10.3 
 

24.6 45.7   25.7 ± 10.7 3.0 - 51.5 

2011 

Fresh 
Control 90.0 130.0   65.5 ± 33.2 13.9 - 199.3 

 
400.0 540.0 

 
428.0 ± 98.5 151.1 - 687.5 

50 mM 17.1 7.2 
 

29.1 ± 21.9 2.5 - 141.4 
 

246.0 353.6 
 

325.7 ± 89.7 90.0 - 560.5 

Dry 
Control 7.7 17.4 

 
8.2 ± 0.3 2.9 - 17.4 

 
26.7 80.9 

 
34.4 ± 12.2 5.3 - 86.6 

50 mM 5.6 4.3   4.5 ± 0.2 0.1 - 11.7   19.0 60.7   26.9 ± 9.2 11.4 - 60.7 

Note: - not available 
           



Genetic analysis of seed germination and seedling vigour 

 83 

Heritability 

Root and shoot length under non-stress and stress conditions had low to moderately high narrow-

sense heritabilities (0.2-0.7) (Table 3). Under salt stress, heritabilities were generally lower than 

under control conditions. The heritabilities were generally higher for seed batch 2011, where 

flowering and seed ripening were synchronised, than for the seed batch of 2010. The salt 

tolerance parameters STI and RelST both for root and shoot length also had low to moderately 

high heritability estimates (0.2 to 0.7); RelST had a lower heritability than STI for both root and 

shoot length (Table 3). 

 

 

QTLs for seed germination and seed weight 

Over the two seed batches (2010 and 2011), two conditions (non-stress and 50 mM salt) and five 

germination parameters, in total, 25 QTLs and 20 putative QTLs (LOD score between 2 and 3) were 

found (Figure 2B; Supplementary Table S2). For the significant QTLs, the explained variances 

ranged from 7.5% to 27.2%. No QTLs were found for Gmax under control conditions. On A02, QTLs 

were detected mainly for T10 and T50 with explained variance ranging from 9.3 % to 27.2 % 

(Supplementary Table S2), with the favourable effect coming from the yellow sarson allele (i.e. the 

pak choi allele increases T10 and T50). And, putative QTLs were detected mainly for AUC on A02 

under salt stress in 2010 and non-stress condition in 2011, with a favourable effect from the 

yellow sarson allele (Figure 2B). However, putative QTLs for T10 and T50 were detected on A01 

with a favourable allelic effect of the yellow sarson allele. On A05, one QTL and three putative 

QTLs with explained variance from 6.5 % to 11.1% were mapped for mainly uniformity under salt 

stress. For thousand-seed weight in 2010 and 2011 a single QTL was found on A05, with explained 

variance ranging from 8.3% to 16.1% (Figure 2B; Supplementary Table S2). 

 

 

 

Table 3: Narrow-sense heritabilities of root length (RL), shoot length (SL) and salt tolerance 
parameters under non-stress and salt stress conditions of 2010 and 2011 seed batches for different 
days after germination (DAG). RelST indicates Relative Salt Tolerance, STI indicates the Salt 
Tolerance Index. 

  
Control 

 
50 mM NaCl 

 
2010 

 
2011 

  DAG 2010 2011   2010 2011 
 

RelST STI   RelST STI 

R
o

o
t 

 
le

n
gt

h
 3 0.6 0.6 

 
0.5 0.6 

 
0.3 0.5 

 
0.2 0.6 

5 0.6 0.6 
 

0.6 0.6 
 

0.5 0.5 
 

0.2 0.6 

7 0.6 0.7 
 

0.6 0.6 
 

0.5 0.5 
 

0.2 0.6 

9 0.6 0.7   0.5 0.6 
 

0.4 0.4   0.4 0.6 

              
 

          

Sh
o

o
t 

 le
n

gt
h

 3 0.6 0.6 
 

0.4 0.5 
 

0.3 0.6 
 

0.2 0.6 

5 0.5 0.6 
 

0.4 0.6 
 

0.3 0.5 
 

0.3 0.6 

7 - 0.7 
 

- 0.6 
 

- - 
 

0.5 0.6 

9 - 0.7   - 0.7   - -   0.5 0.7 
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Figure 2: An overview of single trait QTL profiles of seed germination, seedling vigour and salt tolerance parameters under non-stress and 50 mM NaCl salt 
stress conditions of 2010 and 2011 seed batches. A. QTL hotspots (>8 significant QTLs) indicated by the number of significant QTLs plotted for 10 linkage 
groups (“A0 to A10”). The dotted vertical lines separate the ten linkage groups. B. Single trait QTL profiles of flowering time, seed weight, seed germination, 
seedling vigour and salt tolerance parameters. Seed germination includes six parameters: T10, T50, U7525, Gmax and AUC; seedling vigour includes root 
and shoot length at different DAGs, and root and shoot biomass measured under non-stress and 50 mM NaCl salt stress conditions. The different traits are 
indicated along the y-axis, the 10 linkage groups on the x-axis, separated by dotted lines. QTLs that had a high phenotypic value for the YS143 allele are in 
light blue (for QTLs with LOD 2-3) and blue (for QTL with LOD >3) while QTLs with a high phenotypic value for the PC175 allele are indicated in yellow (for 
QTLs with LOD 2-3) and green (for QTLs with LOD > 3). The colour streak on the QTL profile indicates the QTL peak position. The 26 QTL co-localization 
regions are indicated as Co-QTL followed by the number of the linkage group and a serial number within a linkage group, for example, Co-QTL1-2 indicates 
the second co-localization QTL region on A01. The red colour of a trait label indicates the trait under 50 mM NaCl salt stress condition. The trait labels are 
described in Supplementary Table S1.  

A. 
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B. 
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QTLs for seedling vigour 

For the 24 seedling vigour traits measured in 2010 and 2011 seed batches, 69 QTLs were 

identified, distributed over 10 linkage groups (Figure 2B; Supplementary Table S3). The explained 

variances ranged from 7.1% to 24.3%. For the 2010 seed batch, 22 QTLs were identified for 13 

traits on different linkage groups with at least one QTL per trait and an additional 24 putative QTLs 

for 13 different traits (Figure 2B; Supplementary Table S3). For the 2011 seed batch, 47 QTLs were 

identified for 20 traits with at least one QTL per trait and all those traits also had putative QTLs. 

For two traits, many QTLs were detected: for root length at 5 DAG under 50 mM salt in the 2011 

seed batch, four QTLs with explained variance ranging from 8.3 to 13.9%, and for shoot length at 7 

DAG under 50 mM salt for the 2011 seed batch, five QTLs on with explained variance ranging from 

10.0 to 14.2% (Figure 2B; Supplementary Table S3). 

 

QTLs for seedling salt tolerance parameters 

Two salt tolerance parameters, salt tolerance index (STI) and relative salt tolerance ratio (RelST) 

were calculated for root and shoot lengths. In total, 47 QTLs were identified for 24 traits for root 

and shoot length at different DAGs from two seed batches with explained variance ranging from 

7.8% to 22.2% (Figure 2B; Supplementary Table S4). The trait RelST for shoot length at 9 DAG in 

2011 had the largest number of QTLs (six) with explained variance from 11.7% to 17.7% while the 

other traits for STI and RelST had 1 to 4 QTLs. Among the 47 QTLs, 8 QTLs had < 10 % explained 

variance, 30 QTLs had 10-15% and 9 QTLs had > 15% explained variance (Figure 2B; Supplementary 

Table S4). Since root and shoot length traits were measured repeatedly at 3, 5, 7 and 9 DAGs, 

many QTLs for the same trait at different DAGs probably represents the same QTL. 

 
Co-localization of QTLs 

QTLs co-localized on 26 unique genomic regions across ten linkage groups; however 9 significant 

QTL hotspots (with ≥ 8 QTLs) were detected (Figure 2A). Hotspots Co-QTL2-1,-2 and -3 on A02, Co-

QTL3-3 at the middle of A03, Co-QTL5-1 and -2 on A05, Co-QTL8-1 and -2 at the top of A08 and Co-

QTL9-2 at the middle of A09 were considered major QTL hotspots (≥ 8 QTLs). QTLs co-localized on 

these hotspots are often for the same traits measured at different DAGs, at different treatments 

or in different years (Figure 2A-B; Supplementary Table S2-S4). We also considered whether the 

QTL alleles from parents yellow sarson or pak choi could be of importance to breeders. QTL 

hotspots, such as Co-QTL1-3 on A01, Co-QTL2-1 and -2 on A02 and Co-QTL10-1 on A10 mainly 

included QTLs for T10 and T50 seed germination parameters, with the yellow sarson allele on A01 

and A02 and the pak choi allele on A10 associated with earlier onset and faster germination 

(Figure 2B). On hotspots Co-QTL2-1 and -2 on A02, QTLs for root and shoot traits from the 2011 

seed batch were also co-localized; here, the yellow sarson allele is associated with an increase in 

root length and the pak choi allele with increased shoot length. Hotspots Co-QTL9-2 and -3 contain 

QTLs associated with T50, Gmax and AUC under salt stress in 2010 seeds and U7525 under salt 

stress in 2011 seeds; these hotspots also harbour a major QTL for seed colour with 32.7% 

explained variation (data not shown). In addition, these hotspots Co-QTL9-2 and -3 contain QTLs 
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for shoot and root length and shoot weight under both conditions and also for salt tolerance 

parameters. At this locus, the pak choi allele increased the Gmax, AUC, root- and shoot- lengths 

and shoot weight. On Co-QTL8-1, QTLs for root and shoot lengths, their weights and salt tolerance 

parameter STI co-localize. The yellow sarson allele for that QTL increased root and shoot length 

and weight and also improved seedling performance under salt stress (Figure 2B). 

 
Stress treatment specific QTLs 

The two QTL hotspots on A05 Co-QTL5-1 and -2 harbour QTLs for AUC and Gmax (in 2010), T50 (in 

2011) and U7525 (in 2010 and 2011) under salt stress and RelST of root and shoot length in both 

years (Figure 2B). The pak choi allele increased the germination parameters Gmax and AUC from 

the 2010 seed batch, but the same allele is associated with a lower germination rate (T50 in 2011) 

and with a decreased uniformity of germination (U7525 in 2010 and 2011). The values of both salt 

tolerance parameters were higher in yellow sarson; consistent with that, it was the presence of 

the yellow sarson allele in the DH progeny that gave higher RelST and STI of root and shoot lengths 

(Figure 2B). 

 

Epistatic interactions between QTLs 

Among the 64 traits related to germination and seedling vigour measured under two treatments 

from seeds harvested in two years, epistatic interactions were observed for 16 traits: 9 for 

germination and 7 for seedling vigour. Most had only a single epistatic interaction, with an 

explained variance between 5 and 10%; however, four traits had 2 or 3 epistatic interactions 

(Figure 3). For T50 (50 mM salt, 2011) there were two epistatic interactions between Co-QTL2-2 

and Co-QTL5-1, and between Co-QTL2-2 and Co-QTL5-2 with 10.54% and 17.58% explained 

variation, respectively. Similarly, shoot length under salt stress at 3 and 9 DAGs in the 2011 seed 

batch and root fresh weight under non-stress in the 2010 seed batch had two or three epistatic 

interactions. QTL hotspots Co-QTL10-1, Co-QTL2-2 and Co-QTL6-2 were the main QTL regions that 

had the largest number of interactions, with 8, 6 and 5 other QTL regions, respectively (Figure 3). 

 

Co-localization of phenotypic QTLs with candidate genes BrFLC2 and BrFAD2 

Two genes BrFLC2 and BrFAD2 were reported for their roles in seed germination and seedling 

vigour traits in A. thaliana and B. napus (Chiang et al., 2009; Wang et al., 2010; Zhang et al., 2012). 

Based on the co-location of co-QTL2-1 and -2 on A02 with BrFLC2 and of co-QTL5-1 and -2 on A05 

with BrFAD2, we analyzed transcript abundance of these genes in the DH population and mapped 

eQTLs for these genes to find out whether their eQTLs co-locate with the phenotypic QTL hotspots 

and with the physical position of the genes themselves. 

For BrFLC2, a cis-eQTL was mapped over Co-QTL2-1 and -2 on A02 with LOD scores 5.4 and 3.7 that 

explained 20.8% and 14.0% of the total variation in transcript abundance, respectively. For BrFAD2, 

a cis-eQTL co-located over the Co-QTL5-1 and -2 regions with LOD score 7.1 and 22.0% explained 

variance while another trans-eQTL mapped at theCo-QTL9-2 region on A09 with LOD score 3.6 and 

10.5% explained variance (Figure 4; Table 4). 
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Figure 3: Epistatic interactions of QTL regions for seed germination and seedling vigour traits. QTLs 
identified for different traits were tested in a pair of two QTLs for each trait. Identical numbers 
indicate a pair of QTLs with significant epistatic interaction (α = 0.05). The colour intensity 
increases with higher explained variance (%) of the interaction. 
 
Discussion 

Good seed germination and high seedling vigour under diverse conditions are essential for the 

establishment of a crop. In this study, germination characteristics were studied and seedling 

vigour was evaluated during the early growth stages of B. rapa seedlings, both under non-stress 

and salt stress conditions. Vigorous seeds have fast and uniform germination, a high germination 

rate and high seedling vigour at the early stages of growth under diverse conditions; this is the 

main focus of any crop breeding program for good crop establishment. 

Salinity is one of the major limiting abiotic stresses for high crop production, affecting nearly 40% 

of agricultural lands in the world (Mittler, 2006). High levels of salt especially during seed 

germination and early plant growth, directly affects the crop establishment, in severe cases 

leading to complete crop failure or strongly reduced yields (Mano and Takeda, 1997; Ashraf and 

McNeilly, 2004; Su et al., 2013). In this study, 120 genotypes from a DH population from a wide 

cross of B. rapa yellow sarson and pak choi were used to identify genomic regions associated with 

seed germination characteristics and seedling vigour under non-stress and salt stress conditions. 

Seed germination and shoot and root related traits during the first 10 days after germination were 

assessed to quantify seed- and seedling- vigour. Two major QTL hotspots co-locate with candidate 

genes BrFLC2 and BrFAD2 for seed germination and seedling vigour. Even though many genes map 

under these QTL hotspots, we did a follow-up investigation of these two genes in particular, since 

these genes were also reported for roles in the studied traits in A. thaliana and B. napus (Chiang et 
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al., 2009; Wang et al., 2010; Zhang et al., 2012); in this follow-up study we found that their cis-

eQTLs co-located with the phenotypic QTL hotspots. 

 

Early seedling growth is more affected by salt stress than seed germination 

Under natural conditions, plants are exposed to different levels of salt stress; in this study 50 mM 

NaCl was chosen to mimic the salinity stress that affects seed germination and seedling vigour in a 

field situation. Maximum seed germination was not drastically affected at 50 mM NaCl, being still 

at a level of 95-100%; however, in general, other germination parameters, relating to rate and 

uniformity of germination were negatively affected. Root and shoot growth were also reduced. 

 
Oil-type yellow sarson has improved seed germination and seedling vigour compared to 

vegetable-type pak choi under non-stress and salt stress conditions but is more sensitive to salt 

stress 

The yellow sarson parent had larger seed size and higher thousand-seed weight than the pak choi 

parent, and displayed earlier onset, more uniform and faster germination under both non-stress 

and salt stress conditions (Table 1). This parent also had a higher root- and shoot- length and 

biomass (Table 2). The positive correlations of thousand-seed weight with AUC and Gmax, and 

negative correlations with T10, T50 and uniformity (U7525) of germination in the DH population 

supports that larger seeds germinate earlier, faster, more uniformly and to a higher maximum 

germination than smaller seeds. Thus, we conclude that yellow sarson had higher seed quality and 

seedling vigour than pak choi. The explanation for the larger seeds of yellow sarson (than those of 

pak choi) could be that yellow sarson was selected for high oilseed yield since it is an oil-type crop, 

while pak choi was selected for high vegetative mass. The increased seedling vigour of yellow 

sarson might then be a result of the seeds containing more nutrients (Ambika et al., 2014). Susko 

and Lovett-Doust (2000) reported a positive effect of seed mass (weight) on higher and faster seed 

germination and seedling growth in Alliaria petiolata (a Brassicaceae) and Khan et al., (2012) also 

observed a positive effect of higher seed weight and larger seed size on seedling vigour traits in 

tomato. However, during seedling growth yellow sarson was more severely affected by salt stress 

than pak choi, with more strongly reduced shoot and root length and biomass under salt stress 

(Table 2; Figure 1; Supplementary Figure S2). One possible explanation of this result could be the 

thinner seed coat in yellow-seeded genotypes than that of brown/black-seeded genotypes (Xiao et 

al., 2012). The thickness of the seed coat, the colour itself, composed of pro-anthocyanin (an 

antioxidant), and antioxidants such as anthocyanin and flavonoids are reported to protect 

germination under salt stress (Umnajkitikorn et al., 2013). The thinner the seed coat, the higher 

the permeability, which can lead to higher cumulative absorption of salt solutes over time and this 

could possibly cause yellow sarson to be more affected by salt stress.  
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Figure 4: eQTL profiles for BrFLC2 (a Brassica homologue of FLC2 of A. thaliana) and BrFAD2 (a Brassica homologue of FAD2 of A. thaliana) measured in 
developing B. rapa seeds (28 days after pollination) across ten linkage groups. The y-axis represents the LOD score, the x-axis represents the 10 linkage 
groups separated by dotted lines; the QTL significance threshold is indicated by a red coloured solid line at LOD score 3. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Table 4: Summary of expression QTLs (eQTLs) of BrFLC2 and BrFAD2 genes identified using interval mapping (IM) and multiple QTL 
mapping (MQM) in this DH population. 

Gene 
Name 

A. thaliana 
orthologs 

Peak marker 
Linkage 
group 

Peak marker 
 2-LOD support 

interval % Explained 
variation 

Total 
variation 
explained 

Position (cM)  LOD  
 Lower 

position 
Upper 
position 

BrFLC2 FLC2 BRH04D11flc2 2 17.4 5.41  6.5 20.8 19.8 33.8 

  
BrPIP1b 2 37.9 3.69  33.1 42.7 14.0 

 BrFAD2 FAD2 Myb2HaeIIIM-605.3 5 78.2 7.1  56.1 89.1 22.0 32.5 

    BrFRY1P1b 9 51.5 3.64  48.1 57.6 10.5 
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Phenotypic variation, correlation and heritabilities of the traits 

The variability of root and shoot length in this population increases over the growing days under 

both conditions (Figure 1; Table 2; Supplementary Figure S2); however, the heritability remained 

similar (Table 3). The transgressive segregation observed in all traits suggests a quantitative and 

polygenic inheritance of these traits, requiring a QTL mapping approach to characterize the 

genetics of seed quality and seedling vigour in B. rapa. Root and shoot lengths form two separate 

clusters (negative correlation), over differences in treatments and seed batches from different 

years (Supplementary Figure S3) suggesting differences in regulation of root and shoot growth. 

However, high negative correlations between root and shoot lengths suggest partly shared 

regulation (Supplementary Figure S3). 

Narrow-sense heritabilities were calculated for seedling vigour traits. In general, the heritability 

was lower for seedling vigour traits using 2010 seed batches (0.4 to 0.6) than for seeds of the 2011 

batches (0.5 to 0.7) (Table 3). In 2011, the DH lines were sown in staggered fashion to synchronize 

flowering as much as possible and to minimize differing environmental influences during seed 

development. It is likely that this caused the higher heritabilities of most traits in 2011 than in 

2010.  

 

Major QTL hotspots for seed germination and seedling vigour 

We identified major hotspots for seed germination and seedling vigour related traits on A02, A03, 

A05, A08 and A09. QTLs for T10 and T50 were found on hotspot regions on A02 (Co-QTL2-1 and -

2); at these loci, the pak choi allele is associated with later germination onset as well as a decrease 

in the germination speed (Figure 2B). It cannot be excluded that Co-QTL2-1 and -2 are in fact a 

single QTL. Additional QTL regions on A01 (Co-QTL1-3) and A10 (Co-QTL10-1) were mainly 

associated with rate of germination (T50) and AUC; at Co-QTL1-3 the pak choi allele was 

associated with higher T50 (time to reach 50% germination) and lower AUC, while at Co-QTL10-1 

the yellow sarson allele associated with higher T50 and the pak choi allele with lower AUC. The 

fact that at different loci both parents contribute positive alleles is another illustration of the 

polygenic transgressive nature of the inheritance of these traits. 

The combination of QTLs from A01, A02 and A10 can increase the onset (T10) and rate or speed 

(T50) of seed germination in B. rapa. Interestingly, QTLs for flowering time, both in 2010 (peak 

LOD score 13.4, explained variance 38.0%) and 2011 (LOD 14.8, explained variance 40.9%) mapped 

to the Co-QTL2-1 and -2 regions on A02, which could point to pleiotropy or linkage of QTLs for 

flowering time and seed germination. In a recent paper, it has been described that flowering time 

regulatory genes can pleiotropically or directly influence multiple agronomic traits, like the 

number and size of seeds, seedling vigour, biomass and resistance/tolerance to biotic or abiotic 

stress (Quijada et al., 2006; Chen et al., 2007; Ni et al., 2009; Chianga et al., 2009; Basunanda et 

al., 2010; Li et al., 2010), which likely put these genes under selection during crop breeding. The 

gene BrFLC2 also maps to this Co-QTL2-1 region (Xiao et al., 2013) and the expression QTL for the 

BrFLC2 gene both in leaves of six week old plants and in 28 days developing seeds co-localizes with 

this region (Figure 2B; Table 4). Xiao et al., (2013) identified BrFLC2 as a major regulator of 
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flowering time, using the same DH population, and reported the allelic variation between the 

BrFLC2 alleles of the two parents yellow sarson and pak choi; a deletion of 56 bp at the exon 4 (12 

bp) and intron 4 (44 bp) junction in yellow sarson rendered the gene non-functional; the pak choi 

allele does not have this deletion. In the related species A. thaliana, Chiang et al., (2009) reported 

a pleiotropic effect of FLC (a homologue of BrFLC2) on temperature-dependent germination 

through additional genes FT, SOC1 and AP1 in the flowering time pathway in A. thaliana. They also 

reported the sharing of pathways by flowering time and seed germination, and showed that FLC 

regulates the germination through the abscisic acid catabolic pathway (ABA degradation) and 

gibberellin biosynthetic pathway in seeds.  

An alternative explanation for the co-localization of BrFLC2 with QTLs for seed germination could 

be a major regulatory role of this FLC2 earliness gene in developmental processes. The possibility 

of confounding effects of two major loci involved in earliness was reported in A. thaliana and 

potato. In the Landsberg erecta x Cape Verde Islands a RIL population of A. thaliana, QTLs for 

many developmental traits were co-located on the ERECTA locus (Stinchcombe et al., 2009). 

Similarly, in a diploid population of potato, the many QTLs were co-located on the EARLINESS locus 

(Hurtado-Lopez, 2012; Kloosterman et al., 2012). Further study is needed to deconfound the 

causal relationships of the BrFLC2 with seed germination parameters in B. rapa. 

Across 24 traits, many QTLs co-localized on Co-QTL3-3 on A03, Co-QTL5-1 and -2 on A05, Co-QTL8-

1 on A08 and Co-QTL9-2 and -3 on A09 (Figure 2B). Corroborating the finding that there are high 

correlations between the time points, we found co-localized QTLs for root and shoot lengths 

measured repeatedly in time. For most traits, two or more than two QTLs were detected and most 

of the QTLs for the 2011 seed batch had higher explained variance (range: 7.1 to 24.3%; mode 

value: 14.2%) rather than for the 2010 seed batch (range: 7.8 to 22.6%; mode value: 11.1%) 

(Supplementary Table S3). This again reflects the higher explained genetic variation when seeds 

ripened synchronously, as was the case in 2011.Several putative QTLs co-localized with significant 

QTLs for correlated traits. QTLs found at multiple time points increase the reliability of these QTLs. 

Increasing the power of QTL detection by either enlarging the population size or increasing the 

precision of phenotyping, possibly, could be used to confirm additional candidate QTLs reported in 

this study. 

 

QTLs specific to salt stress conditions 

QTLs for uniformity (U7525 in 2010 and 2011), AUC, Gmax (in 2010) and rate (in 2011) of 

germination under salt stress co-localized on Co-QTL5-1 and Co-QTL5-2 on A05 and for both loci 

the yellow sarson allele has a positive effect on maximum germination (Gmax) potential, AUC and 

rate of germination, but a negative effect on uniformity under salt stress. On hotspots Co-QTL5-1 

and -2 on A05, also QTLs for root and shoot lengths and shoot weight under salt stress and 

thousand-seed weight were mapped. QTLs for relative salt tolerance (RelST) parameters also 

mainly mapped to Co-QTL5-1 and -2 (Figure 2B). Finally, yellow sarson alleles at these salt stress 

specific QTL regions contribute to a larger seed size and higher thousand-seed weight than pak 

choi alleles, which could be in support of a higher maximum germination and faster germination 
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rate in yellow sarson. As marker density was rather low with on average 7-10 cM distance 

between two markers, more markers and more recombinants are needed to conclude whether 

the regions actually represent a single or two closely linked QTLs. QTLs at these two hotspots were 

in coupling phase for all the traits (with the yellow sarson allele having a favourable effect) 

supporting that this is a single QTL hotspot. 

The BrFAD2 gene, a key gene responsible for biosynthesis of poly-unsaturated fatty acids, is 

located inside this Co-QTL5-2 region. Two eQTLs were mapped for BrFAD2: a cis-eQTL across the 

region of Co-QTL5-1 and -2 on A05 and a trans-eQTL co-locating with Co-QTL9-2 on A09 (Figure 2; 

Figure 4). This QTL region on A05 is the major locus with QTLs for seed germination and seedling 

vigour under salt stress (Figure 2B), suggesting a role of BrFAD2 in regulating germination and 

seedling vigour under salt stress. Besides the role of FAD2 gene in fatty acid desaturation, Wang et 

al., (2010) reported that the up-regulation of the FAD2 gene enhanced seed germination and 

hypocotyl length in their study on FAD2-transgenic and non-transgenic lines of the closely related 

species B. napus. In another study on the comparison of a fad2 mutant of A. thaliana with the wild 

type, a functional role of FAD2 was reported in increasing salt tolerance during seed germination 

and early seedling growth (Zhang et al., 2012). High homology of coding sequences (86%) was 

found among the homologs of a FAD2 gene in A. thaliana, B. rapa and B. napus. FAD2 extrudes 

Na+ out of the cell and compartmentalizes it into the vacuolar membrane using Na+/H+ antiporters 

(NHXs) and thus maintains ion homeostasis. Thus, our results in B. rapa are in good agreement 

with the findings on the roles of FAD2 in A. thaliana and B. napus that the BrFAD2 gene is a 

candidate gene in B. rapa to improve of seed germination and early seedling vigour under salt 

stress. 

 

Epistatic interaction between QTLs at BrFLC2 and BrFAD2 

Epistatic interactions between individual genes are prevalent to account for variation in 

quantitative traits (Jannink and Jansen, 2001). For seed germination and seedling vigour related 

traits, several studies reported epistatic interactions between genes in Arabidopsis (Galpaz and 

Reymond, 2010; Bouteillé et al., 2012), tomato (Kazmi et al., 2012; Khan et al., 2012), rice (Wang 

et al., 2012), B. napus (Yang et al., 2012) as well as other crops. Interactions with other QTL 

regions were observed for Co-QTL2-2, Co-QTL6-2 and Co-QTL10-1 indicating that not only main 

effects of these QTLs but also their epistatic interactions are important for fitness traits like seed 

germination and seedling vigour (Figure 3). The Co-QTL2-2 locus showed clear interactions with 

Co-QTL5-1 and-2, which likely represent a single QTL hotspot. The Co-QTL2-2 region co-locates 

with BrFLC2, the Co-QTL5-2 locus co-locates with BrFAD2. This suggests that, in addition to their 

main effects, an epistatic interaction of these two loci may play an important role (explained up to 

17.6% of total phenotypic variation) in the genetic regulatory network of seed germination and 

seedling vigour in B. rapa under salt stress. A further understanding of interactions with other QTL 

regions will help to explore the complex genetic architecture of seed germination and seedling 

vigour in B. rapa. 
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Supplementary Figure S1: Heatmap of Pearson correlation coefficients and hierarchical cluster 
analysis of seed germination parameters under non-stress (control) and 50 mM NaCl salt stress 
conditions. The colour bar on the left side indicates the two different seed batches: 2010 and 
2011, and the colour bars on the top the two different treatments: non-stress (control) and 50 
mM NaCl salt. The gradient from red to blue colour indicates the degree of positive or negative 
correlation, respectively. 
 
 

 

Supplementary Figure S2: Box plot 
showing the distribution of root 
length (RL) and shoot length (SL) at 
different days after germination 
(DAG) under non-stress (0 mM 
NaCl) and salt stress (50 mM NaCl 
“S”) for the 2010 seed batch. The 
shaded colour of the boxes 
indicates the treatments: white for 
non-stress and grey for salt stress. 
The y-axis indicates root- and shoot 
length (in cm). The x-axis label is 
the combination of RL at 1, 3, 5, 7 
and 9 DAG or SL at 1, 3 and 5 DAG 
under non-stress and salt stress 
conditions of the 2010 seed batch. 
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Supplementary Figure S3: Heatmap of Pearson correlation coefficients and hierarchical cluster 
analysis of root length (RL) and shoot length (SL) measured at 3, 5, 7 and 9 days after germination 
(DAG) at non-stress (control; coded as “C”) and 50 mM NaCl salt stress (“S”) conditions. The colour 
bar on the left side indicates the two different seed batches: 2010 and 2011, the colour bars on the 
top the two different treatments: non-stress (control) and 50 mM NaCl salt. The gradient from red 
to blue colour indicates the degree of positive or negative correlation, respectively. 
 

Supplementary Table S1: List of traits related to seed weight, seed germination, seedling 
growth, seedling weight and salt tolerance parameters with their codes in combination with 
treatment, DAG (days after germination) and year of the seed batch. 

SN Year Treatment DAG traits Trait code Measurement 
unit A. Thousand seed weight 

1 2009 - - thousand seed 
weight 

 

seed.weight.2009 g 
2 2010 - - seed.weight.2010 g 
3 2011 - - seed.weight.2011 g 

B. Flowering Time   

1 2010 - - Flowering time 
 

flowering.2010 days 
2 2011 - - flowering.2011 days 

C. Seed germination   

1 

2010 Control  
T10 T10_Control_2010 hr 

2 
 

T50 T50_Control_2010 hr 

3 
 

Gmax Gmax_Control_2010 % 
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4 
 

U7525 U7525_Control_2010 hr 

5 
 

AUC AUC_Control_2010 - 

6 

50mM 
NaCl (salt 

stress) 

 
T10 T10_50mM_2010 hr 

7 
 

T50 T50_50mM_2010 hr 

8 
 

Gmax Gmax_50mM_2010 % 

9 
 

U7525 U7525_50mM_2010 hr 

10 
 

AUC AUC_50mM_2010 - 

11 

2011 

Control 

 
T10 T10_Control_2011 hr 

12 
 

T50 T50_Control_2011 hr 

13 
 

Gmax Gmax_Control_2011 % 

14 
 

U7525 U7525_Control_2011 hr 

15 
 

AUC AUC_Control_2011 - 

16 

50mM 
NaCl 

 
T10 T10_50mM_2011 hr 

17 
 

T50 T50_50mM_2011 hr 

18 
 

Gmax Gmax_50mM_2011 % 

19 
 

U7525 U7525_50mM_2011 hr 

20   AUC AUC_50mM_2011 - 

D. Seedling growth (Root length, shoot length, root weight, shoot weight)   

1 

2010 

Control 

1 

root length 

RL1_Control.2010 cm 

2 3 RL3_Control.2010 cm 

3 5 RL5_Control.2010 cm 

4 7 RL7_Control.2010 cm 

5 9 RL9_Control.2010 cm 

6 

50mM 
NaCl 

1 RL1_50mM.2010 cm 

7 3 RL3_50mM.2010 cm 

8 5 RL5_50mM.2010 cm 

9 7 RL7_50mM.2010 cm 

10 9 RL9_50mM.2010 cm 

11 

Control 

1 

shoot length 

SL1_Control.2010 cm 

12 3 SL3_Control.2010 cm 

13 5 SL5_Control.2010 cm 

14 
50mM 
NaCl 

1 SL1_50mM.2010 cm 

15 3 SL3_50mM.2010 cm 

16 5 SL5_50mM.2010 cm 

17 
Control 

 
Root fresh weight RFw_Control.2010 mg 

18 
 

Root dry weight RDw_Control.2010 mg 

19 50mM 
NaCl  

Root fresh weight RFw_50mM.2010 mg 

20 
 

Root dry weight RDw_50mM.2010 mg 

21 
Control 

 
Shoot fresh weight SFw_Control.2010 mg 

22 
 

Shoot dry weight SDw_Control.2010 mg 

23 50mM 
NaCl  

Shoot fresh weight SFw_50mM.2010 mg 

24 
 

Shoot dry weight SDw_50mM.2010 mg 

25 

2011 

Control 

3 

root length 

RL3_Control.2011 cm 

26 5 RL5_Control.2011 cm 

27 7 RL7_Control.2011 cm 

28 9 RL9_Control.2011 cm 

29 

50mM 
NaCl 

3 RL3_50mM.2011 cm 

30 5 RL5_50mM.2011 cm 

31 7 RL7_50mM.2011 cm 

32 9 RL9_50mM.2011 cm 
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33 

Control 

3 

shoot length 

SL3_Control.2011 cm 
34 5 SL5_Control.2011 cm 
35 7 SL7_Control.2011 cm 
36 9 SL9_Control.2011 cm 

37 

50mM 
NaCl 

3 SL3_50mM.2011 cm 

38 5 SL5_50mM.2011 cm 

39 7 SL7_50mM.2011 cm 

40 9 SL9_50mM.2011 cm 

41 
Control 

 
Root fresh weight RFw_Control.2011 mg 

42 
 

Root dry weight RDw_Control.2011 mg 

43 50mM 
NaCl  

Root fresh weight RFw_50mM.2011 mg 

44 
 

Root dry weight RDw_50mM.2011 mg 

45 
Control 

 
Shoot fresh weight SFw_Control.2011 mg 

46 
 

Shoot dry weight SDw_Control.2011 mg 

47 50mM 
NaCl  

Shoot fresh weight SFw_50mM.2011 mg 

48 
 

Shoot dry weight SDw_50mM.2011 mg 

E. Relative Satl Tolerance (RelST) and Salt Tolerance Index (STI) 
 1 

2010 

Control 
versus 
50mM 
NaCl 

 
 
 
 
 

1 

STI of root length 

STI1.RL_C50.2010 - 

2 3 STI3.RL_C50.2010 - 

3 5 STI5.RL_C50.2010 - 

4 7 STI7.RL_C50.2010 - 

5 9 STI9.RL_C50.2010 - 

6 1 

Relative salt 
tolerance of root 

length 

RelST1.RL_C50.2010 - 

7 3 RelST3.RL_C50.2010 - 

8 5 RelST5.RL_C50.2010 - 
9 7 RelST7.RL_C50.2010 - 

10 9 RelST9.RL_C50.2010 - 
11 1 

STI of shoot 
length 

STI1_SL.C50.2010 - 

12 3 STI3_SL.C50.2010 - 

13 5 STI5_SL.C50.2010 - 

14 1 Relative salt 
tolerance of shoot 

length 

RelST1_SL.C50.2010 - 

15 3 RelST3_SL.C50.2010 - 

16 5 RelST5_SL.C50.2010 - 

17 

2011 

3 

STI of root length 

STI3_RL.C50.2011 - 
18 5 STI5_RL.C50.2011 - 
19 7 STI7_RL.C50.2011 - 
20 9 STI9_RL.C50.2011 - 

21 3 
Relative salt 

tolerance of root 
length 

RelST3_RL.C50.2011 - 

22 5 RelST5_RL.C50.2011 - 

23 7 RelST7_RL.C50.2011 - 

24 9 RelST9_RL.C50.2011 - 

25 3 

STI of shoot 
length 

STI3.SL_C50.2011 - 

26 5 STI5.SL_C50.2011 - 

27 7 STI7_SL.C50.2011 - 

28 9 STI9_SL.C50.2011 - 

29 3 
Relative salt 

tolerance of shoot 
length 

RelST3_SL.C50.2011 - 

30 5 RelST7_SL.C50.2011 - 

31 7 RelST5_SL.C50.2011 - 

32 9 RelST9_SL.C50.2011 - 

Note: hr – hour; g – gram; cm – centimetre; mg – milligram. 
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Supplementary Figure S4: An integrated linkage map (a slightly modified version of Xiao et al., 
2013) with map positions of 435 molecular markers on ten linkage groups for this B. rapa doubled 
haploid population. Gene-targeted markers were highlighted with different colours: red colour 
indicates markers for flowering time pathway genes, green colour for glucosinolate pathway 
genes, magenta for fatty acid biosynthesis pathway genes and blue for tocopherol and carotenoids 
pathway genes. Numbers at the top of each map indicate linkage groups. 
 
