Restyling Alternaria

Joyce H.C. Woudenberg

Thesis committee

Promotors

Prof. Dr P.W. Crous
Professor of Evolutionary Phytopathology
Wageningen University
Prof. Dr P.J.G.M. de Wit
Professor of Phytopathology
Wageningen University

Co-promotor

Dr J.Z. Groenewald
Researcher, Evolutionary Phytopathology
CBS-KNAW Fungal Biodiversity Centre, Utrecht

Other members

Dr F.T. Bakker, Wageningen University
Dr A.J.M. Debets, Wageningen University
Prof. Dr Th.W. Kuyper, Wageningen University
Dr J. Woodhall, Food and Environment Research Agency (Fera), UK
This research was conducted under the auspices of the Graduate School of Experimental Plant Sciences

Restyling Alternaria

Joyce H.C. Woudenberg

Thesis
submitted in fulfilment of the requirements for the degree of doctor at Wageningen University
by the authority of the Rector Magnificus
Prof. Dr A.P.J. Mol,
in the presence of the
Thesis Committee appointed by the Academic Board
to be defended in public
on Thursday 10 September 2015
at 11 a.m. in the Aula.

Joyce H.C. Woudenberg Restyling Alternaria, 251 pages.

PhD thesis, Wageningen University, Wageningen, NL (2015)
With references, with summary in English

CONTENTS

Chapter 1 General introduction 7
Chapter 2 Alternaria redefined 19
Chapter 3 Reappraisal of the genus Alternariaster (Dothideomycetes) 79
Chapter 4 Large-spored Alternaria pathogens in section Porri 95 disentangled
Chapter 5 Alternaria section Alternaria: species, formae speciales or 161 pathotypes
Chapter 6 Diversity and movement of indoor Alternaria alternata 197 across the mainland USA
Chapter 7 General discussion 219
Appendix References 230
Summary 243
Acknowledgements 246
Curriculum vitae 248
List of publications 249
Education statement 251

General introduction

GENERAL INTRODUCTION

The fungal genus Alternaria is an omnipresent dematiaceous hyphomycete which forms darkcoloured, multicellular conidia (phaeodictyospores). It includes saprophytic, endophytic and pathogenic species, and is associated with a wide variety of substrates including seeds, plants, agricultural products, humans, soil and the atmosphere. The pathogenic species include multiple serious plant pathogens, causing major losses on a wide range of crops (Thomma 2003), while others are again known as important post-harvest pathogens (Serdani et al. 2002, Kang et al. 2002), or causative agents of phaeohyphomycosis in immuno-compromised patients (Pastor \& Guarro 2008). When occurring indoors, they are also common allergens in humans causing hypersensitivity reactions, which can eventually lead to asthma (Downs et al. 2001).

Molecular studies reveal that the Alternaria complex currently comprises the genera Alternaria, Chalastospora, Crivellia, Embellisia, Nimbya, Stemphylium, Ulocladium, Undifilum and the recently described genus Sinomyces (Fig. 1). Several genera within this complex are non-monophyletic and Alternaria species cluster in multiple distinct speciesclades, which are not always correlated with species-groups based upon morphological characteristics. Alternaria alternata, the most commonly reported species in literature and type species of the genus Alternaria, also comprises one such a species-group (Simmons 1995). These small-spored Alternaria species can, however, not be distinguished based on molecular techniques alone (Peever et al. 2004, 2005, Andrew et al. 2009). As A. alternata is considered as one of the most prolific producers of fungal allergens (Horner et al. 1995, Pulimood et al. 2007, Kuna et al. 2011), and this species complex contains multiple hostspecific pathogenic strains (Kohmoto \& Otani 1991), a correct identification is of utmost importance.

Taxonomic history

The genus Alternaria was first described with A. tenuis as the type, and only species (Nees 1816). The characteristics of the genus included the production of dark-coloured dictyospores in chains, and a beak of tapering apical cells. The genus was initially not recognized and A. tenuis was erroneous synonymised with Torula alternata (Fries 1832), and multiple new phaeodictyosporic hyphomycetous genera were described, such as Macrosporium (Fries 1832), Stemphylium (Wallroth 1833) and Ulocladium (Preuss 1851), further complicating the taxonomic resolution in this group of fungi. Several re-descriptions of these genera (Saccardo 1886, Elliot 1917) resulted in a growing number of new species. Due to ambiguities in the description of A. tenuis (Nees 1816), both A. tenuis and T. alternata were later synonymised under Alternaria alternata (Keissler 1912), and Macrosporium was synonymised under Alternaria after re-examination of their respective type species (Wiltshire 1933). Furthermore, the genus concept of Stemphylium was re-defined (Wiltshire 1938) and a later review of the genus Alternaria and related species (Joly 1964) placed a lot of atypical strains back into Alternaria.

Fig. 1. Bayesian 50 \% majority rule consensus tree based on GAPDH sequence data from Pryor \& Bigelow (2003), Hong et al. (2005), Andersen et al. (2009), Pryor et al. (2009), Runa et al. (2009), Lawrence et al. (2011), and Wang et al. (2011). The Bayesian posterior probabilities (PP) >0.75 are presented at the nodes; thickened lines indicate a PP of 1.0. The blue boxes indicate the Alternaria species-groups. The tree was rooted with Setosphaeria pedicellata.
GAPDH locus
114 isolates, 474 characters
GTR + y distribution model
207 unique site patterns

Alternaria I

Ulocladium

Alternaria II

Embellisia III

Embellisia IV
0.94 AY278821 S. vesicarium

L AY278823 P. herbarum
Stemphylium
0.1

The current concepts of the genera started with the seminal paper "Typification of Alternaria, Stemphylium and Ulocladium" (Simmons 1967) followed by multiple Alternaria essays, where two additional asexual genera were described as close relatives of Alternaria, namely Embellisia (Simmons 1971) and Nimbya (Simmons 1989). A life-time work on Alternaria taxonomy eventually resulted in The Alternaria Identification Manual (Simmons 2007), with morphological descriptions of 275 recognised Alternaria species. Here again three new genera, Alternariaster, Chalastospora, and Teretispora, were segregated from Alternaria, based on morphological characters. Meanwhile, the sexual genus Crivellia with Brachycladium as asexual morph was described (Inderbitzin et al. 2006), to accommodate a former Pleospora species. Based on morphological and molecular data Crivellia was shown to belong to the Alternaria complex rather than to Pleospora. The genus Undifilum was described to accommodate two species formerly classified in Embellisia and Helminthosporium (Pryor et al. 2009). Based on molecular data Undifilum formed a distinct clade from the other Embellisia species and species in Alternaria, Ulocladium, Nimbya and Crivellia. Morphologically Undifilum resembled Embellisia, with the exception of its typical germ tube formation. The latest genus in the Alternaria complex, Sinomyces, was described to accommodate a former Ulocladium species and two new species from China (Wang et al. 2011). The generated molecular data supported them as a distinct clade within the Alternaria complex. Morphologically Sinomyces resembled Ulocladium, but Sinomyces showed no, or only 1 to 2 geniculate, sympodial proliferations.

Economic importance

Plant pathogens

The genus Alternaria contains multiple species which are known as serious plant pathogens on a variety of crops (Thomma 2003) and ornamentals (Chase 2005). The aerial parts of the plant are mostly attacked, and infection will often start with a small circular dark leaf spot which can reach 1 cm or more in diameter as the disease progresses. Since the growth-rate of Alternaria is related to changing environmental conditions, a typical growth pattern of concentric rings is observed in the leaf spot. Alternaria infections on roots, tubers, stems and fruits often show dark, sunken lesions (Laemmlen 2001). A yellow halo around the leaf spot can also be present, caused by diffusing toxins produced by the different Alternaria species. Most plant pathogenic Alternaria species are known to produce secondary metabolites, mostly phytotoxins, which can play an important role in the pathogenesis of plants (Logrieco et al. 2009). Some species, like A. alternata, produce several mycotoxins in infected plants, which can be toxic for animals and even humans (Logrieco et al. 2009). Furthermore, A. alternata can carry host-specific toxin gene clusters on a conditionally dispensable (CD) chromosome. This CD chromosome can be lost (Johnson et al. 2001) or gained (Salamiah et al. 2001, Masunaka et al. 2005, Akagi et al. 2009), making an isolate either nonpathogenic or pathogenic to the specific host affected by the toxin which it carries.

Besides A. alternata, multiple plant pathogens are found in the A. porri species-group, e.g. A. porri, A. solani, A. tomatophila. Alternaria porri causes purple blotch of onion, a very destructive disease of onions worldwide. The disease causes a significant reduction in seed and bulb yield, with seed losses of up to 100% (Abo-Elyousr et al. 2014). Alternaria solani is the causative agent of early blight of potato. This very common disease, which can be found in most potato-growing countries, can cause considerable defoliation. The disease typically reduces yields by $\sim 20 \%$, but yield reductions of up to 80% have been reported (Horsfield et al. 2010). Alternaria tomatophila is known for causing early blight of tomato, attacking the

Table 1. Important plant pathogenic Alternaria species and the names of the diseases they cause.

Alternaria species	Disease
A. arborescens	Tomato stem canker
A. brassicae	Brassicaceae leaf spot
A. brassicicola	Brassicaceae black spot
A. citri	Rough lemon leaf spot
A. dauci	Carrot leaf blight
A. gaisen	Japanese pear black spot
A. longipes	Tobacco brown spot
A. mali	Apple blotch
A. petroselini	Parsley leaf blight
A. porri	Onion purple blotch
A. radicina	Carrot black rot
A. solani	Potato early blight
A. tomatophila	Tomato early blight
A. triticina	Wheat leaf blight

leaves, stems and fruit. This airborne pathogen has spread worldwide, mainly affecting field crops. When left untreated the damage can result in plant defoliation in excess of 60% (Zitter \& Drennan 2005). An overview of important plant pathogenic Alternaria species and the names of the diseases they cause are given in Table 1.

Post-harvest pathogens

A variety of rots and decay caused by fungi or bacteria can be found on stored products. These post-harvest diseases can start before or after harvesting. Plants or fruits infected in the field may not develop symptoms until stored, and the presence of high temperatures and high moisture during storage can stimulate the infections to continue to develop on fruits and vegetables. Penetration can occur through natural openings, but most post-harvest pathogens need wounds, cuts, or bruises caused during harvesting to infect the host (Barkai-Goland 2001). Post-harvest losses of fruit and vegetables can reach up to 25% of the total production in industrialized countries and even more than 50% in developing countries (Nunes 2012). Alternaria core rot of apples and Alternaria black rot of citrus are two examples of serious post-harvest diseases caused by isolates of the A. arborescens, A. infectoria and A. tenuissima species-groups (Serdani et al. 2002, Kang et al. 2002). In contrast to the host specificity observed in plant diseases, no host specificity seems to exist in the post-harvest diseases with these different small-spored Alternaria species (Kang et al. 2002).

Allergens

Airborne spores, hyphae and fragments of fungi are small enough to be inhaled into the lower airways (Randriamanantany et al. 2010). As Alternaria is omnipresent in the environment, Alternaria species are frequently associated with hypersensitivity pneumonitis, asthma and allergic fungal rhinitis and sinusitis. Allergic rhinitis is the most common form of noninfectious rhinitis (Randriamananany et al. 2010), while allergic (extrinsic) asthma is the most common form of asthma, affecting over 50% of the 20 million asthma sufferers (Salo et al. 2006). The reported prevalence of Alternaria sensitivity varies significantly among different studies. In the European Community Respiratory Health Survey I (ECRHS), the prevalence of a positive skin test for Alternaria, tested on 18102 adults at 35 centers in 15 well-developed countries
worldwide, was 3.3 \%, but ranged from 0.2 \% to 14.4 \% (Bousquet et al. 2007). The French Six Cities study showed a 2.8% prevalence of a positive skin test for Alternaria sensitization in children (Radriamanantany et al. 2010). This variation probably arose from differences in the diagnostic methods used in the various studies (skin prick vs. test for specific IgEs), selection of patients with different ages (children $v s$. adolescents and adults) and the diseases analysed (asthma vs. rhinitis), climate where the study took place (variation in humidity and temperature) and other environmental factors. The Alternaria species considered as the main airborne allergen is Alternaria alternata (Horner et al. 1995, Pulimood et al. 2007, Kuna et al. 2011).

Phaeohyphomycosis

Phaeohyphomycosis comprises fungal infections caused by dematiaceous (pigmented) filamentous fungi. The fungus often occurs on the skin where it can form nodules or cysts but is also capable of invading the deeper tissues and even the brain where hypha, yeast-like cells or a combination of these morphologic characteristics can be observed. The fungus is not capable of penetrating the skin itself, but needs a cut or wound to cause infection. Usually it is caused by contaminated material, such as a splinter or plant matter, which enters the skin during an injury. These opportunistic fungal infections mainly affect immuno-compromised people.

A recent review describes 210 reported cases of Alternaria infections in humans between 1933 and 2007 with the majority (almost 75%) being cutaneous and subcutaneous infections followed by oculomycosis, invasive and non-invasive rhinosinusitis and onychomycosis (Pastor \& Guarro 2008). In the majority of the reported cases identification to species level was not performed. The most common clinical species is A. infectoria, although A. alternata and A. tenuissima are often wrongly mentioned as causative agent. Other Alternaria species mentioned rarely as causative agents are, for example, A. chlamydospora, A. longipes and A. dianthicola (Pastor \& Guarro 2008). A study on phaeohyphomycosis due to Alternaria species in transplant recipients (Boyce et al. 2010) also concluded that Alternaria species are rare, but increasingly recognised as causing opportunistic infections among highly immunocompromised transplant recipients.

Species complexes

The species-group delineation within Alternaria based on morphological characteristics was first introduced by Elliott (1917), who described six species-groups based on spore similarity. Others divided the genus in two groups, one forming chains of spores with a relative short beak and one with conidia containing a long filiform beak which seldom form conidial chains (Angel 1929, Wiltshire 1933). Later on, a subdivision based on length of the conidial chains and length of the conidial beak was suggested, resulting in the sections longicatenatae, brevicatenatae and noncatenatae (Neergaard 1945). Based partly on these first subdivisions, a key to 14 speciesgroups using characters of the conidium, the pattern of chain formation, and the nature of the apical extensions of conidium cells was described (Simmons 1992) and several hundreds of small-spored chain-forming pear isolates were divided into nine groups based on sporulation patterns (Simmons \& Roberts 1993). The first descriptions of the A. alternata, A. tenuissima, A. cheiranthi and A. brassicicola species-groups were made by Simmons (1995). These key morphology and sporulation characteristics, observed under strict standardised laboratory conditions, are used in the treatment of the genus in The Alternaria Identification Manual (Simmons 2007). Section one of the Manual contains the relatively large-spored species, further

Table 2. Molecular species-groups within Alternaria and the species described herein. ${ }^{1}$

Species-group	Species
A. alternantherae	A. alternantherae, A. celosiae, A. perpunctulata
A. alternata	A. alternata, A. arborescens, A. citriarbusti, A. citrimacularis, A. colombiana,
	A. destruens, A. dumosa, A. gaisen, A. interrupta, A. limoniasperae, A. longipes,
	A. mali, A.perangusta, A.tangelonis, A. tenuissima, A. toxicogenica, A. turkisafria
A. brassicicola	A. brassiscola, A. japonica, A. mimicula, Embellisia conoidea
A. infectoria	A. arbusti, A.conjuncta, A.ethzedia, A.infectoria, A. intercepta, A. metachromatica,
	A. oregonensis, A. photistica, A. tritici-maculans, A. triticina, A. viburni
A. porri	A. blumae, A. capsici, A. carthami, A. crassa, A. cucumerina, A. dauci,
	A. euphorbiicola, A. limicola, A. linicola, A. macrospora, A. porri, A. protenta,
	A. pseudorostrata, A. sesami, A. solani, A. tagetica, A. zinniae
A. radicina	A. carotiincultae, A. petroselini, A. radicina, A. selini, A. smyrnii, Ulocladium
	lanuginosum
A. sonchi	A. cinerariae, A. sonchi

${ }^{1}$ Based on Pryor \& Gilberston (2000), Pryor \& Michailides (2001), Chou \& Wu (2002), Pryor \& Bigelow (2003), Peever et al. (2004), Hong et al. (2005), Pryor et al. (2009), Runa et al. (2009), Andersen et al. (2009), Lawrence et al. (2011).
divided by the shape of the conidium beak. Section two of the Manual contains the species with a relatively short conidium body further divided by the number of conidia produced and their chain formation.

Modern, molecular-based studies revealed that Alternaria species do cluster in several distinct species clades, which do not always correlate with species-groups delineated based on morphological characteristics. Currently seven species-groups are recognised based on molecular phylogenies (Fig. 1), which together harbour 58 Alternaria species (Table 2). The A. porri and A. sonchi species-groups reside in Section one in the Identification Manual, large-spored conidia, and Section two, the small-spored conidia, harbours the A. alternata, A. radicina, A. brassicicola and A. infectoria species-groups. The A. alternantherae species-group (Lawrence et al. 2011), harbours three species which were formerly recognised as Nimbya species.

Morphology

Alternaria is characterised as a dematiaceous hyphomycete whose phaeodictyospores, dark coloured conidia with transverse and longitudinal septa, develop at a very restricted site in the apex of distinctive conidiophores (Fig. 2A). The genus Ulocladium can be distinguished from Alternaria by its young obovoid non-beaked conidia (Fig. 2B). The newest genus Sinomyces resembles Ulocladium but is distinct by its conidiophores which only form a single conidiogenous locus, or rarely form 1 to 2 geniculate, sympodial proliferations with a single conidiogenous locus (Fig. 2C). Embellisia is characterised by the thick, dark, rigid septa in its conidia and the paucity of longisepta (Fig. 2D). Undifilum resembles Embellisia, except that most of the isolates produce the toxic alkaloid swainsonine, and the conidia produce germ tubes that are wavy or undulating in their growth until branching (Fig. 2E). Chalastospora can be distinguished by their narrowly ellipsoid conidia, rarely with transverse eusepta and lacking longitudinal septa (Fig. 2F). Crivellia is characterised by having cylindrical phragmoconidia (Fig. 2G) and Nimbya

Fig. 2. Conidia and conidiophores: A. Alternaria tenuissima. B. Ulocladium obovoideum.
C. Sinomyces alternariae. D. Embellisia allii. E. Undifilum bornmuelleri. F. Chalastospora cetera.
G. Crivellia papaveraceae. H. Nimbya scirpicola. I. Stemphylium botryosum. Scale bars $=10 \mu \mathrm{~m}$.
has distoseptate conidia with internal compartmentation (Fig. 2H). Stemphylium can easily be identified on the basis of the percurrent proliferation of its conidiophores (Fig. 2I), while all other genera within the Alternaria complex display geniculate, sympodial proliferation. Identification of Alternaria species based solely on conidial morphology is complicated since the morphological characters are very sensitive to variation in culture conditions. Highly standardised culture methods are obligatory but still variation within the same species can be seen when cultured by two independent laboratories.

Molecular studies

Molecular studies revealed that the Alternaria complex comprises the genera Alternaria, Chalastospora, Crivellia, Embellisia, Nimbya, Stemphylium, Ulocladium, Undifilum and the recently described genus Sinomyces (Fig. 1). In this complex several genera seem to be nonmonophyletic and numerous studies reveal that Alternaria species cluster in multiple distinct species clades, which are not always correlated with species-groups based upon morphological characteristics alone. Pryor \& Gilbertson (2000) tried to elucidate the relationship between Alternaria, Ulocladium and Stemphylium species by using parts of the nuclear internal transcribed spacer (ITS), mitochondrial small subunit (mtSSU) and nuclear small subunit (SSU; 18S rRNA gene) sequences. They revealed that Stemphylium was phylogenetically distinct from Ulocladium and Alternaria, which clustered together in one clade. Furthermore, they confirmed the species-groups by obtaining distinct species clades. Chou \& Wu (2002) could discriminate the filament-beaked Alternaria from the other members of Alternaria and de Hoog \& Horré (2002) studied medical Alternaria and Ulocladium species using ITS sequence data. As these loci do not clearly resolve the relationships among closely related species within the groups, additional analyses incorporating more variable genetic loci were suggested to develop a more robust phylogeny of the Alternaria species involved. By using sequences of the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene or / and a gene for the major Alternaria allergen (Alt a 1), sometimes in addition to the ITS or mtSSU sequences, multiple investigators attempted to elucidate the phylogenetic relationship between Alternaria species-groups and their related genera (Pryor \& Bigelow 2003, Hong et al. 2005a, Inderbitzin et al. 2006, Pryor et al. 2009, Runa et al. 2009, Lawrence et al. 2011, Wang et al. 2011). The grouping including A. alternata, A. brassicicola, A. infectoria, A. porri, A. radicina, Embellisia and Ulocladium species-groups was strongly supported by these studies and even two new species-groups were described. These included the A. sonchi species-group (Hong et al. 2005a), consisting of A. sonchi and A. cinerariae and in the latest taxonomic study (Lawrence et al. 2011) the A. alternantherae species-group consisting of three former Nimbya species, A. alternantherae, A. perpunctulata and A. celosiae. Also the new genera Crivellia (Inderbitzin et al. 2006), Undifilum (Pryor et al. 2009) and Sinomyces (Wang et al. 2011) were described by employing DNA sequence data. Unfortunately, species relationships within the species-groups remained poorly resolved. A study by Peever et al. (2004) based on multiple genetic regions of the small-spored citrus-associated species of Alternaria revealed that many of the morphological species described (Simmons 1999) were non-monophyletic. Results were based on sequence variation of five genomic regions, namely the mitochondrial LSU, the beta-tubulin and endopolygalacturonase gene (endoPG) and the anonymous gene regions OPA1-3 and OPA2-1 (Peever et al. 2004). Sequence analyses of five other genes, actin, calmodulin, chitin synthase, translation elongation factor 1-alpha (TEF1) and trihydroxynaphthalene reductase, yielded no significant variation among the small-
spored isolates. The authors advocated reducing all small-spored citrus-associated isolates into a single phylogenetic species: A. alternata. Follow-up studies (Peever et al. 2005, Andrew et al. 2009) using sequence data from endoPG, OPA1-3 and OPA2-1 or OPA10-2 yielded identical results. No associations were found between host or geographic associations and phylogenetic lineages, and no strict congruence between morphology and phylogenetic lineage was found within the A. alternata species-group. Furthermore, different molecularbased identification methods such as RAPD (Roberts et al. 2000), PCR-RFLP (Pryor \& Michailides 2002), AFLP (Dini-Andreote et al. 2009), ISSR (Hong et al. 2006) and restriction mapping of the IGS region (Hong et al. 2005b), used in an attempt to discriminate within the species-groups, demonstrated no results with improved resolution. However, a RAPD fragment pattern analysis of 260 small-spored Alternaria species and species-groups (Roberts et al. 2000), could distinguish between A. gaisen, A. longipes, the A. tenuissima group, the A. arborescens group and the A. infectoria group. Recently, Roberts et al. (2011) examined the differential gene expression in A. gaisen exposed to a dark and light regime. The authors discovered that partial sequence analysis of the gene L152, with similarity to aegerolysin, could resolve A. alternata, A. gaisen, A. yaliinficiens, A. arborescens, A. tenuissima and A. brassicicola. It was concluded that additional analyses on a broader set of isolates including related genera and species should be performed to determine if this gene would be a potential key for discriminating among all Alternaria species.

OUTLINE OF THESIS

Previous studies on Alternaria focused mainly on specific species-groups, species associated with specific hosts / substrates, or used a very limited sampling of representative species. In 2007, Emory G. Simmons published The Alternaria Identification Manual and subsequently kindly donated his complete collection of Alternaria and alternaria-like cultures, many representing ex-type or reference strains, to the CBS culture collection. This morphologically well-characterised collection formed a solid foundation for the molecular taxonomic revision of the genus Alternaria and related genera presented in this thesis. With the phylogenies and classifications presented herein, more robust and understandable taxonomy and nomenclature in Alternaria and allied genera are created, which will serve as a starting point for applied research conducted by plant pathologists, breeders and medical mycologists in the field.

Chapter 1 provides an introduction to the genus Alternaria, with an overview of the history of the genus and its economic importance, and a further focus on the species complexes, their morphology, and molecular studies.

Chapter 2 focuses on the relationship of Alternaria and its closely related genera. The phylogenetic lineages within Alternaria and allied genera are delineated based on nucleotide sequence data of parts of the SSU, LSU, ITS, GAPDH, RNA polymerase second largest subunit (RPB2) and TEF1 gene regions. The genus Alternaria is divided into six monotypic lineages and 24 internal clades, which are named as sections. Thirteen genera are placed into synonymy with Alternaria and the phylogenetic relation of several other genera to Alternaria is clarified.

Chapter 3 describes the reappraisal of the genus Alternariaster, based on phylogenetic, morphological and pathological studies. The genus Alternariaster was established by Simmons
(2007) to accommodate Alternaria helianthi, the causal agent of leaf spot on Helianthus annuus (sunflower). A new species of Alternariaster was found associated with leaf spot on Bidens sulphurea (yellow cosmos) in Brazil and is formally named in this chapter.

Chapter 4 treats the Alternaria species that represent the largest section of Alternaria, section Porri. This section contains almost all Alternaria species with medium to large conidia with long beaks, some of which are important plant pathogens. A multi-gene phylogeny on parts of the ITS, GAPDH, RPB2, TEF1 and Alt a 1 gene regions, supplemented with morphological and cultural studies, forms the basis for species recognition in this section.

Chapter 5 treats the small-spored Alternaria species which reside in section Alternaria. A lot of confusion surrounds the naming of species within this section, since the naming is mostly based on morphology and host-specificity, although the molecular variation is minimal. Whole genome sequencing, combined with transcriptome profiling and multi-gene sequencing of nine gene regions, SSU, LSU, ITS, GAPDH, RPB2, TEF1, Alt a 1, endoPG and OPA10-2, is used to create a clear and stable species classification in this section. A sequence-based identification guide is provided for the species that we recognise in section Alternaria.

Chapter 6 investigates the molecular diversity of indoor Alternaria isolates in the USA, and tests for recombination in these isolates, using a phylogeographic / population genetic approach. Isolates collected throughout the USA were identified using ITS, GAPDH and endoPG gene sequencing, followed by genotyping and population genetic inference of the section Alternaria isolates together with 37 reference isolates, using five microsatellite markers.

Chapter 7 discusses the data presented in this thesis. The implications of the performed studies are placed in a broader context, with a focus on the relation between morphology and the new species classification based on molecular tools and the use of genome data contrasted against gene data.

Alternaria redefined

J.H.C. Woudenberg ${ }^{1,2}$, J.Z. Groenewald ${ }^{1}$, M. Binder ${ }^{1}$, and P.W. Crous ${ }^{1,2,3}$

${ }^{1}$ CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands;
${ }^{2}$ Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands;
${ }^{3}$ Utrecht University, Department of Biology, Microbiology, Padualaan 8, 3584 CH Utrecht, The Netherlands

Studies in Mycology 75: 171-212. 2013.

Key words: Allewia, Chalastospora, Crivellia, Embellisia, Lewia, Nimbya, Paradendryphiella, Sinomyces, systematics, Teretispora, Ulocladium, Undifilum.

Abstract

Alternaria is a ubiquitous fungal genus that includes saprophytic, endophytic and pathogenic species associated with a wide variety of substrates. In recent years, DNAbased studies revealed multiple non-monophyletic genera within the Alternaria complex, and Alternaria species clades that do not always correlate to species-groups based on morphological characteristics. The Alternaria complex currently comprises nine genera and eight Alternaria sections. The aim of this study was to delineate phylogenetic lineages within Alternaria and allied genera based on nucleotide sequence data of parts of the $18 \mathrm{~S} \mathrm{nrDNA}, 28 \mathrm{~S} \mathrm{nrDNA}$, ITS, GAPDH, RPB2 and TEF1-alpha gene regions. Our data reveal a Pleospora / Stemphylium clade sister to Embellisia annulata, and a well-supported Alternaria clade. The Alternaria clade contains 24 internal clades and six monotypic lineages, the assemblage of which we recognise as Alternaria. This puts the genera Allewia, Brachycladium, Chalastospora, Chmelia, Crivellia, Embellisia, Lewia, Nimbya, Sinomyces, Teretispora, Ulocladium, Undifilum and Ybotromyces in synonymy with Alternaria. In this study, we treat the 24 internal clades in the Alternaria complex as sections, which is a continuation of a recent proposal for the taxonomic treatment of lineages in Alternaria. Embellisia annulata is synonymised with Dendryphiella salina, and together with Dendryphiella arenariae, are placed in the new genus Paradendryphiella. The sexual genera Clathrospora and Comoclathris, which were previously associated with Alternaria, cluster within the Pleosporaceae, outside Alternaria s. str., whereas Alternariaster, a genus formerly seen as part of Alternaria, clusters within the Leptosphaeriaceae. Paradendryphiella is newly described, the generic circumscription of Alternaria is emended, and 32 new combinations and 10 new names are proposed. A further 10 names are resurrected, while descriptions are provided for 16 new Alternaria sections.

Taxonomic novelties: New combinations - Alternaria abundans (E.G. Simmons) Woudenb. \& Crous, Alternaria alternariae (Cooke) Woudenb. \& Crous, Alternaria atra (Preuss) Woudenb. \& Crous, Alternaria bornmuelleri (Magnus) Woudenb. \& Crous, Alternaria botrytis (Preuss) Woudenb. \& Crous, Alternaria caespitosa (de Hoog \& C. Rubio) Woudenb. \& Crous, Alternaria cantlous (Yong Wang bis \& X.G. Zhang) Woudenb. \& Crous, Alternaria caricis (E.G. Simmons) Woudenb. \& Crous, Alternaria cinerea (Baucom \& Creamer) Woudenb. \& Crous, Alternaria didymospora (Munt.-Cvetk.) Woudenb. \& Crous, Alternaria fulva (Baucom \& Creamer) Woudenb. \& Crous, Alternaria hyacinthi (de Hoog \& P.J. Mull. bis) Woudenb. \& Crous, Alternaria indefessa (E.G. Simmons) Woudenberg \& Crous, Alternaria leptinellae (E.G. Simmons \& C.F. Hill) Woudenb. \& Crous, Alternaria lolii (E.G. Simmons \& C.F. Hill) Woudenb. \& Crous, Alternaria multiformis (E.G. Simmons) Woudenb. \& Crous, Alternaria obclavata (Crous \& U. Braun) Woudenb. \& Crous, Alternaria obovoidea (E.G. Simmons) Woudenb. \& Crous, Alternaria oudemansii (E.G. Simmons) Woudenb. \& Crous, Alternaria oxytropis (Q. Wang, Nagao \& Kakish.) Woudenb. \& Crous, Alternaria penicillata (Corda) Woudenb. \& Crous, Alternaria planifunda (E.G. Simmons) Woudenb. \& Crous, Alternaria proteae (E.G. Simmons) Woudenb. \& Crous, Alternaria scirpinfestans (E.G. Simmons \& D.A. Johnson) Woudenb. \& Crous, Alternaria scirpivora (E.G. Simmons \& D.A. Johnson) Woudenb. \& Crous, Alternaria septospora (Preuss) Woudenb. \& Crous, Alternaria slovaca (Svob.-Pol., L. Chmel \& Bojan.) Woudenb. \& Crous, Alternaria subcucurbitae (Yong Wang bis \& X.G. Zhang) Woudenb. \& Crous, Alternaria tellustris (E.G. Simmons) Woudenb. \& Crous, Alternaria tumida (E.G. Simmons) Woudenb. \& Crous, Paradendryphiella salina (G.K. Sutherl.) Woudenb. \& Crous, Paradendryphiella arenariae (Nicot) Woudenb. \& Crous. New names - Alternaria aspera Woudenb. \& Crous, Alternaria botryospora Woudenb. \& Crous, Alternaria brassicae-pekinensis Woudenb. \& Crous, Alternaria breviramosa Woudenb. \&

Crous, Alternaria chlamydosporigena Woudenb. \& Crous, Alternaria concatenata Woudenb. \& Crous, Alternaria embellisia Woudenb. \& Crous, Alternaria heterospora Woudenb. \& Crous, Alternaria papavericola Woudenb. \& Crous, Alternaria terricola Woudenb. \& Crous. Resurrected names-Alternaria cetera E.G. Simmons, Alternaria chartarum Preuss, Alternaria consortialis (Thüm.) J.W. Groves \& S. Hughes, Alternaria cucurbitae Letendre \& Roum., Alternaria dennisii M.B.Ellis, Alternaria eureka E.G. Simmons, Alternaria gomphrenae Togashi, Alternaria malorum (Ruehle) U. Braun, Crous \& Dugan, Alternaria phragmospora Emden, Alternaria scirpicola (Fuckel) Sivan. New sections, all in Alternaria - sect. Chalastospora Woudenb. \& Crous, sect. Cheiranthus Woudenb. \& Crous, sect. Crivellia Woudenb. \& Crous, sect. Dianthicola Woudenb. \& Crous, sect. Embellisia Woudenb. \& Crous, sect. Embellisioides Woudenb. \& Crous, sect. Eureka Woudenb. \& Crous, sect. Infectoriae Woudenb. \& Crous, sect. Japonicae Woudenb. \& Crous, sect. Nimbya Woudenb. \& Crous, sect. Phragmosporae Woudenb. \& Crous, sect. Pseudoulocladium Woudenb. \& Crous, sect. Teretispora Woudenb. \& Crous, sect. Ulocladioides Woudenb. \& Crous, sect. Ulocladium Woudenb. \& Crous, sect. Undifilum Woudenb. \& Crous. New genus - Paradendryphiella Woudenb. \& Crous.

INTRODUCTION

Alternaria is a ubiquitous fungal genus that includes saprophytic, endophytic and pathogenic species. It is associated with a wide variety of substrates including seeds, plants, agricultural products, animals, soil and the atmosphere. Species of Alternaria are known as serious plant pathogens, causing major losses on a wide range of crops. Several taxa are also important postharvest pathogens, causative agents of phaeohyphomycosis in immuno-compromised patients or airborne allergens. Because of the significant negative health effects of Alternaria on humans and their surroundings, a correct and rapid identification of Alternaria species would be of great value to researchers, medical mycologists and the public alike.

Alternaria was originally described by Nees (1816), based on A. tenuis as the only species. Characteristics of the genus included the production of dark-coloured phaeodictyospores in chains, and a beak of tapering apical cells. Von Keissler (1912) synonymised both A. tenuis and Torula alternata (Fries 1832) with Alternaria alternata, due to ambiguities in Nees's description of A. tenuis. Two additional genera, Stemphylium (Wallroth 1833) and Ulocladium (Preuss 1851) were subsequently described for phaeodictyosporic hyphomycetes, further complicating the taxonomic resolution in this group of fungi. Several re-descriptions and revised criteria of these genera (Saccardo 1886, Elliot 1917, Wiltshire 1933, 1938, Joly 1964) resulted in a growing number of new species. Results of a lifetime study on Alternaria taxonomy based upon morphological characteristics were summarised in Simmons (2007), in which 275 Alternaria species were recognised. One species was transferred to the genus Prathoda and three new genera, Alternariaster, Chalastospora and Teretispora, were segregated from Alternaria.

Molecular studies revealed multiple non-monophyletic genera within the Alternaria complex and Alternaria species clades, which do not always correlate to species-groups based upon morphological characteristics (Pryor \& Gilbertson 2000, Chou \& Wu 2002, de Hoog \& Horré 2002, Pryor \& Bigelow 2003, Hong et al. 2005, Inderbitzin et al. 2006, Pryor et al. 2009, Runa et al. 2009, Wang et al. 2011, Lawrence et al. 2012). The A. alternata, A. brassicicola, A. infectoria, A. porri and A. radicina species-groups were strongly supported by these studies and two new species-groups, A. sonchi (Hong et al. 2005) and A. alternantherae (Lawrence et al. 2012) and three new genera, Crivellia (Inderbitzin et al. 2006), Undifilum (Pryor et al. 2009)
and Sinomyces (Wang et al. 2011), were described. The latest molecular revision of Alternaria (Lawrence et al. 2013) introduced two new species-groups, A. panax and A. gypsophilae, and elevated eight species-groups to sections within Alternaria. The sexual phylogenetic Alternaria lineage, the A. infectoria species-group, did not get the status of section, in contrast to the eight asexual phylogenetic lineages in Alternaria. The Alternaria complex currently comprises the genera Alternaria, Chalastospora (Simmons 2007), Crivellia, Embellisia, Nimbya, Stemphylium, Ulocladium, Undifilum and the recently described Sinomyces together with eight sections of Alternaria and the A. infectoria species-group.

The aim of the present study was to delineate the phylogenetic lineages within Alternaria and allied genera, and to create a robust taxonomy. Phylogenetic inferences were conducted on sequence data of parts of the 18 S nrDNA (SSU), 28 S nrDNA (LSU), the internal transcribed spacer regions 1 and 2 and intervening 5.8S nrDNA (ITS), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), RNA polymerase second largest subunit (RPB2) and translation elongation factor 1-alpha (TEF1) gene regions of ex-type and reference strains of Alternaria species and all available allied genera.

MATERIALS AND METHODS

Isolates

Based on the ITS sequences of all ex-type or representative strains from the Alternaria identification manual present at the CBS-KNAW Fungal Biodiversity Centre (CBS), Utrecht, The Netherlands (data not shown), 66 Alternaria strains were included in this study together with 61 ex-type or representative strains of 16 related genera (Table 1). Alternaria is represented by the ex-type or representative strains of the seven species-groups and species that clustered outside known Alternaria clades. Because of the size and complexity of the A. alternata, A. infectoria and A. porri species-groups, we only included known species; the complete speciesgroups will be treated in future studies.

Freeze-dried strains were revived in 2 mL malt / peptone ($50 \% / 50 \%$) and subsequently transferred to oatmeal agar (OA) (Crous et al. 2009c). Strains of the CBS collection stored in liquid nitrogen were transferred to OA directly from $-185^{\circ} \mathrm{C}$. DNA extraction was performed using the UltraClean Microbial DNA Isolation Kit (MoBio laboratories, Carlsbad, CA, USA), according to the manufacturer's instructions.

Taxonomy

Morphological descriptions were made for isolates grown on synthetic nutrient-poor agar plates (SNA, Nirenberg 1976) with a small piece of autoclaved filter paper placed onto the agar surface. Cultures were incubated at moderate temperatures ($\sim 22^{\circ} \mathrm{C}$) under CoolWhite fluorescent light with an 8 h photoperiod for 7 d . The sellotape technique was used for making slide preparations (Crous et al. 2009c) with Shear's medium as mounting fluid. Photographs of characteristic structures were made with a Nikon Eclipse 80i microscope using differential interference contrast (DIC) illumination. Growth rates were measured after 5 and 7 d . Colony characters were noted after 7 d, colony colours were rated according to Rayner (1970). Nomenclatural data were deposited in MycoBank (Crous et al. 2004).

PCR and sequencing

The SSU region was amplified with the primers NS1 and NS4 (White et al. 1990), the LSU region with LSU1Fd (Crous et al. 2009b) and LR5 (Vilgalys \& Hester 1990), the ITS region with V9G (De Hoog \& Gerrits van den Ende 1998) and ITS4 (White et al. 1990), the GAPDH region with gpd1 and gpd2 (Berbee et al. 1999), the RPB2 region with RPB2-5F2 (Sung et al. 2007) and fRPB2-7cR (Liu et al. 1999) and the TEF1 gene with the primers EF1-728F and EF1986R (Carbone \& Kohn 1999) or EF2 (O’Donnell et al. 1998). The PCRs were performed in a MyCycler ${ }^{\mathrm{TM}}$ Thermal Cycler (Bio-Rad Laboratories B.V., Veenendaal, The Netherlands) in a total volume of $12.5 \mu \mathrm{~L}$. The SSU and LSU PCR mixtures consisted of $1 \mu \mathrm{~L}$ genomic DNA, $1 \times$ GoTaq® Flexi buffer (Promega, Madison, WI, USA), $2 \mu \mathrm{M} \mathrm{MgCl}_{2}, 40 \mu \mathrm{M}$ of each dNTP, $0.2 \mu \mathrm{M}$ of each primer and 0.25 Unit GoTaq® Flexi DNA polymerase (Promega). The ITS and GAPDH PCR mixtures differed from the original mix by containing $1 \mu \mathrm{M} \mathrm{MgCl}_{2}$, the RPB2 and TEF1 PCR mixtures differed from the original mix by containing $2 \mu \mathrm{~L}$ genomic DNA and the RPB2 mixture differed from the original mix by containing 0.5 U instead of 0.25 U GoTaq ${ }^{\circledR}$ Flexi DNA polymerase. Conditions for PCR amplification consisted of an initial denaturation step of 5 min at $94^{\circ} \mathrm{C}$ followed by 35 cycles of 30 s at $94^{\circ} \mathrm{C}, 30 \mathrm{~s}$ at $48^{\circ} \mathrm{C}$ and 90 s at $72^{\circ} \mathrm{C}$ for SSU, LSU, ITS and 40 cycles of 30 s at $94^{\circ} \mathrm{C}, 30 \mathrm{~s}$ at $52^{\circ} \mathrm{C} / 59^{\circ} \mathrm{C}$ and 45 s at $72^{\circ} \mathrm{C}$ for TEF1 using respectively EF2 or EF1-986R as reverse primer and a final elongation step of 7 min at $72^{\circ} \mathrm{C}$. The partial RPB2 gene was obtained by using a touchdown PCR protocol of 5 cycles of 45 s at $94^{\circ} \mathrm{C}, 45 \mathrm{~s}$ at $60^{\circ} \mathrm{C}$ and 2 min at $72^{\circ} \mathrm{C}$, followed by 5 cycles with a $58^{\circ} \mathrm{C}$ annealing temperature and 30 cycles with a $54^{\circ} \mathrm{C}$ annealing temperature. The PCR products were sequenced in both directions using the PCR primers and the BigDye Terminator v. 3.1 Cycle Sequencing Kit (Applied Biosystems, Foster City, CA, USA), according to the manufacturer's recommendations, and analysed with an ABI Prism 3730XL Sequencer (Applied Biosystems) according to the manufacturer's instructions. Consensus sequences were computed from forward and reverse sequences using the BioNumerics v. 4.61 software package (Applied Maths, St-Martens-Latem, Belgium). All generated sequences were deposited in GenBank (Table 1).

Phylogenetic analyses

Multiple sequence alignments were generated with MAFFT v. 6.864b (http://mafft.cbrc.jp/ alignment/server/index.html), and adjusted by eye. Two different datasets were used to estimate two phylogenies; an Alternaria complex phylogeny and a Pleosporineae family tree. The first tree focusses on the Alternaria complex, the second one was produced to place the genera Comoclathris, Clathrospora and Alternariaster in the context of the Alternaria complex. The relatives of the three genera were determined with standard nucleotide blast searches, with both the SSU and LSU sequences, against the nucleotide database in GenBank. This resulted in a selection of 35 species (Table 1) for which the SSU, LSU and RPB2 sequence data set was present or could be completed. Blast searches with Embellisia annulata gave hits with two marine Dendryphiella species, Dendryphiella arenariae and Dendryphiella salina, which we also included. Phylogenetic analyses of the sequence data consisted of Bayesian and Maximum Likelihood analyses of both the individual data partitions as well as the combined aligned dataset. Bayesian analyses were performed with MrBayes v. 3.2.1 (Huelsenbeck \& Ronquist 2001, Ronquist \& Huelsenbeck 2003). The Markov Chain Monte Carlo (MCMC) analysis used four chains and started from a random tree topology. The sample frequency was set at 100 and the temperature value of the heated chain was 0.1 . The temperature value was lowered to 0.05 when
Table 1. Isolates used in this study and their GenBank accession numbers. Bold accession numbers were generated in other studies

Old species name	New species name	Alternaria section	Strain number ${ }^{1}$	Status ${ }^{2}$	Host / Substrate	Country	Other collection ${ }^{1}$	GenBank accession numbers					
								SSU	LSU	RPB2	ITS	GAPDH	TEF1
Alternaria alternantherae	Alternaria alternantherae	Althernantherae	CBS 124392		Solanum melongena	China	HSAUP2798	KC584506	KC584251	KC584374	KC584179	KC584096	KC584633
Alternaria alternata	Alternaria alternata	Alternaria	CBS 916.96	T	Arachis hypogaea	India	EGS 34.016	KC584507	DQ678082	KC584375	AF347031	AY278808	KC584634
Alternaria anigozanthi	Alternaria anigozanthi	Eureka	CBS 121920	T	Anigozanthus sp.	Australia	EGS 44.066	KC584508	KC584252	KC584376	KC584180	KC584097	KC584635
Alternaria arborescens	Alternaria arborescens	Alternata	CBS 102605	T	Lycopersicon esculentum	USA	EGS 39.128	KC584509	KC584253	KC584377	AF347033	AY278810	KC584636
Alternaria argyranthemi	Alternaria argyranthemi		CBS 116530	T	Argyranthemum sp.	New Zealand	EGS 44.033	KC584510	KC584254	KC584378	KC584181	KC584098	KC584637
Alternaria armoraciae	Alternaria armoraciae	Chalastospora	CBS 118702	T	Armoracia rusticana	New Zealand	EGS 51.064	KC584511	KC584255	KC584379	KC584182	KC584099	KC584638
Alternaria avenicola	Alternaria avenicola	Panax	CBS 121459	T	Avena sp.	Norway	EGS 50.185	KC584512	KC584256	KC584380	KC584183	KC584100	KC584639
Alternaria axiaeriisporifera	Alternaria axiaeriisporifera	Gypsophilae	CBS 118715	T	Gypsophila paniculata	New Zealand	EGS 51.066	KC584513	KC584257	KC584381	KC584184	KC584101	KC584640
Alternaria brassicae	Alternaria brassicae		CBS 116528	R	Brassica oleracea	USA	EGS 38.032	KC584514	KC584258	KC584382	KC584185	KC584102	KC584641
Alternaria brassicicola	Alternaria brassicicola	Brassicicola	CBS 118699	R	Brassica oleracea	USA	EGS 42.002; ATCC 96836	KC584515	KC584259	KC584383	JX499031	KC584103	KC584642
Alternaria calycipyricola	Alternaria calycipyricola	Panax	CBS 121545	T	Pyrus communis	China	$\begin{aligned} & \text { EGS 52.071; } \\ & \text { RGR } 96.0209 \end{aligned}$	KC584516	KC584260	KC584384	KC584186	KC584104	KC584643
Alternaria capsicianпиі	Alternaria capsiciаппиі	Ulocladium	CBS 504.74		Capsicum annuum	Unknown		KC584517	KC584261	KC584385	KC584187	KC584105	KC584644
Alternaria carotiincultae	Alternaria carotiincultae	Radicina	CBS 109381	T	Daucus carota	USA	EGS 26.010	KC584518	KC584262	KC584386	KC584188	KC584106	KC584645
Alternaria cheiranthi	Alternaria cheiranthi	Cheiranthus	CBS 109384	R	Cheiranthus cheiri	Italy	EGS 41.188	KC584519	KC584263	KC584387	AF229457	KC584107	KC584646
Alternaria chlamydospora	Alternaria chlamydospora	Phragmosporae	CBS 491.72	T	Soil	Egypt	EGS 31.060; ATCC 28045; IMI 156427	KC584520	KC584264	KC584388	KC584189	KC584108	KC584647
Alternaria cinerariae	Alternaria cinerariae	Sonchi	CBS 116495	R	Ligularia sp.	USA	EGS 49.102	KC584521	KC584265	KC584389	KC584190	KC584109	KC584648
Alternaria conjuncta	Alternaria conjuncta	Infectoriae	CBS 196.86	T	Pastinaca sativa	Switzerland	EGS 37.139	KC584522	KC584266	KC584390	FJ266475	AY562401	KC584649
Alternaria cumini	Alternaria cumini	Eureka	CBS 121329	T	Cuminum cyminum	India	EGS 04.158a	KC584523	KC584267	KC584391	KC584191	KC584110	KC584650
Alternaria dauci	Alternaria dauci	Porri	CBS 117097	R	Daucus carota	USA	EGS 46.006	KC584524	KC584268	KC584392	KC584192	KC584111	KC584651
Alternaria daucifolii	Alternaria daucifolii	Alternaria	CBS 118812	T	Daucus carota	USA	EGS 37.050	KC584525	KC584269	KC584393	KC584193	KC584112	KC584652
Alternaria dianthicola	Alternaria dianthicola	Dianthicola	CBS 116491	R	Dianthus \times allwoodii	New Zealand	EGS 51.022	KC584526	KC584270	KC584394	KC584194	KC584113	KC584653
Alternaria elegans	Alternaria elegans	Dianthicola	CBS 109159	T	Lycopersicon esculentum	Burkina Faso	$\begin{aligned} & \text { EGS 45.072; } \\ & \text { IMI 374542 } \end{aligned}$	KC584527	KC584271	KC584395	KC584195	KC584114	KC584654
Alternaria ellipsoidea	Alternaria ellipsoidea	Gypsophilae	CBS 119674	T	Dianthus barbatus	USA	EGS 49.104	KC584528	KC584272	KC584396	KC584196	KC584115	KC584655

Old species name	New species name	Alternaria section	Strain number ${ }^{1}$	Status ${ }^{2}$	Host / Substrate	Country	Other collection ${ }^{1}$	GenBank accession numbers					
								SSU	LSU	RPB2	ITS	GAPDH	TEF1
Alternaria eryngii	Alternaria eryngii	Panax	CBS 121339	R	Eryngium sp.	Unknown	EGS 41.005	KC584529	KC584273	KC584397	JQ693661	AY562416	KC584656
Alternaria ethzedia	Alternaria ethzedia	Infectoriae	CBS 197.86	T	Brassica napus	Switzerland	EGS 37.143	KC584530	KC584274	KC584398	AF392987	AY278795	KC584657
Alternaria gaisen	Alternaria gaisen	Alternaria	CBS 632.93	R	Pyrus pyrifolia cv. Nijiseiki	Japan	EGS 90.512	KC584531	KC584275	KC584399	KC584197	KC584116	KC584658
Alternaria geniostomatis	Alternaria geniostomatis	Eureka	CBS 118701	T	Geniostoma sp.	New Zealand	EGS 51.061	KC584532	KC584276	KC584400	KC584198	KC584117	KC584659
Alternaria gypsophilae	Alternaria gypsophilae	Gypsophilae	CBS 107.41	T	Gypsophila elegans	Unknown	$\begin{aligned} & \text { EGS 07.025; } \\ & \text { IMI } 264349 \end{aligned}$	KC584533	KC584277	KC584401	KC584199	KC584118	KC584660
Alternaria helianthiinficiens	Alternaria helianthiinficiens		CBS 117370	R	Helianthus annuus	UK	EGS 50.174; IMI 388636	KC584534	KC584278	KC584402	KC584200	KC584119	KC584661
Alternaria helianthiinficiens	Alternaria helianthiinficiens		CBS 208.86	T	Helianthus annuus	USA	EGS 36.184	KC584535	KC584279	KC584403	JX101649	KC584120	EU130548
Alternaria infectoria	Alternaria infectoria	Infectoriae	CBS 210.86	T	Triticum aestivum	UK	EGS 27.193	KC584536	KC584280	KC584404	DQ323697	AY278793	KC584662
Alternaria japonica	Alternaria japonica	Japonicae	CBS 118390	R	Brassica chinensis	USA	EGS 50.099	KC584537	KC584281	KC584405	KC584201	KC584121	KC584663
Alternaria juxtiseptata	Alternaria juxtiseptata	Gypsophilae	CBS 119673	T	Gypsophila paniculata	Australia	EGS 44.015; DAR 43414	KC584538	KC584282	KC584406	KC584202	KC584122	KC584664
Alternaria limaciformis	Alternaria limaciformis	Phragmosporae	CBS 481.81	T	Soil	UK	EGS 07.086; IMI 052976; QM 1790	KC584539	KC584283	KC584407	KC584203	KC584123	KC584665
Alternaria limoniasperae	Alternaria limoniasperae	Alternaria	CBS 102595	T	Citrus jambhiri	USA	EGS 45.100	KC584540	KC584284	KC584408	FJ266476	AY562411	KC584666
Alternaria longipes	Alternaria longipes	Alternaria	CBS 540.94	R	Nicotiana tabacum	USA	$\begin{aligned} & \text { EGS 30.033; } \\ & \text { QM } 9589 \end{aligned}$	KC584541	KC584285	KC584409	AY278835	AY278811	KC584667
Alternaria macrospora	Alternaria macrospora	Porri	CBS 117228	T	Gossypium barbadense	USA	EGS 50.190	KC584542	KC584286	KC584410	KC584204	KC584124	KC584668
Alternaria mimicula	Alternaria mimicula	Brassicicola	CBS 118696	T	Lycopersicon esculentum	USA	$\begin{aligned} & \text { EGS 01.056; } \\ & \text { QM 26a } \end{aligned}$	KC584543	KC584287	KC584411	FJ266477	AY562415	KC584669
Alternaria molesta	Alternaria molesta	Phragmosporae	CBS 548.81	T	Phocaena phocaena	Denmark	EGS 32.075	KC584544	KC584288	KC584412	KC584205	KC584125	KC584670
Alternaria mouchaccae	Alternaria mouchaccae	Phragmosporae	CBS 119671	T	Soil	Egypt	EGS 31.061	KC584545	KC584289	KC584413	KC584206	AY562399	KC584671
Alternaria nepalensis	Alternaria nepalensis	Japonicae	CBS 118700	T	Brassica sp.	Nepal	$\begin{aligned} & \text { EGS 45.073; } \\ & \text { IMI } 374543 \end{aligned}$	KC584546	KC584290	KC584414	KC584207	KC584126	KC584672
Alternaria nobilis	Alternaria nobilis	Gypsophilae	CBS 116490	R	Dianthus caryophyllus	New Zealand	EGS 51.027; NZMAF Lynfield 743	KC584547	KC584291	KC584415	KC584208	KC584127	KC584673
Alternaria oregonensis	Alternaria oregonensis	Infectoriae	CBS 542.94	T	Triticum aestivum	USA	EGS 29.194	KC584548	KC584292	KC584416	FJ266478	FJ266491	KC584674
Alternaria panax	Alternaria panax	Panax	CBS 482.81	R	Aralia racemosa	USA	EGS 29.180	KC584549	KC584293	KC584417	KC584209	KC584128	KC584675
Alternaria perpunctulata	Alternaria perpunctulata	Althernantherae	CBS 115267	T	Alternanthera philoxeroides	USA		KC584550	KC584294	KC584418	KC584210	KC584129	KC584676
Alternaria petroselini	Alternaria petroselini	Radicina	CBS 112.41	T	Petroselinum sativum	Unknown	EGS 06.196	KC584551	KC584295	KC584419	KC584211	KC584130	KC584677

Table 1．（Continued）． Old species New species Alternaria name name section Alternaria photistica Alternaria photistica Panax Alternaria porri Alternaria porri Porri Alternaria Alternaria $\begin{array}{ll}\text { pseudorostrata } & \text { pseudorostrata } \\ \text { Alternaria radicina } & \text { Alternaria radicina }\end{array}$
CBS 115.44 CBS 116492 CBS 109382 CBS 106.41
CBS 115265
CBS 109380 CBS 116651 CBS 118387
CBS 118698 CBS 119675 CBS 479.81
CBS 918.96 CBS 121712 CBS 119676 CBS 116533 CBS 118714 No
O
थै
थै $\begin{aligned} & \text { Other } \\ & \text { collection }\end{aligned}$
EGS 35.172
EGS 48.147
EGS 42.060

EGS 03．145；
ATCC 6503；
IMI 124939；
QM 1301；QM
6503 EGS 07.030

 EGS 52.089 ，
MUCL 20298

 EGS 33.024 io
0
0
0
0
0
0
0 IMI 049788 $\stackrel{\rightharpoonup}{0}$
$\stackrel{0}{\circ}$
$\underset{3}{2}$
i
 EGS 41.070 ∞
$\underset{y}{\infty}$
$\underset{y}{+}$
H EGS 46．003； ATCC 26038
EGS 36.007

 Netherlands $\begin{array}{ll}\text { Sesamum indicum } & \text { Argentina } \\ \text { Smyrnium } & \text { UK }\end{array}$ USA岁
皆 Germany坒岂氐岕 Host／
Substrate Digitalis purpu Euphorbia pulcherrima
Daucus carota Reseda odorata
$\begin{aligned} & \text { Saponaria } \\ & \text { officinalis }\end{aligned}$ Petroselinum crispum crispum
Reseda odorata Strain number 1 Status 2 CBS 212.86 T CBS 116698 CBS 119411 CBS 245.67 \approx T olusatrum Solanum
tuberosum Soil Sonchus asper Tagetes erecta Thalictrum sp． Triglochin
 Vaccaria
hispanica Vaccaria hispanica Helianthus sp． EGS 42．060 KC584554

\bar{o}
$\dot{0}$
0
0

KC584299 KC584423 KC584213 KC584133 EGS 07．030 KC584556 KC584300 KC584424 KC584214 KC584134 KC584557 KC584301 KC584425 KC584215 KC584135 KC584558 KC584302 KC584426 AF229455 AY278800 KC584559 KC584303 KC584427 KC584216 KC584136 KC584560 \quad KC584304 \quad KC584428 \quad JF780937 \quad KC584137 KC584561 KC584305 KC584429 AF229456 KC584138 KC584562 KC584306 KC584430 KC584217 KC584139 KC584563 KC584307 KC584431 KC584218 KC584140 KC584564 KC584308 KC584432 KC584219 KC584141 KC584565 KC584309 KC584433 KC584220 KC584142 KC584143跲 KC584144 $\stackrel{\text { 夺 }}{\ddagger}$ KC584146 C584221 EU040211 KC584222 त
$\underset{\sim}{\infty}$
$\underset{y}{\infty}$

 C584434 KC584436 | 气 |
| :---: |
| |
| |

Table 1. (Continued).
Old species New species Alternaria
Alternaria
section
Strain
number
CBS 327.69
CBS 126.54
CBS 116606
CBS 116608

CBS 216.75
CBS 121340
CBS 121331

8
$\underset{2}{7}$

CBS 567.66
CBS 161.51

CBS 134.39 DAOM 226212 CBS 174.52 $\begin{array}{lll}\text { CBS } 156.53 & \text { Castilleja miniata } & \text { USA } \\ \text { CBS 157.53 } & \begin{array}{l}\text { Ligusticum } \\ \text { purpureum }\end{array} & \text { USA } \\ \text { CBS 400.71 } & \begin{array}{l}\text { Chamaerops }\end{array} & \text { Italy }\end{array}$ $\begin{array}{lll}\text { CBS } 156.53 & \text { Castilleja miniata } & \text { USA } \\ \text { CBS 157.53 } & \begin{array}{l}\text { Ligusticum } \\ \text { purpureum }\end{array} & \text { USA } \\ \text { CBS 400.71 } & \begin{array}{l}\text { Chamaerops }\end{array} & \text { Italy }\end{array}$ $\begin{array}{lll}\text { CBS 156.53 } & \text { Castilleja miniata } & \text { USA } \\ \text { CBS 157.53 } & \begin{array}{l}\text { Ligusticum } \\ \text { purpureum }\end{array} & \text { USA } \\ \text { CBS 400.71 } & \begin{array}{l}\text { Chamaerops }\end{array} & \text { Italy }\end{array}$
 Other
collection KC584627 KC584369 KC584494
EU754038 DQ678070 DQ677967 EU754084 EU754183 GU371780 KC584579 KC584321 KC584446 KC584572 KC584316 KC584440 DQ678001 DQ678054 KC584499
EU754045 EU754144 GU371777 KC584573 KC584317 KC584441 KC584574 KC584318 KC584442 KC584575 FJ839651 KC584443 KC584576 KC584319 KC584444 KC584628 KC584370 KC584495 KC584629 KC584371 KC584496 KC584577 KC584320 KC584445 AY544727 AY544645 DQ247790 DQ677995 DQ678045 DQ677939 KC584578 DQ678068 DQ677964 KC584630 KC584372 KC584497 KC584631 KC584373 KC584498
EU754054 EU754153 DQ677956

 1633 DAOM 230456 Country Country Unknown
Netherlands
Netherlands Uetherland Austri Netherlands Germany Australia Australia USA Slovakia
Switzerland
Switzerland
USA Unknown Canada $\begin{array}{ll}\text { Hordeum vulgare } & \text { Canada } \\ \begin{array}{l}\text { Anemone } \\ \text { occidentalis }\end{array} & \text { USA }\end{array}$ Papaver rhoeas Austria Host /
Substrate Helianthus annuus Pisum sativum Solanum tuberosum Papaver Papaver rhoeas Halimione portulacoides Anthyllis
vulneraria vulneraria
Elymus scabrus Triticum sp. e Human E
E
0
0
0 Carex curvula Juncus
mertensianus Zea mays Hordeum vulgare Castilleja purpureum Chamaerop Status ${ }^{2}$
 $\begin{array}{ll}\text { Old species } & \text { New species } \\ \text { name } & \text { name }\end{array}$ Alternariaster Alternariaster Alternariaster
helianthi
Ascochyta pisi Asco
Boeremia exigua
$\begin{array}{ll}\text { Ascochyta pisi } & \text { Ascochyta pisi } \\ \text { Borma }\end{array}$

\qquad hispidulum
Alternaria cetera Alternaria
breviramosa Alternaria obclavata Alternaria slovaca
Clathrospora elynae
Clathrospora elynae
Alternaria sp. Cochliobolus Cochliobolus
heterostrophus Cochliobolus sativus Cochliobolus sativus Comoclathris magna Alternaria sp .

Comoclathris	Comoclathris
compressa	compressa
Comoclathris	Comoclathris
compressa	compressa
Coniothyrium	Coniothyrium palmarum
palmarum Crivellia papaveracea	Alternaria penicilata

Table 1. (Continued).
Country Other
collection ${ }^{1}$
DAOM 63738;
IMI 067735;
MUCL 4129
MUCL 9639
EGS 29.159
ATCC 22412;
IMI 155707;
MUCL 18571;
QM 8609
EGS 10.073;
ATCC 22409;
IMI 155709;
MUCL 18573;
QM 7287
KC584585 \quad KC584327 \quad KC584452 \quad AF348226 \quad FJ348227 \quad KC584711

n	0
0	0
0	
0	0

$\stackrel{N}{\overparen{+}}$ | ∞ |
| :--- |
| $\stackrel{\infty}{7}$ |
| $\underset{\sim}{\infty}$ |
| |

2
0

KC584597 \quad KC584339 \quad KC584464 \quad AY278842 \quad KC584161 \quad KC584723 QM
 EGS 39.099
EGS 27.098;
ATCC 18914
IMI 115034
IMI 320290;
IMI 341684
France
UK
New
Zealand Zealand
苋
North Sea,
Skagerrak USA
 Adriatic Sea Australia
Netherlands USA
 Zealand New
Zealand

 Ricinus communis Senecio jacobaea Senecio jacobaea Seawater Medicago rugosa Hyacinthus Septinella dioica Lolium perenne
 Soil
 Protea sp. Status ${ }^{2}$ Host / Substrate Coastal sand Spartina sp. Fragaria sp. Allium sativum Cancer pagurus Air

\qquad
\bumpeq
 CBS 132.89 CBS 110533 CBS 476.90 CBS 766.79 CBS 193.86
CBS 416.71 CBS 536.83
CBS 477.90 CBS 115266 CBS 478.90
CBS 274.70 ∞
$\underset{\sim}{\infty}$
ஸै CBS 475.90 Strain
number CBS 181.58 CBS 142.60 CBS 534.83
CBS 339.71 CBS 302.84
CBS 341.71 Chalastospora Embellisia allii Alternaria embellisia Embellisia $\begin{array}{lll}\text { Old species } & \text { New species } & \begin{array}{l}\text { Alternaria } \\ \text { name }\end{array} \\ \text { name } & \text { section }\end{array}$ $\begin{array}{ll}\begin{array}{l}\text { Dendryphiella } \\ \text { arenariae }\end{array} & \begin{array}{l}\text { Paradendryphiella } \\ \text { arenariae }\end{array}\end{array}$
Dendryphiella salina Paradendryphiella salina Embellisia abundans Alternaria abundans
arella $\begin{array}{ll} & \text { salina } \\ \text { Embellisia } & \begin{array}{l}\text { Alternaria } \\ \text { chlamydosporigena }\end{array}\end{array}$ chlamydospora chlamydosporigena

Embellisia conoidea	Alternaria conoidea	Brassicicola
Embellisia dennisii	Alternaria dennisii	

Old species name	New species name	Alternaria section	Strain number ${ }^{1}$	Status ${ }^{2}$	Host / Substrate	Country	Other collection ${ }^{1}$	GenBank accession numbers					
								SSU	LSU	RPB2	ITS	GAPDH	TEF1
Embellisia tellustris	Alternaria tellustris	Embellisia	CBS 538.83	T	Soil	USA	EGS 33.026	KC584598	KC584340	KC584465	FJ357316	AY562419	KC584724
Embellisia tumida	Alternaria tumida	Embellisioides	CBS 539.83	T	Triticum aestivum	Australia		KC584599	KC584341	KC584466	FJ266481	FJ266493	KC584725
Heterospora chenopodii	Heterospora chenopodii		CBS 115.96		Chenopodium album	Netherlands	PD 94/1576	EU754089	EU754188	GU371775			
Julella avicenniae	Julella avicenniae		BCC 18422		Mangrove wood	Thailand		GU371831	GU371823	GU371787			
Leptosphaerulina australis	Leptosphaerulina australis		CBS 317.83		Eugenia aromatica	Indonesia		GU296160	GU301830	GU371790			
Loratospora aestuarii	Loratospora aestuarii		JK 5535B		Juncus roemerianus	USA		GU296168	GU301838	GU371760			
Neophaeosphaeria filamentosa	Neophaeosphaeria filamentosa		CBS 102202		Yucca rostrata	Mexico		GQ387516	GQ387577	GU371773			
Nimbya caricis	Alternaria caricis	Nimbya	CBS 480.90	T	Carex hoodii	USA	EGS 13.094	KC584600	KC584342	KC584467	AY278839	AY278826	KC584726
"Nimbya gomphrenae"	Alternaria sp.	Alternaria	CBS 108.27		Gomphrena globosa	Unknown		KC584601	KC584343	KC584468	KC584236	KC584162	KC584727
Nimbya scirpicola	Alternaria scirpicola	Nimbya	CBS 481.90	R	Scirpus sp.	UK	EGS 19.042	KC584602	KC584344	KC584469	KC584237	KC584163	KC584728
Ophiosphaerella herpotricha	Ophiosphaerella herpotricha		CBS 620.86		Bromus erectus	Switzerland	ETH 9373	DQ678010	DQ678062	DQ677958			
Paraleptosphaeria dryadis	Paraleptosphaeria dryadis		CBS 643.86		Dryas octopetala	Switzerland	ETH 9446	KC584632	GU301828	GU371733			
Peyronellaea glomerata	Peyronellaea glomerata		CBS 528.66		Chrysanthemum sp.	Netherlands	PD 63/590	EU754085	EU754184	GU371781			
Peyronellaea zeaemaydis	Peyronellaea zeaemaydis		CBS 588.69	T	Zea mays	USA		EU754093	EU754192	GU371782			
Phaeosphaeria ammophilae	Phaeosphaeria ammophilae		CBS 114595		Ammophila arenaria	Sweden	UPSC 3568	GU296185	GU304859	GU371724			
Phaeosphaeria avenaria	Phaeosphaeria avenaria		DAOM 226215		Avena sativa	Canada	OSC 100096	AY544725	AY544684	DQ677941			
Phaeosphaeria eustoma	Phaeosphaeria eustoma		CBS 573.86		Dactylis glomerata	Switzerland	ETH 9239	DQ678011	DQ678063	DQ677959			
Phoma complanata	Phoma complanata		CBS 268.92		Anglica sylvestris	Netherlands	PD 75/3	EU754081	EU754180	GU371778			
Phoma herbarum	Phoma herbarum		CBS 276.37		Wood pulp	Sweden		DQ678014	DQ678066	DQ677962			
Plenodomus lingam	Plenodomus lingam		DAOM 229267		Brassica sp.	France		DQ470993	DQ470946	DQ470894			
Pleospora betae	Pleospora betae		CBS 109410		Beta vulgaris	Netherlands	PD 77/113	EU754079	EU754178	GU371774			
Pleospora calvescens	Pleospora calvescens		CBS 246.79		Atriplex hastata	Germany	PD 77/655	EU754032	EU754131	KC584500			
Pleospora chenopodii	Pleospora chenopodii		CBS 206.80		Chenopodium quinoa	Bolivia	PD 74/1022	JF740095	JF740266	KC584501			
Pleospora fallens	Pleospora fallens		CBS 161.78		Olea europaea	New Zealand		GU238215	GU238074	KC584502			
Pleospora halimiones	Pleospora halimiones		CBS 432.77		Halimione portulacoides	Netherlands	IMI 282137	JF740096	JF740267	KC584503			

Old species name	New species name	Alternaria section	Strain number ${ }^{1}$	Status ${ }^{2}$	Host / Substrate	Country	Other collection ${ }^{1}$	GenBank accession numbers					
								SSU	LSU	RPB2	ITS	GAPDH	TEF1
Pleospora incompta	Pleospora incompta		CBS 467.76		Olea europaea	Greece		GU23822	GU238087	KC584504			
Pleospora tarda	Pleospora tarda		CBS 714.68	T	Medicago sativa	Canada	EGS 04.118C; IMI 135456; MUCL 11717; QM 1379	KC584603	KC584345	AF107804	KC584238	AF443881	KC584729
Pleospora typhicola	Pleospora typhicola		CBS 132.69		Typha angustifolia	Netherlands		JF740105	JF740325	KC584505			
Pyrenochaeta nobilis	Pyrenochaeta nobilis		CBS 407.76	T	Laurus nobilis	Italy		EU754107	DQ678096	DQ677991			
Pyrenophora phaeocomes	Pyrenophora phaeocomes		DAOM 222769		Calamagrostis villosa	Switzerland		DQ499595	DQ499596	DQ497614			
Saccothecium sepincola	Saccothecium sepincola		CBS 278.32		Ribes nigrum	USA		GU296195	GU301870	GU371745			
Setomelanomma holmii	Setomelanomma holmii		CBS 110217		Picea pungens	USA		GU296196	GQ37633	GU371800			
Sinomyces alternariae	Alternaria alternariae	Ulocladium	CBS 126989	T	Daucus carota	USA	EGS 46.004	KC584604	KC584346	KC584470	AF229485	AY278815	KC584730
Stemphylium herbarum	Stemphylium herbarum		CBS 191.86	T	Medicago sativa	India	$\begin{aligned} & \text { EGS 36.138; } \\ & \text { IMI 276975 } \end{aligned}$	GU238232	GU238160	KC584471	KC584239	AF443884	KC584731
Teretispora leucanthemi	Alternaria leucanthemi	Teretispora	CBS 421.65	T	Chrysanthemum maximum	Netherlands	ATCC 16028; IFO 9085; IMI 111986; QM 7227	KC584605	KC584347	KC584472	KC584240	KC584164	KC584732
Teretispora leucanthemi	Alternaria leucanthemi	Teretispora	CBS 422.65	R	Chrysanthemum maximum	USA	EGS 17.063; ATCC 16029; IMI 111987; QM 8579	KC584606	KC584348	KC584473	KC584241	KC584165	KC584733
Ulocladium arborescens	Alternaria aspera	Pseudoulocladium	CBS 115269	T	Pistacia vera	Japan	IMI 369777	KC584607	KC584349	KC584474	KC584242	KC584166	KC584734
Ulocladium atrum	Alternaria atra	Ulocladioides	CBS 195.67	T	Soil	USA	ATCC 18040; IMI 124944; QM 8408	KC584608	KC584350	KC584475	AF229486	KC584167	KC584735
Ulocladium botrytis	Alternaria botrytis	Ulocladium	CBS 197.67	T	Contaminant	USA	ATCC 18042; IMI 124942; MUCL 18556; QM 7878	KC584609	KC584351	KC584476	KC584243	KC584168	KC584736
Ulocladium botrytis	Alternaria sp.	Ulocladioides	CBS 198.67	R	Soil	USA	ATCC 18043; IMI 124949; MUCL 18557; QM 8619	KC584610	KC584352	KC584477	AF229487	KC584169	KC584737
Ulocladium brassicae	Alternaria brassicae-pekinensis	Ulocladioides	CBS 121493	T	Brassica pekinensis	China	HSAUPwy0037	KC584611	KC584353	KC584478	KC584244	KC584170	KC584738

Old species name	New species name	Alternaria section	Strain number ${ }^{1}$	Status ${ }^{2}$	Host / Substrate	Country	Other collection ${ }^{1}$	GenBank accession numbers					
								SSU	LSU	RPB2	ITS	GAPDH	TEF1
Ulocladium cantlous	Alternaria cantlous	Ulocladioides	CBS 123007	T	Cucumis melo	China	HSAUP0209	KC584612	KC584354	KC584479	KC584245	KC584171	KC584739
Ulocladium capsici	Alternaria concatenata	Pseudoulocladium	CBS 120006	T	Unknown	Unknown	HSAUPIII 0035	KC584613	KC584355	KC584480	KC584246	AY762950	KC584740
Ulocladium chartarum	Alternaria chartarum	Pseudoulocladium	CBS 200.67	T	Populus sp.	Canada	ATCC 18044; DAOM 59616b; IMI 124943; MUCL 18564; QM 8328	KC584614	KC584356	KC584481	AF229488	KC584172	KC584741
Ulocladium consortiale	Alternaria consortialis	Ulocladioides	CBS 104.31	T	Unknown	Unknown		KC584615	KC584357	KC584482	KC584247	KC584173	KC584742
Ulocladium cucurbitae	Alternaria cucurbitae	Ulocladioides	CBS 483.81	R	Cucumis sativus	New Zealand	EGS 31.021; LEV 7067	KC584616	KC584358	KC584483	FJ266483	AY562418	KC584743
Ulocladium multiforme	Alternaria multiformis	Ulocladioides	CBS 102060	T	Soil	Canada		KC584617	KC584359	KC584484	FJ266486	KC584174	KC584744
Ulocladium obovoideum	Alternaria obovoidea	Ulocladioides	CBS 101229		Cucumis sativus	New Zealand		KC584618	KC584360	KC584485	FJ266487	FJ266498	KC584745
Ulocladium oudemansii	Alternaria oudemansii	Ulocladium	CBS 114.07	T	Unknown	Unknown	ATCC 18047; IMI 124940; MUCL 18563; QM 1744	KC584619	KC584361	KC584486	FJ266488	KC584175	KC584746
Ulocladium septosporum	Alternaria septospora	Pseudoulocladium	CBS 109.38		Wood	Italy		KC584620	KC584362	KC584487	FJ266489	FJ266500	KC584747
Ulocladium solani	Alternaria heterospora	Ulocladioides	CBS 123376	T	Lycopersicon esculentum	China	HSAUP 0521	KC584621	KC584363	KC584488	KC584248	KC584176	KC584748
Ulocladium subcucurbitae	Alternaria subcucurbitae	Ulocladioides	CBS 121491	T	Chenopodium glaucum	China		KC584622	KC584364	KC584489	KC584249	EU855803	KC584749
Ulocladium tuberculatum	Alternaria terricola	Ulocladioides	CBS 202.67	T	Soil	USA	ATCC 18048; IMI 124947; MUCL 18560; QM 8614	KC584623	KC584365	KC584490	FJ266490	KC584177	KC584750
Undifilum bornmuelleri	Alternaria bornmuelleri	Undifilum	DAOM 231361		Securigera varia	Austria	DAOM 231361	KC584624	KC584366	KC584491	FJ357317	FJ357305	KC584751
Ybotromyces caespitosus	Alternaria caespitosa	Infectoriae	CBS 177.80	T	Human	Spain		KC584625	KC584367	KC584492	KC584250	KC584178	KC584752

 Culture Collection, Amherst, MA, USA.
${ }^{2}$ T: ex-type strain; R: representative strain
Table 2. Summary of locus and phylogenetic results as well as a heat map of the Bayesian posterior probabilities and RAxML boostrap support values per Alternaria section.