 

03 

09 
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LL UL

1 T10_Control_2010 q-0mM-2010-T10.1 5 E34M15M420.8 73.5 3.1 71.4 76.5 7.6 21.6 PC 1.2

q-0mM-2010-T10.2 9 Myb2AluIM450.8 100.2 5.0 100.2 104.5 14.0 YS 1.8

2 T50_Control_2010 q-0mM-2010-T50.1 1 P13M48M384.8 92.2 3.2 83.6 98.3 9.5 38.9 PC 1.7

q-0mM-2010-T50.2 10 BrCPDP1a 0.0 4.9 0.0 13.0 15.4 YS 2.1

q-0mM-2010-T50.3 2 BRH04D11flc2 17.4 2.3 6.5 26.8 6.7 YS 1.4

q-0mM-2010-T50.4 6 Myb2HaeIIIM140.4 89.9 2.5 75.2 96.9 7.3 PC 1.5

3 Gmax_Control_2010 - - - - - - - - - - -

4 U7525_Control_2010 q-0mM-2010-U7525.1 5 BRMS-034 22.4 2.3 15.7 37.2 6.5 22.2 YS 1.0

q-0mM-2010-U7525.2 6 BrFPF1P1d 75.5 2.9 73.2 83.0 8.2 PC 1.1

q-0mM-2010-U7525.3 9 MADsHaeIIIM296.5 66.8 2.6 61.7 75.3 7.5 YS 1.0

5 AUC_Control_2010 q-0mM-2010-AUC.1 6 BrFPF1P1d 75.5 2.9 73.2 80.3 9.1 18.4 YS 3.1

q-0mM-2010-AUC.2 10 BrCPDP1a 0.0 2.8 0.0 7.0 9.3 PC 3.2

6 T10_50mM_2010 q-50mM-2010-T10.1 2 ENA13l 27.2 5.3 24.8 36.1 15.7 20.3 YS 2.1

7 T50_50mM_2010 q-50mM-2010-T50.1 2 BrFLMP2d 18.1 3.0 8.5 30.2 9.3 29.1 YS 1.9

q-50mM-2010-T50.2 10 BrCPDP1a 0.0 3.9 0.0 9.0 12.3 YS 2.2

q-50mM-2010-T50.3 1 Myb2HaeIIIM475.9 99.8 2.5 98.3 107.8 7.5 PC 1.8

8 Gmax_50mM_2010 q-50mM-2010-Gmax.1 9 Myb2AluIM450.8 100.2 3.1 100.2 108.2 10.7 19.7 PC 3.3

q-50mM-2010-Gmax.2 5 BRMS-034 22.4 2.7 16.7 25.4 9.0 PC 2.8

9 U7525_50mM_2010 q-50mM-2010-U7525.1 2 P13M48M157.8 96.0 4.3 87.1 98.3 11.0 34.2 PC 1.2

q-50mM-2010-U7525.2 5 P14M51M182.0 36.2 3.1 19.7 46.6 7.5 YS 0.9

q-50mM-2010-U7525.3 6 BrFPF1P1d 75.5 3.6 66.8 76.5 8.9 PC 1.0

q-50mM-2010-U7525.4 5 E34M15M420.8 73.5 2.8 56.1 85.7 6.8 YS 0.9

10 AUC_50mM_2010 q-50mM-2010-AUC.1 5 BRMS-034 22.4 4.2 15.7 25.4 11.8 36.9 PC 3.8

q-50mM-2010-AUC.2 9 Myb2AluIM454.0 106.2 3.9 100.2 110.2 11.0 PC 4.0

q-50mM-2010-AUC.3 2 BrPIP1b 37.9 2.3 22.8 48.4 6.1 PC 2.7

q-50mM-2010-AUC.4 4 Myb2MSE1M142.2 0.0 3.0 0.0 7.0 8.0 YS 3.2

11 T10_Control_2011 q-0mM-2011-T10.1 2 BrFYP1a 23.8 5.9 17.2 41.6 21.9 39.4 YS 2.0

q-0mM-2011-T10.2 2 E32M19M308.5 58.6 4.5 58.2 69.3 17.5 YS 1.8

12 T50_Control_2011 q-0mM-2011-T50.1 2 BRH04D11flc2 17.4 3.4 17.2 26.8 11.3 40.3 YS 2.4

q-0mM-2011-T50.2 3 E34M15M383.9 116.2 3.1 97.9 116.8 10.4 PC 2.3

q-0mM-2011-T10.3 10 BrCPDP1a 0.0 3.1 0.0 20.9 10.3 YS 2.4

q-0mM-2011-T50.3 1 Myb2HaeIIIM475.9 99.8 2.5 97.3 110.8 8.3 PC 2.1

13 Gmax_Control_2011 - - - - - - - - - - -

14 U7525_Control_2011 q-0mM-2011-U7525.1 3 BRMS-043 59.4 4.2 57.5 66.1 17.1 17.1 PC 2.2

15 AUC_Control_2011 q-0mM-2011-AUC.1 2 E34M15M142.8 40.6 2.0 15.1 42.6 7.5 13.6 PC 3.2

q-0mM-2011-AUC.2 10 BrCPDP1a 0.0 2.0 0.0 17.7 6.1 PC 3.0

16 T10_50mM_2011 q-50mM-2011-T10.1 2 BrPIP1b 37.9 7.1 25.8 41.6 27.2 45.5 YS 3.0

q-50mM-2011-T10.2 1 Myb2HaeIIIM475.9 99.8 2.2 97.3 106.8 7.4 PC 1.5

q-50mM-2011-T10.3 2 E32M19M308.5 58.6 2.6 57.2 64.8 10.9 YS 1.9

17 T50_50mM_2011 q-50mM-2011-T50.1 2 BrPIP1b 37.9 6.9 25.8 41.6 26.1 56.2 YS 4.4

q-50mM-2011-T50.2 1 Myb2HaeIIIM475.9 99.8 2.3 80.6 108.8 7.8 PC 2.3

q-50mM-2011-T50.3 5 P14M51M182.0 36.2 2.7 32.0 41.2 9.8 YS 2.6

q-50mM-2011-T50.4 5 E32M47M113.6 60.5 3.6 56.1 72.4 12.5 YS 3.1

18 Gmax_50mM_2011 - - - - - - - - - - -

19 U7525_50mM_2011 q-50mM-2011-U7525.1 3 P23M48M159.6 64.5 3.3 58.5 67.1 12.7 36.6 PC 2.2

q-50mM-2011-U7525.2 9 P13M48M110.6 93.7 3.3 90.1 97.7 12.8 PC 2.1

q-50mM-2011-U7525.3 5 BrSPL5P3a 67.4 2.9 65.5 85.7 11.1 YS 2.1

20 AUC_50mM_2011 q-50mM-2011-AUC.1 1 Myb2HaeIIIM475.9 99.8 3.3 96.0 112.8 13.0 13 YS 5.0

21 Thousand seed weight_2010 q-testWt-2010.1 5 Myb2RSAIM232.8 41.6 4.1 37.2 43.8 12.9 29 YS 0.3

q-testWt-2010.2 5 P23M48M-36.6 64.5 5.2 52.3 75.5 16.1 YS 0.3

22 Thousand seed weight_2011 q-testWt-2011.1 5 BrSPL5P3a 67.4 3.6 65.5 71.4 8.3 8.3 YS 0.3

23 Flowering time_2010 q-floweringTime-2010.1 2 BrFLMP2d 18.1 13.4 6.5 24.8 38.0 51.2 YS 4.3

q-floweringTime-2010.2 2 BrPIP2a 38.9 4.0 33.1 41.6 13.2 YS 2.6

24 Flowering time_2011 q-floweringTime-2011.1 2 P13M48M137.1 15.9 14.8 7.5 25.8 40.9 54.3 YS 5.2

q-floweringTime-2011.2 2 BrPIP2a 38.9 4.1 34.1 42.6 13.4 YS 3.1

Note: 1 - Total explained variance of significant QTL (LOD >3) and candidate QTL (LOD >2), LL - lower limit and UL - upper limit.

Additive 

effect

Allele 

fromSN Traits QTL name
Linkage 

group
Peak marker

QTL 

position

LOD 

score

Confidence interval

QTL 

explained 

variance

Total 

explained 

variance1

Supplementary Table S2: Summary of significant QTLs identified for seed germination parameters 
and seed weight (thousand seed weight) in the B. rapa DH population from a cross of yellow 
sarson (YS143) and pak choi (PC175).  
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LL UL

1 2010 Control RL3_Control.2010 q-0mM-2010-RL3.2 5 BrSPL5P3a 67.4 3.3 65.5 70.4 9.8 41.8 0.7 PC 0.14

2010 Control q-0mM-2010-RL3.3 8 BrCRY2P3a 85.8 3.7 75.2 89.3 11.3 PC 0.16

2010 Control q-0mM-2010-RL3.4 9 BrFPAP1c 99.5 4.5 90.9 104.5 13 PC 0.18

2010 Control q-0mM-2010-RL3.1 5 E32M19M221.8 28.0 2.5 15.7 36.0 7.7 PC 0.13

2 2010 Control RL5_Control.2010 q-0mM-2010-RL5.1 4 E32M19M204.4 16.9 3.4 7.0 16.9 10.6 23.1 0.7 YS 0.26

2010 Control q-0mM-2010-RL5.2 8 BrCRY2P3a 85.8 4.0 76.2 89.3 12.5 PC 0.28

3 2010 Control RL7_Control.2010 q-0mM-2010-RL7.1 4 E32M19M204.4 16.9 4.0 8.0 27.8 13.4 23.4 0.7 YS 0.37

2010 Control q-0mM-2010-RL7.2 8 BrCRY2P3a 85.8 3.0 83.8 88.8 10 PC 0.36

4 2010 Control RL9_Control.2010 q-0mM-2010-RL9.1 8 BrCRY2P3a 85.8 4.4 83.8 88.8 15.8 15.8 0.7 PC 0.54

5 2010 Salt RL3_50mM.2010 q-50mM-2010-RL3.1 5 BrSPA1P1a 11.1 3.1 3.0 21.7 8.7 35.7 0.6 YS 0.05

2010 Salt q-50mM-2010-RL3.4 9 BrVIP4P1b 44.1 4.9 41.8 71.3 14.3 PC 0.06

2010 Salt q-50mM-2010-RL3.2 6 P21M47M386.1 26.7 2.3 24.3 39.0 6.2 YS 0.04

2010 Salt q-50mM-2010-RL3.3 7 Myb2RSAIM230.6 41.0 2.4 37.9 45.6 6.5 YS 0.04

6 2010 Salt RL5_50mM.2010 q-50mM-2010-RL5.1 5 BrSPA1P1a 11.1 3.2 1.0 18.7 9.7 24.4 0.7 YS 0.09

2010 Salt q-50mM-2010-RL5.2 6 P13M48M71.5 62.0 2.3 53.6 74.2 7 YS 0.08

2010 Salt q-50mM-2010-RL5.3 7 Myb2RSAIM230.6 41.0 2.5 37.9 43.9 7.7 YS 0.09

7 2010 Salt RL7_50mM.2010 q-50mM-2010-RL7.3 7 Myb2RSAIM230.6 41.0 3.6 37.9 45.6 10.8 30.5 0.7 YS 0.16

2010 Salt q-50mM-2010-RL7.1 5 BrSPA1P1a 11.1 2.2 0.0 17.7 6.5 YS 0.11

2010 Salt q-50mM-2010-RL7.2 6 P13M48M71.5 62.0 2.8 58.3 73.2 8.2 YS 0.12

2010 Salt q-50mM-2010-RL7.4 10 BrCOL1P1c 29.8 2.4 27.3 33.9 5 PC 0.11

8 2010 Control SL5_Control.2010 q-0mM-2010-SL5.1 1 Myb2HaeIIIM475.9 99.8 2.3 97.3 105.8 5.7 12.9 0.7 YS 0.07

2010 Control q-0mM-2010-SL5.2 8 P13M48M456.4 2.2 2.9 0.0 10.7 7.2 YS 0.08

9 2010 Salt SL3_50mM.2010 q-50mM-2010-SL3.3 5 E32M19M221.8 28.0 3.4 15.7 37.2 8.8 39.3 0.6 YS 0.02

2010 Salt q-50mM-2010-SL3.1 2 Myb2HaeIIIM270.6 100.1 2.1 92.4 101.1 5.4 YS 0.02

2010 Salt q-50mM-2010-SL3.2 3 E37M47M134.5 52.9 2.1 5.2 66.1 5.3 PC 0.02

2010 Salt q-50mM-2010-SL3.4 8 P23M50M335.3 9.7 3.0 5.1 20.4 7.7 YS 0.02

2010 Salt q-50mM-2010-SL3.5 10 P23M48M314.7 38.6 2.2 17.7 43.7 5.6 YS 0.02

2010 Salt q-50mM-2010-SL3.6 10 P23M48M168.8 61.7 2.5 57.2 77.8 6.5 YS 0.02

10 2010 Salt SL5_50mM.2010 q-50mM-2010-SL5.1 2 Myb2HaeIIIM270.6 100.1 3.1 87.1 101.1 8.1 30.1 0.6 YS 0.03

2010 Salt q-50mM-2010-SL5.4 8 E34M15M312.5 31.3 4.1 13.2 36.6 11.1 YS 0.04

2010 Salt q-50mM-2010-SL5.2 3 Br360 32.1 2.1 17.7 38.4 5.4 PC 0.03

2010 Salt q-50mM-2010-SL5.3 4 BrHOS1P2a 63.4 2.1 52.6 76.3 5.5 YS 0.03

11 2010 Control RFw_Control.2010 q-0mM-2010-RF.1 3 P23M48M291.7 1.3 3.4 0.0 12.7 11.1 46.3 - PC 16.44

2010 Control q-0mM-2010-RF.2 3 E32M47M85.7 88.1 5.0 72.7 114.7 15.6 YS 20.72

2010 Control q-0mM-2010-RF.3 6 ENA23l 60.6 4.5 55.8 73.2 12.7 YS 17.62

2010 Control q-0mM-2010-RF.4 9 Myb2AluIM454.0 106.2 2.6 102.2 112.2 6.9 PC 14.12

12 2010 Control SFw_Control.2010 q-0mM-2010-SF.1 3 E32M47M85.7 88.1 4.7 88.1 95.5 16.3 25.7 - YS 56.75

2010 Control q-0mM-2010-SF.2 7 BRMS-040-1 23.9 3.1 22.6 31.3 9.4 PC 41.92

13 2010 Salt SFw_50mM.2010 q-50mM-2010-SF.2 6 E34M15M464.0 8.9 3.0 7.0 11.9 9.8 17.1 - PC 29.88

2010 Salt q-50mM-2010-SF.1 3 BrFLDP1c 91.3 2.3 88.1 107.6 7.3 YS 26.41

14 2010 Control RDw_Control.2010 q-0mM-2010-RD.1 1 P14M51M213.3 34.9 2.2 32.2 40.3 7.7 7.7 - YS 7.30

15 2010 Salt RDw_50mM.2010 q-50mM-2010-RD.1 3 Myb2HaeIIIM-601.3 95.5 2.2 92.3 107.6 9.5 9.5 - YS 0.65

16 2010 Control SDw_Control.2010 q-0mM-2010-SD.1 3 E37M47M128.1 22.3 2.2 7.5 32.1 7.4 7.4 - PC 5.98

17 2010 Salt SDw_50mM.2010 q-50mM-2010-SD.3 7 Myb2HaeIIIM373.9 22.4 4.1 17.5 22.6 12.7 27.1 - YS 4.29

2010 Salt q-50mM-2010-SD.1 1 BrAP2P1d 0.3 2.5 0.0 7.3 7.3 PC 3.30

2010 Salt q-50mM-2010-SD.2 5 E32M47M118.1 63.4 2.4 56.1 65.5 7.1 YS 2.95

18 2010 Salt RL9_50mM.2010 - - - - - - - - - 0.7 - -

19 2010 Control SL3_Control.2010 - - - - - - - - - 0.7 - -

20 2010 Salt RFw_50mM.2010 - - - - - - - - - - - -

21 2011 Control SL3_Control.2011 q-0mM-2011-SL3.1 9 BrRGAP2c 68.8 2.8 66.0 75.3 14.7 14.7 0.8 YS 0.03

22 2011 Control SL5_Control.2011 q-0mM-2011-SL5.2 8 P23M50M335.3 9.7 4.9 1.0 22.2 17.1 38.5 0.7 YS 0.06

2011 Control q-0mM-2011-SL5.3 10 chsssr13 55.2 3.7 53.7 57.2 12.6 YS 0.05

2011 Control q-0mM-2011-SL5.1 3 BrTOC1P1b 117.2 2.6 113.8 119.2 8.8 PC 0.04

23 2011 Control SL7_Control.2011 q-0mM-2011-SL7.1 3 BrTOC1P1b 117.2 3.1 90.6 125.1 10.5 32.7 0.8 PC 0.08

2011 Control q-0mM-2011-SL7.2 8 P23M50M335.3 9.7 3.1 1.0 35.6 9.5 YS 0.07

2011 Control q-0mM-2011-SL7.3 10 chsssr13 55.2 4.0 53.7 57.2 12.7 YS 0.09

24 2011 Control SL9_Control.2011 q-0mM-2011-SL9.2 3 P23M50M273.1 112.5 3.4 101.7 132.1 15 24.8 0.8 PC 0.13

2011 Control q-0mM-2011-SL9.1 1 P13M48M221.5 86.0 2.3 80.6 98.3 9.8 YS 0.11

25 2011 Salt SL3_50mM.2011 q-50mM-2011-SL3.2 1 BrATVGT1P1a 128.6 5.8 126.8 136.1 14.4 36.9 0.7 PC 0.02

2011 Salt q-50mM-2011-SL3.3 4 Myb2HaeIIIM317.3 51.6 3.2 51.6 58.6 7.3 PC 0.02

2011 Salt q-50mM-2011-SL3.4 9 BrELF3P1c 112.9 3.0 110.2 117.4 8.9 PC 0.02

2011 Salt q-50mM-2011-SL3.1 1 P13M48M384.8 92.2 2.4 82.6 98.3 6.3 PC 0.02
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ments
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Allelic 
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Supplementary Table S3: Summary of significant QTLs identified for root length (RL), shoot length 
(SL), root weight and shoot weight in the B. rapa DH population from a cross of yellow sarson 
(YS143) and pak choi (PC175). 
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26 2011 Salt SL5_50mM.2011 q-50mM-2011-SL5.3 5 BrSPL5P3a 67.4 4.6 65.5 70.4 16 33.7 0.6 YS 0.03

2011 Salt q-50mM-2011-SL5.1 2 Br323 19.8 2.5 17.2 21.8 8.3 YS 0.02

2011 Salt q-50mM-2011-SL5.2 5 BRMS-034 22.4 2.6 15.7 38.2 9.4 YS 0.02

27 2011 Salt SL7_50mM.2011 q-50mM-2011-SL7.1 2 BRH04D11flc2 17.4 3.1 11.5 21.8 10 66.1 0.8 YS 0.04

2011 Salt q-50mM-2011-SL7.2 2 BrPIP2a 38.9 3.4 34.1 42.6 11.1 YS 0.04

2011 Salt q-50mM-2011-SL7.4 5 BRMS-034 22.4 3.9 15.7 37.2 14.2 YS 0.04

2011 Salt q-50mM-2011-SL7.5 5 BrSPL5P3a 67.4 3.8 56.1 72.4 13.8 YS 0.05

2011 Salt q-50mM-2011-SL7.6 10 P21M47M444.3 18.9 3.3 17.7 39.6 10.7 YS 0.04

2011 Salt q-50mM-2011-SL7.3 3 Bac130 114.7 2.6 112.5 116.8 6.3 PC 0.03

28 2011 Salt SL9_50mM.2011 q-50mM-2011-SL9.5 5 BrSPL5P3a 67.4 3.6 65.5 71.4 12.7 56.8 0.8 YS 0.05

2011 Salt q-50mM-2011-SL9.6 10 P21M47M444.3 18.9 3.0 17.7 39.6 10.5 YS 0.05

2011 Salt q-50mM-2011-SL9.1 2 BRH04D11flc2 17.4 2.9 12.5 21.8 10.1 YS 0.04

2011 Salt q-50mM-2011-SL9.2 2 BrPIP2a 38.9 2.2 36.1 42.6 7.7 YS 0.04

2011 Salt q-50mM-2011-SL9.3 3 BRMS-050-1 113.8 2.4 103.4 116.8 8.3 PC 0.05

2011 Salt q-50mM-2011-SL9.4 5 BRMS-034 22.4 2.0 12.1 40.2 7.5 YS 0.04

29 2011 Control SFw_Control.2011 q-0mM-2011-SF.1 5 BRMS-034 22.4 3.5 16.7 24.4 11.9 20.6 - YS 34.52

2011 Control q-0mM-2011-SF.2 9 BrT1N6_2P1c 0.0 2.6 0.0 31.4 8.7 YS 28.43

30 2011 Salt SFw_50mM.2011 q-50mM-2011-SF.1 5 BRMS-034 22.4 3.4 16.7 24.4 12.5 12.5 - YS 31.20

31 2011 Control SDw_Control.2011 q-0mM-2011-SD.1 3 BrBCAT4-1 107.6 3.5 99.2 116.8 10.9 36.6 - YS 3.98

2011 Control q-0mM-2011-SD.3 9 BrST5b-7 70.1 3.7 66.0 70.6 11.5 YS 4.04

2011 Control q-0mM-2011-SD.4 10 E32M19M392.9 62.6 2.4 57.2 68.5 7.2 PC 3.48

2011 Control q-0mM-2011-SD.2 5 BRMS-034 22.4 2.3 15.7 23.4 7 YS 3.29

32 2011 Salt SDw_50mM.2011 q-50mM-2011-SD.3 3 Myb2RSAIM69.3 104.4 4.0 97.9 116.8 7.1 51.3 - YS 2.44

2011 Salt q-50mM-2011-SD.4 5 BRMS-034 22.4 6.9 17.7 36.2 13.4 YS 3.46

2011 Salt q-50mM-2011-SD.5 9 BrST5b-7 70.1 7.2 63.2 70.6 14.1 YS 3.74

2011 Salt q-50mM-2011-SD.6 10 P23M48M244.6 67.5 4.3 58.8 69.5 7.8 PC 2.71

2011 Salt q-50mM-2011-SD.1 1 BrBCAT3-2 51.3 2.4 47.6 53.3 4 PC 2.28

2011 Salt q-50mM-2011-SD.2 2 BrFLMP1b 114.8 2.8 113.2 118.4 4.9 PC 2.14

33 2011 Control RL3_Control.2011 q-0mM-2011-RL3.2 5 P23M50M241.1 61.3 4.9 58.1 71.4 17.7 49.8 0.7 PC 0.08

2011 Control q-0mM-2011-RL3.4 9 BrST5b-9 65.0 4.1 61.7 73.8 14.4 PC 0.07

2011 Control q-0mM-2011-RL3.3 9 BrFRY1P1b 51.4 2.6 51.1 55.9 9.4 PC 0.06

2011 Control q-0mM-2011-RL3.1 3 P23M50M273.1 112.5 2.5 104.1 139.9 8.3 YS 0.06

34 2011 Control RL5_Control.2011 q-0mM-2011-RL5.2 5 P23M50M241.1 61.3 3.2 60.1 62.3 12.2 42.4 0.8 PC 0.18

2011 Control q-0mM-2011-RL5.3 8 P13M48M456.4 2.2 3.8 0.0 11.5 11.5 YS 0.18

2011 Control q-0mM-2011-RL5.4 9 BrST5b-9 65.0 3.5 64.2 68.5 10.7 PC 0.17

2011 Control q-0mM-2011-RL5.1 2 BrFLMP2d 18.1 2.7 9.5 18.6 8 PC 0.15

35 2011 Control RL7_Control.2011 q-0mM-2011-RL7.1 2 P13M48M137.1 15.9 5.3 10.5 21.8 18.5 43.5 0.8 PC 0.39

2011 Control q-0mM-2011-RL7.2 2 BrTSFP2c 62.8 4.3 60.6 68.3 15.4 PC 0.38

2011 Control q-0mM-2011-RL7.3 5 P23M50M241.1 61.3 2.9 59.1 62.3 9.6 PC 0.28

36 2011 Control RL9_Control.2011 q-0mM-2011-RL9.1 2 P13M48M137.1 15.9 5.6 11.5 19.8 23.4 44.8 0.8 PC 0.64

2011 Control q-0mM-2011-RL9.2 2 BrTSFP2c 62.8 2.2 60.6 68.3 10.1 PC 0.43

2011 Control q-0mM-2011-RL9.3 2 BrFLMP1b 114.8 2.5 113.2 120.4 11.3 PC 0.47

37 2011 Salt RL3_50mM.2011 q-50mM-2011-RL3.1 2 BrFLC2-2 18.6 3.7 11.5 20.8 7.4 55.3 0.7 PC 0.02

2011 Salt q-50mM-2011-RL3.3 5 BRMS-034 22.4 6.4 15.7 25.4 13.4 YS 0.04

2011 Salt q-50mM-2011-RL3.4 9 BrVIP4P1b 44.1 3.1 41.8 47.1 15.4 PC 0.03

2011 Salt q-50mM-2011-RL3.5 9 BrELF3P1c 112.9 3.1 91.9 115.2 14.2 PC 0.03

2011 Salt q-50mM-2011-RL3.2 4 P23M50M127.6 42.4 2.5 28.8 42.4 4.9 PC 0.02

38 2011 Salt RL5_50mM.2011 q-50mM-2011-RL5.1 2 BRH04D11flc2 17.4 3.5 11.5 21.8 9.1 69.9 0.7 PC 0.05

2011 Salt q-50mM-2011-RL5.3 2 E32M19M308.5 58.6 3.1 58.2 67.3 8.3 PC 0.05

2011 Salt q-50mM-2011-RL5.4 5 BRMS-034 22.4 4.6 14.7 24.4 12.4 YS 0.06

2011 Salt q-50mM-2011-RL5.6 9 BrVIP4P1b 44.1 3.3 41.8 46.1 13.9 PC 0.06

2011 Salt q-50mM-2011-RL5.2 2 E34M15M142.8 40.6 2.3 31.2 41.6 6.1 PC 0.04

2011 Salt q-50mM-2011-RL5.5 9 BrT1N6_2P1c 0.0 2.3 0.0 9.0 10 YS 0.05

2011 Salt q-50mM-2011-RL5.7 9 E32M19M95.0 72.7 2.3 61.7 75.3 10.1 PC 0.05

39 2011 Salt RL7_50mM.2011 q-50mM-2011-RL7.3 9 BrT1N6_2P1c 0.0 3.5 0.0 8.0 13.8 28.6 0.8 YS 0.10

2011 Salt q-50mM-2011-RL7.1 2 E32M19M308.5 58.6 2.8 58.2 65.8 8.6 PC 0.08

2011 Salt q-50mM-2011-RL7.2 5 BRMS-034 22.4 2.1 13.7 24.4 6.2 YS 0.07

40 2011 Salt RL9_50mM.2011 q-50mM-2011-RL9.1 2 E32M19M308.5 58.6 2.2 58.2 64.8 7 16.4 0.8 PC 0.13

2011 Salt q-50mM-2011-RL9.2 9 BrT1N6_2P1c 0.0 2.9 0.0 17.0 9.4 YS 0.15

41 2011 Control RFw_Control.2011 q-0mM-2011-RF.1 2 Br323 19.8 5.3 10.5 21.8 21.9 37.9 - PC 16.70

2011 Control q-0mM-2011-RF.2 2 E34M15M142.8 40.6 3.7 35.1 42.6 16 PC 13.74

42 2011 Control RDw_Control.2011 q-0mM-2011-RD.1 3 P23M50M284.3 138.9 2.8 98.2 142.9 9.7 16.9 - YS 0.10

2011 Control q-0mM-2011-RD.2 5 BRMS-034 22.4 2.1 13.1 25.4 7.2 YS 0.08

43 2011 Salt RFw_50mM.2011 q-50mM-2011-RF.1 1 P14M51M213.3 34.9 4.0 32.2 36.9 13.9 13.9 - YS 14.15

44 2011 Salt RDw_50mM.2011 q-50mM-2011-RD.1 3 E32M47M382.4 126.5 3.8 99.2 133.1 16.6 40.9 - PC 2.38

2011 Salt q-50mM-2011-RD.2 8 P23M50M335.3 9.7 5.3 1.0 11.5 24.3 PC 0.26

Note: 1 - Total explained variance of significant QTL (LOD >3) and candidate QTL (LOD >2), LL - lower limit and UL - upper limit. PC-pak choi and YS - Yellow sarson

Supplementary Table S3 (Continue): Summary of significant QTLs identified for root length (RL), 
shoot length (SL), root weight and shoot weight in the B. rapa DH population from a cross of 
yellow sarson (YS143) and pak choi (PC175). 

 
 



Genetic analysis of seed germination and seedling vigour 

 103 

LL UL

1 STI.RL3_C50.2010 q-STI0.50-2010-RL3.2 9 BrCRY1P1c 75.6 4.2 66.8 82.8 13.6 22.4 0.62 PC 0.08

q-STI0.50-2010-RL3.1 8 Myb2AluIM190.6 68.7 2.4 60.6 89.3 8.8 PC 0.07

2 STI.RL5_C50.2010 q-STI0.50-2010-RL5.1 2 BrTSFP2c 62.8 4.0 60.6 70.3 11.9 48.5 0.66 PC 0.07

q-STI0.50-2010-RL5.2 4 E32M19M204.4 16.9 4.5 4.0 25.3 13.6 YS 0.07

q-STI0.50-2010-RL5.3 8 P23M50M86.4 0.0 3.3 0.0 20.4 9.9 YS 0.07

q-STI0.50-2010-RL5.4 9 E32M19M95.0 72.7 4.3 66.8 76.7 13.1 PC 0.07

3 STI.RL7_C50.2010 q-STI0.50-2010-RL7.4 8 Myb2HaeIIIM213.1 20.4 4.3 0.0 20.4 15.5 40.8 0.66 YS 0.09

q-STI0.50-2010-RL7.1 2 P23M50M179.6 17.2 2.4 8.5 23.8 8 PC 0.06

q-STI0.50-2010-RL7.2 2 BrTSFP2c 62.8 2.6 56.8 68.3 9 PC 0.07

q-STI0.50-2010-RL7.3 4 E32M19M435.5 27.8 2.6 9.0 37.9 8.3 YS 0.06

4 STI.RL9_C50.2010 q-STI0.50-2010-RL9.1 8 Myb2HaeIIIM213.1 20.4 4.2 0.0 20.4 14.2 14.2 0.58 YS 0.10

5 RelST.RL3_C50.2010 q-ratio.0/50-2010-RL3.1 5 E32M19M221.8 28.0 4.7 15.7 35.0 14.2 22 0.49 YS 0.07

q-ratio.0/50-2010-RL3.2 8 BrCRY2P2c 84.0 2.7 78.2 89.3 7.8 YS 0.06

6 RelST.RL5_C50.2010 q-ratio.0/50-2010-RL5.2 7 Myb2RSAIM230.6 41.0 5.5 36.9 43.9 16 46.9 0.62 YS 0.11

q-ratio.0/50-2010-RL5.3 8 BrCRY2P3a 85.8 5.3 60.9 89.3 15.4 YS 0.09

q-ratio.0/50-2010-RL5.4 10 P13M48M342.9 32.9 3.3 30.8 36.9 9 PC 0.07

q-ratio.0/50-2010-RL5.1 5 BrSPA1P2a 13.7 2.4 0.0 19.7 6.5 YS 0.06

7 RelST.RL7_C50.2010 q-ratio.0/50-2010-RL7.3 7 Myb2RSAIM230.6 41.0 7.1 36.9 43.9 19.9 39.1 0.61 YS 0.13

q-ratio.0/50-2010-RL7.4 8 BrCRY2P3a 85.8 3.4 83.8 89.3 8.6 YS 0.07

q-ratio.0/50-2010-RL7.1 2 BrFYP1a 23.8 2.1 19.6 26.8 5.5 YS 0.06

q-ratio.0/50-2010-RL7.2 6 Na12H07 60.2 2.1 59.1 72.0 5.1 YS 0.06

8 RelST.RL9_C50.2010 q-ratio.0/50-2010-RL9.1 2 Br323 19.8 3.5 15.1 25.8 8.9 57.2 0.57 YS 0.08

q-ratio.0/50-2010-RL9.2 7 Myb2RSAIM230.6 41.0 7.9 36.9 43.9 22.2 YS 0.14

q-ratio.0/50-2010-RL9.3 8 BrCRY2P2c 84.0 4.3 79.2 86.8 11.1 YS 0.09

q-ratio.0/50-2010-RL9.4 9 Ol10D08 39.0 3.1 27.6 43.8 7.8 YS 0.07

q-ratio.0/50-2010-RL9.5 10 P13M48M342.9 32.9 2.9 30.8 41.0 7.2 PC 0.07

9 STI_SL3.C50.2010 q-STI0-50-2010-SL3.1 3 E37M47M134.5 52.9 3.2 36.4 63.2 9.1 42.7 0.71 PC 0.09

q-STI0-50-2010-SL3.3 7 Myb2RSAIM230.6 41.0 3.2 37.9 42.9 8.9 YS 0.10

q-STI0-50-2010-SL3.4 9 BrFPAP1c 99.5 3.6 90.1 99.5 10.3 PC 0.10

q-STI0-50-2010-SL3.2 6 BrRGAP1a 85.1 2.5 82.0 95.9 7 PC 0.08

q-STI0-50-2010-SL3.5 10 P23M48M244.6 67.5 2.6 54.7 77.8 7.4 YS 0.08

10 STI_SL5.C50.2010 q-STI0-50-2010-SL5.2 8 BrESD4P2b 27.9 4.0 1.0 33.3 12.5 18.5 0.68 YS 0.07

q-STI0-50-2010-SL5.1 3 BrNS1P2c 121.2 2.1 116.2 125.1 6 PC 0.05

11 RelST_SL3.C50.2010 q-ratio.0/50-2010-SL3.2 5 Myb2HaeIIIM263.7 55.2 3.0 50.3 65.5 11.4 19.6 0.49 YS 0.06

q-ratio.0/50-2010-SL3.1 4 P21M47M178.1 34.6 2.4 31.8 47.8 8.2 PC 0.05

12 RelST_SL5.C50.2010 q-ratio.0/50-2010-SL5.1 3 BRMS-050-1 113.8 4.8 113.8 115.7 13.4 30.5 0.48 PC 0.06

q-ratio.0/50-2010-SL5.2 5 Myb2HaeIIIM263.7 55.2 3.9 1.0 63.4 9.9 YS 0.05

q-ratio.0/50-2010-SL5.3 9 P14M51M147.2 75.3 2.9 61.7 75.6 7.2 YS 0.04

13 STI.SL3_C50.2011 q-STI0-50-2011-SL3.1 3 P21M47M198.6 48.0 2.3 35.4 60.9 7 15.4 0.75 PC 0.08

q-STI0-50-2011-SL3.2 6 BrFPF1P2a 72.2 2.8 67.3 74.2 8.4 PC 0.09

14 STI.SL5_C50.2011 q-STI0-50-2011-SL5.3 8 P23M50M335.3 9.7 4.5 1.0 23.7 15 46.2 0.72 YS 0.10

q-STI0-50-2011-SL5.4 10 chsssr13 55.2 4.0 46.8 58.2 13.1 YS 0.10

q-STI0-50-2011-SL5.1 3 BRMS-050-1 113.8 2.8 113.8 115.7 8.9 PC 0.09

q-STI0-50-2011-SL5.2 5 P14M51M182.0 36.2 2.7 17.7 38.2 9.2 PC 0.08

15 STI_SL7.C50.2011 q-STI0-50-2011-SL7.1 3 P23M50M273.1 112.5 3.1 97.9 116.8 10 48 0.73 PC 0.07

q-STI0-50-2011-SL7.5 10 P21M47M444.3 18.9 3.6 17.7 58.2 11.6 YS 0.09

q-STI0-50-2011-SL7.3 8 P13M48M174.4 30.2 3.1 13.2 38.6 10.1 YS 0.07

q-STI0-50-2011-SL7.2 5 BRMS-034 22.4 2.9 17.7 24.4 9.3 YS 0.07

q-STI0-50-2011-SL7.4 8 Myb2AluIM263.6 74.2 2.1 66.5 78.2 7 YS 0.07

16 STI_SL9.C50.2011 q-STI0-50-2011-SL9.1 8 P13M48M174.4 30.2 2.2 22.2 39.6 9.7 9.7 0.8 YS 0.07

17 RelST_SL3.C50.2011 q-ratio.0/50-2011-SL3.1 9 BrGIP1d 81.5 2.1 80.3 97.7 8.1 8.1 0.33 PC 0.05

18 RelST_SL7.C50.2011 q-ratio.0/50-2011-SL7.3 5 Myb2RSAIM-714.5 90.1 3.7 59.1 95.1 14.1 32.7 0.68 YS 0.06

q-ratio.0/50-2011-SL7.1 1 P23M48M219.2 66.1 2.9 59.4 67.1 10.6 PC 0.06

q-ratio.0/50-2011-SL7.2 3 Myb2MSE1M321.8 7.6 2.2 0.0 33.4 8 PC 0.04

19 RelST_SL9.C50.2011 q-ratio.0/50-2011-SL9.1 1 BrBCAT3-2 51.3 6.2 48.6 67.1 17.7 93.2 0.67 PC 0.08

q-ratio.0/50-2011-SL9.2 1 E32M47M179.8 71.5 4.5 70.8 84.6 13.4 PC 0.06

q-ratio.0/50-2011-SL9.4 5 Myb2RSAIM-714.5 90.1 6.1 90.1 98.1 12.2 YS 0.05

q-ratio.0/50-2011-SL9.5 6 E34M15M60.5 81.0 5.9 74.2 95.9 12.9 PC 0.05

q-ratio.0/50-2011-SL9.6 9 BrCRY1P1c 75.6 3.9 61.7 75.6 11.7 YS 0.05

q-ratio.0/50-2011-SL9.8 10 BrVIN3P1a 45.8 6.9 44.7 60.7 14.2 YS 0.06

q-ratio.0/50-2011-SL9.7 9 BrGIP1d 81.5 2.9 80.3 82.8 7.2 YS 0.04

q-ratio.0/50-2011-SL9.3 4 Myb2HaeIIIM317.3 51.6 2.2 49.6 56.6 3.9 YS 0.03

20 STI_RL3.C50.2011 q-STI0-50-2011-RL3.2 5 BR378 140.0 4.6 133.1 151.0 15.7 28.9 0.74 YS 0.14

q-STI0-50-2011-RL3.1 4 P21M47M178.1 34.6 2.5 28.8 42.2 7 PC 0.08

q-STI0-50-2011-RL3.3 9 BrGIP1d 81.5 2.2 80.3 99.5 6.2 PC 0.07

Total 
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Supplementary Table S4: Summary of significant QTLs identified for salt tolerance parameters in 
the B. rapa DH population from a cross of yellow sarson (YS143) and pak choi (PC175).  
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21 STI_RL5.C50.2011 q-STI0-50-2011-RL5.1 2 BrFLMP2d 18.1 3.3 10.5 20.8 11.3 19 0.74 PC 0.10

q-STI0-50-2011-RL5.2 2 BrTSFP2c 62.8 2.2 58.6 69.3 7.7 PC 0.08

22 STI_RL7.C50.2011 q-STI0-50-2011-RL7.1 2 BRH04D11flc2 17.4 4.5 11.5 21.8 17.2 25.4 0.76 PC 0.12

q-STI0-50-2011-RL7.2 2 BrTSFP2c 62.8 2.0 58.2 68.3 8.2 PC 0.09

23 STI_RL9.C50.2011 q-STI0-50-2011-RL9.1 2 BRH04D11flc2 17.4 3.2 10.5 21.8 12.5 25.7 0.77 PC 0.11

q-STI0-50-2011-RL9.2 2 BrTSFP2c 62.8 3.4 58.2 68.3 13.2 PC 0.11

24 RelST_RL3.C50.2011 q-ratio.0/50-2011-RL3.3 5 P23M50M241.1 61.3 5.5 57.1 66.5 17.5 36.8 0.39 YS 0.06

q-ratio.0/50-2011-RL3.1 3 Myb2AluIM377.3 6.5 2.3 0.0 13.7 9.6 PC 0.04

q-ratio.0/50-2011-RL3.2 3 P14M51M135.1 105.8 2.4 97.9 115.7 9.7 PC 0.04

25 RelST_RL5.C50.2011 q-ratio.0/50-2011-RL5.2 3 BRMS-008 0.6 3.1 0.0 11.7 11 28.6 0.34 PC 0.04

q-ratio.0/50-2011-RL5.1 2 E34M15M461.1 109.4 2.3 98.3 111.2 8.1 YS 0.04

q-ratio.0/50-2011-RL5.3 5 P23M50M241.1 61.3 2.7 58.1 69.4 9.5 YS 0.04

26 RelST_RL7.C50.2011 q-ratio.0/50-2011-RL7.1 3 BRMS-008 0.6 3.8 0.0 13.7 13.5 13.5 0.39 PC 0.06

27 RelST_RL9.C50.2011 q-ratio.0/50-2011-RL9.1 1 P14M51M243.3 53.5 6.4 48.6 60.5 14.7 40.7 0.54 PC 0.10

q-ratio.0/50-2011-RL9.2 3 BRMS-008 0.6 5.1 0.0 13.7 14.7 PC 0.07

q-ratio.0/50-2011-RL9.3 6 BrBCAT3-1 57.3 3.5 54.8 67.3 11.3 YS 0.06

28 RelST_SL5.C50.2011 - - - - - - - - - 0.49 - -

Note: 1  Total variance explained by significant (LOD >3) and candidate QTLs (LOD >2), LL - lower limit & UL - upper limit; PC-pak choi, YS-yellow sarson

 
Supplementary Table S4 (continued): Summary of significant QTLs identified for salt tolerance 
parameters in the B. rapa DH population from a cross of yellow sarson (YS143) and pak choi 
(PC175). 
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Abstract 

Fatty acids in seed affect seed germination and seedling vigour and fatty acid composition 

determines the quality of seed oil. In this study, quantitative trait locus (QTL) mapping of fatty acids 

and for transcript abundance was integrated with gene network analysis to unravel the genetic 

regulation of seed fatty acid composition in a Brassica rapa doubled haploid population from a 

cross between a yellow sarson oil-type and a black seeded pak choi. The distribution of major QTLs 

for fatty acids showed a relationship with the fatty acid types: linkage group A03 for mono-

unsaturated fatty acids (MUFAs), A04 for saturated fatty acids (SFAs) and A05 for poly-unsaturated 

fatty acids (PUFAs). Using a genetical genomics approach, expression QTL (eQTL) hotspots were 

found at major fatty acid QTLs on linkage groups A03, A04, A05 and A09. An eQTL-guided gene co-

expression network of lipid metabolism related genes showed major hubs at the genes BrPLA2-

ALPHA, BrWD-40, a number of seed storage protein genes and a transcription factor BrMD-2, 

suggesting essential roles for these genes in lipid metabolism. Three sub-networks were extracted 

for the economically important and most abundant fatty acids erucic-, oleic-, and linoleic- and 

linolenic- acids. Network analysis, combined with comparison of genome positions of cis- or trans- 

eQTLs with fatty acid QTLs, allowed identification of candidate genes for genetic regulation of these 

fatty acids. The generated insights in the genetic architecture of fatty acid composition and 

underlying complex gene regulatory networks in B. rapa seeds are discussed. 

 

Key words: Systems genetics, eQTL mapping, fatty acids, confounding factor, network analysis, 

major hub gene
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Introduction 

The species Brassica rapa displays enormous morphological variation as illustrated by the diversity 

of crops, including leafy vegetables, turnips and oil types (Zhao et al., 2005). B. rapa ssp. oliferous 

(oil-type rape) consists of the annual oil crops yellow sarson and brown sarson with high seed oil 

content (> 42%) (Kumar et al., 2011; Lühs et al. 1999). In the past, both sarsons were preferred as 

oil crops over B. napus in Asia, Canada and other parts of the world as they mature earlier and 

have a higher level of shattering resistance and spring frost tolerance (Kadkol et al., 1986; Karim et 

al., 2014). However, B. rapa rape seed was gradually replaced by B. napus, mainly because of the 

latter’s higher oilseed yield and the availability of double-low genotypes, which are low in 

glucosinolate content as well as erucic acid content (Rahman et al., 2001; Karim et al., 2014). Still, 

B. rapa has been used to widen the genetic variation for improvement of B. napus (Qian et al., 

2006; Karim et al., 2014).  

Lipids are a group of naturally occurring molecules that include fats, glycerolipids, fatty acids, 

glycerophospholipids, sphingolipids, waxes and others. De novo synthesized fatty acids are 

modified by desaturation and elongation reactions and form triacylglycerols, which are the major 

storage form of seed oil in plants (Guschina and Harwood, 2007). For both nutritional and 

industrial purposes, the composition of fatty acids (FAs) determines the economic value of seed oil 

(Yan et al., 2011; Sanyal and Randal Linder, 2012). For food or feed, oil that is high in the level of 

human health beneficial oleic acid (C18:1) is preferred. This in turn can be easily desaturated to 

linoleic- and linolenic- acids or elongated to erucic acid. Oil with high erucic acid (C22:1) has a 

health risk, but can be used for industrial purposes, while high linolenic acid (C18:3) negatively 

affects oil storability (Yan et al., 2011). To breed for optimal fatty acid (FA) composition and high 

oil yield, understanding the genetic regulation of FA composition and the FA regulatory network is 

crucial.  

QTL analysis and gene functional studies have been performed to unravel the genetics of FA 

composition in Arabidopsis thaliana (Sanyal and Randal Linder, 2012) soybean (Wang et al., 

2014b), Jatropha (Liu et al., 2011) and B. napus ( Peng et al., 2010; Yan et al., 2011). In A. thaliana, 

almost all genes and transcription factors involved in lipid metabolism and storage oils have been 

identified (Beisson et al., 2003; Le et al., 2010; Peng and Weselake, 2011). The B. rapa genome (A 

genome), like the B. oleracea genome (C genome) is syntenic to A. thaliana, but underwent a 

genome triplication (Wang et al., 2011a; Liu et al., 2014). B. napus is an amphidiploid resulting 

from natural hybridization between B. rapa (A genome) and B. oleracea (C genome). These 

genome triplications, resulting in many genes with paralogues, add another level of complexity to 

the genetic regulation of fatty acid composition in Brassicas. Across a number of studies, a large 

number of QTLs for fatty acids and oil content have been reported, suggesting a complex genetic 

architecture (Sanyal and Randal Linder, 2012; Yan et al., 2011). Genetic studies have identified the 

fatty acid desaturase genes BnaFAD2 and BnaFAD3 as the major genes for regulation of C18:1 

(oleic acid) and C18:3 (linolenic acid) content in B. napus (Peng et al., 2010; Yang et al., 2012b; Lee 

et al., 2013). BnaFAE1 is a candidate gene for erucic acid and total oil content in B. napus seed 

(Peng et al., 2010), while BrFAD3 is a candidate gene for the synthesis of linolenic acid in seed 
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triacylglycerols in B. rapa ssp. oleifera (Tanhuanpää and Schulman, 2002). The present study is the 

first genome-wide genetic study for FA composition and transcriptional regulation of developing 

seeds of B. rapa.  

Many genes involved in different metabolic processes are regulated in a coordinated fashion 

during seed development in Arabidopsis (Ruuska et al., 2002), B. napus (Yu et al., 2010) and B. 

rapa (Basnet et al., 2013). The combined study of phenotypic QTLs and expression QTLs (eQTLs) 

provides a basis to investigate the molecular mechanism and to understand the regulatory 

networks of genes involved in pathways of specific phenotypic traits in different organisms 

(Civelek and Lusis, 2014). Genome-wide mapping of gene transcripts in a segregating population 

was first proposed by Jansen and Nap (2001) and was named genetical genomics. Using genetical 

genomics, candidate genes were identified in B. rapa for flowering time and leaf development 

(Xiao et al., 2013; Xiao et al., 2014), phytonutrient content (Pino Del Carpio et al., 2014) and 

phosphorus use efficiency (Hammond et al., 2011).  

The aim of the present study is to identify QTLs for FA content and composition in B. rapa seeds 

using a doubled haploid (DH) population from a cross between an oil-type yellow sarson and a 

vegetable pak choi. In order to understand the lipid gene regulatory network in B. rapa, we 

followed a genetical genomics approach combining QTLs for fatty acids in mature seeds with eQTLs 

for genes related to the lipid metabolism in developing seeds: FA biosynthesis and elongation, 

triacylglycerol biosynthesis, glycerol synthesis and lipid degradation. Based on gene expression 

variation, a gene co-expression network was constructed for genes involved in lipid metabolism and 

relative content of FAs. Because of the economic importance of erucic acid, oleic acid, linoleic acid 

and linolenic acid, individual sub-networks of those FAs were also derived. Finally, eQTL results 

were integrated with known FA pathways to unravel the regulation of genes involved in the 

composition of fatty acids in B. rapa seeds. This resulted in the identification of a number of QTL 

hotspots and key regulatory genes that are of importance for breeding purposes. 

 

Materials and Methods 

Plant materials and growth conditions  

A B. rapa DH population of 163 DH lines developed from a cross of a yellow sarson (YS143; 

accession number: FIL500) as a female parent and a pak choi (PC175 cultivar: Nai Bai Cai; accession 

number: VO2B0226) as a male parent was used in this study (Basnet et al., 2013; Xiao et al., 2013). 

YS143 is a self-compatible annual oil crop with yellow seed colour, while PC175 is a self-

incompatible leafy vegetable with brown/black seed colour. These two parents differ in seed size, 

seed colour, oil and fatty acid content and in many morphological and developmental traits (Zhao 

et al., 2005; Pino Del Carpio et al., 2011b; Basnet et al., 2013). 

The experiments were carried out in two years, 2009 and 2011, using two different experimental 

designs, without and with synchronization of time of flowering of the DH lines, respectively. In 

both years, seeds of DH lines and parents were sown in pressed soil cubes of a standard soil 

mixture of 85% peat and 15% clay (Lentse Potgrond no. 4; Lentse Potgrond Lent, The Netherlands) 

for germination in a greenhouse at the Unifarm facility of Wageningen University. Two plants per 
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DH plus parents were transplanted to plastic pots (diameter 17 cm) filled with the same standard 

soil mixture in the greenhouse and later only one plant was kept for harvesting developing seeds. 

In 2009, seeds were sown on 27th March and DH lines flowered over a period from 1st week of May 

to 2nd week of June. In 2011, the population was evaluated again, but this time, the lines were 

sown staggered at different dates from the second week of January to the last week of February to 

synchronize the flowering of the lines. The aim of synchronizing flowering time is to avoid different 

environmental conditions during seed development. All lines flowered during the first two weeks 

of April. The ripe seeds were harvested per plant, dried and stored in a certified manner (ISO 

certified method 9001:2008) at 130C temperature and 30% relative humidity, and later used for 

fatty acid measurements. Transcript abundance measurements were done in the developing seeds 

of the DH lines from 2011. 

 

Fatty acid measurements 

About 0.2-2.0 g of seeds were used to determine oil content using near-infrared reflectance 

spectroscopy (Foss NIRS system; Tillmann, 1997), calibrated with oil seed extracted with hexane 

following the standard protocol described by Raney et al. (1987). The oil content was calculated as 

a mass percentage of whole seed dry matter (zero moisture). Seed oil was analyzed for FA 

composition using gas chromatography (GC) following the preparation of fatty acid methyl esters 

by base-catalysed methanolysis (Thies, 1971). The individual FAs were reported as mass 

percentages of total fatty acids.  

These relative contents of 18 fatty acids were studied in mature-dry seeds from 2009 and 2011 

seed lots. In 2009, FAs were measured in 135 DH lines but, due to lack of availability of seeds, in 

2011 only of a subset of 92 DH lines and 2-3 biological replicates of each of the two parents were 

studied. The 18 FAs consisted of 7 saturated FAs (SFAs), 5 monounsaturated FA (MUFAs) and 6 

polyunsaturated FA (PUFAs) (Supplementary Table S1). Unidentified FAs were categorized as 

“Other FAs”. Lauric acid (C12:0) was excluded from data analysis because its concentration was 

below the detection limit in almost all DH lines including the parents. 

 

RNA isolation for gene expression studies 

In earlier studies we observed that at 28 days after pollination (DAP), a large subset of genes 

related to lipid metabolism was differentially expressed between the two parents as well as 

between two selected DH lines (Basnet et al., 2013). Therefore, siliques from a subset of 118 DH 

lines from the 2011 experiment, selected on the basis of genotypic contrast, were harvested at 28 

DAP and kept in liquid nitrogen (-196°C); seeds were taken from the siliques under dry ice and 

around 150-200 seeds were ground in liquid nitrogen (-196°C) using RNase-free mortar and pestle. 

Seeds and RNA samples were stored at -80°C. Since Brassica seeds have high concentrations of 

oils, organic acids and proteins, 5% (w/v) polyvinylpyrrolidone (PVP-40) (Sigma) was added to RLC 

lysis buffer (Qiagen) and kept overnight at 65°C to dissolve properly. After adding RLC lysis buffer 

in each tube, the powdered seed materials were incubated for 30 minutes at 65°C in a water bath. 

The total RNA was extracted with RNeasy Plant Mini Kit (Qiagen) following the manufacturer’s 
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instructions and purified using the RNA Clean-up protocol for RNeasy columns (RNeasy Mini Kit, 

Qiagen) with on-column digestion with DNase Kit (Qiagen) to remove residual genomic DNA. The 

quantity of RNA samples was measured by using a NanoDrop ND-100 UV-VIS spectrophotometer 

(NanoDrop, Technologies Inc., Wilmington, DE, USA) and quality was assessed by A260/A280 and 

A260/A230 ratio (NanoDrop, Technologies Inc.) and by 1% agarose gel. 

 

Distant pair design and microarray hybridization 

A distant pair design was used to find an optimal combination of pairs of DH lines with maximum 

genetic contrast for the microarray analysis (Fu and Jansen, 2006). Missing marker data was 

imputed based on the genetic positions of flanking markers using the “R/qtl” package (Broman et 

al., 2003). Using the marker information, the pairs of DH lines to hybridize on an array were 

designed using the R package “designGG” (Li et al., 2009). The cRNA samples were labelled with 

Cy3 (green) and Cy5 (red) dyes using the QuickAmp Labeling Kit (Agilent Technologies, Inc., Santa 

Clara, CA, USA) and hybridized on our 8x60 K custom-made B. rapa array in a two-colour Agilent 

platform as described in Basnet et al. (2013). Arrays were then washed and scanned on an Agilent 

scanner, according to the manufacturer’s instructions. Data files were generated using the Agilent 

Feature Extraction Software (version 10.10.1.1). In total, 59 arrays for 118 DH lines and 4 arrays for 

two parents and their biological replicates were used. The raw data was normalized without 

background correction, using loess for within-array normalization and quantile normalization 

between arrays using the “limma” package in R (Smyth, 2005; R Core Team, 2012). 

 

Gene expression measurements in RT-qPCR 

The transcript abundance of 21 genes including genes for FA synthesis and FA elongation, FA 

desaturation, lipid degradation, seed storage proteins and lipid degradation was measured using 

RT-qPCR to validate microarray transcript abundance using cDNA from 28 days developing seeds 

collected in 2011. Genes in each pathway were selected based on the literature, and primers for 

each gene and for the reference gene are listed in Supplementary table S2. The genes flowering 

locus C (BrFLC2) and transparent testa 8 (BrTT8) were also included because this population 

segregates for flowering time and seed colour which both have confounding effects on QTL 

mapping for fatty acids and transcript abundance. RT-qPCR was performed with paralogue-specific 

primers for the genes that have paralogues. The detailed procedure was as described in Xiao et al. 

(2013); we used the β-actin gene as reference gene to estimate the normalized gene expression 

(∆∆CT) of each gene and each sample.  

 

QTL mapping of FAs (faQTL) and transcript abundance (eQTL) 

In this study, an integrated genetic map was constructed (this thesis, Chapter 4) and used for QTL 

mapping of FAs and transcript abundance in developing seeds. This integrated map comprised 435 

molecular markers: AFLP, myb-targeted, microsatellite (SSR) and gene targeted markers from the 

flowering time, FA and glucosinolate pathways. QTL interval mapping was performed for 17 FAs 

from the two years’ seed lots with the R/qtl package (Broman et al., 2003), followed by multiple-
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QTL mapping (MQM) with marker co-factors. Initially, cofactors were selected from the peak 

markers of significant QTLs in IM mapping. After that, a backward elimination was performed to 

select the final set of cofactors. LOD thresholds for significance of QTLs were determined at the 95 

percentile of 10,000 permutations of each of the FAs. For QTL analysis, FA abundance was 

transformed using either a reciprocal or a log transformation, depending on the observed 

distribution of FA abundance values. In the 2009 seed lot, a log transformation was done for 

stearic acid while a reciprocal transformation was used for arachidic acid, behenic acid, lignoceric 

acid and palmitoleic acid. For the 2011 seed lot, a reciprocal transformation was done for palmitic 

acid, stearic acid, arachidic acid and behenic acid, and a log transformation for lignoceric acid. The 

same procedure as described above for mapping QTLs for fatty acids was followed to map eQTLs 

for transcript abundance of genes measured using RT-qPCR. 

eQTL analysis was performed using single marker regression analysis as proposed by Fu and 

Jansen (2006). This method relates the log-ratios of each probe (transcript abundance contrast of 

a pair of genotypes) to DNA markers on the linkage map. The following regression model was used 

to regress the log-ratios of each probe against each marker as: 

yij =  ik + βikxjk + eijk 

where, yij is the log-ratio of transcript abundance of pair j for gene i and xjk denotes the marker 

allele contrast for the pair j at marker k, with the following marker values: 1 for yellow sarson / 

pak choi, -1 for pak choi / yellow sarson and 0 for yellow sarson / yellow sarson and pak choi / pak 

choi. The regression coefficient βik represents the allele substitution effect at marker k for probe i. 

The intercept αik is also estimated in the regression approach, but should be close to zero unless 

there is a dye bias; eijk is the residual error. 

In total, 61,551 probes (representing 40,904 for B. rapa gene models, called “BraID”) for the two-

colour Agilent microarray platform were designed using gene models predicted based on the 

reference genome sequence of B. rapa cv. Chiifu (a vegetable type inbred line), published by Wang 

et al. (2011a). A slightly modified version of the array designed for a microarray study in Basnet et 

al. (2013) was used in this study. All probes were annotated into 35 functional categories or “BINS” 

as defined by MapMan software. However, only 1568 probes related to lipid metabolism, lipid 

signaling, lipid storage proteins and lipid transfer proteins were extracted and subjected to eQTL 

analysis in this study. Significant eQTLs were declared using a genome-wide threshold of α = 0.001 

(or -log10(0.001) = 3). The -log10(p-value) are here denoted as LOP values (to increase readability); 

the interpretation of the LOP score is different from a LOD score as used in the faQTL analysis 

since the LOD is obtained by likelihood estimation whereas the LOP is from least-squares 

estimation using per-marker regression. The estimated regression coefficients of markers (β) 

represent the estimated additive effects of hypothetical QTLs at the marker position; the sign of β 

gives the direction of the effect of a parental allele (a positive value indicating a higher mean for 

the yellow sarson allele, a negative value indicating a higher mean for the pak choi allele). 
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Correction for the effect of seed colour on eQTL mapping 

The two parents were contrasting in seed colour, YS143 being yellow-seeded and PC175 being 

black-seeded. Yellow-coloured seeds are associated with a high content of oil and protein and low 

fiber in the meal of Brassica oil seeds (Chen and Heneen, 1992; Rahman et al., 2001). Since a large 

number of eQTLs was mapped on A09 in the vicinity of a major QTL for seed colour, we were also 

interested in the eQTL results after correcting for a possibly confounding effect of seed colour in 

addition to the results without such a correction. The correction for seed colour was done by 

regressing transcript abundance (per probe) on image pixel size of colour intensity (a quantitative 

score of seed colour) from image analysis. A higher intensity indicates yellow seed coat colour, a 

lower intensity a black seed coat colour. The residuals of transcript abundance of each probe were 

then used for eQTL mapping, instead of the original values. 

 

Cis- and trans- eQTL 

In this study, an eQTL was defined as cis-acting if the eQTL was observed in the same linkage group 

of the physical position of the probe. An eQTL that was mapped to another linkage group was 

defined as a trans-eQTL. This broad definition is likely to result in an overestimation of the number 

of cis-eQTLs since also distant eQTLs on the same chromosome are now considered to be cis-

regulated. On the other hand, it could result in a possible underestimation of the total number of 

eQTLs and trans-eQTLs if more eQTLs were on the same chromosome.  

 

Significance of eQTL hotspots 

The significance of the presence of eQTL hotspots at each genetic marker was tested using the 

“hotspots” package in R software (Darrouzet-Nardi, 2012). First, the number of eQTLs (LOP > 3) 

was counted at each genetic marker. The “hotspots” package then uses this eQTL number as its 

input variable. This package calculates a hotspot cut-off for the eQTL number distribution across 

the genome based on deviance from the normal distribution of a variable, the number of eQTLs in 

this case. Statistical as well as computational details of this package are as described by Darrouzet-

Nardi (2012). 

 

Construction of co-expression networks of genes and fatty acids 

All the probes that were annotated as being involved in lipid metabolic processes in the MapMan 

annotation (Usadel et al., 2005; Basnet et al., 2013) were selected for eQTL mapping, and among 

those selected probes, only the probes with an eQTL (LOP > 3) were used to calculate Pearson 

correlation coefficients in R software (R Core Team, 2012) and for construction of a correlation 

network using Cytoscape (Shannon et al., 2003). For correlation based co-expression analysis, 

gene expression measured by RT-qPCR as well as relative abundance of 17 different FAs was 

included. FAs from the 2011 experiment were used for construction of this genes-FA co-expression 

network analysis because the RNA transcripts were also measured from the 2011 seed lot. For 

network visualization, correlation coefficients were considered to be significant at absolute value 

of 0.3 at p < 0.05. In the network, nodes represent probes or metabolites and edges represent 
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significant correlation coefficients. Since all the genes are from the lipid metabolism, most were 

significantly correlated to each other, which makes it difficult to visualize the network due to the 

large number of edges. To increase the visibility of the network, only absolute correlation 

coefficients > 0.5 were shown. A “NetworkAnalyzer” plug-in available in Cytoscape was used to 

calculate relevant network parameters, such as the degree of connection (Assenov et al., 2008). 

The degree of connection measures the number of incoming and outgoing edges of a node. A 

higher degree of connection indicates a node with a higher number of edges, which identifies a 

gene as a major hub of the network; these genes may represent major regulating genes of the 

pathway.  

 

Weighted gene co-expression network (WGCNA) to correlate gene expression to FA abundance     

A weighted correlation based network was used to complement the correlation co-expression 

network. Unlike the correlation co-expression network, in the WGCNA approach, not only the 

probes with an eQTL were used, but all the genes related to lipid metabolism. WGCNA constructs 

a network based on correlation coefficients between genes (expression values after correction) 

and further classified gene modules (groups of highly correlated genes). Finally, this method 

calculates the significance of association of gene modules and each FA. A detailed description of 

the WGCNA approach was given by Horvath and Dong (2008), and the analysis was performed in R 

software using the WGCNA package (Langfelder and Horvath, 2008). In this WGCNA approach, the 

network was constructed based on significant associations of genes with FAs. The number of times 

that a probe was related to different FAs was calculated and compared with the degree of 

connection as calculated from the correlation co-expression network.  

 

Results  

Variation of fatty acids in seed 

The most abundant fatty acids in the seed lots were three MUFAs: erucic acid (C22:1), oleic acid 

(C18:1) and eicosenoic acid (C20:1) and two PUFAs: linoleic acid (C18:2) and linolenic acid (C18:3). 

Together, these accounted for 71.6-74.2% (MUFA’s) and 16.9-19.2% (PUFA’s) of the total oil 

concentration (Figure 1; Supplementary Table S1). Erucic acid (C22:1) was the most predominant 

FA in both years’ seed lots and had a higher level in YS143 (55.8%) than in pak choi (47.0%). Oleic 

acid (C18:1) was the second most abundant FA, but was higher in pak choi (17.3%) than in yellow 

sarson (13.7%). Linoleic- and linolenic acids had comparable levels in both parents: 8.2-11.0% in 

pak choi and 6.8-10.8% in yellow sarson. The content of the FAs was very similar in the two 

different years. Total oil concentration was higher in yellow sarson (44.2%) than in pak choi 

(29.3%). For most of the FAs and total oil, a number of DH lines had higher or lower content than 

the two parents, indicating transgressive segregation in this population. 

 

Correlations between years and among fatty acids 

For most FAs there were high positive Pearson correlation coefficients (r = 0.5-0.9) between 2009 

and 2011 (Figure 2). A notable exception was mead acid (C20:3) with a much lower positive 
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correlation (r = 0.20) between years. However, its abundance was near the detection limit for both 

the years. A combined analysis from both seed lots shows high positive correlations among SFAs, 

PUFAs and MUFAs, with the exception of the two MUFAs nervonic acid (C24:1) and the 

predominant FA erucic acid (C22:1). Nervonic acid and erucic acid were both negatively correlated 

with SFAs and MUFAs and positive correlated with several PUFAs, but they were not significantly 

correlated with each other (Figure 2). 

 

 

 

 

 

 

 

 

 

 

Figure 1: Boxplots showing the distribution of fatty acids (A) and total oil content (B) of ripe seeds 
of the B. rapa DH population from the 2009 and 2011 seed lots. Fatty acids were measured in 
mass percentage of the total oil content and the total oil content in mass percentage on the basis 
of whole seed dry matter (zero moisture). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Heatmap of Pearson correlation coefficients of FAs and total oil content from the 2009 
and 2011 seed lots. The name of a FA, its molecular structure and the year were concatenated 
with a “_” symbol. “#” indicates saturated fatty acids (SFAs), * monounsaturated fatty acids 
(MUFAs) and ** and *** indicate polyunsaturated fatty acids (PUFAs) with 2 and 3 double bonds, 
respectively. 
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QTL mapping of fatty acids 

We performed QTL analyses for 17 different FAs from the 2009 and 2011 seed lots. We observed 

more QTLs for FAs (hereafter called faQTLs) from the 2009 seed lot when plants flowered without 

synchronization than from the 2011 seed lot, harvested from plants that flowered synchronously. 