	1-region						2-region			3-region	6-region SSU	1-region						2-region			3-region	6-region
	SSU	LSU	ITS	GAPDH	RPB2	TEF1	$\begin{gathered} \text { GAPDH } \\ \text { RPB2 } \end{gathered}$	$\begin{gathered} \text { GAPDH } \\ \text { TEF1 } \end{gathered}$	$\begin{gathered} \text { RPB2 } \\ \text { TEF1 } \end{gathered}$	GAPDH RPB2 TEF1	SSU LSU ITS GAPDH RPB2 TEF1	SSU	LSU	ITS	GAPDH	RPB2	TEF1	$\begin{array}{\|c\|} \hline \text { GAPDH } \\ \text { RPB2 } \end{array}$	$\begin{gathered} \text { GAPDH } \\ \text { TEF1 } \end{gathered}$	RPB2 TEF1	GAPDH RPB2 TEF1	$\begin{gathered} \text { SSU } \\ \text { LSU } \\ \text { ITS } \\ \text { GAPDH } \\ \text { RPB2 } \\ \text { TEF1 } \end{gathered}$
Aligned length	1021	851	499	573	786	269	1359	842	1055	1628	3999	1021	851	499	573	786	269	1359	842	1055	1628	3999
Unique site patterns	45	57	148	272	296	224	568	496	520	792	1042	45	57	148	272	296	224	568	496	520	792	1042
No. of sampled trees (post burnin)	39002	31578	75002	23702	56028	12452	10128	13728	44852	5778	16278											
	Bayesian Posterior Probabilities											RAxML bootstrap support										
Sect. Alternantherae		*											*									
Sect. Alternaria																						
Sect. Chalastospora *																						
Sect. Crivellia																						
Sect. Embellisia																						
Sect. Embellisioides																						
Sect. Gypsophilae																						
Sect. Infectoriae																						
Sect. Japonicae																						
Sect. Nimbya																						
Sect. panax																						
Sect. Pseudoulocladium																						
Sect. Radicina																						
Sect. Sonchi																						
Sect. Teretispora																						
Sect. Ulocladioides Sect. Ulocladium	*	*										*	*									
			*											*								

the average standard deviation of split frequencies did not fall below 0.01 after 5 M generations (RPB2 and Pleosporineae phylogeny). Burn-in was set to 25% after which the likelihood values were stationary. Maximum likelihood analyses including 500 bootstrap replicates were run using RAxML v. 7.2.6 (Stamatakis \& Alachiotis 2010). The online tool Findmodel (http://www.hiv. lanl.gov/content/sequence/findmodel/findmodel.html) was used to determine the best nucleotide substitution model for each partition. For the SSU (Pleosporineae family tree), LSU, ITS, RPB2 and TEF1 partitions a GTR model with a gamma-distributed rate variation was suggested, and for the SSU (Alternaria complex) and GAPDH partitions a TrN model with gamma-distributed rate variation. Sequences of Stemphylium herbarum (CBS 191.86) were used as outgroup in the Alternaria phylogeny and those of Jullella avenicae (BCC 18422) in the Pleosporineae phylogeny. The resulting trees were printed with TreeView v. 1.6.6 (Page 1996) and together with the alignments deposited into TreeBASE (http://www.treebase.org).

RESULTS

Phylogeny

For defining the taxonomy of Alternaria and allied genera, 121 strains were included in the Alternaria complex alignment. The alignment length and unique site patterns of the different genes and gene combinations are stated in Table 2. The original ITS alignment consisted of 577 characters of which the first 78 are excluded as this contained a non-alignable region. In the original TEF1 alignment (375 characters) we coded the major inserts (Table 3), which otherwise would negatively influence the phylogeny, resulting in a TEF1 alignment of 269 characters. All phylogenies, different phylogenetic methods and gene regions or gene combinations used on this dataset (data not shown, trees and alignments lodged in TreeBASE), show a weak support at the deeper nodes of the tree. The only well-supported node (Bayesian posterior probability of 1.0, RAxML Maximum Likelihood support value of 100) in all phylogenies separates Embellisia annulata CBS 302.84 and the Pleospora / Stemphylium clade from the Alternaria complex (Fig. 1). In the Alternaria clade, six monotypic lineages and 24 internal clades occur consistently in the individual and combined phylogenies, although positions vary between the different gene regions or combinations used. The support values for the clades within Alternaria (called sections) are plotted in a heat map (Table 2) per gene and phylogenetic method used. The support values for the different phylogenetic methods vary, with the Bayesian posterior probabilities being higher than the RAxML bootstrap support values (Table 2). The SSU, LSU and ITS phylogenies display a low resolution, which reflects in poor to no support of the sections. Therefore, we chose not to include them in the multi-gene alignments, except in the all-gene alignment. In the GAPDH phylogenies, sect. Cheiranthus, sect. Nimbya and sect. Pseudoulocladium are poorly supported and "A. resedae" clusters separate from sect. Cheiranthus. In the RPB2 phylogenies the support values for sect. Alternaria, sect. Embellisioides and sect. Eureka are relatively low; A. cumini clusters in sect. Embellisioides instead of sect. Eureka and U. capsici clusters separate from sect. Pseudoulocladium. The TEF1 phylogenies did not support sect. Nimbya and show relative low support for sect. Cheiranthus, sect. Dianthicola, sect. Embellisioides, sect. Panax, sect. Phragmosporae and sect. Radicina, and A. cumini clusters outside sect. Eureka. In the 2-region phylogenies U. capsici clusters outside sect. Pseudoulocladium based on GAPDH and RPB2, E. indefessa clusters outside sect. Cheiranthus based on GAPDH and TEF1, and sect. Eureka is poorly supported based on RPB2 and TEF1. The combined phylogeny based on the GAPDH,

Fig. 1. Bayesian 50% majority rule consensus tree based on the GAPDH, RPB2 and TEF1 sequences of 121 strains representing the Alternaria complex. The Bayesian posterior probabilities (PP) and RAxML bootstrap support values (ML) are given at the nodes (PP/ML). Thickened lines indicate a PP of 1.0 and ML of 100. The tree was rooted to Stemphylium herbarum (CBS 191.86). The monotypic lineages are indicated by black dots.

Table 3. Coded inserts in the TEF1 sequence alignment.

Species	Nt position	Coded	Nt position	Coded
Alternaria elegans	23 to 39	TC		
Alternaria simsimi	23 to 39	TCC		
Alternaria dauci	186 to 205	C	221 to 269	TACTT
Alternaria macrospora	186 to 205	C	221 to 269	TCCCC
Alternaria porri	186 to 205	C	221 to 269	ACTTA
Alternaria pseudorostrata	186 to 205	C	221 to 269	TGGTA
Alternaria solani	186 to 205	C	221 to 269	-AAGG
Alternaria tegetica	186 to 205	C	221 to 269	CACAC

RPB2 and TEF1 sequences (Fig. 1) is displayed, as these are the genes with the best resolution.
The final Pleosporineae alignment included 74 strains, representing six families, and consisted of 2506 characters (SSU 935, LSU 796, RPB2 775) of which 700 were unique site patterns (SSU 111, LSU 145, RPB2 444). In the SSU alignment a large insertion at position 446 in the isolates Chaetosphaeronema hispidulum CBS 216.75, Pleospora fallens CBS 161.78, Pleospora flavigena CBS 314.80 and Ophiosphaerella herpotrichia CBS 620.86 was excluded from the phylogenetic analyses. A total of 43202 trees were sampled after the burn-in. The type species of Clathrospora, C. elynae, forms a well-supported clade, located basal to the Pleosporaceae (Fig. 2), outside the Alternaria complex. The type species of Comoclathris, C. lanata, was not available for study but the two Comoclathris compressa strains cluster in a wellsupported clade within the Pleosporaceae outside Alternaria s. str. The genus Alternariaster, with Alternariaster helianthi as type and only species, also clusters outside the Alternaria complex and even outside Pleosporaceae; it belongs to the Leptosphaeriaceae instead (Fig. 2). Embellisia annulata is identical to Dendryphiella salina, and forms a well-supported clade in the Pleosporaceae together with Dendryphiella arenariae. As the type species of Dendryphiella, D. vinosa, clusters outside the Pleosporineae (dela Cruz 2006, Jones et al. 2008), Dendryphiella salina and D. arenariae are placed in a new genus, Paradendryphiella, below.

Taxonomy

Based on DNA sequence data in combination with a review of literature and morphology, the species within the Alternaria clade are all recognised here as Alternaria (Fig 1). This puts the genera Allewia, Brachycladium, Chalastospora, Chmelia, Crivellia, Embellisia, Lewia, Nimbya, Sinomyces, Teretispora, Ulocladium, Undifilum and Ybotromyces in synonymy with Alternaria, resulting in the proposal of 32 new combinations, 10 new names and the resurrection of 10 names. Species of Alternaria were assigned to 24 Alternaria sections, of which 16 are newly described, and six monotypic lineages. The (emended) description of the genus Alternaria, the Alternaria sections and monotypic lineages with new Alternaria names and name combinations are treated below in alphabetical order. Finally the description of the new genus Paradendryphiella is also provided.

Alternaria Nees, Syst. Pilze (Würzburg): 72. 1816 [1816-1817].
= Elosia Pers., Mycol. Eur. (Erlanga) 1: 12. 1822.
$=$ Macrosporium Fr., Syst. Mycol. (Lundae) 3: 373. 1832.
$=$ Rhopalidium Mont., Ann. Sci. Nat., Bot., Sér. 2, 6:30. 1836.

Fig. 2. Bayesian 50 \% majority rule consensus tree based on the SSU, LSU and RPB2 sequences of 74 strains representing the Pleosporineae. The Bayesian posterior probabilities (PP) and RAxML bootstrap support values (ML) are given at the nodes (PP/ML). Thickened lines indicate a PP of 1.0 and ML of 100. The tree was rooted to Julella avicenniae (BCC 18422).
= Brachycladium Corda, Icon. Fungorum hucusque Cogn. (Prague) 2: 14. 1838.
= Ulocladium Preuss, Linnaea 24: 111. 1851.
$=$ Chmelia Svob.-Pol., Biologia (Bratislava) 21: 82. 1966.
= Embellisia E.G. Simmons, Mycologia 63: 380. 1971.
$=$ Trichoconiella B.L. Jain, Kavaka 3: 39. 1976 [1975].
= Botryomyces de Hoog \& C. Rubio, Sabouraudia 20: 19. 1982. (nom. illegit.)
$=$ Lewia M.E. Barr \& E.G. Simmons, Mycotaxon 25: 289. 1986.
= Ybotromyces Rulamort, Bull. Soc. Bot. Centre-Ouest, Nouv. Sér. 17: 192. 1986.
$=$ Nimbya E.G. Simmons, Sydowia 41:316. 1989.
$=$ Allewia E.G. Simmons, Mycotaxon 38: 260. 1990.
= Crivellia Shoemaker \& Inderb., Canad. J. Bot. 84: 1308. 2006.
$=$ Chalastospora E.G. Simmons, CBS Biodiversity Ser. (Utrecht) 6: 668. 2007.
= Teretispora E.G. Simmons, CBS Biodiversity Ser. (Utrecht) 6: 674. 2007.
= Undifilum B.M. Pryor, Creamer, Shoemaker, McLain-Romero \& Hambl., Botany 87: 190. 2009.
$=$ Sinomyces Yong Wang bis \& X.G. Zhang, Fungal Biol. 115: 192. 2011.
Colonies effuse, usually grey, dark blackish brown or black. Mycelium immersed or partly superficial; hyphae colourless, olivaceous-brown or brown. Stroma rarely formed. Setae and hyphopodia absent. Conidiophores macronematous, mononematous, simple or irregularly and loosely branched, pale brown or brown, solitary or in fascicles. Conidiogenous cells integrated, terminal becoming intercalary, polytretic, sympodial, or sometimes monotretic, cicatrized. Conidia catenate or solitary, dry, ovoid, obovoid, cylindrical, narrowly ellipsoid or obclavate, beaked or non-beaked, pale or medium olivaceous-brown to brown, smooth or verrucose, with transverse and with or without oblique or longitudinal septa. Septa can be thick, dark and rigid and an internal cell-like structure can be formed. Species with meristematic growth are known.

Ascomata small, solitary to clustered, erumpent to (nearly) superficial at maturity, globose to ovoid, dark brown, smooth, apically papillate, ostiolate. Papilla short, blunt. Peridium thin. Hamathecium of cellular pseudoparaphyses. Asci few to many per ascoma, (4-6-)8-spored, basal, bitunicate, fissitunicate, cylindrical to cylindro-clavate, straight or somewhat curved, with a short, furcate pedicel. Ascospores muriform, ellipsoid to fusoid, slightly constricted at septa, yellow-brown, without guttules, smooth, 3-7 transverse septa, 1-2 series of longitudinal septa through the two original central segments, end cells without septa, or with 1 longitudinal or oblique septum, or with a Y-shaped pair of septa.

Type species: Alternaria alternata (Fr.) Keissl.

alternaria SECTIONS

Section Alternantherae D.P. Lawr., Gannibal, Peever \& B.M. Pryor, Mycologia 105: 540. 2013. Fig. 3.

Type species: Alternaria alternantherae Holcomb \& Antonop.
Diagnosis: Section Alternantherae contains short to moderately long conidiophores with a conidiogenous tip which can be enlarged. Conidia are narrowly ellipsoid or ovoid, sometimes

Fig. 3. Alternaria sect. Alternantherae: conidia and conidiophores. A-D. A. alternantherae. E-H. A. perpunctulata. Scale bars $=10 \mu \mathrm{~m}$.
subcylindrical, solitary or rarely paired, sometimes slightly constricted near some septa, longitudinal or oblique septa occasionally occur, disto- and euseptate, with a long apical narrow beak. The conidial beak is unbranched, septate or aseptate, long filiform, and sometimes swollen at the end. Internal compartmentation occurs, cell lumina tend to be broadly octagonal to rounded.

Notes: Section Alternantherae was recently established by Lawrence et al. (2013) after first being described as species-group A. alternantherae (Lawrence et al. 2012). The described section consists of three former Nimbya species which formed a separate clade amidst the Alternaria species-groups based on sequences of the GAPDH, ITS and Alt a 1 genes (Lawrence et al. 2012). Nimbya celosiae is placed in this section based on the data of Lawrence et al. (2012), while N. gomphrenae is placed in the section based on ITS sequence data from Chou \& Wu (2002).

Alternaria alternantherae Holcomb \& Antonop., Mycologia 68: 1126. 1976.
\equiv Nimbya alternantherae (Holcomb \& Antonop.) E.G. Simmons \& Alcorn, Mycotaxon 55: 142. 1995.
Alternaria celosiicola Jun. Nishikawa \& C. Nakash., J. Phytopathol. 161: 606. 2013.
Basionym: Nimbya celosiae E.G. Simmons \& Holcomb, Mycotaxon 55: 144. 1995.
\equiv Alternaria celosiae (E.G. Simmons \& Holcomb) D.P. Lawr., M.S. Park \& B.M. Pryor, Mycol. Progr. 11: 811. 2012. (nom. illegit., homonym of Alternaria celosiae (Tassi) O. Savul. 1950).
Alternaria gomphrenae Togashi, Bull. Imp. Coll. Agric. 9: 6. 1926.
\equiv Nimbya gomphrenae (Togashi) E.G. Simmons, Sydowia 41: 324. 1989.

Alternaria perpunctulata (E.G. Simmons) D.P. Lawr., M.S. Park \& B.M. Pryor, Mycol. Progr. 11: 811. 2012.
Basionym: Nimbya perpunctulata E.G. Simmons, Stud. Mycol. 50: 115. 2004.

Section Alternaria D.P. Lawr., Gannibal, Peever \& B.M. Pryor, Mycologia 105: 538. 2013. Fig. 4.

Type species: Alternaria alternata (Fr.) Keissl.
Diagnosis: Section Alternaria contains straight or curved primary conidiophores, short to long, simple or branched, with one or several apical conidiogenous loci. Conidia are obclavate, long ellipsoid, small or moderate in size, septate, slightly constricted near some septa, with few longitudinal septa, in moderately long to long, simple or branched chains. The conidium body can narrow gradually into a tapered beak or secondary conidiophore. Secondary conidiophores can be formed apically or laterally with one or a few conidiogenous loci.

Notes: Next to the species that are displayed in our phylogeny, 14 more are included in sect. Alternaria based on the study of Lawrence et al. (2013) and confirmed by our molecular data (not shown). We chose not to include 11 species from the study of Lawrence et al. (2013). The species A. gossypina, A. grisae, A. grossulariae, A. iridis, A. lini, A. maritima and A. nelumbii were not recognised by Simmons (2007) and the strains of A. malvae, A. rhadina, A. resedae and A. tomato used by Lawrence et al. (2013) were not authentic. Section Alternaria comprises almost 60 Alternaria species based on ITS sequence data (data not shown). The molecular variation within this section is low.

Alternaria alternata (Fr.) Keissl., Beih. Bot. Centralbl., Abt. 2, 29: 434. 1912.
Basionym: Torula alternata Fr., Syst. Mycol. (Lundae) 3: 500. 1832 (nom. sanct.).
= Alternaria tenuis Nees, Syst. Pilze (Würzburg): 72. 1816 [1816-1817].
Additional synonyms listed in Simmons (2007)
Alternaria angustiovoidea E.G. Simmons, Mycotaxon 25: 198. 1986.
Alternaria arborescens E.G. Simmons, Mycotaxon 70: 356. 1999.
Alternaria burnsii Uppal, Patel \& Kamat, Indian J. Agric. Sci. 8: 49. 1938.
Alternaria cerealis E.G. Simmons \& C.F. Hill, CBS Biodiversity Ser. (Utrecht) 6: 600. 2007.
Alternaria citriarbusti E.G. Simmons, Mycotaxon 70: 287. 1999.
Alternaria citrimacularis E.G. Simmons, Mycotaxon 70: 277. 1999.
Alternaria colombiana E.G. Simmons, Mycotaxon 70: 298. 1999.
Alternaria daucifollii E.G. Simmons, CBS Biodiversity Ser. (Utrecht) 6: 518. 2007.
Alternaria destruens E.G. Simmons, Mycotaxon 68: 419. 1998.
Alternaria dumosa E.G. Simmons, Mycotaxon 70: 310. 1999.
Alternaria gaisen Nagano ex Hara, Sakumotsu Byorigaku, Edn 4: 263. 1928.
= Alternaria gaisen Nagano, J. Jap. Soc. Hort. Sci. 32: 16-19. 1920. (nom. illegit.)
= Alternaria kikuchiana S. Tanaka, Mem. Coll. Agric. Kyoto Univ., Phytopathol. Ser. 28: 27. 1933.
= Macrosporium nashi Miura, Flora of Manchuria and East Mongolia, Part III Cryptogams, Fungi: 513. 1928.
Alternaria herbiphorbicola E.G. Simmons, CBS Biodiversity Ser. (Utrecht) 6: 608. 2007.
Alternaria limoniasperae E.G. Simmons, Mycotaxon 70: 272. 1999.

Fig. 4. Alternaria sect. Alternaria: conidia and conidiophores. A, N. A. daucifolii. B, L-M. A. arborescens. C, H-J. A. alternata. D, O. A. gaisen. E. A. limoniasperae. F, K. A. tenuissima. G, P. A. longipes. Scale bars $=10 \mu \mathrm{~m}$.

Alternaria longipes (Ellis \& Everh.) E.W. Mason, Mycol. Pap. 2: 19. 1928.
Basionym: Macrosporium longipes Ellis \& Everh., J. Mycol. 7: 134. 1892.
= Alternaria brassicae var. tabaci Preissecker, Fachliche Mitt. Österr. Tabakregie 16: 4. 1916.

Alternaria perangusta E.G. Simmons, Mycotaxon 70: 303. 1999.
Alternaria postmessia E.G. Simmons, CBS Biodiversity Ser. (Utrecht) 6: 598. 2007.
Alternaria tangelonis E.G. Simmons, Mycotaxon 70: 282. 1999.
Alternaria tenuissima (Nees \& T. Nees : Fr.) Wiltshire, Trans. Brit. Mycol. Soc. 18: 157. 1933.
Basionym: Macrosporium tenuissimum (Nees \& T. Nees) Fr., Syst. Mycol. (Lundae) 3: 374. 1832 (nom. sanct.).
\equiv Helminthosporium tenuissimum Kunze ex Nees \& T. Nees, Nova Acta Acad. Caes. Leop.-Carol. German. Nat. Cur. 9: 242. 1818.
Additional synonyms listed in Simmons (2007).
Alternaria toxicogenica E.G. Simmons, Mycotaxon 70: 294. 1999.
Alternaria turkisafria E.G. Simmons, Mycotaxon 70: 290. 1999.

Section Brassicicola D.P. Lawr., Gannibal, Peever \& B.M. Pryor, Mycologia 105: 541. 2013. Fig. 5.

Type species: Alternaria brassicicola (Schwein.) Wiltshire.
Diagnosis: Section Brassicicola contains short to moderately long, simple or branched primary conidiophores with one or several apical conidiogenous loci. Conidia are ellipsoid, ovoid or somewhat obclavate, small or moderate in size, septate, slightly or strongly constricted at most of their transverse septa, with no to many longitudinal septa, in moderately long to long, simple or branched chains, with dark septa and cell walls. Secondary conidiophores can be formed apically or laterally with one or a few conidiogenous loci. Chlamydospores may occur.

Notes: Our molecular data support the morphological placement of A. septorioides and A. solidaccana in section Brassicicola (Simmons 2007). The other three species were already assigned to this section based on previous molecular studies (Pryor et al. 2009, Runa et al. 2009, Lawrence et al. 2012). Alternaria japonica was previously linked to the A. brassicicola species-group (Pryor \& Gilbertson 2000, Pryor \& Bigelow 2003, Lawrence et al. 2013), but this association was questioned by Hong et al. (2005a). In our analyses, A. japonica clustered in sect. Japonicae.

Alternaria brassicicola (Schwein.) Wiltshire, Mycol. Pap. 20: 8. 1947.
Basionym: Helminthosporium brassicicola Schwein., Trans. Amer. Philos. Soc., Ser. 2, 4: 279. 1832.

Additional synonyms listed in Simmons (2007)
Alternaria conoidea (E.G. Simmons) D.P. Lawr., Gannibal, Peever \& B.M. Pryor, Mycologia 105: 542. 2013.
Basionym: Embellisia conoidea E.G. Simmons, Mycotaxon 17: 226. 1983.
Alternaria mimicula E.G. Simmons, Mycotaxon 55: 129. 1995.
Alternaria septorioides (Westend.) E.G. Simmons, CBS Biodiversity Ser. (Utrecht) 6: 570. 2007.

Basionym: Sporidesmium septorioides Westend., Bull. Acad. Roy. Sci. Belgique., Cl. Sci., Sér. 2, 21: 236. 1854.
$=$ Alternaria resedae Neerg., Annual Rep. Phytopathol. Lab. J.E. Ohlsens Enkes, Seed Growers, Copenhagen 7: 9.1942 (nom. nud.).

Fig. 5. Alternaria sect. Brassicicola: conidia and conidiophores. A, H. A. brassicicola. B, I, L-M. A. mimicola. C, G. A. solidaccana. D, J-K. A. conoidea. E-F. A. septorioides. Scale bars $=10 \mu \mathrm{~m}$.
$=$ Alternaria resedae Neerg., Danish species of Alternaria \& Stemphylium: 150. 1945. Alternaria solidaccana E.G. Simmons, CBS Biodiversity Ser. (Utrecht) 6: 572. 2007.

Section Chalastospora (E.G. Simmons) Woudenb. \& Crous, comb. et stat. nov. MycoBank MB803733. Fig. 6.
Basionym: Chalastospora E.G. Simmons, CBS Biodiversity Ser. (Utrecht) 6: 668. 2007.

Type species: Alternaria cetera E.G. Simmons.
Diagnosis: Section Chalastospora contains short to long, simple or branched primary conidiophores with one or several conidiogenous loci. Conidia are pale to medium brown, narrowly ellipsoid to ellipsoid or ovoid, beakless, with no to multiple transverse eusepta and

Fig. 6. Alternaria sect. Chalastospora: conidia and conidiophores. A. A. cetera. B. A. obclavata. C. A. breviramosa. D, H. A. armoraciae. E-G. A. abundans. Scale bars $=10 \mu \mathrm{~m}$.
rarely longitudinal septa, solitary or in chains. Secondary conidiophores can be formed apically or laterally with one or a few conidiogenous loci.

Notes: Previous studies already placed E. abundans in the Chalastospora-clade (Andersen et al. 2009, Lawrence et al. 2012). Our study also placed Alternaria armoraciae in this section, while Crous et al. (2009a) showed that Chalastospora gossypii, formerly Alternaria malorum, belonged to this section based on sequences of the ITS and LSU genes.

Alternaria abundans (E.G. Simmons) Woudenb. \& Crous, comb. nov. MycoBank MB803688. Basionym: Embellisia abundans E.G. Simmons, Mycotaxon 17: 222. 1983.
Alternaria armoraciae E.G. Simmons \& C.F. Hill, CBS Biodiversity Ser. (Utrecht) 6: 660. 2007.

Alternaria breviramosa Woudenb. \& Crous, nom. nov. MycoBank MB803690.
Basionym: Chalastospora ellipsoidea Crous \& U. Braun, Persoonia 22: 145. 2009, non Alternaria ellipsoidea E.G. Simmons, 2002.
Etymology: Name refers to the short lateral branches.
Alternaria cetera E.G. Simmons, Mycotaxon 57: 393. 1996.
\equiv Chalastospora cetera (E.G. Simmons) E.G. Simmons, CBS Biodiversity Ser. (Utrecht) 6: 668. 2007.
Alternaria malorum (Ruehle) U. Braun, Crous \& Dugan, Mycol. Progr. 2: 5. 2003.
Basionym: Cladosporium malorum Ruehle, Phytopathology 21: 1146. 1931.
= Cladosporium gossypii Jacz., Khlopkovoe Delo, 1929 (5-6): 564. 1929, non Alternaria gossypii (Jacz.) Y. Nisik., K. Kimura \& Miyaw., 1940.
\equiv Chalastospora gossypii (Jacz.) U. Braun \& Crous, Persoonia 22: 144. 2009.
$=$ Cladosporium malorum Heald, Wash. State Agric. Exp. Sta. Bull., Special Ser. 245: 48. 1930. (nom. nud.)

Additional synonyms in Crous et al. (2009c).

Fig. 7. Alternaria sect. Cheiranthus: conidia and conidiophores. A-B. A. indefessa. B-C. A. cheiranthi. Scale bars $=10 \mu \mathrm{~m}$.

Alternaria obclavata (Crous \& U. Braun) Woudenb. \& Crous, comb. nov. MycoBank MB803689.
Basionym: Chalastospora obclavata Crous \& U. Braun, Persoonia 22: 146. 2009.

Section Cheiranthus Woudenb. \& Crous, sect. nov. MycoBank MB803734. Fig. 7.
Type species: Alternaria cheiranthi (Lib.) P.C. Bolle.
Diagnosis: Section Cheiranthus contains short to moderately long, simple or branched primary conidiophores with one or several conidiogenous loci. Conidia are ovoid, broadly ellipsoid with transverse and longitudinal septa, slightly or strongly constricted at the septa, in short to long, simple or branched chains. Secondary conidiophores can be formed apically or laterally with a single conidiogenous locus.

Notes: Next to Alternaria cheiranthi and Embellisia indefessa, sect. Cheiranthus contains a non-sporulating strain formerly known as Alternaria resedae, CBS 115.44. Because Alternaria resedae is synonymised with Alternaria septorioides (Simmons 2007), which clusters in section Brassisicola, CBS 115.44 will be treated as "Alternaria sp.". Alternaria cheiranthi and E. indefessa have been linked to Ulocladium (Pryor \& Gilbertson 2000, Pryor \& Bigelow 2003, Hong et al. 2005a, Pryor et al. 2009, Runa et al. 2009, Lawrence et al. 2012), but based on morphology could not be placed here. Our extensive dataset showed that they form a sister section to section Ulocladioides.

Alternaria cheiranthi (Lib.) P.C. Bolle, Meded. Phytopathol. Lab. "Willie Commelin Scholten" 7: 43. 1924.
Basionym: Helminthosporium cheiranthi Lib. [as "Helmisporium"], in Desmazières, Plantes Cryptogames du Nord de la France, edn 1: 213. 1827.
\equiv Macrosporium cheiranthi (Lib.) Fr., Syst. Mycol. (Lundae) 3: 374. 1832.
Alternaria indefessa (E.G. Simmons) Woudenberg \& Crous, comb. nov. MycoBank MB803691.
Basionym: Embellisia indefessa E.G. Simmons, Mycotaxon 17: 228. 1983.

Fig. 8. Alternaria sect. Crivellia: conidia and conidiophores. A-B. A. papavericola. C-D. A. penicillata. Scale bars $=10 \mu \mathrm{~m}$.

Section Crivellia (Shoemaker \& Inderb.) Woudenb. \& Crous, comb. et stat. nov. MycoBank MB803735. Fig. 8.
Basionym: Crivellia Shoemaker \& Inderb., Canad. J. Bot. 84: 1308. 2006.
Type species: Alternaria penicillata (Corda) Woudenb. \& Crous (= Cucurbitaria papaveracea De Not.).

Diagnosis: Section Crivellia is characterised by straight or curved, simple or branched primary conidiophores, with geniculate, sympodial proliferations. Conidia are cylindrical, straight to curved to inequilateral, with transverse eusepta, rarely constricted at septa, single or in short, simple or branched chains. Secondary conidiophores are formed apically or laterally. Microsclerotia or chlamydospores may occur. Sexual morphs observed.

Notes: Section Crivellia contains the type species of the sexual morph Crivellia, C. papaveracea, with Brachycladium penicillatum asexual morph, and Brachycladium papaveris. The genus was established by Inderbitzin et al. (2006) based on the finding that C. papaveraceae, formerly Pleospora papaveraceae, belonged to the Alternaria-complex instead of Pleospora s. str. based on ITS, GAPDH and TEF1 sequences.

Alternaria papavericola Woudenb. \& Crous, nom. nov. MycoBank MB803749.
Basionym: Helminthosporium papaveris Sawada, J. Nat. Hist. Soc. Formosa 31: 1. 1917.
\equiv Dendryphion papaveris (Sawada) Sawada, Special Publ. Coll. Agric. Natl. Taiwan Univ. 8: 200. 1959, non Alternaria papaveris (Bres.) M.B. Ellis, 1976.
\equiv Brachycladium papaveris (Sawada) Shoemaker \& Inderb., Canad. J. Bot. 84: 1310. 2006.

Etymology: Name refers to the host.
Alternaria penicillata (Corda) Woudenb. \& Crous, comb. nov. MycoBank MB803692.
Basionym: Brachycladium penicillatum Corda, Icon. Fungorum hucusque Cogn. (Prague) 2: 14. 1838.
\equiv Dendryphion penicillatum (Corda) Fr., Summa Veg. Scand., Sect. Post. (Stockholm): 504. 1849.
$=$ Cucurbitaria papaveracea De Not., Sferiacei Italici: 62. 1863.

Fig. 9. Alternaria sect. Dianthicola: conidia and conidiophores. A-B. A. dianthicola. C-E. A. simsimi. F-H. A. elegans. Scale bars $=10 \mu \mathrm{~m}$.
\equiv Pleospora papaveracea (De Not.) Sacc., Syll. Fungorum (Abellini) 2: 243. 1883.
\equiv Crivellia papaveracea (De Not.) Shoemaker \& Inderb., Canad. J. Bot. 84: 1308. 2006.

Note: The asexual name, Brachycladium penicillatum is older than the sexual name, Cucurbitaria papaveracea, and therefore the species epithet penicillatum is chosen above papaveracea.

Section Dianthicola Woudenb. \& Crous, sect. nov. MycoBank MB803736. Fig. 9.

Type species: Alternaria dianthicola Neerg.

Diagnosis: Section Dianthicola contains simple or branched primary conidiophores, with or without apical geniculate proliferations. Conidia are narrowly ovoid or narrowly ellipsoid with transverse and few longitudinal septa, slightly constricted at the septa, with a long (filamentous) beak or apical secondary conidiophore, solitary or in short chains.

Note: Based on the ITS sequence, Alternaria dianthicola clustered near Ulocladium (Chou \& Wu 2002). Our extensive dataset places it in a sister section to section Ulocladioides.

Alternaria dianthicola Neerg., Danish species of Alternaria \& Stemphylium: 190. 1945.
Alternaria elegans E.G. Simmons \& J.C. David, Mycotaxon 75: 89. 2000.
Alternaria simsimi E.G. Simmons, Stud. Mycol. 50: 111. 2004.

Fig. 10. Alternaria sect. Embellisia: conidia and conidiophores. A-D. A. embellisia. E-H. A. tellustris. Scale bars $=10 \mu \mathrm{~m}$.

Section Embellisia (E.G. Simmons) Woudenb. \& Crous, comb. et stat. nov. MycoBank MB803737. Fig. 10.
Basionym: Embellisia E.G. Simmons, Mycologia 63: 380. 1971.
Type species: Alternaria embellisia Woudenb. \& Crous (\equiv Helminthosporium allii Campan., Embellisia allii (Campan.) E.G. Simmons).

Diagnosis: Section Embellisia contains simple, septate conidiophores, straight or with geniculate sympodial proliferation. Condia are solitary, ovoid to subcylindrical, straight to inequilateral, transseptate; septa can be thick, dark and rigid in contrast to the external wall. Chlamydospores may occur.

Notes: Section Embellisia contains the first two species described in the genus Embellisia, Embellisia allii (type species) and Embellisia chlamydospora (Simmons 1971) together with Embellisia tellustris. This clade is also resolved in the latest molecular revision of Embellisia based on sequences of the GAPDH, ITS and Alt a 1 genes as Embellisia group I (Lawrence et al. 2012).

Alternaria chlamydosporigena Woudenb. \& Crous, nom. nov. MycoBank MB803694.
Basionym: Pseudostemphylium chlamydosporum Hoes, G.W. Bruehl \& C.G. Shaw, Mycologia 57: 904. 1965, non Alternaria chlamydospora Mouch., 1973.
\equiv Embellisia chlamydospora (Hoes, G.W. Bruehl \& C.G. Shaw) E.G. Simmons,

Mycologia 63: 384. 1971.
Etymology: Name refers to the formation of chlamydospores during growth.
Alternaria embellisia Woudenb. \& Crous, nom. nov. MycoBank MB803693.
Basionym: Helminthosporium allii Campan., Nuovi Ann. Agric. Roma 4: 87. 1924, non Alternaria allii Nolla, 1927.
\equiv Embellisia allii (Campan.) E.G. Simmons, Mycologia 63: 382. 1971.
Etymology: Name refers to the genus Embellisia for which it served as type species.
Alternaria tellustris (E.G. Simmons) Woudenb. \& Crous, comb. nov. MycoBank MB803695.
Basionym: Embellisia tellustris E.G. Simmons [as "telluster"], Mycotaxon 17: 234. 1983.

Section Embellisioides Woudenb. \& Crous, sect. nov. MycoBank MB803738. Fig. 11.
Type species: Alternaria hyacinthi (de Hoog \& P.J. Mull. bis) Woudenb. \& Crous.
Diagnosis: Section Embellisioides contains simple, septate conidiophores, straight or with multiple, geniculate, sympodial proliferations. Apical or lateral, short secondary conidiophores may occur. Condia are solitary or in short chains, obovoid to ellipsoid, with transverse and longitudinal septa; transverse septa can be thick, dark and rigid in contrast to the external wall. Chlamydospores and a sexual morph may occur.

Note: In Lawrence et al. (2012) the section is named Embellisia group III.
Alternaria botryospora Woudenb. \& Crous, nom. nov. MycoBank MB803705.
Basionym: Embellisia novae-zelandiae E.G. Simmons \& C.F. Hill, Mycotaxon 38: 252. 1990, non Alternaria novae-zelandiae E.G. Simmons, 2002.
Etymology: Name refers to the clusters of conidia.
Alternaria hyacinthi (de Hoog \& P.J. Mull. bis) Woudenb. \& Crous, comb. nov. MycoBank MB803703.
Basionym: Embellisia hyacinthi de Hoog \& P.J. Mull. bis, Netherlands J. Pl. Pathol. 79: 85. 1973.

Alternaria lolii (E.G. Simmons \& C.F. Hill) Woudenb. \& Crous, comb. nov. MycoBank MB803704.
Basionym: Embellisia lolii E.G. Simmons \& C.F. Hill, Stud. Mycol. 50: 113. 2004.
Alternaria planifunda (E.G. Simmons) Woudenb. \& Crous, comb. nov. MycoBank MB803706. Basionym: Embellisia planifunda E.G. Simmons, Mycotaxon 17: 233. 1983.
Alternaria proteae (E.G. Simmons) Woudenb. \& Crous, comb. nov. MycoBank MB803707. Basionym: Embellisia proteae E.G. Simmons, Mycotaxon 38: 258. 1990.
= Allewia proteae E.G. Simmons, Mycotaxon 38: 262. 1990.
Alternaria tumida (E.G. Simmons) Woudenb. \& Crous, comb. nov. MycoBank MB803708. Basionym: Embellisia tumida E.G. Simmons, Mycotaxon 17: 236. 1983.

Section Eureka Woudenb. \& Crous, sect. nov. MycoBank MB803739. Fig. 12.
Type species: Alternaria eureka E.G. Simmons.

Fig. 11. Alternaria sect. Embellisioides: conidia and conidiophores. A-B. A. hyacinthi. C-E. A. lolii. F-H. A. botryospora. I-K. A. planifunda. L-N. A. proteae. O-P. A. tumida. Scale bars $=10 \mu \mathrm{~m}$.

Fig. 12. Alternaria sect. Eureka: conidia and conidiophores. A-B. A. anigozanthi. C-D. A. cumini. E-F. A. leptinellae. G-H. A. triglochinicola. I-J. A. geniostomatis. K-L. A. eureka. Scale bars $=10 \mu \mathrm{~m}$.

Diagnosis: Section Eureka contains simple, septate conidiophores, straight or with geniculate, sympodial proliferations. Apical or lateral, short secondary conidiophores may occur. Condia are solitary or in short chains, narrowly ellipsoid to cylindrical, with transverse and longitudinal septa, slighty constricted at the septa, with a blunt rounded apex. Chlamydospores and a sexual morph may occur.

Notes: Section Eureka contains four Alternaria species and two former Embellisia species. From the Alternaria species only the ITS sequence of A. geniostomatis was previously used in a molecular study (Toth et al. 2011), showing it to cluster separate from the other Alternaria spp. The two Embellisia species were included in the latest molecular-based revision of Embellisia (Lawrence et al. 2012) where they formed Embellisia group IV. A sexual morph is known for the type species of this section.

Alternaria anigozanthi Priest, Australas. Pl. Pathol. 24: 239. 1995.
Alternaria cumini E.G. Simmons, CBS Biodiversity Ser. (Utrecht) 6: 664. 2007.
Alternaria eureka E.G. Simmons, Mycotaxon 25: 306. 1986.
\equiv Embellisia eureka (E.G. Simmons) E.G. Simmons, Mycotaxon 38: 260. 1990.
= Lewia eureka E.G. Simmons, Mycotaxon 25: 304. 1986.
\equiv Allewia eureka (E.G. Simmons) E.G. Simmons, Mycotaxon 38: 264. 1990.
Alternaria geniostomatis E.G. Simmons \& C.F. Hill, CBS Biodiversity Ser. (Utrecht) 6: 412. 2007. Alternaria leptinellae (E.G. Simmons \& C.F. Hill) Woudenb. \& Crous, comb. nov. MycoBank MB803696.
Basionym: Embellisia leptinellae E.G. Simmons \& C.F. Hill, Mycotaxon 38: 254. 1990.
Alternaria triglochinicola Alcorn \& S.M. Francis, Mycotaxon 46: 359. 1993.

Section Gypsophilae D.P. Lawr., Gannibal, Peever \& B.M. Pryor, Mycologia 105: 541. 2013. Fig. 13

Type species: Alternaria gypsophilae Neerg.
Diagnosis: Section Gypsophilae contains simple, or occasionally branched, primary conidiophores, with one or a few conidiogenous loci. Conidia are ellipsoid to long ovoid, with multiple transverse and longitudinal septa, conspicuously constricted near some transverse septa, solitary or in short chains. Secondary conidiophores are formed apically with one or two conidiogenous loci or laterally with a single conidiogenous locus. Species from this section occur on Caryophyllaceae.

Notes: Section Gypsophilae was recently established by Lawrence et al. (2013) containing the four Alternaria species, A. gypsophilae, A. nobilis, A. vaccariae and A. vaccariicola. Our dataset adds four Alternaria species, A. axiaeriisporifera, A. ellipsoidea, A. saponariae, and A. juxtiseptata to this section. Simmons (2007) noted the similarity of the primary conidia of A. ellipsoidea to A. gypsophilae, A. nobilis, A. saponariae and A. vaccariae. This section contains all Alternaria species that occur on Caryophyllaceae (Simmons 2002), except A. dianthicola which resides in sect. Dianthicola.

Alternaria axiaeriisporifera E.G. Simmons \& C.F. Hill, CBS Biodiversity Ser. (Utrecht) 6: 662. 2007.

Alternaria ellipsoidea E.G. Simmons, Mycotaxon 82: 31. 2002.
Alternaria gypsophilae Neerg., Danish species of Alternaria \& Stemphylium: 207. 1945.
Alternaria juxtiseptata E.G. Simmons, Mycotaxon 82: 32. 2002.
Alternaria nobilis (Vize) E.G. Simmons, Mycotaxon 82: 7. 2002.
Basionym: Macrosporium nobile Vize, Grevillea 5(35): 119. 1877.
Alternaria saponariae (Peck) Neerg., Annual Rep. Phytopathol. Lab. J.E. Ohlsens Enkes, Seed Growers, Copenhagen 3: 6. 1938 [1937-1938].
Basionym: Macrosporium saponariae Peck, Rep. (Annual) NewYork State Mus. Nat. Hist. 28: 62. 1876 [1875].

Alternaria vaccariae (Săvul. \& Sandu) E.G. Simmons \& S.T. Koike, Mycotaxon 82: 21. 2002. Basionym: Macrosporium vaccariae Săvul. \& Sandu, Hedwigia 73: 130. 1933.
Alternaria vaccariicola E.G. Simmons, CBS Biodiversity Ser. (Utrecht) 6: 594. 2007.

Fig. 13. Alternaria sect. Gypsophilae: conidia and conidiophores. A-B. A. axiariisporifera. C-D. A. ellipsoidea. E-G. A. saponariae. H-I. A. vaccariae. J-K. A. nobilis. L-M. A. juxtiseptata. N-P. A. vaccariicola. Scale bars $=10 \mu \mathrm{~m}$.

Fig. 14. Alternaria sect. Infectoriae: conidia and conidiophores. A-B. A. ethzedia. C-D. A. infectoria. E-F. A. conjuncta. G-H. A. oregonensis. Scale bars $=10 \mu \mathrm{~m}$.

Section Infectoriae Woudenb. \& Crous, sect. nov. MycoBank MB803740. Fig. 14.
Type species: Alternaria infectoria E.G. Simmons.
Diagnosis: Section Infectoriae contains short to long, simple or branched primary conidiophores with one or several conidiogenous loci. Conidia are obclavate, long-ellipsoid, small or moderate in size, septate, slightly constricted near some septa, with few longitudinal septa, in moderately long to long, branched chains. Long, geniculate, multi-locus secondary conidiophores can be formed apically or laterally. Sexual morphs are known, and meristematic growth has been reported.

Notes: In addition to the six species that are displayed in our phylogeny, 19 more are included based on the study of Lawrence et al. (2013), confirmed with our molecular data (not shown). From these 25 species, nine species have a known sexual morph in Lewia. Three species from the study of Lawrence et al. (2013) are not included; A. photistica (sect. Panax) and A. dianthicola (sect. Dianthicola) cluster elsewhere in our phylogenies and A. peglionii is marked as a taxon incertae sedis by Simmons (2007). The human pathogenic genera Ybotromyces and Chmelia are also embedded in sect. Infectoriae.

Alternaria alternarina E.G. Simmons, CBS Biodiversity Ser. (Utrecht) 6: 644. 2007.
= Pyrenophora alternarina M.D. Whitehead \& J. Dicks., Mycologia 44: 748. 1952.
\equiv Lewia alternarina (M.D. Whitehead \& J.G. Dicks.) E.G. Simmons, CBS Biodiversity Ser. (Utrecht) 6: 644. 2007.

Alternaria arbusti E.G. Simmons, Mycotaxon 48: 103. 1993.
Alternaria caespitosa (de Hoog \& C. Rubio) Woudenb. \& Crous, comb. nov. MycoBank MB803698.
Basionym: Botryomyces caespitosus de Hoog \& C. Rubio, Mycotaxon 14: 19. 1982. \equiv Ybotromyces caespitosus (de Hoog \& C. Rubio) Rulamort, Bull. Soc. Bot. CentreOuest, Nouv. Sér. 21: 512. 1990.
Alternaria californica E.G. Simmons \& S.T. Koike, CBS Biodiversity Ser. (Utrecht) 6: 602. 2007.

Alternaria conjuncta E.G. Simmons, Mycotaxon 25: 294. 1986.
$=$ Sphaeria scrophulariae Desm., Ann. Sci. Nat., Bot., Sér. 2, 6: 245. 1836.
\equiv Leptosphaeria scrophulariae (Desm.) Sacc., Syll. Fungorum (Abellini) 2: 57. 1883.
\equiv Heptameria scrophulariae (Desm.) Cooke, Grevillea 18(no. 86): 31. 1889.
\equiv Pleospora scrophulariae (Desm.) Höhn., Sitzungsber. Kaiserl. Akad. Wiss., Math.Naturwiss. Cl., Abt. 1. 126(4-5): 374. 1917.
\equiv Lewia scrophulariae (Desm.) M.E. Barr \& E.G. Simmons, Mycotaxon 25: 294. 1986.
Alternaria daucicaulis E.G. Simmons, CBS Biodiversity Ser. (Utrecht) 6: 640. 2007.
= Lewia daucicaulis E.G. Simmons, CBS Biodiversity Ser. (Utrecht) 6: 640. 2007.
Alternaria ethzedia E.G. Simmons, Mycotaxon 25: 300. 1986.
$=$ Lewia ethzedia E.G. Simmons, Mycotaxon 25: 299. 1986.
Alternaria frumenti E.G. Simmons \& C.F. Hill, CBS Biodiversity Ser. (Utrecht) 6: 620. 2007. Alternaria graminicola E.G. Simmons, CBS Biodiversity Ser. (Utrecht) 6: 626. 2007.
Alternaria hordeiaustralica E.G. Simmons \& Alcorn, CBS Biodiversity Ser. (Utrecht) 6: 614. 2007.
= Lewia hordeiaustralica E.G. Simmons \& Alcorn, CBS Biodiversity Ser. (Utrecht) 6: 614. 2007.

Alternaria hordeicola E.G. Simmons \& Kosiak, CBS Biodiversity Ser. (Utrecht) 6: 630. 2007.
= Lewia hordeicola Kwaśna \& Kosiak, Mycologia 98: 663. 2006.
Alternaria humuli E.G. Simmons, Mycotaxon 83: 139. 2002.
Alternaria incomplexa E.G. Simmons, Mycotaxon 57: 394. 1996.
Alternaria infectoria E.G. Simmons, Mycotaxon 25: 298. 1986.
= Pleospora infectoria Fuckel, Jahrb. Nassauischen Vereins Naturk. 23-24: 132. 1870 [1869-70].
\equiv Sphaeria infectoria (Fuckel) Cooke, Handb. Brit. Fungi 2: 897. 1871.
\equiv Pleospora phaeocomoides var. infectoria (Fuckel) Wehm., A World Monograph of the Genus Pleospora and its Segregates: 121. 1961.
\equiv Lewia infectoria (Fuckel) M.E. Barr \& E.G. Simmons, Mycotaxon 25: 296. 1986.
Alternaria intercepta E.G. Simmons, Mycotaxon 83: 134. 2002.
$=$ Lewia intercepta E.G. Simmons \& McKemy, Mycotaxon 83: 133. 2002.
Alternaria merytae E.G. Simmons, Mycotaxon 83: 136. 2002.
Alternaria metachromatica E.G. Simmons, Mycotaxon 50: 418. 1994.
Alternaria novae-zelandiae E.G. Simmons, Mycotaxon 83: 142. 2002.
Alternaria oregonensis E.G. Simmons, Mycotaxon 50: 417. 1994.
Alternaria slovaca (Svob.-Pol., L. Chmel \& Bojan.) Woudenb. \& Crous, comb. nov. MycoBank MB803699.
Basionym: Aureobasidium slovacum Svob.-Pol., L. Chmel \& Bojan., Conspect. Verruc. 5: 116. 1966. \equiv Chmelia slovaca (Svob.-Pol., L. Chmel \& Bojan.) Svob.-Pol., Biologia (Bratislava) 21: 83. 1966.

Alternaria triticimaculans E.G. Simmons \& Perelló, Mycotaxon 50: 413. 1994.
Alternaria triticina Prasada \& Prabhu, Indian Phytopathol. 15 (3-4): 292. 1963. [1962]
Alternaria ventricosa R.G. Roberts, Mycotaxon 100: 164. 2007.
Alternaria viburni E.G. Simmons, Mycotaxon 83: 132. 2002.
$=$ Lewia viburni E.G. Simmons \& McKemy, Mycotaxon 83: 130. 2002.

Section Japonicae Woudenb. \& Crous, sect. nov. MycoBank MB803741. Fig. 15.
Type species: Alternaria japonica Yoshii.
Diagnosis: Section Japonicae contains short to long, simple or occasionally branched primary conidiophores with a single conidiogenous locus. Conidia are short, to long-ovoid with transverse and longitudinal septa, conspicuously constricted at most of the transverse septa, in short chains. Apical secondary conidiophores are produced with a single conidiogenous locus. The species within this section occur on Brassicaceae.

Note: Alternaria japonica was previously connected to the A. brassicicola species-group (Pryor \& Gilbertson 2000, Pryor \& Bigelow 2003, Lawrence et al. 2013), but this association was questioned by Hong et al. (2005a).

Alternaria japonica Yoshii, J. Pl. Protect. 28: 17. 1941.
= Alternaria matthiolae Neerg., Danish species of Alternaria and Stemphylium: 184. 1945.

Alternaria nepalensis E.G. Simmons, CBS Biodiversity Ser. (Utrecht) 6: 480. 2007.

Section Nimbya (E.G. Simmons) Woudenb. \& Crous, comb. et stat. nov. MycoBank MB803742. Fig. 16.
Basionym: Nimbya E.G. Simmons, Sydowia 41: 316. 1989.
Type species: Alternaria scirpicola (Fuckel) Sivan.
Diagnosis: Section Nimbya contains simple, short to moderately long conidiophores, which may form one or a few short to long, geniculate, sympodial proliferations. Conidia are narrowly elongate-obclavate, gradually tapering apically, solitary or in short chains, with transverse disto- and eusepta, sometimes slightly constricted near eusepta. Apical condiophores with a single conidiogenous locus can be formed. Internal compartmentation occurs, cell lumina tend to be broadly octagonal to rounded. A sexual morph may occur.

Notes: Section Nimbya contains the type species of Nimbya, N. scirpicola, and N. caricis (Simmons 1989). A more extensive study on Nimbya (Lawrence et al. 2012) found that N. scirpinfestans and N. scirpivora also belonged to this section based on sequences of the GAPDH, ITS and Alt a 1 genes.

Alternaria caricis (E.G. Simmons) Woudenb. \& Crous, comb. nov. MycoBank MB803700. Basionym: Nimbya caricis E.G. Simmons, Sydowia 41: 328. 1989.

Fig. 15. Alternaria sect. Japonicae: conidia and conidiophores. A-B. A. japonica. C-E. A. nepalensis. Scale bars $=10 \mu \mathrm{~m}$.

Fig. 16. Alternaria sect. Nimbya: conidia and conidiophores. A-B. A. caricis. C-D. A. scirpicola. Scale bars $=10 \mu \mathrm{~m}$.

Alternaria scirpicola (Fuckel) Sivan., Bitunicate Ascomycetes and their Anamorphs (Vaduz): 526. 1984.

Basionym: Sporidesmium scirpicola Fuckel, Jahrb. Nassauischen Vereins Naturk. 23-24: 140. 1870 [1869-70].
\equiv Clasterosporium scirpicola (Fuckel) Sacc., Syll. Fungorum (Abellini) 4: 393. 1886.
\equiv Cercospora scirpicola (Fuckel) Zind.-Bakker, Rev. Mycol. (Paris) 5: 66. 1940.
\equiv Alternaria scirpicola (Fuckel) M.T. Lucas \& J. Webster, Čas. Slez. Mus., Ser. A, Hist. Nat. 23: 151. 1974 (nom. inval.).
\equiv Nimbya scirpicola (Fuckel) E.G. Simmons, Sydowia 41:316. 1989.
$=$ Sphaeria scirpicola DC., in Lamarck \& de Candolle, Fl. Franç., Edn 3 (Paris) 2: 300. 1805.
\equiv Clathrospora scirpicola (DC.) Höhn., Ann. Mycol. 18(1/3): 77. 1920.
\equiv Macrospora scirpicola (DC.) Fuckel, Jahrb. Nassauischen Vereins Naturk. 23-24: 139. 1870 [1869-70].

三 Pyrenophora scirpicola (DC.) E. Müll., Sydowia 5(3-6): 256. 1951.
Note: Although Sphaeria scirpicola DC. (de Candolle 1805) predates Sporidesmium scirpicola Fuckel (Fuckel 1870), a valid combination in Alternaria already exists, thus we chose to

Fig. 17. Alternaria sect. Panax: conidia and conidiophores. A-B. A. avenicola. C-D. A. calycipyricola. E-F. A. panax. G-H. A. photistica. Scale bars $=10 \mu \mathrm{~m}$.
retain Alternaria scirpicola (Fuckel) Sivan., which is also a well established name.
Alternaria scirpinfestans (E.G. Simmons \& D.A. Johnson) Woudenb. \& Crous, comb. nov. MycoBank MB803701.
Basionym: Nimbya scirpinfestans E.G. Simmons \& D.A. Johnson, Mycotaxon 84: 420. 2002. $=$ Macrospora scirpinfestans E.G. Simmons \& D.A. Johnson, Mycotaxon 84: 417. 2002. Alternaria scirpivora (E.G. Simmons \& D.A. Johnson), Woudenb. \& Crous, comb. nov. MycoBank MB803702.
Basionym: Nimbya scirpivora E.G. Simmons \& D.A. Johnson, Mycotaxon 84: 424. 2002. $=$ Macrospora scirpivora E.G. Simmons \& D.A. Johnson, Mycotaxon 84: 422. 2002.

Section Panax D.P. Lawr., Gannibal, Peever \& B.M. Pryor, Mycologia 105: 541. 2013. Fig. 17.
Type species: Alternaria panax Whetzel.
Diagnosis: Section Panax contains simple or branched, short to moderately long primary conidiophores, with one or a few conidiogenous loci. Conidia are obclavate to ovoid, with multiple transverse and longitudinal septa, conspicuously constricted near several transverse septa, solitary or in simple or branched, short chains. Apical secondary conidiophores are formed with one or several conidiogenous loci, multiple lateral secondary conidiophores with a single conidiogenous locus may occur.

Notes: Section Panax was recently described by Lawrence et al. (2013) and consists of A. calycipyricola, A. eryngii and A. panax. Our extended dataset added the species A. avenicola and A. photistica to this section. Three species, A. avenicola, A. calycipyricola, and A. photistica have earlier been placed in the A. infectoria species-group based on their morphological characters (Simmons 2007), and two of them have a known sexual morph; Lewia avenicola (Simmons 2007) and Lewia photistica (Simmons 1986). A phylogenetic study based on Alt a 1 and GAPDH sequences placed A. photistica in the A. infectoria species-group (Hong et al. 2005) but an extensive study on the A. infectoria species-group (Andersen et al. 2009) confirmed our finding, and placed this species outside the A. infectoria species-group. Additional research performed on multiple A. photistica strains support our sequence data (data not shown).

Alternaria avenicola E.G. Simmons, Kosiak \& Kwaśna, in Simmons, CBS Biodiversity Ser. (Utrecht) 6: 114. 2007.
$=$ Lewia avenicola Kosiak \& Kwaśna, Mycol. Res. 107: 371. 2003.
Alternaria calycipyricola R.G. Roberts, Mycotaxon 100: 162. 2007.
Alternaria eryngii (Pers.) S. Hughes \& E.G. Simmons, Canad. J. Bot. 36: 735. 1958.
Basionym: Conoplea eryngii Pers., Mycol. Eur. (Erlanga) 1: 11. 1822.
\equiv Exosporium eryngianum (Pers.) Chevall., Flore Générale des Environs de Paris 1: 39. 1826.
\equiv Exosporium eryngii (Pers.) Duby, Bot. Gallicum., Edn 2 (Paris) 2: 882. 1830.
\equiv Helminthosporium eryngii (Pers.) Fr., Syst. Mycol. (Lundae) 3: 361. 1832.
Alternaria panax Whetzel, Bull. U.S.D.A. 250: 11. 1912.
= Macrosporium araliae Dearn. \& House, Circ. New York State Mus. 24: 58. 1940.
$=$ Alternaria araliae H.C. Greene, Trans. Wisconsin Acad. Sci. 42: 80. 1953.
Alternaria photistica E.G. Simmons, Mycotaxon 25: 304. 1986.
$=$ Lewia photistica E.G. Simmons, Mycotaxon 25: 302. 1986.

Section Phragmosporae Woudenb. \& Crous, sect. nov. MycoBank MB803743. Fig. 18.
Type species: Alternaria phragmospora Emden.
Diagnosis: Section Phragmosporae contains simple, short to moderately long, primary conidiophores, with one or multiple geniculate, sympodial proliferations. Conidia are (broad) ovoid to long ovoid, ellipsoid, curved, or limaciform, with multiple transverse and few to multiple longitudinal septa, some septa darkened, slightly to conspicuously constricted near several transverse septa, solitary or in simple short chains. Apical secondary conidiophores are formed with one or several conidiogenous loci. All species within the section are known from soil and seawater environments.

Note: Section Phragmosporae contains six species of which two were linked to Embellisia.
Alternaria chlamydospora Mouch. [as "chlamydosporum"], Mycopathol. Mycol. Appl. 50: 217. 1973.

Alternaria didymospora (Munt.-Cvetk.) Woudenb. \& Crous, comb. nov. MycoBank MB803709. Basionym: Embellisia didymospora Munt.-Cvetk., Mycologia 68: 49. 1976.
Alternaria limaciformis E.G. Simmons, Mycotaxon 13: 24. 1981.

Fig. 18. Alternaria sect. Phragmosporae: conidia and conidiophores. A-B. A. didymospora. C. A. phragmospora. D-E. A. limaciformis. F-G. A. molesta. H-I. A. mouchaccae. Scale bars $=10 \mu \mathrm{~m}$.

Alternaria molesta E.G. Simmons, Mycotaxon 13: 17. 1981. Alternaria mouchaccae E.G. Simmons, Mycotaxon 13: 18. 1981.

三 Ulocladium chlamydosporum Mouch., Rev. Mycol. (Paris) 36: 114. 1971, non Alternaria chlamydospora Mouch., 1973.
Alternaria phragmospora Emden, Acta Bot. Neerl. 19: 393. 1970.
\equiv Embellisia phragmospora (Emden) E.G. Simmons, Mycotaxon 17: 232. 1983.

Section Porri D.P. Lawr., Gannibal, Peever \& B.M. Pryor, Mycologia 105: 541. 2013. Fig. 19
Type species: Alternaria porri (Ellis) Cif.
Diagnosis: Section Porri is characterised by broadly ovoid, obclavate, ellipsoid, subcylindrical or obovoid (medium) large conidia, disto- and euseptate, solitary or in short to moderately long chains, with a simple or branched, long to filamentous beak. Conidia contain multiple transverse and longitudinal septa and are slightly constricted near some transverse septa. Secondary conidiophores can be formed apically or laterally.

Notes: In addition to the six species that are displayed in our phylogeny, 40 more are included based on the study of Lawrence et al. (2013), confirmed with own molecular data (not shown). With almost 80 species section Porri is the largest Alternaria section (data

Fig. 19. Alternaria sect. Porri: conidia and conidiophores. A-C. A. daucii. D-F. A. pseudorostrata. G-H. A. solani. Scale bars $=10 \mu \mathrm{~m}$.
not shown). The section displays a higher level of genetic variation than the second largest section; section Alternaria.

Alternaria acalyphicola E.G. Simmons, Mycotaxon 50: 260. 1994.
Alternaria agerati Sawada ex E.G. Simmons, Mycotaxon 65: 63. 1997.
$=$ Alternaria agerati Sawada, Rep. Dept. Agric. Gov. Res. Inst. Formosa 86: 165. 1943. (nom. inval., Art. 36.1)
Alternaria agripestis E.G. Simmons \& K. Mort., Mycotaxon 50: 255. 1994.
Alternaria anagallidis A. Raabe, Hedwigia 78: 87. 1939.
Alternaria aragakii E.G. Simmons, Mycotaxon 46: 181. 1993.
Alternaria argyroxiphii E.G. Simmons \& Aragaki, Mycotaxon 65: 40. 1997.
Alternaria bataticola Ikata ex W. Yamam., Trans. Mycol. Soc. Japan 2(5): 89. 1960.
= Macrosporium bataticola Ikata, Agric. Hort. (Tokyo) 22: 241. 1947 (nom. inval., Art. 36.1).

Alternaria blumeae E.G. Simmons \& Sontirat, Mycotaxon 65: 81. 1997.
Alternaria calendulae Ondřej, Čas. Slez. Mus. v Opavĕ, Ser. A, Hist. Nat. 23(2): 150. 1974.
= Alternaria calendulae W. Yamam. 1939 (nom. nud.).
= Macrosporium calendulae Nelen, Bull. Centr. Bot. Gard. (Moscow) 35: 90. 1959 (nom. inval., Art. 36.1).
$=$ Macrosporium calendulae Nelen, Bot. Mater. Otd. Sporov. Rast. Bot. Inst. Akad. Nauk S.S.S.R. 15: 144. 1962.
= Alternaria calendulae Nirenberg, Phytopathol. Z. 88(2): 108. 1977 (nom. illegit., Art. 53.1).

Alternaria capsici E.G. Simmons, Mycotaxon 75: 84. 2000.
Alternaria carthami S. Chowdhury, J. Indian Bot. Soc. 23: 65. 1944.
$=$ Macrosporium anatolicum A. Săvul., Bull. Sect. Sci. Acad. Roumaine 26: 709. 1944.
Alternaria cassiae Jurair \& A. Khan, Pakistan J. Sci. Industr. Res. 3(1): 72. 1960.
Alternaria cichorii Nattrass, First List of Cyprus Fungi: 29. 1937.
\equiv Alternaria porri f. sp. cichorii (Natrass) T. Schmidt, Pflanzenschutz-berichte 32: 181. 1965.
\equiv Macrosporium cichorii (Nattrass) Gordenko, Mikol. Fitopatol. 9(3): 241. 1975.
Alternaria cirsinoxia E.G. Simmons \& K. Mort., Mycotaxon 65: 72. 1997.
Alternaria crassa (Sacc.) Rands, Phytopathology 7: 337. 1917.
Basionym: Cercospora crassa Sacc., Michelia 1(no. 1): 88. 1877.
Alternaria cretica E.G. Simmons \& Vakal., Mycotaxon 75: 64. 2000.
Alternaria cucumerina (Ellis \& Everh.) J.A. Elliott, Amer. J. Bot. 4: 472. 1917.
Basionym: Macrosporium cucumerinum Ellis \& Everh., Proc. Acad. Nat. Sci. Philadelphia 47: 440. 1895.

Alternaria cyphomandrae E.G. Simmons, Mycotaxon 75: 86. 2000.
Alternaria danida E.G. Simmons, Mycotaxon 65: 78. 1997.
Alternaria dauci (J.G. Kühn) J.W. Groves \& Skolko, Canad. J. Res., Sect. C, Bot. Sci. 22: 222. 1944.

Basionym: Sporidesmium exitiosum var. dauci J.G. Kühn, Hedwigia 1: 91. 1855.
Additional synonyms in Simmons 2007.
Alternaria dichondrae Gambogi, Vannacci \& Triolo, Trans. Brit. Mycol. Soc. 65(2): 323. 1975.
Alternaria euphorbiicola E.G. Simmons \& Engelhard, Mycotaxon 25: 196. 1986.
\equiv Macrosporium euphorbiae Reichert, Bot. Jahrb. Syst. 56: 723. 1921. (nom. illegit., Art 53.1).

Alternaria grandis E.G. Simmons, Mycotaxon 75: 96. 2000.
Alternaria hawaiiensis E.G. Simmons, Mycotaxon 46: 184. 1993.
Alternaria limicola E.G. Simmons \& M.E. Palm, Mycotaxon 37: 82. 1990.
Alternaria linicola J.W. Groves \& Skolko, Canad. J. Res., Sect. C, Bot. Sci. 22: 223. 1944.
Alternaria macrospora Zimm., Ber. Land-Forstw. Deutsch-Ostafrika 2: 24. 1904.
\equiv Macrosporium macrosporum (Zimm.) Nishikado \& Oshima, Agric. Res. (Kurashiki) 36: 391. 1944.
= Sporidesmium longipedicellatum Reichert, Bot. Jahrb. Syst. 56: 723. 1921.
\equiv Alternaria longipedicellata (Reichert) Snowden, Rep. Dept. Agric. Uganda: 31. 1927 [1926].
Alternaria multirostrata E.G. Simmons \& C.R. Jacks., Phytopathology 58: 1139. 1968.
Alternaria nitrimali E.G. Simmons \& M.E. Palm, Mycotaxon 75: 93. 2000.
Alternaria passiflorae J.H. Simmonds, Proc. Roy. Soc. Queensland. 49: 151. 1938.
Alternaria poonensis Ragunath, Mycopathol. Mycol. Appl. 21: 315. 1963.
Alternaria porri (Ellis) Cif., J. Dept. Agric. Porto Rico 14: 30. 1930 [1929].
Basionym: Macrosporium porri Ellis, Grevillea 8 (no. 45): 12. 1879.
Alternaria protenta E.G. Simmons, Mycotaxon 25: 207. 1986.
Alternaria pseudorostrata E.G. Simmons, Mycotaxon 57: 398. 1996.
Alternaria ricini (Yoshii) Hansf., Proc. Linn. Soc. Lond. : 53. 1943.
Basionym: Macrosporium ricini Yoshii, Bult. Sci. Fak. Terk. Kjusu Imp. Univ. 3(4): 327. 1929.

Alternaria rostellata E.G. Simmons, Mycotaxon 57: 401. 1996.
Alternaria scorzonerae (Aderh.) Loer., Netherlands J. Pl. Pathol. 90(1): 37. 1984.
Basionym: Sporidesmium scorzonerae Aderh.,Arbeiten Kaiserl. Biol. Anst. Land-Forstw . 3: 439. 1903.

Alternaria sesami (E. Kawam.) Mohanty \& Behera, Curr. Sci. 27: 493. 1958.
Basionym: Macrosporium sesami E. Kawam., Fungi 1(2): 27. 1931.
Alternaria solani Sorauer, Z. Pflanzenkrankh. Pflanzenschutz 6: 6. 1896.
$=$ Macrosporium solani Ellis \& G. Martin, Amer. Naturalist 16(12): 1003. 1882 \equiv Alternaria solani (Ellis \& G. Martin) L.R. Jones \& Grout, Vermont Agric. Exp. Sta. Annual Rep. 9: 86. 1896.
Additional synonyms in Simmons (2007).
Alternaria solani-nigri R. Dubey, S.K. Singh \& Kamal [as "solani-nigrii"], Microbiol. Res. 154(2): 120. 1999.
Alternaria steviae Ishiba, T. Yokoy. \& Tani, Ann. Phytopathol. Soc. Japan 48(1): 46. 1982.
Alternaria subcylindrica E.G. Simmons \& R.G. Roberts, Mycotaxon 75: 62. 2000.
Alternaria tagetica S.K. Shome \& Mustafee, Curr. Sci. 35: 370. 1966.
Alternaria tomatophila E.G. Simmons, Mycotaxon 75: 53. 2000.
Alternaria tropica E.G. Simmons, Mycotaxon 46: 187. 1993.
Alternaria zinniae H.Pape ex M.B. Ellis, Mycol. Pap. 131: 22. 1972.
= Alternaria zinniae H. Pape, Angew. Bot. 24: 61. 1942. (nom. inval., Art. 36.1)

Section Pseudoulocladium Woudenb. \& Crous, sect. nov. MycoBank MB803744. Fig. 20.
Type species: Alternaria chartarum Preuss.
Diagnosis: Section Pseudoulocladium is characterised by simple or branched conidiophores with short, geniculate, sympodial proliferations. Conidia are obovoid, non-beaked with a narrow base, in simple or (mostly) branched chains. Apical secondary conidiophores with multiple conidiogenous loci and lateral secondary conidiophores with a single conidiogenous locus can be formed.

Note: It forms a sister clade to section Ulocladioides.