In the 2009 seed lot, 56 faQTLs were detected and 24 of these faQTLs (43%) had at least 10% 

explained variance (mean: 11%; maximum: 36%). For the 2011 seed lot, only 32 faQTLs were 

detected, but for 2011 a much higher percentage, 24 faQTLs (75% of the faQTLs) had an explained 

variance of at least 10% (mean: 15.8%; maximum: 46%) (Supplementary Table S3 and S4).  

Major faQTLs (LOD scores > 10, explained variances > 15%) were observed on linkage groups A03, 

A04 and A05 (Figure 3). faQTLs were observed across all ten linkage groups; faQTLs for 11 FAs co-

located with a major flowering QTL at the genomic region (16.7 cM) of the BrFLC2 gene-targeted 

marker on A02 in the 2009 seed lot (Figure 3; Supplementary Table S3). For the 2009 and 2011 

seed lot, faQTLs were mainly mapped on A03, A04, A05 and A07 (Figure 3). In both seed lots, at 

major faQTLs detected for SFAs (myristic acid and behenic acid) on A04 and PUFAs (linoleic acid, 

eicosadienoic acid and docosadienoic acid) on A05, the yellow sarson allele was associated with a 

higher concentration (Figure 3). For the erucic acid QTL on A03 and A05, the pak choi allele was 

associated with higher concentrations, while on A02, A07 and A09, the yellow sarson allele was 

associated with higher concentrations (Figure 3). 

Figure 3: Heatmap of QTL profiles for FAs in the 2009 and 2011 seed lots. The darker the colour 
intensity, the higher the LOD score. Yellow indicates a QTL effect where the yellow sarson allele is 
associated with higher abundance while the blue colour indicates an effect where the pak choi 
allele is associated with higher abundance. The red triangles indicate the positions of QTL peak 
markers. The black coloured tick marks indicate marker positions; the vertical dashed lines 
separate the linkage groups. The horizontal dotted black lines separate traits and red lines 
separate SFAs, MUFAs and PUFAs. Dotted boxes indicate QTLs present in both years’ seed lots. 
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eQTL mapping of transcript abundance of lipid related genes 

1568 probes (of 921 BraIDs) for genes related to lipid metabolism, lipid signaling, lipid storage 

proteins and lipid transfer proteins were used for eQTL analyses. Those lipid related genes were 

selected according to MapMan annotation. Out of the 1568 probes, 760 probes (representing 537 

BraIDs) had at least one eQTL at LOP value (LOP = - 10log of pvalue) > 3 and 270 probes (194 

BraIDs) had at least one eQTL at LOP value > 5. In total, 1118 eQTLs were detected for 760 probes 

(537 BraIDs), including 304 cis-eQTLs (27%) and 814 trans-eQTLs (73%) (Table 1). 146 probes (115 

BraIDs) had both cis- and trans-eQTLs. The majority of probes (745 probes) had 1-3 eQTLs, while 

only 12 probes had four eQTLs and three had a maximum of five eQTLs per probe. Five linkage 

groups, A03, A04, A05, A07 and A09 had significant eQTL hotspots (> 42 eQTLs) (Figure 4A and B – 

left panel).  

Most of the cis-eQTLs had a higher significance (maximum LOP 29 and mean LOP 7) than the trans-

eQTLs (maximum LOP 18 and mean LOP 4). The largest trans-eQTL hotspots were on A05 (19% of 

total trans-eQTL) and A09 (25% trans-eQTL) (Figure 4B-left panel). The trans-eQTL hotspot at A09 

co-locates with a major QTL for seed coat colour, which explains 33% of the colour variation (data 

not shown). 

 

QTL mapping after correcting for seed colour differences 

A possible confounding effect of seed colour on transcript abundance was corrected for using a 

simple linear regression model as described in the M&M section. After correction for seed colour, 

946 eQTLs were observed for 662 probes (488 BraIDs) across the genome, 273 probes (194 BraIDs) 

had cis-eQTLs (29%) and 513 probes (397 BraIDs) had 673 trans-eQTLs (71%) (Table 1). Most of the 

probes (641 probes) had 1-3 eQTLs, while seven probes had four eQTLs and three probes had a 

maximum of five eQTLs per probe. 

eQTL hotspots were now detected on A03 (153 eQTLs, 16% of total eQTLs), A04 (115 eQTLs, 12%), 

A05 (172 eQTLs, 18%), A07 (68 eQTLs, 7 %) and A09 (125 eQTLs, 13%) (Table 1; Figure 4A and B - 

right panel). Like in the analysis before correction, cis-eQTLs had higher significance than trans-

eQTLs. 

 
Table 1: Numbers and percentages of cis- and trans- eQTLs detected in each linkage group before 
and after correction for seed colour. 
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Figure 4: Genome-wide distribution of expression quantitative trait loci (eQTLs) in the developing seeds (28 DAP: days after pollination) of a B. rapa DH 
population: before (left panel) and after correction for seed colour (right panel). A. The frequency of eQTLs at each genetic marker along the 10 linkage 
groups (LGs), separated by dashed lines. The y-axes represent the number of eQTLs. The red line indicates the threshold for declaring a significant eQTL 
hotspot. B. Scatter plots of cis-/trans-eQTLs of probes related to lipid metabolism before (left panel) and after correction (right panel). The y-axes represent 
the order of probes according to physical positions in the genome, the x-axes the order of genetic markers in the genetic map. eQTLs on the diagonal 
represent cis-eQTLs and off-diagonal eQTLs are trans-eQTLs. Significant eQTLs associated with higher transcript abundance from the yellow sarson allele or 
from the pak choi allele are shown in red and blue colour gradients, respectively. Significance of eQTLs was determined at LOP 3 (“-log10(P-value)”). Vertical 
dashed lines separate the LGs in the genetic map, horizontal dashed lines separate the LGs in the physical map.
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Comparison of eQTLs before and after correcting for seed colour 

A large number of probes (630 probes for 461 BraIDs) with significant eQTLs were in common 

between both analyses. After correction, an additional 32 probes (28 BraIDs), belonging to 8 

different pathways, such as lipid degradation, FA synthesis and elongation, seed storage proteins, 

FA desaturation, had eQTLs. eQTLs of the 130 probes (110 BraIDs) that were lost after correction, 

could be either false positives in the analysis before correction or false negatives after correction 

due to overcorrection for seed colour because their expression variation correlated with seed 

colour variation (for example, due to linkage or a pleiotropic effect). Chi-square tests were 

performed for each linkage group to test the significance of the differences in number of eQTLs 

before and after correction. There were no significant changes in the number of cis-eQTLs (p > 

0.05) but the number of trans-eQTLs was significantly changed on A03 (89 to 98 trans-eQTL, p = 

0.03) and A09 (199 to 89 trans-eQTLs, p < 0.0001) (Table 1; Figure 4).  

 

eQTLs from the RT-qPCR gene expression studies 

The expression values of 23 genes obtained by RT-qPCR were also subjected to correction for seed 

colour and then eQTL analysis to validate microarray eQTL results. For 16 out of 23 genes, at least 

one of the eQTLs was detected at the same position in both microarray and RT-qPCR experiments 

(Supplementary Figure S1). In case of BrCER8, BrLACS2, BrCRU3 (Bra011036) and Br006444, eQTL 

profiles did not correspond between RT-qPCR and microarrays. The expression of flowering locus C 

(BrFLC2, a major regulator of flowering time in B. rapa) and the transparent testa 8 gene (BrTT8, a 

major regulator of seed colour in B. rapa), that map under the faQTL hotspot on A02 in 2009 and 

eQTL hotspot on A09, respectively, were also measured with RT-qPCR. For BrFLC2, a cis-eQTL on 

A02 was confirmed in both RT-qPCR and microarray experiments, but an additional trans-eQTL 

was detected on A05 only in the RT-qPCR experiment. For BrTT8 gene, a cis-eQTL was detected on 

A09 under the trans-eQTL hotspot, only for RT-qPCR (Supplementary Figure S1). For almost all 

genes, eQTLs detected for expression profiles measured in RT-qPCR were stronger (higher 

explained variance) than in the microarray. 

 

Co-localization of mQTLs and eQTLs 

Major faQTLs detected in both seed lots were compared with eQTL hotspots observed after 

correction for seed colour (Figure 3; Figure 4A and B – right panel). On A03, faQTLs of the MUFAs 

oleic acid, eicosenoic acid and erucic acid from both seed lots, co-localized with an eQTL hotspot. 

On A04, major faQTLs of the SFAs behenic acid and myristic acid and a minor faQTL for palmitic 

acid, also from both seed lots, co-localized with an eQTL hotspot. Major faQTLs for the PUFAs 

linoleic acid and eicosadienoic acid, and minor faQTLs for docosadienoic acid for both seed lots 

were detected at the same region on A05 where a gene-targeted marker for the BrFAD2 gene 

mapped with its cis-eQTL and where also an eQTL hotspot was located (Figure 4A and B – right 

panel; Supplementary Table S3 and S4). If we also consider minor faQTLs, the association of A03, 

A04 and A05 with MUFAs, SFAs and PUFAs, respectively, is not perfect anymore.  
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The eQTL hotspots on A03, A04 and A05 are interesting for further investigation towards 

candidate genes for lipid metabolism and Brassica oil crop improvement. At the major eQTL 

hotspot on A09 (89 trans-eQTLs), where the cis-regulated transparent testa 8 (BrTT8) gene for 

seed colour is located we did not detect major faQTL. 

We looked for co-location of eQTLs of the genes FAE1, TAG1 (also called DGAT1), FAD2 and other 

FAD genes with faQTLs, as these genes were reported as candidate genes for the synthesis of 

linoleic acid, linolenic acid, erucic acid, oleic acid or total oil content in A. thaliana and B. napus 

(Peng et al., 2010; Yang et al., 2012; Lee et al., 2013). BrFAE1 has two paralogs on A01 and A03, 

which only have trans-eQTLs on A02, A03, A05 and A07, and BrTAG1 on A07 had a trans-eQTL on 

A05 (Supplementary Figure S1). Trans-eQTLs of BrFAE1 gene co-located mainly with faQTLs of 

MUFAs on A03, PUFA linolenic acid on A05, and SFAs and MUFAs on A07, while trans-eQTL of 

BrTAG1 was co-located with eQTL hotspot on A05, mainly with faQTLs of PUFAs (Figure 3). The 

BrFAD series genes (BrFAD2, BraFAD5 and BrFAD7) from the FA desaturation pathway that are co-

located within a physical range of 19.5-21.6 Mb on A05 all had a cis-eQTL on A05 at the map 

position (89.1 cM) of a BrFAD2 gene-targeted marker, co-locating with faQTLs for SFA lignoceric 

acid, MUFAs palmitoleic, oleic, eicosenoic and erucic acids, and PUFAs linoleic, eicosadienoic and 

docosadienoic acids (Figure 3). 

 

Co-expression network of lipid related genes and fatty acids 

Pearson correlation coefficients were calculated based on transcript abundance (after correction 

for seed colour) of 662 probes (488 BraIDs), with at least one eQTL, and 17 FAs (2011 seed lot) to 

construct a co-expression network (Supplementary Figure S2). This figure shows that many genes 

from the lipid metabolic pathways are involved in the regulation of FAs. In most previous QTL 

studies in related species A. thaliana and B. napus, mostly BrFAD series genes, BrFAE1, BrTAG1 

and a small subset of other genes are usually reported as being responsible for genetic regulation 

of fatty acids. We here not only show the interactions between genes but also whether they are 

cis- or trans-regulated. The co-expression network was constructed using two approaches: in the 

first one, correlations among all probes and FAs were considered (Supplementary Figure S2), while 

in the second approach, we considered only the probes associated with fatty acids, and using 

WGCNA (we call this a FAs-centered network). In the first approach, a higher degree of connection 

among genes and fatty acids indicates a major hub gene that could potentially be a major 

regulator of lipid metabolism. In the second method, the degree of connection of genes indicates 

the numbers of significant associations with only FAs, where a gene with a high degree of 

connection could be potentially a major gene involved in the regulation of those FAs. 

In both analyses, a very similar set of genes with a high degree of connection was observed. The 

gene BrPLA2-ALPHA (phospholipase A2, BraID: Bra038125) with a cis-eQTL on A05 had the highest 

degree of connection in both network analyses (Figure 5; Table 2), suggesting that this is an 

essential gene for lipid metabolism. Since BrPLA2-ALPHA is one of the major hub genes, a BrPLA2-

ALPHA centered sub-network (Figure 5) was extracted from the whole genes-FAs co-expression 

network (Supplementary Figure S2). Figure 5 shows that genes from the lipid metabolic pathways 
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and seed storage are interacting with this major hub gene. From the top 25 genes, based on their 

degree of connection from both analyses, 16 were selected in both (Table 2). Among those 16 

genes, three genes had a cis-eQTL on A05 and two genes had a cis-eQTL on A09, while 11 genes 

had a trans-eQTL on A09 and four genes had a trans-eQTL on A03 and only four genes from single 

analyses had a trans-eQTL on A04 (Table 2).   

Sub-networks were extracted for economically important FAs: erucic acid, oleic acid, linoleic acid 

and linolenic acid, which were also the most predominant FAs in this population as shown in 

Figure 1. All the FAs and gene nodes that were directly linked with each of these four metabolites 

were included in the sub-networks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Major hub gene BrPLA2-ALPHA centered gene-coexpression network using probes with 
at least one eQTL (after correction). Only genes that are connected with BrPLA2-ALPHA gene in the 
whole gene-metabolite co-expression network (Supplementary Figure S2) are shown. Nodes 
represent genes or fatty acids (FAs). Genes from different pathways are shown in different node 
colours, while metabolites are shown in triangle-shaped nodes in purple colour. Edges represent 
high absolute correlations (|r| > 0.5). Edges connecting the major hub gene and genes from the 
same pathway (lipid degradation) are in blue, edges between the major hub gene and genes from 
the other pathways are in red, and edges connecting genes and FAs are in green. Edges connecting 
genes (other than with the major hub gene) of different pathways have been left out to improve 
the visibility of the network. The shapes of gene nodes indicate cis-eQTLs (V-shape), trans-eQTLs 
(square) and cis-/trans-eQTLs (diamond). Node names are coded by concatenating gene name, cis-
/trans-regulation (separated by “_”) and linkage group (separated by “-”). For example, node 
“FAD2_C-5” indicates gene “FAD2”, “C” for cis-eQTL and “5” for linkage group A05, where the cis-
eQTL was detected. In the case of a cis-/trans-eQTL, “CER10_CT-9_1” indicates gene “CER10” and 
“CT-9_1” indicates a cis-eQTL on A09 and trans-eQTLs on A01. Solid lines indicate positive 
correlations and dotted lines indicate negative correlations. All the gene names are prefixed with 
“Br” because of Brassica rapa gene nomenclature. Multiple occurrence of the same gene names 
represents genes with multiple paralogues or probes.  



Systems genetics of fatty acids in B. rapa 

 121 

N
et

w
or

kA
na

ly
ze

r

W
G

CN
A

ci
s-

tr
an

s-

M
yr

is
ti

c

St
ea

ri
c

Pa
lm

it
ic

A
ra

ch
id

ic

Be
he

ni
c

Pa
lm

it
ol

ei
c

O
le

ic

Ei
co

se
no

ic

Er
uc

ic

D
oc

os
ad

ie
no

ic

Li
no

le
ic

Ei
co

sa
di

en
oi

c

1 PLA2-ALPHA Bra038125 At2g06925 Both 91 5 A05 - √ - - - - √ - - - √ √ √ Lipid degradation

2 alcohol oxidase Bra013391 At4g19380 Both 90 2 - A09 √ - - - - √ - - - - - - Lipid degradation

3 choline monooxygenase Bra024118 At4g29890 Both 88 3 - A02 √ √ - - - √ - - - - - - Phospholipid synthesis

4 lysophospholipases Bra003814 At1g74210 Both 87 4 - A09 - √ √ - - √ - - √ - - - Lipid degradation

5 choline kinase Bra028032 At4g09760 Both 87 4 A09 A03, A08 √ - √ - - √ - - √ - - - Phospholipid synthesis

6 hydrolase Bra016558 At1g18360 Both 87 2 - A03, A09 √ - - - - √ - - - - - - Lipid degradation

7 alcohol oxidase Bra012548 At4g19380 Both 87 2 A03 A09 - - √ - - √ - - - - - - Lipid degradation

8 LPAT3 Bra030448 At1g51260 Both 84 6 A05 A09 √ √ √ - - √ - √ √ - - - Phospholipid synthesis

9 CER10 Bra007154 At3g55360 Both 81 3 A09 A01 - - √ - - √ - - √ - - - Exotics

10 IBR10 Bra039860 At4g14430 Both 79 2 A08 A09 √ - - - - √ - - - - - - Lipid degradation

11 NPC4 Bra021355 At3g03530 Both 78 4 - A03, A09 √ - √ - - √ - - √ - - - Lipid degradation

12 stearoyl-ACP desaturase Bra021427 At3g02630 Both 78 2 - A09 √ - - - - √ - - - - - - FA synthesis and FA elongation

13 lipases Bra035263 At4g10955 Both 77 3 - A03, A07, A09 - - √ - - √ - - √ - - - Lipid degradation

14 AT3BETAHSD Bra015621 At1g47290 Both 74 2 A10 A05 - - √ - - √ - - - - - - Exotics

15 GPDHC1 Bra029669 At2g41540 Both 73 2 A05 A07, A09 √ - - - - √ - - - - - - Glyceral metabolism

16 SDP6 Bra035180 At3g10370 Both 69 3 A07 A05, A08, A09 √ - √ - - √ - - - - - - Glyceral metabolism

17 MOD1 Bra013159 At2g05990 NetworkAnalyzer 86 1 A03 A04, A05, A09 - - - - - √ - - - - - - FA synthesis and FA elongation

18 triacylglycerol lipase Bra007686 At3g62590 NetworkAnalyzer 86 1 A09 - - - - - - √ - - - - - - Lipid degradation

19 CAC3 Bra000037 At2g38040 NetworkAnalyzer 85 1 A03 - - - - - - √ - - - - - - FA synthesis and FA elongation

20 ACP dehydratase Bra038539 At2g22230 NetworkAnalyzer 84 1 A09 A02 - - - - - √ - - - - - - FA synthesis and FA elongation

21 stearoyl-ACP desaturase Bra008631 At3g02630 NetworkAnalyzer 77 1 - A09 - - - - - √ - - - - - - FA synthesis and FA elongation

22 ACP1 Bra039471 At3g05020 NetworkAnalyzer 77 1 - A09 - - - - - √ - - - - - - FA synthesis and FA elongation

23 ACBP4 Bra039439 At3g05420 NetworkAnalyzer 75 1 A05 A01, A09 - - - - - √ - - - - - - FA synthesis and FA elongation

24 lipases Bra002174 At5g18630 NetworkAnalyzer 73 1 - A04 - - - - - √ - - - - - - Lipid degradation

25 LTP5 Bra038908 At3g51600 NetworkAnalyzer 71 1 A01 A06, A09 - - - - - √ - - - - - - Lipid transfer proteins

26 WD-40 Bra001726 At3g18860 WGCNA 62 5 A03 A05 - √ - √ - - √ √ √ - - - Lipid degradation

27 LTP4 Bra020323 At5g59310 WGCNA 52 3 - A06, A08, A09 - √ - - - - - √ √ - - - Lipid transfer proteins

28 ACBP3 Bra019240 At4g24230 WGCNA 51 3 A03 A05, A07 - √ - - - - - √ √ - - - FA synthesis and FA elongation

29 LTP5 Bra012847 At3g51600 WGCNA 31 3 A03 - - √ - - - - - √ √ - - - Lipid transfer proteins

30 Protein kinase Bra034040 At1g66980 WGCNA 13 3 - A04, A10 - - √ - √ - - √ - - - - Lipid degradation

31 mtACP2 Bra035355 At1g65290 WGCNA - 3 - A04 - - √ - - - - √ √ - - - FA synthesis and FA elongation

32 phosphoethanolamine NMT2 Bra018740 At1g48600 WGCNA - 5 No eQTL No eQTL - √ √ - - √ - √ √ - - - Phospholipid synthesis

33 Unknown Bra001486 At3g13062 WGCNA - 3 No eQTL No eQTL - - √ - - - - √ √ - - - Lipid signalling

34 ATVPS34 Bra027152 At1g60490 WGCNA - 3 No eQTL No eQTL - √ - - - - - √ √ - - - Lipid signalling

Note: √ indicates a significant association of a gene with FAs in WGCNA.
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Table 2: List of the top 25 genes based on degree of connection in each of two network approaches, NetworkAnalyzer (Cytoscape) and WGCNA (FAs-
centered). Sixteen genes are in common between the two lists, resulting in a total of 34 genes over the two approaches. 
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Oleic acid (C18:1)   

The MUFA oleic acid had faQTLs on A03, A05 and A10 in both years’ seed lots with explained 

variance ranging from 8% to 18%, plus additional QTLs on A01 and A02 in 2009 (Figure 3; 

Supplementary Table S3 and S4). In the oleic acid centered sub-network, ~19 genes were 

connected to oleic acid, with genes from the lipid metabolism pathways, with cis- and or trans-

acting regulation, were involved in oleic acid biosynthesis (Figure 6A). The eQTLs of these genes 

co-localized with several oleic acid faQTLs. Overall, seven genes had a cis-eQTL and three genes 

had a trans-eQTL on A03 (Figure 6A). This included two lipid degradation genes, two FA synthesis 

genes (among a total of three genes), a FA elongation gene and three out of seven seed storage 

protein genes (Figure 6A). Four genes had a cis-eQTL and four had a trans-eQTL on A05. This 

included two lipid degradation genes: BrPLA2-ALPHA and BrWD-40, one FA desaturation gene 

BrFAD7, and the glycerol metabolism gene BrGPDHC1. Only one gene BrGPAT6 had a trans-eQTL 

on A10 and also on A01, A03 and A09 (Figure 6A). For some of the genes, a cis- or trans-eQTL was 

detected also on A01, A04, A07, A09 and A10 (Figure 6A).  

Figure 6A: Oleic acid centered gene-metabolite co-expression sub-network. All the nodes that 
have a connection with oleic acid were extracted from the main network shown in Supplementary 
Figure S2. Multiple occurrence of the same gene names represents genes with multiple paralogues 
or probes. 
 
Erucic acid (C22:1) 

The main fatty acid, the MUFA erucic acid, had faQTLs on A03 and A09 for the 2011 seed lot with 

explained variance 16% and 14%, respectively (Figure 3; Supplementary Table S4). For the 2009 
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seed lot, putative faQTLs (LOD scores between 2 and 3) were detected on A03 and A09 as well, 

with additional faQTLs on A01, A02, A05, and A07 (Figure 3; Supplementary Table S3). In the erucic 

acid-centered sub-network, ~16 out of the more than 50 genes had a cis- or trans-eQTL on A03 

(Figure 6B), and, in general, genes related to seed storage proteins, FA synthesis and elongation 

and lipid degradation had cis-eQTLs while genes related to phospholipid synthesis, lipid binding 

and transcription factor had trans-eQTLs (Figure 6B). On A09, 6 phospholipid synthesis and seed 

storage protein genes and BrCER10 (very long chain fatty acid elongation gene) had a cis-eQTL. 

Twenty-four genes, of which the majority of genes are involved in lipid degradation, had a trans-

eQTL on A09 (Figure 6B). 

Figure 6B: Erucic acid centered gene-metabolite co-expression sub-network. All the nodes that 
have a connection with erucic acid were extracted from the main network shown in 
Supplementary Figure S2. Multiple occurrence of the same gene names represents genes with 
multiple paralogues or probes.   
 
Linoleic acid (C18:2) and linolenic acid (C18:3) 

FaQTLs were mapped for the PUFAs linoleic and linolenic acids. A major faQTL of explained 

variance 36-45% was detected for linoleic acid in both experiments on A05, where we also 

mapped a gene-targeted marker for BrFAD2 and its cis-eQTL (Supplementary table S3 and S4). This 

faQTL overlapped with the eQTL hotspot on A05 (Figure 3; Figure 4A and B – right panel). In the 

linoleic and linolenic acids centered sub-network, only three genes coding for seed storage 

proteins were correlated with linolenic acid, while more than 25 genes were associated with 

linoleic acid (Figure 6C). Among these linoleic associated genes, nine genes had a cis-eQTL and five 
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genes had a trans-eQTL on A05. In general, the genes related to FA synthesis and elongation, 

phospholipids, lipid degradation (including BrPLA2-ALPHA) and FA desaturation (BrFAD7 gene) had 

cis-eQTLs while seed storage genes and a transcription factor (BrMD-2) had trans-eQTLs on A05 

(Figure 6C). Genes such as BrPLA2-ALPHA had a high degree of connection (> 69 edges) based on 

their co-expression (|r|≥ 0.5) with other genes and FAs (Table 2).  

In case of linolenic acid, only three seed protein encoding genes were connected: two with a cis-

eQTL on A03 and one with trans-eQTLs on A04 and A09 (Figure 6C), while its minor faQTLs were 

detected on A05,  A08 and A10, so, none of them co-localized (Figure 3). 

Figure 6C: Linoleic and linolenic acids centered gene-metabolite co-expression sub-network. All 
the nodes that have connections with either linoleic acid or linolenic acid were extracted from the 
main network shown in Supplementary Figure S2. Multiple occurrence of the same gene names 
represents genes with multiple paralogues or probes. 
 
Genetic co-regulation of erucic acid, oleic acid and linoleic and linolenic acids 

On A05, a major faQTL for linoleic acid and minor faQTLs for erucic and oleic acid were detected, 

together with major QTLs for the two PUFAs eicosadienoic acid and docosadienoic acid, co-

locating with an eQTL hotspot (Figure 3; Figure 4A and B – right panel). In the network analyses for 

each of these FAs, genes having either cis- or trans-acting eQTLs on A05 had a high degree of 

connection and also high correlations with these FAs (Table 2; Figure 5; Supplementary Figure S2). 

These results suggest that these genes are likely major hub genes and have an essential role in the 

metabolic pathway of these FAs.  

Two lipid degradation genes BrPLA2-ALPHA and BrWD-40, one seed storage protein gene 

(Bra019067) and the transcription factor BrMD-2 were present in all three sub-networks of erucic-, 
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oleic- and linoleic- and linolenic- acid (Figure 6). BrPLA2-ALPHA had a cis-eQTL on A05, and had the 

highest degree of connection with 91 nodes in the whole network in Cytoscape, while WGCNA 

network analysis (FAs-centered network) also identified this gene as being associated with five 

FAs: the SFA myristic acid, the MUFA palmitoleic acid, and the PUFAs linoleic acid, eicosadienoic 

acid and docosadienoic acid, each with a faQTL on A05.  

On A03, QTLs for the three FAs erucic acid, oleic acid, and linoleic acid, plus additional QTLs for 

another 4-5 FAs were mapped (Figure 3). The seed storage protein encoding gene (Bra019067), 

BrWD-40 and a transcription factor BrMD2 had a cis-eQTL on A03, in addition BrWD-40 and 

BrMD2 genes had trans-eQTLs on A05 and A07 or A09 (Figure 6), where additional faQTLs for one 

or more of these four FAs mapped. These genes had a high degree of connection (Table 2).  In 

WGCNA analysis, the phospholipid synthesis gene BrLPAT3 (1-acylglycerol-3-phosphate O-

acyltransferase; Bra030448) had the highest degree of connection  and this gene had a cis-eQTL on 

A05, overlapping with cis-eQTL of the BrPLA2-ALPHA gene and major faQTLs of the PUFAs linoleic 

acid (C18:2), eicosadienoic acid (C20:2), docosadienoic acid (C22:2) and minor QTLs of MUFAs 

palmitoleic acid (C16:1), oleic acid (C18:1), eicosenoic acid (C20:1) and erucic acid (C22:1) (Table 2; 

Figure 3). 

 

Discussion 

Seed FA composition and content per se are important for seed oil crops, but also as a source of 

energy for the emerging seedling (Wang et al., 2010b; Zhang et al., 2012). In this paper we 

describe the FA composition in seeds of a DH progeny from a cross between an oil type and a 

vegetable type B. rapa. We combined the QTLs for FA composition in seeds with eQTL analysis 

followed by gene co-expression network analysis with the aim to identify major regulatory genes. 

Systems genetics has been widely used as an approach to integrate data at metabolic and gene 

expression levels in segregating populations. Interestingly, major faQTLs for MUFAs, SFAs and 

PUFAs mapped on different linkage groups, respectively on A03, A04 and A05 (Figure 3), which 

may suggest some level of genome organization according to the fatty acid types (MUFAs, SFAs 

and PUFAs). However, the biosynthetic processes of these FAs share part of their biochemical 

pathways; therefore, there could be common regulatory genes or genetic interactions in the 

regulation of these different FAs. This could be indicated by the fact that in some cases minor 

faQTLs of one type co-locate with a major faQTL of a different FA type. In this study, we observed 

that SFAs in general were positively correlated with MUFAs, apart from erucic and nervonic acids, 

but PUFAs had a low correlation with SFAs and MUFAs (Figure 2).  

In genome-wide genetic studies, the presence of hidden confounding factors, such as unobserved 

covariates or unknown subtle environmental perturbations can lead to spurious marker-trait 

associations or mask real genetic association signals. These confounding factors can be introduced 

or are inherent to the data at different steps while conducting experiments (Fusi et al., 2012). In 

this study, we observed the effects of two such confounding factors. The first was flowering time, 

and, related to that, timing of seed set and seed maturation on faQTLs (metabolite level) at A02 

(co-localizing gene-targeted marker for BrFLC2 and a major flowering QTL (Figure 3; Figure 1 in 
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Chapter 6). Flowering time variation is very obvious in this DH population and the BrFLC2 gene at 

A02 (16.7 cM) is the major regulator of flowering time, with a non-functional allele in the yellow 

sarson parent (Wu et al., 2012; Xiao et al., 2013). In the 2009 seed lot, when flowering was 

asynchronous, many faQTLs co-located with the BrFLC2 gene, which can point to pleiotropy or 

linkage of QTLs for flowering time and FAs. However, the synchronization of flowering time in the 

2011 experiment removed this confounding effect on faQTL detection. The synchronization of 

flowering time of all DH lines resulted in similar environmental conditions during seed 

development, which is important to study the genetic variation of seed metabolites and seed 

quality related traits. Other studies also reported the possibility of such confounding or pleiotropic 

effects of major genes on many developmental traits, for example at the ERECTA gene in A. 

thaliana (Stinchcombe et al., 2009) and the EARLINESS locus in potato (Hurtado-Lopez, 2012). 

Despite the differences during seed development in 2009 and 2011 (asynchronous versus 

synchronous), very high correlations between the two seed lots (2009 and 2011) for each FA 

across the DH genotypes were observed (Figure 2). Major faQTLs were also always detected in 

both years, while minor faQTLs varied between years.  

The second confounding factor was the effect of seed colour on eQTLs (transcript level) at A09 

(Figure 4A and B – left panel). In addition to variation in morphotypes, and, as a result, in many 

other morphological and biochemical traits (Zhao et al., 2005; Pino Del Carpio et al., 2011b; Xiao et 

al., 2013; Xiao et al., 2014), the yellow sarson and pak choi parents have contrasting seed coat 

colour (Basnet et al., 2013), which also introduced a confounding effect for eQTL mapping. A 

strong seed colour QTL with 33% explained variance was mapped on A09 (data not shown); the 

causal gene, the bHLH transcription factor BrTT8, was cloned and its role in seed color was 

functionally validated in B. rapa (Li et al., 2012) and in other species (Padmaja et al., 2014). At this 

BrTT8 position, a large trans-eQTL hotspot was mapped, even after correction for seed colour 

(Figure 4A and B – left panel). In contrast with the eQTL hotspot, only minor faQTLs for erucic acid 

and eicosadienoic acid and a few additional minor faQTLs co-localized with this seed colour QTL 

(Figure 3). Possible explanations for the confounding effect of seed colour only at the transcript 

level but not at the metabolite level might be the fact that genetic regulation of the metabolic 

process is not always completely hierarchical in translating gene expression variation to 

metabolite regulation. Ter Kuile and Westerhoff (2001) reported a lack of hierarchical genetic 

control over metabolic flux in their study on the regulation of the glycolytic pathway. Additionally, 

the absence of a strong one-transcript one-metabolite relationship is quite common in the 

regulation of biological processes due to the complexity involved in the extrapolation of gene 

expression variation to changes in metabolite content, such as post-transcriptional modification 

and epigenetic regulation. Another explanation could be that FA metabolites and transcripts were 

measured in different developmental stages: in mature ripe seeds and in developing seeds (28 

DAP), respectively, which could lead to different levels of interactions at different stages of seed 

development.  

In this genetical genomics study, we were able to subset to only those genes that had eQTLs, 

detect eQTL hotspots and identify cis- and trans- acting eQTLs (Figure 4). Following this genetical 
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genomics approach, an eQTL-guided gene co-expression network was constructed that allowed us 

to identify (possible) candidate genes and their regulatory interactions for lipid metabolism. 

Genes with a high degree of connection in a network could possibly be major regulators of a 

pathway. Those genes could be essential genes in the sense that variation in these genes could 

change the pathway. In contrast, genes with a lower degree of connection could indicate genes 

that play a role in modifying FA content or composition. From the two types of network analyses 

carried out in this study (using Cytoscape and WGCNA), the top 25 genes with a high degree of 

connection were selected, which are likely to be key drivers in lipid metabolism; 16 genes were in 

common between these two lists, illustrating that these approaches were quite effective in 

selecting the most essential genes. These 16 genes belong to pathways such as lipid degradation, 

FA synthesis and elongation, phospholipid synthesis, glycerol metabolism and lipid transfer 

proteins (Table 2). Interestingly those top ranking genes were from different pathways, inferring 

an extensive coordination among biosynthetic pathways in lipid metabolism in B. rapa seed. Those 

top 16 genes had cis- and trans-eQTLs mainly co-localized with major faQTLs on A03, A05 and A09 

(Table 2), suggesting that those regions harbour the possible key regulator genes. Among the top 

selected genes, the lipid degradation pathway gene BrPLA2-ALPHA (phospholipase A2-alpha, 

Bra038125) had the highest degree of connection and a cis-eQTL on A05, co-locating with major 

PUFA faQTLs for linoleic acid (C18:2) and eicosadienoic acid (C20:2) and minor faQTLs for other 

FAs (Table 2). Ryu et al. (2005) functionally characterized BrPLA2-ALPHA gene and concluded that 

it has an acyl preference for linoleic acid over palmitic acid in phospholipid hydrolysis in A. 

thaliana. They also reported a role of this gene in the release of free fatty acids and 

lysophospholipids from membrane phospholipids. However, we have not found any other study 

reporting this gene as a potential regulator of seed FA composition in A. thaliana, B. napus or 

other oil crops. Many studies did report however that cis-eQTL for master regulator genes, 

mapped under trans-eQTL hotspots (Civelek and Lusis, 2014; Wang et al., 2014a), similar to what 

we found for BrPLA2-ALPHA on A05. 

The explanation that such key regulator genes, like BrPLA2-ALPHA in this study, are generally not 

reported as potential regulators of, in our case, seed FA composition, is that these genes are often 

highly conserved in regulatory networks during evolution (Khurana et al., 2013), and are less likely 

to be genetically perturbed in mapping populations (Mäkinen et al., 2014). In our study, we still 

found a cis-eQTL for the highly connected gene BrPLA2-ALPHA, which might be due to the 

different selection history of oil and vegetable types.  

Additional genes from the top 25 were genes in the FA synthesis and FA elongation pathway, e.g. 

BrCAC3, BrMOD1, ACP dehydratase, two paralogs of ACP desaturase, BrACP1 and BrACBP4 (Table 

2), whose functional roles are described for converting acetyl-CoA to malonyl-CoA chain at the 

beginning of the pathway in the Kyoto Encyclopedia of Genes and Genome (KEGG) pathway 

database.  

The MUFA erucic acid was the most abundant fatty acid (47-55.8% of total dry weight) in both 

parents (yellow sarson and pak choi) and their DH progenies (Figure 1; Supplementary Table S1). 

Lühs et al. (1999) also reported high erucic acid content (54.8%) in yellow sarson seeds. Breeding 
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for low erucic acid can cause a decrease in the total oil content if low erucic acid is not 

compensated for by an increase of other FAs. Even though the MUFA oleic acid is a substrate for 

both erucic acid and for the PUFA linoleic acid, oleic acid was strongly negatively correlated only 

with linoleic acid but not with erucic acid (Figure 2). Linoleic acid shares the genomic region of its 

major faQTL on A05 (36-46% explained variance; yellow sarson effect) with a QTL for its precursor 

oleic acid (9-13% explained variation) and the chain elongated erucic acid (9% explained variation) 

with opposite allelic effects (Figure 3; Supplementary Table S3 and S4), suggesting that these FAs 

share regulatory elements. Erucic acid, oleic acid, linoleic acid and linolenic acid are the most 

predominant FAs (Figure 1) and economically important for oil quality. Therefore, we further 

looked into detail to eQTL-guided co-expression networks particularly associated with those four 

FAs (called sub-networks), with the aim to unravel the underlying gene regulatory networks. The 

six genes BrPLA2-ALPHA, BrWD-40, three seed storage genes (Bra024983, Bra019067 and 

Bra024983) and one transcription factor BrMD-2 were in common among all those three sub-

networks (Figure 6), inferring essential roles of these genes in the biosynthesis of these FAs. 

BrWD-40 has a protein domain that regulates chromatin dynamics and transcription of the 

evolutionary well conserved gene Adipose (ADP). The loss of function allele of ADP promotes TAG 

(triacylglycerol) storage in Drosophila flies (Häder et al., 2003). MD-2 also has a conserved domain 

present across plants, animals and bacteria and is involved in lipopolysaccharides binding (Inohara 

and Nuñez, 2002). Most of the genes are shared by at least two of the three sub-networks (Figure 

6) and might have pleiotropic effects on lipid metabolism. There were also many genes only 

present in the erucic acid sub-network (Figure 6B). Erucic acid has a larger gene metabolite co-

expression network (> 50 genes) than oleic acid (~ 20 genes) and linoleic- and linolenic acids (> 25 

genes), and also has many minor faQTLs (Figure 6), implying a polygenic inheritance and more 

complex gene network (Figure 6B). For an eQTL based gene network, the genetic composition of 

the mapping population could pose a limiting factor in selecting genes for network construction; 

therefore, QTL mapping for fatty acids and gene expression in multiple populations from 

genetically diverse parents could confirm our network components.  

Well studied genes such as FAE1, TAG1 and FAD2 in A. thaliana, B. napus and other oilseed crops 

were reported in the literature, from QTL analyses, as candidate genes  for the synthesis of linoleic 

acid, linolenic acid, erucic acid, oleic acid or total oil content (Peng et al., 2010; Yang et al., 2012b; 

Lee et al., 2013). Cis-eQTL of BrFAD2 and other BrFAD genes (BrFAD5 and BrFAD7), and trans-eQTL 

of BrFAE1 and BrTAG1genes co-localized with faQTLs for oleic acid (C18:2), linoleic acid (C18:2), 

erucic acid (C22:1) and other fatty acids (Supplementary Figure S1; Figure 3). It is likely that those 

genes are regulated by some of the key regulators present on A05; those genes were not 

highlighted in the network analyses due to their low degrees of connection, but could play a role 

in modifying FA content or composition. The expression profile of BrFAD7 was correlated with 

linoleic acid and oleic acid content, while BrFAD5 was correlated with erucic acid content 

(Supplementary Figure 2). BrFAD2 had only a weak correlation (r < 0.5) with any of the FAs, but its 

expression was correlated with that of BrFAD5 and BrFAD7 (r > 0.5). Several studies in B. napus 

and Arabidopsis reported that BrFAD2 regulates the conversion of oleic acid to linoleic acid in the 
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endoplasmic reticulum (ER), while BrFAD5 desaturases C18:0 acyl carrier protein to oleic acid, and 

BrFAD7 desaturases linoleic acid to linolenic acid in plastids (Zhang et al., 2012). Therefore, there 

could be interactive roles among BrFAD genes. 

In conclusion, we were able to identify major regulatory genes involved in the genetic regulation 

of lipid metabolism and those genes belonging to the different lipid metabolic pathways: lipid 

degradation, FA synthesis and elongation, phospholipid synthesis, glycerol metabolism, transfer 

protein, signaling and very long chain elongation (Table 2). Those results suggest the need of a 

global study of lipid metabolism, rather than a strict focus on the FA biosynthesis pathway per se. 

This study gives a starting point for understanding the genetic regulation of lipid metabolism, by 

identification of a number of key regulatory genes, identified as major hub genes, and candidate 

genes for faQTLs. Finally, the data generated in this study will be valuable in Brassica breeding as it 

offers tools to breed for yield and optimal oil composition. 
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Mean Min. Max. Std. dev. CV, % Mean Min. Max. Std. dev. CV, % Mean Min. Max. Std. dev. CV, % Mean Min. Max. Std. dev. CV, %

Myristic acid C14:0 SFA 0.0 0.0 0.1 0.0 31.6 0.04 0.03 0.04 0.001 3.4 0.04 0.04 0.05 0.01 13.1 0.04 0.02 0.1 0.01 24.2

Palmitic acid C16:0 SFA 1.9 1.2 3.0 0.3 17.7 1.4 1.2 1.5 0.1 6.8 1.9 1.7 2.2 0.2 10.1 1.8 1.2 2.9 0.3 18.2

Palmitoleic acid C16:1 MUFA 0.3 0.2 0.6 0.1 29.3 0.2 0.2 0.2 0.01 2.4 0.3 0.3 0.3 0.04 12.1 0.3 0.2 0.6 0.1 22.9

Stearic acid C18:0 SFA 1.4 0.7 2.7 0.4 32.8 0.8 0.6 1 0.1 16.3 1 0.8 1.2 0.2 15.4 1.1 0.6 2.4 0.3 31.1

Oleic acid C18:1 MUFA 18.8 9.1 28.3 4.3 22.8 13.7 11.4 15 1.5 11.0 17.3 16.6 18.0 0.6 3.6 15.2 7.9 25 3.8 24.7

Linoleic acid C18:2 PUFA 11.6 6.1 16.4 2.5 21.4 10.8 10.2 11.2 0.4 3.4 11.0 9.8 13.7 1.8 16.7 11.9 6.7 16.5 2.4 19.7

Linolenic acid C18:3 PUFA 5.3 2.1 9.2 1.3 24.7 6.8 5.8 8 0.8 11.5 8.2 7.5 9.1 0.7 8.6 6.4 3.1 10.7 1.3 21.0

Arachidic acid C20:0 SFA 1.1 0.6 2.2 0.3 31.6 0.7 0.6 0.8 0.1 11.2 0.8 0.6 0.9 0.1 17.2 0.9 0.5 2.1 0.3 29.2

Eicosenoic acid C20:1 MUFA 7.2 3.5 12.1 1.7 23.8 4.7 3.7 5.4 0.6 13.8 7.3 6.7 8.4 0.8 10.6 6.2 3.1 10.6 1.5 23.7

Eicosadienoic acid C20:2 PUFA 0.3 0.1 0.6 0.1 33.4 0.2 0.2 0.3 0.03 13.2 0.4 0.3 0.5 0.1 24.2 0.3 0.1 0.6 0.1 34.6

Mead acid C20:3 PUFA 0.0 0.0 0.1 0.0 58.5 0.04 0.03 0.04 0.005 12.4 0.1 0.1 0.1 0.01 16.7 0.1 0.02 0.1 0.02 33.7

Behenic acid C22:0 SFA 1.3 0.6 2.6 0.3 26.6 1.1 0.9 1.2 0.1 8.6 0.8 0.6 1.1 0.2 26.0 1.2 0.8 2.3 0.3 23.6

Erucic acid C22:1 MUFA 47.1 31.1 55.9 5.0 10.6 55.8 53.5 57.7 1.5 2.8 47.0 44.4 49.3 2.0 4.3 50.2 40.6 56.3 4 7.9

Docosadienoic acid C22:2 PUFA 0.7 0.2 1.5 0.3 38.8 0.8 0.7 1.0 0.1 15.3 0.7 0.7 0.8 0.03 4.4 1.0 0.4 1.9 0.4 38.2

Dcosatrienoic acid C22:3 PUFA 0.1 0.0 0.4 0.1 41.7 0.2 0.2 0.3 0.04 18.4 0.2 0.2 0.2 0.03 14.0 0.2 0.1 0.5 0.1 40.1

Lignoceric acid C24:0 SFA 0.6 0.3 1.6 0.2 38.7 0.5 0.4 0.5 0.05 10.3 0.4 0.3 0.6 0.1 29.2 0.5 0.3 1.3 0.2 29.3

Nervonic acid C24:1 MUFA 1.7 1.0 2.6 0.3 17.0 1.8 1.6 1.9 0.1 5.1 2.0 1.5 2.2 0.3 17.3 2.0 1.3 3.2 0.3 17.6

Total oil - - 31.0 0.0 40.5 5.2 16.8 44.2 38.8 51 4.7 10.5 29.3 24.8 36.2 4.9 16.7 31.8 25.0 42.5 3.8 11.9

Note:-SFA = Saturated fatty acid; MUFA = Monounsaturated fatty acid; PUFA = Polyunsaturated fatty acid; Min. = minimum; Max. = maximum; Std. dev = standard deviation; CV = 

coefficient of variation (%). FAs were measured in mass percentage of total oil content. Total oil content was measured in mass percentage of whole seed dry matter (zero moisture 

basis).

Fatty acids Fromula Types
DH lines, 2009 Yellow sarson, 2011 Pak choi, 2011 DH lines, 2011

Supplementary Information 

 

Supplementary Table S1: Summary statistics of fatty acids (FAs) measured in ripe seeds of the 

Brassica rapa DH population, including the parents yellow sarson and pak choi in the 2009 and 

2011 seed lots. 

 
 

  

 

 

Supplementary Figure S1: Heatmap showing the eQTL LOD scores for gene expression of the 
probes measured in RT-qPCR. eQTL LOD profiles were calculated after correction for seed colour.  
Brassica rapa gene IDs (Bra IDs) are indicated between parentheses and the gene locations in the 
genome are preceded by “_” in the gene name. The darker the intensity, the higher the LOD score. 
Yellow indicates a QTL effect with high transcript abundance being associated with a yellow sarson 
allele while blue indicates a QTL effect with high transcript abundance being associated with the 
pak choi allele. Red triangles indicate the positions of QTL peak markers. The black coloured tick 
marks at the bottom indicate the markers in the linkage map, vertical dashed lines separate 
linkage groups. The horizontal dotted lines separate genes. 
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Supplementary Figure S2: Gene-metabolite co-expression network using probes with at least one 
eQTL (after correction for seed color). Nodes represent genes or fatty acids (FAs). Genes from 
different pathways are shown in different node colours, while metabolites are shown in triangle-
shaped nodes in purple colour. Edges represent high absolute correlations (|r| > 0.5). Edges 
between genes within the same pathway are in blue, edges connecting genes and FAs are in 
green, edges connecting FAs are in purple. Edges connecting genes of different pathways have 
been left out to improve the visibility of the network. The shapes of gene nodes indicate cis-eQTLs 
(V-shape), trans-eQTLs (square) and cis-/trans-eQTLs (diamond). Node names are coded by 
concatenating gene name, cis-/trans-regulation (separated by “_”) and linkage group (separated 
by “-”). For example, node “FAD2_C-5” indicates gene “FAD2”, “C” for cis-eQTL and “5” for linkage 
group A05, where the cis-eQTL was detected. In the case of a cis-/trans-eQTL, “LACS2_CT-5_6” 
indicates gene “LACS2” and “CT-5_6” indicates a cis-eQTL on A05 and trans-eQTLs on A06. Solid 
lines indicate positive correlations and dotted lines indicate negative correlations. All the gene 
names are prefixed with “Br” because of Brassica rapa gene nomenclature. Multiple occurrence of 
the same gene names represents genes with multiple paralogues or probes. 
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Supplemental Table S2: List of genes with their primer sequences used in RT-qPCR. 

Gene Bra ID Chr. 
Forward primer sequence 

(5'-3') 

Reverse primer sequence 

(5'-3') 

Arabidopsis 

gene ID 
Pathway 

BrCER8 Bra004467 A05 AAACCCTGAAGTCGTGAACC TTCTTCTCTGCCGTGGACTT At2g47240 FA synthesis and elongation 

BrCAC3 Bra005141 A03 GGCTCAAGAAAGGCAAGAAG CTCGAAATCCAAAGTGACAGG At2g38040 FA synthesis and elongation 

BrLPAT5 Bra022365 A05 ACTGCGTAAAGGTCAGATTGG CTGCCTCAAGTTTGCTTCATC At3g18850 Phospholipid synthesis 

BrFAD5 Bra027203 A05 CATGCTTTCGAGTTCTCTGCT CACTGGTAAGTGCCATTCGTT At3g15850 FA desaturation 

Biotin carboxyl 
carrier protein 

Bra027217 A05 GGCAACTCTTGGTTCTGTCC TGGCTTCGTCGTCTCAGTATC At3g15690 FA synthesis and elongation 

BrLACS2 Bra032284 A05 GGTTTCGCTGGTATTCGTTC CATTGGTTCTCAGCTTCTTCCT At1g49430 FA synthesis and elongation 

BrFAD2 Bra034777 A05 TCGGAGAACTCAAGAAAGCAA AGTGGTGGCGACGTAGTAGAA At3g12120 FA desaturation 

BrGPAT5 Bra034843 A05 TCTTATCTCCCATCCCAACC GCGCTAAACCTCAGCAAGAA At3g11430 Phospholipid synthesis 

BrFAD7 Bra034863 A05 CAAGAAGTCCAGGGAAGAAGG CCAACAAGCGGTAGAAGTGAG At3g11170 FA desaturation 

Acyl desaturase Bra039178 A05 GGCTTCATTTACACGTCTTTCC ATCCGTGTGTAAGCTGTCTCGT At3g02610 FA synthesis and elongation 

BrACP1 Bra039471 A05 CCAGAGACGGTTGAGAAAGTG ATCTGCTCCAAGATCAGCAAA At3g05020 FA synthesis and elongation 

Seed storage protein Bra026373 A01 GACAACAAGGAGGACAACAGG TCTTCTGGAAAGGACAAATGCT At4g27140 Storage proteins 

Seed storage protein Bra010409 A08 TCTTACTCACCAACGCCTCC TCCATTGCTGACATGCTCTT At4g27140 Storage proteins 

Seed storage protein Bra006444 A03 AACAGGTTCGACAACAACAGG TCTGGAAGGGACAAATGCTAA At4g27170 Storage proteins 

Seed storage protein Bra019067 A03 GGACAACCCCAAGTAGTGAGA TAGTAGTGGGGAGGCTGGAA At4g27170 Storage proteins 

Seed storage protein Bra019064 A03 CACCAACGCTTCCATCTACC AACTCCCTCTGGCATTTCTGT At4g27150 Storage proteins 

Aspartic Bra002214 A10 ATCTCTCTTCCCTCGCAACTC CGAAAACATCTTCAACCGAAC At5g19120 Storage proteins 

BrCRU2 Bra015275 A10 CCGACAGCAACAAAAACAAA GTTGACTTGCTGGTTTTGGAG At1g03880 Storage proteins 

BrCRU2 Bra033721 A06 GACACCATCGCTACACATCC TTCTGGTGGCTGGCTAAATC At1g03880 Storage proteins 

BrCRU3 Bra011036 A01 CAGCAGCAACAACAACAGAAC ACGATGTTTCCTCTGCTGTCTT At4g28520 Storage proteins 

BrCRU3 Bra010363 A08 ACAACAACCGCAACAGAACA AGGTCCCCTAACACGAACAA At4g28520 Storage proteins 

BrFLC2 Bra028599 A02 AAGTATGGTTCACACCATGAG GAGTCGACGCTTACATCAGA At5g10140 MADS box transcription factor 

BrTT8 Bra037887 A09 AGAATGTCAAAGAGCATCAGCA TTTTAGTGTTGTCGTGGAGGAA At4g09820 bHLH transcription factor 
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UP LP Upper marker Lower marker

Q1 2 BrVIN3P2b 53 7.3 14 PC 17 84 BrFLC2 BrCALP2a None

Q2 4 E32M19M439.2 25 12.9 22 YS 17 31 P21M47M78.5 P13M48M125.8

Q3 8 E34M15M312.5 31 5.5 9 YS 0 89 P23M50M86.4 Myb2RSAIM238.7

Q4 9 BrGAr3P1a 115 4.1 7 PC 61 137 Myb2MSE1M-596.7 BrPHYAP1g

Q1 2 BrFYP1a 24 9.9 17 PC 20 27 Br323 ENA13l None

Q2 3 E32M47M382.4 127 3.1 6 YS 87 165 nced3 Vte1-3

Q3 4 BR325 39 3.7 7 PC 22 43 P14M51M88.7 BrPHYAP3b

Q4 8 P23M50M86.4 0 3.3 5 YS 0 27 P23M50M86.4 BRH80C09flc3

Q5 9 BrGAr3P1a 115 4.8 7 PC 69 147 BrRGAP2c BrDDF1P2b

Q6 10 E32M19M310.4 53 4.1 9 YS 33 63 P13M48M342.9 BrFRIP2c

Q1 1 BrCOL2P3a 136 4.2 8 YS 115 136 P23M50xM326.7 BrCOL2P3a Log

Q2 2 P14M51M219.4 67 4.7 10 PC 17 71 BrFLC2 P23M48M115.6

Q3 7 P23M50M106.0 25 3.6 8 PC 5 46 BrFKF1P2d Myb2MSE1M-575.5

Q1 1 BrCOL2P3a 136 3.5 8 YS 14 136 P23M48M93.2 BrCOL2P3a Reciprocal

Q2 2 E32M19M308.5 59 5.9 16 PC 17 67 BrFLC2 P14M51M219.4

Q3 5 MADsHaeIIIM392.7 156 3.4 7 PC 0 156 BrCCA1P3b MADsHaeIIIM392.7

Q4 10 EJU6R10 17 3.4 7 YS 0 30 BrCPDP1a BrCOL1P1c

Behenic acid (C22:0) Q1 4 E32M19M435.5 28 3.9 11 YS 17 50 P21M47M78.5 BrPHYAP3c Reciprocal

Q1 5 E32M19M221.8 28 4.8 13 PC 22 36 BRMS-034 P14M51M182.0 Reciprocal

Q2 8 P23M48M276.5 18 5.9 14 YS 0 41 P23M50M86.4 BrPFT1P3b

Q1 2 BrVIN3P2b 53 7.9 16 PC 20 57 Br323 BrFTP1c Reciprocal

Q2 5 E32M47M118.1 63 4.7 10 PC 56 74 BrVRN1P1b E34M15M420.8

Q3 9 BrGAr3P1a 115 9.9 17 PC 106 121 Myb2AluIM454.0 BrSVPP1c

Q1 1 E32M47M212.2 118 6.1 12 YS 100 136 Myb2HaeIIIM475.9 BrCOL2P3a None

Q2 3 P14M51M135.1 106 9.5 18 YS 98 109 P23M48M439.2 ABI3

Q3 5 E32M19M258.3 133 4.7 9 PC 100 156 P23M50M132.9 MADsHaeIIIM392.7

Q1 1 BrCOL2P3a 136 4 7 YS 34 136 Myb2RSAIM91.1 BrCOL2P3a None

Q2 2 P14M51M219.4 67 4.8 8 PC 57 71 BrFTP1c P23M48M115.6

Q3 3 Myb2MSE1M67.4 104 10.6 17 YS 98 152 P23M48M439.2 Myb2MSE1M253.7

Q4 5 P23M50M241.1 61 3 6 YS 36 67 P14M51M182.0 BrSPL5P3a

Q5 7 P14M51M355.0 45 6.3 14 PC 43 46 BrAP3P1b Myb2MSE1M-575.5

Q1 1 BrCOL2P3a 136 3.7 8 PC 86 136 P13M48M221.5 BrCOL2P3a None

Q2 2 P14M51M219.4 67 6.8 14 YS 57 71 BrFTP1c P23M48M115.6

Q3 5 E32M47M113.6 61 4 9 PC 55 63 Myb2HaeIIIM263.7 E32M47M118.1

Q4 7 P14M51M355.0 45 3.5 11 YS 7 46 BrPVEP2a Myb2MSE1M-575.5

Q1 2 BrPIP2a 39 3.3 7 YS 32 84 BrCYP79A2 BrCALP2a None

Q2 3 E32M47M85.7 88 3.7 8 PC 57 90 BrAS1P2a BrGA1P2c

Q3 6 BrFPF1P1d 75 3.1 5 PC 57 85 BrBCAT3-1MiAo7 BrRGAP1a

Q4 7 BrAP3P1b 43 6.4 14 YS 34 45 BrSEP3P1a P14M51M355.0

Q1 3 BRMS-043 59 5.6 9 PC 57 113 BrAS1P2a P23M48M99.5 None

Q2 4 P21M47M178.1 35 4 6 PC 25 76 E32M19M439.2 E32M47M136.0

Q3 5 Myb2HaeIIIM295.2 80 23 36 YS 74 89 E34M15M420.8 FAD2

Q4 9 P14M51M206.7 145 5.1 8 PC 106 147 Myb2AluIM454.0 BrDDF1P2b

Q1 2 P14M51M219.4 67 5.2 12 YS 13 80 Myb2MSE1M480.8 Na12H09 None

Q2 6 Na12H07 60 5.9 15 PC 57 75 BrBCAT3-1 BrFPF1P1d

Q2 5 Myb2HaeIIIM295.2 80 15.8 25 YS 67 89 BrSPL5P3a FAD2 None

Q3 9 BrVIM3P3b 115 4.8 8 PC 89 147 CAPS5 BrDDF1P2b

Q4 10 BrCPDP1a 0 5.3 8 PC 0 17 BrCPDP1a EJU6R10

Q1 1 E32M47M212.2 118 4.9 8 PC 71 136 E32M47M179.8 BrCOL2P3a None

Q2 3 P14M51M135.1 106 7.6 14 PC 98 113 P23M48M439.2 P23M48M99.5

Q3 5 Myb2HaeIIIM295.2 80 4.8 9 YS 65 140 P23M48M-36.6 BR378

Q4 9 P14M51M206.7 145 3.6 7 PC 82 147 BrGIP3b BrDDF1P2b

Q1 2 Myb2MSE1M-614.5 74 4.1 9 YS 17 121 BrFLC2 Myb2MSE1M125.7 None

Q2 6 Na12H07 60 4.7 11 PC 31 75 BrDRB1P1d BrFPF1P1d

Q3 9 P14M51M206.7 145 3.1 9 PC 137 147 BrPHYAP1g BrDDF1P2b

Q4 10 BrCPDP1a 0 3 7 PC 0 19 BrCPDP1a P21M47M444.3

Peak marker cM LODFatty acid Transformation

Erucic acid (C22:1)

Nervonic acid (C24:1)

Linoleic acid (C18:2)

Linolenic acid (C18:3)

LG

Eicosadienoic acid 

(C20:2)

Docosadienoic acid 

(C22:2)

Docosatrienoic acid 

(C22:3)

Flanking markers

Note: QTL no - number of QTLs; LG - linkage group; cM - Peak marker position, cM; Expl. var. - explained variance, %; allelic effect - orientation 

of parental allele for positive effect on relative FAs content; YS - yellow sarson allele; PC- pak choi allele; UP - Upper flanking marker position; LP - 

Lower flanking marker position.

Allelic 

effect

Expl. 

var

QTL 

no

Myristic acid (C14:0)

Palmitic acid (C16:0)

Stearic acid (C18:0)

Arachidic acid 

(C20:0)

Lignoceric acid 

(C24:0)

Palmitoleic acid 

(C16:1)

Oleic acid (C18:1)

Eicosenoic acid 

(C20:1)

Supplementary Table S3: Summary of QTLs detected for the relative abundance of fatty acids 
(FAs) from the 2009 seed lot.  
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UP LP Upper marker Lower marker

Q1 2 P23M48M115.6 71 3.5 12 PC 13 121 Myb2MSE1M480.8 Myb2RSAIM146.8 None

Q2 4 E32M19M138.2 26 4.5 16 YS 0 50 Myb2MSE1M142.2 BrPHYAP3c

Q1 4 P13M48M125.8 31 4.4 13 PC 0 45 Myb2MSE1M142.2 BrSVPP2d Reciprocal

Q2 10 E32M19M310.4 53 3.7 11 YS 33 78 P13M48M342.9 BrCRY2P1a

Stearic acid (C18:0) Q1 7 P23M50M106.0 25 4.6 18 PC 1 46 BrCSlyase1 Myb2MSE1M-575.5 Reciprocal

Arachidic acid (C20:0) Q1 7 P23M50M106.0 25 4.3 19 PC 1 46 BrCSlyase1 Myb2MSE1M-575.5 Reciprocal

Q1 3 BrATBRMP1d 69 5.5 14 PC 66 84 BR356 BrFLKP2b Reciprocal

Q2 3 E32M19M312.7 135 4.4 8 PC 129 148 E32M47M384.5 Myb2HaeIIIM86.2

Q3 4 E32M19M435.5 28 8.9 27 YS 17 50 P21M47M78.5 BrPHYAP3c

Q4 7 E32M47M467.2 10 3.7 8 PC 0 34 BrFKF1P3c BrSEP3P1a

Lignoceric acid (C24:0) Q1 5 Myb2HaeIIIM295.2 80 3.6 15 YS 14 108 BrSPA1P2a E32M47M236.8 Log

Palmitoleic acid (C16:1) Q1 2 BrCYP79A2 32 3.7 15 PC 13 117 Myb2MSE1M480.8 Myb2RSAIM496.0 None

Q1 3 P23M50M284.3 139 3.6 8 YS 0 165 P23M48M293.8 Vte1-3 None

Q2 5 P23M50M132.9 100 5.3 13 PC 11 156 BrSPA1P1a MADsHaeIIIM392.7

Q3 10 BrCPDP1a 0 6.8 16 YS 0 23 BrCPDP1a BRH80A08flc1

Eicosenoic acid (C20:1) Q1 3 E32M47M384.5 129 7.7 25 YS 112 148 MAM-4 Myb2HaeIIIM86.2 None

Q1 3 E34M15M383.9 116 6.7 16 PC 71 152 Myb2RSAIM183.9 Myb2MSE1M253.7 None

Q2 9 BrDDF1P2b 147 5.2 14 YS 115 147 BrVIM3P3b BrDDF1P2b

Q1 7 Myb2RSAIM230.6 41 9.8 26 YS 34 45 BrSEP3P1a P14M51M355.0 None

Q2 8 Myb2RSAIM238.7 89 3.7 10 YS 5 89 P23M48M-34.3 Myb2RSAIM238.7 

Q1 1 BrSPL5P1a 74 4.1 9 PC 69 125 Myb2HaeIIIM472.4 BrCOL2P4a None

Q2 3 BrGA1P2c 90 6.3 11 PC 87 109 nced3 ABI3

Q3 5 E32M47M460.0 83 22.3 45 YS 74 89 E34M15M420.8 FAD2

Q1 1 BrSPL5P1a 74 5.5 8 PC 69 86 Myb2HaeIIIM472.4 P13M48M221.5 None

Q3 4 P14M51M88.7 22 4 5 PC 17 50 E32M19M204.4 BrPHYAP3c

Q4 5 E32M47M460.0 83 34 46 YS 78 89 Myb2HaeIIIM-605.3 FAD2

Q5 9 BrPVEP3a 125 4.1 6 PC 62 147 BrTOC1P2b BrDDF1P2b

Mead acid (C20:3) Q1 4 P14M51M88.7 22 3.5 13 PC 0 63 Myb2MSE1M142.2 BrHOS1P2a None

Q1 1 E32M47M179.8 71 3.7 11 PC 69 136 Myb2HaeIIIM472.4 BrCOL2P3a None

Q2 2 Myb2MSE1M480.8 13 3.4 8 PC 6 115 BrBFTP1a BrFLMP1b

Q3 3 BrIQD1-1 94 4.8 12 PC 87 148 nced3 Myb2HaeIIIM86.2

Q4 5 Myb2HaeIIIM295.2 80 12.5 27 YS 74 100 E34M15M420.8 P23M50M132.9

Behenic acid (C22:0)

Oleic acid (C18:1)

Docosadienoic acid 

(C22:2)

Eicosadienoic acid 

(C20:2)

Linoleic acid (C18:2)

Nervonic acid (C24:1)

Erucic acid (C22:1)

Fatty acid

Note: QTL no - number of QTLs; LG - linkage group; cM - Peak marker position, cM; Expl. var. - explained variance, %; allelic effect - orientation of 

parental allele for positive effect on relative FAs content; YS - yellow sarson allele; PC- pak choi allele; UP - Upper flanking marker position; LP - Lower 

flanking marker position.

Transformation
Allelic 

effect

Flanking markersQTL 

no
LG Peak marker cM LOD

Expl. 

Var.
Myristic acid (C14:0)

Palmitic acid (C16:0)

Supplementary Table S4: Summary of QTLs detected for the relative abundance of fatty acids 
(FAs) from the 2011 seed lot.  
 



 

135 

 

Chapter 6 

 
General Discussion 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 6 

136 

 

The aim of this thesis is to unravel the genetics of seed quality and seedling vigour in Brassica rapa 

using a systems genetics approach. In order to achieve this, we first studied phenotypic and 

genetic variation in a B. rapa core collection to gain insights into population structure and in the 

genetic regulation of different morphological traits and a wide range of metabolites. Furthermore, 

QTL studies were done in a bi-parental doubled haploid (DH) population for seed germination and 

seedling vigour related traits and for oil content and fatty acid composition in ripe seed. QTL 

results were then combined with expression QTLs using systems genetics and gene co-expression 

network analysis (Steps 1-6 in Figure 2 – Chapter 1). In this general discussion, the relationships 

among phenotypic traits, metabolites and expression variation as well as their QTL map locations 

are discussed. 

 

Hypothesis of the thesis 

The hypothesis of this PhD study was that expression of genes during the seed-filling stages 

regulates seed metabolite content and composition in the ripe seed and that seed metabolites 

determine ultimate seed quality and seedling vigour. Therefore, in this study, both seed 

germination and root- (RL) and shoot- (SL) length and weight at the seedling stage were 

considered as parameters of seed quality to investigate the genetics of seed quality and seedling 

vigour. 

 

Better understanding of the process of seed development in B. rapa is a prerequisite for 

genetical genomics studies 

Good quality seed accompanied by high seedling vigour is imperative to improve crop 

establishment and increase agricultural production. Studies in many crops have indicated that 

seed quality and seedling vigour related traits are of complex genetic architecture and are 

influenced by interactions of multiple genetic and non-genetic factors (Chapter 4; Bettey et al., 

2000; Koornneef et al., 2002; Finch-Savage et al., 2010; Joosen, 2013). Modern molecular 

technologies, ~omics data, in combination with classical genetics will allow unravelling the 

complexities of seed development, seed quality and seedling vigour. 

In Chapter 3, we studied the temporal as well as genotypic variation of seed and embryo 

morphological characteristics and global transcriptional changes during seed development. For 

this purpose we used two black/brown- and two yellow-seeded genotypes (a vegetable type pak 

choi, an oil-type yellow sarson, and two of their progeny DH lines), which were early, mid- and late 

flowering. The changes in shape, size and colour of embryo and seed were compared with 

developing seeds of B. napus that have been studied intensively because of its importance as an 

oilseed crop. Our first hypothesis was that seed development processes in time would be 

comparable between these two Brassica species, for accessions with comparable flowering time. 

Also we assumed that the relationship between embryo developmental stages and metabolite 

profiles (oil, protein, sugar and starch) would be similar in B. rapa and the well-studied model 

plant A. thaliana. Because of these assumptions and the lack of data on the main metabolic 

pathways (oil, protein, sugar and starch profiles) in B. rapa, in the first year, we collected the 
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developing seeds for the genetical genomics study at 15-20 days after pollination (DAP), assuming 

that at this stage many fatty acid biosynthesis genes were differentially regulated. In A. thaliana, 

lipid biosynthesis is initiated in the torpedo stage (Baud et al., 2002), and this corresponded to 

seed development stages between 15 and 20 DAP in B. napus (Fernandez et al., 1991; Ilić-Grubor 

et al., 1998). Niu et al. (2009) reported that major changes in expression profiles of genes involved 

in protein translation, starch metabolism and hormonal regulation were between 17 and 21 DAP 

in B. napus, whereas fatty acid biosynthesis-related genes were highly expressed at 21 DAP as 

compared to earlier and later time points. However, data from Chapter 3 revealed that the timing 

of several seed developmental processes was later in B. rapa than in B. napus. The period from 25 

to 35 DAP (between the bent-cotyledon stage and the stage when the embryo fully fills the seed) 

was the key period for major changes in transcript abundance in B. rapa developing seeds. This 

detailed insight into the timing of the most active stages of transcriptional regulation was useful to 

choose the optimum time point (28 DAP) for collecting RNA samples for the genetical genomics 

experiment to unravel regulation of seed fatty acid profiles, described in Chapter 5. Previous 

studies indicated that differential expression of genes involved in the regulation of phenotypic 

traits or metabolic pathways vary largely depending on the developmental stages or tissue 

samples chosen (Fu et al., 2012). Therefore, in genetical genomics, the choices of the optimum 

stage and the right tissue to isolate RNA are crucial if the aim is to use expression profiles to 

identify genes underlying traits of interest. Metabolite profiling during seed development could 

have complemented our findings and would have been helpful to understand the seed 

development process at the metabolite level too. However, within the period of this PhD study we 

were not able to obtain funds for such a study.  