Alternaria aspera Woudenb. \& Crous, nom. nov. MycoBank MB803712.
Basionym: Ulocladium arborescens E.G. Simmons, Stud. Mycol. 50: 117. 2004, non Alternaria arborescens E.G. Simmons, 1999.
Etymology: Name refers to the conspicuously ornamented conidia.
Alternaria chartarum Preuss, Bot. Zeitung 6: 412, 1848.
\equiv Sporidesmium polymorphum var. chartarum (Preuss) Cooke, Fungi Brit. Exs., ser. 2: 329. 1875.
\equiv Ulocladium chartarum (Preuss) E.G. Simmons, Mycologia 59: 88. 1967.
= Alternaria stemphylioides Bliss, Mycologia 36: 538. 1944.
\equiv Alternaria chartarum f. stemphylioides (Bliss) P. Joly, Encycl. Mycol. (Paris) 33: 161. 1964.

Alternaria concatenata Woudenb. \& Crous, nom. nov. MycoBank MB803713.
Basionym: Ulocladium capsici F. Xue \& X.G. Zhang [as "capsicuma"], Sydowia 59: 174. 2007, non Alternaria capsici E.G. Simmons, 2000.

Fig. 20. Alternaria sect. Pseudoulocladium: conidia and conidiophores. A-B. A. aspera. C-D. A. concatenata. E-F. A. chartarum. G-H. A. septospora. Scale bars $=10 \mu \mathrm{~m}$.

Etymology: Name refers to the concatenated conidia.
Alternaria septospora (Preuss) Woudenb. \& Crous, comb. nov. MycoBank MB803714.
Basionym: Helminthosporium septosporum Preuss, Linnaea 24: 117. 1851.
\equiv Macrosporium septosporum (Preuss) Rabenh., Bot. Zeitung 9: 454. 1851.
\equiv Ulocladium septosporum (Preuss) E.G. Simmons, Mycologia 59: 87. 1967.

Section Radicina D.P. Lawr., Gannibal, Peever \& B.M. Pryor, Mycologia 105: 541. 2013. Fig. 21.

Type species: Alternaria radicina Meier, Drechsler \& E.D. Eddy.
Diagnosis: Section Radicina contains straight, simple or branched, short or long, primary conidiophores with multiple, short geniculate, sympodial proliferations with single or a few conidiogenous loci at the apex. Sporulation resembles a cluster or clumps of conidia. Conidia are widely ovoid to narrowly ellipsoid, moderate in size, beakless, with several transverse and longitudinal septa, solitary or in short chains. Solitary, short, apical secondary conidiophores may occur. The species from this section occur on Umbelliferae.

Note: This section was first recognised by Pryor \& Gilbertson (2000) based on sequence data of the ITS and mitochondrial SSU.

Fig. 21. Alternaria sect. Radicina: conidia and conidiophores. A-C.A. carotiincultae. D-E. A. petroselini. F-G. A. radicina. H-I. A. selini. J-L. A. smyrnii. Scale bars $=10 \mu \mathrm{~m}$.

Alternaria carotiincultae E.G. Simmons, Mycotaxon 55: 103. 1995.
Alternaria petroselini (Neerg.) E.G. Simmons, More dematiaceous hyphomycetes (Kew): 417. 1976.

Basionym: Stemphylium petroselini Neerg., Zentralbl. Bakteriol., 2. Abt., 104: 411. 1942.
\equiv Stemphylium radicinum var. petroselini (Neerg.) Neerg., Danish species of Alternaria \& Stemphylium: 357. 1945.
\equiv Alternaria radicina var. petroselini (Neerg.) Neerg., Encycl. Mycol. 33: 123. 1964.
Alternaria radicina Meier, Drechsler \& E.D. Eddy, Phytopathology 12: 157. 1922.
\equiv Stemphylium radicinum (Meier, Drechsler \& E.D. Eddy) Neerg., Annual Rep.
Phytopathol. Lab. J.E. Ohlsens Enkes, Seed Growers, Copenhagen 4: 14. 1939.

[^0]Section Sonchi D.P. Lawr., Gannibal, Peever \& B.M. Pryor, Mycologia 105: 542. 2013. Fig. 22.

Type species: Alternaria sonchi Davis.
Diagnosis: Section Sonchi is characterised by subcylindrical, broadly ovoid, broadly ellipsoid or obclavate, (medium) large conidia, single or in short chains, with multiple transverse and few longitudinal septa, slightly constricted at the septa, with a blunt taper which can form secondary conidiophores.

Notes: The species-group was described by Hong et al. (2005a) based on molecular data of the GAPDH and Alt a 1 regions. Lawrence et al. (2013) included A. brassicae as a basal lineage in sect. Sonchi, which is supported as a monotypic lineage in our analyses. The species from section Sonchi occur on multiple hosts within the Compositae.

Alternaria cinerariae Hori \& Enjoji, J. Pl. Protect. 18: 432. 1931.
Alternaria sonchi Davis, in Elliott, Bot. Gaz. 62: 416. 1916.

Section Teretispora (E.G. Simmons) Woudenb. \& Crous, comb. et stat. nov. MycoBank MB803745. Fig. 23.
Basionym: Teretispora E.G. Simmons, CBS Biodiversity Ser. (Utrecht) 6: 674. 2007.
Type species: Alternaria leucanthemi Nelen.
Diagnosis: Section Teretispora is characterised by simple conidiophores, sometimes extending at the apex with one or two, geniculate, sympodial proliferations, bearing single, long cylindrical mature conidia lacking a beak portion, with many transverse and a few longitudinal septa, constricted at most of the transverse septa. Secondary conidiophores with a single conidium are rarely formed at the apex; instead, they may form from the base of the primary conidium.

Notes: The genus Teretispora had Teretispora leucanthemi, formerly Alternaria leucanthemi (= Alternaria chrysanthemi), as type and only species (Simmons 2007). We chose to treat this as a section, which retains the name Teretispora, rather than a monotypic lineage.

Fig. 22. Alternaria sect. Sonchi: conidia and conidiophores. A-B. A. cinerariae. C-D. A. sonchi. Scale bars $=10 \mu \mathrm{~m}$.

Fig. 23. Alternaria sect. Teretispora: conidia and conidiophores. A-D. A. leucanthemi. Scale bars $=10$ $\mu \mathrm{m}$.

Alternaria leucanthemi Nelen, in Nelen \& Vasiljeva, Bot. Mater. Otd. Sporov. Rast. Bot. Inst. Akad. Nauk S.S.S.R. 15: 148. 1962.
\equiv Teretispora leucanthemi (Nelen) E.G. Simmons, CBS Biodiversity Ser. (Utrecht) 6: 674. 2007.
= Alternaria leucanthemi Nelen, Bull. Centr. Bot. Gard. (Moscow) 35: 83. 1959. (nom. inval., Art. 36.1)
= Alternaria chrysanthemi E.G. Simmons \& Crosier, Mycologia 57: 142. 1965.

Section Ulocladioides Woudenb. \& Crous, sect. nov. MycoBank MB803746. Fig. 24.
Type species: Alternaria cucurbitae Letendre \& Roum.
Diagnosis: Section Ulocladioides is characterised by conidiophores with short, geniculate, sympodial proliferations. Conidia are obovoid, non-beaked with a narrow base, single or in chains, which may form secondary conidiophores at the apex.

Note: Section Ulocladioides resembles section Ulocladium and contains the majority of the species included in this study from the genus Ulocladium (11/17).

Fig. 24. Alternaria sect. Ulocladioides: conidia and conidiophores. A-B. A. atra. C-D. A. brassicaepekinensis. E-F. A. cantlous. G-H. A. multiformis. I-J. A. obovoidea. K-L. A. heterospora. M-N. A. subcucurbitae. O-P. A. terricola. Scale bars $=10 \mu \mathrm{~m}$.

Alternaria atra (Preuss) Woudenb. \& Crous, comb. nov. MycoBank MB803717.
Basionym: Ulocladium atrum Preuss, Linnaea 25: 75. 1852.
\equiv Stemphylium atrum (Preuss) Sacc., Syll. Fungorum (Abellini) 4: 520. 1886.
Alternaria brassicae-pekinensis Woudenb. \& Crous, nom. nov. MycoBank MB803723.
Basionym: Ulocladium brassicae Yong Wang bis \& X.G. Zhang, Mycologia 100: 457. 2008, non Alternaria brassicae (Berk.) Sacc., 1880.
Etymology: Name refers to the host from which it was originally isolated.
Alternaria cantlous (Yong Wang bis \& X.G. Zhang) Woudenb. \& Crous, comb. nov. MycoBank MB803719.
Basionym: Ulocladium cantlous Yong Wang bis \& X.G. Zhang, Mycologia 102: 376. 2010.
Alternaria consortialis (Thüm.) J.W. Groves \& S. Hughes [as "consortiale"], Canad. J. Bot. 31: 636. 1953.
Basionym: Macrosporium consortiale Thüm., Herb. Mycol. Oecon. 9: no. 450. 1876.
\equiv Stemphylium consortiale (Thüm.) J.W. Groves \& Skolko, Canad. J. Res., Sect. C, Bot. Sci.: 196. 1944.
\equiv Pseudostemphylium consortiale (Thüm.) Subram., Curr. Sci. 30: 423. 1961.
\equiv Ulocladium consortiale (Thüm.) E.G. Simmons, Mycologia 59: 84. 1967.
= Stemphylium ilicis Tengwall, Meded. Phytopathol. Lab. "Willie Commelin Scholten" 6: 44. 1924.

Alternaria cucurbitae Letendre \& Roum., in Roumeguère, Rev. Mycol. (Toulouse) 8 (no. 30): 93. 1886.
\equiv Ulocladium cucurbitae (Letendre \& Roum.) E.G. Simmons, Mycotaxon 14: 48. 1982.

Alternaria heterospora Woudenb. \& Crous, nom. nov. MycoBank MB803724.
Basionym: Ulocladium solani Yong Wang bis \& X.G. Zhang, Mycol. Progr. 8: 209. 2009, non Alternaria solani Sorauer, 1896.
Etymology: Name refers to the various conidial morphologies observed during growth.
Alternaria multiformis(E.G. Simmons) Woudenb. \& Crous, comb. nov. MycoBank MB803720. Basionym: Ulocladium multiforme E.G. Simmons, Canad. J. Bot. 76: 1537. 1999 [1998].
Alternaria obovoidea (E.G. Simmons) Woudenb. \& Crous, comb. nov. MycoBank MB803721. Basionym: Ulocladium obovoideum E.G. Simmons, Mycotaxon 37: 104. 1990.
Alternaria subcucurbitae (Yong Wang bis \& X.G. Zhang) Woudenb. \& Crous, comb. nov. MycoBank MB803722.
Basionym: Ulocladium subcucurbitae Yong Wang bis \& X.G. Zhang, Mycologia 100: 456. 2008.

Alternaria terricola Woudenb. \& Crous, nom. nov. MycoBank MB803725.
Basionym: Ulocladium tuberculatum E.G. Simmons, Mycologia 59: 83. 1967, non Alternaria tuberculata M. Zhang \& T.Y. Zhang, 2006.
Etymology: Name refers to soil from which it was originally isolated.

Section Ulocladium (Preuss) Woudenb. \& Crous, comb. et stat. nov. MycoBank MB803747. Fig. 25.
Basionym: Ulocladium Preuss, Linnaea 24: 111. 1851.
Type species: Alternaria botrytis (Preuss) Woudenb. \& Crous.

Fig. 25. Alternaria sect. Ulocladium: conidia and conidiophores. A-B. A. capsici-annui. C-D. A. oudemansii. E-F. A. alternariae. G-H. A. botrytis. Scale bars $=10 \mu \mathrm{~m}$.

Diagnosis: Section Ulocladium is characterised by simple conidiophores, or with one or two short, geniculate, sympodial proliferations, with (mostly) single, obovoid, non-beaked conidia with a narrow base.

Notes: Section Ulocladium resembles sect. Ulocladioides. The epitype of Ulocladium, U. botrytis CBS 197.67, and the isotype of U. oudemansii (CBS 114.07) cluster with the Sinomyces representative, as do many other strains stored as U. botrytis in the CBS collection (data not shown). Furthermore, a strain stored as A. capsici-annui (CBS 504.74) in the CBS collection clusters within the Sinomyces clade and displays identical morphological features.

Alternaria alternariae (Cooke) Woudenb. \& Crous, comb. nov. MycoBank MB803716.
Basionym: Sporidesmium alternariae Cooke, Handb. Brit. Fungi 1: 1440. 1871.
\equiv Stemphylium alternariae (Cooke) Sacc., Syll. Fungorum (Abellini) 4: 523. 1886.
\equiv Ulocladium alternariae (Cooke) E.G. Simmons, Mycologia 59: 82. 1967.
\equiv Sinomyces alternariae (Cooke) Yong Wang bis \& X.G. Zhang, Fungal Biol. 115: 194. 2011.

Alternaria botrytis (Preuss) Woudenb. \& Crous, comb. nov. MycoBank MB803718.
Basionym: Ulocladium botrytis Preuss, Linnaea 24: 111. 1851.
\equiv Stemphylium botryosum var. ulocladium Sacc. (nom. nov.), Syll. Fungorum (Abellini) 4: 522. 1886.

Fig. 26. Alternaria sect. Undifilum: conidia and conidiophores. A-D. A. bornmuelleri. Scale bars $=10$ $\mu \mathrm{m}$.
\equiv Stemphylium botryosum var. botrytis (Preuss) Lindau, Rabenhorst's. Kryptog.-Fl., Edn 2 (Leipzig) 1(9): 219. 1908.
Alternaria capsici-annui Săvul. \& Sandu, Hedwigia 75: 228. 1936.
Alternaria oudemansii (E.G. Simmons) Woudenb. \& Crous, comb. nov. MycoBank MB803715. Basionym: Ulocladium oudemansii E.G. Simmons, Mycologia 59: 86. 1967.

Section Undifilum (B.M. Pryor, Creamer, Shoemaker, McLain-Romero \& Hambl.) Woudenb. \& Crous, comb. et stat. nov. MycoBank MB803748. Fig. 26.
Basionym: Undifilum B.M. Pryor, Creamer, Shoemaker, McLain-Romero \& Hambl., Botany 87: 190. 2009.

Type species: Alternaria bornmuelleri (Magnus) Woudenb. \& Crous.
Diagnosis: Section Undifilum is characterised by ovate to obclavate to long ellipsoid, straight to inequilateral, single, transseptate conidia; septa can be thick, dark and rigid, and form unique germ tubes, which are wavy or undulate until branching. Species of this section occur on Fabaceae and almost all produce the toxic compound swaisonine.

Notes: Section Undifilum shares morphological features with section Embellisia, but is characterised by the formation of a wavy germ tube upon germination (Pryor et al. 2009). Based on previous studies, the swaisonine producing species U. oxytropis (Pryor et al. 2009, Lawrence et al. 2012), U. fulvum and U. cinereum (Baucom et al. 2012) also belong to this section, although the type species, A. bornmuelleri, does not produce swaisonine.

Alternaria bornmuelleri (Magnus) Woudenb. \& Crous, comb. nov. MycoBank MB803726.
Basionym: Helminthosporium bornmuelleri Magnus, Hedwigia 38 (Beibl.): 73. 1899.
\equiv Undifilum bornmuelleri (Magnus) B.M. Pryor, Creamer, Shoemaker, McLain-Romero \& Hambl., Botany 87: 190. 2009.
Alternaria cinerea (Baucom \& Creamer) Woudenb. \& Crous, comb. nov. MycoBank MB803731.
Basionym: Undifilum cinereum Baucom \& Creamer, Botany 90: 872. 2012

Alternaria fulva (Baucom\& Creamer) Woudenb. \& Crous, comb. nov. MycoBank MB803732. Basionym: Undifilum fulvum Baucom \& Creamer, Botany 90: 871. 2012
Alternaria oxytropis (Q. Wang, Nagao \& Kakish.) Woudenb. \& Crous, comb. nov. MycoBank MB803727.
Basionym: Embellisia oxytropis Q. Wang, Nagao \& Kakish., Mycotaxon 95: 257. 2006.
\equiv Undifilum oxytropis (Q. Wang, Nagao \& Kakish.) B.M. Pryor, Creamer, Shoemaker, McLain-Romero \& Hambl., Botany 87: 191. 2009.

Monotypic lineages

The following six species are not assigned to one of the 24 above described Alternaria sections and are treated as separate, single species, lineages in this study. Future studies, including more and / or new Alternaria species, might eventually give rise to the formation of new sections, when these new species show to be closely related to one of these monotypic lineages.

Alternaria argyranthemi E.G. Simmons \& C.F. Hill, Mycotaxon 65: 32. 1997.
Alternaria brassicae (Berk.) Sacc., Michelia 2(no. 6): 129. 1880.
Basionym: Macrosporium brassicae Berk., Engl. Fl., Fungi (Edn 2) (London) 5: 339. 1836.
Additional synonyms listed in Simmons (2007).
Alternaria dennisii M.B. Ellis, Mycol. Pap. 125: 27. 1971.
\equiv Embellisia dennisii (M.B. Ellis) E.G. Simmons, Mycotaxon 38: 257. 1990.
Alternaria helianthiinficiens E.G. Simmons, Walcz \& R.G. Roberts [as "helianthinficiens"], Mycotaxon 25: 204. 1986.
Alternaria soliaridae E.G. Simmons, CBS Biodiversity Ser. (Utrecht) 6: 374. 2007.
Alternaria thalictrigena K. Schub. \& Crous, Fungal Planet No. 12: 2. 2007.

Paradendryphiella Woudenb. \& Crous, gen. nov. MycoBank MB803750. Fig. 27.
Colonies on SNA effuse, entire, velvety, olivaceous. Reverse olivaceous-grey to iron-grey. Mycelium consisting of branched, septate hypha, (sub)hyaline, smooth. Conidiophores subhyaline, simple or branched, septate or not, straight or flexuous, often nodose with conspicuous, brown pigmentation at the apical region; at times reduced to conidiogenous cells. Conidiogenous cells terminal or lateral, with denticles aggregated at apex, with prominent conidial scars, thickened but not darkened; sometimes proliferating with a new head or a short, inconspicuous sympodial rachis. Conidia produced holoblastically, on narrow denticle, smooth, cylindrical to obclavate, straight or slightly flexuous, 1-7 transverse septa, pale to medium brown, often with dark septa (often constricted), and a darkened zone of pigmentation at the apex, and at the hilum, which is thickened, and somewhat protruding, with a minute marginal frill. Chlamydospores and sexual state not observed.

Type species: Paradendryphiella salina (G.K. Sutherl.) Woudenb. \& Crous.
Paradendryphiella salina (G.K. Sutherl.) Woudenb. \& Crous, comb. nov. MycoBank MB803751.
Basionym: Cercospora salina G.K. Sutherl., New Phytol. 15: 43. 1916.

Fig. 27. Paradendryphiella gen. nov.: conidia and conidiophores. A-B, D-E, G-I. P. salina. C, F. P. arenariae. Scale bars $=10 \mu \mathrm{~m}$.
\equiv Dendryphiella salina (G.K. Sutherl.) Pugh \& Nicot, Trans. Brit. Mycol. Soc. 47(2): 266. 1964.
\equiv Scolecobasidium salinum (G.K. Sutherl.) M.B. Ellis, More dematiaceous hyphomycetes (Kew): 192. 1976.
= Embellisia annulata de Hoog, Seigle-Mur., Steiman \& K.-E. Erikss., Antonie van Leeuwenhoek J. Microbiol. Serol. 51: 409. 1985.
Paradendryphiella arenariae (Nicot) Woudenb. \& Crous, comb. nov. MycoBank MB803752. Basionym: Dendryphiella arenariae Nicot, [as "arenaria"] Rev. Mycol. (Paris) 23: 93. 1958.
\equiv Scolecobasidium arenarium (Nicot) M.B. Ellis, More dematiaceous hyphomycetes (Kew): 194. 1976.

DISCUSSION

The well-supported node for the Alternaria clade obtained in the present study, and the low bootstrap support at the deeper nodes within the Alternaria complex is also consistently seen in previous phylogenetic studies published on these genera (Pryor \& Bigelow 2003, Inderbitzin et al. 2006, Pryor et al. 2009, Runa et al. 2009, Wang et al. 2011, Lawrence et al. 2012). The only phylogenetic study which displays a second fully supported node is based on a fivegene combined dataset of GAPDH, Alt a 1, actin, plasma membrane ATPase and calmodulin (Lawrence et al. 2013). This node, called clade A by the authors, supports eight "asexual" Alternaria species-groups and an Ulocladium (sect. Ulocladioides in our phylogenies) clade. By resolving these eight asexual phylogenetic lineages of Alternaria together with Ulocladium, which is sister to the sexual A. infectoria species-group and other sexual genera, Lawrence et al. (2013) elevated the asexual species-groups to sections within Alternaria. If we take this node as cut-off for the genus Alternaria in our phylogenies, this would leave an Alternaria clade with 14
internal clades (sections) and three monotypic lineages. In order to create a stable phylogenetic taxonomy, seven new genera need to be described of which three would be monotypic; E. dennissii, A. argyranthemi and A. soliaridae. Embellisia species would be assigned to five different genera of which four would be new, leaving only E. allii, E. chlamydospora and E. tellustris in the genus Embellisia. The well-known (medical) A. infectoria species-group would also have to be transferred to a new genus. This node is not supported in our study ($0.98 \mathrm{PP} / 65$ ML Fig 1) and also the strict asexual / sexual division is not supported as two sexual morphs are found in section Panax. This approach would therefore give rise to multiple small genera, and would not end up in a logical and workable situation.

Based on our phylogenetic study on parts of the SSU, LSU, ITS, GAPDH, RPB2 and TEF1 gene regions of ex-type and reference strains of Alternaria species and all available allied genera, we resolved a Pleospora / Stemphylium-clade sister to Embellisia annulata, and a well-supported Alternaria clade. The Alternaria clade contains 24 internal clades and six monotypic lineages. In combination with a review of literature and morphology, the species within the Alternaria clade are all recognised here as Alternaria s. str. This puts the genera Allewia, Brachycladium, Chalastospora, Chmelia, Crivellia, Embellisia, Lewia, Nimbya, Sinomyces, Teretispora, Ulocladium, Undifilum and Ybotromyces in synonymy with Alternaria.

The support values for the different sections described in this study are plotted in a heatmap per gene / gene combination and phylogenetic method used (Table 2). This shows that the Bayesian method provides greater support than the Maximum Likelihood bootstrap support values, which is in congruence with previous reports (e.g. Douady et al. 2003). The sections Cheiranthus, Eureka and Nimbya have the lowest support values. For sect. Eureka this is mainly caused by the position of A. cumini, which clusters within sect. Embellisioides based on its RPB2 sequence and as a monotypic lineage based on its TEF1 sequence. Section Cheiranthus and Nimbya are small sections, with relative long branches. Future studies, including more strains and / or species in these sections, are necessary to check the stability of these long branches.

The sexual genus Crivellia with its Brachycladium asexual morph was described by Inderbitzin et al. (2006) with Crivellia papaveraceae (asexual morph Brachycladium penicillatum) as type species and B. papaveris, with an unnamed sexual morph, as second species. The genus Brachycladium, which was synonymised with Dendryphion (Ellis 1971), was resurrected for the non-sexual stage based on polyphyly within Dendryphion and morphological distinction from its type species, D. comosum. The type species of Brachycladium, B. penicillatum, resides in Alternaria sect. Crivellia, which places Brachycladium in synonymy with Alternaria instead of Dendryphion.

The genus Chalastospora was established by Simmons (2007) based on Chalastospora cetera, formerly Alternaria cetera. Two new Chalastospora species, C. ellipsoidea and C. obclavata, and A. malorum as C. gossypii were later added to the genus, based on sequence data of the ITS and LSU regions (Crous et al. 2009a). The genus is characterised by conidia which are almost always narrowly ellipsoid to narrowly ovoid with 1-6 transverse eusepta, generally lacking oblique or longitudinal septa (Crous et al. 2009a). Our study shows that Alternaria armoraciae and Embellisia abundans also belong to this clade. Juvenile conidia of A. armoraciae are ovoid, but vary from being narrow to broadly ovoid and ellipsoid, with 3-5 transverse septa and a single longitudinal septum in up to four of the transverse segments (Simmons 2007). Embellisia abundans was already mentioned as part of the Chalastospora clade (Andersen et al. 2009, Lawrence et al. 2012), and has long ovoid or obclavate conidia with 3-6 transverse septa and rarely any longitudinal septa (Simmons 1983). The description of
sect. Chalastospora does therefore not completely follow the original description of the genus Chalastospora.

The genus Embellisia is characterised by the thick, dark, rigid conidial septa and the scarcity of longitudinal septa (Simmons 2007). It was first described by Simmons (1971), with Embellisia allii as type and E. chlamydospora as second species. Multiple Embellisia species followed after the description of the genus, which was later linked to the sexual genus Allewia (Simmons 1990). The latest molecular-based revision was performed based on sequences of the GAPDH, ITS and Alt a 1 genes (Lawrence et al. 2012). They found that Embellisia split into four clades and multiple species, which clustered individually amidst Alternaria, Ulocladium or Stemphylium spp. Our results mostly support these data, but with the inclusion of more ex-type / representative strains of Alternaria some additions were made to the different Embellisia groups mentioned by Lawrence et al. (2012). Group I (sect. Embellisia) and III (sect. Embellisioides) are identical to the treatment of Lawrence et al. (2012) but group II (section Phragmosporae) and IV (section Eureka) are both expanded with four Alternaria species. As not all species from group II and IV display the typical morphological characters of Embellisia, we chose to name these Alternaria sections based on the oldest species residing in the respective sections. Embellisia abundans was already mentioned as being part of the Chalastospora-clade and E. indefessa formed a clade close to Ulocladium, which we now assign to sect. Cheiranthus. Embellisia dennisii also forms a separate lineage in our phylogenies; therefore the old name Alternaria dennissii is resurrected. Furthermore, the clustering of E. conoidea within the A. brassicicola species-group and E. annulata close to Stemphylium, now assigned as Paradendryphiella gen. nov., is confirmed by our phylogenetic data. The morphological character of thick, dark, rigid septa seems to have evolved multiple times and does not appear to be a valid character for taxonomic distinction at generic level.

The sexual morphs Lewia (Simmons 1986) and Allewia (Simmons 1990) were linked to Alternaria and Embellisia respectively, with the only difference between these genera being the morphology of their asexual morphs. Lewia chlamidosporiformans and L. sauropodis are transferred to the genus Leptosphaerulina (Simmons 2007), which leaves 11 Lewia species with a known Alternaria anamorph. Most of them (9/11) reside in sect. Infectoriae, the others are found in sect. Panax. Allewia only contains two species of which one resides in sect. Eureka and one in sect. Embellisioides. With the establishment of the new International Code of Nomenclature for algae, fungi and plants (ICN), the dual nomenclature system for sexual and asexual fungal morphs was abandoned and replaced by a single-name nomenclature (Hawksworth et al. 2011, Norvell 2011). In order to implement the new rules of the ICN, we synonymised Lewia and Allewia with Alternaria.

Although multiple molecular studies included Nimbya isolates in their phylogenies (Chou \& Wu 2002, Pryor \& Bigelow 2003, Hong et al. 2005a, Inderbitzin et al. 2006, Pryor et al. 2009), a more extensive molecular-based study was recently published by Lawrence et al. (2012). Based on sequences of the GAPDH, ITS and Alt a 1 genes, the authors found a Nimbya clade which contained the type species N. scirpicola together with N. scirpinfestans, N. scirpivora and N. caricis. The N. scirpicola isolate which we included in our study, was assigned to this genus by Simmons (1989) based on morphological characters, as is the one used in other molecular studies (Pryor \& Bigelow 2003, Hong et al. 2005a, Lawrence et al. 2012). The sequences of the ITS, GAPDH and Alt a 1 genes of these isolates are however not identical, but do cluster in the same clade in the two phylogenies (data not shown), together with the isolate of N. caricis. The N. gomphrenae isolate we included in our phylogeny was not representative of the name. Simmons mentioned in 1989 that Togashi (1926) described two different fungi and deposited the
small-spored species in the CBS collection, instead of the large-spored N. gomphrenae isolate. Nimbya gomphrenae CBS 108.27, which does not sporulate anymore, will therefore be treated as "Alternaria sp.", and resides in sect. Alternaria. The ITS sequence of N. gomphrenae from Chou \& $\mathrm{Wu}(2002)$ actually clusters within sect. Alternantherae. This section was described by Lawrence et al. (2012) and consists of three Nimbya species, which they renamed to Alternaria based on the position of the clade amidst the Alternaria species-groups. Based on the data from Chou \& Wu (2002), the name Alternaria gomphrenae is resurrected and placed in sect. Alternantherae.

The genus Sinomyces was described in by Wang et al. (2011) to accommodate Ulocladium alternariae and two new species from China, S. obovoideus and S. fusoides (type). The genus was differentiated from Ulocladium based on its simple conidiophores with a single apical pore or $1-2$ short, uniperforate, geniculate sympodial proliferations. Unfortunately, our DNA sequence analyses of the ex-type cultures of the two new species from China (CBS 124114 and CBS 123375) were not congruent with the GAPDH (both species) and Alt a 1 (S. obovoideus) sequences deposited in GenBank (data not shown), leading us to doubt the authenticity of these strains. This matter could not be resolved in spite of contacting the original depositors. The ex-type strain of S. alternariae (CBS 126989) was therefore included as representative of the genus Sinomyces. The presence of the epitype of Ulocladium, U. botrytis CBS 197.67, in this section resulted in us rejecting the name Sinomyces, and calling this sect. Ulocladium. In addition, the presence of U. oudemansii in this section, with conidiophores with $1-5$ uniperforate geniculations (Simmons 1967), also disagrees with the mentioned differentiation of Sinomyces from Ulocladium.

The type species of Ulocladium, U. botrytis, was typified by two representative strains QM 7878 (CBS 197.67) and QM 8619 (CBS 198.67) (Simmons 1967). Molecular studies performed afterwards showed that these strains are not identical (de Hoog \& Horré 2002). Most molecular studies performed used CBS 198.67 as representative of U. botrytis (Pryor \& Gilbertson 2000, Pryor \& Bigelow 2003, Hong et al. 2005a, Xue \& Zhang 2007, Pryor et al. 2009, Runa et al. 2009, Wang et al. 2010, Wang et al. 2011, Lawrence et al. 2012), which clusters in section Ulocladioides. However, de Hoog \& Horré (2002) epitypified U. botrytis with CBS 197.67, which clusters with Sinomyces strains, as does Ulocladium oudemansii, now named sect. Ulocladium. Extended phylogenetic analyses on all U. botrytis strains present in the CBS culture collection (16 isolates) also highlight this issue as they cluster either within sect. Ulocladium or sect. Ulocladioides (data not shown), both with one of the representative strains described by Simmons (1967). The suggestion to synonymise Ulocladium with Alternaria has been made several times in the past (Pryor \& Gilbertson 2000, Chou \& Wu 2002). The latest systematic revision of the genus Ulocladium (Runa et al. 2009) based on sequences from the ITS, GAPDH and Alt a 1 genes supported previous findings of poly- and paraphyletic relationships of Ulocladium among Alternaria, Embellisia and Stemphylium spp. (de Hoog \& Horré 2002, Pryor \& Bigelow 2003, Hong et al. 2005a). Ulocladium alternariae and U. oudemansii, now known as sect. Ulocladium, cluster separately. The core Ulocladium clade, containing the two sister clades now called sect. Ulocladioides and sect. Pseudoulocladium, was confirmed by later studies (Wang et al. 2010, Lawrence et al. 2012). Alternaria cheiranthi and Embellisia indefessa have been linked to Ulocladium (Pryor \& Gilbertson 2000, Pryor \& Bigelow 2003, Hong et al. 2005a, Pryor et al. 2009, Runa et al. 2009, Lawrence et al. 2012), but missed the diagnostic feature of Ulocladium. Our study showed that they form a sister section, sect. Cheiranthus, to sect. Ulocladioides. The confusing taxonomy in this genus strengthens our decision to reduce Ulocladium to synonymy with Alternaria. The characteristics of the former genus Ulocladium are added to the new broader Alternaria generic circumscription.

The genus Undifilum was described by Pryor et al. (2009) to accommodate the species U. oxytropis and U. bornmuelleri. It shares the morphological feature of thick, dark and rigid septa with the genus Embellisia, but was characterised by the formation of a wavy germ-tube upon germination (Pryor et al. 2009). A recent study on fungal endophytes in locoweeds in the US described two new Undifilum species (Baucom et al. 2012). Both new species produce the toxic compound swaisonine, which is also produced by U. oxytropis. Swaisonine is the cause of a neurological disease, locism, of grazing animals, resulting in economic losses in livestock (James \& Panter 1989). The production of swaisonine seems to be related to this section, although the type-species, U. bornmuelleri, does not produce this toxin.

The genus Ybotromyces contains one species, Y. caespitosus (originally Botryomyces caespitosus), which was isolated from a skin lesion of a human patient (de Hoog \& Rubio 1982). De Hoog et al. (1997) discovered a high similarity to Alternaria spp. based on restriction patterns of the ITS and SSU rDNA. A phylogeny study of melanised meristematic fungi based on their SSU and ITS rDNA sequences (Sterflinger et al. 1999) placed Y. caespitosus within the Pleosporales together with Alternaria and Pleospora. De Hoog \& Horré (2002) hypothesized that the ex-type strain of Y. caespitosus, CBS 177.80, is likely a synanamorph of a yet undescribed Alternaria species. Our phylogeny supports this hypothesis, and places the genus in sect. Infectoriae.

Chmelia slovaca, described from dermatic lesions of a human (Svobodová 1966), also clusters with sect. Infectoriae as was shown previously (de Hoog \& Horré 2002). The genus produces different types of chlamydospores and sporadically blastospores, but no conidia or conidiophores, which makes it difficult to identify based on morphology. De Hoog \& Horré (2002) were confident that Chmelia is a sterile member of A. infectoria, which is in agreement with our results.

Genera unrelated to Alternaria

The placement of the sexual genus Pleospora (1863) with Stemphylium (1833) asexual morphs as basal sister clade to the Alternaria complex is well-documented in multiple molecular studies (Chou \& Wu 2002, Pryor \& Bigelow 2003, Hong et al. 2005a, Pryor et al. 2009, Lawrence et al. 2012). Therefore, we only included the type species of both genera in our phylogenies and used them as outgroup in the Alternaria phylogeny. Pleospora herbarum with its Stemphylium herbarum (CBS 191.86) asexual morph is the type species of the genus Pleospora. Stemphylium botryosum with its Pleospora tarda (CBS 714.68) sexual morph is the type species of the genus Stemphylium.

Embellisia annulata proved to be identical to the marine species Dendryphiella salina, and forms a well-supported clade in the Pleosporaceae together with D. arenariae. Several DNA-based studies (dela Cruz 2006, Jones et al. 2008, Zhang et al. 2009) concluded that the marine Dendryphiella species, D. arenariae and D. salina, belonged to the Pleosporaceae as sister clade to the Pleospora / Stemphylium complex. Furthermore, they showed the type species of Dendryphiella, D. vinosa, to be only distantly related, based on sequences of the ITS, SSU, LSU (Jones et al. 2008) and ITS, TEF1, RPB2 (dela Cruz 2006) gene regions. The transfer of the marine Dendryphiella species to Scolecobasidium (Ellis 1976), was also disputed. Scolecobasidium does not belong to the Pleosporales based on ITS, TEF1, and RPB2 sequences (dela Cruz 2006) and the morphology of the two Dendryphiella species does not fit the generic circumscription of Scolecobasidium (dela Cruz 2006, Jones et al. 2008). Ellis (1976) described denticles on the conidiogenous cells when the conidia become detached. However
other observers describe a marginal basal frill on the conidia after detachment, leaving a scar on the conidiophore. We propose to place the two species in the new genus Paradendryphiella as C. arenariae and C. salina. The need for a new genus to accommodate the two species was already suggested by Jones et al. (2008).

A recent study on Diademaceae, a family which is characterised by a flat circular operculum and bitunicate asci (Shoemaker \& Babcock 1992), excluded the sexual genera Comoclathris and Clathrospora, and (provisionally) placed them in the Pleosporaceae with alternaria-like asexual morphs (Zhang et al. 2011). Molecular data of two strains (Dong et al. 1998, Schoch et al. 2009) placed them within the Pleosporaceae. A confusing factor is that Dong et al. (1998) use the name Comoclathris baccata in their paper for strain CBS 175.52, but submitted their sequences under the name Clathrospora diplospora to GenBank. Shoemaker \& Babcock (1992) synonymised Clathrospora diplospora with Comoclathris baccata, which renders Comoclathris as the correct generic name. The confusion around these genera is illustrated by the fact that the CBS collection currently harbours six strains named as Clathrospora species of which four were renamed by Shoemaker \& Babcock in 1992 based on morphological studies, and three of these four strains were even transferred to the genus Comoclathris. The type species of Clathrospora, C. elynae is represented by two strains of which one, CBS 196.54, was also studied morphologically by Shoemaker and Babcock (1992). They form a well-supported clade, located basal to the Pleosporaceae (Fig. 2), outside the Alternaria complex. The type species of Comoclathris, Comoclathris lanata, was not available to us, but the two Comoclathris compressa strains cluster together in a well-supported clade within the Pleosporaceae, also outside the Alternaria complex, which we believe to be the correct phylogenetic placement of the genus. Two other strains, named Comoclathris magna (CBS 174.52) and Clathrospora heterospora (CBS 175.52) by Shoemaker and Babcock (1992), cluster amidst sect. Alternaria. Culture studies performed by Simmons (1952) showed the presence of alternaria-like conidia in these cultures and no (mature) ascospore formation. Presumably the species observed by Shoemaker and Babcock (1992) on plant material were lost during cultivation and became replaced by A. alternata species-group isolates. Both strains will be treated as "Alternaria sp."

The genus Alternariaster was first described by Simmons (2007) with Alternariaster helianthi, formerly Alternaria helianthi or Helminthosporium helianthi, as type and only species. It is distinct from Alternaria by the lack of a pigmented conspicuous internal, circumhilar ring in its conidia and conidiophores. Our study showed that this genus is clearly not part of the Alternaria complex and belongs to the Leptosphaeriaceae (Fig. 2) (Chapter 3).

In the recently published book "The genera of Hyphomycetes" (Seifert et al. 2011) three more genera are linked to Alternaria, namely Pantospora, Briansuttonia and Rhexoprolifer. A recent study on Pantospora included ITS and LSU sequence data of the type species Pantospora guazumae, which placed the genus in Mycosphaerellaceae (Minnis et al. 2011). This refutes the link with Alternaria. The genus Rhexoprolifer was described in 1996 by Matsushima with R. variabilis as type and only species, isolated from South Africa. Rhexoprolifer variabilis has rhexolytic conidial liberation and proliferating conidiophores with both phragmosporous and dictyosporous conidia. Briansuttonia was described in 2004 to accommodate Corynespora alternarioides (Castañeda Ruiz et al. 2004). The distoseptate muriform conidia of Briansuttonia do resemble Alternaria and Stemphylium, but the conidiogenous loci and euseptate conidia of Alternaria and holoblastic conidial ontogeny and euseptate muriform conidia of Stemphylium were enough for the authors to regard their taxon as a different genus. Both asexual genera presently lack molecular data, and we were unable to obtain any living specimens of these taxa. It would be valuable to include both genera in a
future study to resolve the connection among genera with muriform conidia and Alternaria.
The description of Alternaria s. str. in the present study is supported by i) a well-supported phylogenetic node in multiple analyses, ii) high similarity of clades within Alternaria based on SSU, LSU and ITS data, and iii) variation in the order of the clades between the different gene phylogenies, which is in congruence with low support values at these deeper nodes. We follow the precedence introduced by Lawrence et al. (2013) to assign the taxonomic status of sections of Alternaria for the different clades found, thus allowing us to retain the former generic names but associated with a different taxonomic status. For end-users, this also results in a more stable and understandable taxonomy and nomenclature.

DEDICATION

We would like to dedicate this manuscript to the late Dr E.G. Simmons, who spent over 50 years of his life researching the systematics of the genus Alternaria. Without the time EGS spent on characterising the species included in this study, and his impeccable strain collection, which he placed in CBS for preservation and further study, the present study would not have been possible.

ACKNOWLEDGEMENTS

Mrs M. Vermaas is thanked for preparing the photoplates, Mrs J. Bloem for assisting with the molecular work, and Prof. Dr B.M. Pryor for sending us the Undifilum isolate. This research was supported by the Dutch Ministry of Education, Culture and Science through an endowment of the FES programme "Making the tree of life work".

Reappraisal of the genus Alternariaster (Dothideomycetes)

J.L. Alves ${ }^{1}$, J.H.C. Woudenberg ${ }^{2}$, L.L. Duarte ${ }^{1}$, P.W. Crous ${ }^{2,3,4}$, and R.W. Barreto ${ }^{1}$

[^1]Persoonia 31: 77-85. 2013.

Key words: Alternaria, fungal pathogens, host-range, multi-gene phylogeny.

Abstract

Alternariaster was erected in 2007 to accommodate Alternaria helianthi, a fungal species known to cause leaf spots on Helianthus annuus (sunflower). It was segregated from Alternaria based on conidial morphology. Recently an unknown alternaria-like dematiaceous fungus was found associated with leaf spots on Bidens sulphurea (yellow cosmos) in Brazil. Based on a multi-gene phylogeny of parts of the ITS and LSU genes, this fungus was placed within the Leptosphaeriaceae with Alternariaster helianthi as its closest neighbour. Additional genes sequenced, RPB2 and GAPDH, confirmed this close relationship. The fungus on B. sulphurea has smaller conidia, $50-97.5 \times 12.5-20 \mu \mathrm{~m}$, compared to Al. helianthi, $80-160 \times 18-30 \mu \mathrm{~m}$, and lacks oblique or transverse septa which can be present in Al. helianthi. Pathogenicity studies on 18 plant species belonging to the Compositae showed that the B. sulphurea fungus only infected B. sulphurea, whereas Al. helianthi infected H. annuus and Galinsoga quadriradiata, a yet unreported host of $A l$. helianthi. The fungus causing disease on B. sulphurea is hence closely related but phylogenetically, morphologically and pathologically distinct from Al . helianthi, and therefore newly described as Alternariaster bidentis. The collection of a second species in the genus Alternariaster and the multigene phylogenetic analysis of these two species, confirmed Alternariaster to be a well-delimited genus in the Leptosphaeriaceae rather than the Pleosporaceae, to which Alternaria belongs.

INTRODUCTION

The fungal genus Alternariaster was established by Simmons (2007) to accommodate Alternaria helianthi, a species known to cause leaf spots on Helianthus annuus (sunflower) worldwide (Alcorn \& Pont 1972, Ribeiro et al. 1974, Leite et al. 2007). This monotypic genus was segregated from Alternaria based on several morphological differences. Conidia of Alternariaster are not formed in chains, are cylindrical, ellipsoid or broadly ovoid, subhyaline to greyish brown, and only rarely form longitudinal or oblique septa. A fungus bearing significant morphological similarity to Alternariaster helianti was found on Bidens sulphurea in Brazil during studies of the pathogenic mycobiota of ornamentals.

Bidens sulphurea (Asteraceae) (common name yellow cosmos; in Brazil, cosmos-amarelo, aster-do-méxico and others), is a plant that is both regarded as a minor ornamental and as a weed, and appears in Brazil on published lists of ornamentals (Lorenzi \& Souza 2001) and weeds (Kissman \& Groth 1999, Lorenzi 2000). It is an annual herb, native to Mexico, which produces abundant showy yellow or orange flowers, and was probably introduced to Brazil as an ornamental, but became naturalised and invades rural areas, pastures and vegetable gardens. In 2004, a population of B. sulphurea was observed in the locality of Cristais in Viçosa (state of Minas Gerais, Brazil) in a garden and a nearby pasture bearing leaf spots, which eventually led to extensive blight and premature plant death. Only one published record of a fungal disease attacking B. sulphurea is known from Brazil, namely grey mold caused by Botrytis cinerea (Guatimosin et al. 2011). The leaf spot disease observed on B. sulphurea in 2004 was clearly dissimilar from grey mold. Samples were collected and examined on several occasions, and an alternaria-like dematiaceous hyphomycete was found to be associated with the disease. Elucidating the identity of this fungus was of relevance for the clarification of the etiology of the disease, and for the potential use of the fungus as a biocontrol agent of B. sulphurea. This contribution includes a description of a new fungal species as well as observations on its phylogenetic relationships and host range, together with a reappraisal of the genus Alternariaster.

MATERIALS AND METHODS

Samples and isolates

Representative samples of diseased specimens of Bidens sulphurea and Helianthus annuus were collected, dried in a plant press and deposited in the herbarium of the Universidade Federal de Viçosa (VIC). The fungi associated to the leaf spots on B. sulphurea and H. annuus were isolated in pure culture by direct transfer of spores onto plates containing vegetable broth-agar (VBA; Pereira et al. 2003) with a sterile fine pointed needle. Representative isolates of the fungi were deposited in the culture collection of the Universidade Federal de Viçosa (COAD) Brazil, and the CBS-KNAW Fungal Biodiversity Centre (CBS) The Netherlands (Table 1). The three Alternariaster helianthi strains present at the CBS, including the ex-type strain CBS 119672, were added to the study.

Phylogeny

For DNA extraction pure cultures of the respective taxa were grown on potato-carrot agar (PCA; Crous et al. 2009c) for 7 d at $25^{\circ} \mathrm{C}$. Total genomic DNA of the isolates mentioned in Table 1
Table 1．Isolates used in this study and GenBank accession numbers for sequences．Bold accession numbers were generated in this study． GenBank accession numbers
GAPDH KC609333 KC609341 KC609347 KC609325
KC609326
KC609327 ∞
N
ô
ô

$\underset{y}{4}$ | ते |
| :--- |
| ò |
| oै |
| |

KC609331
KC609332 KC609351
KC609352

KC609334	KC609342
KC609335	KC584369
KC609336	KC609343
KC609337	KC584368
KC609338	KC609344
KC609339	KC609345
KC609340	KC609346

KC609346
JF740181 GQ387594 JF740183 GQ387611
 JF740187 JF740268
EU754153 JF740188 GQ387599 JF740190 GQ387601 JF740191 GQ387606 FJ427023 EU754187 JF740204 JF740281

Netherlands JF740206 JF740284

Country

Brazil
Brazil
Unknown
Hungary
USA I！ze．g
Brazil Brazil Germany India Zimbabwe India Italy Zimbabwe Netherlands Netherlands
Bidens sulphurea
Bidens sulphurea Helianthus annuus Helianthus annuus Helianthus sp． Helianthus annuus
Helianthus annuus Helianthus annuus Quercus robur Dolichos biforus Glycine max Saline soil Chamaerops humilis Air Glycine max Berberis vulgaris Chenopodium album Chenopodium quinoa Lunaria annua
Rudbeckia sp． VIC $31814 ;$
COAD 364
VIC $31881 ;$
COAD 1191
IFO 9089

EGS 36.007
VIC $31838 ;$
COAD 1190
VIC $31926 ;$
COAD 1188
VIC $31927 ;$
COAD 1187
IMI 217262
IMI 113689；
ATCC 16207 PD 77／884 IMI 199777； ATCC 32813；
PD 74／56 PD 66／221
CBS 134021

Alternariaster bidentis sp．nov．CBS 134021	
	CBS 134185
Alternariaster helianthi	CBS 327.69

6I0t\＆I Sgつ CBS 134020 CBS 105.91 CBS 124140 CBS 124141 CBS 353.65 CBS 400.71 CBS 188.71 CBS 101636 CBS 363.93 CBS 448.68 ∞
$\stackrel{\infty}{\sim}$
$\stackrel{1}{2}$
\sim
\sim
0 CBS 616.75 99° ItS SGつ Species name Alternariaster helianthi Coniothyrium carteri
Coniothyrium dolichi
Coniothyrium glycines
Coniothyrium multiporum
Coniothyrium palmarum
Coniothyrium telephii
Table 1. (Continued).

Species name	CBS number ${ }^{1}$	Other number ${ }^{1}$	Host, substrate	Country	GenBank accession numbers			
					ITS	LSU	RPB2	GAPDH
Leptosphaeria errabunda	CBS 617.75	IMI 199775; ATCC 32814; PD 74/201	Solidago sp.	Netherlands	JF740216	JF740289		
Leptosphaeria etheridgei	CBS 125980	DAOM 216539; PD 95/1483	Populus tremuloides	Canada	JF740221	JF740291		
Leptosphaeria macrocapsa	CBS 640.93	PD 78/139	Mercurialis perennis	Netherlands	JF740237	JF740304		
Leptosphaeria pedicularis	CBS 390.80	PD 77/711	Pedicularis sp.	Switzerland	JF740224	JF740294		
Leptosphaeria rubefaciens	CBS 223.77		Quercus sp.	Switzerland	JF740243	JF740312		
Leptosphaeria scleroitoides	CBS 144.84	$\begin{aligned} & \text { CECT 20025; } \\ & \text { PD 82/1061 } \end{aligned}$	Medicago sativa	Canada	JF740192	JF740269		
Leptosphaeria slovacica	CBS 389.80	PD 79/171	Balota nigra	Netherlands	JF740247	JF740315		
Leptosphaeria sydowii	CBS 385.80	PD 74/477	Senecio jacobaea	UK	JF740244	JF740313		
Leptosphaeria veronicae	CBS 145.84	СЕСТ 20059; PD 78/273	Veronica chamaedryoides	Netherlands	JF740254	JF740320		
Paraleptosphaeria dryadis	CBS 643.86		Dryas octopetala	Switzerland	JF740213	GU301828		
Paraleptosphaeria macrospora	CBS 114198	UPSC 2686	Rumex domesticus	Norway	JF740238	JF740305		
Paraleptosphaeria nitschkei	CBS 306.51		Cirsium spinosissimum	Switzerland	JF740239	JF740308		
Paraleptosphaeria orobanches	CBS 101638	PD 97/12070	Epifagus virginiana	USA	JF740230	JF740299		
Paraleptosphaeria praetermissa	CBS 114591		Rubus idaeus	Sweden	JF740241	JF740310		
Phoma herbarum	CBS 615.75		Rosa multiflora	Netherlands	FJ427022	EU754186		
Plenodomus agnitus	CBS 121.89	PD 82/903	Eupatorium sp.	Netherlands	JF740194	JF740271		
Plenodomus biglobosus	CBS 119951		Brassica rapa	Netherlands	JF740198	JF740274		
Plenodomus chrysanthemi	CBS 539.63		Chrysanthemum sp.	Greece	JF740253	GU238151		
Plenodomus collinsoniae	CBS 120227	JCM 13073; MAFF 239583	Vitis coignetiae	Japan	JF740200	JF740276		
Plenodomus confertus	CBS 375.64		Anacyclus radiatus	Spain	AF439459	JF740277		
Plenodomus congestus	CBS 244.64		Erigeron canadensis	Spain	AF439460	JF740278		

Table 1. (Continued).

Species name	CBS number ${ }^{1}$	Other number ${ }^{1}$	Host, substrate	Country	GenBank accession numbers			
					ITS	LSU	RPB2	GAPDH
Plenodomus enteroleucus	CBS 142.84	CECT 20063; PD 81/654	Catalpa bignonioides	Netherlands	JF740214	JF740287		
Plenodomus fallaciosa	CBS 414.62	ETH 2961	Satureja montana	France	JF740222	JF740292		
Plenodomus hendersoniae	CBS 139.78		Pyrus malus	Netherlands	JF740226	JF740296		
Plenodomus influorescens	CBS 143.84	$\begin{aligned} & \text { CECT 20064; } \\ & \text { PD 78/883 } \end{aligned}$	Fraxinus excelsior	Netherlands	JF740228	JF740297		
Plenodomus libanotidis	CBS 113795	UPSC 2219	Seseli libanotis	Sweden	JF740231	JF740300		
Plenodomus lindquistii	CBS 381.67		Helianthus annuus	Canada	JF740233	JF740302		
Plenodomus lingam	CBS 260.94	PD 78/989	Brassica oleracea	Netherlands	JF740235	JF740307		
Plenodomus lupini	CBS 248.92	PD 79/141	Lupinus mutabilis	Peru	JF740236	JF740303		
Plenodomus pimpinellae	CBS 101637	PD 92/41	Pimpenella anisum	Israel	JF740240	JF740309		
Plenodomus tracheiphilus	CBS 551.93	PD 81/782	Citrus limonia	Israel	JF740249	JF740317		
Plenodomus visci	CBS 122783	PD 74/1021	Viscum album	France	JF740256	EU754195		
Plenodomus wasabiae	CBS 120119	FAU 559	Eutrema wasabi	Taiwan	JF740257	JF740323		
Pyrenochaeta cava	CBS 257.68	IMI 331911	Wheat field soil	Germany	JF740260	EU754199		
Pyrenochaeta nobilis	CBS 407.76		Laurus nobilis	Italy	EU930011	EU754206		
Pyrenochaetopsis leptospora	CBS 101635	PD 71/1027	Secale cereale	Europe	JF740262	GQ387627		
Pyrenochaetopsis pratorum	CBS 445.81	PD 80/1254	Lolium perenne	New Zealand	JF740263	GU23816		
Subplenodomus apiicola	CBS 285.72		Apium graveolens var. rapaceum	Germany	JF740196	GU238040		
Subplenodomus drobnjacensis	CBS 269.92	PD 88/896	Eustoma exaltatum	Netherlands	JF740211	JF740285		
Subplenodomus valerianae	CBS 630.68	PD 68/141	Valeriana phu	Netherlands	JF740251	GU238150		
Subplenodomus violicola	CBS 306.68		Viola tricolor	Netherlands	FJ427054	GU238156		

${ }^{1}$ ATCC: American Type Culture Collection, Virginia, USA; CBS: Culture collection of the Centraalbureau voor Schimmelcultures, Fungal Biodiversity Centre, Utrecht, The Netherlands; CECT: Colección Española de Cultivos Tipo, Valencia University, Spain; COAD: Culture collection of the Universidade Federal de Viçosa, Brasil; DAOM: Canadian Collection of Fungal Cultures, Ottawa, Canada; EGS: Personal collection of Dr. E.G. Simmons; ETH: Swiss Federal Institute of Technology, Switzerland; FAU: Personal collection of Francis A. Uecker; IFO: Institute for Fermentation Culture Collection, Osaka, Japan; IMI: Culture collection of CABI Europe UK Centre, Egham, UK; JCM: Japan Collection of Microorganisms, Riken Biosource Center, Japan; MAFF: MAFF GenBank Project, Ministry of Agriculture, Forestry and Fisheries, Tsukuba, Japan; PD: Plant Protection Service, Wageningen, The Netherlands; UPSC: Uppsala University Culture Collection, Sweden; VIC: herbarium of the Universidade Federal de Viçosa, Brasil.
was extracted using an Ultraclean microbial DNA isolation kit (Mobio Laboratories, Carlsbad, CA, USA) according to the manufacturer's instructions. The primers V9G (de Hoog \& Gerrits van den Ende 1998) and ITS4 (White et al. 1990) were used to amplify the ITS region, and LSU1fd (Crous et al. 2009b) and LR5 (Vilgalys \& Hester 1990) for the LSU region. The PCR conditions were as follows: $1 \mu \mathrm{LDNA}, 1 \times$ PCR buffer (Bioline GmbH, Luckenwalde, Germany), $40 \mu \mathrm{M}$ of each dNTP, $0.2 \mu \mathrm{M}$ of each primer, 0.25 units Taq polymerase (Bioline) and 1 mM (ITS) or 2 mM (LSU) MgCl_{2} in a final volume of $12.5 \mu \mathrm{~L}$. The amplification reactions were performed on a 2720 thermal cycler (Applied Biosystems, Foster City, CA, USA). The initial denaturation step of $94{ }^{\circ} \mathrm{C}$ for 5 min was followed by 35 cycles of $94{ }^{\circ} \mathrm{C}(30 \mathrm{~s}), 48^{\circ} \mathrm{C}(30 \mathrm{~s})$, and $72^{\circ} \mathrm{C}(60 \mathrm{~s})$ and a final elongation step of $72^{\circ} \mathrm{C}(7 \mathrm{~min})$. The amplicons were sequenced in both directions using the same PCR primers and the BigDye ${ }^{\circledR}$ Terminator v. 1.1 cycle sequencing kit (Applied Biosystems) according to the manufacturer's recommendations. The products were analysed on an ABI Prism 3730 XL DNA Sequencer (Applied Biosystems). A consensus sequence was computed from the forward and reverse sequences using the Bionumerics v. 4.61 software package and deposited in GenBank (Table 1). The consensus regions of ITS and LSU were blasted against the NCBI Nucleotide collection database using Megablast to identify their closest neighbours. Hit sequences were downloaded and aligned using the multiple sequence alignment program MAFFT v. 6.864b (http://mafft.cbrc.jp/alignment/server/index.html), and adjusted by eye where necessary. A Bayesian analysis was performed with MrBayes v. 3.2.1 (Huelsenbeck \& Ronquist 2001, Ronquist \& Huelsenbeck 2003) using a GTR model with gamma distributed rate variation for the single and concatenated gene regions. Further settings included a temperature value of 0.05 , sample frequency of 100 , for 5 M generations or when the average standard deviation of split frequencies dropped below 0.01 . The 50% majority rule consensus tree was calculated where the first 25% of sampled trees were discarded as 'burn-in'. The program Tracer v. 1.5.0 (Rambaut \& Drummond 2009) was used to ensure the convergence of the chains. Phylogenetic trees were visualised with Treeview v. 1.6.6 (Page 1996) and deposited in TreeBASE (www.treebase.org). The RPB2 and GAPDH sequences of the strains mentioned in Table 1 were also obtained and deposited in GenBank to confirm the close but distinct relationship of Alternariaster helianthi and the isolate from Bidens sulphurea.

Taxonomy

Morphological characterisation of the isolates was done using fungal structures scraped from freshly infected leaves, and mounted in lactophenol or lactofuchsin on microscope slides and observed with an Olympus BX 51 light microscope fitted with a drawing tube and a digital camera (Olympus E330). Colony characteristics were noted after 14 d of growth on VBA and PCA at $25^{\circ} \mathrm{C}$, under a 12 h light regime. Colony colours were determined using the colour charts of Rayner (1970). Nomenclatural data were deposited in MycoBank (Crous et al. 2004).

Pathogenicity studies

Fungal isolates were transferred to VBA plates and incubated for 14 d at $25^{\circ} \mathrm{C}$ under a 12 h light regime; light provided by two 40 W day-light fluorescent lamps and one 40 W NUV black-light lamp, placed 40 cm above the plates. After fungal colonies colonised the plates, 10 mL of sterile water was added to each plate and the surface of the plates was scraped with a rubber spatula. The resulting conidial suspension was adjusted to a concentration of 2×10^{4} conidia $/ \mathrm{mL}$ with a haemocytometer. Twenty-day-old Bidens sulphurea plants, cultivated in individual pots, were

Chapter 3

Table 2. Pathogenicity results of Alternariaster bidentis (CBS 134021) and Al. helianthi (CBS 134018) on 18 plants belonging to the Asteraceae.

Subfamily	Tribe	Species	${\text { Al. } \text { bidentis }^{\mathbf{1}}}^{\text {Al. } \text { helianthi }^{\mathbf{1}}}$	
Cichorioideae	Cardueae	Cynara scolymus	-	n
	Lactuceae	Lactuca sativa	-	n
		Sonchus oleraceus	-	-
Asteroideae	Vernonia polyanthes	-	n	
	Mutisiae	Gerbera jamesonii	-	-
	Astereae	Conyza canadensis	-	-
	Anthemideae	Crysantemum morifolium	n	n
	Eupatorieae	Mikania micrantha	-	-
	Gnaphalieae	Helichrysum italicum	-	-
	Helenieae	Tagetes minuta	-	-
	Heliantheae	Bidens subalternans	-	-
		Bidens sulphurea	+	-
		Bidens pilosa	-	-
		Dalia pinnata	-	-
		Galinsoga quadriradiata	-	+
		Helianthus annuus	-	+
		Sphagneticola trilobata	-	-
		Zinnia elegans	-	-

${ }^{1}-=$ no symptoms; $+=$ leaf spot symptoms; $\mathrm{n}=$ necrosis.
sprayed until runoff with this conidial suspension. Each plant was covered with a transparent plastic bag wetted internally and left for 48 h with the base of the pots immersed in water in a greenhouse where temperature varied between $25-30^{\circ} \mathrm{C}$. Two plants were sprayed with sterile water and served as controls. After the 2 d period in the humid chamber, the plants were transferred to a bench in a greenhouse and observed daily for the appearance of disease symptoms.

A pathogenicity test was performed by separately inoculating the two isolates (B. sulphurea isolate CBS 134021 and Alternariaster helianthi CBS 134018) in duplo on individuals belonging to 18 plant species representing two subfamilies and nine tribes of the Asteraceae (Table 2). Plants inoculated were $30-60-\mathrm{d}$-old and $30-40 \mathrm{~cm}$ high. Whenever disease symptoms appeared observations were made under a dissecting microscope for the appearance of fungal structures. If necrosis of tissues appeared but no fungal structures were observed on such necrotic tissues after repeated observations, then fragments of these seemingly diseased tissues were removed, surface sterilized with sodium hypochlorite and plated on VBA plates to allow for possible isolation of the fungus.

RESULTS

Phylogeny

The ITS and LSU consensus sequences obtained for the B. sulphurea isolates and Alternariaster helianthi isolates showed a high level of identity to Plenodomus, Leptosphaeria and Para-

Fig. 1. Bayesian 50% majority rule consensus tree based on the ITS and LSU sequences of 61 strains. The Bayesian posterior probabilities (PP) of 0.95 and above are given at the nodes. Thickened lines indicate a PP of 1.0. The tree was rooted using Phoma herbarum (CBS 615.75).
leptosphaeria isolates (Leptosphaeriaceae) present in the NCBI nucleotide database. The closest relatives of our isolates were delineated in a study by de Gruyter et al. (2012). The alignment of the latter study was therefore used to construct a phylogenetic tree (Fig. 1, Table 1). Isolates from four families were included, with Phoma herbarum (CBS 615.75, Didymellaceae) as outgroup. The final alignment consisted of 61 taxa and 1425 characters (ITS 571, LSU 854), with 389 (ITS 288, LSU 101) unique site patterns. The Bayesian analysis resulted in 6451 trees per run, from which the burn-in was discarded and the consensus tree and posterior probabilities were calculated on a total of 9678 trees from two runs.

The eight Alternariaster isolates formed a well-supported clade (posterior probability of 1.0) between the genera Plenodomus and Heterospora within the Leptosphaeriaceae. The Alternariaster species formed two well-supported subclades within the Alternariaster clade. The RPB2 and GAPDH sequences showed 100% identity within the species, and 97% (881/908 nt) and $95 \%(561 / 593 \mathrm{nt})$ identity between species, which confirmed Al. helianthi and Al. bidentis as distinct species within the genus.

Taxonomy

Alternariaster bidentis J.L. Alves \& R.W. Barreto, sp. nov. MycoBank MB800215. Fig. 2.
Etymology: Name refers to its host genus, Bidens.
Sexual morph unknown. Lesions on living leaves starting as broad, punctiform depressions on leaf blades and veins, becoming subcircular, yellowish brown and greyish centrally, up to 1 mm diam, surrounded by a halo of dark green tissue with a somewhat soaked appearance followed by a faint, yellow outer circular area; on leaf veins lesions elliptical to elongate, pale brown to purple; at later stages lesions coalescing and becoming flecked, subcircular up to 15 mm diam, leading to leaf blight and premature plant death. External mycelium indistinct. Internal mycelium composed of branched, septate, pale brown to greyish brown hyphae, $1.5-2.0 \mu \mathrm{~m}$ diam. Conidiophores hypophyllous, solitary or in groups of up to three, straight to slightly sinuous, $147.5-320 \times 10-12.5 \mu \mathrm{~m}$, simple to occasionally branched, $3-6$-septate, chestnut-brown at base, becoming yellowish brown at apex, smooth. Conidiogenous cells tretic, integrated, terminal to intercalary, sympodial, cylindrical, $25-165 \times 10-15 \mu \mathrm{~m}$; pale brown to yellowish. Conidiogenous loci conspicuous, $1-3$ per cell, protuberant, up to $5 \mu \mathrm{~m}$ diam, thickened and darkened. Conidia dry, solitary, cylindrical or subcylindrical, $50-97.5 \times 12.5-20$ $\mu \mathrm{m}$, apex and base obtusely rounded, 2-9 transversely septate (longitudinal or oblique septa absent), often deeply constricted at septa and larviform (in turgid freshly collected samples), eguttulate, subhyaline to greyish, smooth, hilum thickened and darkened, germinating both through apical and basal cells, occasionally also medially. Germ tubes oriented perpendicularly to the main axis of the conidium.

Culture characteristics: Relatively slow-growing (35-54 mm diam after 14 d), colony raised centrally, cottony, white, with dark grey or brown outer zone (where sporulation is concentrated) and having a wide periphery of flat, sparse, greyish to brown mycelium, followed by an irregular dark grey rim. Spermogonia produced either with or without exposure to light, pycnidial, subglobose, $55-90 \times 50-80 \mu \mathrm{~m}$, walls of thick textura angularis. Spermatia subcylindrical, $6-12 \times 1-2 \mu \mathrm{~m}$, hyaline, smooth, germination not observed.

Specimens examined: Brazil, Minas Gerais, Viçosa, on living leaves of Bidens sulphurea, 21 Apr. 2004, R.W. Barreto (VIC 31814 - holotype, culture ex-type CBS 134021, COAD 364); Rio de Janeiro, Murineli, Duas Barras, on living leaves of B. sulphurea, 30 July 2011, R.W. Barreto (VIC 31883); Rio de Janeiro, Duas Barras, on living leaves of B. sulphurea, 4 Nov. 2011, R.W. Barreto (VIC 31884); Minas Gerais, Itabirito, São Gonçalo do Bação, on living leaves of B. sulphurea, 27 Jan. 2012, E. Guatimosim (CBS 134185, COAD 1191, VIC 31881); Minas Gerais, Itabirito, São Gonçalo do Bação, on living leaves of B. sulphurea, 7 Apr. 2012, E. Guatimosim (VIC 31882).

Fig. 2. Alternariaster bidentis. A. Flowering healthy plants of Bidens sulphurea. B. leaves with leaf spot and necrosis. C. Extensive blight. D-H. Conidia attached to conidiogenous cells. I. Spermogonium on SNA. Scale bars $=10 \mu \mathrm{~m}$, except $\mathrm{I}=100 \mu \mathrm{~m}$.

Alternariaster helianthi (Hansf.) E.G. Simmons, CBS Bio-diversity Ser. (Utrecht) 6: 667. 2007. MycoBank MB505050. Fig. 3.

Basionym: Helminthosporium helianthi Hansf., Proc. Linn. Soc. London 49. 1943 (1942-1943). = Alternaria helianthi (Hansf.) Tubaki \& Nishih., Trans. Brit. Mycol. Soc. 53: 148. 1969.

Sexual morph unknown. Lesions on living leaves starting as dispersed punctiform spots, occurring throughout the leaf blade, becoming subcircular to irregular in shape, yellowish, $3-11 \times 2-9 \mathrm{~mm}$, surrounded by a halo of dark green tissue, at later stages lesions coalesce, resulting in leaf blight and premature plant death. Conidiophores hypophyllous, solitary or in small groups, straight to slightly sinuous, $100-225 \times 7.5-10 \mu \mathrm{~m}$, simple, $3-6$-septate, pale to chestnut-brown, smooth. Conidiogenous cells tretic, integrated, terminal to intercalary, sympodial, cylindrical, 25-100 \times $5-7.5 \mu \mathrm{~m}$, yellowish to pale brown. Conidiogenous loci conspicuous, $1-2$ per cell, protuberant, up to $5 \mu \mathrm{~m}$ diam, thickened and darkened. Conidia dry, solitary, cylindrical to subcylindrical, occasionally with cells of different size, $60-115 \times 11-29 \mu \mathrm{~m}$, apex and base rounded, transversally $5-9$ septate ($1-2$ longitudinal or oblique septa), often deeply constricted at septa, eguttulate, subhyaline to pale brown, smooth, hilum thickened and darkened. Germ tubes orientated perpendicularly to the main axis of the conidium, and also polar.

Culture characteristics: On PCA and VBA, very slow-growing ($8-11 \mathrm{~mm}$ diam after 14 d). On PCA colony raised centrally, aerial mycelium felted, white, having a wide periphery of flat, sparse, olivaceous-buff to greenish glaucous mycelium, with irregular margins. On VBA colonies of dense cottony to velvety aerial mycelium, grey-olivaceous alternating with smoke-grey zones. In reverse olivaceous-buff centrally, and olivaceous at the edges on PCA, and grey-olivaceous alternating with olivaceous-black zones on VBA. Sporulation abundant. Spermagonia not observed.

Specimens examined: Brazil, Minas Gerais, Viçosa, on living leaves of Helianthus annuus, 30 May 2004 (COAD 302); Minas Gerais, Viçosa, on living leaves of H. annuus, 29 June 2010, J.L. Alves (CBS 134018, COAD 1190, VIC 31838); Minas Gerais, Belo Horizonte, on living leaves of H. annuus, 22 May 2012, J.L. Alves (CBS 134019, COAD 1188, VIC 31926); Minas Gerais, Viçosa, on living leaves of H. annuus, 25 May 2012, J.L. Alves (CBS 134020, COAD 1187, VIC 31927).

Pathogenicity studies

The Al. bidentis isolate (CBS 134021) produced leaf spots only on B. sulphurea, whereas Al. helianthi (CBS 134018) produced leaf spots on H. annuus and also on Galinsoga quadriradiata (Table 2). Leaf necrosis appeared on four other species inoculated with Al. helianthi and one species when inoculated with Al. bidentis (Table 2), but no sporulation was observed on such necrotic tissues, and no fungal colonies were obtained from fragments of such tissues when plated on culture media.

DISCUSSION

The genus Alternariaster was first described by Simmons (2007) with Alternariaster helianthi (formerly Alternaria helianthi and Helminthosporium helianthi) as type, and has hitherto been

Fig. 3. Alternariaster helianthi. A. Helianthus annuus with leaf spot and necrosis. B-E. Conidia. F-H. Conidia attached to conidiogenous cells. Scale bars $=10 \mu \mathrm{~m}$.
monotypic. The present phylogenetic analysis confirms Simmons's segregation of Alternariaster from Alternaria, by showing that Alternariaster is a well-delimited taxon belonging to the Leptosphaeriaceae (Fig. 1), instead of the Pleosporaceae to which Alternaria belongs (Schoch et al. 2009).

Initial attempts at identifying Alternariaster bidentis to the generic level based on morphological characters alone was challenging. Initially the fungus was regarded as a potential species of

Fig. 4. A, B. Alternariaster bidentis sp. nov. (CBS 134021) on Bidens sulphurea. A. Pathogenicity test evaluated at 14 d after inoculation (control left, inoculated right). B. Detail of necrosis. C. Alternariaster helianthi (CBS 134018) on Bidens sulphurea, no observed injury (control left, inoculated right). D, E. Alternariaster helianthi (CBS 134018) on H. annuus. D. Pathogenicity test evaluated at 4 d after inoculation (control left, inoculated right). E. detail of necrosis. F. Alternariaster bidentis sp. nov. (CBS 134021) on H. annuus, no observed injury (control left, inoculated right).

Alternaria. Nevertheless, as the fungus did not produce conidial chains, had conidia that appeared hyaline when young and when directly observed on leaves, were distinctly constricted at septa (having a larviform appearance) and were never found to have longitudinal or oblique septa. This combination of features suggested that it might be inadequately placed in Alternaria. However, the genus Alternaria contains some taxa noted for the absence of oblique and transverse septa, namely: A. chrysanthemi, A. thalictrina, A. thalictricola, and A. thalictrigena (Schubert et al. 2007a). Additionally, significant changes in conidial morphology were also observed when the fungus was grown in culture, particularly in older cultures where conidia became chestnut-brown and the formation of distosepta was observed at times. These features suggested that the species might belong to one of the genera segregated from Helminthosporium (Alcorn 1988), particularly Drechslera or Bipolaris. Alcorn (1991) separated Bipolaris, Drechslera and Exserohilum based on conidial germination patterns, septum ontogeny and their associated sexual morphs. Ironically, while the authors were trying to unravel the puzzle of the fungus occurring on Bidens sulphurea, the monograph on the genus Alternaria was published (Simmons 2007). In this monograph the genus Alternariaster was erected to accommodate Alternaria helianthi, a fungal species known to cause a serious disease of sunflower worldwide (Alcorn \& Pont 1972, Ribeiro et al. 1974, Leite et al. 2007). Alternariaster was segregated from Alternaria based on it being morphologically distinct by having cylindrical, ellipsoid or broad-ovoid in shape, subhyaline to greyish brown conidia not formed in chains and only rarely exhibiting longitudinal or oblique septa.