In Chapter 3, we identified groups of genes (called gene modules) co-expressed during seed 

development and those co-expressed genes might be involved in similar biological processes, or 

play roles in the same cellular processes. One reason why such a group of genes might be co-

regulated is that the genes in the module share cis-regulatory elements (motifs) in their promoter 

regions. In Chapter 3, we identified motifs for groups of co-expressed genes related to lipid 

metabolism. A subset of those motifs was also reported in other plant species for their roles in 

seed development (Chapter 3). 

 

Systems genetics and co-expression network analysis assist in the identification of candidate 

genes for lipid metabolism  

Systems genetics is widely used to understand the underlying biological processes and molecular 

mechanisms of complex traits (Civelek and Lusis, 2014; Van der Sijde et al., 2014). In this approach, 

intermediate phenotypes, such as transcript and metabolite levels, as well as physiological traits, 

obtained from a range of experiments are integrated using statistical genetics and network 

analyses. Initially, expectations of systems genetics were very high in that one could identify 

candidate genes, pathways and regulatory networks underlying the traits of interest. Genetical 

genomics has become an important tool in systems genetics studies to map eQTLs in genetically 

perturbed natural populations (Civelek and Lusis, 2014; Feltus, 2014). One of the important 



Chapter 6 
 

138 

 

advantages is the ability to detect cis- and or trans-acting eQTLs, which provide information about 

the gene regulation networks. The overlap of QTL regions for phenotypic traits (phQTLs), 

metabolite levels (mQTLs) and transcript level (eQTLs) highlights the genomic regions that contain 

possible candidate genes involved in the regulation of these biological processes (Civelek and 

Lusis, 2014; Feltus, 2014). In Figure 1, we observed the co-localization of QTLs detected for 

different levels of ~omics traits: phenomics (seed germination, seedling vigour, flowering time, 

seed weight, seed colour), metabolites (fatty acids, fibre content, total protein content, total 

glucosinolate, total oil) and eQTL profiles (genes related to lipid metabolism, and BrFLC2 and BrTT8 

genes), mainly on linkage groups A02, A03, A05, A08 and A09. All co-localization in these regions 

can be due to causal relationships among different levels of ~omics traits, but can also be 

coincidental. Additional analyses are necessary to validate hypothesized relationships among seed 

germination and seedling vigour parameters, seed metabolites and gene expression, which is 

discussed below under “future perspectives”. 
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Figure 1 (above): Co-localization of QTLs detected for different data sets: A. Seed germination and 
seedling vigour. B. Fatty acids. C. Total protein content, fibre (ADF, NDF, ADL), total glucosinolates, 
white index (~ seed colour). D. Flowering time and thousand-seed weight. E. eQTL profiles of 
BrFLC2, BrFAD2 and BrTT8 genes (real time-qPCR expression analysis) and F. eQTL profiles of genes 
related to lipid metabolism (after correction for seed colour). QTL profiles of fatty acids are from 
multi-trait QTL analysis in Genstat. Gene-targeted markers in the QTL co-localized regions are 
highlighted in blue on the x-axis. 
 

In Chapter 5, eQTL hotspots for genes related to lipid metabolism were identified on A03, A04, 

A05 and A09. Major fatty acid QTLs (faQTLs) for monounsaturated fatty acids (MUFAs) were also 

mapped on A03, for saturated fatty acids (SFAs) on A04 and for poly-unsaturated fatty acids 

(PUFAs) on A05, but not on A09. These results could guide us to find the master regulatory genes 

for these hotspots, or important cis regulated genes as candidate genes for specific fatty acids. 

Like in Chapter 3, a search for cis-regulatory elements in the upstream regions of genes from those 

eQTL hotspots might help in the future to find the underlying master regulator genes.  

If one looks at co-localization of eQTLs for individual transcripts with a phenotypic trait, the 

information from gene-gene interrelations is not taken into account, which are likely important for 

complex traits (Civelek and Lusis, 2014; Feltus, 2014). To explore these gene-gene relationships, 

gene regulatory networks need to be constructed using network analysis. We used eQTL-guided 

correlation network and weighted gene co-expression network analysis (WGCNA) to consider gene 

expression variation as well as gene-gene relationships; both approaches are discussed in Chapter 

5. The parameter ‘degree of connection’ was used to identify genes with a high number of 

connections in these networks. In general, genes with a high degree of connection are most likely 

essential genes to knock out a pathway, whereas genes with lower degree of connection could be 

interesting to modify metabolite content (Khurana et al., 2013; Mäkinen et al., 2014). For 

example, a strong QTL with large explained variance (27-46.3%) was detected for linoleic acid on 

A05, where a cis-eQTL of the gene BrPLA2-ALPHA was co-mapped. The gene BrPLA2-ALPHA had 

the highest degree of connection and, interestingly, was reported as a key regulator of linoleic acid 

metabolism (Ryu et al., 2005). This gene has an acyl preference for linoleoyl over palmitoyl. Even 

though the genetic regulation of lipid metabolism has been extensively studied in Arabidopsis, 

Brassicas and other oil crops, this gene has hardly been reported for its molecular function. 

Instead, genes such as fatty acid desaturase 2 (BnFAD2),  fatty acid desaturase 3 (BnFAD3), 

diacylglycerol acyltransferase (BnDGAT1) and  fatty acid elongase 1 (BnFAE1) were reported in B. 

napus (Peng et al., 2010; Yang et al., 2012; Lee et al., 2013, Tanhuanpää and Schulman, 2002). One 

of the possible reasons could be that such key regulator genes are often highly conserved in 

regulatory networks during evolution (Khurana et al., 2013), and are less likely to be genetically 

perturbed in mapping populations (Mäkinen et al., 2014). The fact that we still found a cis-eQTL 

for the highly connected gene BrPLA2-ALPHA, and consider it a candidate gene for linoleic acid 

variation, might be due to the different selection history of oil and vegetable types. In our 

experience, systems genetics should be considered as a hypothesis generating approach for 

identifying candidate genes for complex traits. Using the combined approach of eQTL mapping and 
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network analysis, we were able to subset the list of important genes that are likely involved in the 

genetic regulation of lipid metabolism and fatty acids biosynthesis in B. rapa developing seeds 

(Chapter 5). Thus, systems genetics seems to be a promising approach as an alternative to gene 

identification by fine mapping, especially in B. rapa because of hurdles in creating large mapping 

populations due to self-incompatibility. For functional validation, gene transformation is 

commonly used; however, also transformation in B. rapa is very challenging and would require 

further optimization. Instead, genetic transformation in B. napus, close relative of B. rapa, would 

be an alternative to perform a functional validation. 

Another issue while dealing with high-dimensional data sets (e.g. ~omics data) is the 

computational limitation for data analysis, especially for network construction. In this study, 

microarray experiments produced transcriptomics data for 61,557 probes in 120 DH lines. To 

analyse all the genes in order to explore the transcriptional cross-talk among pathways is 

computationally challenging within the capacity of a PhD project. Therefore, we focused on the 

probes related to lipid metabolism, since the main focus of this PhD study was on understanding 

the genetic regulation of lipid metabolism and fatty acid biosynthesis. Furthermore, we 

constructed eQTL-guided gene correlation networks of only those probes that had at least one 

eQTL. These criteria reduced the computational load for network analysis considerably. This type 

of reduction is not possible, however, for less well studied traits, such as turnip formation, where 

pre-selection of a subset of genes is less obvious. 

 

Genetics of seed quality and seedling vigour related traits 

In addition to significant developments in seed technology to improve seed quality in the last 

decades, many public and private breeding institutions have been focusing on the genetic 

improvement of seed quality and seedling vigour. As abiotic factors are the major challenge for 

crop establishment and salinity is one of the major abiotic stresses limiting high crop production 

(Mittler, 2006), these stresses need to be taken into account when studying seed quality traits. 

Chapter 4 focused on genetic analysis of seed germination dynamics and seedling vigour over time 

(during the first 10 days after germination, DAG) under non-stress and salt stress conditions in the 

B. rapa DH mapping population. We identified QTLs for seed germination parameters, root- and 

shoot- length, seed weight and flowering time, which were mainly co-localized at eight hotspots. 

Interestingly, seed germination QTLs on A02 co-localized with a flowering QTL in the region of 

BrFLC2 and a QTL for seedling vigour under salt stress on A05 co-localized with major QTLs of seed 

weight and PUFAs (linoleic, eicosadienoic, and docosadienoic acid) in the region of BrFAD2. Many 

QTLs were confirmed across two years’ trials with a different experimental set up: with and 

without synchronization of flowering time. The putative roles of FLC2 and FAD2 in seed quality 

traits as hypothesized in this study correspond with studies in A. thaliana showing that FLC2 has a 

pleiotropic effect on seed germination (Chiang et al., 2009) and in B. napus pointing to a role of 

FAD2 gene on seedling growth under saline conditions (Wang et al., 2010b; Zhang et al., 2012). 

We carried out a follow-up experiment to identify genomic regions associated with expression 

variation of these two genes. This showed that cis-eQTLs for both BrFLC2 and BrFAD2 genes were 
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co-localized with the QTL hotspots on A02 and A05, respectively. However, we are aware of the 

fact that those QTL intervals contain many genes and, based on the literature, we had selected 

only two genes BrFLC2 and BrFAD2 for mapping expression variation (Chiang et al., 2009; Wang et 

al., 2010b; Zhang et al., 2012). As both fatty acid measurements and gene expression (genetical 

genomics) studies were carried out under non-stress, we suggest carrying out metabolomics and 

genetical genomics experiments also under salinity stress to study the role of BrFAD2 in seed 

quality traits under salinity at these different ~omics levels. 

 

Confounding effects in genome-wide genetic studies 

The population used in this study is segregating for many traits (Chapter 2, Chapter 3, Chapter 5) 

(Zhao, 2007; Pino Del Carpio, 2010; Basnet et al., 2013; Xiao et al., 2013; Xiao et al., 2014), and as 

such is appropriate for genetic studies of these traits. However, this variation possibly also 

introduces confounding effects on traits: for example, the effects from flowering time and seed 

colour variation in this study. A major challenge in genome-wide analysis is the presence of hidden 

confounding factors, such as unobserved covariates or unknown subtle environmental 

perturbations (Kang et al., 2008a; Fusi et al., 2012). These factors can induce a pronounced 

artefactual correlation structure in the variation of phenotypic traits, which may create spurious 

false marker-trait associations or mask real genetic association signals (Kang et al., 2008b; Fusi et 

al., 2012). The use of proper experimental design and statistical models might be able to exclude 

or correct for such confounding effects in the data. 

As an example of this, we think that the variation in flowering time has led to such artefacts in the 

sense that spurious fatty acid QTLs were detected on A02, where a major flowering time QTL and 

the BrFLC2 gene are located (Figure 1). In our study, the synchronization of flowering of the DH 

lines in the year 2011 seemed an effective approach to unmask the confounding effect of the 

flowering locus (BrFLC2) on detecting those possibly spurious fatty acid QTLs on A02 (Figure 3 in 

Chapter 5). When flowering time is synchronized, environmental conditions during seed ripening 

are more uniform. However, a drawback is that the environmental conditions during early plant 

growth differed very much, and that late flowering plants had to be sown very early, in the winter, 

when growing conditions are suboptimal due to insufficient light. In the 2009 experiment, 

flowering was asynchronous, resulting in considerable variation in environmental conditions 

during seed ripening; however conditions during early plant growth were very similar and in the 

optimal spring season.  

Similarly, variation in seed colour has probably led to a large number of false trans-eQTLs on A09, 

where a major seed colour QTL (explained variance 32%) was detected. The gene responsible for 

seed colour has been cloned in yellow sarson, and is a bHLH transcription factor, BrTT8 (Li et al., 

2012b). In Chapter 3, we also observed differences in transcriptional signature in the yellow-

seeded YS143 as compared to the brown/black-seeded PC175. In eQTL analysis, seed colour 

therefore was used as a covariate in our statistical model to avoid spurious eQTLs on A09; 

however, this could also lead to false negatives. Therefore, it would be more optimal to have a 

population that is segregating only for fatty acids, seed germination or seedling growth related 
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traits with uniform flowering time and uniform seed colour. However, as there is a strong 

association between seed colour and oil content, with yellow seed colour as important preferred 

trait in oilseed breeding (Chen and Heneen, 1992; Rahman et al., 2001), a pure yellow seeded 

population would probably have much more limited variation. 

 

Future perspectives 

Data integration including complete transcriptome, seed metabolite and phenomics data sets 

In this PhD study, we focused on transcript profiles of genes related to lipid metabolism (Chapter 3 

and 5) and fatty acid metabolites (Chapter 5). We developed methodological tools to integrate the 

trancriptomics and metabolomics data sets and to construct regulatory networks related to major 

fatty acids. Finally, this resulted in a set of (possible) candidate genes involved in lipid metabolism 

(Chapter 5). Besides, we also identified major QTLs for other important seed constituents (e. g. 

Total protein content, fibres, glucosinolates; Figure 1), and those constituents also play roles in 

determining seed quality and seedling vigour. In the future, it would be highly interesting to 

integrate the genome-wide transcriptome data set with all major seed metabolites and 

phenotypic data. This integrated analysis could directly link all three components: transcriptome, 

metabolome and phenotypic traits, and ultimately could expand the knowledge on the genetic 

regulation of seed metabolites, seed quality and seedling vigour in B. rapa as well as other 

Brassica species. Data-driven integrated analyses could also be helpful for functional annotation of 

genes with unknown function and opens the opportunity to discover novel gene functions. 

 

Use of automated high-throughput phenotyping platforms  

Plant survival and fitness related traits, such as seed quality and seedling vigour traits are under 

historical and natural selection. Complex networks of many genes usually regulate those life 

history traits. Phenotyping of seed germination and seedling growth related traits is labour-

intensive, time-consuming, tedious and also frequently destructive, and might lead to high 

experimental as well as measurement errors. Those errors will reduce the heritability of the traits 

and also negatively influence QTL detection and any further results. Automated high-throughput 

phenotyping platforms are efficient, fast, precise and able to measure many traits in large 

numbers of plants at the same time, reducing the experimental errors (Furbank and Tester; Chen 

et al., 2014). In addition, the availability of such phenotyping platforms enables the quantification 

of traits that are difficult to measure, such as number of lateral roots, total root length, root hairs 

and/or non-visible traits, such as carbon flow, photosynthesis efficiency, imaging plant canopy and 

chlorophyll fluorescence. Measurement of a wide range of traits, including such difficult-to-

measure and non-visible traits can be useful to better depict the dynamic range of biological 

processes (also called holophenotype – the ultimate phenotypic reality we attempt to measure; 

Chitwood and Topp, 2015), such as seed quality. For example, germination parameters like 

earliness, speed, uniformity and maximum germination derived from a seed germination curve 

over time help to understand the holophenotype of the seed germination process (Chapter 3). In 

this study, manual counting of germinated seeds of the entire DH population was limited to day-
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time (Chapter 3). Similarly, root and shoot lengths were measured at only four time points: 3, 5, 7, 

9 DAGs (Chapter 3). With automated high-throughput phenotyping platforms it would be possible 

to comprehensively collect digital and time-resolved data that describes seed germination and 

seedling growth in greater detail. Such dynamic phenotypic observations also allow fitting growth 

models and to predict growth parameters, and unravel the so-called cryptotype (a hidden or latent 

combination of traits that maximize the separation of a priori known or defined groups; Chitwood 

and Topp, 2015). 

 

Beyond QTL mapping: QTL validation, fine mapping and allelic variation 

In this study, we identified many QTLs for fatty acids, seed germination and seedling vigour traits. 

These QTLs need to be confirmed in association panels or mapping populations with different 

genetic backgrounds (Step 7 in Figure 2 – Chapter 1). Genome-wide association studies (GWAS), 

taking advantage of historic recombination, can be used for high resolution QTL mapping 

(narrowing QTL intervals), discriminating pleiotropy or linkage of genes and allelic variation 

(Varshney et al., 2014; Zhao et al., 2007). This approach has been successfully applied in several 

crop plants (Varshney et al., 2014; Zhao et al., 2007). Lately, the nested association mapping 

(NAM), the Arabidopsis multi-parent RIL (AMPRIL) and the multi-parent advanced generation 

inter-cross (MAGIC) populations, which take advantage of both historic and recent recombination 

events, have been used for studying trait genetics in maize, A. thaliana and wheat, respectively 

(Cavanagh et al., 2008; Yu et al., 2008; McMullen et al., 2009; Huang et al., 2011; Huang et al., 

2012). These types of populations could be used for validating, fine mapping and studying allelic 

variation of QTLs that were identified in our study (Step 7 in Figure 2 – Chapter 1). These 

populations aim to combine the advantages of association mapping populations with those of bi-

parental mapping populations: a high recombination rate, presence of more than two alleles, 

equal kinship relatedness and lack of population structure. Professor R. Amasino and co-workers 

(University of Wisconsin-Madison, USA) are constructing a NAM/AIRIL (nested association 

mapping/advanced inter-cross RIL) population from crosses of R500 (YS143) and DH lines of many 

morphotypes supplied by our group (Wageningen UR plant breeding), after inter-crossing F2s for 

two generations followed by several generations of inbreeding to make RILs (Dr. A. B. Bonnema, 

Wageningen UR, personal communication). This population offers excellent possibilities to 

validate our QTLs and candidate genes, as it has the same YS143 genotype as central parent, 

crossed to seven diverse genotypes, with increased recombination frequency, and increased allelic 

variation. 

Joint efforts in the labs of Wageningen UR Plant Breeding and IVF CAAS resulted in the 

resequencing of 125 B. rapa genotypes. These data could be mined to reveal haplotype variation 

or structural and/or allelic variation within the candidate regions identified in this study. After 

phenotyping of the studied traits, the re-sequencing data could be used for association mapping. 

Alternatively, reverse genetics approaches, such as in targeting-induced local lesions in genomes 

(TILLING) populations could be used for screening genes of interest to identify useful alleles, novel 

rare mutants, causal mutations and gene functions for phenotypic traits (Stephenson et al., 2010; 
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Gilchrist et al., 2013; Graham et al., 2014; Varshney et al., 2014). Graham et al., (2014) showed a 

link between eQTL and functional validation of the Bra017134 gene for an altered Calcium (Ca) 

concentration in shoots using a TILLING population in Arabidopsis and a B. rapa yellow sarson 

(RO18) (BraA.CAX1a mutant). As RO18 is a yellow sarson background, is self-compatible and has a 

good seed yield for phenotyping, this TILLING population could be very relevant to us as well to 

further validate candidate genes and to identify allelic variation and even rare variants. 

Figure 2: Proposed possible breeding strategy to develop varieties with desired fatty acid 
composition, using fatty acid QTLs identified in this study. Solid lines indicate the activities carried 
out in this study and dotted lines for the future activities that can be used in practical breeding to 
obtain desired fatty acid composition.  
 

Breeding perspectives 

Vegetable type B. rapa’s are mainly field crops, but seedlings are raised inside greenhouses by 

plant raisers, whereas oil-types and turnips are directly sown field crops. Seed quality and seedling 

establishment, especially under sub-optimal conditions, are more crucial for the latter ones. For 

the quality of seed oil in oilseed breeding, the optimum fatty acid composition is an important 

parameter. In this study, QTL hotspots for seed quality, seedling vigour and fatty acid composition 
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were detected across years and growing conditions, and those QTLs could be selected for a 

breeding program. We have provided a general scheme that can be applicable for implementing 

our QTL results in, for instance, marker-assisted selection (MAS). For example developing cultivars 

with different fatty acid composition would mean that in a practical breeding program one has to 

concentrate on linkage group A03 if MUFAs are to be changed while changing SFAs would mean to 

focus on linkage group A04 (Figure 2). In this schematic flow chart, we emphasize that the QTLs 

ideally first would need to be validated using several populations with different genetic 

backgrounds. In this PhD study, a doubled haploid population was used, which generally results in 

wide QTL regions. Therefore, it is important to narrow down the QTL regions before attempting to 

introgress genes (regions) of interest into breeding germplasm. In practical breeding, the 

identification of the actual responsible genes for phenotypic traits does not matter so much, as 

long as the favourable allele (or, haplotype alleles) can be selected for in marker-assisted selection 

(MAS) using different populations or breeding germplasm. After introgression of favourable alleles 

(e. g. through backcrossing), followed by MAS, the suitable breeding lines with desired fatty acid 

composition can be identified for variety development. In case of multiple QTLs with both major 

and minor effects, we suggest another route for breeding superior varieties, in which markers 

associated with major as well as minor QTLs (after QTL validation) can be used to predict genotype 

performances to select superior genotypes for variety development or inbreds for hybrid 

development (Figure 2). The advantage of MAS is that it allows the elimination of undesirable 

genotypes at the seedling stage, even for traits that are expressed at the later developmental 

stages. For very complex traits, genomic selection (GS) has nowadays received high importance to 

increase genetic gain in breeding per unit time and cost. In GS, a prediction model of breeding 

values is estimated using a training data set, which consists of both genotype (marker) and 

phenotype information of a large number of individuals. Using this model, genomic breeding 

values of novel breeding lines are estimated based on genotype data only. GS is based on 

simultaneous estimation of effects on phenotypes of all loci or markers available across the 

genome. Metabolites are more closely linked to the phenotype than genes, thus, may be used as 

predictive biomarkers for phenotypic traits as well. For example, the nutritional or industrial value 

of crop plants is ultimately dependent on their metabolic composition and some of these 

metabolites have been successfully employed for improving quality traits like fatty acid 

composition, oil content and seed meal in oilseed crops, protein, oil and provitamin A content in 

maize, starch content in potato and rice, carotenoid content in tomato, cold-sweetening in potato 

(reviewed by Fernie and Schauer, 2008). The measurement of hundreds of metabolites could lead 

to a better understanding of metabolism itself and, when used as biomarkers, also to predict 

agronomic traits or resistance to stresses. As systems biology approaches reveal genes that 

underlay phenotypic variation, this will result in tools for the breeders. 

 

Spatial and temporal mapping of metabolites or gene expression 

In this PhD project, we primarily studied global transcriptional variation during seed development 

(Chapter 3) as well as eQTL mapping in genetical genomics (Chapter 5). As mentioned earlier, we 
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aimed to measure, additionally, metabolic profiles of developing seeds to monitor metabolic 

switches during seed development and to associate these with transcript profiles. Unfortunately, 

this metabolomics project was not funded. We believe that understanding the seed development 

process at morphological, transcriptional and metabolomic levels would give detailed 

understanding of the metabolic processes during seed development. Furthermore, the in vivo 

spatial and temporal mapping (distributions and quantifications) of metabolite deposition at 

cellular levels in developing seeds until germination would add an additional level of information 

to this study. This could assist in relating the transcriptome variation, metabolite patterns and 

phenotypic observations with functional information and transport processes within the plant at 

anatomical level. Imaging technologies, such as matrix-assisted laser desorption/ionization 

(MALDI), electrospray ionization (ESI), nuclear magnetic resonance (NMR) and magnetic resonance 

imaging (MRI) have been successfully used in many plant species for accurate in vivo tissue-

specific localization and quantification of metabolites (e. g. lipid deposition) and expression of 

related genes in intact seeds (Borisjuk et al., 2013b). Therefore, such spatial and temporal 

mapping technologies would be helpful to integrate the current data sets as well as to validate the 

function of our candidate genes at the tissue-specific level. All that information could be an 

important contribution for subsequent breeding or genetic research purposes. 

 

Conclusions and final remarks 

Analyses of fatty acids, transcripts and phenomics of B. rapa seeds using systems genetics has 

increased our understanding of the genetics of seed quality and seedling vigour in B. rapa. Based 

on the discussion of co-localization of QTLs in Figure 1 and network analysis in Chapter 5, we were 

able to support our hypothesis that expression of lipid metabolism related genes is involved in the 

regulation of fatty acid biosynthesis, and that seed metabolites most likely are involved in the 

regulation of seed quality and seedling vigour related traits. The knowledge on the genetic 

regulation of fatty acids at the individual gene level may provide new opportunities for optimizing 

oil quality for different purposes. We expect that the findings of this thesis will have important 

contributions in seed quality research in B. rapa and ultimately in Brassica oilseed breeding. 

 

 

 

 



 

147 

 

References 
 

Agrama H, Eizenga G, Yan W (2007) Association mapping of yield and its components in rice 

cultivars. Molecular Breeding 19(4): 341-356. 

Al-Shehbaz IA, Beilstein MA, Kellogg EA (2006) Systematics and phylogeny of the Brassicaceae 

(Cruciferae): an overview. Plant Systematics and Evolution 259(2-4): 89-120. 

Ambika S, Manonmani V, Somasundaram G (2014) Review on effect of seed size on seedling 

vigour and seed yield. Research Journal of Seed Science 7(2): 31-38. 

Anderson JT, Willis JH, Mitchell-Olds T (2011) Evolutionary genetics of plant adaptation. Trends in 

genetics 27(7): 258-266. 

Andriotis VME, Pike MJ, Schwarz SL, Rawsthorne S, Wang TL, Smith AM (2012) Altered starch 

turnover in the maternal plant has major effects on Arabidopsis fruit growth and seed 

composition. Plant Physiology 160(3): 1175-1186. 

Angelovici R, Fait A, Zhu X, Szymanski J, Feldmesser E, Fernie AR, Galili G (2009) Deciphering 

transcriptional and metabolic networks associated with lysine metabolism during 

Arabidopsis seed development. Plant Physiology 151(4): 2058-2072. 

Aranzana MaJ, Kim S, Zhao K, Bakker E, Horton M, Jakob K, Lister C, Molitor J, Shindo C, Tang C, 

Toomajian C, Traw B, Zheng H, Bergelson J, Dean C, Marjoram P, Nordborg M (2005) 

Genome-wide association mapping in Arabidopsis identifies previously known flowering 

time and pathogen resistance genes. PLoS Genetics 1(5): e60. 

Armengaud P, Zambaux K, Hills A, Sulpice R, Pattison RJ, Blatt MR, Amtmann A (2009) EZ-Rhizo: 

integrated software for the fast and accurate measurement of root system architecture. 

The Plant Journal 57 (5): 945-956. 

Asakura T, Tamura T, Terauchi K, Narikawa T, Yagasaki K, Ishimaru Y, Abe K (2012) Global gene 

expression profiles in developing soybean seeds. Plant Physiology and Biochemistry 52: 

147-153. 

Ashraf M, McNeilly T (2004) Salinity tolerance in Brassica oilseeds. Critical Reviews in Plant 

Sciences 23(2): 157-174. 

Assenov Y, Ramírez F, Schelhorn SE, Lengauer T, Albrecht M (2008) Computing topological 

parameters of biological networks. Bioinformatics 24(2): 282-284. 

Atwell S, Huang YS, Vilhjalmsson BJ, Willems G, Horton M, Li Y, Meng D, Platt A, Tarone AM, Hu 

TT, Jiang R, Muliyati NW, Zhang X, Amer MA, Baxter I, Brachi B, Chory J, Dean C, Debieu 

M, de Meaux J, Ecker JR, Faure N, Kniskern JM, Jones JDG, Michael T, Nemri A, Roux F, 

Salt DE, Tang C, Todesco M, Traw MB, Weigel D, Marjoram P, Borevitz JO, Bergelson J, 

Nordborg M (2010) Genome-wide association study of 107 phenotypes in Arabidopsis 

thaliana inbred lines. Nature 465(7298): 627-631. 

Bagheri H, Pino Del Carpio D, Hanhart C, Bonnema G, Keurentjes J, Aarts MGM (2013) 

Identification of seed-related QTL in Brassica rapa. Spanish Journal of Agricultural 

Research 11:1085-1093. 

Bai C, Liang Y, Hawkesford MJ (2013) Identification of QTLs associated with seedling root traits 

and their correlation with plant height in wheat. Journal of Experimental Botany 64(6): 

1745-1753. 

Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) 

MEME Suite: tools for motif discovery and searching. Nucleic Acids Research 37: W202-

W208. 



References 
 

148 

 

Baker A, Graham IA, Holdsworth M, Smith SM, Theodoulou FL (2006) Chewing the fat: β-

oxidation in signalling and development. Trends in Plant Science 11(3): 124-132. 

Barker GC, Larson TR, Graham IA, Lynn JR, King GJ (2007) Novel insights into seed fatty acid 

synthesis and modification pathways from genetic diversity and quantitative trait loci 

analysis of the Brassica C genome. Plant Physiology 144(4): 1827-1842. 

Basnet RK, Moreno-Pachon N, Lin K, Bucher J, Visser RGF, Maliepaard C, Bonnema G (2013) 

Genome-wide analysis of coordinated transcript abundance during seed development in 

different Brassica rapa morphotypes. BMC Genomics 14: 840. 

Basunanda P, Radoev M, Ecke W, Friedt W, Becker HC, Snowdon RJ (2010) Comparative mapping 

of quantitative trait loci involved in heterosis for seedling and yield traits in oilseed rape 

(Brassica napus L.). Theoretical and Applied Genetics 120(2): 271–281. 

Batagelj V, Mrvar A (2003) Pajek - analysis and visualization of large networks. In: Juenger M, 

Mutzel P (eds.). Graph Drawing Software, Springer, Berlin, pp: 77-103. 

Baud S, Boutin J-P, Miquel M, Lepiniec L, Rochat C (2002) An integrated overview of seed 

development in Arabidopsis thaliana ecotype WS. Plant Physiology and Biochemistry 

40(2): 151-160. 

Baud S, Dubreucq B, Miquel M, Rochat C, Lepiniec L (2008) Storage reserve accumulation in 

Arabidopsis: metabolic and developmental control of seed filling. The Arabidopsis Book / 

American Society of Plant Biologists 6: e0113. 

Baud S, Lepiniec L (2010) Physiological and developmental regulation of seed oil production. 

Progress in Lipid Research 49(3): 235-249. 

Beisson F, Koo AJK, Ruuska S, Schwender J, Pollard M, Thelen JJ, Paddock T, Salas JJ, Savage L, 

Milcamps A, Mhaske VB, Cho Y, Ohlrogge JB (2003) Arabidopsis genes involved in acyl 

lipid metabolism. A 2003 census of the candidates, a study of the distribution of expressed 

sequence tags in organs, and a web-based database. Plant Physiology 132(2): 681-697. 

Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful 

approach to multiple testing. Journal of the Royal Statistical Society. Series B 

(Methodological) 57(1): 289-300. 

Bentsink L, Koornneef M (2008) Seed dormancy and germination. The Arabidopsis Book / 

American Society of Plant Biologists 6: e0119. 

Bernardo R (2002) Breeding for Quantitative traits in plants. Woodbury, Minnesota, the United 

States of America: Stemma Press. 

Bettey M, Finch-Savage WE, King GJ, Lynn JR (2000) Quantitative genetic analysis of seed vigour 

and pre-emergence seedling growth traits in Brassica oleracea. New Phytologist 148(2): 

277-286. 

Bino RJ, De Vos CHR, Lieberman M, Hall RD, Bovy A, Jonker HH, Tikunov Y, Lommen A, Moco S, 

Levin I (2005) The light-hyperresponsive high pigment-2dg mutation of tomato: 

alterations in the fruit metabolome. New Phytologist 166(2): 427-438. 

Bogatek R, Gniazdowska A (2012) Ethylene in seed development, dormancy and germination. In: 

McManus MT (ed.)The plant hormone ethylene. Annual Plant Reviews 44: 189-218. 

Bonnema G, Carpio DD, Zhao J (2011) Diversity analysis and molecular taxonomy of Brassica 

vegetable crops. In: Sadowski J, Kole C (eds.) Genetics, genomics and breeding of 

vegetable Brassicas. Science Publishers, pp: 81-124. 

Borisjuk L, Neuberger T, Schwender J, Heinzel N, Sunderhaus S, Fuchs J, Hay JO, Tschiersch H, 

Braun HP, Denolf P, Lambert B, Jakob PM, Rolletschek H (2013a) Seed architecture 

shapes embryo metabolism in oilseed rape. Plant Cell 25(5): 1625-1640. 



References 

 149 

Borisjuk L, Rolletschek H, Neuberger T (2013b) Nuclear magnetic resonance imaging of lipid in 

living plants. Progress in Lipid Research 52(4): 465-487. 

Bouteillé M, Rolland G, Balsera C, Loudet O, Muller B (2012) Disentangling the intertwined 

genetic bases of root and shoot growth in Arabidopsis. PLoS ONE 7(2): e32319. 

Bowers JE, Chapman BA, Rong J, Paterson AH (2003) Unravelling angiosperm genome evolution 

by phylogenetic analysis of chromosomal duplication events. Nature 422(6930): 433-438. 

Breiman L (2001) Random Forests. Machine Learning 45(1): 5-32. 

Breseghello F, Sorrells ME (2006) Association analysis as a strategy for improvement of 

quantitative traits in plants. Crop Science 46(3): 1323-1330. 

Broman KW, Wu H, Sen Ś, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. 

Bioinformatics 19(7): 889-890. 

Calabrese G, Bennett BJ, Orozco L, Kang HM, Eskin E, Dombret C, De Backer O, Lusis AJ, Farber 

CR (2012) Systems genetic analysis of osteoblast-lineage cells. PLoS Genetics 8(12): 

e1003150. 

Cavanagh C, Morell M, Mackay I, Powell W (2008) From mutations to MAGIC: resources for gene 

discovery, validation and delivery in crop plants. Current Opinion in Plant Biology 11(2): 

215-221. 

CFIA (2014) The Biology of Brassica rapa L. Canadian Food Inspection Agency (CFIA). The Plant 

Biosafety Office, Ottawa, Canada. http://www.inspection.gc.ca/plants/plants-with-novel-

traits/applicants/directive-94-08/biology-documents/brassica-rapa-l-

/eng/1330965093062/1330987674945. 

Chen B, Heneen W (1992) Inheritance of seed colour in Brassica campestris L. and breeding for 

yellow-seeded B. napus L. Euphytica 59(2-3): 157-163. 