The morphology of Al. bidentis fits well into the concept proposed by Simmons for Alternariaster. However, this newly proposed species can be readily distinguished from Al. helianthi based on its conidial characters. Alternariaster bidentis has smaller conidia, 50-97.5 $\times 12.5-20 \mu \mathrm{~m}$, compared to Al. helianthi, $80-160 \times 18-30 \mu \mathrm{~m}$, without oblique or transverse septa, which though rare, could occur in Al. helianthi. Additionally spermogonia and spermatia were formed in cultures of Al. bidentis (but not in cultures of Al. helianthi) and were described here for the first time. Inoculations with Al. bidentis only resulted in leaf spots equivalent to those observed in the field on plants of B. sulphurea. Although necrosis appeared on leaves of Chrysanthemum morifolium, spots were limited to places where inoculum was deposited, and did not progress, nor could the fungus be re-isolated from such necrotic tissues. Necrosis was likely to be caused by one or more toxins produced by the fungus for which chrysanthemum was sensitive but not the other test plants. No leaf spot or necrosis of any kind appeared on Helianthus annuus inoculated with Al. bidentis or on B. sulphurea inoculated with Al. helianthi (Fig. 4). This is regarded as a complementary indication that $A l$. helianthi and Al. bidentis are distinct taxa. Inoculations of Al. helianthi (CBS 134018) led to typical Alternariaster leaf spots on H. annuus and Galinsoga quadriradiata after 5 d . Conidiophores and conidia could be identified as $A l$. helianthi on leaf spots on these two hosts after 7 d . Galinsoga quadriradiata is a new host for Al. helianthi. Alternariaster helianthi was previously reported to only infect H. annuus and Rudbeckia bicolor (Black-Eyed Susan) (Cho \& Shin 2004). Tissue necrosis was observed in Cynara scolymus, Chrysanthemum morifolium, Lactuca sativa and Vernonia polyanthes. As in the case of the inoculation of Al. bidentis on Chrysanthemum morifolium, it is likely that such necroses were a result of susceptibility of those hosts to one or more toxins produced by Al . helianthi. The delineation of a new Alternariaster species based on molecular, morphological and pathogenicity tests led to a reappraisal of the genus, with the conclusion that Alternariaster is a well-delimited genus belonging to the Leptosphaeriaceae, rather than to the Pleosporaceae, to which Alternaria belongs. The finding of this new taxon also confirmed a fortunate choice of name for the genus by Simmons, as this is also a fungus morphologically similar to Alternaria attacking a member of the Asteraceae.

ACKNOWLEDGEMENTS

The authors would like to thank Drs J.L. Alcorn, E.G. Simmons and R. Shoemaker for their advice regarding the taxonomic placement of Alternariaster bidentis. JLA, LLD and RWB acknowledge financial support from the Conselho Nacional do Desenvolvimento Cientifico e Tecnológico (CNPq) and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). JHCW and PWC acknowledge financial support from the Dutch Ministry of Education, Culture and Science through an endowment of the FES programme 'Making the tree of life work'.

Large-spored Alternaria pathogens in section Porri disentangled

J.H.C. Woudenberg ${ }^{1,2}$, M. Truter ${ }^{3}$, J.Z. Groenewald ${ }^{1}$, and P.W. Crous ${ }^{1,2,4}$

[^2]Studies in Mycology 79: 1-47. 2014.

Key words: Alternaria, early blight of potato, early blight of tomato, leaf and stem blight of sweet potato, multi-gene phylogeny, purple blotch of onion.

Abstract

The omnipresent fungal genus Alternaria was recently divided into 24 sections based on molecular and morphological data. Alternaria sect. Porri is the largest section, containing almost all Alternaria species with medium to large conidia and long beaks, some of which are important plant pathogens (e.g. Alternaria porri, A. solani and A. tomatophila). We constructed a multi-gene phylogeny on parts of the ITS, GAPDH, RPB2, TEF1 and Alt a 1 gene regions, which, supplemented with morphological and cultural studies, forms the basis for species recognition in sect. Porri. Our data reveal 63 species, of which 10 are newly described in sect. Porri, and 27 species names are synonymised. The three known Alternaria pathogens causing early blight on tomato all cluster in one clade, and are synonymised under the older name, A. linariae. Alternaria protenta, a species formerly only known as pathogen on Helianthus annuus, is also reported to cause early blight of potato, together with A. solani and A. grandis. Two clades with isolates causing purple blotch of onion are confirmed as A. allii and A. porri, but the two species cannot adequately be distinguished based on the number of beaks and branches as suggested previously. This is also found among the pathogens of Passifloraceae, which are reduced from four to three species. In addition to the known pathogen of sweet potato, A. bataticola, three more species are delineated of which two are newly described. A new Alternaria section is also described, comprising two large-spored Alternaria species with concatenate conidia.

Taxonomic novelties: New species - Alternaria alternariacida Woudenb. \& Crous, A. carthamicola Woudenb. \& Crous, A. catananches Woudenb. \& Crous, A. citrullicola Woudenb. \& Crous, A. conidiophora Woudenb. \& Crous, A. deserticola Woudenb. \& Crous, A. ipomoeae M. Truter, Woudenb. \& Crous, A. neoipomoeae M. Truter, Woudenb. \& Crous, A. paralinicola Woudenb. \& Crous, A. sennae Woudenb. \& Crous. New section in Alternaria - sect. Euphorbiicola Woudenb. \& Crous. Typifications (basionyms): Epitypifications - Alternaria bataticola W. Yamam., Cercospora crassa Sacc., Macrosporium porri Ellis, M. ricini Yoshii, Sporidesmium scorzonerae Aderh., Neotypification - Sporidesmium exitiosum var. dauci J.G. Kühn.

INTRODUCTION

Alternaria is an important fungal genus with a worldwide distribution. This hyphomycetous ascomycete with phaeodictyospores includes saprophytic, endophytic and pathogenic species, which can be plant pathogens, post-harvest pathogens or human pathogens (Thomma 2003). The genus Alternaria was recently divided into 24 sections (Chapter 2) based on molecular and morphological data, which followed the recent initiative to divide Alternaria into sections (Lawrence et al. 2013). Alternaria sect. Porri is the largest section, containing almost all Alternaria species with medium to large conidia and long beaks. Among them are some important plant pathogens, such as Alternaria bataticola, A. porri, A. solani and A. tomatophila. Alternaria bataticola causes leaf petiole and stem blight of sweet potato in tropical and sub-tropical regions. The disease is most severe in East and Central Africa, with yield losses of over 70% reported (Osiru et al. 2007). Alternaria porri causes purple blotch of onion, a very destructive disease of onions worldwide. The disease causes a significant reduction in seed and bulb yield, with seed losses of up to 100% (Abo-Elyousr et al. 2014). Alternaria solani is the causative agent of early blight of potato. This very common disease, which can be found in most potato-growing countries, can cause considerable defoliation. The disease typically reduces yields by $\sim 20 \%$, but yield reductions of up to 80% have been reported (Horsfield et al. 2010). Alternaria tomatophila is known for causing early blight of tomato, attacking the leaves, stems and fruit. This airborne pathogen has spread worldwide, mainly affecting field crops. When left untreated the damage can result in plant defoliation in excess of 60% (Zitter \& Drennan 2005).

The identification of these species has been problematic for many years, with every large-spored Alternaria found on Solanaceae commonly being identified as A. solani. This assumption changed with the treatment of Alternaria species on Solanaceae, in which Simmons (2000) distinguished 22 Alternaria and Nimbya species on solanaceous hosts on the basis of morphology. On potato, Simmons described the large-spored, long-beaked species A. grandis and A. solani, while on tomato he described A. tomatophila, A. cretica and A. subcylindrica. The distinction between potato and tomato pathogens was supported by subsequent molecular studies and chemotaxonomy (Andersen et al. 2008, Rodrigues et al. 2010, Brun et al. 2013, Gannibal et al. 2014).

The taxonomy of Alternaria species on Allium is also confused. Macrosporium porri was first described as pathogen of Allium (Cooke \& Ellis 1879), followed by Alternaria allii (Nolla 1927). Both species were later synonymised (Angell 1929) and the name changed to Alternaria porri (Cifferi 1930). The name A. allii was resurrected by Simmons in his identification manual (2007) where he described five large-spored, long-beaked species from Allium, which he could distinguish based on morphology. Large-spored Alternaria from sweet potato were mostly identified as A. bataticola, even if the isolates from some studies (Osiru et al. 2008, Narayanin et al. 2010) showed morphological differences compared with the description of Simmons (2007).

In the present study we aim to use a molecular approach to delineate the medium- to largespored Alternaria species with long beaks in sect. Porri. A multi-locus analysis based on five partial gene regions, the internal transcribed spacer regions 1 and 2 and intervening 5.8S nrDNA (ITS), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), RNA polymerase second largest subunit (RPB2), translation elongation factor 1-alpha (TEF1) and the Alternaria major allergen gene (Alt a 1), was performed. All available ex-type and representative isolates of medium to large-spored, long-beaked species described in Simmons (2007) were included in this study. The present multi-locus analysis supplemented with morphological and cultural data forms the basis for species recognition in sect. Porri.

MATERIALS AND METHODS

Isolates

One hundred eighty-three Alternaria strains including 116 ex-type or representative strains present at the Centraalbureau voor Schimmelcultures (CBS), Utrecht, The Netherlands were included in this study (Table 1). With "representative isolate" we refer to the strains used to describe the species based on morphology in Simmons (2007). Freeze-dried strains were revived in 2 mL malt / peptone ($50 \% / 50 \%$) and subsequently transferred to oatmeal agar (OA, Crous et al. 2009c). Strains stored in the liquid nitrogen collection of the CBS were transferred to OA directly from the $-185^{\circ} \mathrm{C}$ storage.

PCR and sequencing

DNA extraction was performed using the UltraClean Microbial DNA isolation kit (Mobio laboratories, Carlsbad, CA, USA), according to the manufacturer's instructions. The ITS region was amplified with the primers V9G (De Hoog \& Gerrits van den Ende 1998) and ITS4 (White et al. 1990), the GAPDH region with gpd1 and gpd2 (Berbee et al. 1999) the RPB2 region with RPB2-5F2 (Sung et al. 2007) and fRPB2-7cR (Liu et al. 1999), the TEF1 gene with the primers EF1-728F and EF1-986R (Carbone \& Kohn 1999) or EF2 (O’Donnell et al. 1998) and the Alt a 1 region with the primers Alt-for and Alt-rev (Hong et al. 2005a). The ITS, GAPDH, RPB2 and TEF1 PCRs were performed as described in Chapter 2. The reaction mixture for the Alt a 1 PCR consisted of $1 \mu \mathrm{~L}$ genomic DNA, $1 \times \mathrm{NH}_{4}$ reaction buffer (Bioline, Luckenwalde, Germany), $3 \mathrm{mM} \mathrm{MgCl}{ }_{2}, 20 \mu \mathrm{M}$ of each dNTP, $0.2 \mu \mathrm{M}$ of each primer and 0.25 U BIOTAQ DNA polymerase (Bioline). Conditions for PCR amplification consisted of an initial denaturation step of 5 min at $94^{\circ} \mathrm{C}$ followed by 40 cycles of 30 s at $94^{\circ} \mathrm{C}, 30 \mathrm{~s}$ at $55^{\circ} \mathrm{C}$ and 60 s at $72^{\circ} \mathrm{C}$ and a final elongation step of 7 min at $72^{\circ} \mathrm{C}$. The PCR products were sequenced in both directions using the PCR primers and the BigDye Terminator v. 3.1 Cycle Sequencing Kit (Applied Biosystems, Foster City, CA, USA), and analysed with an ABI Prism 3730XL Sequencer (Applied Biosystems) according to the manufacturer's instructions. Consensus sequences were computed from forward and reverse sequences using the BioNumerics v. 4.61 software package (Applied Maths, St-Martens-Latem, Belgium). All newly generated sequences were deposited in GenBank (Table 1).

Phylogenetic analysis

Multiple sequence alignments were generated with MAFFT v. 7 (http://mafft.cbrc.jp/alignment/ server/index.html), and adjusted by eye where necessary. Bayesian inference and Maximum Likelihood analyses were performed on both the individual sequence datasets as well as the concatenated datasets as described in Chapter 2, with the sample frequency set to 1000 instead of 100 in the Bayesian analysis. For the TEF1 partition an online tool (http://www.hiv.lanl. gov/content/sequence/findmodel/findmodel.html) suggested the K2P model with a gamma-rate variation as nucleotide substitution model, and for the remaining four partitions the TrN model with gamma-distributed rate variation. Sequences from the type species of the phylogenetically closest section, sect. Gypsophilae, A. gypsophilae (Chapter 2), were used as outgroup. The resulting trees were printed with TreeView v. 1.6.6 (Page 1996) and the alignments and trees deposited into TreeBASE (http://www.treebase.org).

Taxonomy

Cultures were incubated on potato-carrot agar (PCA, Crous et al. 2009c) and synthetic nutrient-poor agar (SNA, Nirenberg 1976) plates at moderate temperatures ($\sim 22^{\circ} \mathrm{C}$) under CoolWhite fluorescent light with an 8 h photoperiod. After 7 d the growth rates were measured and the colony characters noted. Colony colours were rated according to Rayner (1970). Morphological descriptions were made for isolates grown on SNA with a small piece of autoclaved filter paper placed onto the agar surface to enhance sporulation. When sporulation occurred, the sellotape technique was used for making slide preparations (Schubert et al. 2007b) with Titan Ultra Clear Tape (Conglom Inc., Toronto, Canada) and Shear's medium as mounting fluid. The 95% confidence intervals were derived from measurements of 30 structures, with extremes given in parentheses. Photographs of characteristic structures were made with a Nikon Eclipse 80i microscope equipped with a Nikon digital sight DS-Fil high definition colour camera, using differential interference contrast (DIC) illumination and the Nikon software NIS-Elements D v. 3.00. Adobe Bridge CS5.1 and Adobe Photoshop CS5 Extended, v. 12.1, were used for the final editing and photographic preparation. Colonies which did not sporulate after 7 d were checked for sporulation up to 3 wk ; after this period they were noted as sterile. Nomenclatural data were deposited in MycoBank (Crous et al. 2004).

RESULTS

Phylogeny

Because the amplification / sequencing of the RPB2 region of CBS 137457 and the Alt a 1 region of CBS 119410 and CBS 117360 failed, these genes were included as missing data in the combined analysis of these isolates. The topologies of the trees obtained from the RAxML and Bayesian analyses were overall congruent, resulting in identical speciesclades. The phylogenies of the single-gene trees were congruent with one exception, CBS 137456, which swapped between clusters with the different genes used, resulting in a somewhat distorted picture in the combined analysis. The aligned sequences of the ITS (538 characters), GAPDH (581 characters), RPB2 (772 characters), TEF1 (355 characters) and Alt a 1 (476 characters) gene regions of the 183 included Alternaria strains had a total length of 2722 characters, with respectively $77,111,134,141$ and 131 unique site patterns. After discarding the burn-in phase trees, the Bayesian analysis resulted in 7502 trees from which the 50% majority rule consensus tree and posterior probabilities were calculated. The multi-gene phylogeny of section Porri (Fig. 1) divided the isolates in 62 species (clades) and one new Alternaria section. The species A. euphorbiicola and A. limicola, previously assigned to sect. Porri (Lawrence et al. 2013, Chapter 2), form a sister-clade to sect. Porri, here described as Alternaria sect. Euphorbiicola sect. nov. A Bayesian phylogeny based on the GAPDH, RPB2 and TEF1 sequences of representative isolates of the closely related sections in Alternaria (sequences obtained from Chapter 2) was constructed for comparison, with A. brassicicola CBS 118699 from sect. Brassisicola, as outgroup (Fig. 2).
Table 1. Isolates used in this study and their GenBank accession numbers. Bold accession numbers were generated in other studies.

Species name	Strain number ${ }^{1,2}$	Locality, host / substrate	GenBank accesion numbers				
			ITS	GAPDH	Alt a 1	TEF1	RPB2
Alternaria acalyphicola	CBS 541.94; E.G.S. 38.100; IMI 266969 ${ }^{\text {T }}$	Seychelles, Acalypha indica	KJ718097	KJ717952	KJ718617	KJ718446	KJ718271
Alternaria agerati	CBS 117221; E.G.S. 30.001; QM $9369^{\text {R }}$	USA, Ageratum houstonianum	KJ718098	KJ717953	KJ718618	KJ718447	KJ718272
Alternaria agripestis	CBS 577.94; E.G.S. $41.034^{\text {T }}$	Canada, Euphorbia esula	KJ718099	JQ646356	KJ718619	KJ718448	KJ718273
Alternaria allii	CBS 107.28; E.G.S. 48.084^{T} (A. porri)	Puerto Rico, Allium cepa	KJ718100	KJ717954	KJ718620	KJ718449	KJ718274
	porri) CBS 109.41; CBS 114.38 (A. porri)	Denmark, Allium cepa	KJ718101	KJ717955	KJ718621	KJ718450	KJ718275
	CBS 225.76 (A. porri)	Italy, Allium porrum	KJ718102	KJ717956	KJ718622	KJ718451	KJ718276
	CBS 116701; E.G.S. 33.134 ${ }^{\text {R }}$	USA, Allium cepa var. viviparum	KJ718103	KJ717957	KJ718623	KJ718452	KJ718277
	CBS 121345; E.G.S. 45.018 (A. vanuatuensis ${ }^{\mathrm{T}}$)	Vanuatu, Allium cepa	KJ718104	KJ717958	KJ718624	KJ718453	KJ718278
Alternaria alternariacida sp. nov.	CBS 105.51; ATCC 11078; IMI 46816; CECT $2997^{\text {T }}$ (A. solani)	UK, Solanum lycopersicum	KJ718105	KJ717959	KJ718625	KJ718454	KJ718279
Alternaria anagallidis	CBS 107.44	Denmark, Anagallis arvensis	KJ718106	JQ646338	KJ718626	EU130544	KJ718280
	CBS 101004	New Zealand, Anagallis arvensis	KJ718107	KJ717960	KJ718627	KJ718455	KJ718281
	CBS 117128; E.G.S. $42.074^{\text {R }}$	New Zealand, Anagallis arvensis	KJ718108	KJ717961	KJ718628	KJ718456	KJ718282
	CBS 117129; E.G.S. 50.091 ${ }^{\text {R }}$	New Zealand, Anagallis arvensis	KJ718109	KJ717962	KJ718629	KJ718457	KJ718283
Alternaria anodae	PPRI 12376	South Africa, Anoda cristata	KJ718110	KJ717963	KJ718630	KJ718458	KJ718284
Alternaria aragakii	CBS 594.93; E.G.S. 29.016; QM $9046{ }^{\text {T }}$	USA, Passiflora edulis	KJ718111	KJ717964	KJ718631	KJ718459	KJ718285
Alternaria argyroxiphii	CBS 117222; E.G.S. 35.122 ${ }^{\text {² }}$	USA, Argyroxiphium sp.	KJ718112	JQ646350	KJ718632	KJ718460	KJ718286
	PPRI 11848	South Africa, Ipomoea batatas	KJ718113	KJ717965	KJ718633	KJ718461	KJ718287
	PPRI 11971	South Africa, Ipomoea batatas	KJ718114	KJ717966	KJ718634	KJ718462	KJ718288
Alternaria azadirachtae	CBS 116444; E.G.S. 46.195; BRIP 25386(ss1) ${ }^{\text {T }}$	Australia, Azadirachta indica	KJ718115	KJ717967	KJ718635	KJ718463	KJ718289

Table 1. (Continued).
Alternaria bataticola

Alternaria calendulae
43.143; IMI 366164 (A
heliophytonis ${ }^{\text {T }}$)

Species name	Strain number ${ }^{1,2}$	Locality, host / substrate	GenBank accesion numbers				
			ITS	GAPDH	Alt a 1	TEF1	RPB2
	CBS 117091; E.G.S. 31.037 ${ }^{\text {R }}$	USA, Carthamus tinctorius	KJ718133	KJ717983	KJ718651	KJ718481	KJ718307
Alternaria carthamicola	CBS 117092; E.G.S. 37.057; IMI 276943 ${ }^{\mathrm{T}}$ (A. carthami ${ }^{\mathrm{R}}$)	Iraq, Carthamus tinctorius	KJ718134	KJ717984	KJ718652	KJ718482	KJ718308
Alternaria cassiae	CBS 478.81; E.G.S. $33.147^{\text {R }}$	USA, Senna obtusifolia	KJ718135	KJ717985	KJ718653	KJ718483	KJ718309
	CBS 116119; E.G.S. 47.112; IMI 286317; IMI 392448 (A. sauropodis ${ }^{\mathrm{T}}$)	Malaysia, Sauropus androgynus	KJ718136	KJ717986	KJ718654	KJ718484	KJ718310
	CBS 117224; E.G.S. $40.121^{\text {R }}$	Brazil, Senna obtusifolia	KJ718137	KJ717987	KJ718655	KJ718485	KJ718311
	CBS 117369; E.G.S. 50.166 (A. hibiscinficiens ${ }^{\text {T }}$)	Fiji, Hibiscus sabdariffa	KJ718138	KJ717988	KJ718656	KJ718486	KJ718312
Alternaria catananches sp. nov.	$\begin{aligned} & \text { CBS 137456; PD } \\ & 013 / 05703936^{\mathrm{T}} \end{aligned}$	Netherlands, Catananche caerulea	KJ718139	KJ717989	KJ718657	KJ718487	KJ718313
Alternaria centaureae	CBS 116446; E.G.S. $47.119^{\text { }}$	USA, Centaurea solstitialis	KJ718140	KJ717990	KJ718658	KJ718488	KJ718314
Alternaria cichorii	CBS 102.33; E.G.S. 07.017; QM $1760^{\text {T }}$	Cyprus, Cichorium intybus	KJ718141	KJ717991	KJ718659	KJ718489	KJ718315
	CBS 117218; E.G.S. 52.046; IMI 225641 ${ }^{\text {R }}$	Greece, Cichorium endivia	KJ718142	KJ717992	KJ718660	KJ718490	KJ718316
Alternaria cirsinoxia	CBS 113261; E.G.S. $41.136^{\text {² }}$	Canada, Cirsium arvense	KJ718143	KJ717993	KJ718661	KJ718491	KJ718317
Alternaria citrullicola sp. nov.	CBS 103.32; VKM F-1881; Nattrass No. 190^{T} (A. cucumerina)	Cyprus, Citrullus vulgaris	KJ718144	KJ717994	KJ718662	KJ718492	KJ718318
Alternaria conidiophora sp. nov.	CBS 137457 ${ }^{\text { }}$	Netherlands, unknown	KJ718145	KJ717995	KJ718663	KJ718493	
Alternaria crassa	CBS 103.18	USA, Datura sp.	KJ718146	KJ717996	KJ718664	KJ718494	KJ718319
	CBS 110.38 ${ }^{\text {T }}$	Cyprus, Datura stramonium	KJ718147	KJ717997	KJ718665	KJ718495	KJ718320
	CBS 109160; E.G.S. 45.075; IMI 262408; IMI 381021 (A. capsici ${ }^{\text {T }}$)	Australia, Capsicum annuum	KJ718148	AY562408	AY563298	KJ718496	KJ718321
	CBS 109162; E.G.S. 46.014	USA, Nicandra physalodes	KJ718149	GQ180073	GQ180089	KJ718497	KJ718322

Species name	Strain number ${ }^{1,2}$	Locality, host / substrate	GenBank accesion numbers				
			ITS	GAPDH	Alt a 1	TEF1	RPB2
Alternaria cucumerina	CBS 116647; E.G.S. $46.013^{\text {R }}$	USA, Datura stramonium	KJ718150	KJ717998	KJ718666	KJ718498	KJ718323
	CBS 116648; E.G.S. $50.180^{\text {R }}$	New Zealand, Datura stramonium	KJ718151	KJ717999	KJ718667	KJ718499	KJ718324
	CBS 122590; E.G.S. $44.071^{\text {R }}$	USA, Datura stramonium	KJ718152	GQ180072	GQ180088	KJ718500	KJ718325
	CBS 116114; E.G.S. 35.123 (A. loofahae ${ }^{\text {T }}$)	USA, Luffa acutangula	KJ718153	KJ718000	KJ718668	KJ718501	KJ718326
	CBS 117225; E.G.S. $41.127^{\text {R }}$	USA, Cucumis melo	KJ718154	KJ718001	KJ718669	KJ718502	KJ718327
	CBS 117226; E.G.S. 44.197; BRIP $23060^{\text {R }}$	Australia, Cucumis melo	KJ718155	KJ718002	KJ718670	KJ718503	KJ718328
Alternaria cyamopsidis	CBS 364.67; E.G.S. 17.065; QM $8575^{\text {R }}$	USA, Cyamopsis tetragonoloba	KJ718156	KJ718003	KJ718671	KJ718504	KJ718329
	CBS 117219; E.G.S. 13.120; QM $8000^{\text {R }}$	USA, Cyamopsis tetragonoloba	KJ718157	KJ718004	KJ718672	KJ718505	KJ718330
Alternaria dauci	CBS 111.38 ${ }^{\text {T }}$	Italy, Daucus carota	KJ718158	KJ718005	KJ718673	KJ718506	KJ718331
	CBS 106.48	Unknown, Daucus carota	KJ718159	KJ718006	KJ718674	KJ718507	KJ718332
	CBS 345.79; LEV 14814	New Zealand, Daucus carota	KJ718160	KJ718007	KJ718675	KJ718508	KJ718333
	CBS 477.83; CBS 721.79; PD 79/954 (A. cichorii)	Netherlands, Cichorium intybus var. foliosum	KJ718161	KJ718008	KJ718676	KJ718509	KJ718334
	CBS 101592	Netherlands, Daucus carota	KJ718162	KJ718009	KJ718677	KJ718510	KJ718335
	CBS 117097; E.G.S. $46.006^{\text {R }}$	USA, Daucus carota	KC584192	KC584111	KJ718678	KC584651	KC584392
	CBS 117098; E.G.S. $46.152^{\text {R }}$	New Zealand, Daucus carota	KJ718163	KJ718010	HE796726	KJ718511	KJ718336
	CBS 117099; E.G.S. $47.131^{\text {R }}$	USA, Daucus carota	KJ718164	KJ718011	KJ718679	KJ718512	KJ718337
	CBS 117100; E.G.S. 47.138 (A. poonensis ${ }^{\mathrm{R}}$)	Puerto Rico, Coriandrum sativum	KJ718165	JQ646348	KJ718680	KJ718513	KJ718338
Alternaria deserticola sp. nov.	CBS 110799^{T} (A. acalyphicola)	Namibia, desert soil	KJ718249	KJ718077	KJ718755	KJ718595	KJ718424
Alternaria dichondrae	CBS 199.74; E.G.S. $38.007^{\text {T }}$	Italy, Dichondra repens	KJ718166	JQ646357	JQ646441	KJ718514	KJ718339
	CBS 200.74; E.G.S. $38.008^{\text {T }}$	Italy, Dichondra repens	KJ718167	KJ718012	KJ718681	KJ718515	KJ718340

Species name	Strain number ${ }^{1,2}$	Locality, host / substrate	GenBank accesion numbers				
			ITS	GAPDH	Alt a 1	TEF1	RPB2
Alternaria echinaceae	CBS 346.79	New Zealand, Dichondra repens	KJ718168	KJ718013	KJ718682	KJ718516	KJ718341
	CBS 117127; E.G.S. $40.057^{\text {R }}$	New Zealand, Dichondra sp.	KJ718169	KJ718014	KJ718683	KJ718517	KJ718342
	CBS 116117; E.G.S. $46.081^{\text {T }}$	New Zealand, Echinacea sp.	KJ718170	KJ718015	KJ718684	KJ718518	KJ718343
	CBS 116118; E.G.S. $46.082^{\text {R }}$	New Zealand, Echinacea sp.	KJ718171	KJ718016	KJ718685	KJ718519	KJ718344
Alternaria grandis	CBS 109158; E.G.S. $44.106^{\text {² }}$	USA, Solanum tuberosum	KJ718239	JQ646341	JQ646425	EU130547	KJ718414
	CBS 116695; E.G.S. $44.108^{\text {R }}$	USA, Solanum tuberosum	KJ718241	KJ718070	KJ718748	KJ718587	KJ718416
Alternaria euphorbiicola	CBS 198.86; E.G.S. 38.082	USA, Euphorbia pulcherrima	KJ718172	KJ718017	KJ718686	KJ718520	KJ718345
	CBS 119410; E.G.S. $41.029^{\text {R }}$	USA, Euphorbia pulcherrima	KJ718173	KJ718018		KJ718521	KJ718346
	CBS 133874; E.G.S. 38.191	USA, Euphorbia hyssopifolia	KJ718174	KJ718019	KJ718687	KJ718522	KJ718347
Alternaria gypsophilae	CBS 107.41; E.G.S. 07.025; IMI $264349^{\text {T }}$	Netherlands, Gypsophila elegans	KC584199	KC584118	KJ718688	KC584660	KC584401
Alternaria ipomoeae sp. nov.	CBS 219.79 ${ }^{\text {T }}$ (. cucumerina)	Ethiopia, Ipomoea batatas	KJ718175	KJ718020	KJ718689	KJ718523	KJ718348
	PPRI 8988	South Africa, Ipomoea batatas	KJ718176	KJ718021	KJ718690	KJ718524	KJ718349
Alternaria jesenskae	CBS 133855; CCM $8361{ }^{\text {T }}$	Slovakia, Fumana procumbens	KJ718177	KJ718022	KJ718691	KJ718525	KJ718350
Alternaria limicola	CBS 483.90; E.G.S. 39.070 ${ }^{\text {T }}$	Mexico, Citrus aurantiifolia	KJ718178	JQ646329	JQ646413	KJ718526	KJ718351
	CBS 117360; E.G.S. $43.009^{\text {R }}$	Mexico, Citrus sp.	KJ718179	KJ718023		KJ718527	KJ718352
Alternaria linariae	CBS 105.41; E.G.S. $07.016^{\text {T }}$	Denmark, Linaria maroccana	KJ718180	KJ718024	KJ718692	KJ718528	KJ718353
	CBS 108.53 (A. solani)	Unknown, unknown	KJ718181	KJ718025	KJ718693	KJ718529	KJ718354
	CBS 107.61 (A. solani)	Belgium, unknown	KJ718182	KJ718026	KJ718694	KJ718530	KJ718355
	CBS 109156; E.G.S. 42.156 (A. tomatophila ${ }^{\text {T }}$)	USA, Solanum lycopersicum	KJ718183	JQ646347	GQ180101	KJ718531	KJ718356
	CBS 109161; E.G.S. 45.113 (A. subcylindrica ${ }^{\mathrm{T}}$)	USA, Solanum lycopersicum var. cerasiforme	KJ718184	JQ646345	JQ646429	KJ718532	KJ718357
	CBS 109164; E.G.S. 46.188 (A. cretica ${ }^{\text {T }}$)	Greece, Solanum lycopersicum	KJ718185	JQ646342	JQ646426	EU130545	KJ718358
	CBS 116438; E.G.S. 41.057 (A. cucumericola ${ }^{\mathrm{T}}$)	New Zealand, Cucumis sativus	KJ718186	KJ718027	KJ718695	KJ718533	KJ718359

Species name	Strain number ${ }^{1,2}$	Locality, host / substrate	GenBank accesion numbers				
			ITS	GAPDH	Alt a 1	TEF1	RPB2
Alternaria macrospora	CBS 116441; E.G.S. 45.108 (A. tabasco ${ }^{\mathrm{T}}$)	USA, Capsicum frutescens	KJ718187	KJ718028	KJ718696	KJ718534	KJ718360
	CBS 116704; E.G.S. 44.074 (A. tomatophila ${ }^{\mathrm{R}}$)	USA, Solanum lycopersicum	KJ718188	KJ718029	KJ718697	KJ718535	KJ718361
	CPC 21620	Thailand, Solanum lycopersicum	KJ718189	KJ718030	KJ718698	KJ718536	KJ718362
	CBS 106.29 (A.porri)	Nigeria, Gossypium sp.	KJ718193	KJ718032	KJ718701	KJ718540	KJ718366
	CBS 117228; E.G.S. 50.190; ATCC 58172 ${ }^{\text {T }}$	USA, Gossypium barbadense	KC584204	KC584124	KJ718702	KC584668	KC584410
Alternaria montanica	CBS 121343; E.G.S. 44.112; IMI $257563^{\text {T }}$	USA, Cirsium arvense	KJ718194	KJ718033	KJ718703	KJ718541	KJ718367
Alternaria multirostrata	CBS 712.68; ATCC 18515; IMI 135454; MUCL 11722 ;QM 8820; VKM F-2997 ${ }^{\text {² }}$	USA, Richardia scabra	KJ718195	JQ646362	KJ718704	EU130546	KJ718368
Alternaria neoipomoeae sp. nov.	CBS 713.68; ATCC 18517; IMI 135455; MUCL 11715; QM $8821^{\text {R }}$	USA, Richardia scabra	KJ718196	KJ718034	KJ718705	KJ718542	KJ718369
	PPRI 8990	South Africa, Ipomoea batatas	KJ718197	KJ718035	KJ718706	KJ718543	KJ718370
	PPRI 11845 ${ }^{\text {T }}$	South Africa, Ipomoea batatas	KJ718198	KJ718036	KJ718707	KJ718544	KJ718371
	PPRI 11847	South Africa, Ipomoea batatas	KJ718199	KJ718037	KJ718708	KJ718545	KJ718372
	PPRI 13903	South Africa, Ipomoea batatas	KJ718200	KJ718038	KJ718709	KJ718546	KJ718373
Alternaria nitrimali	CBS 109163; E.G.S. $46.151^{\text {T }}$	Puerto Rico, Solanum viarum	KJ718201	JQ646358	KJ718710	KJ718547	KJ718374
Alternaria novae-guineensis	CBS 116120; E.G.S. $47.198^{\text {T }}$	Papua New Guinea, Citrus sp.	KJ718202	KJ718039	KJ718711	KJ718548	KJ718375
	PPRI 12171	South Africa, Galinsoga parviflora	KJ718203	KJ718040	KJ718712	KJ718549	KJ718376
Alternaria obtecta	CBS 117367; E.G.S. $42.063^{\text {R }}$	USA, Euphorbia pulcherrima	KJ718204	KJ718041	KJ718713	KJ718550	KJ718377
	CBS 134278; E.G.S. 42.064	USA, Euphorbia pulcherrima	KJ718205	KJ718042	KJ718714	KJ718551	KJ718378
Alternaria paralinicola sp. nov.	CBS 116652; E.G.S. 47.157; DAOM 225747^{T} (A. linicola $^{\mathrm{R}}$)	Canada, Linum usitatissimum	KJ718206	KJ718043	KJ718715	KJ718552	KJ718379
Alternaria passiflorae	CBS 113.38	Australia, Passifora edulis	KJ718207	JQ646353	JQ646437	KJ718553	KJ718380

Species name	Strain number ${ }^{1,2}$	Locality, host / substrate	GenBank accesion numbers				
			ITS	GAPDH	Alt a 1	TEF1	RPB2
Alternaria pipionipisi	CBS 166.77 (A. solani)	New Zealand, Capsicum frutescens	KJ718208	KJ718044	KJ718716	KJ718554	KJ718381
	CBS 629.93; E.G.S. 16.150; QM $8458^{\text {R }}$	New Zealand, Passiflora edulis	KJ718209	KJ718045	KJ718717	KJ718555	KJ718382
	CBS 630.93; E.G.S. 29.020; QM 9050 (A. hawaiiensis ${ }^{\text {T }}$)	USA, Passiflora edulis	KJ718210	JQ646352	KJ718718	KJ718556	KJ718383
	CBS 116333; E.G.S. 50.121 (A. gaurae ${ }^{\mathrm{T}}$)	New Zealand, Gaura lindheimeri	KJ718211	KJ718046	KJ718719	KJ718557	KJ718384
	CBS 117102; E.G.S. $51.165^{\text {R }}$	New Zealand, Passiflora ligularis	KJ718212	KJ718047	KJ718720	KJ718558	KJ718385
	CBS 117103; E.G.S. $52.032^{\text {R }}$	New Zealand, Passiflora caerulea	KJ718213	KJ718048	KJ718721	KJ718559	KJ718386
	CBS 116115; E.G.S. 40.096; IMI $340950^{\text {T }}$	India, Cajanus cajan	KJ718214	KJ718049	KJ718722	KJ718560	KJ718387
	CBS 117365; E.G.S. 42.048 (A. obtecta ${ }^{\mathrm{R}}$)	USA, Euphorbia pulcherrima	KJ718215	KJ718050	KJ718723	KJ718561	KJ718388
	CBS 134265; E.G.S. 42.047 (A. obtecta)	USA, Euphorbia pulcherrima	KJ718216	KJ718051	KJ718724	KJ718562	KJ718389
Alternaria porri	CBS 116649; E.G.S. 17.082; QM 8613 (A. allii ${ }^{\mathrm{R}}$)	USA, Allium cepa	KJ718217	KJ718052	KJ718725	KJ718563	KJ718390
	CBS 116698; E.G.S. $48.147^{\text {R }}$	USA, Allium cepa	DQ323700	KC584132	KJ718726	KC584679	KC584421
	CBS 116699; E.G.S. $48.152^{\text {² }}$	USA, Allium cepa	KJ718218	KJ718053	KJ718727	KJ718564	KJ718391
Alternaria protenta	CBS 347.79; E.G.S. 44.091; LEV 14726; ATCC 38569 (A. solani)	New Zealand, Solanum lycopersicum	KJ718219	KJ718054	KJ718728	KJ718565	KJ718392
	CBS 116437; E.G.S. 32.076 (A. hordeiseminis ${ }^{\mathrm{T}}$)	New Zealand, Hordeum vulgare	KJ718220	KJ718055	KJ718729	KJ718566	KJ718393
	CBS 116651; E.G.S. 45.020 (A. solani ${ }^{R}$)	USA, Solanum tuberosum	KC584217	KC584139	GQ180097	KC584688	KC584430

Species name	Strain number ${ }^{1,2}$	Locality, host / substrate	GenBank accesion numbers				
			ITS	GAPDH	Alt a 1	TEF1	RPB2
	CBS 116696; E.G.S. 45.023; IMI 372955R	Israel, Helianthus annuus	KJ718221	JQ646335	JQ646419	KJ718567	KJ718394
	CBS 116697; E.G.S. 45.024; IMI 372957R	Israel, Helianthus annuus	KJ718222	KJ718056	KJ718730	KJ718568	KJ718395
	CBS 121342; E.G.S. 42.122; IMI 310506 (A. pulcherrimae ${ }^{\mathrm{R}}$)	Australia, Euphorbia pulcherrima	KJ718223	KJ718057	KJ718731	KJ718569	KJ718396
	CBS 135189; E.G.S. 45.053 (A. solani ${ }^{R}$)	New Zealand, Solanum tuberosum	KJ718224	GQ180082	GQ180098	KJ718570	KJ718397
Alternaria pseudorostrata	CBS 119411; E.G.S. $42.060^{\text {T }}$	USA, Euphorbia pulcherrima	JN383483	AY562406	AY563295	KC584680	KC584422
Alternaria ranunculi	CBS 116330; E.G.S. 38.039; IMI 285697	Israel, Ranunculus asiaticus	KJ718225	KJ718058	KJ718732	KJ718571	KJ718398
Alternaria ricini	CBS $215.31^{\text {T }}$	Japan, Ricinus communis	KJ718226	KJ718059	KJ718733	KJ718572	KJ718399
	CBS 353.86	Italy, Ricinus communis	KJ718227	JQ646331	KJ718734	KJ718573	KJ718400
	CBS 117361; E.G.S. $06.181^{\text {R }}$	USA, Ricinus communis	KJ718228	KJ718060	KJ718735	KJ718574	KJ718401
Alternaria rostellata	CBS 117366; E.G.S. $42.061^{\text {T }}$	USA, Euphorbia pulcherrima	KJ718229	JQ646332	KJ718736	KJ718575	KJ718402
Alternaria scorzonerae	CBS 103.46; Elliot No. 45190C (A. linicola)	UK, Linum usitatissimum	KJ718190	JQ646363	JQ646447	KJ718537	KJ718363
	CBS 478.83; E.G.S. 38.011 ${ }^{\text {T }}$	Netherlands, Scorzonera hispanica	KJ718191	JQ646334	KJ718699	KJ718538	KJ718364
	CBS 116703; E.G.S. 36.110; IMI 274549 (A. linicola ${ }^{\mathrm{R}}$)	UK, Linum usitatissimum	KJ718192	KJ718031	KJ718700	KJ718539	KJ718365
Alternaria sennae sp. nov.	CBS 477.81; E.G.S. 34.030; IMI 257253^{T} (A. cassiae ${ }^{\mathrm{R}}$)	India, Senna corymbosa	KJ718230	JQ646344	JQ646428	EU130543	KJ718403
Alternaria sesami	CBS 240.73	Egypt, Sesamum indicum	KJ718231	JQ646343	KJ718737	KJ718576	KJ718404
	CBS 115264; CBS 117214; E.G.S. 13.027^{R}	India, Sesamum indicum	JF780939	KJ718061	KJ718738	KJ718577	KJ718405
Alternaria sidae	CBS 117730; E.G.S. $12.129^{\text {T }}$	Kiribati, Sida fallax	KJ718232	KJ718062	KJ718739	KJ718578	KJ718406
Alternaria silybi	CBS 134092; VKM F-4109 ${ }^{\text {T}}$	Russia, Silybum marianum	KJ718233	KJ718063	KJ718740	KJ718579	KJ718407
	CBS 134093; VKM F-4117	Russia, Silybum marianum	KJ718234	KJ718064	KJ718741	KJ718580	KJ718408

Species name	Strain number ${ }^{1,2}$	Locality, host / substrate	GenBank accesion numbers				
			ITS	GAPDH	Alt a 1	TEF1	RPB2
Alternaria thunbergiae	CBS 479.81; E.G.S. 33.081; GST 556²	UK, Tagetes erecta	KC584221	KC584143	KJ718761	KC584692	KC584434
	CBS 480.81; E.G.S. $33.184^{\text {R }}$	USA, Tagetes sp.	KJ718255	KJ718082	KJ718762	KJ718601	KJ718430
	CBS 117217; E.G.S. 44.045 ${ }^{\text {R }}$	USA, Tagetes sp.	KJ718256	KJ718083	KJ718763	KJ718602	KJ718431
	CBS 116331; E.G.S. 41.073; BRIP $14963{ }^{\text {T }}$	Australia, Thunbergia alata	KJ718257	KJ718084	KJ718764	KJ718603	KJ718432
	CBS 120986; E.G.S. 51.075 (A. iranica ${ }^{\mathrm{T}}$)	Iran, Allium сера	KJ718258	KJ718085	KJ718765	KJ718604	KJ718433
	CBS 122597	New Zealand, Thunbergia alata	KJ718259	KJ718086	KJ718766	KJ718605	KJ718434
Alternaria tillandsiae	CBS 116116; E.G.S. $43.074^{\text {T }}$	New Zealand, Tillandsia usneoides	KJ718260	KJ718087	KJ718767	KJ718606	KJ718435
Alternaria tropica	CBS 631.93; E.G.S. $39.126^{\text {T }}$	USA, Passiflora edulis	KJ718261	KJ718088	KJ718768	KJ718607	KJ718436
	CBS 117216; E.G.S. $39.125^{\text {R }}$	USA, Passiflora edulis	KJ718262	KJ718089	KJ718769	KJ718608	KJ718437
Alternaria venezuelensis	CBS 116121; E.G.S. $48.065{ }^{\text {T }}$	Venezuela, Phaseolus vulgaris	KJ718263	KJ718090	KJ718770	KJ718609	KJ718438
Alternaria zinniae	CBS 118.44	Hungary, Callistephus chinensis	KJ718264	JQ646361	KJ718771	KJ718610	KJ718439
	CBS 107.48	Netherlands, Zinnia sp.	KJ718265	KJ718091	KJ718772	KJ718611	KJ718440
	CBS 117.59	Italy, Zinnia elegans	KJ718266	KJ718092	KJ718773	KJ718612	KJ718441
	CBS 108.61	Unknown, Zinnia elegans	KJ718267	KJ718093	KJ718774	KJ718613	KJ718442
	CBS 299.79	UK, Zinnia sp.	KJ718268	KJ718094	KJ718775	KJ718614	KJ718443
	CBS 300.79	UK, Zinnia sp.	KJ718269	KJ718095	KJ718776	KJ718615	KJ718444
	CBS 117223; E.G.S. $44.035^{\text {R }}$	New Zealand, Zinnia elegans	KJ718270	KJ718096	KJ718777	KJ718616	KJ718445

${ }^{2}$ T: ex-type strain; R: representative strain; Bold letters are designated in this study.; Species names between parentheses refer to the former species names.

Sect. Porri

Fig. 1. Bayesian 50 \% majority rule consensus tree based on the ITS, GAPDH, RPB2, TEF1 and Alt a 1 sequences of 183 Alternaria strains. The Bayesian posterior probabilities $>0.75(\mathrm{PP})$ and RAxML bootstrap support values $>65(\mathrm{ML})$ are given at the nodes (PP/ML). Thickened lines indicate a PP of 1.0 and ML of 100 . Species names between parentheses represent synonymised species names. Ex-type strains are indicated with T and representative strains with R. Novel species names are printed in bold face. The tree was rooted to A. gypsophilae (CBS 107.41).

Fig. 1. (Continued).

Sect. Porri

Fig. 1. (Continued).

Fig. 2. Bayesian 50% majority rule consensus tree based on the GAPDH, RPB2 and TEF1 sequences of 41 Alternaria strains. The Bayesian posterior probabilities (PP) are given at the nodes. Thickened lines indicate a PP of 1.0. The tree was rooted to A. brassicicola (CBS 118699).

Species name	Synonymised names (this study)	Host / Substrate
Alternaria acalyphicola		Euphorbiaceae (Acalypha indica)
Alternaria agerati		Asteraceae (Ageratum houstonianum)
Alternaria agripestis		Euphorbiaceae (Euphorbia esula)
Alternaria allii	Alternaria vanuatuensis	Amaryllidaceae (Allium cepa, A. porrum)
Alternaria alternariacida		Solanaceae (Solanum lycopersicum)
Alternaria anagallidis		Primulaceae (Anagallis arvensis)
Alternaria anodae		Malvaceae (Anoda cristata)
Alternaria aragakii		Passifloraceae (Passiflora edulis)
Alternaria argyroxiphii		Asteraceae (Argyroxiphium sp.), Convolvulaceae (Ipomoea batatas)
Alternaria azadirachtae		Meliaceae (Azadirachta indica)
Alternaria bataticola		Convolvulaceae (Ipomoea batatas)
Alternaria blumeae	Alternaria brasilliensis	Asteraceae (Blumea aurita), Fabaceae (Phaseolus vulgaris)
Alternaria calendulae	Alternaria rosifolii	Asteraceae (Calendula officinalis), Rosaceae (Rosa sp.)
Alternaria carthami	Alternaria heliophytonis	Asteraceae (Carthamus tinctorius, Helianthus annuus)
Alternaria carthamicola		Asteraceae (Carthamus tinctorius)
Alternaria cassiae	Alternaria hibiscinficiens Alternaria sauropodis	Fabaceae (Senna obtusifolia), Malvacea (Hibiscus sabdariffa), Phyllanthaceae (Sauropus androgynus)
Alternaria catananches		Asteraceae (Catananche caerulea)
Alternaria centaureae		Asteraceae (Centaurea solstitialis)
Alternaria cichorii		Asteraceae (Cichorium endivia, C. intybus)
Alternaria cirsinoxia		Asteraceae (Cirsium arvense)
Alternaria citrullicola		Cucurbitaceae (Citrullus lanatus)
Alternaria conidiophora		Unknown
Alternaria crassa	Alternaria capsici	Solanaceae (Capsicum annuum, Datura stramonium, Nicandra physalodes)
Alternaria cucumerina	Alternaria loofahae	Cucurbitaceae (Cucumis melo, Luffa acutangula)
Alternaria cyamopsidis		Fabaceae (Cyamopsis tetragonoloba)
Alternaria dauci	Alternaria poonensis	Apiaceae (Daucus carota, Coriandrum sativum), Asteraceae (Cichorium intybus)
Alternaria deserticola		Soil
Alternaria dichondrae		Convolvulaceae (Dichondra sp., D. repens)
Alternaria echinaceae		Asteraceae (Echinacea sp.)
Alternaria grandis		Solanaceae (Solanum tuberosum)
Alternaria ipomoeae		Convolvulaceae (Ipomoea batatas)
Alternaria jesenskae		Cistaceae (Fumana procumbens)

Table 2. (Continued).

Species name	Synonymised names (this study)	Host / Substrate
Alternaria linariae	Alternaria cretica Alternaria cucumericola Alternaria subcylindrica Alternaria tabasco Alternaria tomatophila	Cucurbitaceae (Cucumis sativus), Scrophulariaceae (Linaria maroccana), Solanaceae (Capsicum frutescens, Solanum lycopersicum)
Alternaria macrospora		Malvaceae (Gossypium sp., G. barbadense)
Alternaria montanica		Asteraceae (Cirsium arvense)
Alternaria multirostrata		Rubiaceae (Richardia scabra)
Alternaria neoipomoeae		Convolvulaceae (Ipomoea batatas)
Alternaria nitrimali		Solanacaea (Solanum viarum)
Alternaria novae-guineensis		Asteraceae (Galinsoga parviflora), Rutaceae (Citrus sp.)
Alternaria obtecta		Euphorbiaceae (Euphorbia pulcherrima)
Alternaria paralinicola		Linaceae (Linum usitatissimum)
Alternaria passiflorae	Alternaria gaurae Alternaria hawaiiensis	Onagraceae (Gaura lindheimeri), Passifloraceae (Passiflora edulis, P. caerulea, P. ligularis), Solanaceae (Capsicum frutescens)
Alternaria pipionipisi		Euphorbiaceae (Euphorbia pulcherrima), Fabaceae (Cajanus cajan)
Alternaria porri		Amaryllidaceae (Allium cepa, A. porrum)
Alternaria protenta	Alternaria hordeiseminis Alternaria pulcherrimae	Asteraceae (Helianthus annuus), Euphorbiaceae (Euphorbia pulcherrima), Gramineae (Hordeum vulgare), Solanaceae (Solanum lycopersicum, S. tuberosum)
Alternaria pseudorostrata		Euphorbiaceae (Euphorbia pulcherrima)
Alternaria ranunculi		Ranunculaceae (Ranunculus asiaticus)
Alternaria ricini		Euphorbiaceae (Ricinus communis)
Alternaria rostellata		Euphorbiaceae (Euphorbia pulcherrima)
Alternaria scorzonerae	Alternaria linicola	Asteraceae (Sorzonerae hispanica), Linaceae (Linum usitatissimum)
Alternaria sennae		Fabaceae (Senna corymbosa)
Alternaria sesami		Pedaliaceae (Sesamum indica)
Alternara sidae		Malvaceae (Sida fallax)
Alternaria silybi		Asteraceae (Silybum marianum)
Alternaria solani	Alternaria danida Alternaria viciae-fabae	Asteraceae (Ageratum houstonianum), Fabaceae (Vicia faba), Solanaceae (Solanum aviculare, S. tuberosum)

Table 2. (Continued).

Species name	Synonymised names (this study)	Host / Substrate
Alternaria solani-nigri	Alternaria ascaloniae Alternaria beticola Alternaria cyphomandrae Alternaria glyceriae Alternaria herbiculinae	Amaryllidaceae (Allium ascalonicum), Apiaceae (Petroselinum crispum), Chenopodiaceae (Beta vulgaris), Gramineae (Glyceria maxima), Solanaceae (Cyphomandra betacea, Solanum nigrum)
Alternaria steviae		Asteraceae (Stevia rebaudiana)
Alternaria tagetica		Asteraceae (Tagetes sp., T. erecta)
Alternaria thunbergiae	Alternaria iranica	Acanthaceae (Thunbergia alata), Amaryllidaceae (Allium cepa)
Alternaria tillandsiae		Bromeliaceae (Tillandsia usneoides)
Alternaria tropica		Passifloraceae (Passiflora edulis)
Alternaria venezuelensis		Fabaceae (Phaseolus vulgaris)
Alternaria zinniae		Asteraceae (Callistephus chinensis, Zinnia sp., Z. elegans)

Taxonomy

At the onset of this study, Alternaria sect. Porri contained 82 Alternaria species. After extensive phylogenetic analyses and morphological examination we now recognise 63 species in this section (Table 2), of which 10 are newly described. Twenty-seven species names are reduced to synonymy (Table 2). All isolates where taxonomic changes were found based on the multigene phylogeny were studied morphologically; photo plates of these species are included. Type details are only listed when typification is proposed.

Section Porri D.P. Lawr., Gannibal, Peever \& B.M. Pryor, Mycologia 105: 541. 2013.
Type species: Alternaria porri (Ellis) Cif.
Section Porri is characterised by broadly ovoid, obclavate, ellipsoid, subcylindrical or obovoid, medium to large conidia, disto- and euseptate, solitary or in short chains, with a simple or branched, long to filamentous beak. Conidia contain multiple transverse and longitudinal septa and are slightly constricted near some transverse septa. Secondary conidiophores can be formed apically and / or laterally.

Species in sect. Porri

Alternaria acalyphicola E.G. Simmons, Mycotaxon 50: 260. 1994.
Material examined: Seychelles, from Acalypha indica (Euphorbiaceae), before Apr. 1982, C. Kingsland, culture ex-type of A. acalyphicola CBS 541.94 = E.G.S. $38.100=$ IMI 266969.

Notes: Alternaria acalyphicola is closely related to A. ricini, with only 1 nt difference in three out of the five genes sequenced; RPB2, TEF1 and GAPDH. Based on this single isolate, the data is inconclusive to support the synonymy of these two species.

Alternaria agerati E.G. Simmons, Mycotaxon 65: 63. 1997.
= Alternaria agerati Sawada, Rep. Dept. Agric. Gov. Res. Inst. Formosa 86: 165. 1943. (nom. inval., Art. 36.1)

Material examined: USA, Illinois, Springfield, from Ageratum houstonianum (Asteraceae) in a commercial greenhouse, Nov. 1968, J.L. Forsberg, representative isolate of A. agerati CBS 117221 = E.G.S. 30.001 = QM 9369.

Alternaria agripestis E.G. Simmons \& K. Mort., Mycotaxon 50: 255. 1994.
Material examined: Canada, Saskatchewan, Maxim, from infected stem of Euphorbia esula (Euphorbiaceae), 9 Jul. 1992, P. Harris, culture ex-type of A. agripestis CBS 577.94 = E.G.S. 41.034.

Alternaria allii Nolla, Phytopathology 17: 118. 1927. Fig. 3.
$=$ Alternaria vanuatuensis E.G. Simmons \& C.F. Hill, CBS Biodiversity Ser. (Utrecht) 6: 260. 2007.

Materials examined: Denmark, from seed of Allium cepa (Amaryllidaceae), 1937, P. Neergaard, CBS 109.41 = CBS 114.38. Italy, from leaf of Allium porrum (Amaryllidaceae), 1974, H. Nirenberg, CBS 225.76. Puerto Rico, from leaf of Allium cepa, before 1928, J.A.B. Nolla, culture ex-type of A. allii CBS 107.28 = E.G.S. 48.084. USA, Massachusetts, Hadley, from floral bract of Allium cepa var. viviparum, 13 Jul. 1980, E.G. Simmons, representative of A. allii CBS 116701 = E.G.S. 33.134. Vanuatu, from leaves of Allium cepa, 1996, C.F. Hill, culture ex-type of A. vanuatuensis CBS $121345=$ E.G.S 45.018 .

Notes: Simmons (2007) designated the lectotype of A. allii as Nolla (1927), loc. cit., Pl. III, fig. 11-19, based on the absence of original Nolla specimens. In our study, however, we managed to uncover an original specimen, CBS 107.28, which was deposited in the CBS by J.A.B. Nolla in December 1927 as his "A. allii sp. nov.", just after he published the new species description. We therefore recognise this isolate as the ex-type strain of A. allii. Isolate CBS 116701 did not sporulate after 3 wk of cultivation on SNA.

Alternaria alternariacida Woudenb. \& Crous, sp. nov. MycoBank MB808990. Fig. 4.
Etymology: Named after its ability to produce high amounts of alternaric acid.
Alternaria alternariacida differs from the ex-type isolate of its closest phylogenetic neighbour A. silybi (CBS 134092) based on alleles in three loci (positions derived from respective alignments of the separate loci deposited in TreeBASE): ITS position 386 (T), 497 (T), 498 (T); TEF1 position $3(\mathrm{~T}), 18(\mathrm{~T})$; Alt a 1 position $205(\mathrm{C}), 336(\mathrm{~T}), 339(\mathrm{~A}), 350(\mathrm{C}), 404(\mathrm{~T}), 408(\mathrm{G})$.

Sporulation is atypical. Primary conidiophores solitary, simple, straight to slightly curved, septate, pale brown with a subhyaline tip, (52-)73-93(-155) $\times(4-) 5-6(-7) \mu \mathrm{m}$, bearing a

Fig. 3. Alternaria allii: conidia and conidiophores. A-C. CBS 107.28. D-E. CBS 109.41. F-H. CBS 225.76. I-L. CBS 121345. Scale bars $=10 \mu \mathrm{~m}$.
single, darkened, apical conidiogenous locus. Conidia solitary or in unbranched chains of $2(-3)$ conidia, conidium body pale olive-brown, smooth-walled, narrowly ovoid, solitary, non-catenulate, and secondary conidia (33-)44-49(-56) $\times(5-) 7-8(-9) \mu \mathrm{m}$, with (3-)5-6(-8) transverse eusepta and no longitudinal septa; primary conidia in total (85-)99-111(-121)× $(6-) 7-8(-10) \mu \mathrm{m}$. The conidial body can be slightly constricted near the septa. The conidium body gradually tapers into mostly an aseptate, single, unbranched beak, but branched beaks do occur; apical and multiple lateral secondary conidiophores can also occur. Beaks (47-)129-257(-610) $\mu \mathrm{m}$ long, $c a .2 \mu \mathrm{~m}$ wide throughout their length. Sexual morph not observed.

Fig. 4. Alternaria alternariacida sp. nov. CBS 105.51: A-H. Conidia and conidiophores. Scale bars $=$ $10 \mu \mathrm{~m}$.

Culture characteristics: After 7 d cultures on SNA flat, fimbriate, white; aerial mycelium sparse, white, colonies reaching $25-30 \mathrm{~mm}$ diam; cultures on PCA flat, entire, olivaceous in the centre with three olivaceous concentric circles and a buff to white margin; aerial mycelium fine, felty, white, colonies reaching 50 mm diam; reverse with four olivaceous concentric circles.

Material examined: UK, England, from fruit of Solanum lycopersicum (Solanaceae), 1946, P.W. Brian (holotype CBS H-21734, culture ex-type CBS 105.51 = ATCC 11078 = IMI 46816 $=$ CECT $2997=$ IBPG $14=$ BRL408).

Note: The atypical sporulation of the single isolate of A. alternariacida, which is over 60 yr old, resulted in our decision to include sequence data in the species description.

Alternaria anagallidis A. Raabe, Hedwigia 78: 87. 1939.
Materials examined: Denmark, Copenhagen, from Anagallis arvensis (Primulaceae), before Mar. 1944, P. Neergaard, CBS 107.44. New Zealand, Auckland, Lynfield, from Anagallis arvensis, 4 May 1998, C.F. Hill, CBS 101004; Auckland, Lynfield, from Anagallis arvensis, 28 Jun. 1995, C.F. Hill, representative isolate of A. anagallidis CBS 117128 = E.G.S. 42.074; Auckland, from leaf spot of Anagallis arvensis, Jan. 2002, C.F. Hill, representative isolate of A. anagallidis CBS $117129=$ E.G.S. 50.091.

Notes: Isolate CBS 107.44 differs on 6 nt positions in its RPB2 sequence from the other three A. anagallidis isolates included in this study. Because CBS 107.44 still clusters closest to the other A. anagallidis isolates, and since these isolates, from a single host species, form a distinct clade from all other Alternaria spp., we retained the name A. anagallidis for this isolate.

Alternaria anodae E.G. Simmons, Mycotaxon 88: 198. 2003.
Material examined: South Africa, Gauteng Province, Pretoria, ARC-Roodeplaat VOPI, from leaves of Anoda cristata (Malvaceae), 12 Jan. 2012, A. Thompson, PPRI 12376.

Alternaria aragakii E.G. Simmons, Mycotaxon 46: 181. 1993.
Material examined: USA, Hawaii, from Passiflora edulis (Passifloraceae), before Oct. 1968, M. Aragaki, culture ex-type of A. aragakii CBS 594.93 = E.G.S. $29.016=$ QM 9046.

Alternaria argyroxiphii E.G. Simmons \& Aragaki, Mycotaxon 65: 40. 1997.
Materials examined: South Africa, Gauteng Province, Pretoria, ARC-Roodeplaat VOPI, from stem lesion of Ipomoea batatas (Convolvulaceae), 20 Apr. 2005, A. Thompson, PPRI 11848; Mpumalanga Province, Marble Hall, from stem and leaf lesion of Ipomoea batatas, 22 Nov. 2011, A. Thompson, PPRI 11971. USA, Hawaii, Maui, Haleakala, from Argyroxiphium sp. (Asteraceae), 1969, M. Aragaki, culture ex-type of A. argyroxiphii CBS 117222 = E.G.S. 35.122.

Note: The host range of A. argyroxiphii is not restricted to Argyroxiphium, but has been broadened with the inclusion of two isolates from Ipomoea batatas (Convolvulaceae).

Alternaria azadirachtae E.G. Simmons \& Alcorn, CBS Biodiversity Ser. (Utrecht) 6: 218. 2007.

Materials examined: Australia, Queensland, Tewantin, from Azadirachta indica (Meliaceae), 20 Jul. 1998, A. Bradley, culture ex-type of A. azadirachtae CBS 116444 = E.G.S. $46.195=$ BRIP 25386 (ss1); additional strain from the same source, CBS $116445=$ E.G.S. $46.196=$ BRIP25386 (ss2).

Alternaria bataticola W. Yamam., Trans. Mycol. Soc. Japan 2(5): 89. 1960.
= Macrosporium bataticola Ikata, Agric. Hort. (Tokyo) 22: 241. 1947 (nom. inval., Art. 36.1).

Type: (Lectotype, designated in Simmons 2007) S. Ikata, Agric. \& Hort. 22: 241. fig. 1. 1947.
Materials examined: Australia, Queensland, Walkamin, from leaf spot of Ipomoea batatas (Convolvulaceae), 5 Jul. 1991, collector unknown, representative isolate of A. bataticola CBS 117095 = E.G.S. $42.157=$ IMI $350492=$ BRIP 19470a; additional strain from the same source CBS 117096 = E.G.S. 42.158 = BRIP 19470b. Japan, Tokyo, from Ipomoea batatas, before Nov. 1963, collector unknown, CBS 532.63; from Ipomoea batatas, before Nov. 1963, collector unknown (epitype designated here CBS H-21743, MBT178114, culture ex-epitype

Fig. 5. Alternaria blumeae: conidia and conidiophores. A-D. CBS 117364. E-H. CBS 117215. Scale bars $=10 \mu \mathrm{~m}$.

CBS 531.63 = IFO 6187 = MUCL 28916). South Africa, Gauteng Province, Pretoria, ARCRoodeplaat VOPI, from leaf and stem lesion of Ipomoea batatas, 16 Jun. 2010, M. Truter, PPRI 10502; Kwazulu-Natal Province, Empangeni, from leaf lesion of Ipomoea batatas, 4 Jul. 2011, A. Thompson, PPRI 11930; Kwazulu-Natal Province, Empangeni, from leaf lesion of Ipomoea batatas, 4 Jul. 2011, A. Thompson, PPRI 11931; Gauteng Province, Pretoria, ARC-Roodeplaat VOPI, from leaf lesion of Ipomoea batatas, 12 Jan. 2012, A. Thompson, PPRI 11934.

Alternaria blumeae E.G. Simmons \& Sontirat, Mycotaxon 65: 81. 1997. Fig. 5.
= Alternaria brasiliensis F.M. Queiroz, M.F.S. Muniz \& M. Menezes, Mycopathologia 150: 63. 2001.

Materials examined: Brazil, Espirito Santo, from leaf spot of Phaseolus vulgaris (Fabaceae), 1989, F.M. Queiroz, representative isolate of A. brasiliensis CBS 117215 = E.G.S. 39.116. Thailand, Yala Province, Amphoe Muang, from Blumea aurita (Asteraceae), 18 Jan. 1992, P. Sontirat, culture ex-type of A. blumeae CBS $117364=$ E.G.S. $40.149=$ ATCC 201357.

Notes: By synonymising A. brasiliensis with A. blumeae, the host range of this taxon has expanded to include Phaseolus vulgaris. The five sequenced genes are 100% identical between the two examined specimens.

Fig. 6. Alternaria calendulae: conidia and conidiophores. A-C. CBS 224.76. D-E. CBS 101498. F-H. CBS 116650. I-L. CBS 116439. Scale bars $=10 \mu \mathrm{~m}$.

Alternaria calendulae Ondřej, Čas. Slez. Mus., Ser. A, Hist. Nat. 23: 150. 1974. Fig. 6.
= Alternaria calendulae W. Yamam. 1939 (nom. nud.).
$=$ Macrosporium calendulae Nelen, Bull. Centr. Bot. Gard. (Moscow) 35: 90. 1959 (nom. inval., Art. 36.1).
= Macrosporium calendulae Nelen, Bot. Mater. Otd. Sporov. Rast. Bot. Inst. Akad. Nauk S.S.S.R. 15: 144. 1962.
= Alternaria calendulae Nirenberg, Phytopathol. Z. 88: 108. 1977 (nom. illegit., Art. 53.1).
$=$ Alternaria rosifolii E.G. Simmons \& C.F. Hill, CBS Biodiversity Ser. (Utrecht) 6: 192. 2007.

Fig. 7. Alternaria carthami: conidia and conidiophores. A-D. CBS 117091. E-H. CBS 116440. Scale bars $=10 \mu \mathrm{~m}$.

Materials examined: Germany, former West-Germany, from leaf spot of Calendula officinalis (Asteraceae), 1974, H. Nirenberg, culture ex-type of A. calendulae Nirenberg CBS 224.76 $=$ ATCC 38903 = IMI $205077=$ DSM 63161. Japan, Tokyo, from leaf spot of Calendula officinalis, before 1964, representative isolate of A. calendulae CBS $116650=$ E.G.S. $30.142=$ QM 9561. New Zealand, Auckland, Kumeu, from leaf spot of Calendula officinalis, Oct. 1998, C.F. Hill, CBS 101498; Auckland, Mount Albert, from leaf of Rosa sp. (Rosaceae), before Feb. 1995, C.F. Hill, culture ex-type of A. rosifolii CBS 116439 = E.G.S. 42.197 .

Note: By synonymising A. rosifolii with A. calendulae, the host range of this taxon has expanded to include Rosa.

Alternaria carthami S. Chowdhury, J. Indian Bot. Soc. 23: 65. 1944. Fig. 7.
= Macrosporium anatolicum A. Săvul., Bull. Sect. Sci. Acad. Roumaine 26: 709. 1944.
= Alternaria heliophytonis E.G. Simmons, CBS Biodiversity Ser. (Utrecht) 6: 206. 2007.
Materials examined: Canada, Saskatchewan, Saskatoon, from leaf of Helianthus annuus (Asteraceae), 26 Aug. 1993, C. Jasalavich, culture ex-type of A. heliophytonis CBS $116440=$ IMI 366164 = E.G.S. 43.143. Italy, Perugia, from leaf of Carthamus tinctorius (Asteraceae), before Nov. 1980, A. Zazzerini, CBS 635.80. USA, Montana, Sidney, from leaf spot of Carthamus tinctorius, 11 Jul. 1973, E.E. Burns, representative isolate of A. carthami CBS 117091 = E.G.S. 31.037.

Fig. 8. Alternaria carthamicola sp. nov. CBS 117092: A-L. Conidia and conidiophores. Scale bars $=$ $10 \mu \mathrm{~m}$.

Notes: Isolate CBS 635.80 did not sporulate after 3 wk cultivation on SNA. By synonymising A. heliophytonis with A. carthami, the host range of this taxon has expanded to include Helianthus annuus (Asteraceae).

Alternaria carthamicola Woudenb. \& Crous, sp. nov. MycoBank MB808991. Fig. 8.
Etymology: Named after the host genus from which it was collected, Carthamus.
Primary conidiophores solitary or in small groups, simple, straight to slightly curved, septate, pale to dark brown with a subhyaline tip, (33-)55-71(-108) $\times 5-6(-7) \mu \mathrm{m}$, bearing a single,
darkened, apical conidiogenous locus, but may produce geniculate conidiogenous extensions. Conidia solitary, rarely in chains of two conidia, conidium body pale olive-brown, mostly smooth-walled but sometimes ornamented at the base, ovoid, (39-)58-64(-82) $\times(13-) 15-$ $16(-17) \mu \mathrm{m}$; with $(5-) 6-7(-9)$ transverse and (1-)3(-4) longitudinal septa. Dark coloured eusepta can be formed during development; the conidial body is slightly constricted near the transverse septa. Conidia mostly have a septate, single to double filamentous beak, triple beaks are observed but not common, apical secondary conidiophores can be formed. Beaks (40-) 158-186(-219) $\mu \mathrm{m}$ long, $c a .2 \mu \mathrm{~m}$ diam throughout their length and $4 \mu \mathrm{~m}$ at the base. Sexual morph not observed.

Culture characteristics: After 7 d cultures on SNA flat, rhizoid, white to opaque; aerial mycelium sparse, white, floccose, colonies reaching $55-60 \mathrm{~mm}$ diam; cultures on PCA flat, entire, olivaceous with three clear concentric circles; aerial mycelium fine, felty, olivaceous to olivaceous-grey, colonies reaching $65-70 \mathrm{~mm}$ diam; reverse shows four olivaceous concentric circles with an buff edge.

Material examined: Iraq, from Carthamus tinctorius (Asteraceae), 10 Apr. 1983, M.M. Elsahookie (holotype CBS H-21735, culture ex-type CBS 117092 = IMI 276943 = E.G.S. 37.057).

Notes: The new species A. carthamicola, originally identified as A. carthami, differs only on 9 nt positions in its RPB2 sequence from the other two A. carthami strains studied. Based on its RPB2 sequence it clusters with A. linicola.

Alternaria cassiae Jurair \& A. Khan, Pakistan J. Sci. Industr. Res. 3: 72. 1960. Fig. 9.
= Alternaria hibiscinficiens E.G. Simmons \& C.F. Hill, Mycotaxon 88: 205. 2003.
$=$ Alternaria sauropodis E.G. Simmons, CBS Biodiversity Ser. (Utrecht) 6: 340. 2007.
Materials examined: Brazil, Federal District, from leaf spot of Senna obtusifolia (Fabaceae), May 1990, G. Fiqueiredo, representative isolate of A. cassiae CBS 117224 = E.G.S. 40.121. Fiji, from leaf of Hibiscus sabdariffa (Malvaceae), Jun. 2002, C.F. Hill, culture ex-type of A. hibiscinficiens CBS 177369 = E.G.S. 50.166. Malaysia, Sarawak, Kuching, from Sauropus androgynus (Phyllanthaceae), 25 Apr. 1984, T.K. Kieh, culture ex-type of A. sauropodis CBS 116119 = IMI 286317 = IMI 392448 = E.G.S. 47.112. USA, Mississippi, Stoneville, from diseased seedling of Senna obtusifolia, before Oct. 1980, H.L. Walker, representative isolate of A. cassiae CBS $478.81=$ E.G.S. 33.147.

Notes: Isolate CBS 478.81 did not sporulate after 3 wk incubation on SNA. By synonymising A. hibiscinficiens and A. sauropodis with A. cassiae, the host range of this taxon has expanded to include Sauropus androgynus (Euphorbiaceae) and Hibiscus sabdariffa (Malvaceae).

Alternaria catananches Woudenb. \& Crous, sp. nov. MycoBank MB808992. Fig. 10.
Etymology: Named after its host genus from which it was isolated, Catananche.
Primary conidiophores solitary, simple, straight to curved, septate, pale brown, (31-)54-67($94) \times(5-) 6(-7) \mu \mathrm{m}$, bearing a single, darkened, apical conidiogenous locus, but may produce

Fig. 9. Alternaria cassiae: conidia and conidiophores. A-D. CBS 116119. E-H. CBS 117224. I-L. CBS 117369. Scale bars $=10 \mu \mathrm{~m}$.
geniculate conidiogenous extensions. Conidia solitary, conidium body pale olive-brown, ornamented in lower half of the conidium, narrowly ovoid, (26-)37-43(-57) $\times(7-) 8-9(-11)$ $\mu \mathrm{m}$, with (2-)4(-6) transverse septa and no longitudinal septa. Some darker coloured eusepta can be formed during development. The conidium body gradually tapers into a single, septate, unbranched beak; basal lateral secondary conidiophores can be formed. Beaks (77-)126-160(260) $\mu \mathrm{m}$ long, $c a .2 \mu \mathrm{~m}$ diam throughout their length. Sexual morph not observed.

Culture characteristics: After 7 d cultures on SNA flat, entire / fimbriate, olivaceous around agar plug, white; aerial mycelium felty, white to olivaceous, colonies reaching $10-15 \mathrm{~mm}$

Fig. 10. Alternaria catananches sp. nov. A-B. Disease symptoms on Catananche caerulea (photo's K.H. Nugteren, Florensis B.V., Netherlands). C-L. CBS 137456: conidia and conidiophores. Scale bars $=$ $10 \mu \mathrm{~m}$.
diam; cultures on PCA flat, erose, grey-olivaceous; aerial mycelium fine felty, olivaceous-grey; colonies reaching 25 mm diam; reverse identical.

Material examined: Netherlands, from Catananche caerulea (Asteraceae), 11 Dec. 2013, N. Troost-Riksen (holotype CBS H-21736, culture ex-type CBS $137456=$ PD 013/05703936).

Notes: Alternaria catananches seems closely related to the A. cichorii isolates in the multi-gene phylogeny, but this is probably caused by long-branch attraction and incongruency between the different gene trees. Based on the ITS sequence it is identical to A. jesenskae, with RPB2 it is
identical to A. cirsinoxia, with TEF1 it clusters with A. cichorii / A. cirsinoxia / A. carthami and with Alt a 1 it is identical to A. cichorii CBS 102.33, A. alternariacida and A. scorzonerae. Only its GAPDH sequences make it distinct from all other Alternaria species. Although the multigene tree does not provide strong support for separating it from the A. cichorii isolates, based on the individual gene sequences it is described here as a new Alternaria species.

Alternaria centaureae E.G. Simmons, CBS Biodiversity Ser. (Utrecht) 6: 236. 2007.
Material examined: USA, California, Sacramento, from Centaurea solstitialis (Asteraceae), Feb. 1999, D. Fogle, culture ex-type of A. centaureae CBS 116446 = E.G.S. 47.119.

Alternaria cichorii Nattrass, First List of Cyprus Fungi: 29. 1937.
\equiv Alternaria porri f. sp. cichorii (Nattrass) T. Schmidt, Pflanzenschutzberichte 32: 181. 1965.
\equiv Macrosporium cichorii (Nattrass) Gordenko, Mikol. Fitopatol. 9: 241. 1975.
Materials examined: Cyprus, from leaf spot of Cichorium intybus (Asteraceae), 1933, R.M. Nattrass (holotype IMI 1007, culture ex-type CBS $102.33=$ E.G.S. $07.017=$ QM 1760). Greece, Attica, from Cichorium endivia (Asteraceae), 24 Feb. 1978, S.D. Demetriades, representative isolate of A. cichorii CBS $117218=$ E.G.S. $52.046=$ IMI 225641.

Notes: Strain CBS 102.33 was deposited in Aug. 1933 in the CBS by R.M. Nattrass as A. cichorii sp. nov., with the remark that the description of the new species was in preparation. The holotype was subsequently deposited in IMI (IMI 1007) which consists of a dried herbarium specimen. In the present study we link CBS 102.33 as ex-type of A. cichorii to IMI 1007. The two isolates used in this study, CBS 102.33 and CBS 117218, differ only on 7 nt positions in their Alt a 1 sequence. Unfortunately CBS 102.33 is sterile, which does not provide additional information to support them as being two different species. Furthermore, the time difference of 45 yr between isolation of the two strains led to the decision to retain them as one species for now, pending fresh collections.

Alternaria cirsinoxia E.G. Simmons \& K. Mort., Mycotaxon 65: 72. 1997.
Material examined: Canada, Saskatchewan, Watrous, from stem lesion and top dieback of Cirsium arvense (Asteraceae), 5 Aug. 1993, K. Mortensen, culture ex-type of A. cirsinoxia CBS 113261 = E.G.S. 41.136.

Alternaria citrullicola Woudenb. \& Crous, sp. nov. MycoBank MB808993. Fig. 11.
Etymology: Named after the host genus from which it was collected, Citrullus.
Primary conidiophores solitary, simple, straight or sometimes curved, septate, pale brown with a subhyaline tip, (28-)35-52(-73) $\times(3-) 4(-5) \mu \mathrm{m}$, bearing a single, darkened, apical conidiogenous locus. Conidia mostly solitary but chains of two conidia can occur, conidium body pale olive-brown, smooth-walled, narrowly ovoid, (28-)35-41(-56) $\times(6-) 8(-10) \mu \mathrm{m}$; with (3-)5-6(-9) transverse distosepta and $0-1(-2)$ longitudinal septa. Conidia have a single, aseptate, unbranched filamentous beak; apical secondary conidiophores can be formed. Beaks

Fig. 11. Alternaria citrullicola sp. nov. CBS 103.32: A-H. Conidia and conidiophores. Scale bars $=10$ $\mu \mathrm{m}$.
(72-)178-232(-324) $\mu \mathrm{m}$ long, ca. $2 \mu \mathrm{~m}$ diam throughout their length. Sexual morph not observed.

Culture characteristics: After 7 d cultures on SNA flat, fimbriate, white to opaque with primrose sections near the edge; aerial mycelium sparse, fine felty, colonies reaching $45-50 \mathrm{~mm}$ diam; cultures on PCA flat, entire, olivaceous with three unclear concentric circles; aerial mycelium is sparse, pale olivaceous-grey, colonies reaching $50-55 \mathrm{~mm}$ diam; reverse shows olivaceous-buff to olivaceous rings.

Material examined: Cyprus, from fruit of Citrullus lanatus (Cucurbitaceae), before Jul. 1932, R.M. Nattrass (holotype CBS H-21742, culture ex-type CBS $103.32=$ VKM F-1881).

Alternaria conidiophora Woudenb. \& Crous, sp. nov. MycoBank MB808995. Fig. 12.
Etymology: Named after its characteristically long, thick, conidiophores.
Primary conidiophores solitary, simple, mostly straight but sometimes curved, septate, dark brown with a subhyaline tip, (46-)89-105(-152) $\times(6-) 7(-8) \mu \mathrm{m}$, bearing a single to multiple, darkened, long geniculate conidiogenous loci. Conidia solitary, conidium body olive-brown, smooth-walled, narrowly ovoid, (30-)45-52(-66) $\times(10-) 12-13(-18) \mu \mathrm{m}$, with (2-)6-7(-9)

Fig. 12. Alternaria conidiophora sp. nov. CBS 137457: A-H. Conidia and conidiophores. Scale bars = $10 \mu \mathrm{~m}$.
transverse septa and (0-)1-2(-4) longitudinal septa. Darker coloured eusepta are formed during development. The conidial body is slightly constricted near the transverse septa. Conidia have a single, septate, unbranched, filamentous beak; basal, lateral secondary conidiophores can be formed. Beaks (49-)117-138(-186) $\mu \mathrm{m}$ long; ca. $2 \mu \mathrm{~m}$ diam throughout their length. Sexual morph not observed.

Culture characteristics: After 7 d cultures on SNA flat, fimbriate to rhizoid, white to opaque; aerial mycelium felty, white, colonies reaching $55-60 \mathrm{~mm}$ diam; cultures on PCA flat, entire, grey-olivaceous with two concentric circles; aerial mycelium wooly, pale olivaceous-grey, colonies reaching $55-60 \mathrm{~mm}$ diam; reverse identical.

Material examined: Netherlands, from unidentified host, Jul. 2011, U. Damm (holotype CBS H-21737, culture ex-type CBS 137457).

Alternaria crassa (Sacc.) Rands, Phytopathology 7: 337. 1917. Fig. 13.
Basionym: Cercospora crassa Sacc., Michelia 1(no. 1): 88. 1877.
$=$ Macrosporium solani Cooke, Grevillea 12: 32. 1883. (non M. solani Ellis \& Martin, 1882)
= Cercospora daturae Peck, Rep. New York State Mus. Nat. Hist. 35: 140. 1884.
= Macrosporium cookei Sacc., Syll. Fungorum 4: 530. 1886. (nom. nov. in Saccardo for M. solani Cooke, 1883, non M. solani Ellis \& Martin, 1882)

Fig. 13. Alternaria crassa: conidia and conidiophores. A-D. CBS 109162. E-H. CBS 116648. I-L. CBS 119160. Scale bars $=10 \mu \mathrm{~m}$.
\equiv Alternaria cookei (Sacc.) Bremer, Ismen, Karel, Özkan \& M. Özkan, Istanbul Üniv. Fak. Mecm., B. 13: 42. 1948.
$=$ Macrosporium daturae Fautrey, Rev. Mycol. (Toulouse) 16: 76. 1894.
\equiv Alternaria daturae (Fautrey) Bubák \& Ranoj., Fungi Imperf. Exsicc. Fasc. 14: 694. 1911.
= Alternaria capsici E.G. Simmons, Mycotaxon 75: 84. 2000.
Type: (Lectotype, designated in Simmons 2000) PAD, Cercospora crassa, Datura stramonium, S. [elva] '76. 10.

Materials examined: Australia, from Capsicum annuum (Solanaceae), May 1981, D. Trimboli, culture ex-type of A. capsici CBS $109160=$ IMI $262408=$ IMI $381021=$ E.G.S 45.075. Cyprus, Famagusta, from leaves of Datura stramonium (Solanaceae), Jan. 1936, R.M. Nattrass (epitype designated here CBS H-21744, MBT178115, culture ex-epitype CBS 110.38). New Zealand, Auckland, from leaf spot of Datura stramonium, 2002, C.F. Hill, representative isolate of A. crassa CBS $116448=$ E.G.S. 50.180. USA, Indiana, Montgomery County, Nicandra physalodes (Solanaceae), 5 Sep. 1997, E.G. Simmons, CBS 109162 = E.G.S. 46.014; Indiana, from leaf spot of Datura stramonium, 5 Sep. 1997, E.G. Simmons, representative isolate of A. crassa CBS 116447 = E.G.S. 46.013; Indiana, Montgomery County, from leaf spot of Datura stramonium, 1 Aug. 1996, E.G. Simmons, representative isolate of A. crassa CBS $122590=$ E.G.S. 44.071 ; Wisconsin, Madison, from leaf spot of Datura sp., before Apr. 1918, R.D. Rands, CBS 103.18.

Notes: Isolates CBS 110.38 and CBS 116647 did not sporulate after 3 wk incubation on SNA. By synonymising A. capsici with A. crassa, the host range of this taxon expanded to include Capsicum annuum, which also belongs to the Solanaceae.

Alternaria cucumerina (Ellis \& Everh.) J.A. Elliott, Amer. J. Bot. 4: 472. 1917. Fig. 14.
Basionym: Macrosporium cucumerinum Ellis \& Everh., Proc. Acad. Nat. Sci. Philadelphia 47: 440. 1895.
= Alternaria loofahae E.G. Simmons \& Aragaki, CBS Biodiversity Ser. (Utrecht) 6: 316. 2007.

Materials examined: Australia, Queensland, from leaf spot of Cucumis melo (Cucurbitaceae), Oct. 1996, R. O'Brien, representative isolate of A. cucumerina CBS 117226 = E.G.S. $44.197=$ BRIP 23060. USA, Hawaii, Oahu, Waialua, from Luffa acutangula (Cucurbitaceae), 1971, M. Aragaki, culture ex-type of A. loofahae CBS 116114 = E.G.S. 35.123; Indiana, Knox County, from leaf spot of Cucumis melo, 1993, R.X. Latin, representative isolate of A. cucumerina CBS 117225 = E.G.S. 41.127.

Notes: The species clade for A. cucumerina does not have a clear support in the multi-gene phylogeny. CBS 117225 and CBS 117226 differ only on 2 nt in their RPB2 sequence, while the ex-type of A. loofahae (CBS 116114) differs on 1 nt from both A. cucumerina isolates in RPB2 and on 1 nt in Alt a 1. This internal variation in the two A. cucumerina isolates and the identical host family, Cucurbitaceae, with A. loofahae, supported the synonymy of A. loofahae. By synonymising A. loofahae with A. cucumerina, the host range of this taxon expanded to include Luffa acutangula.

Alternaria cyamopsidis Rangaswami \& A.V. Rao, Indian Phytopathol. 10: 23. 1957.
\equiv Alternaria cucumerina var. cyamopsidis (Rangaswami \& A.V. Rao) E.G. Simmons, Mycopathol. Mycol. Appl. 29: 131. 1966.

Materials examined: USA, Georgia, from leaf spot of Cyamopsis tetragonoloba (Fabaceae), Jul. 1961, G. Sowell, representative isolate of A. cyamopsidis CBS 117219 = E.G.S. 13.120 = QM 8000; Maryland, Beltsville, from leaf spot of Cyamopsis tetragonoloba, 1964, R.G. Orellana, representative isolate of A. cyamopsidis CBS $364.67=$ E.G.S. $17.065=$ QM 8575.

Fig. 14. Alternaria cucumerina: conidia and conidiophores. A-D. CBS 117225. E-H. CBS 117226. I-L. CBS 116114. Scale bars $=10 \mu \mathrm{~m}$.

Alternaria dauci (J.G. Kühn) J.W. Groves \& Skolko, Canad. J. Res., Sect. C, Bot. Sci. 22: 222. 1944. Fig. 15.

Basionym: Sporidesmium exitiosum var. dauci J.G. Kühn, Hedwigia 1: 91. 1855.
\equiv Polydesmus exitiosus var. dauci (J.G. Kühn) J.G. Kühn, Die Krankheiten der Kulturgewächse, ihre Ursachen und ihre Verhütung: 165. 1858.
\equiv Macrosporium dauci (J.G. Kühn) Rostr., Tidsskr. Landoekon. ser. 5, 7: 385. 1888.
\equiv Alternaria brassicae var. dauci (J.G. Kühn) Lindau, Rabenhorst's Kryptog.-Fl., Edn 2 (Leipzig) 1(9): 260. 1908.
\equiv Alternaria porri f. sp. dauci (J.G. Kühn) Neerg, Danish species of Alternaria \& Stemphylium: 252. 1945.

Fig. 15. Alternaria dauci. A. Disease symptoms on Daucus carota. B-L. Conidia and conidiophores. B-C. CBS 117097. D-F. CBS 117098. G-I. CBS 117099. J-L. CBS 117100. Scale bars $=10 \mu \mathrm{~m}$.
$=$ Macrosporium carotae Ellis \& Langl., J. Mycol. 6: 36. 1890.
\equiv Alternaria carotae (Ellis \& Langl.) J.A. Stev. \& Wellman, J. Wash. Acad. Sci. 34: 263. 1944.
= Alternaria poonensis Ragunath, Mycopathol. Mycol. Appl. 21: 315. 1963.
Type: (Lectotype, designated in Simmons 1995) B, ms. spec. Sporidesmium exitiosum var. dauci Kühn, Leg. Gross Krausche p. Bunzlau, Jul. Kühn.

Materials examined: Italy, from seed of Daucus carota (Apiaceae), Sept. 1937, P. Neergaard (neotype designated here CBS H-21745, MBT178116, culture ex-neotype CBS 111.38).

Netherlands, Limburg, Horst, from leaf spot in Cichorium intybus var. foliosum (Asteraceae), 1979, W.M. Loerakker, CBS 477.83 = CBS 721.79 = PD 79/954; from seed of Daucus carota, 1993, S\&G Seeds, CBS 101592. New Zealand, from leaf spot of Daucus carota, Mar. 1998, C.F. Hill, representative isolate of A. dauci CBS $117098=$ E.G.S. 46.152; Ohakune, from leaf spot of Daucus carota, before Jul. 1979, G.F. Laundon, CBS $345.79=$ LEV 14814. Puerto Rico, from seedling of Coriandrum sativum (Apiaceae), 1999, W. Almodovar, representative isolate of A. poonensis CBS $117100=$ E.G.S. 47.138 . Unknown, from seed of Daucus carota, Jan. 1948, J.W. Groves, CBS 106.48. USA, California, from commercial seed of Daucus carota, Nov. 1994, B.M. Pryor, representative isolate of A. dauci CBS 117097 = E.G.S. 46.006; California, Kern County, from seed of Daucus carota, 1999, D. Fogle, representative isolate of A. dauci CBS $117099=$ E.G.S. 47.131.

Notes: The indicated lectotype cannot be traced in B, and appears to be lost. We therefore designate CBS 111.38 as neotype. The isolates CBS 111.38, CBS 345.79 and CBS 101592 did not sporulate after 3 wk incubation on SNA.

Alternaria deserticola Woudenb. \& Crous, sp. nov. MycoBank MB808996.
Etymology: Named after the substrate from which it was isolated, namely desert soil.
Culture sterile.
Alternaria deserticola differs from the ex-type strain of its closest phylogenetic neighbour A. thunbergiae (CBS 116331) based on alleles in all five loci (positions derived from respective alignments of the separate loci deposited in TreeBASE): ITS position 165 (-), 373 (T), 381 (C), 383 (C), 488 (A); GAPDH position $484(\mathrm{~T})$; RPB2 position $76(\mathrm{C}), 88(\mathrm{~T}), 91(\mathrm{~T}), 139(\mathrm{C}), 211$ (T), 316 (T), 490 (C), 496 (A), 646 (T), 670 (C), 671 (T), 673 (A), 760 (G); TEF1 position 37 (C), 49 (G), 197 (A), 223 (A), 274 (T), 277(-), 311(T); Alt a 1 position 10 (C), 209 (A), 210 (T), 220 (G), 322 (T), 452 (G).

Culture characteristics: After 7 d cultures on SNA flat, rhizoid, olivaceous-buff; aerial mycelium absent, colonies reaching 55 mm diam; cultures on PCA flat, entire, five grey-olivaceous concentric circles; aerial mycelium sparse, colonies reaching 75-80 mm diam; reverse shows five olivaceous-grey rings.

Material examined: Namibia, from desert soil, 2001, M. Christensen (holotype CBS H-21738, culture ex-type CBS 110799).

Note: The clear phylogenetic distinction of the sterile culture of A. deserticola from all other strains included in this study, resulted in our decision to describe this species based on sequence data only.

Alternaria dichondrae Gambogi, Vannacci \& Triolo, Trans. Brit. Mycol. Soc. 65(2): 323. 1975.
Materials examined: Italy, Pisa, from leaf spot of Dichondra repens (Convolvulaceae), Mar. 1974, P. Gambogi, ex-isotype of A. dichondrae CBS 199.74 = E.G.S. 38.007; Pisa, from leaf spot of Dichondra repens, Mar. 1974, P. Gambogi, living lectotype of A. dichondrae

Fig. 16. Alternaria grandis: conidia and conidiophores. A-D. CBS 109158. E-H. CBS 116695. Scale bars $=10 \mu \mathrm{~m}$.

CBS 200.74 = E.G.S. 38.008. New Zealand, from leaf spot of Dichondra repens, before 1979, G.F. Laundon, CBS 346.79; Auckland, Lynfield, from leaf of Dichondra sp., Apr. 1991, C.F. Hill, representative isolate of A. dichondrae CBS $117127=$ E.G.S. 40.057.

Note: Simmons (2007) designated a lectotype with ex-lectotype strain (CBS 200.74), as he found the ex-isotype strain (CBS 199.74) to be sterile.

Alternaria echinaceae E.G. Simmons \& C.F. Hill, CBS Biodiversity Ser. (Utrecht) 6: 318. 2007.

Materials examined: New Zealand, Gisborne, Makaraka, from leaf of Echinacea sp. (Asteraceae), Jan. 1998, C.F. Hill, culture ex-type of A. echinaceae CBS 116117 = E.G.S. 46.081; Gisborne, Makaraka, from leaf of Echinacea sp., Jan. 1998, C.F. Hill, representative isolate of A. echinaceae CBS 116118 = E.G.S. 46.082.

Alternaria grandis E.G. Simmons, Mycotaxon 75: 96. 2000. Fig. 16.
Materials examined: USA, Pennsylvania, Centre County, from leaf lesion of Solanum tuberosum (Solanaceae), Sep. 1966, B.J. Christ, culture ex-type of A. grandis CBS 109158 = E.G.S. 44.106; Pennsylvania, Clarion County, from leaf spot of Solanum tuberosum, Sep. 1966, B.J. Christ, representative isolate of A. grandis CBS $116695=$ E.G.S 44.108.

Notes: Although A. grandis differs by only 1 nt in its GAPDH sequence from A. solani, we retain it as a distinct species. Conidia of A. grandis are substantially larger than those of A. solani, and a recently published study could separate A. solani (CBS 109157) and A. grandis (CBS 109158) based on partial calmodulin gene sequence data (Gannibal et al. 2014).

Alternaria ipomoeae M. Truter, Woudenb. \& Crous, sp. nov. MycoBank MB808997. Fig 17.
Etymology: Named after the host genus on which it occurs, Ipomoea.
Primary conidiophores simple to branched, straight to slightly curved, septate, pale brown, (10-)51-73(-145) $\times(4-) 5 \mu \mathrm{~m}$, bearing a single to multiple, darkened, geniculate conidiogenous loci. Conidia mostly solitary but chains of two conidia can occur, conidium body olive-brown, smooth-walled with ornamented base, long ellipsoid to obclavate, (53-)60-65(-76) $\times(9-) 12(-$ 15) $\mu \mathrm{m}$, with ($6-) 8-9(-12)$ transverse septa and $(0-) 2(-3)$ longitudinal septa. Up to four dark coloured eusepta can be formed during development; the conidial body is constricted near these eusepta. Conidia have a septate, single to double, filamentous beak; apical and lateral secondary conidiophores can be formed. Beaks (47-)136-162(-221) $\mu \mathrm{m}$ long, single beaks generally longer than multiple beaks, $c a .2 \mu \mathrm{~m}$ diam throughout their length, and approx. $3 \mu \mathrm{~m}$ diam at the base. Sexual morph not observed.

Culture characteristics: After 7 d cultures on SNA are flat, fimbriate, white; aerial mycelium sparse, felty, white, colonies reaching 50 mm diam; cultures on PCA flat, entire, grey-olivaceous with some darker sections; aerial mycelium fine felty, pale olivaceous-grey, colonies reaching $65-70 \mathrm{~mm}$ diam; reverse identical.

Materials examined: Ethiopia, from black lesions of Ipomoea batatas (Convolvulaceae), Jun. 1978, A.H.C. van Bruggen (holotype CBS H-21739, culture ex-type CBS 219.79). South Africa, Gauteng Province, Pretoria, ARC-Roodeplaat VOPI, from stem lesions of Ipomoea batatas, 16 Nov. 2006, C.D. Narayanin (paratype PREM 60979, culture ex-paratype PPRI 8988).

Alternaria jesenskae Labuda, P. Eliáš \& Sterfl., Microbiol. Res. 163: 209. 2008.
Material examined: Slovakia, district of the village Muzla, Podunajská nizina lowland, from seeds of Fumana procumbens (Cistaceae), Aug. 1999, P. Eliás jr., culture ex-type of A. jesenskae CBS $133855=$ CCM 8361.

Alternaria linariae (Neerg.) E.G. Simmons, CBS Biodiversity Ser. (Utrecht) 6: 677. 2007. Fig. 18.

Basionym: Alternaria anagallidis var. linariae Neerg., Danish species of Alternaria \& Stemphylium: 297. 1945.
= Alternaria cretica E.G. Simmons \& Vakal., Mycotaxon 75: 64. 2000.
= Alternaria subcylindrica E.G. Simmons \& R.G. Roberts, Mycotaxon 75: 62. 2000.
= Alternaria tomatophila E.G. Simmons, Mycotaxon 75: 53. 2000.
$=$ Alternaria cucumericola E.G. Simmons \& C.F. Hill, CBS Biodiversity Ser. (Utrecht) 6: 210. 2007.
$=$ Alternaria tabasco E.G. Simmons \& R.G. Roberts, CBS Biodiversity Ser. (Utrecht) 6: 158. 2007.

Fig. 17. Alternaria ipomoeae sp. nov. CBS 219.79: A-L. Conidia and conidiophores. Scale bars $=10$ $\mu \mathrm{m}$.

Materials examined: Belgium, host unknown, before Mar. 1961, R. Sys, CBS 107.61. Denmark, from seedling of Linaria maroccana (Scrophulariaceae), 13 Nov. 1940, P. Neergaard, culture ex-type of A. linariae CBS $105.41=$ E.G.S. 07.016. Greece, Crete, Heraklio, from leaf spot of Solanum lycopersicum (Solanaceae), 1997, D.J. Vakalounakis, culture ex-type of A. cretica, CBS 109164 = E.G.S. 46.188. New Zealand, Northland, Kerikeri, from leaf spot of Cucumis sativus (Cucurbitaceae), Mar. 1993, C.F. Hill, culture ex-type of A. cucumericola CBS 116438 = E.G.S.41.057. Thailand, Chiang Mai, Royal project, from leaf spot of Solanum lycopersicum, 5 Nov. 2012, P.W. Crous, CPC 21620 . Unknown, host unknown, before Apr. 1953, P.W. Brian, CBS 108.53 = No. 408P. USA, Indiana, Montgomery County, from leaf spot of Solanum

Fig. 18. Alternaria linariae. A. Disease symptoms on Solanum lycopersicum. B-P. Conidia and conidiophores. B-C. CBS 105.41. D-F. CBS 109161. G-H. CBS 107.61. I-J. CBS 109156. K-L. CBS 109164. M-N. CBS 116438. O-P. CBS 116441. Scale bars $=10 \mu \mathrm{~m}$.
lycopersicum, 23 Aug. 1995, E.G. Simmons, culture ex-type of A. tomatophila CBS $109156=$ E.G.S. 42.156; Indiana, from leaf lesion of Solanum lycopersicum, Aug. 1996, E.G. Simmons, representative isolate of A. tomatophila CBS $116704=$ E.G.S. 44.074; Louisiana, Baton Rouge, Louisiana State University Burden Research Plantation, from leaf lesion of Solanum lycopersicum var. cerasiforme, 2 Jul. 1997, R.G. Roberts, culture ex-type of A. subcylindrica CBS 109161 = E.G.S. 45.113; Louisiana, Avery Island, from leaf spot of Capsicum frutescens (Solanaceae), 1 Jul. 1997, R.G. Roberts, culture ex-type of A. tabasco CBS 116441 = E.G.S 45.108 = R.G.R. 97-52.

Notes: By synonymising A. cretica, A. cucumericola, A. subcylindrica, A. tabasco and A. tomatophila with A. linariae, the broad host range of this taxon now consists of Solanaceae, Cucurbitaceae and Scrophulariaceae species. The isolates CBS 108.53 and CBS 116704 did not sporulate on SNA after 3 wk of incubation.

Alternaria macrospora Zimm., Ber. Land-Forstw. Deutsch-Ostafrika 2: 24. 1904. \equiv Macrosporium macrosporum (Zimm.) Nishikado \& Oshima, Agric. Res. (Kurashiki) 36: 391. 1944.
= Sporidesmium longipedicellatum Reichert, Bot. Jahrb. Syst. 56: 723. 1921.
\equiv Alternaria longipedicellata (Reichert) Snowden, Rep. Dept. Agric. Uganda: 31. 1927 [1926].

Materials examined: Nigeria, from Gossypium sp. (Malvaceae), May 1929, Jones, CBS 106.29. USA, Arizona, from Gossypium barbadense (Malvaceae), before 1984, P.J. Cotty, culture epitype of A. macrospora CBS $117228=$ E.G.S. $50.190=$ ATCC 58172.

Notes: Isolate CBS 106.29 was preserved in the CBS collection as A. porri, but did not sporulate since 1978. Based on our molecular data this isolate belongs to A. macrospora, which, based on the same host, seems plausible.

Alternaria montanica E.G. Simmons \& Robeson, CBS Biodiversity Ser. (Utrecht) 6: 178. 2007.
Material examined: USA, Montana, from Cirsium arvense (Asteraceae), before Apr. 1981, D.J. Robeson, culture ex-type of A. montanica CBS $121343=$ E.G.S. $44.112=$ IMI 257563.

Alternaria multirostrata E.G. Simmons \& C.R. Jacks., Phytopathology 58: 1139. 1968.
Materials examined: USA, Georgia, Tifton, from floral bract of Richardia scabra (Rubiaceae), 1967, C.R. Jackson, culture ex-type of A. multirostrata CBS $712.68=$ ATCC $18515=$ IMI $135454=$ MUCL $11722=$ QM $8820=$ VKM-F2997; Georgia, Tifton, from floral bract of Richardia scabra, 1967, C.R. Jackson, representative isolate of A. multirostrata CBS $713.68=$ ATCC $18517=$ IMI $135455=$ MUCL $11715=$ QM 8821 .

Alternaria neoipomoeae M. Truter, Woudenb. \& Crous, sp. nov. MycoBank MB808998. Fig. 19.

Etymology: Named after its close phylogenetic relationship to A. ipomoeae.

Fig. 19. Alternaria neoipomoeae sp. nov. A. Disease symptoms on Ipomoeae batatas (Photo A.H. Thompson, ARC, South Africa). B-L. PPRI 11845: conidia and conidiophores. Scale bars $=10 \mu \mathrm{~m}$.

Primary conidiophores solitary, simple, straight to slightly curved, septate, pale brown, (10-) $23-59(-111) \times(4-) 5 \mu \mathrm{~m}$, bearing a single, darkened, apical conidiogenous locus, which may produce 1-2 geniculate conidiogenous extensions. Conidia are mostly solitary but chains of two conidia can occur, conidium body olive-brown, smooth-walled with ornamented base, long ellipsoid to obclavate, (52-)66-77(-93) $\times(12-) 14-16(-18) \mu \mathrm{m}$, with (7-)9(12) transverse and (2-)3-4(-5) longitudinal septa. Up to four dark coloured eusepta can be formed during development; the conidial body is constricted near these eusepta. Conidia mostly have a septate, single to double, filamentous beak, triple beaks are observed but not common; apical and lateral secondary conidiophores can be formed. Beaks (54-)104-136(-
200) $\mu \mathrm{m}$ long, $c a .2 \mu \mathrm{~m}$ diam throughout their length, and approx. $3 \mu \mathrm{~m}$ diam at the base. Sexual morph not observed.

Culture characteristics: After 7 d cultures on SNA flat, fimbriate, white to opaque; aerial mycelium sparse, fine felty, white, colonies reaching $60-65 \mathrm{~mm}$ diam; cultures on PCA flat, entire, grey-olivaceous with 2 dark and one lighter concentric circles and a pale olivaceous edge; aerial mycelium fine felty, pale olivaceous-grey, colonies reaching $55-60 \mathrm{~mm}$ diam; reverse four olivaceous-grey rings.

Materials examined: South Africa, Gauteng Province, Pretoria, ARC-Roodeplaat VOPI, from stem lesion of Ipomoea batatas (Convolvulaceae), 8 Jun. 2011, A. Thompson (holotype PREM 60981, culture ex-type PPRI 11845); North-West Province, Brits, from Ipomoea batatas, 25 Oct. 2007, C.D. Narayanin (paratype PREM 60982, culture ex-paratype PPRI 8990); Mpumalanga Province, Kwamahlanga, from Ipomoea batatas, between 2006 and 2008, C.D. Narayanin (paratype PREM 60983, culture ex-paratype PPRI 11847); Gauteng Province, Pretoria, ARC-Roodeplaat VOPI, from leaf lesion of Ipomoea batatas, Oct. 2013, A. Thompson (paratype PREM 60984, culture ex-paratype PPRI 13903).

Alternaria nitrimali E.G. Simmons \& M.E. Palm, Mycotaxon 75: 93. 2000.
Material examined: Puerto Rico, Luquillo, from leaf spot of Solanum viarum (Solanaceae), 26 Feb. 1998, USDA-APHIS, culture ex-type of A. nitrimali CBS 109163 = E.G.S 46.151.

Alternaria novae-guineensis E.G. Simmons \& C.F. Hill, CBS Biodiversity Ser. (Utrecht) 6: 350. 2007.

Materials examined: Papua New Guinea, from dried leaf of Citrus sp. (Rutaceae) imported to New Zealand, 1999, C.F. Hill, culture ex-type of A. novae-guineensis CBS 116120 = E.G.S. 47.198. South Africa, Gauteng, Pretoria, ARC-Roodeplaat VOPI, from leaves of Galinsoga parviflora (Asteraceae), 12 Jan. 2012, A. Thompson, PPRI 12171.

Alternaria obtecta E.G. Simmons, Mycotaxon 50: 250. 1994.
Materials examined: USA, California, Encinitas, from leaf of Euphorbia pulcherrima (Euphorbiaceae), Nov. 1994, C.F. Hill, representative isolate of A. obtecta CBS 117367 = E.G.S. 42.063; California, Encinitas, from Euphorbia pulcherrima (Euphorbiaceae), Nov. 1994, C.F. Hill, CBS 134278 = E.G.S. 42.064.

Alternaria paralinicola Woudenb. \& Crous, sp. nov. MycoBank MB808999. Fig. 20.
Etymology: Named after its close phylogenetic relationship to A. linicola.
Primary conidiophores solitary, simple, straight to slightly curved, septate, pale brown, (39-) $64-82(-133) \times(4-) 5-6 \mu \mathrm{~m}$, bearing a single, darkened, apical conidiogenous locus, but may produce geniculate conidiogenous extensions. Conidia are mostly solitary but chains of two conidia can occur, conidium body pale olive-brown, smooth-walled, narrowly ovoid, (31-)39-$44(-58) \times(8-) 10-11(-15) \mu \mathrm{m}$, with $(3-) 5-6(-8)$ transverse septa and $0-1(-2)$ longitudinal

Fig. 20. Alternaria paralinicola sp. nov. CBS 116652: A-L. Conidia and conidiophores. Scale bars $=$ $10 \mu \mathrm{~m}$.
septa. Dark coloured eusepta are formed during maturation. The conidial body is slightly constricted near the transverse septa. Some transverse blocks of cells can have a conspicuously different width in comparison with neighbouring segments, resulting in specific shape of the conidium body. Conidia mostly have a single, aseptate, unbranched, filamentous beak; double beaks are observed but not common; apical or lateral secondary conidiophores can be formed. Beaks (61-)114-135(-169) $\mu \mathrm{m}$ long, ca. $2 \mu \mathrm{~m}$ diam throughout their length. Sexual morph not observed.

Culture characteristics: After 7 d cultures on SNA flat, fimbriate, white to opaque; aerial mycelium sparse, white, colonies reaching $70-75 \mathrm{~mm}$ diam; cultures on PCA flat, entire,
grey-olivaceous with four olivaceous clear concentric circles; aerial mycelium is fine felty, olivaceous, colonies reaching 70 mm diam; reverse shows five grey-olivaceous concentric circles.

Material examined: Canada, Manitoba, from seeds of cultivated Linum usitatissimum (Linaceae), 1996, M.E. Corlett (holotype CBS H-21740, culture ex-type CBS 116652 = E.G.S. 47.157 = DAOM 225747).

Note: Alternaria paralinicola, which was originally identified as A. linicola, differs on 16 nt positions in its RPB2 sequence from the other two A. linicola strains studied. Based on its RPB2 sequence it clusters with A. passiflorae.

Alternaria passiflorae J.H. Simmonds, Proc. Roy. Soc. Queensland. 49: 151. 1938. Fig. 21.
= Alternaria hawaiiensis E.G. Simmons, Mycotaxon 46: 184. 1993.
$=$ Alternaria gaurae E.G. Simmons \& C.F. Hill, CBS Biodiversity Ser. (Utrecht) 6: 188. 2007.

Materials examined: New Zealand, from fruit of Passiflora edulis (Passifloraceae), 6 Feb. 1963, F.J. Mortin, representative isolate of A. passiflorae CBS $629.93=$ E.G.S. $16.150=$ QM 8458; Auckland, from fruit spot of Passiflora ligularis (Passifloraceae), Apr. 2004, C.F. Hill, representative isolate of A. passiflorae CBS $117102=$ E.G.S. 51.165; Auckland, from leaf spot of Passiflora caerulea (Passifloraceae), Jul. 2004, C.F. Hill, representative isolate of A. passiflorae CBS 117103 = E.G.S. 52.032; Auckland, from leaf spot of Gaura lindheimeri (Onagraceae), May 2002, C.F. Hill, culture ex-type of A. gaurae CBS 116333 = E.G.S. 50.121; Waitakere, from leaf of Capsicum frutescens (Solanaceae), May 1975, CBS 166.77. USA, Hawaii, from Passiflora edulis, before Oct. 1968, M. Aragaki, culture ex-type of A. hawaiiensis CBS 630.93 = E.G.S. $29.020=$ QM 9050.

Notes: By synonymising A. gaurae with A. passiflorae, and including CBS 166.77, formerly identified as A. solani, the host range of A. passiflorae has broadened to include Gaura sp. (Onagraceae) and Capsicum frutescens (Solanaceae).

Alternaria pipionipisi E.G. Simmons, CBS Biodiversity Ser. (Utrecht) 6: 302. 2007.
Materials examined: India, Andhra Pradesh, Hyderabad, from seed of Cajanus cajan (Fabaceae), before Feb. 1990, K.M. \& Ch. Reddy, culture ex-type of A. pipionipisi CBS 116115 = E.G.S. $40.096=$ IMI 340950. USA, California, Encinitas, from Euphorbia pulcherrima (Euphorbiaceae), Sep. 1994, C.F. Hill, CBS 134265 = E.G.S. 42.047; California, Encinitas, from Euphorbia pulcherrima, Sep. 1994, C.F. Hill, representative isolate of A. obtecta CBS 117365 = E.G.S. 42.048.

Alternaria porri (Ellis) Cif., J. Dept. Agric. Porto Rico 14: 30. 1930 [1929]. Fig. 22.
Basionym: Macrosporium porri Ellis, Grevillea 8 (no. 45): 12. 1879.
\equiv Alternaria porri (Ellis) Sawada, Rep. Dept. Agric. Gov. Res. Inst. Formosa, 61: 92. 1930.

Fig. 21. Alternaria passiflorae: conidia and conidiophores. A-B. CBS 117102. C-D. CBS 117103. E-F. CBS 116333. G-H. CBS 166.77. I-J. CBS 630.93. K-L. CBS 629.93. Scale bars $=10 \mu \mathrm{~m}$.

Type: (Lectotype, designated in Simmons 2007) NY, Ellis Collection: on leaves of Allium porrum, Newfield, N.J. Sept. 78.

Materials examined: USA, Nebraska, Lincoln, from leaf of Allium cepa (Amaryllidaceae), 1965, D.S. Meredith, representative isolate of A. allii CBS $116649=$ E.G.S. $17.082=$ QM 8613; New York, Ithaca, from leaf of Allium cepa, 1996, M.J. Yáñes Morales, representative isolate of A. porri CBS 116698 = E.G.S. 48.147; New York, Orange County, from leaf of Allium cepa, 1996, M.J. Yáñes Morales (epitype designated here CBS H-21746, MBT178117, culture exepitype CBS 116699 = E.G.S. 48.152).

Chapter 4

Fig. 22. Alternaria porri: conidia and conidiophores. A-D. CBS 116698. E-H. CBS 116699. I-L. CBS 116649. Scale bars $=10 \mu \mathrm{~m}$.

Alternaria protenta E.G. Simmons, Mycotaxon 25: 207. 1986. Fig. 23.
= Alternaria pulcherrimae T.Y. Zhang \& J.C. David, Mycosystema 8-9: 110. 1996.
$=$ Alternaria hordeiseminis E.G. Simmons \& G.F. Laundon, CBS Biodiversity Ser. (Utrecht) 6: 150. 2007.

Materials examined: Australia, Queensland, Brisbane, Chapel Hill, from Euphorbia pulcherrimae (Euphorbiaceae), 25 Aug. 1986, J.L. Alcorn, representative isolate of A. pulcherrimae CBS 121342 = E.G.S. $42.122=$ IMI 310506. Israel, from Helianthus annuus (Asteraceae), 1996, collector unknown, representative isolate of A. protenta CBS $116697=$ E.G.S. $45.024=$ IMI 372957; from Helianthus annuus, 1996, collector unknown, representative isolate of A. protenta CBS 116696

Fig. 23. Alternaria protenta: conidia and conidiophores. A-B. CBS 116696. C-D. CBS 116697. E-G. CBS 116643. H-J. CBS 116651. K-M. CBS 121342. N-P. CBS 347.79. Scale bars $=10 \mu \mathrm{~m}$.
= E.G.S. 45.023 = IMI 372955. New Zealand, Hastings, from Solanum tuberosum (Solanaceae), Mar. 1997, C.F. Hill, representative isolate of A. solani CBS 135189 = E.G.S. 45.053; Levin, from fruit rot of Solanum lycopersicum (Solanaceae), before Jul. 1979, G.F. Laundon, CBS 347.79 = E.G.S. $44.091=$ ATCC $38569=$ LEV 14726; Palmerston North, from seed of Hordeum vulgare (Gramineae), Jul. 1977, G.F. Laundon, culture ex-type of A. hordeiseminis CBS 116437 = E.G.S. $32.076=$ CBS 116443 = E.G.S. 46.163. USA, California, Siskiyou, from Solanum tuberosum, 1996, D. Fogle, representative isolate of A. solani CBS 116651 = E.G.S. 45.020.

Notes: By synonymising A. pulcherrimae and A. hordeiseminis with A. protenta and including three isolates formerly identified as A. solani (CBS 347.79, 116651 and 135189), the host range of A. protenta has expanded extensively. It now comprises plants from the Asteraceae, Euphorbiaceae, Gramineae and Solanaceae. Based on molecular (and morphological) data, A. protenta is closely related to A. solani, and these two species can only be distinguished based on 9 nt differences in their RPB2 sequences (see RPB2 alignment in TreeBASE).

Alternaria pseudorostrata E.G. Simmons, Mycotaxon 57: 398. 1996.
Material examined: USA, California, Encinitas, from Euphorbia pulcherrimae (Euphorbiaceae), Dec. 1994, C.F. Hill, culture ex-type of A. pseudorostrata CBS 119411 = E.G.S. 42.060.

Alternaria ranunculi E.G. Simmons, CBS Biodiversity Ser. (Utrecht) 6: 212. 2007.
Material examined: Israel, Palestine, from seed of Ranunculus asiaticus (Ranunculaceae), 10 Apr. 1984, collector unknown, culture ex-type of A. ranunculi CBS $116330=$ E.G.S. $38.039=$ IMI 285697.

Alternaria ricini (Yoshii) Hansf., Proc. Linn. Soc. Lond. : 53. 1943.
Basionym: Macrosporium ricini Yoshii, Bult. Sci. Fak. Terk. Kjusu Imp. Univ. 3(4): 327. 1929.
Type: (Lectotype, designated in Simmons 1994) BPI 445446, Macrosporium ricini, Japan, Fukuoka, Ricinus communis, July 1928.

Materials examined: Italy, Sardinia, Sasseri, from Ricinus communis (Euphorbiaceae), before Aug. 1986, J.A. von Arx, CBS 353.86. Japan, Ricinus communis, deposited Feb. 1931 by K. Nakata (epitype designated here CBS H-21747, MBT178118, culture ex-epitype CBS 215.31). USA, Virginia, Holland, from leaf of Ricinus communis, 9 Aug. 1954, C.A. Thomas, representative isolate of A. ricini $\mathrm{CBS} 117361=$ E.G.S. 06.181.

Alternaria rostellata E.G. Simmons, Mycotaxon 57: 401. 1996.
Material examined: USA, California, Encinitas, from leaf of Euphorbia pulcherrimae (Euphorbiaceae), Jan. 1995, C.F. Hill, culture ex-type of A. rostellata CBS $117366=$ E.G.S. 42.061.

Alternaria scorzonerae (Aderh.) Loer., Netherlands J. Pl. Pathol. 90(1): 37. 1984.
Basionym: Sporidesmium scorzonerae Aderh., Arbeiten Kaiserl. Biol. Anst. Land-Forstw. 3: 439. 1903.
= Alternaria linicola J.W. Groves \& Skolko, Canad. J. Res., Sect. C, Bot. Sci. 22: 223. 1944. = Alternaria linicola Neerg, Danish species of Alternaria \& Stemphylium: 302. 1945. (nom. illegit., Art. 53.1)

Type: (Lectotype, designated in Simmons 1997) Aderhold, Arbeiten Kaiserl. Biol. Anst. LandForstw. 3: 440. fig. w/o number. 1903.

Materials examined: Netherlands, Reusel, from leaf spot of Scorzonera hispanica (Asteraceae), 1982, W.M. Loerakker (epitype designated here CBS H-21748, MBT178119, culture exepitype CBS 478.83 = E.G.S. 38.011). UK, Scotland, from Linum usitatissimum (Linaceae), 22 Nov. 1945, J.W. Groves, CBS 103.46; Derbyshire, from seed of Linum usitatissimum, 1983, C. Nicholls, representative isolate of A. linicola CBS $116703=$ E.G.S. $36.110=$ IMI 274549.

Notes: None of the three isolates sporulated on SNA or PCA after 3 wk of incubation, also not after scarification. Corlett \& Corlett (1999) already stated that, after sub-cultivation, A. linicola sporulates poorly, or not at all. By synonymizing A. linicola with A. scorzonerae, the host range of A. scorzonerae is expanded to include Linum usitatissimum (Linaceae).

Alternaria sennae Woudenb. \& Crous, sp. nov. MycoBank MB809000. Fig. 24.
Etymology: Named after the host genus on which it occurs, Senna.
Primary conidiophores solitary, simple, straight to slightly curved, septate, dark brown with a hyaline tip, (43-)67-81(-108) $\times(5-) 6(-7) \mu \mathrm{m}$, bearing a single, darkened, apical conidiogenous locus, but may produce geniculate conidiogenous extensions. Conidia solitary, conidium body pale olive-brown, smooth-walled, narrowly ovoid, (46-)55-62(-69) $\times(8-) 10-12(-14) \mu \mathrm{m}$, with (7-)7-8(-10) transverse distosepta and (1-)2-3(-4) longitudinal septa. The conidial body can be slightly constricted near some transverse septa. Conidia have a single, aseptate, filamentous beak, which occasionally branches once; basal lateral secondary conidiophores can be formed. Beaks (38-)99-163(-314) $\mu \mathrm{m}$ long, ca. $2 \mu \mathrm{~m}$ diam. Sexual morph not observed.

Culture characteristics: After 7 d cultures on SNA flat, fimbriate, white to opaque with two olivaceous concentric circles; aerial mycelium sparse, white, floccose, colonies reaching 35-40 mm diam; cultures on PCA flat, undulate, white with grey-olivaceous zones; aerial mycelium felty, pale olivaceous-grey, colonies reaching $50-55 \mathrm{~mm}$ diam; reverse with pale olivaceousgrey zones.

Material examined: India, Uttar Pradesh, Gorakhpur, from leaf of Senna corymbosa (Fabaceae), 10 Apr. 1981, R.P. Verma (holotype CBS H-21741, culture ex-type CBS 477.81 = E.G.S. $34.030=$ IMI 257253).

Alternaria sesami (E. Kawam.) Mohanty \& Behera, Curr. Sci. 27: 493. 1958.
Basionym: Macrosporium sesami E. Kawam., Fungi 1: 27. 1931.
Materials examined: Egypt, from Sesamum indicum (Pedaliaceae), 1972, S.B. Mathur, CBS 240.73. India, from seedlings of Sesamum indicum, Dec. 1959, E.E. Leppik, representative isolate CBS $115264=$ CBS $117214=$ E.G.S. 13.027.

Fig. 24. Alternaria sennae sp. nov. CBS 477.81: A-L. Conidia and conidiophores. Scale bars $=10 \mu \mathrm{~m}$.

Alternaria sidae E.G. Simmons, Mycotaxon 88: 202. 2003.
Material examined: Kiribati, Phoenix islands, Canton Island, from leaf spot of Sida fallax (Malvaceae), 11 Feb. 1958, O. \& I. Degener, culture ex-type of A. sidae CBS 117730 = E.G.S. 12.129.

Alternaria silybi Gannibal, Mycotaxon 114: 110. 2011.
Materials examined: Russia, Vladivostok, Trudovoe, from leaf lesion of Silybum marianum (Asteraceae), 1 Sep. 2006, Ph. B. Gannibal, culture ex-type of A. silybi CBS $134092=$

Fig. 25. Alternaria solani. A. Disease symptoms on Solanum tuberosum (Photo J.E. van der Waals, University of Pretoria, South Africa). B-H. Conidia and conidiophores. B-D. CBS 109157. E-H. CBS 116442. Scale bars $=10 \mu \mathrm{~m}$.

VKM F-4109; Vladivostok, Trudovoe, from leaf lesion of Silybum marianum, 1 Sep. 2006, Ph. B. Gannibal, CBS 134094 = VKM F-4118; Vladivostok, Botanical Garden-Institute, from leaf lesion of Silybum marianum, 6 Sep. 2006, Ph. B. Gannibal, CBS $134093=$ VKM F-4117.

Alternaria solani Sorauer, Z. Pflanzenkrankh. Pflanzenschutz 6: 6. 1896. Fig. 25.
$=$ Macrosporium solani Ellis \& G. Martin, Amer. Naturalist 16(12): 1003. 1882 (non M. solani Cooke, 1883)
\equiv Alternaria solani (Ellis \& G. Martin) L.R. Jones \& Grout, Vermont Agric. Exp. Sta. Annual Rep. 9: 86. 1899. (nom. illegit., Art. 53.1)
\equiv Alternaria americana Sawada, Rep. Dept. Agric. Gov. Res. Inst. Formosa 51:117. 1931. (nom. nov. for A. solani (Ellis \& G. Martin) L.R. Jones \& Grout (1899), non A. solani Sorauer (1896))
\equiv Alternaria porri f. sp. solani (Ellis \& G. Martin) Neerg, Danish species of Alternaria \& Stemphylium: 260. 1945.
$=$ Sporidesmium solani-varians Vañha, Naturwiss. Z. Forst- Landw. 2: 117. 1904.
= Alternaria danida E.G. Simmons, Mycotaxon 65: 78. 1997.
$=$ Alternaria viciae-fabae E.G. Simmons \& G.F. Laundon, CBS Biodiversity Ser. (Utrecht) 6: 234. 2007.

Materials examined: Italy, from seed of Ageratum houstonianum (Asteraceae), 27 Aug. 1941, P. Neergaard, culture ex-type of A. danida CBS $111.44=$ E.G.S. $07.029=$ QM 1772. New Zealand, from Vicia faba (Fabaceae), Jun. 1979, G.F. Laundon, culture ex-type of A. viciaefabae CBS 116442 = E.G.S. 46.162 = ICMP 10242. Unknown, from leaf spot of Solanum aviculare (Solanaceae), before May 1941, P. Neergaard, CBS 111.41; unknown host, before Nov. 1921, isolated by Künkel, CBS 106.21. USA, Washington, Douglas County, from leaf spot of Solanum tuberosum (Solanaceae), 25 Aug. 1996, E.G. Simmons, representative isolate of A. solani CBS 109157= E.G.S. 44.098.

Notes: By synonymising A. danida and A. viciae-fabae with A. solani, the host range of this pathogen has expanded to include Asteraceae and Fabaceae host plants. The isolates CBS 106.21 and CBS 111.44 did not sporulate after 3 wk of incubation on SNA (both were already labelled as sterile in the CBS collection database). Isolate CBS 111.41 did sporulate, but the spore formation was atypical.

Alternaria solani-nigri R. Dubey, S.K. Singh \& Kamal [as "solani-nigrii"], Microbiol. Res. 154: 120. 1999. Fig. 26.
= Alternaria cyphomandrae E.G. Simmons, Mycotaxon 75: 86. 2000.
$=$ Alternaria ascaloniae E.G. Simmons \& C.F. Hill, CBS Biodiversity Ser. (Utrecht) 6: 168. 2007.
$=$ Alternaria beticola E.G. Simmons \& C.F. Hill, CBS Biodiversity Ser. (Utrecht) 6: 170. 2007.
= Alternaria glyceriae E.G. Simmons \& C.F. Hill, CBS Biodiversity Ser. (Utrecht) 6: 148. 2007.
= Alternaria herbiculinae E.G. Simmons, CBS Biodiversity Ser. (Utrecht) 6: 166. 2007.

Materials examined: New Zealand, Canterbury, Ashburton, from leaf lesion of Beta vulgaris (Chenopodiaceae), Jul. 1999, B. Alexander, culture ex-type of A. beticola CBS 116447 = E.G.S. 47.196; Hastings, from leaf spot of Allium ascalonicum (Amaryllidaceae), Oct. 1997, C.F. Hill, culture ex-type of A. ascaloniae CBS $121347=$ E.G.S 46.052; New Plymouth, from fruit of Cyphomandra betacea (Solanaceae), May 1991, C.F. Hill, culture ex-type of A. cyphomandrae CBS 109155 = E.G.S. 40.058; Taranaki, Otaki, from stunted Petroselinum crispum (Apiaceae), 14 Jun. 2001, J.B. Wong, culture ex-type of A. herbiculinae CBS 116332 = E.G.S. 49.180; Waikato, Kopuku, from leaf spot of Glyceria maxima (Gramineae), Apr. 2003, C.F. Hill, culture ex-type of A. glyceriae CBS 116334 = E.G.S. 51.107; Waikato, Whangamarino swamp, from leaf spot of Solanum nigrum (Solanaceae), 21 Jun. 2003, C.F. Hill, representative isolate of A. solani-nigri CBS 113403 = E.G.S. $51.106=$ CPC 10620; Waikato, Whangamarino swamp, from leaf spot of Solanum nigrum, 6 Feb. 2003, C.F. Hill, representative isolate of A. solaninigri CBS 117101 = E.G.S. 51.032.

Notes: By synonymising these five Alternaria species with A. solani-nigri, this becomes a species with a broad host range found on Amaryllidaceae, Apiaceae, Chenopodiaceae, Gramineae and Solanaceae. All studied specimens originate from New Zealand, but the holotype of A. solaninigri was described from India. The five sequenced genes are 100% identical between all the specimens studied.

Fig. 26. Alternaria solani-nigri: conidia and conidiophores. A-B. CBS 113403. C-D. CBS 116447. E-G. CBS 109155. H-I. CBS 116334. J-K. CBS 121347. L-M. CBS 116332. N-P. CBS 117101. Scale bars $=10 \mu \mathrm{~m}$.

Alternaria steviae Ishiba, T. Yokoy. \& Tani, Ann. Phytopathol. Soc. Japan 48(1): 46. 1982.
Materials examined: Japan, Kagawa, Kida-gun, Miki-cho, Ikenobe, from leaf spot of Stevia rebaudiana (Asteraceae), CBS $631.88=$ IFO 31212; Kagawa, Kida-gun, Miki-cho, Ikenobe, from leaf spot of Stevia rebaudiana, Jun. 1980, CBS $632.88=$ IFO 31183; Kagawa, Zentsuji, Harada-cho, from leaf spot of Stevia rebaudiana, Aug. 1978, C. Ishiba, culture ex-type of A. steviae CBS $117362=$ IFO $31182=$ E.G.S. 37.019.

Alternaria tagetica S.K. Shome \& Mustafee, Curr. Sci. 35: 370. 1966.
Materials examined: UK, from seed of Tagetes sp. (Asteraceae), before May 1979, G.S. Taylor, CBS 297.79; from seed of Tagetes sp., before May 1979, G.S. Taylor, CBS 298.79; England, Manchester, from seed of Tagetes erecta (Asteraceae), before Apr. 1980, G.S. Taylor, representative isolate of A. tagetica CBS 479.81 = E.G.S. 33.081 . USA, Ohio, Butler County, Oxford, from leaf of cultivated Tagetes sp., 14 Jun. 1996, M.A. Vincent, representative isolate of A. tagetica CBS 117217 = E.G.S 44.045 ; South Carolina, Clemson, from seed of Tagetes sp., before Mar. 1981, E. Smallwood Hotchkiss, representative isolate of A. tagetica CBS 480.81 = E.G.S. 33.184.

Alternaria thunbergiae E.G. Simmons \& Alcorn, CBS Biodiversity Ser. (Utrecht) 6: 136. 2007. Fig. 27.
$=$ Alternaria iranica E.G. Simmons \& Ghosta, CBS Biodiversity Ser. (Utrecht) 6: 122. 2007.
Materials examined: Australia, Queensland, Brisbane, Chapel Hill, from leaf spot of Thunbergia alata (Acanthaceae), 6 Feb. 1986, J.L. Alcorn, culture ex-type of A. thunbergiae CBS 116331 = E.G.S. 41.073 = BRIP 14963. Iran, Miandoab, from leaf of Allium cepa (Amaryllidaceae), 13 Sep. 2001, Y. Ghosta, culture ex-type of A. iranica CBS 120986 = E.G.S. 51.075. New Zealand, Auckland, Mangere, Tidal Road, from Thunbergia alata, 4 Jun. 2001, C.F. Hill, CBS 122597.

Notes: By synonymising A. iranica with A. thunbergiae, the host range of this taxon has expanded to include Allium cepa. The five sequenced genes are 100% identical between the extype strains of A. thunbergiae and A. iranica. As both species were originally described in the same publication, there is no case for nomenclatural priority. Therefore we chose to synonymise A. iranica under A. thunbergiae because A. thunbergiae is more commonly used in literature (Leahy 1992, Melo et al. 2009).

Alternaria tillandsiae E.G. Simmons \& C.F. Hill, CBS Biodiversity Ser. (Utrecht) 6: 314. 2007.
Material examined: USA, from Tillandsia usneoides (Bromeliaceae), Dec. 1995, B. Milnes, culture ex-type of A. tillandsiae CBS 116116 = E.G.S. 43.074.

Alternaria tropica E.G. Simmons, Mycotaxon 46: 187. 1993.
Materials examined: USA, Florida, Homestead, from fruit of Passiflora edulis (Passifloraceae), May 1990, R.T. McMillan Jr., culture ex-type of A. tropica CBS 631.93 = E.G.S. 39.126; Florida, Homestead, from fruit of Passiflora edulis, May 1990, R.T. McMillan Jr., representative isolate of A. tropica CBS $117216=$ E.G.S. 39.125.

Fig. 27. Alternaria thunbergiae: conidia and conidiophores. A-C. CBS 116331. D-E. CBS 122597. F-H. CBS 120986. Scale bars $=10 \mu \mathrm{~m}$.

Alternaria venezuelensis E.G. Simmons \& Rumbos, CBS Biodiversity Ser. (Utrecht) 6: 128. 2007.

Material examined: Venezuela, Maracay, from leaf spot of Phaseolus vulgaris (Fabaceae), before Oct. 1999, R. Rumbos, culture ex-type of A. venezuelensis CBS $116121=$ E.G.S. 48.065.

Alternaria zinniae M.B. Ellis, Mycol. Pap. 131: 22. 1972.
= Alternaria zinniae H. Pape, Angew. Bot. 24: 61. 1942. (nom. inval., Art. 36.1)
Materials examined: Hungary, from seed of Callistephus chinensis (Asteraceae), 12 Aug. 1942, P. Neergaard, CBS 118.44. Italy, Sardinia, Sasseri, from Zinnia elegans (Asteraceae), 18 Oct. 1958, U. Prota, CBS 117.59. Netherlands, Huizum, from leaf of Zinnia sp., 27 Jul. 1948, A. Jaarsveld, CBS 107.48. New Zealand, Auckland, Royal Oak, from leaf spot of Zinnia elegans, May 1996, C.F. Hill, representative isolate of A. zinniae CBS 117223 = E.G.S. 44.035. UK, from seed of Zinnia sp., 1979, G.S. Taylor, CBS 299.79; from seed of Zinnia sp., 1979, G.S. Taylor, CBS 300.79. Unknown, from Zinnia elegans, summer 1961, Smith, CBS 108.61.

Section Euphorbiicola Woudenb. \& Crous, sect. nov. MycoBank MB809001. Fig. 28.
Type species: Alternaria euphorbiicola E.G. Simmons \& Engelhard

Fig. 28. Alternaria section Euphorbiicola: conidia and conidiophores. A-G. Alternaria limicola. H-P. Alternaria euphorbiicola. A-D. CBS 117360. E-G. CBS 483.90. H-J. CBS 198.86. K-M. CBS 119410. $\mathrm{N}-\mathrm{P}$. CBS 133874. Scale bars $=10 \mu \mathrm{~m}$.

Section Euphorbiicola is characterised by ovoid, obclavate, medium to large conidia that are disto- and euseptate, in short to moderately long chains, with no or a simple long beak in the terminal conidia. Conidia contain multiple transverse and some longitudinal septa and are slightly constricted near some transverse septa. Short to long, broad, apical, and sometimes lateral, secondary conidiophores are formed.

Note: The new Alternaria sect. Euphorbiicola can be easily distinguished from sect. Porri based on the formation of conidia in chains in section Euphorbiicola.

Alternaria euphorbiicola E.G. Simmons \& Engelhard, Mycotaxon 25: 196. 1986.
\equiv Macrosporium euphorbiae Reichert, Bot. Jahrb. Syst. 56:723.1921. Non Macrosporium euphorbiae Bartholomew 1908. (nom. illegit., Art 53.1).

Materials examined: USA, Florida, from Euphorbia pulcherrima (Euphorbiaceae), 1985, A.W. Engelhard, CBS 198.86 = E.G.S. 38.082; Hawaii, Oahu, from Euphorbia pulcherrima, Mar. 1984, M. Aragaki, representative isolate CBS 119410 = E.G.S. 41.029; Louisiana, from Euphorbia hyssopifolia (Euphorbiaceae), 1986, L. Walker, CBS 133874 = E.G.S 38.191.

Alternaria limicola E.G. Simmons \& M.E. Palm, Mycotaxon 37: 82. 1990.
Materials examined: Mexico, Colima, from leaf of Citrus aurantiifolia (Rutaceae), May 1989, M. Palm, culture ex-type of A. limicola CBS $483.90=$ E.G.S. 39.070; Jalisco, from Citrus sp., Sep. 1995, M. Palm, representative isolate CBS $117360=$ E.G.S. 43.009.

DISCUSSION

In the present phylogenetic study aiming to delimit Alternaria species in sect. Porri, we reduced the 82 known morphospecies in this section to 63 based on our polyphasic approach. Some important plant pathogens have now been assigned to specific clades in the phylogenetic tree and correlated with their distinct morphology, which will aid plant pathologists to identify their newly collected isolates.

The 10 isolates named A. solani at the onset of this study cluster within five different species clades, and only three of them retain the name A. solani. This is not surprising, as almost all large-spored, narrow-beaked Alternaria strains hitherto isolated from Solanaceae were called A. solani, following the concept of M.B. Ellis (1971). Simmons (2000) already noted that early blight of tomato is actually caused by A. tomatophila rather than A. solani, and also described two additional species on tomato, A. cretica and A. subcylindrica. These tomato pathogens all cluster in one clade based on our phylogenetic analysis, which also includes the ex-type strain of A. linariae. The basionym of A. linariae, A. anagallidis var. linariae, is the oldest name in this cluster, which therefore applies to this clade mainly represented by tomato pathogens. When Neergaard (1945) described this species he found the fungus on seeds and seedlings with damping-off symptoms from Linaria marroccana (Scrophulariaceae), Antirrhinum majus (Scrophulariaceae) and on a healthy seedling of Papaver rhoeas (Papaveraceae). His pathogenicity tests (Neergaard 1945) showed that A. linariae could also attack Brassica oleracea (Brassicaceae), Solanum lycopersicum (Solanaceae), Lactuca sativa (Asteraceae), Godetia hybrida (Onagraceae), Nicotiana affinis
(Solanaceae) and Papaver paeoniflorum (Papaveraceae), indicating a very broad host range. The isolates included in this study also show that, besides its broad host range, A. linariae is also widespread, found in Europe, USA, New Zealand and Asia. Three other isolates formerly identified as A. solani, including a former representative isolate used by Simmons (2007), cluster with A. protenta, an Alternaria species originally described from Helianthus annuus (Asteraceae). CBS 116651 is mentioned as a representative strain of A. solani by Simmons (2007), but he later expressed doubt as to the identity of this isolate (Simmons pers. comm.). The host range of A. protenta has expanded extensively, now comprising plants from the Asteraceae, Euphorbiaceae, Gramineae and Solanaceae. A pathogenicity test performed on A. protenta isolated from sunflower seed (Wu \& Wu 2003) concluded that sunflower was the only susceptible host among the 10 host plants tested. One of the host plants tested was Solanum lycopersicum, which we include as host of A. protenta. However, the authors did not clearly state how the A. protenta isolates, which they only found on seed of one out of seven cultivars of sunflower seeds tested, were identified. The manuscript also lacks molecular data, which could affirm their identification of A. protenta. To our knowledge, no pathogenicity tests have thus far been performed with the species synonymised under A. protenta, A. hordeiseminis or A. pulcherrimae. Based on molecular and morphological data, A. protenta is closely related to A. solani, and these two species can only be distinguished by the 9 nt differences in their RPB2 sequences. To confirm the potato pathogen clade, called A. solani, we sequenced the RPB2 region of multiple isolates collected from Solanum tuberosum, which are present in E.G. Simmons collection, now deposited at the CBS. Almost all (22/24 strains) cluster within the now recognised A. solani species clade (data not shown). The ex-type strain of A. danida (CBS 111.44), now a synonym of A. solani, was originally deposited in the CBS collection by P. Neergaard as A. porrif. sp. solani. Pathogenicity tests performed on this strain (Neergaard 1945) showed that it could attack hosts from several plant families [e.g. Allium cepa (Amaryllidaceae), Brassica oleracea (Brassicaceae), Solanum lycopersicum (Solanaceae) and Lactuca sativa (Asteraceae)], indicating a very broad host range. Our sequences of A. danida differ from those deposited in GenBank by Lawrence et al. (2013), and therefore we repeated the cultivation and DNA extraction to confirm our results and the resulting synonymy with A. solani. Although the other large-spored, long-beaked Alternaria species described from potato, A. grandis (Simmons 2000), differs only by 1 nt in its GAPDH sequence (position 99, T instead of C, see locus alignment in TreeBASE) within the 2722 positions used in the phylogeny, we did not synonymise A. grandis under A. solani. The two isolates included, CBS 109158 and CBS 116695, have substantially larger conidia than the other A. solani isolates, and a recently published study revealed that A. solani (CBS 109157) and A. grandis (CBS 109158) differ on 8 out of 770 nt in their calmodulin sequence (Gannibal et al. 2014).

The oldest large-spored onion pathogens, A. porri and A. allii, form two closely related but distinct clades, which only differ based on 8 nt in their RPB2 sequences (see locus alignment in TreeBASE). The three newer species described from Allium, A. ascaloniae, A. iranica and A. vanuatuensis (Simmons 2007), are all synonymised with other species. Alternaria ascaloniae is synonymised under A. solani-nigri, a species with a broad host range, mainly found in New Zealand. To our knowledge, no pathogenicity tests have been performed with the species now placed in synonomy with A. solani-nigri, which could affirm the broad host range for this species. Alternaria iranica is synonymised under A. thunbergiae, known as the causative agent of Alternaria leaf spot on Thunbergia (Leahy 1992), reported from Australia, USA and Brazil. Alternaria vanuatuensis clusters in the Allium clade, comprising A. allii and A. porri. Based on
the sequence data generated here, it is synonymised under A. allii. According to Simmons (2007), the conidia of A. allii are distinguishable from those of A. porri and other large-spored species known on Allium, based on their multiple beaks and branches. However, the representative isolates of A. allii used by Simmons (2007) do not cluster in a single clade; CBS 116649 clusters with the two A. porri representative isolates. On the other hand, A. vanuatuensis is described as a single-beaked species, but clusters with the A. allii isolate deposited in the CBS collection by J.A.B. Nolla on 27 December 1927 as A. allii sp. nov. (CBS 107.28, recognised as the ex-type strain here). Simmons obtained this isolate from the CBS in February 2000 (E.G.S. 48.084), but was unable to induce sporulation. We observed few conidia, but these were only singlebeaked. Unfortunately we could not induce CBS 116701 to sporulate, which leaves us at odds with Simmons's notes, with only single- to double-beaked conidia in the A. allii clade, and double- to triple-beaked conidia in the A. porri clade. The number of beaks and branches from the Allium isolates therefore is not suitable to make a distinction between the two major Allium species. The species can be easily differentiated on the basis of sequence data of the RPB2 gene region generated in this study.

Based on morphology, four large-spored Alternaria species with long beaks were described as Passifloraceae pathogens. Our phylogeny only supports three of these: A. tropica, A. aragakii and the more common A. passiflorae. The fourth species, A. hawaiiensis, is synonymised under A. passiflorae based on sequence data. Simmons (2007) described A. hawaiiensis as a new species lacking multiple beaks, which is a characteristic of A. passiflorae. Our sequence data led us to conclude that this characteristic is not suitable for species delimitation, which we also concluded from the data of the onion pathogens, A. allii, A. vanuatuensis and A. porri. The clustering of two isolates within our A. passiflorae clade, which originate from different host families (Onagraceae and Solanaceae), renders A. passiflorae as unspecific to Passifloraceae.

An ongoing study in South Africa on sweet potato pathogens reveals multiple Alternaria species on this host associated with blight symptoms on leaves, petioles, and stems. In addition to the known pathogen of sweet potato, A. bataticola, three other pathogenic species are delineated of which two are newly described as A. ipomoeae and A. neoipomoea. A new unknown Alternaria pathogen, causing sweet potato stem blight in Ethiopia, was reported by van Bruggen in 1984. This isolate (CBS 219.79) was sent to the CBS for identification, but the author did not agree with the morphological identification made at that time as A. cucumerina, a name under which it was still stored in the CBS collection. Our data indicate that this pathogen, which also is found in stem lesions of Ipomoea batatas in South Africa, should be recognised as a new species, now named A. ipomoeae. Most isolates from South Africa however cluster in a clade close to A. ipomoeae, now named A. neoipomoea, which can clearly be distinguished from A. ipomoeae morphologically and by sequence data. Two more isolates from sweet potato in South Africa are identified as A. argyroxiphii, an Alternaria species originally described from Argyroxiphium sp. This finding is a new host report for A. argyroxiphii, and a first report of the fungus from South Africa.

Based on the sequence data generated in this study, A. euphorbiicola and A. limicola clearly separate from the other species in sect. Porri (Fig. 1). This separation is supported by morphological differences, and we therefore propose the new section, sect. Euphorbiicola. However, when we examined the phylogeny displaying the neighbouring sections of sect. Porri (Fig. 2), questions arose concerning sect. Gypsophilae and sect. Radicina. These two sections display almost similar branch length differences within the respective sections, comparable to what sect. Porri displays with sect. Euphorbiicola. An additional character of sect. Gypsophilae and sect. Radicina is that the species within these sections share the same
host family, respectively Caryophyllaceae and Apiaceae. We therefore choose to retain these sections at present, but additional molecular and morphological studies could eventually lead to the recognition of additional sections.

The present polyphasic approach displays the current species delimitation in Alternaria sect. Porri. We recognise 63 Alternaria species in this section with medium to large conidia and a long (filamentous) beak, which can be distinguished based on molecular data. Not all species distinctions are 100% clear based on DNA data only; nevertheless, we tried to be consistent in synonymising or not synonymising species: the number of genes with nt differences and the number of nt differences are taken into account, together with the morphology, host, country and time of isolation. All Alternaria isolates currently stored in the CBS collection, which cluster within sect. Porri based on their gene sequences, were included in our study. Some species, however, are under-sampled, which results in some uncertainty in keeping isolates as separate species or reducing them to synonymy. Although we attempted to use the available data as best as possible, with the inclusion of additional isolates some uncertain species boundaries are bound to be better resolved.

The finding of the third species on potato (A. protenta) is a good example of the importance of fungal systematics. Multiple manuscripts report on the high level of genetic variability observed among A. solani isolates (van der Waals et al. 2004, Lourenco Jr et al. 2011, Leiminger et al. 2013) and based on secondary metabolite profiling A. solani isolates cluster in two distinct groups (Andersen et al. 2008). Furthermore, two genotypes are described based on the cytochrome b gene structure of A. solani isolates (Leiminger et al. 2014), which is an important gene in fungicide resistance. However, our study indicates that previous reports could actually be dealing with three (or more) different species. Without knowing the correct identity of your pathogen, many incorrect conclusions can be drawn about diversity, evolutionary mechanisms, host range, and options for disease control.

ACKNOWLEDGEMENTS

This research was supported by the Dutch Ministry of Education, Culture and Science through an endowment of the FES programme "Making the tree of life work".