Chen D, Neumann K, Friedel S, Kilian B, Chen M, Altmann T, Klukas C (2014) Dissecting the 

phenotypic components of crop plant growth and drought responses based on high-

throughput image analysis. Plant Cell 26(12): 4636-4655. 

Chen S, Nelson MN, Ghamkhar K, Fu T, Cowling WA (2007b) Divergent patterns of allelic diversity 

from similar origins: the case of oilseed rape (Brassica napus L.) in China and Australia. 

Genome 51(1): 1-10. 

Chen S, Zou J, Cowling WA, Meng J (2010) Allelic diversity in a novel gene pool of canola-quality 

Brassica napus enriched with alleles from B. rapa and B. carinata. Crop and Pasture 

Science 61(6): 483-492. 

Chen X, Liu CT, Zhang M, Zhang H (2007a) A forest-based approach to identifying gene and gene-

gene interactions. Proceedings of the National Academy of Sciences 104(49): 19199-

19203. 

Cheng F, Mandáková T, Wu J, Xie Q, Lysak MA, Wang X (2013a) Deciphering the diploid ancestral 

genome of the mesohexaploid Brassica rapa. Plant Cell 25(5): 1541-1554. 

Cheng F, Wu J, Fang L, Sun S, Liu B, Lin K, Bonnema G, Wang X (2012) Biased gene fractionation 

and dominant gene expression among the subgenomes of Brassica rapa. PLoS ONE 7(5): 

e36442. 

Cheng X, Cheng J, Huang X, Lai Y, Wang L, Du W, Wang Z, Zhang H (2013b) Dynamic quantitative 

trait loci analysis of seed reserve utilization during three germination stages in rice. PLoS 

ONE 8(11): e80002. 

Chia TYP, Pike MJ, Rawsthorne S (2005) Storage oil breakdown during embryo development of 

Brassica napus (L.). Journal of Experimental Botany 56(415): 1285-1296. 

http://www.inspection.gc.ca/plants/plants-with-novel-traits/applicants/directive-94-08/biology-documents/brassica-rapa-l-/eng/1330965093062/1330987674945
http://www.inspection.gc.ca/plants/plants-with-novel-traits/applicants/directive-94-08/biology-documents/brassica-rapa-l-/eng/1330965093062/1330987674945
http://www.inspection.gc.ca/plants/plants-with-novel-traits/applicants/directive-94-08/biology-documents/brassica-rapa-l-/eng/1330965093062/1330987674945


References 
 

150 

 

Chiang GCK, Barua D, Kramer EM, Amasino RM, Donohue K (2009) Major flowering time gene, 

FLOWERING LOCUS C, regulates seed germination in Arabidopsis thaliana. Proceedings of 

the National Academy of Sciences 106(28): 11661-11666. 

Chitwood DH, Topp CN (2015) Revealing plant cryptotypes: defining meaningful phenotypes 

among infinite traits. Current Opinion in Plant Biology 24: 54-60. 

Civelek M, Lusis AJ (2014) Systems genetics approaches to understand complex traits. Nature 

Reviews Genetics 15(1): 34-48. 

Csanádi G, Vollmann J, Stift G, Lelley T (2001) Seed quality QTLs identified in a molecular map of 

early maturing soybean. Theoretical and Applied Genetics 103(6-7): 912-919. 

Dang Z, Zheng L, Wang J, Gao Z, Wu S, Qi Z, Wang Y (2013) Transcriptomic profiling of the salt-

stress response in the wild recretohalophyte Reaumuria trigyna. BMC Genomics 14: 29. 

Darrouzet-Nardi A (2012) hotspots: an R package version 1.0.2. http://CRAN.R-

project.org/package=hotspots. 

de Candolle A (1959) Origin of cultivated plants. Hafner, New York. 

de Nooy W, Mrvar A, Batagelj V (2005) Exploratory social network analysis with Pajek. Cambridge: 

Cambridge University Press. 

DeRose-Wilson L, Gaut BS (2011) Mapping salinity tolerance during Arabidopsis thaliana 

germination and seedling growth. PLoS ONE 6(8): e22832. 

Denford K, Vaughan J (1977) A comparative study of certain seed isoenzymes in the ten 

chromosome complex of Brassica Campestris and its allies. Annals of Botany 41(2): 411-

418. 

Deng W, Chen G, Peng F, Truksa M, Snyder CL, Weselake RJ (2012) Transparent Testa 16 plays 

multiple roles in plant development and is involved in lipid synthesis and embryo 

development in Canola. Plant Physiology 160(2): 978-989. 

Dong J, Keller W, Yan W, Georges F (2004) Gene expression at early stages of Brassica napus seed 

development as revealed by transcript profiling of seed-abundant cDNAs. Planta 218(3): 

483-491. 

Druka A, Muehlbauer G, Druka I, Caldo R, Baumann U, Rostoks N, Schreiber A, Wise R, Close T, 

Kleinhofs A, Graner A, Schulman A, Langridge P, Sato K, Hayes P, McNicol J, Marshall D, 

Waugh R (2006) An atlas of gene expression from seed to seed through barley 

development. Functional & Integrative Genomics 6(3): 202-211. 

Economic Research Service (2008) Oil crops outlook. USDA Economic Research Service. U.S. 

Government Priong office, Washington, DC. 

El-Kassaby Y, Moss I, Kolotelo D, Stoehr M (2008) Seed germination: mathematical representation 

and parameters extraction. Forest Science 54(2): 220-227. 

Elliott RH, Mann LW, Olfert OO (2007) Effects of seed size and seed weight on seedling 

establishment, seedling vigour and tolerance of summer turnip rape (Brassica rapa) to flea 

beetles, Phyllotreta spp. Canadian Journal of Plant Science 87(2): 385-393. 

Ellis R (1992) Seed and seedling vigour in relation to crop growth and yield. Plant Growth 

Regulation 11: 249-255. 

Fait A, Angelovici R, Less H, Ohad I, Urbanczyk-Wochniak E, Fernie AR, Galili G (2006) Arabidopsis 

seed development and germination is associated with temporally distinct metabolic 

switches. Plant Physiology 142(3): 839-854. 

Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus 

genotype data: linked loci and correlated allele frequencies. Genetics 164(4): 1567-1587. 

http://cran.r-project.org/package=hotspots
http://cran.r-project.org/package=hotspots


References 

 151 

Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus 

genotype data: dominant markers and null alleles. Molecular Ecology Notes 7(4): 574-578. 

Feltus FA (2014) Systems genetics: a paradigm to improve discovery of candidate genes and 

mechanisms underlying complex traits. Plant Science 223: 45-48. 

Fernandez DE, Turner FR, Crouch ML (1991) In situ localization of storage protein mRNAs in 

developing meristems of Brassica napus embryos. Development 111(2): 299-313. 

Fernandez GCJ (1992). Effective selection criteria for assessing plant stress tolerance.In: Kuo CG 

(ed.) Proceedings of the International Symposium on Adaptation of vegetables and other 

food crops in temperature and water stress: Asian Vegetable Research and Development 

Center (AVRDC), pp: 257-270. 

Fernie AR and Schauer N (2008) Metabolomics-assisted breeding: a viable option for crop 

improvement? Trends in Genetics 25(1): 39-48. 

Finch-Savage WE, Clay HA, Lynn JR, Morris K (2010) Towards a genetic understanding of seed 

vigour in small-seeded crops using natural variation in Brassica oleracea. Plant Science 

179(6): 582-589. 

Foolad MR, Subbiah P, Zhang L (2007) Common QTL affect the rate of tomato seed germination 

under different stress and nonstress conditions. International Journal of Plant Genomics 

2007: 97386. 

Fu J, Jansen RC (2006) Optimal design and analysis of genetic studies on gene expression. Genetics 

172(3): 1993-1999. 

Fu J, Wolfs MGM, Deelen P, Westra HJ, Fehrmann RS, te Meerman GJ, Buurman WA, Rensen SS, 

Groen HJ, Weersma RK, van den Berg LH, Veldink J, Ophoff RA, Snieder H, van Heel D, 

Jansen RC, Hofker MH, Wijmenga C, Franke L (2012) Unravelling the regulatory 

mechanisms underlying tissue-dependent genetic variation of gene expression. PLoS 

Genetics 8(1): e1002431. 

Furbank RT, Tester M (2011) Phenomics – technologies to relieve the phenotyping bottleneck. 

Trends in Plant Science 16(12): 635-644. 

Fusi N, Stegle O, Lawrence ND (2012) Joint modelling of confounding factors and prominent 

genetic regulators provides increased accuracy in genetical genomics studies. PLoS 

Computational Biology 8(1): e1002330. 

Gaffney D, Veyrieras JB, Degner J, Pique-Regi R, Pai A, Crawford G, Stephens M, Gilad Y, 

Pritchard J (2012) Dissecting the regulatory architecture of gene expression QTLs. Genome 

Biology 13(1): R7. 

Galpaz N, Reymond M (2010) Natural variation in Arabidopsis thaliana revealed a genetic network 

controlling germination under salt stress. PLoS ONE 5(12):e15198. 

Gaur V, Singh US, Kumar A (2011) Transcriptional profiling and in silico analysis of Dof 

transcription factor gene family for understanding their regulation during seed 

development of rice Oryza sativa L. Molecular Biology Reports 38(4): 2827-2848. 

Gilchrist EJ, Sidebottom CHD, Koh CS, MacInnes T, Sharpe AG, Haughn GW (2013) A mutant 

Brassica napus (Canola) population for the identification of new genetic diversity via 

TILLING and next generation sequencing. PLoS ONE 8(12): e84303. 

Girke T, Todd J, Ruuska S, White J, Benning C, Ohlrogge J (2000) Microarray analysis of developing 

Arabidopsis seeds. Plant Physiology 124(4): 1570-1581. 

Gislason PO, Benediktsson JA, Sveinsson JR (2006) Random Forests for land cover classification. 

Pattern Recognition Letters 27(4): 294-300. 



References 
 

152 

 

Goffman FD, Velasco L, Becker HC (1999) Tocopherols accumulation in developing seeds and pods 

of rapeseed (Brassica napus L.). Lipid 101(10): 400-403. 

Gómez-Campo C (1999) Biology of Brassica Coenospecies. In: Gomez-Campo C (ed.) Developments 

in Plant Genetics and Breeding. Elsevier, Amsterdam, The Netherlands. 

Graham IA (2008) Seed storage oil mobilization. Annual Review of Plant Biology 59: 115-142. 

Graham NS, Hammond JP, Lysenko A, Mayes S, Ó Lochlainn S, Blasco B, Bowen HC, Rawlings CJ, 

Rios JJ, Welham S, Carion PWC, Dupuy LX, King GJ, White PJ, Broadley MR (2014) 

Genetical and comparative genomics of Brassica under altered Ca supply identifies 

Arabidopsis Ca-transporter orthologs. Plant Cell 26(7): 2818-2830. 

Gupta S, Stamatoyannopoulos J, Bailey T, Noble W (2007) Quantifying similarity between motifs. 

Genome Biology 8(2): R24. 

Guschina IA, Harwood JL (2007) Complex lipid biosynthesis and its manipulation in plants. In: 

Ranalli P (ed.) Improvement of crop plants for industrial end uses. Springer Dordrecht, The 

Netherlands, pp: 253-279. 

Häder T, Müller S, Aguilera M, Eulenberg KG, Steuernagel A, Ciossek T, Kühnlein RP, Lemaire L, 

Fritsch R, Dohrmann C, Vetter IR, Jäckle H, Doane WW, Brönner G (2003) Control of 

triglyceride storage by a WD40/TPR-domain protein. EMBO Reports 4(5): 511-516. 

Hammond JP, Mayes S, Bowen HC, Graham NS, Hayden RM, Love CG, Spracklen WP, Wang J, 

Welham SJ, White PJ, King GJ, Broadley MR (2011) Regulatory hotspots are associated 

with plant gene expression under varying soil phosphorus supply in Brassica rapa. Plant 

Physiology 156(3): 1230-1241. 

Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyze spatial genetic 

structure at the individual or population levels. Molecular Ecology Notes 2: 618–620. 

Harwood J (2005) Fatty acid biosynthesis. In: Murphy DJ (ed.) Plant Lipids: biology, utilisation and 

manipulation. Blackwell Publishing, Oxford, pp: 27-66. 

Hayashi Y, Hayashi M, Hayashi H, Hara-Nishimura I, Nishimura M (2001) Direct interaction 

between glyoxysomes and lipid bodies in cotyledons of the Arabidopsis thaliana ped1 

mutant. Protoplasma 218(1): 83-94. 

Holloway B, Luck S, Beatty M, Rafalski JA, Li B (2011) Genome-wide expression quantitative trait 

loci (eQTL) analysis in maize. BMC Genomics 12: 336. 

Hong CP, Kwon SJ, Kim JS, Yang TJ, Park BS, Lim YP (2008) Progress in understanding and 

sequencing the genome of Brassica rapa. International Journal of Plant Genomics 2008. 

Horvath S, Dong J (2008) Geometric interpretation of gene coexpression network analysis. PLoS 

Computational Biology 4(8): e1000117. 

Hu Y, Wu G, Cao Y, Wu Y, Xiao L, Li X, Lu C (2009) Breeding response of transcript profiling in 

developing seeds of Brassica napus. BMC Molecular Biology 10: 49. 

Huang BE, George AW, Forrest KL, Kilian A, Hayden MJ, Morell MK, Cavanagh CR (2012) A 

multiparent advanced generation inter-cross population for genetic analysis in wheat. 

Plant Biotechnology Journal 10(7): 826-839. 

Huang X, Paulo MJ, Boer M, Effgen S, Keizer P, Koornneef M, van Eeuwijk FA (2011) Analysis of 

natural allelic variation in Arabidopsis using a multiparent recombinant inbred line 

population. Proceedings of the National Academy of Sciences 108(11): 4488-4493. 

Hurtado-Lopez P (2012) Investigating genotype by environment and QTL by environment 

interactions for developmental traits in Potato. PhD thesis. Wageningen University, 

Wageningen, The Netherlands. 



References 

 153 

Ilić-Grubor K, Attree SM, Fowke LC (1998) Comparative morphological study of zygotic and 

microspore-derived embryos of Brassica napus L. as revealed by scanning electron 

microscopy. Annals of Botany 82: 157-165. 

Inohara N, Nuñez G (2002) ML – a conserved domain involved in innate immunity and lipid 

metabolism. Trends in Biochemical Sciences 27(5): 219-221. 

Jagannath A, Sodhi Y, Gupta V, Mukhopadhyay A, Arumugam N, Singh I, Rohatgi S, Burma P, 

Pradhan A, Pental D (2011) Eliminating expression of erucic acid-encoding loci allows the 

identification of “hidden” QTL contributing to oil quality fractions and oil content in 

Brassica juncea (Indian mustard). Theoretical and Applied Genetics 122(6): 1091-1103. 

Jannink JL, Jansen R (2001) Mapping epistatic quantitative trait loci with one-dimensional genome 

searches. Genetics 157(1): 445-454. 

Jansen RC, Nap JP (2001) Genetical genomics: the added value from segregation. Trends in 

Genetics 17(7): 388-391. 

Jestin C, Lodé M, Vallée P, Domin C, Falentin C, Horvais R, Coedel S, Manzanares-Dauleux M, 

Delourme R (2011) Association mapping of quantitative resistance for Leptosphaeria 

maculans in oilseed rape (Brassica napus L.). Molecular Breeding 27(3): 271–287. 

Jiang H, Wu P, Zhang S, Song C, Chen Y, Li M, Jia Y, Fang X, Chen F, Wu G (2012) Global analysis of 

gene expression profiles in developing physic nut (Jatropha curcas L.) seeds. PLoS ONE 

7(5): e36522. 

Jiang R, Tang W, Wu X, Fu W (2009) A random forest approach to the detection of epistatic 

interactions in case-control studies. BMC Bioinformatics 10: S65. 

Jolivet P, Boulard C, Bellamy A, Valot B, d’Andréa S, Zivy M, Nesi N, Chardot T (2011) Oil body 

proteins sequentially accumulate throughout seed development in Brassica napus. Journal 

of Plant Physiology 168(17): 2015-2020. 

Joosen RVL (2013) Imaging genetics of seed performance. PhD thesis. Wageningen University, 

Wageningen, Then Netherlands. 

Joosen RVL, Kodde J, Willems LAJ, Ligterink W, van der Plas LHW, Hilhorst HWM (2010) 

Germinator: a software package for high-throughput scoring and curve fitting of 

Arabidopsis seed germination. The Plant Journal 62(1): 148-159. 

Jordan MC, Somers DJ, Banks TW (2007) Identifying regions of the wheat genome controlling seed 

development by mapping expression quantitative trait loci. Plant Biotechnology Journal 

5(3): 442-453. 

Kadkol G, Beilharz V, Halloran G, Macmillan R (1986) Anatomical basis of shatter-resistance in the 

oilseed Brassicas. Australian Journal of Botany 34(5): 595-601. 

Kamal-Eldin A, Appelqvist LÅ (1996) The chemistry and antioxidant properties of tocopherols and 

tocotrienols. Lipids 31(7): 671-701. 

Kang HM, Ye C, Eskin E (2008a) Accurate discovery of expression quantitative trait loci under 

confounding from spurious and genuine regulatory hotspots. Genetics 180(4): 1909-1925. 

Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D, Daly MJ, Eskin E (2008b) Efficient control 

of population structure in model organism association mapping. Genetics 178(3): 1709-

1723. 

Karim MM, Siddika A, Tonu NN, Hossain DM, Meah MB, Kawanabe T, Fujimoto R, Okazaki K 

(2014) Production of high yield short duration Brassica napus by interspecific hybridization 

between B. oleracea and B. rapa. Breeding Science 63(5): 495-502. 

Kazmi RH, Khan N, Willems LAJ, van Heusden AW, Ligterink W, Hilhorst HWM (2012) Complex 

genetics controls natural variation among seed quality phenotypes in a recombinant 



References 
 

154 

 

inbred population of an interspecific cross between Solanum lycopersicum × Solanum 

pimpinellifolium. Plant, Cell & Environment 35(5): 929-951. 

Khan N, Kazmi RH, Willems LAJ, van Heusden AW, Ligterink W, Hilhorst HWM (2012) Exploring 

the natural variation for seedling traits and their link with seed dimensions in tomato. 

PLoS ONE 7(8): e43991. 

Kelly AA, Quettier AL, Shaw E, Eastmond PJ (2011) Seed storage oil mobilization is important but 

not essential for germination or seedling establishment in Arabidopsis. Plant Physiology 

157(2): 866-875. 

Khurana E, Fu Y, Chen J, Gerstein M (2013) Interpretation of genomic variants using a unified 

biological network approach. PLoS Computational Biology 9(3): e1002886. 

Kloosterman B, Anithakumari AM, Chibon PY, Oortwijn M, van der Linden GC, Visser RGF, 

Bachem CWB (2012) Organ specificity and transcriptional control of metabolic routes 

revealed by expression QTL profiling of source--sink tissues in a segregating potato 

population. BMC Plant Biology 12: 17. 

Kooke R (2014) Missing heritability and soft inheritance of morphology and metabolism in 

Arabidopsis. PhD thesis. Wageningen University, Wageningen, The Netherlands. 

Koornneef M, Bentsink L, Hilhorst H (2002) Seed dormancy and germination. Current Opinion in 

Plant Biology 5(1): 33-36. 

Kraakman A, Martínez F, Mussiraliev B, van Eeuwijk F, Niks R (2006) Linkage disequilibrium 

mapping of morphological, resistance, and other agronomically relevant traits in modern 

spring barley cultivars. Molecular Breeding 17(1): 41-58. 

Kumar H, Anubha, Vishwakarma M, Lal J (2011) Morphological and molecular characterization of 

Brassica rapa ssp yellow sarson mutants. Journal of Oilseed Brassica 2: 1-6. 

Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. 

BMC Bioinformatics 9: 559. 

Laudencia-Chingcuanco D, Stamova B, You F, Lazo G, Beckles D, Anderson O (2007) 

Transcriptional profiling of wheat caryopsis development using cDNA microarrays. Plant 

Molecular Biology 63(5): 651-668. 

Le BH, Cheng C, Bui AQ, Wagmaister JA, Henry KF, Pelletier J, Kwong L, Belmonte M, Kirkbride R, 

Horvath S, Drews GN, Fischer RL, Okamuro JK, Harada JJ, Goldberg RB (2010) Global 

analysis of gene activity during Arabidopsis seed development and identification of seed-

specific transcription factors. Proceedings of the National Academy of Sciences 107(18): 

8063-8070. 

Lee JM, Williams M, Tingey S, Rafalski A (2002) DNA array profiling of gene expression changes 

during maize embryo development. Functional & Integrative Genomics 2(1-2): 13-27. 

Lee KR, In Sohn S, Jung JH, Kim SH, Roh KH, Kim JB, Suh MC, Kim HU (2013) Functional analysis 

and tissue-differential expression of four FAD2 genes in amphidiploid Brassica napus 

derived from Brassica rapa and Brassica oleracea. Gene 531(2): 253-262. 

Lenhard B, Wasserman WW (2002) TFBS: Computational framework for transcription factor 

binding site analysis. Bioinformatics 18(8): 1135-1136. 

Li L, Bass RL, Liang Y (2008) fdrMotif: identifying cis-elements by an EM algorithm coupled with 

false discovery rate control. Bioinformatics 24(5): 629-636. 

Li W, Gao Y, Xu H, Zhang Y, Wang J (2012a) A proteomic analysis of seed development in Brassica 

campestri L. PLoS ONE 7(11): e50290. 



References 

 155 

Li X, Chen L, Hong M, Zhang Y, Zu F, Wen J, Yi B, Ma C, Shen J, Tu J, Fu T (2012b) A large insertion 

in bHLH transcription factor BrTT8 resulting in yellow seed coat in Brassica rapa. PLoS ONE 

7(9): e44145. 

Li Y, Huang Y, Bergelson J, Nordborg M, Borevitz JO (2010) Association mapping of local climate-

sensitive quantitative trait loci in Arabidopsis thaliana. Proceedings of the National 

Academy of Sciences 107(49), 21199–21204. 

Li Y, Swertz M, Vera G, Fu J, Breitling R, Jansen R (2009) designGG: an R-package and web tool for 

the optimal design of genetical genomics experiments. BMC Bioinformatics 10: 188. 

Liaw A, Wiener M (2002) Classification and regression by randomForest. R News 2(3): 18-22. 

Liu P, Wang C, Li L, Sun F, Liu P, Yue G (2011) Mapping QTLs for oil traits and eQTLs for oleosin 

genes in jatropha. BMC Plant Biology 11: 132. 

Liu S, Liu Y, Yang X, Tong C, Edwards D, Parkin IAP, Zhao M, Ma J, Yu J, Huang S, Wang X, Wang J, 

Lu K, Fang Z, Bancroft I, Yang TJ, Hu Q, Wang X, Yue Z, Li H, Yang L, Wu J, Zhou Q, Wang 

W, King GJ, Pires JC, Lu C, Wu Z, Sampath P, Wang Z, Guo H, Pan S, Yang L, Min J, Zhang 

D, Jin D, Li W, Belcram H, Tu J, Guan M, Qi C, Du D, Li J, Jiang L, Batley J, Sharpe AG, Park 

B-S, Ruperao P, Cheng F, Waminal NE, Huang Y, Dong C, Wang L, Li J, Hu Z, Zhuang M, 

Huang Y, Huang J, Shi J, Mei D, Liu J, Lee T-H, Wang J, Jin H, Li Z, Li X, Zhang J, Xiao L, 

Zhou Y, Liu Z, Liu X, Qin R, Tang X, Liu W, Wang Y, Zhang Y, Lee J, Kim HH, Denoeud F, Xu 

X, Liang X, Hua W, Wang X, Wang J, Chalhoub B, Paterson AH (2014) The Brassica 

oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nature 

Communications 5:3930. 

Liu X, Fu J, Gu D, Liu W, Liu T, Peng Y, Wang J, Wang G (2008) Genome-wide analysis of gene 

expression profiles during the kernel development of maize (Zea mays L.). Genomics 91(4): 

378-387. 

Lou P, Zhao JJ, He HJ, Hanhart C, Pino Del Carpio D, Verkerk R, Custers J, Koornneef M, Bonnema 

G (2008) Quantitative trait loci for glucosinolate accumulation in Brassica rapa leaves. 

New phytologist 179 (4): 1017–1032. 

Lukens LN, Quijada PA, Udall J, Pires JC, Schranz ME, Osborn TC (2004) Genome redundancy and 

plasticity within ancient and recent Brassica crop species. Biological Journal of the Linnean 

Society 82: 665-674. 

Lühs WW, Voss A, Seyis F, Friedt W (1999) Molecular genetics of erucic acid content in the genus 

Brassica. In: Wratten N, Salisbury P (eds.) New horizons for an old crop. Proceedings of the 

10th International Rapseed Congress, Canberra, Australia. 

Lunetta K, Hayward LB, Segal J, Van Eerdewegh P (2004) Screening large-scale association study 

data: exploiting interactions using random forests. BMC Genetics 5: 32. 

Maeo K, Tokuda T, Ayame A, Mitsui N, Kawai T, Tsukagoshi H, Ishiguro S, Nakamura K (2009) An 

AP2-type transcription factor, WRINKLED1, of Arabidopsis thaliana binds to the AW-box 

sequence conserved among proximal upstream regions of genes involved in fatty acid 

synthesis. The Plant Journal 60(3): 476-487. 

Mäkinen V-P, Civelek M, Meng Q, Zhang B, Zhu J, Levian C, Huan T, Segrè AV, Ghosh S, Vivar J, 

Nikpay M, Stewart AFR, Nelson CP, Willenborg C, Erdmann J, Blakenberg S, O'Donnell CJ, 

März W, Laaksonen R, Epstein SE, Kathiresan S, Shah SH, Hazen SL, Reilly MP, Lusis AJ, 

Samani NJ, Schunkert H, Quertermous T, McPherson R, Yang X, Assimes TL, the Coronary 

ADG-WR, Meta-Analysis C (2014) Integrative genomics reveals novel molecular pathways 

and gene networks for coronary artery disease. PLoS Genetics 10(7): e1004502. 



References 
 

156 

 

Malosetti M, van der Linden CG, Vosman B, van Eeuwijk FA (2007) A mixed-model approach to 

association mapping using pedigree information with an illustration of resistance to 

Phytophthora infestans in potato. Genetics 175(2): 879-889. 

Mano Y, Takeda K (1997) Mapping quantitative trait loci for salt tolerance at germination and the 

seedling stage in barley (Hordeum vulgare L.). Euphytica 94(3): 263-272. 

Mason M, Fan G, Plath K, Zhou Q, Horvath S (2009) Signed weighted gene co-expression network 

analysis of transcriptional regulation in murine embryonic stem cells. BMC Genomics 10: 

327. 

McMullen MD, Kresovich S, Villeda HS, Bradbury P, Li H, Sun Q, Flint-Garcia S, Thornsberry J, 

Acharya C, Bottoms C, Brown P, Browne C, Eller M, Guill K, Harjes C, Kroon D, Lepak N, 

Mitchell SE, Peterson B, Pressoir G, Romero S, Rosas MO, Salvo S, Yates H, Hanson M, 

Jones E, Smith S, Glaubitz JC, Goodman M, Ware D, Holland JB, Buckler ES (2009) Genetic 

properties of the maize nested association mapping population. Science 325(5941): 737-

740. 

Meireles-Filho ACA, Stark A (2009) Comparative genomics of gene regulation-conservation and 

divergence of cis-regulatory information. Current Opinion in Genetics & Development 

19(6): 565-570. 

Mena M, Vicente-Carbajosa J, Schmidt Robert J, Carbonero P (1998) An endosperm-specific DOF 

protein from barley, highly conserved in wheat, binds to and activates transcription from 

the prolamin-box of a native B-hordein promoter in barley endosperm. The Plant Journal 

16(1): 53-62. 

Merico D, Isserlin R, Stueker O, Emili A, Bader GD (2010) Enrichment Map: A Network-Based 

Method for Gene-Set Enrichment Visualization and Interpretation. PLoS ONE 5(11): 

e13984. 

Miquel M, Browse J (1995) Lipid biosynthesis in developing seeds. In: Kigel J, Galili G (eds.) Seed 

development and germination. Marcel Dekker, New York, pp: 169-193. 

Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends in Plant 

Science 11(1): 15-19. 

Mun J, Yang T, Kwon S, Park B (2011) Brassica rapa genome sequencing project: strategies and 

current status. In: Sadowski J, Kole C (eds.) Genetics, genomics and breeding of vegetable 

Brassicas. Science Publishers, Inc, Lebanon, pp: 304-327. 

Nemri A, Atwell S, Tarone AM, Huang YS, Zhao K, Studholme DJ, Nordborg M, Jones JDG (2010) 

Genome-wide survey of Arabidopsis natural variation in downy mildew resistance using 

combined association and linkage mapping. Proceedings of the National Academy of 

Sciences 107(22): 10302–10307. 

Ni Z, Kim ED, Ha M, Lackey E, Liu J, Zhang Y, Sun Q, Chen ZJ (2009) Altered circadian rhythms 

regulate growth vigour in hybrids and allopolyploids. Nature 457(7227): 327-331. 

Niu Y, Wu GZ, Ye R, Lin WH, Shi QM, Xue LJ, Xu XD, Li Y, Du YG, Xue HW (2009) Global analysis of 

gene expression profiles in Brassica napus developing seeds reveals a conserved lipid 

metabolism regulation with Arabidopsis thaliana. Molecular Plant 2(5): 1107-1122. 

O'Neill CM, Bancroft I (2000) Comparative physical mapping of segments of the genome of 

Brassica oleracea var. alboglabra that are homoeologous to sequenced regions of 

chromosomes 4 and 5 of Arabidopsis thaliana. The Plant Journal 23(2): 233-243. 

Opgen-Rhein R, Strimmer K (2007) From correlation to causation networks: a simple approximate 

learning algorithm and its application to high-dimensional plant gene expression data. 

BMC Systems Biology 1: 37. 



References 

 157 

Ouyang B, Yang T, Li H, Zhang L, Zhang Y, Zhang J et al., (2007) Identification of early salt stress 

response genes in tomato root by suppression subtractive hybridization and microarray 

analysis. Journal of Experimental Botany 58(3): 507-520. 

Padmaja L, Agarwal P, Gupta V, Mukhopadhyay A, Sodhi Y, Pental D, Pradhan A (2014) Natural 

mutations in two homoeologous TT8 genes control yellow seed coat trait in allotetraploid 

Brassica juncea (AABB). Theoretical and Applied Genetics 127(2): 339-347. 

Pang H, Lin A, Holford M, Enerson BE, Lu B, Lawton MP, Floyd E, Zhao H (2006) Pathway analysis 

using random forests classification and regression. Bioinformatics 22(16): 2028-2036. 

Parkin I, Koh C, Tang H, Robinson S, Kagale S, Clarke W, Town C, Nixon J, Krishnakumar V, 

Bidwell S, Denoeud F, Belcram H, Links M, Just J, Clarke C, Bender T, Huebert T, Mason A, 

Pires J, Barker G, Moore J, Walley P, Manoli S, Batley J, Edwards D, Nelson M, Wang X, 

Paterson A, King G, Bancroft I, Chalhoub B, Sharpe A (2014) Transcriptome and 

methylome profiling reveals relics of genome dominance in the mesopolyploid Brassica 

oleracea. Genome Biology 15(6): R77. 

Patterson N, Price AL, Reich D (2006) Population structure and eigenanalysis. PLoS Genetics 2(12): 

e190. 

Penfield S, Li Y, Gilday AD, Graham S, Graham IA (2006) Arabidopsis ABA INSENSITIVE4 regulates 

lipid mobilization in the embryo and reveals repression of seed germination by the 

endosperm. The Plant Cell 18(8): 1887-1899. 

Peng Q, Hu Y, Wei R, Zhang Y, Guan C, Ruan Y, Liu C (2010) Simultaneous silencing of FAD2 and 

FAE1 genes affects both oleic acid and erucic acid contents in Brassica napus seeds. Plant 

Cell Reports 29(4): 317-325. 

Peng F, Weselake R (2011) Gene coexpression clusters and putative regulatory elements 

underlying seed storage reserve accumulation in Arabidopsis. BMC Genomics 12: 286. 

Perrier X, Jacquemoud-Collet JP (2006) DARwin software http://darwin.cirad.fr/darwin  

Pino Del Carpio D (2010) The genetics of the metabome in Brassica rapa. PhD thesis. Wageningen 

University, Wageningen. 

Pino Del Carpio D, Basnet RK, Arends D, Lin K, De Vos RCH, Muth D, Kodde J, Boutilier K, Bucher 

J, Wang X, Jansen R, Bonnema G (2014) Regulatory network of secondary metabolism in 

Brassica rapa: insight into the glucosinolate pathway. PLoS ONE 9(9): e107123. 

Pino Del Carpio D, Basnet RK, De Vos RCH, Maliepaard C, Paulo MJ, Bonnema G (2011a) 

Comparative methods for association studies: a case study on metabolite variation in a 

Brassica rapa core collection. PLoS ONE 6(5): e19624. 

Pino Del Carpio D, Basnet RK, De Vos RCH, Maliepaard C, Visser RGF, Bonnema G (2011b) The 

patterns of population differentiation in a Brassica rapa core collection. Theoretical and 

Applied Genetics 122(6): 1105-1118. 

Pollard KS, Dudoit S, van der Laan MJ (2005) Multiple Testing Procedures: the multtest package 

and applications to genomics. In: Bioinformatics and computational biology solutions using 

R and Bioconductor, Springer, pp: 249-271. 

Portales-Casamar E, Thongjuea S, Kwon AT, Arenillas D, Zhao X, Valen E, Yusuf D, Lenhard B, 

Wasserman WW, Sandelin A (2010) JASPAR 2010: the greatly expanded open-access 

database of transcription factor binding profiles. Nucleic Acids Research 38 (Database 

issue): D105-D110. 

Pracharoenwattana I, Zhou W, Smith S (2010) Fatty acid beta-oxidation in germinating 

Arabidopsis seeds is supported by peroxisomal hydroxypyruvate reductase when malate 

dehydrogenase is absent. Plant Molecular Biology 72(1-2): 101-109. 

http://darwin.cirad.fr/darwin


References 
 

158 

 

Prakash S, Hinata K (1980) Taxonomy, cytogenetics and origin of crop Brassicas, a review. Opera 

Botanica 55-57. 

Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D (2006) Principal 

components analysis corrects for stratification in genome-wide association studies. Nature 

Genetics 38(8): 904-909. 

Pritchard JK, Przeworski M (2001) Linkage disequilibrium in humans: models and data. The 

American Journal of Human Genetics 69(1): 1-14. 

Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus 

genotype data. Genetics 155(2): 945-959. 

Qian W, Meng J, Li M, Frauen M, Sass O, Noack J, Jung C (2006) Introgression of genomic 

components from Chinese Brassica rapa contributes to widening the genetic diversity in 

rapeseed (B. napus L.), with emphasis on the evolution of Chinese rapeseed. Theoretical 

and Applied Genetics 113(1): 49-54. 

Quettier AL, Eastmond PJ (2009) Storage oil hydrolysis during early seedling growth. Plant 

Physiology Biochemistry 47(6): 485-490. 

Quijada PA, Udall JA, Lambert B, Osborn TC (2006) Quantitative trait analysis of seed yield and 

other complex traits in hybrid spring rapeseed (Brassica napus L.): 1. Identification of 

genomic regions from winter germplasm. Theoretical and Applied Genetics 113(3), 549–

561. 

Rahman H, Harwood J, Weselake R (2013) Increasing seed oil content in Brassica species through 

breeding and biotechnology. Lipid Technology 25(8): 182-185. 

Rahman MH, Joersbo M, Poulsen MH (2001) Development of yellow-seeded Brassica napus of 

double low quality. Plant Breeding 120(6): 473-478. 

Raney JP, Love HK, Rakow GFW, Downey RK (1987) An apparatus for rapid preparation of oil and 

oil-free meal from Brassica seed. Lipid 89(6): 235-237. 

R Core Team (2012) R: A language and environment for statistical computing. R Foundation for 

Statistical Computing, Vienna, Austria. URL http://www.R-project.org/  

Reeves PA, Richards CM (2009) Accurate inference of subtle population structure (and other 

genetic discontinuities) using principal coordinates. PLoS ONE 4(1): e4269. 

Reiner H, Holzner W, Ebermann R (1995) The development of turnip-type and oilseed-type 

Brassica rapa crops from the wild type in Europe. - An overview of botanical, historical and 

linguistic facts. In: Rapeseed today and tomorrow, Vol 4, pp: 1066-1069. 9th International 

Rapeseed Congress, Cambridge, UK 4-7 July 1995, pp: 1066-1069. 

Remington DL, Thornsberry JM, Matsuoka Y, Wilson LM, Whitt SR, Doebley J, Kresovich 

S, Goodman MM, Buckler ES (2001) Structure of linkage disequilibrium and phenotypic 

associations in the maize genome. Proceedings of the National Academy of Sciences 

98(20):11479-11489. 

Ren Z, Zheng Z, Chinnusamy V, Zhu J, Cui X, Iida K, Zhu JK (2010) RAS1, a quantitative trait locus 

for salt tolerance and ABA sensitivity in Arabidopsis. Proceedings of the National Academy 

of Sciences 107(12): 5669-5674. 

Ritland K (1996) Estimators for pairwise relatedness and individual inbreeding coefficients. 

Genetics Research 67(02): 175-185. 

Rohlf FJ (1998) NTSYS-pc: numerical taxonomy and multivariate analysis system, version 3.2. 1st 

edn., Exeter software, New York. 

Ruuska SA, Girke T, Benning C, Ohlrogge JB (2002) Contrapuntal networks of gene expression 

during Arabidopsis seed filling. The Plant Cell 14(6): 1191-1206. 

http://www.r-project.org/
http://www.ncbi.nlm.nih.gov/pubmed/?term=Remington%20DL%5BAuthor%5D&cauthor=true&cauthor_uid=11562485
http://www.ncbi.nlm.nih.gov/pubmed/?term=Thornsberry%20JM%5BAuthor%5D&cauthor=true&cauthor_uid=11562485
http://www.ncbi.nlm.nih.gov/pubmed/?term=Matsuoka%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=11562485
http://www.ncbi.nlm.nih.gov/pubmed/?term=Wilson%20LM%5BAuthor%5D&cauthor=true&cauthor_uid=11562485
http://www.ncbi.nlm.nih.gov/pubmed/?term=Whitt%20SR%5BAuthor%5D&cauthor=true&cauthor_uid=11562485
http://www.ncbi.nlm.nih.gov/pubmed/?term=Doebley%20J%5BAuthor%5D&cauthor=true&cauthor_uid=11562485
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kresovich%20S%5BAuthor%5D&cauthor=true&cauthor_uid=11562485
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kresovich%20S%5BAuthor%5D&cauthor=true&cauthor_uid=11562485
http://www.ncbi.nlm.nih.gov/pubmed/?term=Goodman%20MM%5BAuthor%5D&cauthor=true&cauthor_uid=11562485
http://www.ncbi.nlm.nih.gov/pubmed/?term=Buckler%20ES%204th%5BAuthor%5D&cauthor=true&cauthor_uid=11562485


References 

 159 

Rygulla W, Snowdon RJ, Eynck C, Koopmann B, von Tiedemann A, Lühs W Friedt W (2007) 

Broadening the Genetic Basis of Verticillium longisporum Resistance in Brassica napus by 

Interspecific Hybridization. Phytopathology 97(11): 1391-1396. 

Ryu SB, Lee HY, Doelling JH, Palta JP (2005) Characterization of a cDNA encoding Arabidopsis 

secretory phospholipase A2-α, an enzyme that generates bioactive lysophospholipids and 

free fatty acids. Biochimica et Biophysica Acta (BBA)-Molecular and cell biology of lipids 

1736(2): 144-151. 

Saad FF, El-Mohsen AAA, El-Shafi MAA, Al-Soudan IH (2014) Effective selection criteria for 

evaluating some Barley crosses for water stress tolerance. Advance in Agriculture and 

Biology 2(3): 112-123. 

Sabelli PA (2012) Seed Development: a comparative overview on biology of morphology, 

physiology, and biochemistry between monocot and dicot plants. In: Agrawal GK, Rakwal 

R, Sabelli P (eds.) Seed development: OMICS technologies toward improvement of seed 

quality and crop yield. Springer Netherlands, pp: 3-25. 

Santos-Mendoza M, Dubreucq B, Baud S, Parcy F, Caboche M, Lepiniec L (2008) Deciphering gene 

regulatory networks that control seed development and maturation in Arabidopsis. The 

Plant Journal 54(4): 608-620. 

Sanyal A, Randal Linder C (2012) Quantitative trait loci involved in regulating seed oil composition 

in Arabidopsis thaliana and their evolutionary implications. Theoretical and Applied 

Genetics 124(4): 723-738. 

Schlichting CD (1986) The evolution of phenotypic plasticity in plants. Annual Review of Ecology 

and Systematics 17: 667-693. 

Schmidt R, Acarkan A, Boivin K (2001) Comparative structural genomics in the Brassicaceae 

family. Plant Physiology and Biochemistry 39(3-4): 253-262. 

Schranz ME, Lysak MA, Mitchell SE (2006) The ABC's of comparative genomics in the 

Brassicaceae: building blocks of crucifer genomes. Trends in Plant Science 11(11): 535-542. 

Schwender J, Ohlrogge J, Shachar-Hill Y (2004) Understanding flux in plant metabolic networks. 

Current Opinion in Plant Biology 7(3): 309-317. 

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T 

(2003) Cytoscape: a software environment for integrated models of biomolecular 

interaction networks. Genome Research 13(11): 2498-2504. 

Sharma N, Anderson M, Kumar A, Zhang Y, Giblin EM, Abrams S, Zaharia LI, Taylor D, Fobert P 

(2008) Transgenic increases in seed oil content are associated with the differential 

expression of novel Brassica-specific transcripts. BMC Genomics 9: 619. 

Simko I (2004) One potato, two potato: haplotype association mapping in autotetraploids. Trends 

in Plant Science 9(9): 441-448. 

Smyth GK (2005) limma: linear models for microarray data. In: Gentleman R, Carey VJ, Huber W, 

Irizarry RA, Dudoit S (eds.) Bioinformatics and computational biology solutions using R and 

Bioconductor. Springer, New York, pp: 397-420. 

Song KM, Osborn TC, Williams PH (1988) Brassica taxonomy based on nuclear restriction 

fragment length polymorphisms (RFLPs): 2. Preliminary analysis of subspecies within B. 

rapa (syn. campestris) and B. oleracea. Theoretical and Applied Genetics 76(4): 593-600. 

Stamm P, Ravindran P, Mohanty B, Tan E, Yu H, Kumar P (2012) Insights into the molecular 

mechanism of RGL2-mediated inhibition of seed germination in Arabidopsis thaliana. BMC 

Plant Biology 12: 179. 



References 
 

160 

 

Stephenson P, Baker D, Girin T, Perez A, Amoah S, King G, Østergaard L (2010) A rich TILLING 

resource for studying gene function in Brassica rapa. BMC Plant Biology 10: 62. 

Stich B (2009) Comparison of mating designs for establishing nested association mapping 

populations in maize and Arabidopsis thaliana. Genetics 183(4): 1525-1534. 

Stinchcombe JR, Weinig C, Heath KD, Brock MT, Schmitt J (2009) Polymorphic genes of major 

effect: consequences for variation, selection and evolution in Arabidopsis thaliana. 

Genetics 182(3): 911-922. 

Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proceedings of the 

National Academy of Sciences 100(16): 9440-9445. 

Su J, Wu S, Xu Z, Qiu S, Luo T, Yang Y, Chen Q, Xia Y, Zou S, Huang BL, Huang B (2013) Comparison 

of Salt Tolerance in Brassicas and some related species. American Journal of Plant Sciences 

4(10): 1911-1917. 

Susko DJ, Lovett-Doust L (2000) Patterns of seed mass variation and their effects on seedling traits 

in Alliaria petiolata (Brassicaceae). American Journal of Botany 87(1): 56-66. 

Svetnik V, Liaw A, Tong C, Culberson JC, Sheridan RP, Feuston BP (2003) Random forest: a 

classification and regression tool for compound classification and QSAR modeling. Journal 

of Chemical Information and Computer Sciences 43(6): 1947-1958. 

Sybesma W, Starrenburg M, Tijsseling L, Hoefnagel MHN, Hugenholtz J (2003) Effects of 

cultivation conditions on folate production by lactic acid bacteria. Applied and 

Environmental Microbiology 69(8): 4542-4548. 

Tan H, Yang X, Zhang F, Zheng X, Qu C, Mu J, Fu F, Li J, Guan R, Zhang H, Wang G, Zuo J (2011) 

Enhanced seed oil production in Canola by conditional expression of Brassica napus LEAFY 

COTYLEDON1 and LEC1-LIKE in developing seds. Plant Physiology 156(3): 1577-1588. 

Tanhuanpää P, Schulman A (2002) Mapping of genes affecting linolenic acid content in Brassica 

rapa ssp. oleifera. Molecular Breeding 10: 51-62. 

Teoh KT, Requesens DV, Devaiah S, Johnson D, Huang X, Howard J, Hood E (2013) Transcriptome 

analysis of embryo maturation in maize. BMC Plant Biology 13: 19. 

ter Kuile BH, Westerhoff HV (2001) Transcriptome meets metabolome: hierarchical and metabolic 

regulation of the glycolytic pathway. FEBS Letters 500(3): 169-171. 

Thies W (1971) Schnelle und einfache Analysen der Fettsäurezusammensetzung in einzelnen Raps-

Kotyledonen. 1. Gaschromatographische und papierchromatographische Methoden. Z 

Pflanzenzüchtg 65: 181-202. 

Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler ES (2001) Dwarf8 

polymorphisms associate with variation in flowering time. Nature Genetics 28(3): 286-289. 

Tillmann P (1997) Recent experiences with NIRS analysis in rapeseed. GCIRC Bull 13: 84-87. 

Töpfer R, Martini N, Schell J (1995) Modification of plant lipid synthesis. Science 268(5211): 681-

687. 

Town CD, Cheung F, Maiti R, Crabtree J, Haas BJ, Wortman JR, Hine EE, Althoff R, Arbogast TS, 

Tallon LJ, Vigouroux M, Trick M, Bancroft I (2006) Comparative genomics of Brassica 

oleracea and Arabidopsis thaliana reveal gene loss, fragmentation, and dispersal after 

polyploidy. The Plant Cell 18(6): 1348-1359. 

U N (1935) Genome analysis in Brassica with special reference to the experimental formation of B. 

napus and peculiar mode of fertilization. Japan Journal of Botany 7: 389-452. 

Umnajkitikorn K, Faiyue B, Saengnil K (2013) Enhancing antioxidant properties of germinated Thai 

rice (Oryza sativa) cv Ku Doi Saket with salinity. Journal of Rice Research 1:103. 



References 

 161 

Usadel B, Nagel A, Thimm O, Redestig H, Blaesing OE, Palacios-Rojas N, Selbig J, Hannemann J, 

Piques MC, Steinhauser D, Scheible WR, Gibon Y, Morcuende R, Weicht D, Meyer S, Stitt 

M (2005) Extension of the visualization tool MapMan to allow statistical analysis of arrays, 

display of coresponding genes, and comparison with known responses. Plant Physiology 

138(3): 1195-1204. 

van der Sijde MR, Ng A, Fu J (2014) Systems genetics: From GWAS to disease pathways. 

Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 1842(10): 1903-1909. 

Van Ooijen JW (2006) JoinMap 4, Software for the calculation of genetic linkage maps in 

experimental populations. Kyazma B.V., Wageningen, Netherlands. 

Van Ooijen JW (2009) MapQTL 6, Software for the mapping of quantitative trait loci in 

experimental populations of diploid species. Kyazma B.V., Wageningen, Netherlands. 

Varshney RK, Terauchi R, McCouch SR (2014) Harvesting the promising fruits of genomics: 

applying genome sequencing technologies to crop breeding. PLoS Biology 12(6): 

e1001883. 

Vicente-Carbajosa J, Moose SP, Parsons RL, Schmidt RJ (1997) A maize zinc-finger protein binds 

the prolamin box in zein gene promoters and interacts with the basic leucine zipper 

transcriptional activator Opaque2. Proceedings of the National Academy of Sciences 

94(14): 7685-7690. 

Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Friters A, Pot J, Paleman J, 

Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acid 

Research 23(21): 8. 

Walton LJ, Kurepin LV, Yeung EC, Shah S, Emery RJN, Reid DM, Pharis RP (2012) Ethylene 

involvement in silique and seed development of canola, Brassica napus L. Plant Physiology 

and Biochemistry 58: 142-150. 

Wan Y, Poole R, Huttly A, Toscano-Underwood C, Feeney K, Welham S, Gooding M, Mills C, 

Edwards K, Shewry P, Mitchell R (2008) Transcriptome analysis of grain development in 

hexaploid wheat. BMC Genomics 9: 121. 

Wang H, Guo J, Lambert KN, Lin Y (2007) Developmental control of Arabidopsis seed oil 

biosynthesis. Planta 226(3): 773-783. 

Wang J, Yu H, Weng X, Xie W, Xu C, Li X, Xiao J, Zhang Q (2014a) An expression quantitative trait 

loci-guided co-expression analysis for constructing regulatory network using a rice 

recombinant inbred line population. Journal of Experimental Botany 65(4): 1069-1079. 

Wang M, Chen X, Zhang H (2010a) Maximal conditional chi-square importance in random forests. 

Bioinformatics 26(6): 831–837. 

Wang M, Liu M, Li D, Wu J, Li X, Yang Y (2010b) Overexpression of FAD2 promotes seed 

germination and hypocotyl elongation in Brassica napus. Plant Cell Tissue and Organ 

Culture 102(2): 205-211. 

Wang X, Jiang GL, Green M, Scott RA, Hyten DL, Cregan PB (2014b) Quantitative trait locus 

analysis of unsaturated fatty acids in a recombinant inbred population of soybean. 

Molecular Breeding 33(2): 281-296. 

Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun JH, Bancroft I, Cheng F, Huang S, Li X, 

Hua W, Wang J, Wang X, Freeling M, Pires JC, Paterson AH, Chalhoub B, Wang B, 

Hayward A, Sharpe AG, Park BS, Weisshaar B, Liu B, Li B, Liu B, Tong C, Song C, Duran C, 

Peng C, Geng C, Koh C, Lin C, Edwards D, Mu D, Shen D, Soumpourou E, Li F, Fraser F, 

Conant G, Lassalle G, King GJ, Bonnema G, Tang H, Wang H, Belcram H, Zhou H, Hirakawa 

H, Abe H, Guo H, Wang H, Jin H, Parkin IAP, Batley J, Kim JS, Just J, Li J, Xu J, Deng J, Kim 



References 
 

162 

 

JA, Li J, Yu J, Meng J, Wang J, Min J, Poulain J, Wang J, Hatakeyama K, Wu K, Wang L, 

Fang L, Trick M, Links MG, Zhao M, Jin M, Ramchiary N, Drou N, Berkman PJ, Cai Q, 

Huang Q, Li R, Tabata S, Cheng S, Zhang S, Zhang S, Huang S, Sato S, Sun S, Kwon SJ, Choi 

SR, Lee TH, Fan W, Zhao X, Tan X, Xu X, Wang Y, Qiu Y, Yin Y, Li Y, Du Y, Liao Y, Lim Y, 

Narusaka Y, Wang Y, Wang Z, Li Z, Wang Z, Xiong Z, Zhang Z (2011a) The genome of the 

mesopolyploid crop species Brassica rapa. Nature Genetics 43(10): 1035-1039. 

Wang Z, Chen Z, Cheng J, Lai Y, Wang J, Bao Y, Huang J, Zhang H (2012) QTL analysis of Na+ and K+ 

Concentrations in roots and shoots under different levels of NaCl stress in rice (Oryza 

sativa L.). PLoS ONE 7(12): e51202. 

Wang Z, Wang J, Bao Y, Wu Y, Zhang H (2011b) Quantitative trait loci controlling rice seed 

germination under salt stress. Euphytica 178(3): 297-307. 

Warwick SI, James T, Falk KC (2008) AFLP-based molecular characterization of Brassica rapa and 

diversity in Canadian spring turnip rape cultivars. Plant Genetic Resources 6(01): 11-21. 

Weselake RJ, Taylor DC, Rahman MH, Shah S, Laroche A, McVetty PBE, Harwood JL (2009) 

Increasing the flow of carbon into seed oil. Biotechnology Advances 27(6): 866-878. 

Wind JJ, Peviani A, Snel B, Hanson J, Smeekens SC (2013) ABI4: versatile activator and repressor. 

Trends in plant science 18(3): 125-132. 

Wright SI, Gaut BS (2005) Molecular population genetics and the search for adaptive evolution in 

plants. Molucular Biology and Evolution 22(3): 506-519. 

Wu J, Wei K, Cheng F, Li S, Wang Q, Zhao J, Bonnema G, Wang X (2012) A naturally occurring 

InDel variation in BraA.FLC.b (BrFLC2) associated with flowering time variation in Brassica 

rapa. BMC Plant Biology 12: 151. 

Xiao D, Wang H, Basnet RK, Zhao J, Lin K, Hou X, Bonnema G (2014) Genetic dissection of leaf 

development in Brassica rapa using a genetical genomics approach. Plant Physiology 

164(3): 1309-1325. 

Xiao D, Zhao JJ, Hou XL, Basnet RK, Carpio DPD, Zhang NW, Bucher J, Lin K, Cheng F, Wang XW, 

Bonnema G (2013) The Brassica rapa FLC homologue FLC2 is a key regulator of flowering 

time, identified through transcriptional co-expression networks. Journal of Experimental 

Botany 64(14): 4503-4516. 

Xiao L, Zhao Z, Du D, Yao Y, Xu L, Tang G (2012) Genetic characterization and fine mapping of a 

yellow-seeded gene in Dahuang (a Brassica rapa landrace). Theoretical and Applied 

Genetics 124(5): 903-909. 

Xue LJ, Zhang JJ, Xue HW (2012) Genome-wide analysis of the complex transcriptional networks of 

rice developing seeds. PLoS ONE 7(2): e31081. 

Yan X, Li J, Wang R, Jin M, Chen L, Qian W, Wang X, Liu L (2011) Mapping of QTLs controlling 

content of fatty acid composition in rapeseed (Brassica napus). Genes & Genomics 33(4): 

365-371. 

Yanagisawa S (2004) Dof domain proteins: plant-specific transcription factors associated with 

diverse phenomena unique to plants. Plant and Cell Physiology 45(4): 386-391. 

Yang P, Shu C, Chen L, Xu J, Wu J, Liu K (2012a) Identification of a major QTL for silique length and 

seed weight in oilseed rape (Brassica napus L.). Theoretical and Applied Genetics 125(2): 

285-296. 

Yang Q, Fan C, Guo Z, Qin J, Wu J, Li Q, Fu T, Zhou Y (2012b) Identification of FAD2 and FAD3 

genes in Brassica napus genome and development of allele-specific markers for high oleic 

and low linolenic acid contents. Theoretical and Applied Genetics 125(4): 715-729. 



References 

 163 

Yang TJ, Kim JS, Kwon SJ, Lim KB, Choi BS, Kim JA, Jin M, Park JY, Lim MH, Kim HI, Lim YP, Kang 

JJ, Hong JH, Kim CB, Bhak J, Bancroft I, Park BS (2006) Sequence-level analysis of the 

diploidization process in the triplicated FLOWERING LOCUS C region of Brassica rapa. The 

Plant Cell 18(6): 1339-1347. 

Yang Y, Yu X, Song L, An C (2011) ABI4 Activates DGAT1 Expression in Arabidopsis Seedlings during 

Nitrogen Deficiency. Plant Physiology 156(2): 873-883. 

Ye Y, Zhong X, Zhang H (2005) A genome-wide tree- and forest-based association analysis of 

comorbidity of alcoholism and smoking. BMC Genetics 6: S135. 

Yu B, Gruber M, Khachatourians GG, Hegedus DD, Hannoufa A (2010) Gene expression profiling 

of developing Brassica napus seed in relation to changes in major storage compounds. 

Plant Science 178(4): 381-389. 

Yu J, Holland JB, McMullen MD, Buckler ES (2008) Genetic design and statistical power of nested 

association mapping in maize. Genetics 178(1): 539-551. 

Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen 

DM, Holland JB, Kresovich S, Buckler ES (2006) A unified mixed-model method for 

association mapping that accounts for multiple levels of relatedness. Nature Genetics 

38(2): 203-208. 

Zhang G, Zhou W (2006) Genetic analyses of agronomic and seed quality traits of synthetic oilseed 

Brassica napus produced from interspecific hybridization of B. campestris and B. oleracea. 

Journal of Genetics 85(1): 45-51. 

Zhang J, Liu H, Sun J, Li B, Zhu Q, Chen S, Zhang H (2012) Arabidopsis fatty acid desaturase FAD2 is 

required for salt tolerance during seed germination and early seedling growth. PLoS ONE 

7(1): e30355. 

Zhao J (2007) The genetics of phytate content and morphological traits in Brassica rapa. PhD 

thesis. Wageningen University, Wageningen. 

Zhao J, Paulo M-J, Jamar D, Lou P, van Eeuwijk F, Bonnema G, Vreugdenhil D, Koornneef M 

(2007) Association mapping of leaf traits, flowering time, and phytate content in Brassica 

rapa. Genome 50(10): 963-973. 

Zhao J, Wang X, Deng B, Lou P, Wu J, Sun R, Xu Z, Vromans J, Koornneef M, Bonnema G (2005) 

Genetic relationships within Brassica rapa as inferred from AFLP fingerprints. Theoretical 

and Applied Genetics 110(7): 1301-1314. 

Zhu T, Budworth P, Chen W, Provart N, Chang H-S, Guimil S, Su W, Estes B, Zou G, Wang X (2003) 

Transcriptional control of nutrient partitioning during rice grain filling. Plant Biotechnology 

Journal 1(1): 59-70. 

 



 

164 

 



 

165 

 

Summary 
Seed is the basic and most critical input for seed propagated agricultural crops: seed quality and 

seedling vigour determine plant establishment, growth and development in both natural and 

agricultural ecosystems. Seed quality and seedling vigour are mainly determined by the 

interactions of the following three components: genetic background, physiological quality and the 

environmental conditions during seed set, seed ripening, storage, seed germination and early 

seedling development. In the past, many efforts have been made to improve seed germination 

and seedling vigour by optimizing physiological and environmental factors (non-genetic factors); 

however, the paradigm has shifted to investigate genetic factors and to use these to improve crop 

performance by plant breeding. The aim of this thesis is to unravel the genetics of seed 

germination and seedling vigour under different conditions in Brassica rapa, using a systems 

genetics approach. Studies in many crop species have reported that seed germination and 

seedling vigour traits are governed by many genes and are strongly affected by environmental 

conditions. As salinity stress is becoming one of the most important abiotic stresses affecting crop 

growth and yield, we studied the genetics of seed germination and seedling vigour under neutral 

and salt stress conditions. For a number of crops, it has been established that larger seed size and 

higher seed weight indicate more reserve food and contribute positively to seedling 

establishment. Therefore, our hypothesis for this thesis is that transcriptional regulation of genes 

during seed development determines the composition and content of seed reserves, and that 

these seed reserves play a major role in seed germination and seedling growth, especially at the 

heterotrophic stage under optimal and sub-optimal conditions. 

 B. rapa is an extremely diverse Brassica species which includes, besides many diverse leafy 

vegetable types and turnips, also oilseed crops. Brassica seeds are of high economic importance 

for several reasons. They are the starting point of the life cycle of the crop, but also they are 

directly used as sources of vegetable oil or condiments. At present, B. napus is the most important 

source of vegetable oil worldwide, but B. rapa is often used for introgression breeding to broaden 

its narrow genetic base resulting in genetic improvements. Therefore, the acquired knowledge is 

also useful for the scientific community and plant breeders working in B. napus and other Brassica 

species.  

In Chapter 2 we evaluated the genetic diversity of a B. rapa core collection of 168 accessions 

representing different crop types and geographic origins. Using the Bayesian cluster analysis 

software STRUCTURE, we identified four subpopulations: subpopulation 1 with accessions of 

Indian origin, spring oil, yellow sarson and rapid cycling; subpopulation 2 consisting of several 

types from Asian origins: pak choi, winter oil, mizuna, mibuna, komasuna, turnip green, oil rape 

and Asian turnip; subpopulation 3, which included mainly accessions of Chinese cabbage and 

subpopulation 4 with mostly vegetable turnip, fodder turnip and brocoletto accessions from 

European origin. The geographical distribution of the accessions was very much congruent with 

genetic, metabolic and morphological diversity. This initial study was followed by association 

studies for secondary metabolites from the tocopherol and carotenoids pathways, using the 

population structure of these four subpopulations as a correction term to control for spurious 
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marker-trait associations (Chapter 2). Additionally, we used a machine learning approach, Random 

Forest (RF) regression, to find marker-trait associations. We chose the RF approach as it can 

handle large numbers of variables (markers, metabolites, transcript abundance) in combination 

with relatively small sample sets of accessions, to show its perspectives for application to the 

increasing amounts of data available through the different ~omics technologies. In our analysis, 

the markers showing significant association with metabolites identified by the RF approach 

overlapped with markers obtained from association mapping. Those markers could potentially be 

used for marker-assisted selection (MAS) in breeding for these secondary metabolites in different 

morphotypes or sub-populations. Knowledge of genetic distance as evaluated in this chapter 

allowed the choice of parents to create a segregating population for QTL analyses by maximizing 

genetic variation between the parents. 

In Chapter 4, a doubled haploid (DH) population from a cross of genetically diverse morphotypes 

of B. rapa, an oil-type yellow sarson (YS143) and a vegetable pak choi (PC175) (Chapter 2), was 

used to evaluate the genetic basis of seed germination and seedling vigour traits under both non-

stress and salt stress conditions. The yellow sarson parent had larger seed size and higher 

thousand-seed weight than the pak choi parent, and displayed earlier onset, higher uniformity in 

germination, faster germination and maximum germination, and higher root- and shoot- lengths 

and biomass under both non-stress and salt stress conditions. Positive correlations of thousand-

seed weight with earliness, speed and uniformity of germination and maximum germination 

percentage, supports that larger seeds germinate earlier, faster, more uniformly and to a higher 

maximum germination percentage than smaller seeds. Thus, we conclude that yellow sarson had 

higher seed quality and seedling vigour than pak choi. However yellow sarson also contributed 

negative alleles to seed germination, as illustrated by its allele of the QTL at A05 which decreases 

the uniformity of seed germination. In addition we also observed that yellow sarson seedling 

growth was more affected by salt stress than pak choi. All traits were scored over the DH 

population, and this clearly showed transgressive variation for most traits. Eight QTL hotspots 

were identified for seed weight, seed germination, and root and shoot lengths. A QTL hotspot for 

seed germination on A02 co-located with a homologue of the FLOWERING LOCUS C (BrFLC2) genes 

and its cis-acting expression QTL (cis-eQTL). FLC2 (BrFLC2 in B. rapa) is an important repressor of 

flowering time in both A. thaliana and B. rapa and recently, FLC2 was reported for its pleiotropic 

effect on seed germination in A. thaliana. A QTL hotspot on A05 with salt stress specific QTL co-

located with the FATTY ACID DESATURASE 2 (BrFAD2) gene and its cis-eQTL. Besides the role of 

FAD2 in fatty acid desaturation, the up-regulation of this gene was associated with enhanced seed 

germination and hypocotyl elongation under salinity in B. napus (BnFAD2) and A. thaliana (FAD2). 

We observed epistatic interactions between the QTL hotspots at the BrFLC2 and BrFAD2 loci, and 

between other QTL hotspots. 

Seed development is regulated by many dynamic metabolic processes controlled by complex 

networks of spatially and temporally expressed genes. Therefore, morphological characteristics 

and the transcriptional signatures of developing seeds from yellow- and brown/black-seeded 

genotypes were studied to get to know the timing of key metabolic processes, to explore the 
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major transcriptional differences and to identify the optimum stage for a genetical genomics study 

for B. rapa seed traits (Chapter 3). This is the first study of genome-wide profiling of transcript 

abundance during seed development in B. rapa. Most transcriptional changes occurred between 

25 and 35 days after pollination (between the bent-cotyledon stage and the stage when the 

embryo fully fills the seed), which is later than in the related species B. napus. A weighted gene co-

expression network analysis (WGCNA) identified 47 gene modules with different co-expression 

patterns, of which 17 showed a genotype effect, 4 modules a time effect during seed development 

and 6 modules both genotype and time effects. Based on the number of genes in gene modules, 

the predominant variation in gene expression was according to developmental stages rather than 

morphotype differences. We identified 17 putative cis-regulatory elements (motifs) for four co-

regulated gene clusters of genes related to lipid metabolism. The identification of key 

physiological events, major expression patterns, and putative cis-regulatory elements provides 

useful information to construct gene regulatory networks in B. rapa developing seeds and 

provides a starting point for a genetical genomics study of fatty acid composition and additional 

seed traits in Chapter 5. 

Since Brassica seeds are sources of vegetable oil, genetic studies of the gene regulatory 

mechanisms underlying lipid metabolism is of high importance, not only in relation to seed and 

seedling vigour, but also for Brassica oilseed breeding. In Chapter 5, an integrative approach of 

QTL mapping for fatty acids composition and for transcript abundance (eQTL) of genes related to 

lipid metabolism, together with gene co-expression networks was used to unravel the genetic 

regulation of seed fatty acid composition in the DH population of B. rapa. In this study, a 

confounding effect of flowering time variation was observed on fatty acid QTLs (metabolite level) 

at linkage group A02 and of seed colour variation on eQTLs (transcript level) at linkage group A09. 

At A02, fatty acid QTLs from 2009 seeds co-locate with the genetic position of a gene-targeted 

marker for BrFLC2, its cis-QTL, and a major flowering time QTL. Flowering time variation is very 

obvious in this DH population and the BrFLC2 gene at A02 (16.7 cM) is the major regulator of 

flowering time, with a non-functional allele in the yellow sarson parent. When QTL analysis was 

performed on seeds from 2011, from DH lines that flowered synchronously due to staggered 

sowing, this fatty acid QTL hotspot disappeared. The 2011 seed lot was used for further analysis 

combining fatty acid QTLs with eQTLs in this study. On A09, a large trans-eQTL hotspot was co-

localized with a major seed colour QTL, in the region where the causal gene, the bHLH 

transcription factor BrTT8, was cloned. The role of this gene in seed colour development was 

functionally proven in B. rapa. As the yellow sarson and pak choi parents of this population have 

contrasting seed coat colour (Chapter 3) the DH lines segregated for seed colour. When seed 

colour variation was used as a co-variate in our statistical model, we could exclude its confounding 

effect on eQTL mapping. We compared the fatty acid QTL and eQTL results from the analyses 

before and after seed colour correction and later discuss the results from the analysis after 

correction. The distribution of major QTLs for fatty acids showed a relationship with the types of 

fatty acids: linkage group A03 contained major QTLs for monounsaturated fatty acids (MUFAs), 

A04 for saturated fatty acids (SFAs) and A05 for polyunsaturated fatty acids (PUFAs). Using a 
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genetical genomics approach, eQTL hotspots were found at major fatty acid QTLs on A03, A04 and 

A05 and on A09. Finally, an eQTL-guided gene co-expression network of lipid metabolism related 

genes showed major hubs at the genes BrPLA2-ALPHA, BrWD-40, a number of seed storage 

protein genes and a transcription factor BrMD-2, suggesting essential roles of these genes in lipid 

metabolism. Several genes, such as BrFAE1, BrTAG1, BrFAD2, BrFAD5, BrFAD7, which were 

reported as important genes for fatty acid composition in seeds in other studies of related species, 

had relatively lower degrees of connection in the networks. However their cis-eQTLs co-localized 

with specific fatty acid QTLs, making them candidate genes for the observed variation. We 

hypothesize that these play a role in modifying fatty acid content or composition across 

genotypes, rather than playing essential roles in the pathway itself. These results suggest the need 

of a global study of lipid metabolism rather than a strict focus on the fatty acid biosynthesis 

pathway per se. This study gives a starting point for understanding the genetic regulation of lipid 

metabolism, by identification of a number of key regulatory genes, identified as major hub genes, 

and candidate genes for fatty acid QTLs. 

In the final chapter (Chapter 6) we summarize and critically discuss the relationships among 

phenotypic traits, metabolites and expression variation as well as the co-localization of QTLs from 

these different levels. In this thesis, we developed methodology to integrate transcriptomics and 

metabolomics data sets and to construct gene regulatory networks related to major fatty acids, and 

found a set of (possible) candidate genes involved in lipid metabolism. In the future, we 

recommend to integrate the genome-wide transcriptome data set with all major seed metabolites 

and phenotypic data on seed and seedling vigour to directly link all three components: 

transcriptome, metabolome and phenotypic traits, and ultimately expand the knowledge on the 

genetic regulation of seed metabolites, seed quality and seedling vigour in B. rapa to other Brassica 

species.   
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