Alternaria section Alternaria: species, formae speciales or pathotypes

J.H.C. Woudenberg ${ }^{1,2}$, M.F. Seidl², J.Z. Groenewald ${ }^{1}$, M. de Vries ${ }^{1}$, J.B. Stielow ${ }^{1}$, B.P.H.J. Thomma ${ }^{2}$, and P.W. Crous ${ }^{1,2,3}$

${ }^{1}$ CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands;
${ }^{2}$ Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands;
${ }^{3}$ Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa

Article submitted for publication

Key words: Alternaria alternata, Alternaria arborescens species complex, multi-gene phylogeny, transcriptome sequencing, whole-genome sequencing.

Abstract

The cosmopolitan fungal genus Alternaria consists of multiple saprophytic and pathogenic species. Based on phylogenetic and morphological studies, the genus is currently divided into 25 sections. Alternaria section Alternaria contains most of the small-spored Alternaria species with concatenated conidia, including important plant, human and postharvest pathogens. Species within section Alternaria have been mostly described based on morphology and / or host-specificity, yet molecular variation between them is minimal. To investigate whether the described morphospecies within section Alternaria are supported by molecular data, we performed whole-genome sequencing of nine Alternaria species supplemented with transcriptome sequencing of 12 Alternaria species as well as multi-gene sequencing of 168 Alternaria isolates. The assembled genomes ranged in size from 33.335.2 Mb within section Alternaria and from $32.0-39.1 \mathrm{Mb}$ for all Alternaria genomes. The number of repetitive sequences differed significantly between the different Alternaria genomes; ranging from $1.4-16.5 \%$. Within section Alternaria the repeat content is comparably low with only $1.4-2.7$ \% of repeats. Whole-genome alignments revealed 96.7-98.2 \% genome identity between section Alternaria isolates, compared to $85.1-89.3$ \% genome identity for isolates from other sections to the A. alternata reference genome. Similarly, we observed 1.4-2.8 and $0.8-1.8 \%$ single nucleotide polymorphisms (SNPs) in genomic and transcriptomic sequences, respectively, between isolates from section Alternaria, while the percentage of SNPs found in isolates from different sections compared to the A. alternata reference was considerably higher; $8.0-10.3$ and $6.1-8.5 \%$. The topology of a phylogenetic tree based on the whole-genome and transcriptome reads was congruent with multi-gene phylogenies based on commonly used gene regions. Based on the genome and transcriptome data, a set of core proteins was extracted, and primers were designed on two gene regions with a relatively low degree of conservation within section Alternaria (96.8 and 97.3 \% conservation). Their potential discriminatory power within section Alternaria was tested next to nine commonly used gene regions in section Alternaria, namely the SSU, LSU, ITS, GAPDH, RPB2, TEF1, Alt a 1, endoPG and OPA10-2 gene regions. We observed that the phylogenies from the two gene regions with a relatively low conservation, KOG1058 and KOG1077, could not distinguish the described morphospecies within section Alternaria more effectively than the phylogenies based on the commonly used gene regions for Alternaria. Based on genome and transcriptome comparisons and molecular phylogenies, Alternaria section Alternaria consists of only 11 phylogenetic species and one species complex. Thirty-five morphospecies, which cannot reliably be distinguished based on the multi-gene phylogeny, are synonymised under A. alternata. By providing guidelines for the naming and identification of species in Alternaria section Alternaria, we hope that this manuscript provides a clear and stable species classification in this section.

INTRODUCTION

Alternaria section Alternaria contains most of the small-spored Alternaria species with concatenated conidia. Almost 60 morphological or host-specific species can be assigned to this section, including the type species of the genus Alternaria, A. alternata (Chapter 2). Alternaria alternata is known as the cause of leaf spot and other diseases in over 100 host species of plants (Rotem 1994), but also as post-harvest disease in various crops (Coates \& Johnson 1997) and of upper respiratory tract infections and asthma in humans (Kurup et al. 2000). Other important plant pathogens in section Alternaria include A. longipes, the causal agent of brown spot of tobacco, A. mali, the causal agent of Alternaria blotch of apple, A. gaisen, the causal agent of black spot of Japanese pear and A. arborescens, the causal agent of stem canker of tomato. The first descriptions of the A. alternata, A. tenuissima, A. cheiranthi and A. brassicicola speciesgroups, based on sporulation patterns, were made in 1995 (Simmons). More recent molecularbased studies revealed that Alternaria species cluster in several distinct species clades, now referred to as sections (Lawrence et al. 2013, Chapter 2), which do not always correlate with the species-groups that were delineated based on morphological characteristics. Currently, 25 Alternaria sections are recognised based on molecular phylogenies (Chapter 2, Chapter 4). So far, species within section Alternaria have been mostly described based on morphology and / or host-specificity; yet the molecular variation between them is minimal. The standard gene regions used for the delimitation of Alternaria species are not able to delineate species within section Alternaria (Peever et al. 2004, Andrew et al. 2009). Multiple molecular methods have been tested or proposed for separating species among the small-spored Alternaria species, including random amplified polymorphic DNA (Roberts et al. 2000), amplified fragment length polymorphism (Somma et al. 2011), selective subtractive hybridisation (Roberts et al. 2012) and sequence characterised amplified genomic regions (Stewart et al. 2013a). However, none of these methods successfully distinguished all species described within section Alternaria.

The terms forma specialis and pathotype have been used to describe isolates that are morphologically indistinguishable from A. alternata, but infect particular hosts. At least 16 different f. $s p$. epithets occur in the literature, of which most were raised to species level by Simmons (2007). Nishimura \& Kohmoto (1983) proposed that Alternaria strains with identical morphology but producing different host-selective toxins (HST) should be defined as distinct pathotypes of Alternaria. Currently there are seven pathotypes of A. alternata described (Akimitsu et al. 2014), but this term is not widely adopted, and the "old" species names are still used.

Since most morphospecies within section Alternaria cannot be distinguished based on sequences of the standard housekeeping genes (Andrew et al. 2009), whole-genome sequencing technologies can be applied to search for genes which can distinguish (most of) the described morphospecies (Lawrence et al. 2012). Since the introduction of next generation sequencing (NGS) many fungal genomes have become available for study, with the 1000 fungal genomes project (Spatafora 2011) as a public stimulant for generating this kind of data. Currently there are two publicly available Alternaria genomes at NCBI (National Center for Biotechnology Information), namely A. brassicicola, section Brassicicola (BioProject PRJNA34523) and A. arborescens, section Alternaria (BioProject PRJNA78243).

In this study, we generated whole-genome sequences of four Alternaria spp. from section Alternaria and five Alternaria spp. from five other sections, and supplemented the analyses by transcriptome sequences of nine Alternaria spp. from section Alternaria and three Alternaria spp. from three other sections of Alternaria. Species were selected based on their phylogenetic
position (Chapter 2) in such a way that they represent the whole genus Alternaria, from the sister section of section Alternaria, sect. Alternantherae (A. alternantherae), to the most distant section, sect. Crivellia (A. papaveraceae). Within section Alternaria, species were selected based on their economic importance. Based on the genome and transcriptome data, two gene regions with a relatively low conservation, the eukaryotic orthologous group (KOG) protein loci, KOG1058 (96.8 \% conservation) and KOG1077 (97.3 \% conservation), were identified and tested for their potential discriminatory power within section Alternaria. Together with a standard multigene phylogeny of 168 Alternaria isolates based on sequences of parts of nine gene regions, namely the internal transcribed spacer regions 1 and 2 and intervening 5.8S nrDNA (ITS), the 18 S nrDNA (SSU), the 28 S nrDNA (LSU), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), RNA polymerase second largest subunit (RPB2), translation elongation factor 1-alpha (TEF1), Alternaria major allergen gene (Alt a 1), endopolygalacturonase (endoPG) and an anonymous gene region (OPA10-2), we attempt to create a clear and stable species classification in Alternaria section Alternaria.

MATERIALS AND METHODS

Isolates

One-hundred-and-sixty-eight Alternaria strains, including 64 (ex-)type or representative strains, present at the Centraalbureau voor Schimmelcultures (CBS-KNAW), Utrecht, The Netherlands, were included in this study (Table 1) based on the phylogenetic position derived from their ITS sequence. With 'representative isolate' we refer to the strains used to describe the species based on morphology in The Alternaria Identification Manual (Simmons 2007). Freeze-dried strains were revived in 2 ml malt / peptone ($50 \% / 50 \%$) and subsequently transferred to oatmeal agar (OA) (Crous et al. 2009c). Strains stored in liquid nitrogen were transferred to OA directly from the $-185^{\circ} \mathrm{C}$ storage.

DNA and RNA isolation for NGS

The genomes of four Alternaria spp. from section Alternaria and five Alternaria spp. from five other sections (Table 2) as well as the transcriptome profiles of nine Alternaria spp. from section Alternaria and three Alternaria spp. representing three other sections of Alternaria were sequenced (Table 3). Species were selected based on their economic importance and their phylogenetic position, with the intention to be representative of the entire genus Alternaria with a focus on section Alternaria. Isolates were grown in malt peptone (MP) (Crous et al. 2009c) supplemented with $1 \times$ BME vitamin solution (Sigma-Aldrich ${ }^{\circledR}$ Chemie B.V., Zwijndrecht, The Netherlands) in a shaking incubator, at $25^{\circ} \mathrm{C}$, in the dark, for 3 d . When growth was observed, cultures were mixed in a blender and transferred to fresh MP with vitamin solution, and returned to the shaking incubator for another 2-3 d. When sufficient growth was observed, the mycelium was harvested with a Whatman No. 4 filter disk and a Buchner funnel, attached to a vacuum flask.

For isolating DNA, QIAGEN Genomic 100/G tips (QIAGEN Benelux B.V., Venlo, The Netherlands) were used and processed following the lysis protocol for tissue in the QIAGEN Blood \& Cell Culture DNA kit. The following alternative steps, as suggested by the protocol, were followed. The mycelium, of which a maximum of 4 g (wet weight) was used, was grinded to a fine powder with liquid nitrogen in a pre-cooled mortar and pestle. Proteinase K stock
solution was added to the solution, after which it was incubated for 2 h at $50^{\circ} \mathrm{C}$ in a shaking incubator running at 700 rpm . Prewarmed QF buffer $\left(50^{\circ} \mathrm{C}\right)$ was used to elute the genomic DNA, and after precipitation the DNA was centrifuged at $4^{\circ} \mathrm{C}$ for 20 min at $8500 \times \mathrm{g}$.

For isolating RNA, the QIAGEN RNeasy Midi kit was used following the protocol for isolation of total RNA from animal tissues including the optional on-column DNase digestion. For the disruption of the tissue and homogenisation of the lysate, the mortar and pestle with needle and syringe homogenisation method, as described in the protocol, was followed. All centrifuge steps are performed at room temperature at $4000 \times \mathrm{g}$. When necessary, a final standard LiCl purification was performed.

NGS

DNA sequence and RNA sequence library preparation (500 bp insert) for Illumina ${ }^{\circledR}$ sequencing and the sequencing itself(100-bp paired end reads) were performed at the Applied Biosystematics group of Plant Research International (PRI, Wageningen, The Netherlands).

DNA sequence library preparation for Ion Torrent ${ }^{\mathrm{TM}}$ sequencing was performed at the CBSKNAW. The Ion Torrent ${ }^{\mathrm{TM}}$ library preparation was carried out using the Ion Xpress ${ }^{\mathrm{TM}}$ Fragment Library Kit (Thermo Fisher Scientific, Bleiswijk, The Netherlands), with 180 ng of DNA. Adapter ligation, size selection and nick repair were performed as described in the Ion Torrent ${ }^{\mathrm{TM}}$ protocol using the Ion Xpress ${ }^{\mathrm{TM}}$ Plus Fragment Library Kit (Thermo Fisher Scientific), with a shearing time of 13 min . The 2100 Bioanalyzer system (Agilent Technologies Netherlands BV, Amstelveen, The Netherlands) and the associated High Sensitivity DNA Analysis kit (Agilent Technologies) were used to determine the quality and concentration of the libraries. The amount of library required for template preparation was calculated using the Template Dilution Factor calculation described in the protocol (DNA concentration diluted to 42 pM). Emulsion PCR and enrichment steps were carried out using the Ion PGM ${ }^{\mathrm{TM}}$ Template OT2 200 Kit (Thermo Fisher Scientific) and associated protocol. The enrichment percentage was determent via the Ion Sphere ${ }^{\mathrm{TM}}$ Quality Control Kit (Thermo Fisher Scientific) and was performed between the emulsion PCR and the enrichment step. Sequencing was performed using the Ion PGM ${ }^{\mathrm{TM}}$ Sequencing 200 Kit v2 (Thermo Fisher Scientific) with an Ion 318^{TM} Chip Kit v2 (Thermo Fisher Scientific).

Genome assembly and mapping

De novo genome assembly of the Illumina ${ }^{\circledR}$ paired-end reads were quality-filtered and assembled using the A5 pipeline v. 13.01.2014 (Tritt et al. 2012) and de novo genome assembly of Ion Torrent ${ }^{\mathrm{TM}}$ reads was performed using Newbler v. 2.9 (454 Life Sciences, Roche Applied Science, Branford, CT, USA). Repeats in the assembled genomes were identified using de novo repeat detection with RepeatModeler (Smit \& Hubley 2008) followed by genome-wide repeat annotation using RepeatMasker (Smit et al. 1996), combining the de novo repeats with previously described repeat families from RepBase Update (release 31-04-2014) (Jurka et al. 2005).

Whole-genome alignments were performed using NUCmer, part of the MUMmer v. 3.1 package (Kurtz et al. 2004), using the 'mum' option to find matches unique in query and reference. Subsequently, the average identity of the aligned sequences was calculated using dnadiff, part of MUMmer v. 3.1.

Genomic variants were inferred using GATK v. 3.3 (DePristo et al. 2011). Briefly, genomic or transcriptomic reads were mapped against a reference genome (A. alternata CBS 916.96)
Table 1. Isolates used in this study and their GenBank accession numbers. Species name and strain number ${ }^{1,2}$

Locality, host / substrate

GenBank accession numbers ${ }^{3}$

KOG1058	KOG1077
KP125226	np
KP125227	KP125275

KC584506	KC584251	KC584179	KC584096	KC584633	KC584374	KP123846	np	np	KP125227	KP125275
KP124919	KP124449	KP124298	KP124155	KP125073	KP124766	KP123847	AY295020	JQ800620		
KP124920	KP124450	KP124299	KP124156	KP125074	KP124767	KP123848	KP123995	KP124603		
KP124921	KP124451	KP124300	KP124157	KP125075	KP124768	KP123849	KP123996	KP124604		
KP124922	KP124452	KP124301	KP124158	KP125076	KP124769	KP123851	KP123998	KP124606		
KP124923	KP124453	KP124302	KP124159	KP125077	KP124770	KP123852	KP123999	KP124607	KP125228	KP125276
KP124924	KP124454	Y17071	JQ646308	KP125078	KP124771	KP123853	KP124000	KP124608		

KP124610
KP124611
KP124612
KP124613
KP124614
$n p$
np
Table 1. (Continued).

$\text { number }{ }^{1,2}$	Locality, host / substrate					GenBank	accession	numbers ${ }^{3}$				
		SSU	LSU	ITS	GAPDH	TEF1	RPB2	Alt a 1	endoPG	OPA10-2	KOG1058	KOG1077
CBS 612.72; DSM 62012 (A. cinerariae)	Germany, Senecio cineraria	KP124930	KP124460	KP124308	KP124165	KP125084	KP124777	KP123861	KP124008	KP124615		
CBS 795.72; ATCC 24127; IHEM 3789	USA, Plantago aristida	KP124931	KP124461	KP124309	KP124166	KP125085	KP124778	KP123862	KP124009	KP124616		
CBS 198.74 (A. chlamydospora)	Kuwait, soil	KP124932	KP124462	KP124310	KP124167	KP125086	np	KP123863	KP124010	KP124617		
CBS 267.77 (A. citri)	USA, Citrus paradisi	KP124933	KP124463	KP124311	KP124168	KP125087	KP124779	KP123864	KP124011	KP124618		
CBS 603.78; E.G.S. 30.134; QM 9553	USA, air	KP124934	KP124464	KP124312	KP124169	KP125088	KP124780	KP123865	KP124012	KP124619		
CBS 175.80 (A. septorioides)	Italy, unknown	KP124935	KP124465	KP124313	JQ646324	KP125089	KP124781	KP123866	KP124013	KP124620		
CBS 192.81 (A. citri)	Egypt, Citrus sinensis	KP124936	KP124466	KP124314	KP124170	KP125090	KP124782	KP123867	KP124014	KP124621		
CBS 620.83; ATCC 15052 (A. tenuissima)	USA, Nicotiana tabacum	KP124937	KP124467	KP124315	KP124171	KP125091	KP124783	KP123868	KP124015	KP124622		
CBS 194.86; E.G.S. 04.090; QM 1347 (A. pulvinifungicola ${ }^{\text {T }}$)	USA, Quercus sp.	KP124938	KP124468	KP124316	KP124172	KP125092	KP124784	KP123869	KP124016	KP124623	KP125230	KP125278
CBS 195.86; E.G.S. 36.172; DAOM 185214 (A. angustiovoidea ${ }^{\text {T }}$)	Canada, Euphorbia esula	KP124939	KP124469	KP124317	KP124173	KP125093	KP124785	JQ646398	KP124017	KP124624	KP125231	KP125279
CBS 447.86 (A. malvae)	Marocco, Malva sp.	KP124940	KP124470	KP124318	JQ646314	KP125094	KP124786	JQ646397	KP124018	KP124625		
CBS 479.90; E.G.S. 29.028 (A. pellucida ${ }^{\mathrm{T}}$)	Japan, Citrus unshiu	KP124941	KP124471	KP124319	KP124174	KP125095	KP124787	KP123870	KP124019	KP124626	KP125232	KP125280
CBS 595.93 (A. rhadina ${ }^{\text {T }}$)	Japan, Pyrus pyrifolia	KP124942	KP124472	KP124320	KP124175	KP125096	KP124788	JQ646399	KP124020	KP124627		
CBS 877.95 (A. tenuissima)	India, human, sinusitis	KP124943	KP124473	KP124321	KP124176	KP125097	KP124789	KP123871	KP124021	np		
CBS 880.95; IMI 292915 (A. tenuissima)	Belgium, Fragaria vesca	KP124944	KP124474	KP124322	KP124177	KP125098	KP124790	np	KP124022	KP124628		
CBS 965.95; IMI 289679 (A. tenuissima)	India, Triticum sp.	KP124945	KP124475	KP124323	KP124178	KP125099	KP124791	KP123872	KP124023	KP124629		
CBS 966.95; IMI 79630 (A. tenuissima)	India, Solanum lycopersicum	KP124946	KP124476	KP124324	KP124179	KP125100	KP124792	KP123873	KP124024	KP124630		
CBS 806.96	Papua New Guinea, Cyperaceae	KP124947	KP124477	KP124325	KP124180	KP125101	KP124793	KP123874	KP124025	KP124631		

Table 1. (Continued).
Species name and strain
number ${ }^{1,2}$
Locality, host / substrate
CBS 916.96; E.G.S. 34.016;
CBS 110977; CBS 115616; Arachis hypogaea
IMI 254138
CBS 918.96; E.G.S. 34.015; UK, Dianthus chinensis
IMI 255532 (A. tenuissima
CBS 911.97 ; IMI 056271 (A. India, Artemisia brevifolia
tenuissima)
CBS 639.97; IMI $366417 \quad$ Greece, Helianthus annuus
CBS 102595; E.G.S. 45.100 USA, Citrus jambhiri
,
CBS 102596; E.G.S (A. citrimacularis ${ }^{T}$)
CBS 102598; E.G (A. citriarbusti ${ }^{\mathrm{T}}$)
CBS $1025\left({ }^{\text {a }}{ }^{\text {T }}\right.$
E.G.S.
CBS 102600, 38963 39.181; ATCC
toxicogenica ${ }^{\text {T }}$
toxicogenica ${ }^{\text {) }}$
(AS 102602; E.
(A. perangusta
(A. interrupta ${ }^{\mathrm{T}}$)
(A.
CBS 109455
CBS 109803 CBS 110027 Germany, human eye CBS 110977; E.G.S. 34.016; India, Arachis hypogaea CBS 916.96; CBS 115616 ${ }^{\text {² }}$
CBS 112249
Unknown, unknown Unknown, unknown Unknown, unknown CBS 112252 (A. tenuissima)
Table 1. (Continued).

number ${ }^{1,2}$	Locality, host / substrate	GenBank accession numbers ${ }^{3}$										
		SSU	LSU	ITS	GAPDH	TEF1	RPB2	Alt a 1	endoPG	OPA10-2	KOG1058	KOG1077
CBS 113013; CPC 4268 (A. tenuissima)	South Africa, Malus domestica	KP124963	KP124493	KP124341	KP124195	KP125117	KP124809	KP123889	KP124042	KP124651		
CBS 113014; CPC 4260 (A. tenuissima)	South Africa, Malus domestica	KP124964	KP124494	KP124342	KP124196	KP125118	KP124810	KP123890	KP124043	KP124652		
CBS 113015; CPC 4266 (A. tenuissima)	South Africa, Malus domestica	KP124965	KP124495	KP124343	KP124197	KP125119	KP124811	KP123891	KP124044	KP124653		
CBS 113024; CPC 4334	South Africa, Minneola tangelo	KP124966	KP124496	KP124344	KP124198	KP125120	KP124812	KP123892	KP124045	KP124654		
CBS 113025; CPC 4342	South Africa, Citrus clementina	KP124967	KP124497	KP124345	KP124199	KP125121	KP124813	KP123893	KP124046	KP124655		
CBS 113054; CPC 4263 (A. tenuissima)	South Africa, Malus domestica	KP124968	KP124498	KP124346	KP124200	KP125122	KP124814	KP123894	KP124047	KP124656		
CBS 115069; CPC 4254 (A. tenuissima)	South Africa, Malus domestica	KP124969	KP124499	KP124347	KP124201	KP125123	KP124815	KP123895	KP124048	KP124657		
CBS 115152; HKUCC 9099	China, Psychotria serpens	KP124970	KP124500	KP124348	KP124202	KP125124	KP124816	KP123896	KP124049	KP124658		
CBS 115188; CPC 4348	South Africa, Citrus clementina	KP124971	KP124501	KP124349	KP124203	KP125125	KP124817	KP123897	KP124050	KP124659		
CBS 115190; CPC 4340	South Africa, Citrus sinensis	KP124972	KP124502	KP124350	KP124204	KP125126	KP124818	KP123898	KP124051	KP124660		
CBS 115199; CPC 4327	South Africa, Minneola tangelo	KP124973	KP124503	KP124351	KP124205	KP125127	KP124819	KP123899	KP124052	KP124661		
CBS 115200; CPC 4325	South Africa, Minneola tangelo	KP124974	KP124504	KP124352	KP124206	KP125128	KP124820	KP123900	KP124053	KP124662		
CBS 115616; EGS 34.016; CBS 916.96; CBS $110977^{\text {T }}$	India, Arachis hypogaea	KC584507	DQ678082	AF347031	AY278808	KC584634	KC584375	AY563301	JQ811978	KP124663		
CBS 116749	Netherlands, unknown	KP124975	KP124505	KP124353	KP124207	KP125129	KP124821	KP123901	KP124054	KP124664		
CBS 117130	Italy, Arbutus unedo	KP124976	KP124506	KP124354	KP124208	KP125130	KP124822	KP123902	KP124055	KP124665		
CBS 117143	Italy, Capsicum annuum	KP124977	KP124507	KP124355	KP124209	KP125131	KP124823	KP123903	KP124056	KP124666		
CBS 118811; E.G.S. 35.158 (A. brassicinae ${ }^{\mathrm{T}}$)	USA, Brassica oleracea	KP124978	KP124508	KP124356	KP124210	KP125132	KP124824	KP123904	KP124057	KP124667	KP125242	KP125290
CBS 118812; E.G.S. 37.050 (A. daucifoliii)	USA, Daucus carota	KC584525	KC584269	KC584193	KC584112	KC584652	KC584393	KP123905	KP124058	KP124668	KP125243	KP125291

Table 1. (Continued).
Species name and strain
number ${ }^{1,2}$

GenBank accession numbers ${ }^{3}$

- OPA10-2 KOG1058 KOG1077 KP125244 KP125292
LPI25293

KP125249 KP125297
np
KP124672
KP124673
P124674
KP124675
KP124676
677
KP124068 KP124677
KP124069 KP124678

$\stackrel{0}{6}$
$\underset{y}{4}$
$\underset{y}{4}$

KP124682

3
KP124509
\circ
KP124062
KP124063
KP124064

KP 124066

KP124839 KP123917

$\frac{7}{2}$
$\underset{\sim}{2}$

\cong

KP124359 KP124213
KP124214
JQ646328
JQ646326
UP124215
A
$\stackrel{\rightharpoonup}{7}$

KP124217
KP124218
KP124219
AY278812

$\stackrel{2}{4}$
$\stackrel{y}{2}$

KP125147

RP1362
KP124363
KP124364
KJ862254
KP124365
KP124366
KP124367
AF278836
ป
ป
ป
I
さ
I

KP124519
KP124520
KP124991 KP124521
KP124522

SSU
CBS 118814; E.G.S. 44.048 USA, Solanum lycopersicum KP124979
KP124980
KP124981
KP124982
KP124983
KP124984
KP124985
KP124986
KP124987
KP124988
KP124988
KP124989
KP124990
KP124992
KP124993
Greece, Punica granatum USA, Allium sp.
Israel, Minneola tangelo
South Africa, Minneola tangelo
China, Platycodon
grandiflorus
USA, Cuscuta gronovii
China, Broussonetia papyrifera
 officinalis
KP124994
KP124995
KP124996
Table 1. (Continued).

$\text { number }{ }^{1,2}$	Locality, host / substrate	GenBank accession numbers ${ }^{3}$										
		SSU	LSU	ITS	GAPDH	TEF1	RPB2	Alt a 1	endoPG	OPA10-2	KOG1058	KOG1077
CBS 124277 (A. tenuissima)	Denmark, Prunus sp.	KP124997	KP124527	KP124373	KP124225	KP125151	KP124843	KP123921	KP124077	KP124686		
CBS 124278 (A. tenuissima)	Denmark, Prunus sp.	KP124998	KP124528	KP124374	KP124226	KP125152	KP124844	KP123922	KP124078	KP124687		
CBS 125606	India, human	KP124999	KP124529	KP124375	KP124227	KP125153	KP124845	KP123923	KP124079	KP124688		
CBS 126071 (A. tenuissima)	Namibia, soil	KP125000	KP124530	KP124376	KP124228	KP125154	KP124846	KP123924	KP124080	KP124689		
CBS 126072 (A. tenuissima)	Namibia, soil	KP125001	KP124531	KP124377	KP124229	KP125155	KP124847	KP123925	KP124081	KP124690		
CBS 126908	USA, soil	KP125002	KP124532	KP124378	KP124230	KP125156	KP124848	KP123926	KP124082	KP124691		
CBS 126910 (A. tenuis)	USA, soil	KP125003	KP124533	KP124379	KP124231	KP125157	KP124849	KP123927	KP124083	KP124692		
CBS 127334	USA, soil	KP125004	KP124534	KP124380	KP124232	KP125158	KP124850	KP123928	KP124084	KP124693		
CBS 127671; E.G.S. 52.121 (A. seleniiphila ${ }^{\mathrm{T}}$)	USA, Stanleya pinnata	KP125005	KP124535	KP124381	KP124233	KP125159	KP124851	KP123929	KP124085	KP124694		
CBS 127672; E.G.S. 52.122 (A. astragali ${ }^{\mathrm{T}}$)	USA, Astragalus bisulcatus	KP125006	KP124536	KP124382	KP124234	KP125160	KP124852	KP123930	KP124086	KP124695		
CBS 130254	India, human sputum	KP125007	KP124537	KP124383	KP124235	KP125161	KP124853	KP123931	KP124087	KP124696		
CBS 130255	India, human sputum	KP125008	KP124538	KP124384	KP124236	KP125162	KP124854	KP123932	KP124088	KP124697		
CBS 130258	India, human sputum	KP125009	KP124539	KP124385	KP124237	KP125163	KP124855	KP123933	KP124089	KP124698		
CBS 130259	India, human sputum	KP125010	KP124540	KP124386	KP124238	KP125164	KP124856	KP123934	KP124090	KP124699		
CBS 130260	India, human sputum	KP125011	KP124541	KP124387	KP124239	KP125165	KP124857	KP123935	KP124091	KP124700		
CBS 130261	India, human sputum	KP125012	KP124542	KP124388	KP124240	KP125166	KP124858	KP123936	KP124092	KP124701		
CBS 130262	India, human sputum	KP125013	KP124543	KP124389	KP124241	KP125167	KP124859	KP123937	KP124093	KP124702		
CBS 130263	India, human sputum	KP125014	KP124544	KP124390	KP124242	KP125168	KP124860	KP123938	KP124094	KP124703		
CBS 130265	India, human sputum	KP125015	KP124545	KP124391	KP124243	KP125169	KP124861	KP123939	KP124095	KP124704		
Alternaria arborescens SC												
CBS 101.13; E.G.S. 07.022; QM1765 (A. geophila ${ }^{\text {T }}$)	Switzerland, peat soil	KP125016	KP124546	KP124392	KP124244	KP125170	KP124862	KP123940	KP124096	KP124705	KP125254	KP125302
CBS 105.24; IHEM 3123 (A. alternata)	Unknown, Solanum tuberosum	KP125017	KP124547	KP124393	KP124245	KP125171	KP124863	KP123941	KP124097	KP124706		
CBS 108.41; E.G.S. 44.087; ATCC 11892 (A. alternata)	Unknown, wood	KP125018	KP124548	KP124394	KP124246	KP125172	KP124864	KP123942	KP124098	KP124707		
CBS 113.41; IHEM 3318 (A. alternata)	Unknown, Schizanthus sp.	KP125019	KP124549	KP124395	KP124247	KP125173	KP124865	KP123943	KP124099	KP124708		

Table 1．（Continued）．
Species name and strain
number ${ }^{1,2}$
Locality，host／substrate
GenBank accession numbers ${ }^{3}$
endoPG OPA10－2 KOG1058 KOG1077 KP124100 KP124709
TP124710
KP124102 KP12471
KP124712
KP124713
KP124714
KP124715
KP124106 KP124716
KP124717
KP124718
KP124109 KP124719

N
N
I

N
N
I

LZLもZIdサ LIItてIdX
3944
－JQ646390
KP124868 KP123945

KP125177 KP124869 KP123946

KP123948
KP123949
KP123950
KP123951
P123952
KP123953
KP123954
n
n
\tilde{n}
$\underset{\sim}{2}$

KP124113
KP124114
KP124115
$\frac{2}{7}$
$\frac{2}{2}$
$\frac{2}{2}$
俞
8
응
2
KP125183 KP124875

$\stackrel{\infty}{\stackrel{\infty}{\infty}} \stackrel{+}{\square}$
～ำ

号
GAPDH
KP124248
KP124249
KP124250
KP124251
KP124252
KP124253
KP124405 KP124257
KP124406 KP124258
KP124407 KP124259
JQ646321

KP125188 | ∞ |
| :---: |
| $\stackrel{2}{2}$ |
| $\frac{\pi}{2}$ |
| |

Table 1. (Continued).

number ${ }^{1,2}$	Locality, host / substrate	GenBank accession numbers ${ }^{3}$										
		SSU	LSU	ITS	GAPDH	TEF1	RPB2	Alt a 1	endoPG	OPA10-2	KOG1058	KOG1077
$\text { CBS } 124281 \text { (A. }$ arborescens)	Denmark, Triticum sp.	KP125037	KP124567	KP124414	KP124265	KP125192	KP124883	KP123961	KP124118	KP124728		
CBS 124282 (A. arborescens)	Denmark, Hordeum vulgare	KP125038	KP124568	KP124415	KP124266	KP125193	KP124884	KP123962	KP124119	KP124729		
CBS 124283 (A. tenuissima)	Russia, Oryza sp.	KP125039	KP124569	KP124416	KP124267	KP125194	KP124885	KP123963	KP124120	KP124730		
CBS 127263 (A. alternata)	Mexico, human nasal infection	KP125040	KP124570	KP124417	KP124268	KP125195	KP124886	KP123964	KP124121	KP124731		
CPC 25266	Austria, Pyrus sp.	KP125041	KP124571	KP124418	KP124269	KP125196	KP124887	KP123965	KP124122	KP124732		
Alternaria betae-kenyensis												
CBS 118810; E.G.S. 49.159; IMI $385709^{\text {T }}$	Kenya, Beta vulgaris var. cicla	KP125042	KP124572	KP124419	KP124270	KP125197	KP124888	KP123966	KP124123	KP124733	KP125258	KP125306
Alternaria burnsii												
CBS 108.27	Unknown, Gomphrena globosa	KC584601	KC584343	KC584236	KC584162	KC584727	KC584468	KP123850	KP123997	KP124605		
CBS 107.38; E.G.S. $06.185^{\text {T }}$	India, Cuminum cyminum	KP125043	KP124573	KP124420	JQ646305	KP125198	KP124889	KP123967	KP124124	KP124734	KP125259	np
CBS 110.50; MUCL 10012 (A. gossypina)	Mozambique, Gossypium sp.	KP125044	KP124574	KP124421	KP124271	KP125199	KP124890	KP123968	KP124125	KP124735		
CBS 879.95; IMI 300779 (A. tenuissima)	UK, Sorghum sp.	KP125045	KP124575	KP124422	KP124272	KP125200	KP124891	KP123969	KP124126	KP124736		
CBS 118816; E.G.S. 43.145; IMI 368045 (A. rhizophorae ${ }^{\mathrm{T}}$)	India, Rhizophora mucronata	KP125046	KP124576	KP124423	KP124273	KP125201	KP124892	KP123970	KP124127	KP124737	KP125260	KP125307
CBS 118817; E.G.S. 39.014; IMI 318433 (A. tinosporae ${ }^{\mathrm{T}}$)	India, Tinospora cordifolia	KP125047	KP124577	KP124424	KP124274	KP125202	KP124893	KP123971	KP124128	KP124738	KP125261	KP125308
CBS 130264	India, human sputum	KP125048	KP124578	KP124425	KP124275	KP125203	KP124894	KP123972	KP124129	KP124739		
Alternaria eichhorniae												
CBS 489.92; ATCC 22255; ATCC 46777; IMI $121518^{\text {T }}$	India, Eichhornia crassipes	KP125049	KP124579	KC146356	KP124276	KP125204	KP124895	KP123973	KP124130	KP124740	KP125262	KP125309
CBS 119778; E.G.S. 45.026; IMI 37968^{R}	Indonesia, Eichhornia crassipes	KP125050	KP124580	KP124426	KP124277	KP125205	KP124896	np	KP124131	KP124741	KP125263	KP125310
Alternaria gaisen												
CBS 632.93; E.G.S. $90.512^{\text {R }}$	Japan, Pyrus pyrifolia	KC584531	KC584275	KC584197	KC584116	KC584658	KC584399	KP123974	AY295033	KP124742	KP125264	KP125311

Table 1. (Continued).

number ${ }^{1,2}$	Locality, host / substrate	GenBank accession numbers ${ }^{3}$										
		SSU	LSU	ITS	GAPDH	TEF1	RPB2	Alt a 1	endoPG	OPA10-2	KOG1058	KOG1077
CBS 118488; E.G.S. $90.391^{\text {R }}$	Japan, Pyrus pyrifolia	KP125051	KP124581	KP124427	KP124278	KP125206	KP124897	KP123975	KP124132	KP124743	KP125265	KP125312
CPC 25268	Portugal, unknown	KP125052	KP124582	KP124428	KP124279	KP125207	KP124898	KP123976	KP124133	KP124744		
Alternaria gossypina												
CBS 100.23 (A. grossulariae)	Unknown, Malus domestica	KP125053	KP124583	KP124429	KP124280	KP125208	KP124899	KP123977	KP124134	KP124745		
CBS 104.32 ${ }^{\text {T }}$	Zimbabwe, Gossypium sp.	KP125054	KP124584	KP124430	JQ646312	KP125209	KP124900	JQ646395	KP124135	KP124746		
CBS 107.36 (A. grisea ${ }^{\text {T }}$)	Indonesia, soil	KP125055	KP124585	KP124431	JQ646310	KP125210	KP124901	JQ646393	KP124136	KP124747		
CBS 102597; E.G.S. 45.114 (A. tangelonis ${ }^{\text {T }}$)	USA, Minneola tangelo	KP125056	KP124586	KP124432	KP124281	KP125211	KP124902	KP123978	KP124137	KP124748	KP125266	KP125313
CBS 102601; E.G.S. 45.017 (A. colombiana ${ }^{\text {T }}$)	Colombia, Minneola tangelo	KP125057	KP124587	KP124433	KP124282	KP125212	KP124903	KP123979	KP124138	KP124749	KP125267	KP125314
Alternaria iridiaustralis												
CBS 118404; E.G.S. 49.078; MAFF $354 \mathrm{~A}^{\mathrm{R}}$	New Zealand, Iris sp.	KP125058	KP124588	KP124434	KP124283	KP125213	KP124904	KP123980	KP124139	KP124750	KP125268	np
CBS 118486; E.G.S. $43.014^{\text {T }}$	Australia, Iris sp.	KP125059	KP124589	KP124435	KP124284	KP125214	KP124905	KP123981	KP124140	KP124751		
CBS 118487; E.G.S. $44.147^{\text {R }}$	Australia, Iris sp.	KP125060	KP124590	KP124436	KP124285	KP125215	KP124906	KP123982	KP124141	KP124752		
Alternaria jacinthicola												
CBS 878.95; IMI 77934b (A. tenuissima)	Mauritius, Arachis hypogaea	KP125061	KP124591	KP124437	KP124286	KP125216	KP124907	KP123983	KP124142	KP124753	KP125269	np
CBS 133751; MUCL 53159 ${ }^{\text {T }}$	Mali, Eichhornia crassipes	KP125062	KP124592	KP124438	KP124287	KP125217	KP124908	KP123984	KP124143	KP124754	KP125270	np
CPC 25267	Unknown, Cucumis melo var. inodorus	KP125063	KP124593	KP124439	KP124288	KP125218	KP124909	KP123985	KP124144	KP124755	KP125271	np
Alternaria longipes												
CBS 113.35	Unknown, Nicotiana tabacum	KP125064	KP124594	KP124440	KP124289	KP125219	KP124910	KP123986	KP124145	KP124756		
CBS 539.94; QM 8438	USA, Nicotiana tabacum	KP125065	KP124595	KP124441	KP124290	KP125220	KP124911	KP123987	KP124146	KP124757		
CBS 540.94; E.G.S. 30.033; QM 9589^{R}	USA, Nicotiana tabacum	KC584541	KC584285	AY278835	AY278811	KC584667	KC584409	AY563304	KP124147	KP124758	KP125272	KP125315
CBS 917.96	USA, Nicotiana tabacum	KP125066	KP124596	KP124442	KP124291	KP125226	KP124912	KP123988	KP124148	KP124759		
CBS 121332; E.G.S. $30.048^{\text {R }}$	USA, Nicotiana tabacum	KP125067	KP124597	KP124443	KP124292	KP125227	KP124913	KP123989	KP124149	KP124760		
CBS 121333; E.G.S. $30.051^{\text {R }}$	USA, Nicotiana tabacum	KP125068	KP124598	KP124444	KP124293	KP125223	KP124914	KP123990	KP124150	KP124761		
Alternaria tomato												
CBS 103.30	Unknown, Solanum lycopersicum	KP125069	KP124599	KP124445	KP124294	KP125224	KP124915	KP123991	KP124151	KP124762	KP125273	KP125316

Table 1. (Continued).

ATCC: American Type Culture Collection, Manassas, VA, USA; CBS: Culture collection of the Centraalbureau voor Schimmelcultures, Fungal Biodiversity Centre, Utrecht, The Netherlands; CPC: Personal collection of P.W. Crous, Utrecht, The Netherlands; DAOM: Canadian Collection of Fungal Cultures, Ottawa, Canada; DSM: German Collection of Microorganisms and Cell Cultures, Leibniz Institute, Braunschweig, Germany; E.G.S.: Personal collection of Dr. E.G. Simmons; HKUCC: The University of Hong Kong Culture Collection, Hong Kong, China; HSAUP: Department of Plant Pathology, Shandong Agricultural University, China; IFO: Institute for Fermentation Culture Collection, Osaka, Japan; IHEM: Biomedical Fungi and Yeast Collection of the Belgian Co-ordinated Collections of Micro-organisms (BCCM), Brussels, Belgium; IMI: Culture collection of CABI Europe UK Centre, Egham UK; LCP: Laboratory of Cryptogamy, National Museum of Natural History, Paris, France; MAFF: MAFF Genebank Project, Ministry of Agriculture, Forestry and Fisherie, Tsukuba, Japan; MUCL: (Agro)Industrial Fungi and Yeast Collection of the Belgian Co-ordinated Collections of Micro-organisms (BCCM), Louvain-la-Neuve, Belgium; QM: Quarter Master Culture Collection, Amherst, MA, USA; VKM: All-Russian Collection of Microorganisms, Moscow, Russia.
${ }^{2}$ T: ex-type isolate; R: representative isolate; Species names between parentheses refer to the former species name. ${ }^{3}$ Bold accession numbers are generated in other studies; np: no product.
Table 2. Assembly statistics of the Alternaria genomes.

Species	Strain number	Section	Sequencing method	Size (Mb)	Coverage (approx.)	\% Repeats	\% Identity	\% SNPs ${ }^{2}$
A. alternata	CBS 916.96 ${ }^{3}$	Alternaria	Illumina	33.3	$40 \times$	1.4	na ${ }^{3}$	na ${ }^{3}$
A. arborescens ${ }^{\text {l }}$	E.G.S. $39.128=$ CBS 102605	Alternaria	-	33.9	-	2.7	96.7	-
A. citriarbusti (now A. alternata)	CBS 102598	Alternaria	Ion Torrent	34.8	$38 \times$	1.7	98.1	1.4
A. gaisen	CBS 118488	Alternaria	Illumina	35.2	$182 \times$	1.8	96.7	2.8
A. tenuissima (now A. alternata)	CBS 918.96	Alternaria	Illumina	33.5	$260 \times$	1.4	98.2	1.5
A. alternantherae	CBS 124392	Alternantherae	Illumina	35.0	$210 \times$	16.5	89.3	8.0
A. solani	CBS 109157	Porri	Ion Torrent	32.6	50×	1.5	87.9	9.0
A. avenicola	CBS 121459	Panax	Illumina	39.1	$200 \times$	11.9	87.2	9.5
A. infectoria	CBS 210.86	Infectoriae	Illumina	36.5	$200 \times$	5.3	85.1	10.3
A. papaveraceae	CBS 116607	Crivellia	Illumina	33.8	$220 \times$	5.3	85.8	10.3
A. brassicicola ${ }^{\text {l }}$	ATCC $96836=$ CBS 118699	Brassicicola	-	32.0	-	7.1	86.6	-

Table 3. Assembly statistics of the Alternaria transcriptome profiles.

Species	Strain number	Section	\% SNP ${ }^{2}$
A. alternata	CBS 916.96^{1}	Alternaria	0.0
A. arborescens	CBS 102605	Alternaria	1.8
A. citriarbusti (now A. alternata)	CBS 102598	Alternaria	1.0
A. citricancri (now A. alternata)	CBS 119543	Alternaria	0.9
A. gaisen	CBS 118488	Alternaria	1.8
A. mali (now A. alternata)	CBS 106.24	Alternaria	0.9
A. tenuissima (now A. alternata)	CBS 918.96	Alternaria	0.8
A. tomaticola (now A. alternata)	CBS 118814	Alternaria	0.9
A. toxicogenica (now A. alternata)	CBS 102600	Alternaria	0.9
A. alternantherae	CBS 124392	Alternantherae	6.1
A. infectoria	CBS 210.86	Infectoriae	8.5
A. papaveraceae	CBS 116607	Crivellia	8.4

${ }^{1}$ Reference isolate.
${ }^{2}$ SNPs / covered base ($>10 \times$), duplicates removed.
using BWA (Li \& Durbin 2009) using the BWA-MEM algorithm (v. 0.7.5a-r405). Transcript reads were trimmed prior to mapping using fastx-tools. Duplicated reads were identified and marked using Picard tools (http://broadinstitute.github.io/picard). Using GATK, transcript reads were splitted into exons and overhangs were removed. Subsequently, transcript and genomic reads were locally realigned to minimise the number of mismatches over all reads. Afterwards, genomic variants (SNPs) were called using GATK's UnifiedGenotyper (standard call and emitting threshold of 20 ; haploid organisms), and the resulting SNPs were filtered based on quality ($\mathrm{Qual}=50$), depth $(\mathrm{DP}=10)$ and allelic frequency $(\mathrm{AF}=0.9)$.

Conserved eukaryotic orthologous group (KOG) proteins were identified using the Core Eukaryotic Genes Mapping Approach (CEGMA) pipeline (Parra et al. 2007). For the conservation table we focused on the five available genomes of section Alternaria to avoid alignment problems that could affect the conservation values.

The reference sequence alignment-based phylogeny builder (REALPHY) v. 1.09 (Bertels et al. 2014) was used to construct a phylogenetic tree based on the whole-genome and transcriptome reads and the previously assembled Alternaria genomes. Briefly, short reads (genome and transcriptome) as well as short sequence fragments (100 nt) derived from the previously assembled genomes were mapped against the reference genome (A. alternata CBS 916.96) using Bowtie2. Subsequently, polymorphic as well as non-polymorphic sites were filtered (per base quality [20], coverage [10] and polymorphism frequency [0.95]) and extracted. Only sites that were present in all species were retained. The derived pseudo-molecule was used to infer a maximum likelihood phylogenetic tree using PhyML using the generalised time reversible (GTR) nucleotide substitution model. The robustness of the phylogeny was assessed by 1000 bootstrap replicates.

PCR and sequencing

DNA extraction for gene sequencing was performed using the UltraClean ${ }^{\mathrm{TM}}$ Microbial DNA isolation kit (MoBio Laboratories, Carlsbad, CA, USA), according to the manufacturer's
instructions. The SSU, LSU, ITS, GAPDH, RPB2 and the TEF1 gene regions were amplified and sequenced as described in Chapter 2 and the Alt a 1 gene as described in Chapter 4. The endoPG and OPA10-2 gene regions were amplified using the primers PG3 and PG2b and OPA10-2L and OPA10-2R (Andrew et al. 2009). For the KOG1058 and KOG1077 gene regions the primers KOG1058F2 (5^{\prime}-GAG TCA CGT TAY CGC ASC-3') and KOG1058R2 (5^{\prime}-TGG CTK ACG GAR ACG-3') and KOG1077F2 (5^{\prime}-GGA GCA GTC GGG CAA CG-3’) and KOG1077R2 (5'-ATT CRT GTT GTA CRA TCG C-3') were designed from the genomic data. The PCRs were performed in an Applied Biosystems ${ }^{\circledR} 2720$ Thermal Cycler (Thermo Fisher Scientific), in a total volume of 12.5μ l. The PCR mixtures consisted of $1 \mu 1$ genomic DNA, $1 \times \mathrm{NH}_{4}$ reaction buffer (Bioline, Luckenwalde, Germany), 2 mM (endoPG, OPA10-2) or $1.6 \mathrm{mM} \mathrm{MgCl}{ }_{2}$ (KOG1058, KOG1077), $20 \mu \mathrm{M}$ of each dNTP, $0.2 \mu \mathrm{M}$ of each primer and 0.5 U Taq DNA polymerase (Bioline). The PCR conditions consisted of an initial denaturation step of 5 min at $94^{\circ} \mathrm{C}$ followed by 40 cycles of 30 s at $94^{\circ} \mathrm{C}, 30 \mathrm{~s}$ at $50^{\circ} \mathrm{C}$ and 30 s at $72^{\circ} \mathrm{C}$ for endoPG, 35 cycles of 30 s at $94^{\circ} \mathrm{C}, 30 \mathrm{~s}$ at $62^{\circ} \mathrm{C}$ and 45 s at $72^{\circ} \mathrm{C}$ for OPA10-2, and 35 cycles of 30 s at $94{ }^{\circ} \mathrm{C}, 30 \mathrm{~s}$ at $59^{\circ} \mathrm{C}$ and 60 s at $72^{\circ} \mathrm{C}$ for KOG1058 and KOG1077, and a final elongation step of 7 min at $72{ }^{\circ} \mathrm{C}$. The PCR products were sequenced in both directions using the PCR primers and a BigDye ${ }^{\circledR}$ Terminator v. 3.1 Cycle Sequencing Kit (Thermo Fisher Scientific), and analyzed with an ABI Prism 3730XL DNA Analyzer (Thermo Fisher Scientific) according to the manufacturer's instructions. Consensus sequences were computed from forward and reverse sequences using the BioNumerics v. 4.61 software package (Applied Maths, St-Martens-Latem, Belgium). All generated sequences were deposited in GenBank (Table 1).

Phylogenetic analyses

Multiple sequence alignments of individual data partitions were generated with MAFFT v. 7 (http://mafft.cbrc.jp/alignment/server/index.html), and manually adjusted. The best nucleotide substitution model for each partition was determined with Findmodel (http:// www.hiv.lanl.gov/content/sequence/findmodel/findmodel.html). For the ITS and OPA102 partitions a K80 model with a gamma-distributed rate variation was suggested, for the SSU, LSU, TEF1 and Alt a 1 partitions a HKY model, with gamma-distributed rate variation for LSU and Alt a 1, for the GAPDH, RPB2 and KOG1077 partitions a TrN model with gamma-distributed rate variation and for the endoPG and KOG1058 partitions a GTR model with gamma-distributed rate variation. Bayesian analyses were performed with MrBayes v. 3.1.2 (Huelsenbeck \& Ronquist 2001, Ronquist \& Huelsenbeck 2003) on the individual data partitions as well as the combined aligned dataset. The Markov Chain Monte Carlo (MCMC) analysis used four chains and started from a random tree topology. The sample frequency was set at 500 for the combined analysis and the less informative loci (SSU, LSU, ITS and TEF1) and at 100 for the remaining loci. The temperature value of the heated chain was 0.1 and the run stopped when the average standard deviation of split frequencies fell below 0.01 . Burn-in was set to 25% after which the likelihood values were stationary. Tracer v. 1.5.0 (Rambaut \& Drummond 2009) was used to confirm the convergence of chains. A maximum-likelihood analysis including 500 bootstrap replicates using RAxML v. 7.2.6 (Stamatakis \& Alachiotis 2010) was additionally run on the combined aligned dataset. Sequences of A. alternantherae (CBS 124392) were used as outgroup. The resulting trees were printed with TreeView v. 1.6.6 (Page 1996) and, together with the alignments, deposited into TreeBASE (http://www. treebase.org).

Species recognition and naming in Alternaria section Alternaria

Individual gene trees were generated as described in the 'Phylogenetic analyses' part above and examined manually. A species clade was only recognised as unique if it was well-supported and monophyletic with all of its included isolates in multiple single-gene phylogenies, and no incongruencies were observed in the other single-gene phylogenies, e.g. the included isolates clustered together in all single-gene phylogenies. Unique molecular markers for the recognised species, which separates them from the other species in section Alternaria, are described with the species below. Unique fixed nucleotide positions were derived from the respective alignments of the separate loci deposited in TreeBASE based on a comparison of the sequences of all isolates from the specific species to the sequences of all isolates of the other recognised species within section Alternaria.

We further propose to standardise the taxonomic terms used and favour the use of the trinomial system introduced by Rotem (1994). When differences in host affinity are observed within the isolates of one (of the above-defined) species, the third epithet, the forma specialis, defines the affinity to this specific host in accordance with the produced toxin causing this affinity. When different toxins are produced on the same host, but these toxins affect different host species, the term pathotype will be used in addition. All isolates which are not confined to specific hosts and / or toxins should retain only the binomial name until such specificity is found. For examples, please refer to the species notes under A. alternata below and the Discussion.

RESULTS

NGS

We sequenced nine Alternaria species using Ion Torrent ${ }^{\mathrm{TM}}$ or Illumina ${ }^{\circledR}$ sequencing technologies, yielding between $38 \times$ and $>260 \times$ average genome coverage (Table 2). The assembled genomes ranged in size from $33.3-35.2 \mathrm{Mb}$ within section Alternaria and from $32.0-39.1 \mathrm{Mb}$ for all Alternaria genomes (Table 2). To characterise the assembled genomes, we identified and classified the repetitive complement of each individual genome using a combination of $d e$ novo prediction and identification of known repetitive elements. Surprisingly, the number of repetitive sequences differed significantly between different Alternaria genomes. Within section Alternaria, the number of repetitive sequences is comparably low; only $1.4-2.7 \%$ of each genome was classified as repetitive (Table 2). In contrast, A. avenicola and A. alternantherae carry significantly higher percentages of repetitive elements, $>10 \%$ and $>15 \%$, respectively (Table 2).

To assess the genomic differences between the included species, we performed whole-genome alignments to the reference genome of A. alternata (CBS 916.96). These alignments revealed 96.7-98.2 \% genome identity within section Alternaria compared to $85.1-89.3$ \% genome identity between isolates from other sections with A. alternata. Furthermore, we assessed the number of single nucleotide polymorphisms (SNPs) between the different species by mapping genomic reads to the reference genome of A. alternata (CBS 916.96). We observed 1.4-2.8 \% SNPs between isolates from section Alternaria, while the percentage of SNPs found in isolates from different sections was considerably higher, ranging from 8.0-10.3 \% (Table 2).

To further characterise the genus, we derived deep transcriptome sequences of 12 isolates that were mapped to the reference isolate of A. alternata (CBS 916.96). In this case, we observed

Fig. 1. PhyML tree based on the whole-genome and transcriptome reads of 15 Alternaria species using REALPHY. The bootstrap support values are given at the nodes; thickened lines indicate a fully supported node. The grey box represents species which are now synonymised under A. alternata. The tree was rooted to A. papaveraceae (CBS 116607).
$0.8-1.8 \%$ SNPs among the isolates from section Alternaria, while the isolates from other sections displayed between 6.1 and 8.5% SNPs (Table 3).

We identified marker genes with potential discriminatory power by predicting a set of conserved eukaryotic genes (KOG) in the genomes of the five assembled section Alternaria genomes using the CEGMA pipeline. Out of 380 included KOGs, 326 (86%) had a conservation level of $\geq 98 \%$. Therefore, we focused on the 25 KOGs with the lowest degree of conservation, ranging from 83.0-97.3 \%, and evaluated their discriminatory power. KOGs that were not able to distinguish all morphospecies included in the whole-genome and transcriptome sequencing were immediately rejected. We eventually designed primers spanning the first 5 introns of KOG1058 and KOG1077 (see the 'PCR and sequencing' part of the 'Material and Methods'). These proteins were found on place 16 and 23 in the conservation table and both act in the vesicle coat complex, although in different systems; namely COPI versus AP-2.

The pseudo-molecule derived from the whole-genome and transcriptome reads with REALPHY contained 1750944 nt . The topology from the REALPHY phylogeny (Fig. 1) corresponds to the multi-gene phylogeny based on a five-gene combined dataset (Fig. 3 in Lawrence et al. 2013) and a three-gene combined dataset (Fig. 1 in Chapter 2). Section Alternantherae and section Porri are the sister sections of section Alternaria, while section Infectoriae and section Crivellia, are the most distant sections (Fig. 1).

Gene-based phylogeny and identification

From the 168 isolates included in the multi-gene phylogeny, the amplification and / or sequencing of two isolates for the RPB2 gene, three for the Alt a 1 gene, one for the endoPG gene and four for the OPA10-2 regions failed (Table 1); these genes were included as missing data in the combined analysis. The aligned sequences of the SSU (1021 aligned characters), LSU (849 aligned characters), ITS (523 aligned characters), GAPDH (579 aligned characters), TEF1 (241 aligned characters), RPB2 (753 aligned characters), Alt a 1 (473 aligned characters), endoPG (448 aligned characters) and OPA10-2 (634 aligned characters) gene regions contained $6,9,27,60,42,87,110,59$ and 123 unique site patterns, respectively. Because of the low informative value of the SSU and LSU sequences (6 / 9 unique site patterns out of $1021 / 849$ aligned characters) these genes were excluded from the multi-gene phylogeny. The multi-gene phylogeny based on the remaining seven gene regions contained 3651 characters including alignment gaps, which, after discarding the burn-in phase, resulted in a 50% majority rule consensus tree based on 15002 trees from two runs (Fig. 2).

The alignments of the additional gene regions that were sequenced, KOG1058 and KOG1077, consisted of 921 and 781 aligned characters, respectively, of which 118 and 78 were unique site patterns. The amplification and / or sequencing of the KOG1077 gene failed in six of the 49 isolates, representing the species A. alstroemeriae, A. iridiaustralis and A. jacinthicola (Table 1). Since the KOG1077 sequences could not separate A. longipes from A. gossypina, we did not put any further effort in optimising the primers to obtain the missing data.

Although the single-gene phylogenies are not fully congruent in terms of species resolution (see TreeBASE), 11 clades can be distinguished consistently within the single-gene phylogenies and in the multi-gene phylogeny (Fig. 2). Eight of those are single species clades representing A. alstroemeriae, A. betae-kenyensis, A. eichhorniae, A. gaisen, A. iridiaustralis, A. jacinthicola, A. longipes, and A. tomato. Three further clades constitute numerous morphospecies, which we synonymise here under A. burnsii, A. gossypina and the A. arborescens species complex (AASC). However, the majority of the isolates ($105 / 168$), representing 35 morphospecies, do not form clear phylogenetic clades. The subclades that are formed by these isolates are incongruent between the different gene regions sequenced; no two genes show the same groupings from any of the 100 plus isolates. These morphospecies are synonymised below under A. alternata.

None of the genes sequenced in this study enabled us to distinguish all of the species recognised here on its own (Table 4). The commonly used GAPDH sequence can distinguish all species, except the AASC, from A. alternata. Five genes, namely RPB2, OPA10-2, Alt a 1, endoPG and KOG1058, can separate all species from A. alternata, but fail to separate different pairs of other species from one another (see Table 4). The SSU, LSU and ITS genes were least successful in separating the species accepted in this study. The unique fixed nucleotides per gene region are provided below under the treatment of each species.

Fig. 2. Bayesian 50 \% majority rule consensus tree based on the ITS, GAPDH, TEF1, RPB2, Alt a 1, endoPG and OPA10-2 sequences of 168 Alternaria strains. The Bayesian posterior probabilities >0.75 (PP) and RAxML bootstrap support values $>65(\mathrm{ML})$ are given at the nodes $(\mathrm{PP} / \mathrm{ML})$. Thickened lines indicate a PP of 1.0 and ML of 100 . Species names between parentheses represent synonymised species names. Ex-type strains are indicated with T and representative strains with R. The ex-type strains of here recognised species are printed in bold face. The tree was rooted to A. alternantherae (CBS 124392).

Table 4. Comparison of gene ability to distinguish species in section Alternaria.

Species in section Alternaria

Alternaria alstroemeriae E.G. Simmons \& C.F. Hill, CBS Biodiversity Ser. (Utrecht) 6: 444. 2007.

Specimens examined: Australia, from leaf of Alstroemeria sp. (Alstroemeriaceae), Jul. 2005, C.F. Hill, culture ex-type CBS 118809 = E.G.S. 52.068. USA, California, Sacramento, from leaf spot of Alstroemeria sp., before Apr. 2002, D. Fogle, CBS 118808 = E.G.S. 50.116.

Unique fixed nucleotides: GAPDH position 485 (T); RPB2 position 162 (G); TEF1 position 52 (C), 143 (C), 165 (T), 205 (G); OPA10-2 position 120 (T), 151 (T), 303 (G), 318 (G), 330 (C), 390 (G), 417 (C), 486 (G); Alt a 1 position 157 (T), 178 (T), 404 (A); endoPG position 37 (A), 46 (C), 316 (T); KOG1058 position 51 (C), 514 (T), 533 (C).

Alternaria alternata (Fr.) Keissl., Beih. Bot. Centralbl., Abt. 2, 29: 434. 1912.
Basionym: Torula alternata Fr., Syst. Mycol. (Lundae) 3: 500. 1832. (nom. sanct.)
= Alternaria tenuis Nees, Syst. Pilze (Würzburg): 72. 1816 [1816-1817].
$=$ Helminthosporium tenuissimum Kunze ex Nees \& T. Nees, Nova Acta Acad. Caes. Leop.-
Carol. German. Nat. Cur. 9: 242. 1818.
\equiv Macrosporium tenuissimum (Nees \& T. Nees) Fr., Syst. Mycol. 3: 374. 1832. (nom. sanct.)
\equiv Clasterosporium tenuissimum (Nees \& T. Nees: Fr.) Sacc., Sylloge Fungorum (Abellini) 4: 393. 1886.
\equiv Alternaria tenuissima (Nees \& T. Nees: Fr.) Wiltshire, Trans. Brit. Mycol. Soc. 18: 157. 1933.
$=$ Macrosporium fasciculatum Cooke \& Ellis, Grevillea 6: 6.1877.
\equiv Alternaria fasciculata (Cooke \& Ellis) 1.R. Jones \& Grout, Bull. Torrey Bot. Club 24: 257. 1897.
= Macrosporium caudatum Cooke \& Ellis, Grevillea 6: 87. 1878.
\equiv Alternaria caudata (Cooke \& Ellis) E.G. Simmons, CBS Biodiversity Ser. (Utrecht) 6: 496. 2007.
$=$ Macrosporium maydis Cooke \& Ellis, Grevillea 6: 87. 1878.
$=$ Macrosporium inquinans Cooke \& Ellis, Grevillea 7: 39. 1878
= Macrosporium meliloti Peck, Rep. (Annual) NewYork State Mus. Nat. Hist. 33: 28. 1880.
= Macrosporium erumpens Cooke, Grevillea 12: 32. 1883. \equiv Alternaria erumpens (Cooke) Joly, Le Genre Alternaria: 199. 1964.
$=$ Macrosporium martindalei Ellis \& G. Martin, Amer. Naturalist 18: 189. 1884.
\equiv Alternaria martindalei (Ellis \& G. Martin) Joly, Le Genre Alternaria: 209. 1964.
= Macrosporium polytrichi Peck, Rep. (Annual) NewYork State Mus. Nat. Hist. 34: 31. 1890.
= Macrosporium podophylli Ellis \& Everh., Proc. Acad. Nat. Sci. Philadelphia 43: 92. 1891. \equiv Alternaria podophylli (Ellis \& Everhart) Joly, Le Genre Alternaria: 212. 1964.
$=$ Macrosporium seguierii Allescher, Hedwigia 33: 75. 1894.
= Macrosporium amaranthi Peck, Bull. Torrey Bot. Club 22: 493. 1895.
\equiv Alternaria amaranthi (Peck) J. van Hook, Proc. Indiana Acad. Sci. 1920: 214. 1921.
= Alternaria citri Ellis \& N. Pierce, Bot. Gaz. (Crawfordville) 33: 234. 1902.
= Alternaria ribis Bubák \& Ranojević, Ann. Mycol. 8: 400. 1910.
= Alternaria mali Roberts, J. Agric. Res. 2: 58. 1914.
= Alternaria palandui Ayyangar, Bull. Agric. Res. Inst., Pusa 179: 14. 1928.
= Alternaria lini Dey, Indian J. Agric. Sci. 3: 881. 1933.
= Alternaria tenuissima var. godetiae Neerg., Trans. Brit. Mycol. Soc. 18: 157. 1933. \equiv Alternaria godetiae (Neerg.) Neerg., Aarsberetn. J. E. Ohlens Enkes Plantepatol. Lab. 10: 14. 1945.
= Macrosporium pruni-mahalebi Săvulescu \& Sandu, Hedwigia 75: 228. 1935.
= Alternaria rumicicola R.L. Mathur, J.P. Agnihotri \& Tyagi, Curr. Sci. 31: 297. 1962.
= Alternaria tenuissima var. verruculosa S. Chowdhury, Proc. Natl. Acad. Sci. India, Sect.
B, Biol. Sci. 36: 301. 1966.
= Alternaria angustiovoidea E.G. Simmons, Mycotaxon 25: 198. 1986.
= Alternaria pellucida E.G. Simmons, Mycotaxon 37: 102. 1990.
= Alternaria rhadina E.G. Simmons, Mycotaxon 48: 101. 1993.
= Alternaria destruens E.G. Simmons, Mycotaxon 68: 419. 1998.
= Alternaria broussonetiae T.Y. Zhang, W.Q. Chen \& M.X. Gao, Mycotaxon 72: 439. 1999.
= Alternaria citriarbusti E.G. Simmons, Mycotaxon 70: 287. 1999.
= Alternaria citrimacularis E.G. Simmons, Mycotaxon 70: 277. 1999.
= Alternaria dumosa E.G. Simmons, Mycotaxon 70: 310. 1999.
= Alternaria interrupta E.G. Simmons, Mycotaxon 70: 306. 1999.
= Alternaria limoniasperae E.G. Simmons, Mycotaxon 70: 272. 1999.
= Alternaria perangusta E.G. Simmons, Mycotaxon 70: 303. 1999.
= Alternaria tenuissima var. alliicola T.Y. Zhang, Mycotaxon 72: 450. 1999.
= Alternaria toxicogenica E.G. Simmons, Mycotaxon 70: 294. 1999.
= Alternaria turkisafria E.G. Simmons, Mycotaxon 70: 290. 1999.
= Alternaria sanguisorbae M.X. Gao \& T.Y. Zhang, Mycosystema 19: 456. 2000.
= Alternaria platycodonis Z.Y. Zhang \& H. Zhang, Flora Fungorum Sin., Alternaria: 66. 2003.
= Alternaria yali-inficiens R.G. Roberts [as 'yaliinficiens'], Pl. Dis. 89: 142. 2005.
= Alternaria astragali Wangeline \& E.G. Simmons, Mycotaxon 99: 84. 2007.
= Alternaria brassicinae E.G. Simmons, CBS Biodiversity Ser. (Utrecht) 6: 532. 2007.
= Alternaria citricancri E.G. Simmons, CBS Biodiversity Ser. (Utrecht) 6: 542. 2007.
= Alternaria daucifolii E.G. Simmons, CBS Biodiversity Ser. (Utrecht) 6: 518. 2007.
= Alternaria herbiphorbicola E.G. Simmons, CBS Biodiversity Ser. (Utrecht) 6: 608. 2007.
= Alternaria pulvinifungicola E.G. Simmons, CBS Biodiversity Ser. (Utrecht) 6: 514. 2007.
= Alternaria postmessia E.G. Simmons, CBS Biodiversity Ser. (Utrecht) 6: 598. 2007.
= Alternaria seleniiphila Wangeline \& E.G. Simmons, Mycotaxon 99: 86. 2007.
= Alternaria soliaegyptiaca E.G. Simmons, CBS Biodiversity Ser. (Utrecht) 6: 506. 2007.
$=$ Alternaria tomaticola E.G. Simmons \& Chellemi, CBS Biodiversity Ser. (Utrecht) 6: 528. 2007.
= Alternaria vaccinii E.G. Simmons, CBS Biodiversity Ser. (Utrecht) 6: 432. 2007.
= Alternaria viniferae Yong Wang bis, Y.Y. Than, K.D. Hyde, X.H. Li, Mycol. Progr. 13: 1124. 2014.

Type and representative specimens examined: Canada, Manitoba, from Euphorbia esula (Euphorbiaceae), 1982, K. Mortensen, culture ex-type of A. angustiovoidea CBS 195.86 = E.G.S. 36.172 = DAOM 185214. China, Hebei, from fruit of Pyrus bretschneideri (Rosaceae), 2001, R.G. Roberts, culture ex-type of A. yali-inficiens CBS 121547 = E.G.S. 50.048; Shaanxi, Hanzhong, from Platycodon grandiflorus (Campanulaceae), before Dec. 2001, T.Y. Zhang, culture ex-type of A. platycodonis CBS 121348 = E.G.S. 50.070; Shangdong, Changqing, from Broussonetia papyrifera (Moraceae), 13 Sep. 1996, T.Y. Zhang, culture ex-type of A. broussonetiae CBS 121455 = E.G.S. 50.078; Shangdong, Jinan, from Sanguisorba officinalis (Rosaceae), 19 Sep. 1996, M.X. Gao, culture ex-type of A. sanguisorbae CBS 121456 = E.G.S. 50.080. Denmark, Sjaelland, Clausdal, from Godetia sp. (Onagraceae), 27 Jul. 1942, P. Neergaard, culture ex-type of A. godetiae CBS $117.44=$ E.G.S. $06.190=$ VKM F-1870. Egypt, Sabet, from soil, before Jan. 1933, culture ex-type of A. soliaegyptiaca CBS $103.33=$ E.G.S. $35.182=$ IHEM 3319. India, from Arachis hypogaea (Fabaceae), 1 Dec. 1980, L.V. Gangawane, culture ex-epitype CBS $916.96=$ CBS $110977=$ CBS $115616=$ E.G.S. $34.016=$ IMI 254138. Israel, from Minneola tangelo (Rutaceae), before Nov. 1996, Z. Solel, culture ex-type of A. interrupta CBS $102603=$ E.G.S. 45.011; Mayan Zvi, from Minneola tangelo, before Nov. 1996, Z. Solel, culture ex-type of A. dumosa CBS 102604 = E.G.S. 45.007. Japan, from fruit of Citrus unshiu (Rutaceae), 1968, K. Tubaki, culture ex-type of A. pellucida CBS $479.90=$ E.G.S. 29.028; from leaf of Pyrus pyrifolia (Rosaceae), 1990, K. Nagano, culture ex-type of A. rhadina CBS 595.93. Turkey, Kuzucuoglu, from Minneola tangelo, May 1996, Y. Canihos, culture ex-type of A. turkisafria CBS $102599=$ E.G.S. 44.166; Adana region, from Minneola tangelo, May 1996, Y. Canihos, culture ex-type of A. perangusta CBS 102602 = E.G.S. 44.160 . UK, from Dianthus chinensis (Caryophyllaceae), 20 Feb. 1981, A.S. Taylor, representative isolate of A. tenuissima CBS $918.96=$ E.G.S. 34.015 = IMI 255532. USA, from Malus sylvestris (Rosaceae), before Dec. 1924, J.W. Roberts, culture ex-type of A. mali CBS $106.24=$ E.G.S. $38.029=$ ATCC 13963; Arizona, Yuma, from Brassica oleracea (Brassicaceae), Apr. 1982, R.H. Morrison, culture ex-type of A. brassicinae CBS 118811 = E.G.S. 35.158; California, from fruit of Citrus sinensis (Rutaceae), before Nov. 1947, D.E.

Bliss, representative isolate of A. citri CBS 102.47 = E.G.S. 02.062; California, Los Angeles, from Citrus paradisi (Rutaceae), 12 Jul. 1947, L. Davis, culture ex-type of A. citricancri CBS 119543 = E.G.S. 12.160; Colorado, from leaf of Allium sp. (Alliaceae), F.A. Weiss, culture ex-epitype of A. palandui CBS $121336=$ E.G.S. $37.005=$ ATCC 11680; Colorado, Fort Collins, from the root of Stanleya pinnata (Brassicaceae), 19 Jun. 2002, A. Wangeline, culture ex-type of A. seleniiphila CBS 127671 = E.G.S. 52.121; Florida, Lake Alfred, from leaf lesion of Citrus jambhiri (Rutaceae), before Jul. 1997, culture ex-type of A. limoniasperae CBS 102595 = E.G.S. 45.100; Florida, Lake Alfred, from leaf lesion of Citrus jambhiri, before Jul. 1997, culture ex-type of A. citrimacularis CBS 102596 = E.G.S. 45.090 ; Florida, Lake Alfred, from leaf spot of Minneola tangelo, before Feb. 1998, culture ex-type of A. citriarbusti CBS 102598 = E.G.S. 46.141; Florida, Lake Alfred, from Minneola tangelo, 19 Dec. 1980, J.O. Whiteside, culture ex-type of A. postmessia CBS 119399 = E.G.S. 39.189; Florida, Quincy, from Solanum lycopersicum (Solanaceae), June 1996, D. Chellemi, culture ex-type of A. tomaticola CBS 118814 = E.G.S. 44.048; Florida, Wauchula, from Citrus reticulata (Rutaceae), 6 Jun. 1975, J.O. Whiteside, culture ex-type of A. toxicogenica CBS $102600=$ E.G.S. $39.181=$ ATCC 38963; Florida, Zellwood, from Daucus carota (Apiaceae), Jan 1984, R.H. Morrison, culture ex-type of A. daucifolii CBS 118812 = E.G.S. 37.050; Iowa, from Quercus sp. (Fagaceae), 28 Jul. 1953, A. Engelhard, culture ex-type of A. pulvinifungicola CBS 194.86 = E.G.S. $04.090=$ QM 1347; Maryland, from Euphorbia esula, before Dec. 1991, culture ex-type of A. herbiphorbicola CBS $119408=$ E.G.S. 40.140; Massachusetts, Hadley, from fruit of Cucumis sativus (Cucurbitaceae), 24 Sep. 1984, E.G. Simmons, representative isolate of A. caudata CBS 121544 = E.G.S. 38.022; Massachusetts, Rochester, from Cuscuta gronovii (Convolvulaceae), Aug. 1997, F. Caruso, culture ex-type isolate of A. destruens CBS 121454 = E.G.S. 46.069; New Jersey, from Vaccinium sp. (Ericaceae), Oct. 1973, R.A. Cappellini, culture ex-type of A. vaccinii CBS $118818=$ E.G.S. 31.032 ; Wyoming, Laramie, from the root of Astragalus bisulcatus (Fabaceae), 8 Jun. 2002, A. Wangeline, culture ex-type of A. astragali CBS 127672 = E.G.S. 52.122. Unknown, from Linum usitatissimum (Linaceae), before Jul. 1934, P.K. Dey, culture ex-type of A. lini CBS $106.34=$ E.G.S. $06.198=$ DSM $62019=$ MUCL 10030.

Notes: Both the names Torula alternata and Macrosporium tenuissimum represent sanctioned names by Fries (1832), with the basionym of tenuissimum (1818) being the older. However, we choose to retain the well-established name of the type species of Alternaria, A. alternata above the older name A. tenuissima, as this would result in confusion among the user community, and be counterproductive. A proposal to conserve A. alternata over A. tenuissima will be compiled for submission to the Nomenclature Committee of Fungi. The isolate CBS 447.86, isolated from Malva sp. in Marocco, was stored in the CBS collection as Alternaria malvae. The original description of A. malvae was from leaf lesions of Malva crispa, from Seine-Inférieure (now called Seine-Maritime), France. Therefore we did not synonymise A. malvae under A. alternata. The isolate CBS 106.34, send to the CBS by Dey in 1934 together with a reprint of his paper describing A. lini, is recognised as an ex-type isolate. We therefore did synonymise A. lini under A. alternata. The very recently described A. viniferae is synonymised based on the published GAPDH and Alt a 1 sequences, which cluster within A. alternata. Because of the relative high sequence variability amongst the A. alternata isolates, we did not assign unique fixed nucleotides to A. alternata. Three formae speciales of A. alternata are currently recognised; A. alternata f. sp. mali for isolates producing the AM-toxin, f. $s p$. fragariae for isolates producing the AF-toxin, and f. sp. citri with two pathotypes, i.e. f. $s p$. citri pathotype rough lemon for isolates producing the ACR-toxin, and f. sp. citri pathotype tangerine for isolates producing the ACT-toxin.

Fig. 3. Alternaria burnsii conidia and conidiophores. A-B. CBS 108.27. C-D. CBS 879.95. E-F. CBS 118816. G-H. CBS 118817. Scale bars $=10 \mu \mathrm{~m}$.

Alternaria betae-kenyensis E.G. Simmons, CBS Biodiversity Ser. (Utrecht) 6: 530. 2007.
Specimen examined: Kenya, from Beta vulgaris var. cicla (Chenopodiaceae), before Jun. 2001, ex-type CBS $118810=$ E.G.S. $49.159=$ IMI 385709.

Unique fixed nucleotides: ITS position 464 (C); GAPDH position 28 (C), 55 (A), 512 (T); RPB2 position 204 (T), 363 (T), 369 (G), 447 (G), 468 (T), 480 (A), 507 (A), 627 (G); TEF1 position 213 (G), 218 (C); OPA10-2 position 63 (C), 177 (A), 199 (G), 276 (T), 309 (T), 534 (C), 567 (A), 591 (A); Alt a 1 position 55 (A), 155 (A), 311 (G), 338 (T), 359 (C), 365 (C), 379 (C), $440(\mathrm{~T}), 473(\mathrm{~A})$; endoPG position $10(\mathrm{~T}), 286(\mathrm{~T}), 295(\mathrm{~T}), 372(\mathrm{G})$; KOG1058 position 156 (C), 522 (T), 869 (G); KOG1077 position 121 (A), 178 (C), 373 (A), 402 (C), 763 (C).

Alternaria burnsii Uppal, Patel \& Kamat, Indian J. Agric. Sci. 8: 49. 1938. Fig. 3.
= Alternaria tinosporae E.G. Simmons, CBS Biodiversity Ser. (Utrecht) 6: 508. 2007.
= Alternaria rhizophorae E.G. Simmons, CBS Biodiversity Ser. (Utrecht) 6: 510. 2007.

Specimens examined: India, from Cuminum cyminum (Apiaceae), before Dec. 1938, B.N. Uppal, culture ex-type of A. burnsii CBS 107.38; Saznakhali, from infected leaf of Rhizophora mucronata (Rhizophoraceae), 14 Mar. 1995, ex-type of A. rhizophorae CBS 118816 = E.G.S. 43.145 = IMI 368045; Punjab, from Tinospora cordifolia (Menispermaceae), before Sept. 1987, culture ex-type of A. tinosporae CBS $118817=$ E.G.S. $39.14=$ IMI 318433; from human
sputum, Anuradha, CBS 130264. Mozambique, from stem of Gossypium sp. (Malvaceae), Aug. 1950, Quintanilha, CBS 110.50. UK, from Sorghum sp. (Poaceae), 19 Dec. 1985, M. Kalicz, CBS 879.95 = IMI 300779. Unknown, from Gomphrena globosa (Amaranthaceae), before Mar. 1927, K. Togashi, CBS 108.27.

Unique fixed nucleotides: endoPG position 196 (C), 199 (A).
Notes: Although A. burnsii only has two unique fixed nucleotides, the species can molecularly easily be distinguished from A. alternata. The low number of unique fixed nucleotides is due to its close phylogenetic relationship to A. tomato and A. jacinthicola. Most of the nucleotide differences present between A. burnsii and the A. alternata isolates are also present in the A. tomato and / or A. jacinthicola isolates.

Alternaria eichhorniae Nag Raj \& Ponnappa, Trans. Brit. Mycol. Soc. 55: 124. 1970.
Specimens examined: India, Karnataka, Bangalore, from leaf of Eichhornia crassipes (Pontederiaceae), 28 Feb 1966, R. Charudattan, culture ex-type CBS 489.92 = ATCC 22255 = ATCC 46777 = ATCC 201659 = IMI 121518. Indonesia, from leaf of Eichhornia crassipes, before Dec. 1996, representative culture CBS $119778=$ E.G.S. $45.026=$ IMI 372968.

Unique fixed nucleotides: ITS position 105 (T); GAPDH position $36(\mathrm{G}), 162(\mathrm{G}), 168(\mathrm{~T}), 509$ (A); RPB2 position $6(\mathrm{~T}), 549(\mathrm{G})$; TEF1 position $12(\mathrm{C}), 31(\mathrm{G}), 223$ (G); OPA10-2 position 123 (G), 366 (C), 387 (A), 582 (T), 600 (A); Alt a 1 position 67 (T), 130 (A), 298 (A), 356 (A), 397 (C); endoPG position 29 (A), 68 (C), 79 (T), $130(\mathrm{~A}), 148$ (T), 152 (A), 173 (A), 316 (G), 369 (C), 376 (C), 378 (T); KOG1058 position 16 (C), 64 (T), 254 (C), 268 (T), 269 (G), 270 (G), 278 (G), 298 (C), 536 (C), 694 (G), 711 (C); KOG1077 position 62 (T), 162 (C), 166 (C), 189 (C), 195 (C), 234 (G), 235 (C), 348 (C), 350 (C), 564 (A), 685 (A), 715 (A), 776 (T).

Alternaria gaisen Nagano ex Hara, Sakumotsu Byorigaku, Edn 4: 263. 1928.
= Alternaria gaisen Nagano, J. Jap. Soc. Hort. Sci. 32: 16-19. 1920. (nom. illegit., Art. 39.1)
= Alternaria kikuchiana S. Tanaka, Mem. Coll. Agric. Kyoto Univ., Phytopathol. Ser. 28: 27. 1933.
= Macrosporium nashi Miura, Flora of Manchuria and East Mongolia, Part III Cryptogams, Fungi: 513. 1928.

Specimens examined: Japan, Tottori, from Pyrus pyrifolia (Rosaceae), Jul. 1990, E.G. Simmons, representative isolate CBS 118488 = E.G.S. 90.0391; Tottori, from Pyrus pyrifolia, 11 Jul. 1990, E.G. Simmons, representative isolate CBS 632.93 = E.G.S. 90.0512 . Netherlands, host unknown, Aug. 2011, S. I. R. Videira, SV01.

Unique fixed nucleotides: GAPDH position 383 (C), 473 (A); RPB2 position 207 (T), 540 (G); TEF1 position 241 (T); Alt a 1 position 1 (A), 13 (T), 97 (A), 339 (T), 345 (G), 413 (C); endoPG position 130 (C), 172 (A), 250 (T), 361 (T); KOG1058 position 707 (G); KOG1077 position 174 (A).

Alternaria gossypina (Thüm.) J.C.F. Hopkins, Trans. Brit. Mycol. Soc. 16: 136. 1931. Fig. 4. Basionym: Macrosporium gossypinum Thüm., Herb. Mycol. Oecon.: no. 513. 1877.

Fig. 4. Alternaria gossypina conidia and conidiophores. A-B. CBS 100.23. C-D. CBS 104.32. E-F. CBS 107.36. G-H. CBS 102597. Scale bars $=10 \mu \mathrm{~m}$.
= Alternaria grisea Szilv., Arch. Hydrobiol. 3: 546. 1936.
= Alternaria colombiana E.G. Simmons, Mycotaxon 70: 298. 1999.
= Alternaria tangelonis E.G. Simmons, Mycotaxon 70: 282. 1999.
Type: (Lectotype, designated in Simmons 2003) USA, South Carolina, Aiken, from stems of dead Gossypinum herbaceum, 1876, H.W. Ravenel, Macrosporium gossypinum BPI 445306.

Specimens examined: Colombia, Chinchiná, from fruit lesion of Minneola tangelo (Rutaceae), before Nov. 1996, B. L. Castro, culture ex-type of A. colombiana CBS 102601 = E.G.S. 45.017. Sumatra, Toba Heath, from soil, before Jun 1936, A. von Szilvinyi, culture ex-type of A. grisea CBS 107.36. USA, Florida, from Minneola tangelo, before Aug. 1997, culture ex-type of A. tangelonis CBS 102597 = E.G.S. 45.114. Zimbabwe, from Gossypium sp. (Malvaceae), before Mar. 1932, J.C.F. Hopkins, culture ex-type of A. gossypina CBS 104.32. Unknown, from Malus domestica (Rosaceae), before Jun. 1923, A.S. Horne, CBS 100.23.

Unique fixed nucleotides: OPA10-2 position 172 (T); KOG1058 position 19 (A), 20 (A).
Notes: Although A. gossypina only has three unique fixed nucleotides, the species can molecularly easily be distinguished from A. alternata. The low number of unique fixed nucleotides is due to its close phylogenetic relationship to A. longipes. Most of the nucleotide differences present between A. gossypina and the A. alternata isolates are also present in the A. longipes isolates.

The isolate of A. gossypina deposited to the CBS by J.C.F. Hopkins, CBS 104.32, is recognised as ex-type culture of A. gossypina and the isolate of A. grisea deposited at the CBS by A. von Szilvinyi, CBS 107.36, is recognised as ex-type isolate of A. grisea. The isolate CBS 100.23, from Malus domestica, was deposited at the CBS as A. grossulariae. The original type description of this species, however, was from Grossularia sp., from Riga, Letland. Therefore we did not synonymise A. grossulariae under A. gossypina based on this isolate pending the recollection of authentic material of the former species. By synonymising A. grisea, A. colombiana and A. tangelonis under A. gossypina, this species now has become an Alternaria species with a broad host range including host species from the Rutaceae, Malvaceae and Rosaceae.

Alternaria iridiaustralis E.G. Simmons, Alcorn \& C.F. Hill, CBS Biodiversity Ser. (Utrecht) 6: 434. 2007.

Specimens examined: Australia, Queensland, Brisbane, from Iris sp. (Iridaceae), Oct. 1995, J. Alcorn, culture ex-type CBS 118486 = E.G.S. 43.014; Queensland, Brisbane, from Iris sp., Oct. 1996, J. Alcorn, CBS 118487 = E.G.S. 44.147. New Zealand, Auckland, Grey Lynn, from leaf of Iris sp., 7 Jan. 2001, C.F. Hill, CBS 118404 = E.G.S. 49.078.

Unique fixed nucleotides: ITS position 475 (A); GAPDH position 33 (A), 171 (T), 174 (A), 186 (C), 218 (G), 365 (A); RPB2 position 12 (T), 489 (T), 516 (T), 591 (C); TEF1 position 9 (G), 43 (T), 238 (G); OPA10-2 position 27 (G), 209 (C), 226 (A), 243 (G), 270 (C), 273 (A), 297 (C), 339 (T), 435 (A), 486 (A); Alt a 1 position 28 (T), 73 (C), 97 (G), 109 (T), 111 (G), 224 (A), 256 (T), 266 (A), 267 (G), 350 (G), 361 (A), 388 (C); endoPG position 87 (A), 93 (G), 101 (G), 210 (A), 219 (T), 338 (A), 340 (T), 374 (A); KOG1058 position 25 (C), 48 (A), 498 (C), 569 (T).

Alternaria jacinthicola Dagno \& M.H. Jijakli, J. Yeast Fungal Res. 2: 102. 2011.
= Alternaria capsicicola A. Nasehi, J. Kadir \& F. Abed-Ashtiani, Mycol. Progr. 13: 1044. 2014. (nom. inval., Art. 8.1, Melbourne Code)

Specimens examined: Mali, from leaf of Eichhornia crassipes (Pontederiaceae), 2006, K. Dagno, culture ex-type CBS 133751 = MUCL 53159. Mauritius, from leaf spot of Arachis hypogaea (Fabaceae), 2 Sep. 1959, S. Felix, CBS 878.95 = IMI 77934b. Unknown, from imported fruit of Cucumis melo (Cucurbitaceae) bought in Dutch supermarket, Feb. 2013, U. Damm, UD03.

Unique fixed nucleotides: GAPDH position 479 (A); RPB2 position 6 (T), 549 (G); OPA10-2 position 159 (C); Alt a 1 position 295 (C), 353 (C), 364 (G); endoPG position 19 (T).

Notes: Although A. jacinthicola only has a few unique fixed nucleotides, the species can molecularly easily be distinguished from A. alternata. The low number of unique fixed nucleotides is due to its close phylogenetic relationship to A. tomato and A. burnsii. Most of the nucleotide differences present between A. jacinthicola and the A. alternata isolates are also present in the A. tomato and / or A. burnsii isolates. By including two other isolates with A. jacinthicola, it has become an Alternaria species with a broad host range including species from the Pontederiaceae, Cucurbitaceae and Fabaceae. The recently described A. capsicicola (Nasehi et al. 2014) is synonymised under A. jacinthicola based on its Alt a 1 (KJ508068,

KJ508069) and GAPDH (KJ508064, KJ508065) sequences which are 100% identical to A. jacinthicola. The name A. capsicicola is invalid, as two accessions were designated as holotype specimens.

Alternaria longipes (Ellis \& Everh.) E.W. Mason, Mycol. Pap. 2: 19. 1928.
Basionym: Macrosporium longipes Ellis \& Everh., J. Mycol. 7: 134. 1892.
= Alternaria brassicae var. tabaci Preissecker, Fachliche Mitt. Österr. Tabakregie 16: 4. 1916.

Specimens examined: USA, North Carolina, from Nicotiana tabacum (Solanaceae), 1967, E.G. Simmons, CBS 917.96; North Carolina, from Nicotiana tabacum, before Nov. 1971, representative isolate CBS 540.94 = E.G.S. $30.033=$ QM 9589; North Carolina, Colombus County, from Nicotiana tabacum, Aug. 1963, E.G. Simmons, CBS 539.94 = QM 8438; North Carolina, from Nicotiana tabacum, before Nov. 1971, representative isolate CBS $121332=$ E.G.S. 30.048; North Carolina, from Nicotiana tabacum, before Nov. 1971, representative isolate CBS 121333 = E.G.S. 30.051. Unknown, from leaf spot of Nicotiana tabacum, before Oct. 1935, W.B. Tisdale, CBS 113.35.

Unique fixed nucleotides: SSU position 654 (G); ITS position 491 (C); GAPDH position 144 (G); OPA10-2 position 51 (T), 85 (G); KOG1058 position 848 (C).

Note: Although A. longipes only has a few unique fixed nucleotides, the species can molecularly easily be distinguished from A. alternata. The low number of unique fixed nucleotides is due to its close phylogenetic relationship to A. gossypina. Most of the nucleotide differences present between A. longipes and the A. alternata isolates are also present in the A. gossypina isolates.

Alternaria tomato (Cooke) L.R. Jones, Bull. Torrey Bot. Club 23: 353. 1896.
Basionym: Macrosporium tomato Cooke, Grevillea 12: 32. 1883.
Specimens examined: Unknown, from Solanum lycopersicum (Solanaceae), before Apr. 1930, A.A. Bailey, CBS 103.30; from Solanum lycopersicum, before Mar. 1935, G.F. Weber, CBS 114.35 .

Unique fixed nucleotides: GAPDH position 356 (T); RPB2 position 21 (T), 252 (C), 567 (C); TEF1 position 36 (T); Alt a 1 position 187 (G); KOG1058 position 60 (A), 183 (A); KOG1077 position $588(\mathrm{~T})$.

Notes: Although A. tomato only has a few unique fixed nucleotides, the species can molecularly easily be distinguished from A. alternata. The low number of unique fixed nucleotides is due to its close phylogenetic relationship to A. burnsii and A. jacinthicola. Most of the nucleotide differences present between A. tomato and the A. alternata isolates are also present in the A. burnsii and / or A. jacinthicola isolates.

Alternaria arborescens species complex (Fig. 5).
Alternaria arborescens E.G. Simmons, Mycotaxon 70: 356. 1999.
Alternaria cerealis E.G. Simmons \& C.F. Hill, CBS Biodiversity Ser. (Utrecht) 6: 600. 2007.

Fig. 5. Alternaria arborescens species complex conidia and conidiophores. A-B. A. geophila CBS 101.13. C-D. A. arborescens CBS 102605. E-F. A. cerealis CBS 119544. G-H. A. senecionicola CBS 119545. Scale bars $=10 \mu \mathrm{~m}$.

Alternaria geophila Dasz., Bull. Soc. Bot. Genève, 2 Sér. 4: 294. 1912.
Alternaria senecionicola E.G. Simmons \& C.F. Hill, CBS Biodiversity Ser. (Utrecht) 6: 658. 2007.

Type specimens examined: New Zealand, Auckland, Grey Lynn, from blighted Senecio skirrhodon (Compositae), Jul. 2000, C.F. Hill, culture ex-type of A. senecionicola CBS 119545 = E.G.S. 48.130; Auckland, from Avena sativa (Gramineae), Nov. 1995, C.F. Hill, culture extype of A. cerealis CBS $119544=$ E.G.S. 43.072 . Switzerland, from peat soil, before 1913, W. Daszewska, culture ex-type of A. geophila CBS 101.13. USA, California, from Solanum lycopersicum (Solanaceae), 23 Apr. 1990, D. Gilchrist, culture ex-type of A. arborescens CBS 102605 = E.G.S. 39.128.

Unique fixed nucleotides: RPB2 position 18 (A), 385 (T); TEF1 position 42 (T), 44 (A), 111 (G); OPA10-2 position $330(\mathrm{G}), 504(\mathrm{C})$; Alt a 1 position 333 (T); endoPG position 349 (C); KOG1058 position 625 (C); KOG1077 position 207 (A), 276 (-), 429 (G), 651 (T).

Notes: Although A. geophila is the oldest name in this species complex, we choose to retain the well-known name A. arborescens above the relatively unknown name A. geophila for the species complex. We were unable to resolve the morphospecies present in this complex with the set of partial gene sequences used in this study and a more detailed study, possibly using
whole-genome sequences of additional isolates from this species complex, is needed. Should this species complex be resolved and A. geophila and A. arborescens have to be synonymised we strongly suggest priority of the name A. arborescens over A. geophila. The isolate CBS 126.60 was deposited in the CBS collection as A. maritima; however, the type material of A. maritima G.K. Sutherland is unknown, and therefore we did not include A. maritima within the AASC pending the recollection of suitable material of A. maritima.

DISCUSSION

To be able to determine whether an isolate should be referred to as forma specialis or pathotype, the species boundaries should first be firmly established. From the seven described pathotypes of Alternaria alternata (Akimitsu et al. 2014), two are now recognised as separate species in section Alternaria, namely A. gaisen and A. longipes, and one belongs to the A. arborescens species complex (AASC). The terms forma specialis (e.g. Neergaard 1945, Joly 1964, Grogan et al. 1975, Vakalounakis 1989, Yoon et al. 1989) and pathotype (Nishimura \& Kohmoto 1983) have both been used to specify the host affinity of strains of A. alternata. This affinity to a specific host is in most cases caused by the ability to produce a unique host-specific toxin (HST), which is needed for infection of the specific host. We propose here to standardise the taxonomic terms used according to Rotem's approach (1994). He favoured the use of the trinomial system in which the third epithet, the forma specialis, defines the affinity to a specific host in accordance with the produced toxin. When different toxins are produced on the same host, but these toxins affect different host species, like for instance on Citrus where the ACT- and / or ACR-toxin can be produced by the same f. $s p$., which affect tangerine and / or rough lemon, respectively (Masunaka et al. 2005), the term pathotype will be used. The four previously described pathotypes which still reside in A. alternata (Akimitsu et al. 2014), will therefore be named A. alternata f. sp. mali for isolates producing the AM-toxin, f. sp. fragariae for isolates producing the AF-toxin, f. sp. citri pathotype rough lemon for isolates producing the ACR-toxin, and f. sp. citri pathotype tangerine for isolates producing the ACT-toxin. All A. alternata isolates which are not confined to specific hosts and / or toxins should retain only the binomial name until such specificity is found. Multiple studies showed that HST gene clusters are located on small conditionally dispensable (CD) chromosomes (Tanaka \& Tsuge 2000, Hatta et al. 2002, Akamatsu 2004, Harimoto et al. 2007, 2008, Hu et al. 2012) which can be lost (Johnson et al. 2001) or gained (Salamiah et al. 2001, Masunaka et al. 2005, Akagi et al. 2009), making an isolate either non-pathogenic or pathogenic to the specific host affected by the HST. With the species boundaries set in this study, this loss or gain of a specific gene cluster will not change the binomial part of the species name of an isolate.

Stewart and colleagues (2013a) have suggested that sequence data derived from SCARs would provide sufficient resolution to address lower level phylogenetic hypotheses in Alternaria. The authors developed SCARs from randomly amplified and cloned RAPD-PCR amplicons of which six of the 19 tested on small-spored Alternaria isolates were highly polymorphic. One of them was too variable which made it difficult to align and amplify this region; the remaining five were all more variable then ITS, GAPDH and TEF1, but only one (OPA10-2) showed a higher variability than endoPG. The other four were equally variable as or slightly more variable than endoPG. We have used both endoPG and OPA10-2 in our multi-gene phylogeny, but could only distinguish 11 species of the 52 morphospecies previously described. Also, the molecular phylogenies obtained from our relative low conservative genes based on genome
sequencing, KOG1058 and KOG1077, could not provide sufficient resolution to distinguish the known morphospecies. The incongruencies between the single-gene phylogenies, together with the high similarity found in the sequenced genomes of section Alternaria and the low SNP count derived by the genomic and transcriptomic data between isolates of section Alternaria led us to the conclusion to synonymise 35 Alternaria species under A. alternata. As mentioned above, the detection of host-specific toxins could eventually give rise to several new formae speciales of A. alternata.

Most of the synonymised species ($10 / 35$ species) under A. alternata were described in 2007 (Simmons), and are only based on a single isolate that was collected long before the year of description (A. brassicinae, A. citricancri, A. herbiphorbicola, A. pulvinifungicola, A. postmessia, A. soliaegyptiaca, A. vaccinii). As far as we know, no new isolates of these species are reported in literature after their original description. Studies on the presence of host-specific toxins in these isolates could show if they should become a new f. $s p$. of A. alternata. Nine of the synonymised species are described in a paper on the classification of citrus pathogens (Simmons 1999). The validity of all these small-spored species described from citrus was already questioned by a molecular study performed in later years (Peever et al. 2004). The authors already advocated that all small-spored citrus-associated isolates of Alternaria should collapse into a single phylogenetic species, A. alternata. Also the validity of the name A. mali, the cause of Alternaria blotch of apple, which occurs on the European quarantine lists, was questioned in recent years (Rotondo et al. 2012, Harteveld et al. 2013). The authors describe the association of multiple Alternaria species-groups with leaf blotch and fruit spot diseases of apple in Italy and Australia respectively, and could not separate the A. mali reference isolate from ' A. tenuissima' isolates. Based on the approach described in the present study, the only way to distinguish A. alternata f. sp. mali, which is of high importance as quarantine organism, is to detect the AM-toxin that gives the name to these isolates (Johnson et al. 2000).

The isolates constituting the AASC show some internal molecular and morphological variation, but can clearly be separated from the A. alternata cluster based on molecular data. Both A. cerealis and A. senecionicola were marked by Simmons (2007) as having an arborescentlike sporulation pattern, but not all isolates from the AASC display this typical arborescent-like sporulation pattern (Fig. 5). This is illustrated by the fact that 12 out of the 28 isolates, which cluster in the AASC, were stored in the CBS collection as either A. alternata or A. tenuissima (Table 1). Because of the inconsistencies in morphology and molecular data in the AASC, more research is needed before conclusions can be drawn on the species present in this complex. Next to the known pathogenicity of A. arborescens on tomato, caused by the production of the ALtoxin, studies on Alternaria spp. show that isolates from the AASC can also cause diseases on apple (Rotondo et al. 2012, Harteveld et al. 2013, 2014) and can act as post-harvest pathogens on apple and citrus (Kang et al. 2002, Serdani et al. 2002). The presence of multiple human isolates in the AASC stresses the importance of additional research on this species complex. To our knowledge, A. arborescens was not recognised as being of medical importance before. One recent publication (Hu et al. 2014) does describe A. arborescens as the causative agent of a cutaneous Alternariosis in a healthy person, but the identification was based on ITS alone, a locus which cannot distinguish A. arborescens from multiple other species now recognised in section Alternaria (Table 4). In the end it might well be that A. arborescens needs the same treatment as A. alternata, and that it will be divided into different formae speciales based on the specific host they infect, and the toxin gene cluster they exploit.

The genome size ranged from $32.0-39.1 \mathrm{Mb}$ within the Alternaria genomes (Table 2), which can only be partly explained by differences in repeat content between the genomes. The
isolates with the highest repeat content, A. avenicola ($\sim 12 \%$ repeats) and A. alternantherae ($\sim 16 \%$ repeats), have a relatively large genome size (39.1 and 35.0 Mb), but A. infectoria with a genome size of 36.5 Mb contains only $\sim 5 \%$ of repeats (Table 2). The percentage of repeats within section Alternaria is relatively low, 1.4-2.7 \%, with the highest percentage of repeats in the A. arborescens genome. The isolates which we now named A. alternata only ranged from $1.4-1.7 \%$. The genome assembly shows a high similarity between the isolates within section Alternaria; 96.7-98.2 \% genome identity within section Alternaria, compared to 85.1-89.3 \% genome identity between isolates from other sections with the reference genome of A. alternata (CBS 916.96). This is confirmed by the percentage of SNPs found in the whole-genome and transcriptome reads; 1.4-2.8 and $0.8-1.8 \%$ SNPs in respectively the whole-genome and transcriptome reads between isolates from section Alternaria, compared to $8.0-10.3 \%$ and $6.1-$ 8.5% SNPs found in isolates from different sections with the A. alternata reference genome. The species boundaries proposed here for section Alternaria are corroborated by the percentage of SNPs found in both the genome and transcriptome studies. The species now synonymised under A. alternata show 1.4-1.5 \% SNPs in their whole-genome reads compared to 2.8% in A. gaisen and $\leq 1 \%$ of SNPs in their transcriptome reads compared to the reference isolate, while the species retained as separate, A. gaisen and A. arborescens, both show 1.8% of SNPs in the transcriptome reads.

The need for this research is stressed by examining recent publications on Alternaria spp. from section Alternaria. Two new Alternaria species, which were published during the writing of this manuscript, are both placed in synonymy under an older species name in this study. Based on molecular comparisons, Alternaria capsicicola (Nasehi et al. 2014) is synonymised under A. jacinthicola, and A. viniferae (Tao et al. 2014) is synonymised under A. alternata. Furthermore, the recent descriptions based on ITS alone of A. arborescens as the cause of cutaneous Alternariosis in a healthy person (Hu et al. 2014) and of A. longipes as the cause of a severe leaf spot disease on potato (Shoaib et al. 2014) need to be re-investigated by employing a more robust molecular dataset. As already mentioned above, A. arborescens cannot be separated from A. alternata based on the ITS region alone, and the 1 unique fixed nucleotide in the ITS sequence which separates A. longipes from A. alternata is not present in the ITS sequence from the isolate causing the leaf spot in potato. These are most likely not the only examples of species of Alternaria section Alternaria treated in recently published manuscripts which need to be confirmed by or subjected to a multilocus sequence analysis in light of the present study. We hope that the research presented here will make the correct identification of species in section Alternaria easier for other researchers confronted with these species.

CONCLUSIONS

Based on genome comparisons and molecular phylogenies, Alternaria section Alternaria consists only of 11 phylogenetic species and one species complex. Thirty-five morphospecies, which cannot reliably be distinguished based on the multi-gene phylogeny, are synonymised under A. alternata. When a specific HST-gene cluster is demonstrated in an A. alternata isolate, this isolate will be named as a f. sp. of A. alternata. Currently three formae speciales of A. alternata are recognised, of which f. sp. citri consists of two pathotypes, according to the host species the HST acts upon. The AASC can be distinguished from all species now recognised within section Alternaria, but the inconsistencies in morphology and molecular data makes further research necessary. By providing guidelines for the naming and identification of species
in Alternaria section Alternaria, we hope to resolve the past confusion in this section. The provided unique fixed nucleotides will help plant pathologists and medical mycologists to choose which genes to sequence for quick and accurate identification of their species of interest.

ACKNOWLEDGEMENTS

We would like to acknowledge E.G. Simmons (deceased) for his monumental taxonomic revision of Alternaria over the past few decades, and especially for making his strains available to facilitate this study. The research was supported by the Dutch Ministry of Education, Culture and Science through an endowment of the FES programme "Making the tree of life work". Research in the laboratory of BPHJT is supported by the Research Council for Earth and Life Sciences (ALW) of The Netherlands Organization for Scientific Research (NWO). Ion Torrent sequencing at the CBS-KNAW was financially supported by the SYNTHESYS project for systematic resources.

Diversity and movement of indoor Alternaria alternata across the mainland USA

J.H.C. Woudenberg ${ }^{1,2}$, N.A. van der Merwe ${ }^{3}$, Ž. Jurjević ${ }^{4}$, J.Z. Groenewald ${ }^{1}$, and P.W. Crous ${ }^{1,2,3}$

[^3]Fungal Genetics and Biology 81: 62-72. 2015.

Abstract

Alternaria spp. from section Alternaria are frequently associated with hypersensitivity pneumonitis, asthma and allergic fungal rhinitis and sinusitis. Since Alternaria is omnipresent in the outdoor environment, it is thought that the indoor spore concentration is mainly influenced by the outdoor spore concentration. However, few studies have investigated indoor Alternaria isolates, or attempted a phylogeographic or population genetic approach to investigate their movement. Therefore, the aim of the current study was to investigate the molecular diversity of indoor Alternaria isolates in the USA, and to test for recombination, using these approaches. Alternaria isolates collected throughout the USA were identified using ITS, GAPDH and endoPG gene sequencing. This was followed by genotyping and population genetic inference of isolates belonging to Alternaria section Alternaria together with 37 reference isolates, using five microsatellite markers. Phylogenetic analyses revealed that species of Alternaria section Alternaria represented 98% (153 isolates) of the indoor isolates collected throughout the USA, of which 137 isolates could be assigned to A. alternata, 15 to the A. arborescens species complex and a single isolate to A. burnsii. The remaining 2% (3 isolates) represented section Infectoriae (single isolate) and section Pseudoulocladium (2 isolates). Population assignment analyses of the 137 A. alternata isolates suggested that subpopulations did not exist within the sample. The A. alternata isolates were thus divided into four artificial subpopulations to represent four quadrants of the USA. Forty-four isolates representing the south-western quadrant displayed the highest level of uniqueness based on private alleles, while the highest level of gene flow was detected between the south-eastern (32 isolates) and south-western quadrants. Genotypic diversity was high for all quadrants, and a test for linkage disequilibrium suggested that A. alternata has a cryptic sexual cycle. These statistics could be correlated with environmental factors, suggesting that indoor A. alternata isolates, although extremely diverse, have a continental distribution and high levels of gene flow over the continent.

INTRODUCTION

Although environmental Alternaria spp. are not considered as pathogens, their omnipresence is frequently associated with hypersensitivity pneumonitis, asthma and allergic fungal rhinitis and sinusitis in humans (Pastor \& Guarro 2008). Allergic rhinitis is the most common form of noninfectious rhinitis (Randriamanantany et al. 2010), while allergic (extrinsic) asthma is the most common form of asthma, affecting over 50% of 20 million asthma sufferers (Salo et al. 2006).

The primary dispersal method of species of Alternaria is by the release of conidia (asexual spores) into the air. It has been suggested that changes in temperature and relative air humidity can trigger spore release from plant material (Timmer et al. 1998). The concentration of allergenic airborne spores can thus be linked to the release of spores from infected plants during dry / wet cycles. Additionally, it is possible that the environment contributes to the genetic diversity of populations of airborne Alternaria. For example, areas with large fluctuations in humidity and temperature, and where agricultural activities are prevalent, may be conducive to the generation of diversity that can counteract the selective pressures imposed by the environment. Since Alternaria is omnipresent in the outdoor environment, it is thought that the indoor spore concentration is mainly influenced by the outdoor spore concentration. However, the indoor level of fungal spores in the air is influenced by the activity in the room, fluctuations in temperature and relative humidity, and the ventilation rate (Samson et al. 2010).

Alternaria alternata (belongs to Alternaria section Alternaria) (cf. Lawrence et al. 2013, Chapter 2) is thought to be the main airborne allergen of the genus Alternaria (Horner et al. 1995, Pulimood et al. 2007, Kuna et al. 2011). Alternaria section Alternaria consists of more than 50 pathogenic and non-pathogenic morpho-species (Chapter 2). These morpho-species display very low levels of DNA sequence variation, and are therefore difficult to distinguish at the sequence level (Peever et al. 2004, Andrew et al. 2009). A recent study based on wholegenome sequencing supplemented with transcriptome profiling and multi-gene sequencing only recognized 11 phylogenetic species and one species complex in section Alternaria (Chapter 5). As a result, 35 morpho-species were placed in synonymy with A. alternata. Alternaria alternata is also associated with diseases of citrus, and like other airborne fungi, it displays a worldwide distribution (Stewart et al. 2014). Nonetheless, several studies (e.g. Peever et al. 2004, 2005, Stewart et al. 2014) were able to delineate geographically or host-restricted lineages of Alternaria, indicating the potential for phylogeographic studies. In contrast to plant pathogenic fungi, or fungi that have restricted geographic and host ranges, airborne fungi have been neglected as subjects for phylogeographic and population genetic studies (Slippers et al. 2005). It is generally believed that such fungi would display a lack of population subdivision due to their ease of spread, and that diversity levels would be extremely high due to high migration rates. Thus, the lack of data on the population genetics of non-pathogenic airborne fungi can be ascribed to these untested assumptions.

Few studies have investigated indoor Alternaria isolates specifically, although multiple studies mention the detection of Alternaria in the indoor environment (Solomon 1975, Li \& Kendrick 1995, de Ana et al. 2006). One large study of dust-borne A. alternata allergens in USA homes assessed the concentration of Alternaria allergens in dust with a polyclonal anti-alternaria antibody assay (Salo et al. 2005). That study revealed that exposure to A. alternata allergens is common, and that residential characteristics such as smoking, mold and moisture problems, and cleaning frequencies influence the indoor antigen levels in house dust. Nonetheless, no reports exist on the genotypic or allelic composition of indoor Alternaria
isolates from the USA. In addition to the few studies on indoor Alternaria species, more studies were performed on Aspergillus and Penicillium species. These two genera are poorly represented in outdoor air, but they are frequently isolated indoors (Scott et al. 2004, 2007, Araujo et al. 2010, Henk et al. 2011). A study on the genotypic variation in ca. 200 Penicillium chrysogenum strains from Canadian homes showed no evidence of recombination, indicating a strictly clonal population (Scott et al. 2004). Additionally, a study on the genotypic variation of the Penicillium brevicompactum group in house dust in Canada revealed that the two predominant taxa, P. brevicompactum and P. bialowiezense, also showed a predominantly clonal mode of reproduction (Scott et al. 2007).

Sexual reproduction in filamentous fungi is controlled by the mating-type (or MAT) locus (Coppin et al. 1997, Turgeon 1998). These mating-type loci have been identified from several asexual fungi based on PCR and whole genome sequencing (e.g. Sharon et al. 1996, Pöggeler 2002, Goodwin et al. 2003, Paoletti et al. 2005, Groenewald et al. 2006, Woo et al. 2006). The discovery of cryptic sexual cycles is important in understanding the evolution of fungal diversity. Alternaria is considered to be an asexual fungal genus; however, the connection to a sexual morph, formerly called Lewia, is known for some species (Simmons 1986, 2007). With the recent division of the genus into sections, these sexual connections seem to be restricted to specific sections (Lawrence et al. 2013, Chapter 2). However, the mating-type loci have also been identified from several Alternaria spp. which are supposedly asexual (Arie et al. 2000, Berbee et al. 2003, Linde et al. 2010, Stewart et al. 2011).

The first aim of the current study was to identify which Alternaria species are present in the indoor environment in the USA, by sequencing two protein-coding genes and one nontranslated locus. Secondly, we wanted to investigate the molecular diversity of indoor Alternaria isolates in the USA, by genotyping and population genetic inference of the section Alternaria isolates, using five microsatellite markers (Tran-Dinh \& Hocking 2006). A third aim was to investigate whether alleles at these five microsatellite loci are randomly associated, i.e. to test for recombination.

MATERIALS AND METHODS

Isolates and DNA extraction

Isolates were collected throughout the USA over a period of 6 months from December 2011 to May 2012 (Table 1). Most of the samples ($137 / 156$) were collected as malt extract agar (MEA) settle plates by homeowners from their own homes. The MEA plates were purchased by homeowners from hardware stores and sent to EMSL Analytical, Inc. for identification after exposure to indoor air. Ten air samples were collected with a single stage bio-aerosol impaction sampler (EMSLVP-400 Microbial Sampler), three were swab samples and four were dust samples (Table 1). The media used for fungal isolation was MEA. No further information is available on the individual homes. For the microsatellite typing experiment, 37 reference isolates were included (Table 1). For DNA isolation, the isolates were grown on potato-carrot agar (Crous et al. 2009c) for 7d at ambient temperature ($\sim 22^{\circ} \mathrm{C}$). Total genomic DNA was extracted using the UltraClean Microbial DNA Isolation Kit (MO BIO Laboratories, Carlsbad, CA, USA) according to the manufacturer's instructions.

PCR, sequencing and sequence analyses

The internal transcribed spacers (ITS) of the ribosomal DNA operon, including the 5.8 S rDNA gene, and a section of the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene region were amplified from genomic DNA as described in Chapter 2 with the primers V9G (De Hoog \& Gerrits van den Ende 1998) and ITS4 (White et al. 1990) for the ITS region, and gpd1 and gpd2 (Berbee et al. 1999) for the GAPDH region. A section of the endopolygalacturonase (endoPG) gene was amplified with the primers PG3 and PG2b (Andrew et al. 2009). The PCR mixture consisted of $1 \mu \mathrm{l}$ genomic DNA (ca. 50 ng), $1 \times$ PCR reaction buffer (Bioline, Luckenwalde, Germany), $2 \mathrm{mM} \mathrm{MgCl} 2,20 \mu \mathrm{M}$ of each dNTP, $0.2 \mu \mathrm{M}$ of each primer, and 0.5 U Taq DNA polymerase (Bioline). The PCR program consisted of an initial denaturation step of 5 min at $94^{\circ} \mathrm{C}$ followed by 40 cycles of 30 s at $94^{\circ} \mathrm{C}, 30 \mathrm{~s}$ at $50^{\circ} \mathrm{C}$ and 30 s at $72^{\circ} \mathrm{C}$ and a final elongation step of 7 min at $72^{\circ} \mathrm{C}$. The PCR reactions were performed in a 2720 Thermal Cycler (Applied Biosystems, Foster City, California), in a total volume of 12.5μ l. PCR amplicons were sequenced in both directions using the PCR primers and the BigDye Terminator v. 3.1 Cycle Sequencing Kit (Applied Biosystems, Foster City, CA, USA) according to the manufacturer's instructions, and analysed using an ABI Prism 3730xl DNA Analyzer (Applied Biosystems). Consensus sequences were assembled from forward and reverse sequences using the BioNumerics v. 4.61 software package (Applied Maths, St-Martens-Latem, Belgium).

Sequence alignments were generated with MAFFTv. 7 (Katoh\& Standley 2013), and manually adjusted where necessary. A Bayesian inference analysis was conducted with MrBayes v. 3.2.1 (Huelsenbeck \& Ronquist 2001, Ronquist \& Huelsenbeck 2003) on the individual datasets. The K80 model with gamma distribution was used for the ITS region, and the GTR-model with gamma distribution for the GAPDH and endoPG regions, as suggested by the on-line tool FindModel (http://www.hiv.lanl.gov/content/sequence/findmodel/findmodel.html). The two Markov Chain Monte Carlo (MCMC) analyses used four chains and started from a random tree topology. The analysis ran with the sample frequency set at 1000 and the temperature value of the heated chain at 0.05 and stopped when the average standard deviation of split frequencies fell below 0.01 . Burn-in was set to 25%, after which the likelihood values were stationary. The convergence of chains was verified with Tracer v. 1.5.0 (Rambaut \& Drummond 2009), and TreeView v. 1.6.6 (Page 1996) was used to visualise the phylogenetic tree. Both the sequence alignments and phylogenetic trees were deposited in TreeBASE (http://www.treebase.org).

Microsatellite typing

Five primer pairs previously designed for A. alternata (Tran-Dinh \& Hocking 2006; Table 2) were used to characterize the indoor Alternaria section Alternaria population from the USA, together with 37 reference isolates (Table 1). By performing a genomic search of the primer sequences against a draft A. alternata genome (Chapter 5), the relative positions of the microsatellites on the genome were located. From each primer pair, one primer was labelled with the Fluorobrite oligo FAM (loci AEM3 and AEM5), SOL (locus AEM6) or ZEL (loci AEM9 and AEM13) (Biolegio BV, Nijmegen, The Netherlands; Table 2). Loci AEM3 / AEM5 and AEM9 / AEM13 were amplified in a multiplex PCR. The PCR mixture consisted of $1 \mu \mathrm{DNA}$ ($c a .50 \mathrm{ng}$), $1 \times$ PCR buffer (Bioline), $40 \mu \mathrm{M}$ of each dNTP, $1.6 \mathrm{mM} \mathrm{MgCl}_{2}, 0.2 \mu \mathrm{M}$ of each primer, and 0.25 U Taq polymerase (Bioline) in a total volume of 12.5μ. The amplification was performed on a 2720 Thermal Cycler (Applied Biosystems) and consisted of a 5 min initial denaturation step $\left(94^{\circ} \mathrm{C}\right)$ followed by 35 cycles of 30 s at $94^{\circ} \mathrm{C}, 55^{\circ} \mathrm{C}$ and $72^{\circ} \mathrm{C}$, and a final 7 min elongation
Table 1. Isolates used in this study with the substrate, locality and date they were collected, and their sequence type (ST) and eBURST group based on microsatellite data.

Isolate number ${ }^{1}$	Substrate	Locality	Date	Name	$\mathbf{S T}^{3}$	eBURST group ${ }^{3}$
CPC 22417	Air ${ }^{2}$, bedroom 2nd floor	USA, NJ	Dec. 2012	A. arborescens SC	12	singleton
CPC 22418	Dust, carpet	USA, PA	Dec. 2012	A. alternata	39	singleton
CPC 22419	Air, bedroom	USA, CA	Jan. 2013	A. alternata	79	singleton
CPC 22420	Air, bedroom	USA, MD	Jan. 2013	A. alternata	44	1
CPC 22421	Air, bathroom	USA, TX	Jan. 2013	A. alternata	18	1
CPC 22422	Air, recreational vehicle	USA, CA	Jan. 2013	sect. Infectoriae	$n \boldsymbol{a}$	$n \boldsymbol{a}$
CPC 22423	Air, bedroom	USA, NJ	Dec. 2012	A. arborescens SC	106	singleton
CPC 22424	Air, living room	USA, KS	Dec. 2012	A. alternata	167	singleton
CPC 22425	Air, office	USA, NJ	Dec. 2012	A. alternata	118	19
CPC 22426	Air, office	USA, MI	Dec. 2012	A. alternata	44	1
CPC 22427	Air, kitchen	USA, MD	Dec. 2012	A. alternata	158	singleton
CPC 22428	Air, bedroom	USA, WI	Dec. 2012	A. alternata	86	3
CPC 22429	Air, living room	USA, NJ	Jan. 2013	A. alternata	134	2
CPC 22430	Air, class room	USA, TX	Jan. 2013	A. alternata	105	1
CPC 22431	Air, office	USA, CO	Dec. 2012	A. alternata	91	1
CPC 22432	Air, bedroom	USA, IL	Dec. 2012	A. alternata	59	1
CPC 22433	Air, basement	USA, NJ	Dec. 2012	A. alternata	52	1
CPC 22434	Air, 2nd floor	USA, NJ	Jan. 2013	A. alternata	133	2
CPC 22435	Air ${ }^{2}$, office	USA, NY	Jan. 2013	A. alternata	61	1
CPC 22436	Air, bathroom	USA, MD	Jan. 2013	A. alternata	47	1
CPC 22437	Swab, store	USA, NY	Jan. 2013	A. alternata	157	singleton
CPC 22438	Air, basement	USA, CT	Jan. 2013	A. alternata	145	singleton
CPC 22439	Air, living room	USA, NJ	Jan. 2013	A. alternata	111	1
CPC 22440	Air, bedroom	USA, WA	Jan. 2013	sect. Pseudoulocladium	$n \boldsymbol{a}$	$n \boldsymbol{a}$
CPC 22441	Dust, rug	USA, PA	Jan. 2013	A. alternata	82	singleton

Table 1. (Continued)

Isolate number ${ }^{1}$	Substrate	Locality	Date	Name	ST ${ }^{3}$	eBURST group ${ }^{3}$
CPC 22970	Dust, rug	USA, PA	Jan. 2013	A. alternata	67	singleton
CPC 22971	Air, class room	USA, NY	Jan. 2013	A. alternata	68	1
CPC 22972	Air, hallway	USA, CA	Jan. 2013	A. alternata	71	1
CPC 22973	Air, hallway	USA, CA	Jan. 2013	A. alternata	23	10
CPC 22974	Air, kitchen	USA, GA	Jan. 2013	A. alternata	141	15
CPC 22975	Air, kitchen	USA, SD	Jan. 2013	A. alternata	32	singleton
CPC 22976	Air, basement	USA, OH	Jan. 2013	A. alternata	49	singleton
CPC 22977	Air, living room	USA, PA	Jan. 2013	A. alternata	46	1
CPC 22978	Air, living room	USA, MD	Jan. 2013	A. arborescens SC	98	singleton
CPC 22979	Air, bedroom	USA, OK	Jan. 2013	A. alternata	174	1
CPC 22980	Air, living room	USA, CA	Jan. 2013	A. alternata	74	singleton
CPC 22981	Air, living room	USA, OH	Jan. 2013	A. alternata	159	singleton
CPC 22982	Air, living room	USA, CA	Jan. 2013	A. alternata	62	1
CPC 22983	Air, bedroom	USA, IL	Jan. 2013	A. alternata	62	1
CPC 22984	Air, basement	USA, NY	Jan. 2013	A. alternata	80	singleton
CPC 22985	Air, office	USA, AZ	Jan. 2013	A. alternata	125	1
CPC 22986	Swab, bedroom	USA, TX	Jan. 2013	A. alternata	166	1
CPC 22987	Air^{2}, outside	USA, DE	Feb. 2013	A. alternata	89	1
CPC 22988	Air^{2}, office	USA, DE	Feb. 2013	A. alternata	85	3
CPC 22989	Air ${ }^{2}$, warehouse	USA, DE	Feb. 2013	A. alternata	41	9
CPC 22990	Air^{2}, office	USA, AZ	Feb. 2013	A. alternata	127	singleton
CPC 22991	Air^{2}, elevator	USA, MO	Feb. 2013	A. alternata	171	singleton
CPC 22992	Air, living room	USA, IL	Feb. 2013	A. alternata	64	7
CPC 22993	Dust, carpet	USA, MD	Feb. 2013	A. arborescens SC	146	14
CPC 22994	Air, office	USA, GA	Feb. 2013	A. alternata	128	singleton
CPC 22995	Air, office	USA, TX	Feb. 2013	A. alternata	125	1
CPC 22996	Air, garage	USA, TX	Feb. 2013	A. alternata	153	singleton

Table 1. (Continued)

Isolate number ${ }^{1}$	Substrate	Locality	Date	Name	$\mathbf{S T}^{3}$	eBURST group ${ }^{3}$
CPC 22997	Air, bedroom	USA, CO	Feb. 2013	A. alternata	115	singleton
CPC 22998	Air, bedroom	USA, TX	Feb. 2013	A. arborescens SC	172	12
CPC 22999	Air, bedroom	USA, FL	Feb. 2013	A. alternata	47	1
CPC 23000	Air, living room	USA, WA	Feb. 2013	A. arborescens SC	104	singleton
CPC 23001	Air, bedroom	USA, OR	Feb. 2013	A. alternata	19	1
CPC 23002	Air, bedroom	USA, IL	Feb. 2013	A. alternata	90	1
CPC 23003	Air, outside	USA, OK	Feb. 2013	A. alternata	101	singleton
CPC 23004	Air, living room	USA, TX	Feb. 2013	A. alternata	138	1
CPC 23005	Air, bedroom	USA, IL	Feb. 2013	A. alternata	148	singleton
CPC 23006	Air, bedroom	USA, PA	Feb. 2013	A. alternata	122	17
CPC 23007	Air, bedroom	USA, CA	Feb. 2013	A. alternata	100	singleton
CPC 23008	Air, bathroom	USA, TX	Feb. 2013	A. alternata	161	singleton
CPC 23009	Air, storage room	USA, MD	Feb. 2013	A. alternata	16	singleton
CPC 23010	Air, kitchen	USA, TX	Feb. 2013	A. arborescens SC	151	14
CPC 23011	Air, bedroom	USA, MO	Feb. 2013	A. alternata	50	1
CPC 23012	Air, bedroom	USA, FL	Feb. 2013	A. alternata	58	1
CPC 23013	Air, bedroom	USA, FL	Feb. 2013	A. alternata	47	1
CPC 23014	Air, living room	USA, GA	Feb. 2013	A. alternata	96	1
CPC 23015	Air, dining room	USA, NJ	Feb. 2013	A. arborescens SC	112	singleton
CPC 23016	Air, bedroom	USA, GA	Feb. 2013	A. alternata	117	19
CPC 23017	Air, office	USA, MS	Feb. 2013	A. alternata	123	17
CPC 23018	Air, bathroom	USA, TX	Feb. 2013	A. alternata	124	1
CPC 23019	Air, living room	USA, ME	Feb. 2013	A. alternata	71	1
CPC 23020	Air, bedroom	USA, IL	Feb. 2013	A. alternata	69	1
CPC 23021	Air, bathroom	USA, PA	Feb. 2013	A. alternata	135	singleton
CPC 23022	Air, office	USA, CA	Feb. 2013	A. alternata	26	singleton
CPC 23023	Air, bedroom	USA, TX	Mar. 2013	A. alternata	27	1

Table 1. (Continued).

Isolate number ${ }^{1}$	Substrate	Locality	Date	Name	$\mathbf{S T}^{3}$	eBURST group ${ }^{3}$
CPC 23024	Air, bathroom	USA, CA	Mar. 2013	A. arborescens SC	15	12
CPC 23025	Air, bathroom	USA, MA	Mar. 2013	A. alternata	59	1
CPC 23026	Air, bedroom	USA, CO	Mar. 2013	A. arborescens SC	8	16
CPC 23027	Air, hallway	USA, MI	Mar. 2013	A. alternata	126	1
CPC 23028	Air, living room	USA, TX	Mar. 2013	A. alternata	136	singleton
CPC 23029	Air, bedroom	USA, IN	Mar. 2013	A. alternata	114	singleton
CPC 23030	Air, bedroom	USA, LA	Mar. 2013	A. alternata	162	8
CPC 23031	Air, bedroom	USA, NJ	Mar. 2013	A. alternata	170	13
CPC 23032	Air, break room	USA, TX	Mar. 2013	A. alternata	88	1
CPC 23033	Air, family room	USA, GA	Mar. 2013	A. alternata	20	1
CPC 23034	Air, bedroom	USA, CA	Mar. 2013	A. alternata	65	7
CPC 23035	Air, bathroom	USA, TX	Mar. 2013	A. alternata	129	1
CPC 23036	Air, bedroom	USA, PA	Mar. 2013	A. alternata	140	1
CPC 23037	Air^{2}, office	USA, AZ	Mar. 2013	A. alternata	40	9
CPC 23038	Air, garage	USA, NJ	Mar. 2013	A. alternata	48	1
CPC 23039	Air, kitchen	USA, TX	Mar. 2013	A. alternata	95	singleton
CPC 23040	Air, outside	USA, CA	Mar. 2013	A. arborescens SC	11	18
CPC 23041	Air, bathroom	USA, TX	Mar. 2013	A. alternata	150	2
CPC 23042	Air, living room	USA, PA	Mar. 2013	A. alternata	56	1
CPC 23043	Air, living room	USA, CA	Mar. 2013	A. arborescens SC	9	singleton
CPC 23044	Air, office	USA, NE	Mar. 2013	A. alternata	45	1
CPC 23045	Air, living room	USA, GA	Mar. 2013	A. alternata	142	15
CPC 23046	Air, office	USA, IL	Mar. 2013	A. alternata	139	1
CPC 23047	Air, bedroom	USA, KY	Mar. 2013	A. alternata	144	singleton
CPC 23048	Air, bathroom	USA, SC	Mar. 2013	A. alternata	87	3
CPC 23049	Air, dining room	USA, NM	Mar. 2013	A. alternata	77	singleton
CPC 23050	Air, class room	USA, MO	Mar. 2013	A. alternata	78	1

Table 1. (Continued).

Isolate number ${ }^{1}$	Substrate	Locality	Date	Name	ST ${ }^{3}$	eBURST group ${ }^{3}$
CPC 23051	Air, bedroom	USA, TX	Mar. 2013	A. alternata	107	1
CPC 23052	Air, office	USA, FL	Mar. 2013	A. alternata	149	2
CPC 23053	Air ${ }^{2}$, bathroom	USA, NJ	Mar. 2013	sect. Pseudoulocladium	na	$n \boldsymbol{a}$
CPC 23054	Air, outside	USA, MD	Mar. 2013	A. alternata	160	singleton
CPC 23055	Air, bedroom	USA, TN	Apr. 2013	A. alternata	113	13
CPC 23056	Air, living room	USA, CT	Apr. 2013	A. alternata	70	1
CPC 23057	Air, outside	USA, CA	Apr. 2013	A. arborescens SC	7	16
CPC 23058	Air, bedroom	USA, AL	Apr. 2013	A. alternata	53	1
CPC 23059	Air, outside	USA, GA	Apr. 2013	A. alternata	132	2
CPC 23060	Air, bathroom closet	USA, NJ	Apr. 2013	A. alternata	34	4
CPC 23061	Air, bedroom	USA, TX	Apr. 2013	A. alternata	169	singleton
CPC 23062	Air, bedroom	USA, TX	Apr. 2013	A. alternata	147	singleton
CPC 23063	Air, bedroom	USA, FL	Apr. 2013	A. burnsii	5	5
CPC 23064	Air, office	USA, FL	Apr. 2013	A. alternata	60	1
CPC 23065	Air, bedroom	USA, NY	Apr. 2013	A. alternata	109	singleton
CPC 23066	Air, bedroom	USA, CA	Apr. 2013	A. alternata	81	singleton
CPC 23067	Air, class room	USA, NC	Apr. 2013	A. alternata	31	singleton
CPC 23068	Air, living room	USA, NJ	Apr. 2013	A. alternata	37	4
CPC 23069	Air, family room	USA, CA	Apr. 2013	A. alternata	75	11
CPC 23070	Air, utility room	USA, MS	Apr. 2013	A. alternata	55	1
CPC 23071	Air, living room	USA, CA	Apr. 2013	A. alternata	102	6
CPC 23072	Air, basement	USA, PA	Apr. 2013	A. alternata	49	singleton
CPC 23073	Air, living room	USA, MO	Apr. 2013	A. alternata	72	1
CPC 23074	Air, bedroom	USA, MO	Apr. 2013	A. alternata	168	1
CPC 23075	Air, dining room	USA, TX	Apr. 2013	A. alternata	102	6
CPC 23076	Air, bedroom	USA, FL	Apr. 2013	A. alternata	84	3
CPC 23077	Air, kitchen	USA, IL	Apr. 2013	A. alternata	116	1

Table 1. (Continued).

Isolate number ${ }^{1}$	Substrate	Locality	Date	Name	$\mathbf{S T}^{3}$	eBURST group ${ }^{3}$
CPC 23078	Air, living room	USA, NY	Apr. 2013	A. alternata	137	singleton
CPC 23079	Air, bathroom	USA, FL	Apr. 2013	A. alternata	43	1
CPC 23080	Air, bedroom	USA, MI	Apr. 2013	A. alternata	173	singleton
CPC 23081	Air, bedroom	USA, AZ	Apr. 2013	A. alternata	76	11
CPC 23082	Swab, wine barrel	USA, PA	Apr. 2013	A. alternata	22	1
CPC 23083	Air, living room	USA, GA	May 2013	A. alternata	30	2
CPC 23084	Air, bathroom	USA, IL	May 2013	A. alternata	163	singleton
CPC 23085	Air 2, warehouse	USA, DE	May 2013	A. alternata	41	9
CPC 23086	Air, bathroom	USA, CA	May 2013	A. alternata	93	singleton
CPC 23087	Air, basement	USA, PA	May 2013	A. alternata	36	4
CPC 23088	Air, bedroom	USA, FL	May 2013	A. alternata	143	singleton
CPC 23089	Air, bedroom	USA, CA	May 2013	A. arborescens SC	10	18
CPC 23090	Air, kitchen	USA, AZ	May 2013	A. alternata	165	singleton
CPC 23091	Air, bedroom	USA, IA	May 2013	A. alternata	35	4
CPC 23092	Air, bedroom	USA, RI	May 2013	A. alternata	164	singleton
CPC 23093	Air, living room	USA, GA	May 2013	A. alternata	73	singleton
CPC 23094	Air, bathroom	USA, CA	May 2013	A. alternata	25	10
CPC 23095	Air, bathroom	USA, VA	May 2013	A. arborescens SC	152	singleton
CPC 23096	Air, office	USA, TX	May 2013	A. alternata	130	1
CPC 23097	Air, office	USA, OK	May 2013	A. alternata	155	singleton
CPC 23098	Air, basement	USA, MA	May 2013	A. alternata	131	2
CPC 23099	Leaf, green house	USA, NC	May 2013	A. alternata	102	6
CPC 23100	Leaf, green house	USA, NC	May 2013	A. alternata	110	6
CBS 101.13	Unknown	Unknown	< Jan. 1913	A. arborescens SC	8	16
CBS 103.33	Soil	Egypt	< Jan. 1933	A. alternata	24	10
CBS 107.38	Cuminum cyminum	Unknown	< Dec. 1938	A. burnsii	3	5
CBS 117.44	Godetia sp.	Denmark	Jul. 1942	A. alternata	28	singleton

Table 1. (Continued)

Isolate number ${ }^{1}$	Substrate	Locality	Date	Name	ST ${ }^{3}$	eBURST group ${ }^{3}$
CBS 194.86	Quercus sp.	USA	1953	A. alternata	33	singleton
CBS 195.86	Euphorbia esula	Canada	1982	A. alternata	103	6
CBS 479.90	Citrus unshiu	Japan	1968	A. alternata	42	9
CBS 632.93	Pyrus pyrifolia	Japan	Jul. 1990	A. gaisen	14	8
CBS 540.94	Nicotiana tabacum	USA	< Nov. 1971	A. longipes	97	singleton
CBS 916.96	Arachis hypogaea	India	Dec. 1980	A. alternata	99	singleton
CBS 918.96	Dianthus chinensis	UK	Feb. 1981	A. alternata	21	1
CBS 102595	Citrus jambhiri	USA	< Jul. 1997	A. alternata	54	1
CBS 102596	Citrus jambhiri	USA	< Jul. 1997	A. alternata	92	1
CBS 102597	Minneola tangelo	USA	< Aug. 1997	A. gossypina	17	singleton
CBS 102598	Minneola tangelo	USA	< Feb. 1998	A. alternata	175	1
CBS 102599	Minneola tangelo	Turkey	May 1996	A. alternata	51	1
CBS 102600	Citrus reticulata	USA	Jun. 1975	A. alternata	57	1
CBS 102601	Minneola tangelo	Colombia	< Nov. 1996	A. gossypina	17	singleton
CBS 102602	Minneola tangelo	Turkey	May 1996	A. alternata	51	1
CBS 102604	Minneola tangelo	Israel	< Nov. 1996	A. alternata	66	singleton
CBS 102605	Solanum lycopersicum	USA	Apr. 1990	A. arborescens SC	8	16
CBS 118404	Iris sp.	New Zealand	Jan. 2001	A. iridiaustralis	6	singleton
CBS 118488	Pyrus pyrifolia	Japan	Jul. 1990	A. gaisen	13	8
CBS 118809	Alstroemeria sp.	Australia	Jul. 2005	A. alstroemeriae	119	singleton
CBS 118810	Beta vulgaris var. cicla	Kenya	2001	A. betae-kenyensis	1	singleton
CBS 118811	Brassica oleracea	USA	Apr. 1982	A. alternata	94	singleton
CBS 118812	Daucus carota	USA	Jan. 1984	A. alternata	83	3
CBS 118814	Solanum lycopersicum	USA	Jun. 1996	A. alternata	156	3
CBS 118816	Rhizophora mucronata	India	Oct. 1995	A. burnsii	2	5
CBS 118817	Tinospora cordifolia	India	Sep. 1987	A. burnsii	4	5

Table 1. (Continued)

Isolate number ${ }^{1}$	Substrate	Locality	Date	Name	$\mathbf{S T}^{3}$	eBURST group ${ }^{3}$
CBS 118818	Vaccinium sp.	USA	Oct. 1973	A. alternata	108	1
CBS 119399	Minneola tangelo	USA	Dec. 1980	A. alternata	121	singleton
CBS 119408	Euphorbia esula	USA	Nov. 1992	A. alternata	38	4
CBS 119543	Citrus paradisi	USA	Jun. 1947	A. alternata	63	7
CBS 121454	Cuscuta sp.	USA	Aug. 1997	A. alternata	154	singleton
CBS 121455	Broussonetia papyrifera	China	Sep. 1996	A. alternata	29	2
CBS 124392	Solanum melongena	China	Unknown	A. alternantherae	120	singleton
${ }^{1}$ CBS: Culture collection of the Centraalbureau voor Schimme Crous, Utrecht, The Netherlands. ${ }^{2}$ Collected with a single stage bio-aerosol impaction sampler. ${ }^{3}$ na: not analysed.						
Table 2. PCR primer sequences, repeat motifs, number of alleles and allele distribution observed for microsatellite markers in Alternaria Alternaria based on 153 isolates.						
Locus	Primer sequence ($\left.5^{\prime}-3^{\prime}\right)^{1}$		repeat motif No.		No. of alleles	Allele distribution
AEM3	F: TGA TCC CAC GTC ACA GAA AG R: FGGT TGT CCA AGT ACC CCA TAG A		(AAG) ${ }_{9}$			Uneven
AEM5	F: ${ }^{\text {FTAC AGA CGG AGG }}$ R: CAC AGC TCG TCA T	$\begin{aligned} & \mathrm{C} \mathrm{AC} \\ & \mathrm{G} \text { TA } \end{aligned}$	$(\mathrm{GAA})_{10}$			Even
AEM6	F: TGA CGA GCT GTG A R: ${ }^{\text {s }}$ CGT GTG TAG GGT	$\begin{aligned} & \text { Г GT } \\ & \text { T CTC } \end{aligned}$	$(\mathrm{CA})_{5}(\mathrm{CT}$			Uneven
AEM9	F: GAA GCC CAT TCC A R: ${ }^{\text {Z GCT CCA TCT CCC }}$	A ACA	$(\mathrm{CAA})_{12}$			Uneven
AEM13	F: TGC GAA ACC GTG R: ${ }^{\text {TCG }}$ GAA ATG GCT		$(\mathrm{GAC})_{7}(\mathrm{GAA})_{38}$			Even

${ }^{1 \mathrm{~F}, \mathrm{~S}}{ }^{\text {or }}{ }^{\mathrm{z}}$ indicates the use of respectively FAM, SOL or ZEL as fluorescent lable.
step $\left(72^{\circ} \mathrm{C}\right)$. For fragment analysis, the PCR products were diluted 1:1000 and combined per biological sample, which resulted in one well per isolate for the fragment analysis. MCLAB's Orange Size Standard (Nimagen, Nijmegen, The Netherlands) was used as internal marker. Samples were electrophoresed using an ABI Prism 3730x1 DNA Analyzer (Applied Biosystems), and analysed with the freeware Peak Scanner v. 1.0 (Applied Biosystems). Individual alleles at each locus were assigned using fragment lengths.

Population genetic analyses

The online program eBURST v. 3 (http://eburst.mlst.net/v3; Feil et al. 2004) was used to identify clusters of closely related genotypes. The allelic profiles were assigned to sequence types (STs; Table 1), and eBURST identified groups of STs that only differed at one locus (known as single locus variants).

For subsequent population genetic analyses, the A. alternata isolates were divided into four artificial subpopulations representing four quadrants of the USA. Isolates from NE-USA were excluded due to small sample size. The program MultiLocus v. 1.3 (Agapow \& Burt 2001) was used to simulate genotypic diversity against the number of loci (1000 randomizations per locus combination), in order to test whether sampling was sufficient for population genetic analyses. The same software was used to calculate the genotypic diversity and linkage disequilibrium in subpopulations of isolates (10000 data randomizations). For this analysis, locus AEM6 was excluded due to the fact that it was physically linked to locus AEM5 and was also less polymorphic than that locus. The Index of Association $\left(I_{A}\right)$ between alleles at different loci was normalized as \bar{r}_{d} as an indication of random association between loci. The null hypothesis for this test was that alleles are randomly associated, and deviation from random association is measured as a confidence interval. The θ-values of population differentiation between pairwise combinations of subpopulations, i.e. SW-USA, NE-USA, and SE-USA (Fig. 1), were used to estimate the pairwise number of migrants per generation (Slatkin 1995), which equates to gene flow (\hat{M}).

The Stoddart \& Taylor (1988) genotypic diversity was manually calculated for isolates from each included quadrant of the USA, and the genotypic diversity of each subpopulation was normalized with sample size to yield \hat{G} (the percentage of maximum genotypic diversity), which can be used to make inter-sample comparisons. The significance of differences between \hat{G} values was assessed using a two-tailed t-test at a significance level of $99 \%(P=0.01)$ with N_{1} $+N_{2}-2$ degrees of freedom, where N is the sample size.

In order to assess diversity that is independent of genotypes, the allelic (gene) diversity (Nei 1973) was calculated. This statistic provides an indication of heterozygosity, or the probability of obtaining two different alleles at a locus when two individuals are randomly sampled from a haploid population. $\mathrm{H} \rightarrow 1$ for diverse populations, while $\mathrm{H} \rightarrow 0$ for populations that display allelic homogeneity. Additionally, the level of uniqueness (φ) (Van der Merwe et al. 2012) for each subpopulation was calculated. This statistic estimates the probability of sampling a unique (private) allele belonging to a subpopulation, when a random individual is drawn from the total population. In other words, φ is an indication of allelic segregation in a subpopulation.

Fig. 1. Map of the mainland USA (Mercator projection) indicating the four artificially defined quadrants using different colors, and the general north-easterly direction of the antitrade winds over the subcontinent (grey arrows). Numbers in black filled circles are the numbers of isolates from each state. The boxed insert depicts gene flow estimations between the south-west, south-east and north-east quadrants. Diameters of the circles are proportionate to the level of uniqueness (φ) of each of the subpopulations. The north-west quadrant was excluded from these analyses due to lack of a sufficient number of isolates.

RESULTS

Phylogeny

From the 193 included isolates we were not able to amplify the endoPG sequences from five isolates (CPC 22422, CPC 22440, CPC 23053, CPC 23063 and A. alternantherae CBS 124392). The sequences of the ITS (554 characters), GAPDH (580 characters) and endoPG (448 characters) gene regions consisted of respectively 58,88 and 47 unique site patterns. After discarding the burn-in, the Bayesian analysis resulted in respectively 4308, 5200 and 4218 trees from both runs. Based on their ITS, GAPDH and endoPG sequences, 153 of the 156 isolates (i.e. 98%) belonged to section Alternaria, while two isolates belonged to section Pseudoulocladium (CPC 22440, CPC 23053), and one belonged to section Infectoriae (CPC 22422) (Table 1). From the 153 isolates that belonged to section Alternaria, CPC 23063 could be assigned to A. burnsii and 15 other isolates could be assigned to the A. arborescens species complex (AASC). The remaining 137 isolates were identified as A. alternata. Both the GAPDH and ITS phylogeny could distinguish the section Alternantherae, section Pseudoulocladium and section Infectoriae isolates from the section Alternaria isolates. The endoPG locus from the isolates outside section Alternaria could not be amplified. Within section Alternaria the ITS phylogeny could only distinguish A. betae-kenyensis, A. burnsii, A. iridiaustralis and A. longipes. The other five included Alternaria species, A. alstroemeriae, A. alternata, A. gaisen, A. gossypina, and
the AASC, all clustered together based on their ITS sequences. The GAPDH and endoPG phylogenies separated all included species in section Alternaria except AASC / A. alternata and A. gossypina / A. longipes, respectively. The clustering of the A. alternata isolates with respect to the other recognized species in section Alternaria was not consistent throughout the three sequenced genes, as inconsistent sub-clusters were formed.

Microsatellite typing

Comparisons of microsatellite loci to a draft genome sequence revealed that three of the loci, namely AEM3, AEM9 and AEM13 each resided on a different genomic scaffold. Loci AEM5 and AEM6 resided on a single scaffold, and the AEM5-R and AEM6-F primers overlapped with 12 nt . We found 142 allelic profiles (or sequence types, ST) from the 153 collected isolates (Table 1). When the 37 reference isolates were included, 175 allelic profiles were observed. Loci AEM3 and AEM13 showed the largest number of alleles (Table 2). However, within AEM3 there was an uneven distribution of the different alleles, with allele 257 being observed in 58 of 153 isolates ($\sim 35 \%$). For loci AEM6 and AEM9 the distribution across the different alleles was more unbalanced. At these loci, alleles 161 and 278 were observed in $\sim 70 \%$ of the isolates. For loci AEM5 and AEM13 there was an even distribution among the different alleles. The locus AEM13, which displayed the highest number of alleles and an even distribution of these alleles, contributed most to the genotypic variation, followed by AEM3 with a high number of alleles but with an uneven distribution. Loci AEM6 and AEM9 were the least informative loci, with a low number of alleles and an uneven distribution.

Population genetic analyses

An eBURST analysis of 190 isolates (153 section Alternaria isolates and 37 reference isolates), representing 175 STs, resulted in 19 groups and 65 singletons (Fig. 2, Table 1). Group 1 was the largest, and included 62 isolates representing 54 STs (including eight reference isolates forming seven STs). Group 2 contained eight isolates representing eight STs (including 1 reference isolate) while group 3 contained six isolates and six STs (including 2 reference isolates). The remaining groups, namely $4-19$, included five or less isolates. The isolates assigned to the A. arborescens complex based on their endoPG sequence formed groups $12,14,16$, and 18 , while six isolates were singletons. The assignment of CPC 23063 to A. burnsii based on the GAPDH sequence is supported by the microsatellite data, since all A. burnsii isolates clustered in eBURST group 5. No correlation was found between the location and place of isolation and the eBURST groups assigned to the isolates based on their allelic profiles. Almost all eBURST groups contained isolates from different states in the USA and different places of isolation, e.g. bathroom, bedroom, kitchen. The only exceptions were group 13, which consists of two bedroom isolates, but isolated in two different states, and groups 15 and 18, which both consisted of two isolates from the same state, respectively Georgia and California, but from different places of isolation.

When the microsatellite alleles for the A. alternata (137) isolates were combined into multilocus genotypes (haplotypes), 126 distinct genotypes could be recovered. While most of these genotypes were observed only once, the most frequent genotype was observed three times. Modelling of the genotypic diversity $v s$. the number of loci revealed that both microsatellite loci and genotypes were adequately sampled to continue with population genetic analyses (Fig. 3). Index of Association values for three quadrants of the USA, namely the south-west,

Fig. 2. eBURST diagram of 190 Alternaria isolates. The numbers correspond to sequence type numbers, the size of the dot correlates to the number of isolates.

Genotypic diversity vs. Number of loci

Fig. 3. Results from modeling genotypic diversity against the number of loci. Each locus-combination was repeated 1000 times, resulting in a mean genotypic diversity for that combination. The graph reaches a plateau at four microsatellite loci, indicating that both the number of isolates and the number of loci were sufficient for population genetic analyses.

Fig. 4. Graph of linkage disequilibrium estimation densities (\bar{r}_{d} values, which are normalized Index of Association values) resulting from 10000 randomizations of each of the artificially-defined subpopulations, as well as for these three subpopulations combined. The observed linkage disequilibrium values are indicated using arrows, and these are inside the 95% confidence intervals of the distributions. Thus, the null hypothesis of random mating in these populations cannot be rejected.
north-east, and south-east quadrants (SW-USA, NE-USA, SE-USA) indicated that alleles were randomly associated for all three subpopulations, as well as for the metapopulation (Fig. 4, Table 3). Additionally, alleles of the two physically linked loci, namely AEM5 and AEM6, were in linkage disequilibrium ($P<0.0001$), while all other loci were in pairwise equilibrium with each other and with AEM5. Population differentiation (θ; Table 4) was very low when pairwise combinations of these three subpopulations were analysed. Subsequently, the estimated numbers of migrants per generation M were high between all three pair-wise combinations of subpopulations (Table 4). However, the migration rate between SE-USA and SW-USA ($\hat{M}=$ 147,5) was much higher than the other two combinations, and the migration rate between SWUSA and NE-USA ($\hat{M} \cong 32$) was the smallest.

The maximum likelihood estimator of genotypic diversity (\hat{G}) revealed that all subpopulations consisted of an extremely large diversity of genotypes (Table 3). No significant differences between the estimated \hat{G}-values could be detected using a two-tailed t-test. Gene diversity (\bar{H}) values were $0.952,0.923$, and 0.916 for SW-USA, SE-USA, and NE-USA, respectively. Thus, alleles were most unevenly distributed in the SW-USA subpopulation ($N=58$). An estimation of the level of uniqueness (φ) of each subpopulation indicated that the SW-USA subpopulation was most unique ($\varphi=0.915$), while the SE-USA and NE-USA subpopulations were equally unique ($\varphi=0.564$ and $\varphi=0.568$, respectively).

Table 3. Summary statistics for indoor Alternaria alternata isolates from the USA.

Statistic	All isolates ${ }^{\mathbf{1}}$	South-West USA	North-East USA	South-East USA
Number of isolates, N	134	44	58	32
Number of genotypes	122	42	54	31
${ }^{2}$ Genotypic diversity, \hat{G}	81.71%	91.67%	87.88%	94.12%
Number of alleles (all loci)	104	72	66	52
Gene diversity, \bar{H}	0.968	0.952	0.916	0.923
Private alleles (all loci)	-	27	15	14
Uniqueness, φ	-	${ }^{3} 0.915$	0.568	0.564
${ }^{4}$ Gametic equilibrium	Yes $(P=0.448)$	Yes $(P=0.086)$	Yes $(P=0.695)$	Yes $(P=0.135)$

${ }^{1}$ Excludes three A. alternata isolates from the NW quadrant of the USA.
${ }^{2}$ None of the maximum likelihood estimators of genotypic diversity were significantly different in any of the pair-wise combinations.
${ }^{3}$ A uniqueness of 0.915 implies that there is a 91.5% chance that an isolate containing a unique allele, relative to the meta-population, can be drawn from this subpopulation.
${ }^{4} P$-values indicate the probabilities of rejecting the null hypothesis of random association of alleles. A P-value of less than 0.05 is regarded as significant.

Table 4. Population differentiation (θ) and estimated number of allelic migrants per generation (\hat{M}) between the three artificial subpopulations of Alternaria alternata from the south-west, south-east, and north-east quadrants of the USA.

Comparison	θ	\hat{M}
NE-USA vs. SE-USA	0.00506	98.33
NE-USA $v s$. SW-USA	0.01537	32.04
SE-USA $v s$. SW-USA	0.00338	147.50

DISCUSSION

Alternaria species from section Infectoriae, the A. arborescens group and A. tenuissima (both section Alternaria) are described as common species from food and the indoor environment (Samson et al. 2010). Three species from the former genus Ulocladium, recently synonymized under Alternaria (Chapter 2), are also common in food and the indoor environment (Samson et al. 2010); Alternaria cucurbitae, A. atra (both section Ulocladioides) and A. alternariae (section Ulocladium). Our results largely support these observations for the indoor samples, although the species from section Alternaria were by far the most prevalent in the US homes included in this study. We only found one isolate from section Infectoriae and two isolates from section Pseudoulocladium, that resembles section Ulocladioides and Ulocladium based on morphology.

No correlation was found between the location and place of isolation and the eBURST groups assigned to the isolates based on their allelic profiles. Since most groups contained indoor
isolates as well as reference isolates, there did not seem to be a specific indoor cluster. However, there was subjective correlation between the eBURST groups and phylogeny; Alternaria gaisen, A. gossypina and A. burnsii isolates clustered together in both analyses. The other species that could be distinguished based on phylogeny, namely A. alstroemeriae, A. alternantherae, A. betae-kenyensis, A. iridiaustralis and A. longipes, were also separated using eBURST. The A. arborescens isolates did not form a single group based on their allelic profiles, but the isolates did cluster together in several eBURST groups ($12,14,16$ and 18) or remained as singletons (6). Furthermore, 15 out of the 17 isolates from the A. arborescens species complex had allele 125 at locus AEM5 and allele 281 at locus AEM9. The two remaining isolates had one of the mentioned alleles but differed at the other locus. Although the A. iridiaustralis isolate also had these alleles, these loci have some potential as markers for species in the A. arborescens complex.

Surprisingly, analyses to test for random association of alleles in isolates of A. alternata showed that the allele associations between microsatellite loci were not significantly different from what can be expected in a randomly mating population. Nonetheless, alleles of AEM5 and AEM6, which were on the same locus, were in linkage disequilibrium. The last mentioned observation can be explained by the improbability of cross-over events between the two adjacent stretches of DNA. For these reasons, the less polymorphic of these two loci, i.e. AEM6, was excluded when disequilibrium was tested between loci.

Two possible explanations can be proposed for gametic equilibrium and, thus, outcrossing. The first is that cryptic sexual recombination could account for the lack of allelic associations. Evidence is accumulating for the occurrence of cryptic sex in filamentous fungi that are thought to be asexual (Kück \& Pöggeler 2009). For example, another study of an A. alternata population causing citrus brown spot in Florida revealed three subpopulations of which two were clonal and one showed the ability to recombine through a cryptic sexual cycle or parasexual cycle, based on six fast evolving loci and the presence of both mating-types (Stewart et al. 2013b). A second explanation for random association of alleles in A. alternata can be arrived at when we consider the nature of microsatellites. These loci change via birth-and-death evolution (Buschiazzo \& Gemmell 2006) such that they are highly polymorphic. It is possible that over long periods of asexual reproduction a microsatellite locus can become hyper-mutated in very large populations such as A. alternata. If this process acts equally on all microsatellites, such a situation could account for the random association of independently evolving alleles that were detected in this study. Thus, this explanation accounts for two possibilities: either the lack of allele association was due to experimental error (the inability of the available microsatellites to discriminate between randomly and non-randomly associated alleles), or A. alternata has been asexual for so long that the loci are hyper-mutated. A simulation of the observed data showed that sampling was adequate in both dimensions (i.e. number of isolates and number of loci). Additionally, due to size limitations on microsatellite loci (e.g. Buschiazzo \& Gemmell 2006) there is a very high probability of size homoplasy, confounding the detection of hyper-mutation. Therefore, recombination is the most parsimonious explanation for the data.

High levels of diversity can be caused only by a limited set of evolutionary processes. The most important of these are mutation, recombination, and migration (Ayala 1982, Hedrick 2000, Halliburton 2004; Hartl \& Clark 2007, Nielsen \& Slatkin 2013). Our data indicated that recombination is a contributor, but that hyper-mutation is not a viable explanation for the diversity of A. alternata. Although no subpopulations could be statistically identified, the levels of uniqueness provided important information regarding the movement of the fungus across the mainland USA. Since the SW-USA subpopulation was most unique, we can hypothesize
that either this subpopulation results directly from sexual reproduction, or the alleles have an alternate origin but are concentrated in this region.

The SW-USA and SE-USA subpopulations appear to exchange a very high number of interpopulation allelic migrants, and this pattern correlates with the anti-trade winds. Alternaria spores are known as dry air spores that are dispersed by wind (Andersen et al. 2012). Longdistance dispersal in the air can only occur if there is a susceptible host in the target area (Brown \& Hovmøller 2002). Since A. alternata has been described from more than 100 host plants (Rotem 1994), it is possible that these genotypes move through the air in a west-to-east direction across the southern USA. This is then possibly followed by south-to-north movement out of the SE-USA subpopulation towards to NE-USA. This long-distance movement of fungal spores from the southern USA to the northern USA has already been reported for the air-borne plant pathogens Puccinia graminis and Phakopsora pachyrhizi (Andersen et al. 2012).

The high genotypic diversity within the A. alternata isolates was also visible with our gene sequencing, as inconsistent sub-clusters existed within the three single-gene phylogenies. In a more extensive phylogenetic study on section Alternaria, where eleven individual gene regions were sequenced, the incongruent clustering within the A. alternata isolates was demonstrated even more clearly (Chapter 5). We speculate that this high genotypic diversity derives from Mexico / Central America, where many agricultural crops have evolved. From here the fungi moved through the USA via the antitrade winds.

CONCLUSIONS

This study showed that the most prevalent species in the indoor environment in USA homes is A. alternata, with a high genotypic diversity. The SW-USA subpopulation displayed the highest level of uniqueness and the highest amount of gene flow, between SW-USA and SE-USA, coincided with prevailing winds over the subcontinent. Lastly, A. alternata in the continental USA displays random mating. This is the first report of such an observation in indoor samples of this fungus from homes in the USA.

ACKNOWLEDGEMENTS

We thank Prof. A.A. Myburg (FABI) for valuable discussions regarding gametic / linkage equilibrium and Dr. A.D. van Diepeningen (CBS-KNAW) for her comments on a draft version of the manuscript. This research was supported by the Dutch Ministry of Education, Culture and Science through an endowment of the FES programme "Making the tree of life work".

General discussion

GENERAL DISCUSSION

The research presented in this thesis treats the taxonomic status of Alternaria and related genera with a further focus on the large-spored Alternaria species in section Porri and the small-spored Alternaria species in section Alternaria. Section Porri is the largest Alternaria section with regards to the number of species, and includes several important plant pathogens. The most commonly reported species in literature and type species of the genus Alternaria, Alternaria alternata, resides in section Alternaria. As A. alternata is considered as one of the most prolific producers of fungal allergens and is reported as pathogen on over 100 host plants, correct species identification is of utmost importance. In addition to the phylogenetic studies, genome and transcriptome sequence data were analysed to identify candidate loci for species identification within the small-spored Alternaria species, and microsatellite markers were used to study the genetic diversity and distribution of indoor Alternaria isolates in the USA. For end-users, the phylogenies and classifications presented in this thesis result in a more stable and understandable taxonomy and nomenclature of Alternaria and allied genera. This revised taxonomy will serve as a starting point for applied research performed by plant pathologists, breeders and medical mycologists in the field.

From 14 genera to one

The results presented in this thesis radically changed how we perceive the genus Alternaria. By synonymizing 13 genera with Alternaria (Chapter 2), the morphological characters associated with the generic concept changed significantly. The question therefore arises: can one (still) identify Alternaria in the field based on morphology alone? Since almost all dematiaceous hyphomycetes with phaeodictyospores, which develop at a restricted site at the apex of distinctive conidiophores, are now called Alternaria, the identification becomes easier. No distinctions need to be made based on dark rigid septa (formerly Embellisia or Undifilum) or young obovoid conidia (formerly Ulocladium or Sinomyces). On the other hand, dematiaceous hyphomycetes with phragmospores without longitudinal septa (formerly Chalastospora or Nimbya), are now also classified as Alternaria. Even isolates which display cylindrical conidia (formerly Brachycladium) are now included in the genus, making the morphological generic description very broad. Although these morphological differences do not coincide with the synonymy of all these genera under Alternaria, the decision to synonymize them was based on i) a well-supported phylogenetic deeper node in multiple analyses, ii) limited sequence variation of clades within Alternaria (as defined in point i) based on SSU, LSU and ITS data, and iii) incongruent tree topologies for the clade order between the different single-gene phylogenies. Any alternative options, that are not supported by an underlying molecular phylogeny, would give rise to multiple genera consisting of only a few species each. This rise of a multitude of genera, potentially consisting of a small number of species each, would complicate the taxonomy even more, as several of these genera would have more or less identical morphological characters, which would make morphological identification in the field impossible.

Taking all these aspects into consideration, the description of a single all-encompassing Alternaria clade is the best solution for solving the confusion surrounding the taxonomy of Alternaria and allied genera and creating a stable and understandable taxonomy and nomenclature. By retaining the original genus names as new section names of Alternaria, the information linked to the former genus name is not lost.

Genera unrelated to Alternaria

Besides the synonymy of several genera with Alternaria, the research presented in this thesis also provides molecular proof for the distinction of several genera from Alternaria. Five genera formerly linked to Alternaria are placed within the Pleosporaceae (Chapter 2). The asexual genus Stemphylium, with a Pleospora sexual morph, forms a clade distinct from the Alternaria clade (Chapter 2). Morphologically the genus can be distinguished from Alternaria based on the percurrent proliferation of its conidiophores, while Alternaria displays a geniculate, sympodial proliferation (Chapter 1, Fig. 1). The sexual genera Comoclathris and Clathrospora were described within the Pleosporaceae with alternaria-like asexual morphs (Zhang et al. 2011). Both genera were previously placed within the Diademaceae, a family which is characterised by a flat circular lid as ascoma opening and applanate, bitunicate asci (Shoemaker \& Babcock 1992). The sexual morphs of Alternaria (Lewia, Allewia and Crivellia) segregate from a heterogenous group of species with relatively small ascomata, historically placed in Pleospora. They form a central pore in a terete cylindrical beak as ascomatal opening and form subcylindrical, bitunicate asci.The results in this thesis show that both Comoclathris and Clathrospora belong to the Pleosporaceae, but are clearly unrelated to Alternaria (Chapter 2), as the morphological characters of the sexual morphs already suggested. Also the newly described Paradendryphiella, which accommodates the marine Dendryphiella species, D. arenariae and D. salina (= Embellisia annulata), forms a clade distinct from Alternaria within the Pleosporaceae (Chapter 2). Morphologically they can be distinguished from Alternaria based on the prominent conidial scars on the conidiogenous cells, and the narrow denticles the conidia are produced on.

Based on molecular data, the genus Alternariaster, described to accommodate the former Alternaria helianthi (Simmons 2007), was placed within the Leptosphaeriaceae, instead of the Pleosporaceae to which Alternaria belongs (Chapter 2). The initial segregation from Alternaria was based on morphological characters alone (Simmons 2007). From the three genera which were simultaneously segregated from Alternaria based on morphology (Simmons 2007), the other two genera, Chalastospora and Teretispora, were reduced to synonymy with Alternaria after molecular studies (Chapter 2). For Alternariaster and Prathoda, a rejected genus that was revisited, molecular data supported the morphological segregation from Alternaria and, after molecular study, both genera ended up in a different family to Alternaria (Chapter 2, Pryor \& Gilbertson 2000). The discovery of a second species in the genus Alternariaster resulted in a reappraisal of the genus (Chapter 3).

With the data presented here, the confusion surrounding the above-mentioned six genera and their relation to Alternaria is clarified. Unfortunately it was not possible to obtain living cultures from the genera Briansuttonia and Rhexoprolifer, which are also linked to Alternaria (Seifert et al. 2011). These genera still lack molecular data, and their phylogenetic relation with Alternaria presently remains unresolved. The recollection of fresh material representing these genera would resolve the last unresolved aspect pertaining to the taxonomy of genera with muriformly septate conida.

From species-group to section

The genus Alternaria has a long history of being divided into species-groups based on morphology (Chapter 1). These species-groups were mainly based on conidium morphology and sporulation pattern, e.g. small- or large-spored, conidia with or without beaks, conidia
single or in chains, simple or in branched chains. Numerous molecular studies revealed that Alternaria species cluster in distinct species clades, but these are not always correlated with the species-groups based on morphological characteristics alone. Before the start of this PhD study, seven species-groups were recognised based on molecular phylogenetic data (Chapter 1). During the present study, the species-group concept was formalized by introducing sections in Alternaria (Lawrence et al. 2013). In the International Code of Nomenclature for algae, fungi and plants, the Melbourne code (ICN; McNeill et al. 2012), a section is an officially recognized taxonomic rank below the genus and above species level. This is in contrast to the term speciesgroup, which has no official taxonomic status. Sections are mainly used to help organise very large genera. Initially, eight well-supported "asexual" lineages of Alternaria were elevated to the taxonomic rank of section, based on a phylogenetic study of five genes (Lawrence et al. 2013). In addition to six known species-groups, now named section Alternantherae, section Alternaria (previously A. alternata species-group), section Brassicicola, section Porri, section Radicina and section Sonchi, two new lineages were introduced, namely section Gypsophilae and section Panax. The "sexual" A. infectoria species-group was not included in the sections, since it was not phylogenetically supported as Alternaria. The asexual / sexual division mentioned in the manuscript introducing the sections within Alternaria (Lawrence et al. 2013), was not supported in the dataset presented in this thesis, as two sexual forms were placed in section Panax (Chapter 2).

With the synonymy of 13 genera under Alternaria, the introduction of sections by Lawrence et al. (2013) was extended over the entire genus, resulting in 24 Alternaria sections and six monotypic lineages. The $25^{\text {th }}$ section, section Euphorbiicola, was introduced when studying section Porri (Chapter 4), and the $26^{\text {th }}$ section, section Soda (Grum-Grzhimaylo et al. 2015) followed soon thereafter. Two species in a newly described genus, Pseudoalternaria, can most likely also be assigned to a new section of Alternaria. During the same time-period as the introduction of the big Alternaria clade (Chapter 2), this new genus was introduced for two species closely related to the A. infectoria species-group (Lawrence et al. 2014). Since the publication of this new genus (accepted 3 June 2013, published online 22 June 2013) coincides with the publication that synonymized the 13 genera under Alternaria (Chapter 2, published online 31 May 2013), the genus Pseudoalternaria was already reduced to synonymy under Alternaria before the publication appeared. It is interesting to note that the authors describing Pseudoalternaria earlier suggested a further taxonomic revision of the A. infectoria speciesgroup to eliminate the polyphyly within Alternaria (Lawrence et al. 2013). However, their later published study on the A. infectoria species-group (Lawrence et al. 2014) did not deal with the mentioned polyphyly, but only introduced this new genus, Pseudoalternaria, which applied to two isolates that cluster just outside the A. infectoria species-group.

When looking at the currently described sections, some sections correspond with the morphologically based species-groups, like section Alternaria, section Porri and section Infectoriae. However, other sections display a more diverse morphology, but seem to have a biological binding factor, like section Gypsophilae and section Japonica which seem to be linked to a certain host family, respectively Caryophyllaceae, Brassicaceae; and section Phragmosporae which seems to relate to the environment in which it occurs, namely soil and seawater environments. In other words, some sections contain similarly looking species, which occur on multiple host families, while other sections contain species which occur on specific host families, or environmental conditions, but vary in morphology. More study is necessary to try to explain why some molecular and morphological related species are able to spread to different hosts, while other molecularly related species evolve within a certain host family.

Although the synonymy of multiple genera with Alternaria gave rise to a very large genus, with hundreds of described species, the introduction of sections within the genus makes the taxonomy and nomenclature of the genus manageable. With a GAPDH sequence alone it is relatively easy to identify to which Alternaria section an isolate belongs. With this knowledge, one can focus on the species assigned to the appropriate section, which reduces the complexity of the identification significantly.

Alternaria section Porri

The largest Alternaria section, in terms of the number of species, is Alternaria section Porri. The species in this section are characterized by their medium to large conidia with a long (filamentous) beak. Among them are numerous important plant pathogens, such as A. porri, A. solani, and A. tomatophila. The research presented in this thesis (Chapter 4) treats all 82 known morphospecies within this section. Based on a five-gene phylogeny, combined with morphology, only 63 species are supported within section Porri. Twenty-seven species are placed in synonymy and from the 63 supported species, 10 are newly described. The phylogeny gives a complete overview of the species within the complex and their closest relatives, and the host where they were isolated from.

Most morphospecies described in section Porri were presumed to be host-specific. The present study reveals that most species are at least host family-specific (49 out of 63 species), but eight species are found on two different host families, and six species on three or even more host families (Chapter 4, Table 2). Interestingly, the species with the broadest host range, A. solani-nigri, found on five different host families, seems to have a geographical preference. All A. solani-nigri isolates included in this study originate from New Zealand, although the taxon was originally described from India. Also the pathogens originally known from Solanaceae seem to possess a broad-host range. Following the concept of Ellis (1971), almost all largespored, narrow-beaked Alternaria strains hitherto isolated from Solanaceae were called A. solani. A morphological distinction was later made between tomato (A. tomatophila, A. cretica, A. subcylindrica) and potato (A. solani, A. grandis) pathogens (Simmons 2000), which was supported by subsequent molecular studies and chemotaxonomy (Andersen et al. 2008, Rodrigues et al. 2010, Brun et al. 2013, Gannibal et al. 2014). This distinction between tomato and potato pathogens is confirmed here, although the tomato pathogens are now synonymized into one species, to which the oldest name A. linariae applies. However, these Solanaceae pathogens include multiple isolates collected from different host families, which suggest a broad host range. Also A. protenta, formerly known as a Helianthus annuus-specific pathogen ($\mathrm{Wu} \& \mathrm{Wu} 2003$), which now contains an isolate collected as an early blight pathogen of Solanum tuberosum (originally described as A. solani), is shown to be present on multiple hosts. Follow-up studies on these presumably broad host-range species could demonstrate whether the separate isolates within these species can really infect multiple hosts, or whether there are different host-specific lineages within the species, such as which are present in Alternaria section Alternaria (Chapter 5).

Alternaria section Alternaria

The section with the biggest confusion with regards to correct identification is by far Alternaria section Alternaria, since species are mostly based on morphology and host-specificity, even though the molecular variation is minimal. This section contains Alternaria species with small
conidia formed in chains, which are the most common Alternaria species found throughout the world. They are mostly saprophytic, but can become pathogenic when their surroundings change. For instances as post-harvest pathogen, when fruit gets damaged and the fungus enters the underlying tissue under the right conditions. The same applies to phaeohyphomycosis in humans, when the fungus gets the opportunity to enter the mammalian tissues, for instance with a splinter, they can proliferate under the right conditions and cause infection. This is especially true with a decreased or suppressed immune system, as present in immuno-compromised patients. Furthermore, it is known that Alternaria species from section Alternaria can acquire a small dispensable chromosome, which contains a host-specific toxin gene cluster (Salamiah et al. 2001, Masunaka et al. 2005, Akagi et al. 2009). This will enable the fungus to proliferate on the host the toxin acts on, which it was not able to do without the obtained gene cluster.

Based on genome-sequencing combined with transcriptome profiling and multi-gene phylogeny the research performed in this thesis (Chapter 5) reduces the species in this section from 52 morphospecies to only 11 phylogenetic species and one species complex. Thirty-five species are synonymized under A. alternata, of which one, Alternaria viniferae, was just recently described (Tao et al. 2014). Some clustering in clades is observed for isolates in the different single-gene phylogenies, based on minor nucleotide changes, but the observed clades are incongruent between the different single-gene phylogenies for the A. alternata isolates. No two genes show the same clustering, and isolates from one fully supported clade in one gene-tree, will cluster with isolates in other clades in another single gene-phylogeny, and are found on different places again in a third gene tree. The same applies to phylogenies derived from two new genes, which were identified as candidate phylogenetic markers based on promising "low" conservation values found when comparing the sequenced Alternaria genomes (Chapter 5). The L152 gene, which was suggested as a potential key for discriminating the small-spored Alternaria species (Roberts et al. 2012), was also tested. However, even with the L152 sequence alignment, the phylogenetic tree did not correlate with other single gene trees, and it could not distinguish all recognized species within section Alternaria (Fig. 1). In the L152 phylogeny A. alternata isolates are divided into several clusters, with other recognized species clustering among them. Alternaria burnsii cannot be distinguished from several A. alternata isolates, and one isolate from the A. arborescens species complex (AASC) clusters separately (Fig. 1).

The incongruencies between the single-gene trees in combination with a high similarity with the genome comparison and transcriptome profiles, led to the conclusion to synonymize most of the morphospecies within section Alternaria. The incongruencies in the single-gene phylogenies (Chapter 5), and the high diversity seen with the microsatellite analysis of indoor A. alternata isolates (Chapter 6), demonstrate that A. alternata is a species with a high genotypic diversity. Furthermore, the population genetic study on the indoor A. alternata population showed that they display random mating in the USA, suggesting a sexual cycle (Chapter 6). This fits with the high diversity found among isolates and the incongruencies in the single-gene phylogenies, which would be difficult to explain in a clonal / asexual population.

With the aid of the provided sequence-based identification guide (Chapter 5), the species identification in this section now becomes much clearer and easier. However, when one has identified an isolate as A. alternata, the next question one should ask is about the presence or absence of a dispensable chromosome, and whether it contains one or even multiple hostspecific toxin genes. The presence or absence of a toxin cluster defines whether an A. alternata isolate is capable of acting as a true plant pathogen or probably only acts as an opportunistic pathogen.

Fig 1. Bayesian 50% majority rule consensus tree based on the L152 gene sequence alignment. The Bayesian posterior probabilities (PP) are given at the nodes; thickened lines indicate a PP of 1.0. Isolates from the same species are indicated with blocks of the same colour. AASC $=A$. arborescens species complex. The tree was rooted with A. avenicola CBS 121459.

Indoor Alternaria

Alternaria is known as an important air-borne allergen causing hypersensitivity reactions in humans, which can eventually lead to asthma (Downs et al. 2001). The allergens responsible for these hypersensitivity reactions are located on the cell wall of the (asexual) conidia (Twaroch et al. 2012). Since Alternaria is commonly found outdoors, little study has been performed on indoor Alternaria populations. Also the difficulties in identifying species within section Alternaria, to which section the main airborne allergen A. alternata belongs, hampered the research performed on indoor Alternaria populations. The present study (Chapter 6) of an extensive indoor Alternaria population collected throughout the USA, shows that 98% (153 isolates) of the indoor isolates indeed belong to section Alternaria. After species identification (as described in Chapter 5), 88% (137 isolates) belonged to A. alternata, which was previously reported to be the main airborne allergen, and is, as shown, also the most prevalent species within the indoor environment. The present study further shows that based on microsatellite data, the indoor Alternaria isolates collected throughout the USA do not form a specific indoor cluster (Chapter 6). This refutes the assumption that indoor air Alternaria species are specially adapted to the environment they live in.

Genome versus (multi-)gene phylogenies

Study of the genomes of representatives of seven different sections described within Alternaria (Chapter 5) shows an identical topology to the multi-gene studies (Chapter 2). Not every mycologist and pathologists embraced the synonymy of all (well-known) genera under Alternaria, although the molecular data does not leave much room for other sensible conclusions (Chapter 2). It was already stressed earlier in the Discussion that this was the only logical choice to make, in order to establish a stable and understandable taxonomy and nomenclature. The research was presented as posters and oral presentations at several occasions to an applied / end-user public; this resulted in discussions with numerous mycologists and plant pathologists, who mostly agreed with the presented findings and welcomed the clarity that it provides. However, there is still a small group of researchers who could not bring themselves to agree with the presented findings, although they can neither come up with strong arguments for their disagreement, nor with a (better) solution for this taxonomic problem. In order to provide additional support for the presented findings, a phylogenetic tree was constructed on whole genome sequence data of the newly sequenced Alternaria spp., together with the genomes of closely related genera. The program REALPHY (Chapter 5) was used to compare the new genomes with the sequenced genomes from the closest related genera publicly available from the Joint Genome Institute (http://jgi.doe.gov/). We included the genomes from the closely related genera Bipolaris and Curvularia, together with two Pyrenophora genomes and one Exserohilum genome. To be able to create a reliable REALPHY phylogeny, the genera should not be phylogenetically too far apart, since this would leave too little genome data with homology to compare. The taxonomic status of the genera Bipolaris and Curvularia was also under debate, since they were both linked to the same sexual morph Cochliobolus (Manamgoda et al. 2012). However, recent studies confirmed that they are indeed two separate genera (Manamgoda et al. 2014, Ariyawansa et al. 2015). These genera therefore form the perfect test case for the included Alternaria panel. In the resulting phylogenetic tree (Fig. 2), a clear vertical species line can be drawn, which separates all genera included in the phylogeny, and which supports all the species

Fig 2. PhyML tree based on the whole genome and transcriptome reads of 20 isolates using REALPHY, including 195205 nucleotide positions. The bootstrap support values >60 are given at the nodes; thickened lines indicate a fully supported node. The tree was rooted following a phylogenetic study of the Dothideomycetes (Schoch et al. 2009).
within the genus Alternaria. This further confirms the decision to establish one encompassing Alternaria genus concept containing numerous sections, and should convince most of the remaining sceptic mycologists and plant pathologists to adopt the approach highlighted in this thesis.

General conclusions

This study started off with The Alternaria Identification Manual (Simmons 2007), and the underlying cultures linked to the species in the Manual, as basis. Multi-gene sequence data were generated, which were used for accurate species identification. During this study, the concepts used for species identification by Simmons (2007) could be confirmed for numerous species, whereas others were shown to be synonymous. The generic concept of Alternaria was revised and the use of the taxonomically informative sections favoured. The large-spored Alternaria species with long beaks, residing in section Porri, were disentangled and some species were confirmed to be host-specific whereas the host ranges for others were expanded. The identification of the small-spored Alternaria species from section Alternaria was clarified and, by providing a sequence-based identification guide, made available to a broader public. Furthermore, it has also been shown that the most common indoor Alternaria species in the USA is A. alternata, which seems to proliferate sexually, and does not form a specific indoor cluster.

The fundamental work performed in this thesis will provide plant pathologists, breeders and medical mycologists in the field the essential basis for the applied research they plan to perform. The coming years the implications of this dissertation's findings to the medical and agricultural field will need to be tested. This thesis forms the basis for a new era in Alternaria research.

APPENDIX

APPENDIX

REFERENCESSUMMARYACKNOWLEDGEMENTSCURRICULUM VITAELIST OF PUBLICATIONS
EDUCATION STATEMENT

REFERENCES

Abo-Elyousr KAM, Abdel-Hafez SII, Abdel-Rahim IR (2014). Isolation of Trichoderma and evaluation of their antogonistic potential against Alternaria porri. Journal of Phytopathology 162: 567-574.
Agapow P-M, Burt A (2001). Indices of multilocus linkage disequilibrium. Molecular Ecology Notes 1: 101-102.
Akagi Y, Akamatsu H, Otani H, Kodama M (2009). Horizontal chromosome transfer, a mechanism for the evolution and differentiation of a plant-pathogenic fungus. Eukaryotic Cell 8: 1732-1738.
Akamatsu H (2004). Molecular biological studies on the pathogenicity of Alternaria alternata tomato pathotype. Journal of General Plant Pathology 70: 389.
Akimitsu K, Tsuge T, Kodama M, Yamamoto M, Otani H (2014). Alternaria host-selective toxins: determinant factors of plant disease. Journal of General Plant Pathology 80: 109-122.
Alcorn JL (1988). The taxonomy of Helminthosporium species. Annual Review Phytopathology 26: 37-56.
Alcorn JL (1991). New combinations and synonymy in Bipolaris and Curvularia, and a new species of Exserohilum. Mycotaxon 41: 329-343.
Alcorn JL, Pont W (1972). Alternaria helianthi on sunflower. Australasian Plant Pathology 1: 30.
Ana SG de, Torres-Rodrígues JM, Ramírez EA, García SM, Belmonte-Soler J (2006). Seasonal distribution of Alternaria, Aspergillus, Cladosporium and Penicillium species isolated in homes of fungal allergic patients. Journal of Investigational Allergology and Clinical Immunology 16: 357-363.
Andersen B, Dongo A, Pryor BM (2008). Secondary metabolite profiling of Alternaria dauci, A. porri, A. solani, and A. tomatophila. Mycological Research 112: 241-250.

Andersen B, Sørensen JL, Nielsen KF, Gerrits van den Ende AHG, Hoog GS de (2009). A polyphasic approach to the taxonomy of the Alternaria infectoria species-group. Fungal Genetics and Biology 46: 642-656.
Andersen GL,FrischAS,Kellogg CA,LevetinE,LigthartB,PaternoD(2012).Aeromicrobiology. In: Topics in ecological and environmental microbiology (Schmidt TM, Schaechter M, eds). Academic Press, San Diego, California, USA: 115-132.
Andrew M, Peever TL, Pryor BM (2009). An expanded multilocus phylogeny does not resolve morphological species within the small-spored Alternaria species complex. Mycologia 101: 95-109.
Angell HR (1929). Purple blotch of onion (Macrosporium porri Ell.). Journal of Agricultural Research 38: 467-487.
Araujo R, Amorim A, Gusmão L (2010). Genetic diversity of Aspergillus fumigatus in indoor hospital environments. Medical Mycology 48: 832-838.
Arie T, Kaneko I, Yoshida T, Noguchi M, Nomura Y, Yamaguchi I (2000). Mating-type genes from asexual phytopathogenic ascomycetes Fusarium oxysporum and Alternaria alternata. Molecular Plant-Microbe Interactions 13: 1330-1339.
Ariyawansa HA, Thambugala KM, Manamgoda DS, Jayawardena R, Camporesi E, Boonmee S, Wanasinghe DN, Phookamsak R, Hongsanan S, Singtripop C, Chukeatirote E, Kang J-C, Jones EBG, Hyde KD (2015). Towards a natural classification and backbone tree for Pleosporaceae. Fungal Diversity 71: 85-139.
Ayala FJ (1982). Population and evolutionary genetics: a primer. The Benjamin/Cummings Publishing Company, Menlo Park, California, USA.

Barkai-Golan R (2001). Postharvest diseases of fruits and vegetables, development and control. Elsevier Science B.V., Amsterdam, The Netherlands.
Baucom DL, Romero M, Belfon R, Creamer R (2012). Two new species of Undifilum, fungal endophytes of Astragalus (locoweeds) in the United States. Botany 90: 866-875.
Berbee ML, Payne BP, Zhang G, Roberts RG, Turgeon BG (2003). Shared ITS DNA substitutions in isolates of opposite mating type reveal a recombining history for three presumed asexual species in the filamentous ascomycete genus Alternaria. Mycological Research 107: 169-182.
Berbee ML, Pirseyedi M, Hubbard S (1999). Cochliobolus phylogenetics and the origin of known, highly virulent pathogens, inferred from ITS and glyceraldehyde-3-phosphate dehydrogenase gene sequences. Mycologia 91: 964-977.
Bertels F, Silander OK, Pachkov M, Rainey PB, Nimwegen E van (2014). Automated reconstruction of whole-genome phylogenies from short-sequence reads. Molecular Biology and Evolution 31: 1077-1088.
Bousquet P-J, Chinn S, Janson C, Kogevinas M, Burney P, Jarvis D (2007). Geographical variation in the prevalence of positive skin tests to environmental aeroallergens in the European community respiratory health survey I. Allergy 62: 301-309.
Boyce RD, Deziel PJ, Otley CC, Wilhelm MP, Eid AJ, Wengenack NL, Razonable RR (2010). Phaeohyphomycosis due to Alternaria species in transplant recipients. Transplant Infectious Disease 12: 242-250.
Brown JKM, Hovmøller MS (2002). Aerial dispersal of pathogens on the global and continental scales and its impact on the plant disease. Science 297: 537-541.
Bruggen AHC van (1984). Sweet potato stem blight caused by Alternaria sp.: a new disease in Ethiopia. Netherlands Journal of Plant Pathology 90: 155-164.
Brun S, Madrid H, Gerrits van den Ende AHG, Andersen B, Marinach-Patrice C, Mazier D, Hoog GS de (2013). Multilocus phylogeny and MALDI-TOF analysis of the plant pathogenic species Alternaria dauci and relatives. Fungal Biology 117: 32-40.
Buschiazzo E, Gemmell NJ (2006). The rise, fall and renaissance of microsatellites in eukaryotic genomes. Bioessays 28: 1040-1050.
Carbone I, Kohn LM (1999). A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91: 553-556.
Castañeda Ruiz RF, Heredia GP, Arias RM, Saikawa M, Minter DW, Stadler M, Guarro J, Decock C (2004). Two new hyphomycetes from rainforests of México, and Briansuttonia, a new genus to accommodate Corynespora alternarioides. Mycotaxon 89: 297-305.
Chase AR (2005). Advanced treatment of Alternaria. Greenhouse Product News July: 38-44.
Cho WD, Shin HD (eds) (2004). List of plant diseases in Korea. Fourth edition. Korean Society of Plant Pathology.
Chou HH, Wu WS (2002). Phylogenetic analysis of internal transcribed spacer regions of the genus Alternaria, and the significance of filament-beaked conidia. Mycological Research 106: 164-169.
Cifferi R (1930). Phytopathological survey of Santo Domingo, 1925-1929. Journal of the Department of Agriculture of Porto Rico 14: 5-44.
Coates L, Johnson G (1997). Postharvest diseases of fruit and vergetables, in: Plant pathogens and plant diseases (Brown JF, Ogle HJ, eds.). Rockvale Publications, Armidale, Australia: 533-548.
Cooke MC, Ellis JB (1879). New Jersey fungi. Grevillea 8: 11-16.
Coppin E, Debuchy R, Arnaise S, Picard M (1997). Mating types and sexual development in filamentous ascomycetes. Microbiology and Molecular Biology Reviews 61: 411-428.

Corlett M, Corlett ME (1999) Fungi Canadenses. No. 341. Alternaria linicola. Canadian Journal of Plant Pathology 21: 55-57.
Crous PW, Braun U, Wingfield MJ, Wood AR, Shin HD, Summerell BA, Alfenas AC, Cumagun CJ, Groenewald JZ (2009a). Phylogeny and taxonomy of obscure genera of microfungi. Persoonia 22: 139-161.
Crous PW, Gams W, Stalpers JA, Robert V, Stegehuis G (2004). MycoBank: an online initiative to launch mycology into the 21st century. Studies in Mycology 50: 19-22.
Crous PW, Schoch CL, Hyde KD, Wood AR, Gueidan C, Hoog GS de, Groenewald JZ (2009b). Phylogenetic lineages in the Capnodiales. Studies in Mycology 64: 17-47.
Crous PW, Verkley GJM, Groenewald JZ, Samson RA (eds) (2009c). Fungal Biodiversity. CBS Laboratory Manual Series 1. CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands.
Cruz TEE dela (2006). Marine Dendryphiella species from different geographical locations: an integrated, polyphasic approach to its taxonomy and physioecology. Ph.D. dissertation. Fakültat für Lebenswissenschaften der Technischen Universität Carolo-Wilhelmina, Braunschweig, Germany.
DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, Angel G del, Rivas MA, Hanna M, McKenna A, Fennell TJ, Kernytsky AM, Sivachenko AY, Cibulskis K, Gabriel SB, Altshuler D, Daly MJ (2011). A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nature Genetics 43: 491-498.
Dini-Andreote F, Pietrobon VC, Andreote FD, Romão AS, Spósito MB, Araújo WL (2009). Genetic variability of Brazilian isolates of Alternaria alternata detected by AFLP and RAPD techniques. Brazilian Journal of Microbiology 40: 670-677.
Dong J, Chen W, Crane JL(1998). Phylogenetic studies of the Leptosphaeriaceae, Pleosporaceae and some other Loculoascomycetes based on nuclear ribosomal DNA sequences. Mycological Research 102: 151-156.
Douady CJ, Delsuc F, Boucher Y, Doolittle WF, Douzery EJP (2003). Comparison of Bayesian and maximum likelihood bootstrap measures of phylogenetic reliability. Molecular Biology and Evolution 20: 248-254.
Downs SH, Mitakakis TZ, Marks GB, Car NG, Belousova EG, Leüppi JD, Xuan W, Downie SR, Tobias A, Peat JK (2001). Clinical importance of Alternaria exposure in children. American Journal of Respiratory and Critical Care Medicine 164: 455-459.
Elliott JA (1917). Taxonomic characters of the genera Alternaria and Macrosporium. American Journal of Botany 4: 439-476.
Ellis MB (1971). Dematiaceous hyphomycetes. Commonwealth Mycological Institute, Kew, UK.
Ellis MB (1976). More dematiaceous hyphomycetes. Commonwealth Mycological Institute, Kew, UK.
Feil EJ, Li B, Aanensen DM, Hanage WP, Spratt BG (2004). eBURST: inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data. Journal of Bacteriology 186: 1518-1530.
Fries EM (1832). Systema mycologicum. vol. 3. E. Moritz, Greifswald, Germany.
Gannibal PB, Orina AS, Mironenko NV, Levitin MM (2014). Differentiation of the closely related species, Alternaria solani and A. tomatophila, by molecular and morphological features and aggressiveness. European Journal of Plant Pathology 139: 609-623.
Goodwin SB, Waalwijk C, Kema GH, Cavaletto JR, Zhang G (2003). Cloning and analysis of the mating-type idiomorphs from the barley pathogen Septoria passerinii. Molecular Genetics and Genomics 269: 1-12.

Groenewald M, Groenewald JZ, Harrington TC, Abeln ECA, Crous PW (2006). Mating type analysis in apparently asexual Cercospora species is suggestive of cryptic sex. Fungal Genetics and Biology 43: 813-825.
Grogan RG, Kimble KA, Misaghi I (1975). A stem canker disease of tomato caused by Alternaria alternata f. sp. lycopersici. Phytopathology 65: 880-886.
Grum-Grzhimaylo AA, Georgiva ML, Bondarenko SA, Debets AJM, Bilanenko EN (2015). On the diversity of fungi from soda soils. Fungal Diversity doi:10.1007/s13225-015-0320-2.
Gruyter J de, Woudenberg JHC, Aveskamp AA, Verkley GJM, Groenewald JZ, Crous PW (2012). Redisposition of Phoma-like anamorphs in Pleosporales. Studies in Mycology 75: 1-36.
Guatimosim E, Fuga CAG, Pinto HJ, Barreto RW (2011). First report of gray mold caused by Botrytis cinerea on yellow cosmos (Bidens sulphurea) in Brazil. Plant Disease 95: 1588.
Halliburton R (2004). Introduction to population genetics. Pearson Prentice Hall, Upper Saddle River, New Jersey, USA.
Harimoto Y, Hatta R, Kodama M, Yamamoto M, Otani H, Tsuge T (2007). Expression profiles of genes encoded by the supernumerary chromosome controlling AM-toxin biosynthesis and pathogenicity in the apple pathotype of Alternaria alternata. Molecular Plant-Microbe Interactions 20: 1463-1476.
Harimoto Y, Tanaka T, Kodama M, Yamamoto M, Otani H, Tsuge T (2008). Multiple copies of AMT2 are prerequisite for the apple pathotype of Alternaria alternata to produce enough AM-toxin for expressing pathogenicity. Journal of General Plant Pathology 74: 222-229.
Harteveld DOC, Akinsanmi OA, Becker MF, Drenth A (2014). Comparative fitness of Alternaria species causing fruit spot of apple in Australia. Australasian Plant Pathology 43: 495-501.
Harteveld DOC, Akinsanmi OA, Drenth A (2013). Multiple Alternaria species groups are associated with leaf blotch and fruit spot diseases of apple in Australia. Plant Pathology 62: 289-297.
Hartl DL, Clark AG (2007). Principles of population genetics. Fourth edition. Sinauer Associates, Sunderland, Massachussetts, USA.
Hatta R, Ito K, Hosaki Y, Tanaka T, Tanaka A, Yamamoto M, Akimitsu K, Tsuge T (2002). A conditionally dispensable chromosome controls host-specific pathogenicity in the fungal plant pathogen Alternaria alternata. Genetics 161: 59-70.
Hawksworth DL, Crous PW, Redhead SA, Reynolds DR, Samson RA, Seifert KA, Taylor JW, Wingfield MJ, Abaci O, Aime C, Asan A, Bai FY, Beer ZW de, Begerow D, Berikten D, Boekhout T, Buchanan PK, Burgess T, Buzina W, Cai L, Cannon PF, Crane JL, Damm U, Daniel HM, Diepeningen AD van, Druzhinina I, Dyer PS, Eberhardt U, Fell JW, Frisvad JC, Geiser DM, Geml J, Glienke C, Gräfenhan T, Groenewald JZ, Groenewald M, Gruyter J de, Guého-Kellermann E, Guo LD, Hibbitt DS, Hong SB, Hoog GS de, Houbraken J, Huhndorf SM, Hyde KD, Ismail A, Johnston PR, Kadaifciler DG, Kirk PM, Kõljalg U, Kurtzman CP, Lagneau PE, Lévesque CA, Liu X, Lombard L, Meyer W, Miller A, Minter DW, Najafzadeh MJ, Norvell L, Ozerskaya SM, Oziç R, Pennycook SR, Peterson SW, Pettersson OV, Quaedvlieg W, Robert VA, Ruibal C, Schnürer J, Schroers HJ, Shivas R, Slippers B, Spierenburg H, Takashima M, Taşkin E, Thines M, Thrane U, Uztan AH, Raak M van, Varga J, Vasco A, Verkley GJM, Videira SI, Vries RP de, Weir BS, Yilmaz N, Yurkov A, Zhang N (2011). The Amsterdam declaration on fungal nomenclature. IMA Fungus 2: 105-112.

Hedrick PW (2000). Genetics of populations. Second edition. Jones and Bartlett Publishers, Missisauga, Canada.

Henk DA, Eagle CE, Brown K, Berg MA van den, Dyer PS, Peterson SW, Fisher MC (2011). Speciation despite globally overlapping distributions in Penicillium chrysogenum: the population genetics of Alexander Fleming's lucky fungus. Molecular Ecology 20: 42884301.

Hong SG, Cramer RA, Lawrence CB, Pryor BM (2005a). Alt a 1 allergen homologs from Alternaria and related taxa: analysis of phylogenetic content and secondary structure. Fungal Genetics and Biology 42: 119-129.
Hong SG, Liu D, Pryor BM (2005b). Restriction mapping of the IGS region in Alternaria spp. reveals variable and conserved domains. Mycological Research 109: 87-95.
Hong SG, Maccaroni M, Figuli PJ, Pryor BM, Belisario A (2006). Polyphasic classification of Alternaria isolated from hazelnut and walnut fruit in Europe. Mycological Research 110: 1290-1300.
Hoog GS de, Gerrits van den Ende AHG (1998). Molecular diagnostics of clinical strains of filamentous Basidiomycetes. Mycoses 41: 183-189.
Hoog GS de, Horré R (2002). Molecular taxonomy of the Alternaria and Ulocladium species from humans and their identification in the routine laboratory. Mycoses 45: 259-276.
Hoog GS de, Rubio C (1982). A new dematiaceous fungus from human skin. Sabouradia 20: 15-20.
Hoog GS de, Uijthof JMJ, Gerrits van den Ende AHG, Figge MJ, Weenink XO (1997). Comparative rDNA diversity in medically significant fungi. Microbiology and Culture Collections 13: 39-48.
Horner WE, Helbling A, Salvaggio JE, Lehrer SB (1995). Fungal allergens. Clinical Microbiology Reviews 8: 161-179.
Horsfield A, Wicks T, Davies K, Wilson D, Paton S (2010). Effect of fungicides use strategies on the control of early blight (Alternaria solani) and potato yield. Australasian Plant Pathology 39: 368-375.
Hu J, Chen C, Peever T, Dang H, Lawrence C, Mitchell T (2012). Genomic characterization of the conditionally dispensable chromosome of Alternaria arborescens provides evidence for horizontal gene transfer. BMC Genomics 13: 171.
Hu W, Ran Y, Zhuang K, Lama J, Zhang C (2014). Alternaria arborescens infection in a healthy individual and literature review of cutaneous alternariosis. Mycopathologia 179: 147-152.
Huelsenbeck JP, Ronquist F (2001). MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754-755.
Inderbitzin P, Shoemaker RA, O’Neill NR, Turgeon BG, Berbee ML (2006). Systematics and mating systems of two fungal pathogens of opium poppy: the heterothallic Crivellia papaveracea with a Brachycladium penicillatum asexual state and a homothallic species with a Brachycladium papaveris asexual state. Canadian Journal of Botany 84: 13041326.

James LF, Panter KE (1989). Locoweed poisoning in livestock. In: Swaisonine and related glycosidase inhibitors (James LF, Elbein AD, Molyneux RJ, Warren CD, eds). Iowa State University Press, Ames, Iowa, USA: 23-38.
Johnson LJ, Johnson RD, Akamatsu H, Salamiah A, Otani H, Kohmoto K, Kodama M (2001). Spontaneous loss of a conditionally dispensable chromosome from Alternaria alternata apple pathotype leads to loss of toxin production and pathogenicity. Current Genetics 40: 65-72.
Johnson RD, Johnson L, Kohmoto K, Otani H, Lane CR, Kodama M (2000). A polymerase chain reaction-based method to specifically detect Alternaria alternata apple pathotype (A. mali), the causal agent of Alternaria blotch of apple. Phytopathology 90: 973-976.

Joly P (1964). Le genre Alternaria. Encyclopédie mycologique XXXIII. Paul Lechevalier, Paris, France.
Jones EBG, Klaysuban A, Pang K-L (2008). Ribosomal DNA phylogeny of marine anamorphic fungi: Cumulospora varia, Dendryphiella species and Orbimyces spectabilis. The Raffles Bulletin of Zoology Supplement 19: 11-18.
Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J (2005). Repbase Update, a database of eukaryotic repetitive elements. Cytogenetic and Genome Research 110: 462-467.
Kang J-C, Crous PW, Mchau GRA, Serdani M, Song S-M (2002). Phylogenetic analysis of Alternaria spp. associated with apple core rot and citrus black rot in South Africa. Mycological Research 106: 1151-1162.
Katoh K, Standley AM (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30: 772-780.
Keissler K von (1912). Zur Kenntnis der Pilzflora Krains. Beihefte zum Botanischen Zentralblatt 29: 395-440.
Kissmann KG, Groth D (eds) (1999). Plantas infestantes e nocivas. 2 ed., BASF, São Paulo, Brazil.
Kohmoto K, Otani H (1991). Host recognition by toxigenic plant pathogens. Experientia 47: 755-764.
Kück U, Pöggeler S (2009). Cryptic sex in fungi. Fungal Biology Reviews 23: 86-90.
Kuna P, Kaczmarek J, Kupczyk M (2011). Efficacy and safety of immunotherapy for allergies to Alternaria alternata in children. Journal of Allergy and Clinical Immunology 127: 502508.

Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL (2004). Versatile and open software for comparing large genomes. Genome Biology 5: R12.
Kurup VP, Shen H-D, Banerjee B (2000). Respiratory fungal allergy. Microbes and Infection 2: 1101-1110.
Laemmlen F (2001). Alternaria diseases. Publication 8040, University of California, Agriculture and Natural Resources, Oakland. http://anrcatalog.ucdavis.edu.
Lawrence DP, Gannibal PB, Dugan FM, Pryor BM (2014). Characterization of Alternaria isolates from the infectoria species-group and a new taxon from Arrhenatherum, Pseudoalternaria arrhenatheria sp. nov. Mycological Progress 13: 257-276.
Lawrence DP, Gannibal PB, Peever TL, Pryor BM (2013). The sections of Alternaria: formalizing species-group concepts. Mycologia 105: 530-546.
Lawrence DP, Park MS, Pryor BM (2012). Nimbya and Embellisia revisited, with nov. comb for Alternaria celosiae and A. perpunctulata. Mycological Progress 11: 799-815.
Leahy RM (1992). Alternaria leaf spot of Thunbergia. Plant pathology circular No. 352. Florida Department of Agriculture and Consumer Services, Division of Plant Industry.
Leiminger JH, Adolf B, Hausladen H (2014). Occurence of the F129L mutation in Alternaria solani populations in Germany in response to QoI application, and its effect on sensitivity. Plant Pathology 63: 640-650.
Leiminger JH, Auinger H-J, Wenig M, Bahnweg G, Hausladen H (2013). Genetic variability among Alternaria solani isolates from potatoes in Southern Germany based on RAPDprofiles. Journal of Plant Diseases and Protection 120: 164-172.
Leite RMVB, Castro C, Brighenti AM, Oliveira AO, Carvalho CG, Oliveira ACB (2007). Indicações para o cultivo do girassol nos Estados do Rio Grande do Sul, Paraná, Mato Grosso do Sul, Mato Grosso, Goiás e Roraima. Londrina, Embrapa Soja (Comunicado Técnico, No. 78).

Li D-W, Kendrick B (1995). A year-round comparison of fungal spores in indoor and outdoor air. Mycologia 87: 190-195.
Li H, Durbin R (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25: 1754-1760.
Linde CC, Liles JA, Thrall PH (2010). Expansion of genetic diversity in randomly mating founder populations of Alternaria brassicicola infecting Cakile maritima in Australia. Applied and Environmental Microbiology 76: 1946-1954.
Liu YJ, Whelen S, Hall BD (1999). Phylogenetic relationships among ascomycetes: evidence from an RNA polymerse II subunit. Molecular Biology and Evolution 16: 1799-1808.
Logrieco A, Moretti A, Solfrizzo M (2009). Alternaria toxins and plant diseases: an overview of origin, occurrence and risks. World Mycotoxin Journal 2: 129-140.
Lorenzi H (2000). Plantas daninhas do Brasil: terrestres, aquáticas, parasitas e tóxicas. Plantarum, Nova Odessa, Brazil.
Lorenzi H, Souza HM (eds) (2001). Plantas ornamentais no Brasil: arbustivas, herbáceas e trepadeiras. Plantarum, Nova Odessa, Brazil.
Lourenço V Jr, Rodrigues TTMS, Campos AMD, Bragança CAD, Scheuermann KK, Reis A, Brommonschenkel SH, Maffia LA, Mizubuti ESG (2011). Genetic structure of the population of Alternaria solani in Brazil. Journal of Phytopathology 159: 233-240.
Manamgoda DS, Cai L, McKenzie EHC, Crous PW, Madrid H, Chukeatirote E, Shivas RG, Tan YP, Hyde KD (2012). A phylogenetic and taxonomic re-evaluation of the Bipolaris Cochliobolus - Curvularia complex. Fungal Diversity 56: 131-144.
Manamgoda DS, Rossman AY, Castlebury LA, Crous PW, Madrid H, Chukeatirote E, Hyde KD (2014). The genus Bipolaris. Studies in Mycology 79: 221-288.

Masanuka A, Ohtani K, Peever TL, Timmer LW, Tsuge T, Yamamoto M, Yamamoto Y, Akimitsu K (2005). An isolate of Alternaria alternata that is pathogenic to both tangerines and rough lemon and produces two host-selective toxins, ACT- and ACR-toxins. Phytopathology 95: 241-247.
Matsushima T (1996). Matsushima mycological memoirs No. 9. Matsushima Fungus Collection, Kobe (published by the author).
McNeill J, Barrie FR, Buck WR, Demoulin V, Greuter W, Hawksworth DL, Herenceen PS, Knapp S, Marhold K, Prado J, Prud'Homme van Reine WF, Smith GF, Wiersema JH, Turland NJ (2012). International code of nomenclature for algae, fungi, and plants (Melbourne code), Koeltz Scientific Books, Königstein, Germany. [Regnum vegetabile no. 154.]
Melo MP, Soares DJ, Araújo JSP, et al. (2009) Alternaria leaf spot, caused by Alternaria thunbergiae, recorded for the first time on Thunbergia alata from Brazil. Australasian Plant Disease Notes 4: 23-25.
Minnis AM, Kennedy AH, Grenier DB, Rehner SA, Bischoff JF (2011). Asperisporium and Pantospora (Mycosphaerellaceae): epitypifications and phylogenetic placement. Persoonia 27: 1-8.
Narayanin CD, Thompson AH, Slabbert MM (2010). First report of Alternaria blight of sweet potato caused by Alternaria bataticola in South Africa. African Plant Protection 16: 7-9.
Nasehi A, Kadir JB, Ashtiani FA,Nasr-Esfahani M, Wong MY, Rambe SK, Ghadirian H, Mahmodi F, Golkhandan E (2014). Alternaria capsicicola sp. nov., a new species causing leaf spot of pepper (Capsicum annuum) in Malaysia. Mycological Progress 13: 1041-1048.
Neergaard P (1945). Danish species of Alternaria and Stemphylium. Oxford University Press, London, UK.
Nees von Esenbeck CG (1816). Das System der Pilze und Schwämme. Wurzburg, Germany.

Nei M (1973). Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences of the United States of America 70: 3321-3323.
Nielsen R, Slatkin M (2013). An introduction to population genetics: theory and applications. Sinauer Associates, Sunderland, Massachussetts, USA.
Nirenberg HI (1976). Untersuchungen über die morphologische und biologische Differenzierung in der Fusarium-Section Liseola. Mitteilungen aus der Biologischen Bundesanstalt für Landund Forstwirtschaft Berlin-Dahlem 169: 1-117.
Nishimura S, Kohmoto K (1983). Host-specific toxins and chemical structures from Alternaria species. Annual Review of Phytopathology 21: 87-116.
Nolla JAB (1927). A new Alternaria disease of onions (Allium cepa L.). Phytopathology 17: 115-132.
Norvell LL (2011). Fungal nomenclature. 1. Melbourne approves a new code. Mycotaxon 116: 481-490.
Nunes CA (2012). Biological control of postharvest diseases of fruit. European Journal of Plant Pathology 133: 181-196.
O'Donnell K, Kistler HC, Cigelnik E, Ploetz RC (1998). Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. Proceedings of the National Academy of Sciences of the United States of America 95: 2044-2049.
Osiru MO, Adipala E, Olanya OM, Kelly P, Lemaga B, Kapinga R (2008). Leaf petiole and stem blight disease of sweet potato caused by Alternaria bataticola in Uganda. Plant Pathology Journal 7: 118-119.
Osiru MO, Adipala E, Olanya OM, Lemaga B, Kapinga R (2007). Occurrence and distribution of Alternaria leaf petiole and stem blight on sweetpotato in Uganda. Plant Pathology Journal 6: 112-119.
Page RDM (1996). TreeView: an application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences 12: 357-358.
Paoletti M, Rydholm C, Schwier EU, Anderson MJ, Szakacs G, Lutzoni F, Debeaupuis JP, Latgé JP, Denning DW, Dyer PS (2005). Evidence for sexuality in the opportunistic fungal pathogen Aspergillus fumigatus. Current Biology 15: 1242-1248.
Parra G, Bradnam K, Korf I (2007). CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 23: 1061-1067.
Pastor FJ, Guarro J (2008). Alternaria infections: laboratory diagnosis and relevant clinical features. Clinical Microbiology and Infection 14: 734-746.
Peever TL, Carpenter-Boggs L, Timmer LW, Carris LM, Bhatia A (2005). Citrus black rot is caused by phylogenetically distinct lineages of Alternaria alternata. Phytopathology 95: 512-518.
Peever TL, Su G, Carpenter-Boggs L, Timmer LW (2004). Molecular systematics of citrusassociated Alternaria species. Mycologia 96: 119-134.
Pereira JM, Barreto RW, Ellison C, Maffia LA (2003). Corynespora cassiicola f. sp. lantanae: a potential biocontrol agent for Lantana camara from Brazil. Biological Control 26: 21-31.
Pöggeler S (2002). Genomic evidence for mating abilities in the asexual pathogen Aspergillus fumigatus. Current Genetics 42: 153-160.
Preuss CGT (1851). Übersicht untersuchter Pilze, besonders aus der Umgegend von Hoyerswerda. Linnaea 24: 99-153.
Pryor BM, Bigelow DM (2003). Molecular characterization of Embellisia and Nimbya species and their relationship to Alternaria, Ulocladium and Stemphylium. Mycologia 95: 11411154.

Pryor BM, Creamer R, Shoemaker RA, McLain-Romero J, Hambleton S (2009). Undifilum, a new genus for endophytic Embellisia oxytropis and parasitic Helminthosporium bornmuelleri on legumes. Botany 87: 178-194.
Pryor BM, Gilbertson RL (2000). Molecular phylogenetic relationships amongst Alternaria species and related fungi based upon analysis of nuclear ITS and mt SSU rDNA sequences. Mycological Research 104: 1312-1321.
Pryor BM, Michailides TJ (2002). Morphological, pathogenic, and molecular characterization of Alternaria isolates associated with Alternaria late blight of pistachio. Phytopathology 92 : 406-416.
Pulimood TB, Corden JM, Bryden C, Sharples L, Nasser SM (2007). Epidemic asthma and the role of the fungal mold Alternaria alternata. Journal of Allergy and Clinical Immunology 120: 610-617.
Rambaut A, Drummond AJ (2009). Tracer v 1.5, available from http://tree.bio.ed.ac.uk/ software/tracer/.
Randriamanantany ZA, Annesi-Maesano I, Moreau D, Raherison C, Charpin D, Kopferschmitt C, Lavaud F, Taytard A, Blay F de, Caillaud D (2010). Alternaria sensitization and allergic rhinitis with or without asthma in the French six cities study. Allergy 65: 368-375.
Rayner RW (1970). A mycological colour chart. Commonwealth Mycological Institute, Kew, UK.
Ribeiro IJO, Paradela Filho O, Soave J, Corvellini GS (1974). Ocorrência de Alternaria helianthi (Hansf.) Tubaki \& Nishhara sobre girassol. Bragantia 33: 81-85.
Roberts RG, Bischoff JF, Reymond ST (2012). Differential gene expression in Alternaria gaisen exposed to dark and light. Mycological Progress 11: 373-382.
Roberts RG, Reymond ST, Andersen B (2000). RAPD fragment pattern analysis and morphological segregation of small-spored Alternaria species and species groups. Mycological Research 104: 151-160.
Rodrigues TTMS, Berbee ML, Simmons EG, Cardoso CR, Reis A, Maffia LA, Mizubuti ESG (2010). First report of Alternaria tomatophila and A. grandis causing early blight on tomato and potato in Brazil. New Disease Reports 22: 28.
Ronquist F, Huelsenbeck JP (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572-1574.
Rotem J (1994). The genus Alternaria. Biology, epidemiology and pathogenicity. APS Press, St. Paul, Minnesota, USA.
Rotondo F, Collina M, Brunelli A, Pryor BM (2012). Comparison of Alternaria spp. collected in Italy from apple with A. mali and other AM-toxin producing strains. Phytopathology 102: 1130-1142.
Runa F, Park M, Pryor B (2009). Ulocladium systematics revisited: phylogeny and taxonomic status. Mycological Progress 8: 35-47.
Saccardo PA (1886). Sylloge fungorum omnium hucusque cognitorum, Volume 4. Padua, Italy.
Salamiah, Akamatsu H, Fukumasa-Nakai Y, Otani H, Kodama M (2001). Construction and genetic analysis of hybrid strains between apple and tomato pathotypes of Alternaria alternata by protoplast fusion. Journal of general Plant Pathology 67: 97-105.
Salo PM, Arbes SJ, Sever M, Jaramillo R, Cohn RD, London SJ, Zeldin DC (2006). Exposure to Alternaria alternata in US homes is associated with asthma symptoms. Journal of Allergy and Clinical Immunology 118: 892-898.
Salo PM, Yin M, Arbes SJ, Cohn RD, Sever M, Muilenberg M, Burge HA, London SJ, Zeldin DC (2005). Dustborne Alternaria alternata antigens in U.S. homes: results from the national survey of lead and allergens in housing. Journal of Allergy and Clinical Immunology 116: 623-629.

Samson RA, Houbraken J, Thrane U, Frisvad JC, Andersen B (2010). Food and indoor fungi. CBS Laboratory Manual Series 2. CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands.
Schoch CL, Crous PW, Groenewald JZ, Boehm EWA, Burgess TI, Gruyter J de, Hoog GS de, Dixon LJ, Grube M, Gueidan C, Harada Y, Hatakeyama S, Hirayama K, Hosoya T, Huhndorf SM, Hyde KD, Jones EBG, Kohlmeyer J, Kruys A, Li YM, Lücking R, Lumbsch HT, Marvanová L, Mbatchou JS, McVay AH, Miller AN, Mugambi GK, Muggia L, Nelsen MP, Nelson P, Owensby CA, Phillips AJL, Phongpaichit S, Pointing SB, Pujade-Renaud V, Raja HA, Plata ER, Robbertse B, Ruibal C, Sakayaroj J, Sano T, Selbmann L, Shearer CA, Shirouzu T, Slippers B, Suetrong S, Tanaka K, Volkmann-Kohlmeyer B, Wingfield MJ, Wood AR, Woudenberg JHC, Yonezawa H, Zhang Y, Spatafora JW (2009). A class-wide phylogenetic assessment of Dothideomycetes. Studies in Mycology 64: 1-15.
Schubert K, Crous PW, Groenewald JZ (2007a). Alternaria thalictrigena. Fungal Planet no. 12.
Schubert K, Groenewald JZ, Braun U, Dijksterhuis J, Starink M, Hill CF, Zalar P, Hoog GS de, Crous PW (2007b). Biodiversity in the Cladosporium herbarum complex (Davidiellaceae, Capnodiales) with standardisation of methods for Cladosporium taxonomy and diagnostics. Studies in Mycology 58: 105-156.
Scott JA, Untereiner WA, Wong B, Straus NA, Malloch D (2004). Genotypic variation in Penicillium chrysogenum from indoor environments. Mycologia 96: 1095-1105.
Scott JA, Wong B, Summerbell RC, Untereiner WA (2007). A survey of Penicillium brevicompactum and P. bialowiezense from indoor environments, with commentary on the taxonomy of the P. brevicompactum group. Botany 86: 732-741.
Seifert K, Morgan-Jones G, Gams W, Kendrick B (2011). The genera of hyphomycetes. CBS Biodiversity Series 9. CBS Fungal Biodiversity Centre, Utrecht, The Netherlands.
Serdani M, Kang J-C, Andersen B, Crous PW (2002). Characterisation of Alternaria speciesgroups associated with core rot of apples in South Africa. Mycological Research 106: 561569.

Sharon A, Yamaguchi K, Christiansen S, Horwitz BA, Yoder OC, Turgeon BG (1996). An asexual fungus has the potential for sexual development. Molecular and General Genetics 251: 60-68.
Shoaib A, Akhtar N, Akhtar S, Hafeez R (2014). First report of Alternaria longipes causing leaf spot of potato cultivar Sante in Pakistan. Plant Disease 98: 1742.
Shoemaker RA, Babcock CE (1992). Applanodictyosporous Pleosporales: Clathrospora, Comoclathris, Graphyllium, Macrospora, and Platysporoides. Canadian Journal of Botany 70: 1617-1658.
Simmons EG (1952). Culture studies in the genera Pleospora, Clathrospora, and Leptosphaeria. Mycologia 44: 330-365.
Simmons EG (1967). Typification of Alternaria, Stemphylium, and Ulocladium. Mycologia 59: 67-92.
Simmons EG (1971). Helminthosporium allii as type of a new genus. Mycologia 63: 380-386.
Simmons EG (1983). An aggregation of Embellisia species. Mycotaxon 17: 216-241.
Simmons EG (1986). Alternaria themes and variations (22-26). Pleospora / Stemphylium and Lewia / Alternaria. Mycotaxon 25: 287-308.
Simmons EG (1989). Macrospora Fuckel (Pleosporales) and related anamorphs. Sydowia 41: 314-329.
Simmons EG (1990). Embellisia and related teleomorphs. Mycotaxon 38: 251-265.

Simmons EG (1992). Alternaria taxonomy: current status, viewpoint, challenge. In: Alternaria biology, plant diseases and metabolites (Chelkowski J, Visconti A, eds). Elsevier Science B.V., Amsterdam, The Netherlands: 1-35.

Simmons EG (1994). Alternaria themes and variations (74-105). Mycotaxon 50: 219-270.
Simmons EG (1995). Alternaria themes and variations (112-144). Mycotaxon 55: 55-163.
Simmons EG (1997). Alternaria themes and variations (151-223). Mycotaxon 65: 1-91.
Simmons EG (1999). Alternaria themes and variations (226-235). Classification of citrus pathogens. Mycotaxon 70: 263-323.
Simmons EG (2000). Alternaria themes and variations (244-286). Species on Solanaceae. Mycotaxon 75: 1-115.
Simmons EG (2002). Alternaria themes and variations (287-304). Species on Caryophyllaceae. Mycotaxon 82: 1-40.
Simmons EG (2007). Alternaria. An identification manual. CBS Biodiversity Series 6. CBS Fungal Biodiversity Centre, Utrecht, The Netherlands.
Simmons EG, Roberts RG (1993). Alternaria themes and variations (73). Mycotaxon 48: 109140.

Slatkin M(1995).A measure of population subdivision based on microsatellite allele frequencies. Genetics 139: 457-462.
Slippers B, Stenlid J, Wingfield MJ (2005). Emerging pathogens: fungal host jumps following anthropogenic introduction. Trends in Ecology and Evolution 20: 420-421.
Smit AFA, Hubley R (2008-2010). RepeatModeler Open-1.0, available from http://www. repeatmasker.org.
Smit AFA, Hubley R, Green P (1996-2010). RepeatMasker Open-3.0 available from http:// www.repearmasker.org.
Solomon WR (1975). Assessing fungus prevalence in domestic interiors. Journal of Allergy and Clinical Immunology 56: 235-242.
Somma S, Pose G, Pardo A, Mulè G, Pinto VF, Moretti A, Logrieco AF (2011). AFLP variability, toxin production, and pathogenicity of Alternaria species from Argentinean tomato fruits and puree. International Journal of Food Microbiology 145: 414-419.
Spatafora J (2011). 1000 fungal genomes to be sequenced. IMA Fungus 2: 41.
Stamatakis A, Alachiotis N (2010). Time and memory efficient likelihood-based tree searches on phylogenomic alignments with missing data. Bioinformatics 26: i132-i139.
Sterflinger K, Hoog GS de, Haase G (1999). Phylogeny and ecology of meristematic ascomycetes. Studies in Mycology 43: 5-22.
Stewart JE, Andrew M, Bao X, Chilvers MI, Carris LM, Peever TL (2013a). Development of sequence characterized amplified genomic regions (SCAR) for fungal systematics: proof of principle using Alternaria, Ascochyta and Tilletia. Mycologia 105: 1077-1086.
Stewart JE, Kawabe M, Abdo Z, Arie T, Peever TL (2011). Contrasting codon usage patterns and purifying selection at the mating locus in putatively asexual Alternaria fungal species. PLoS ONE 6: 20083.
Stewart JE, Thomas KA, Lawrence CB, Dang H, Pryor BM, Timmer LM, Peever TL (2013b). Signatures of recombination in clonal lineages of the citrus brown spot pathogen, Alternaria alternata sensu lato. Phytopathology 103: 741-749.
Stewart JE, Timmer LW, Lawrence CB, Pryor BM, Peever TL (2014). Discord between morphological and phylogenetic species boundaries: incomplete lineage sorting and recombination results in fuzzy species boundaries in an asexual fungal pathogen. BMC Evolutionary Biology 14: 38.

Stoddart JA, Taylor JF (1988). Genotypic diversity: estimation and prediction in samples. Genetics 118: 705-711.
Sung G-H, Sung J-M, Hywel-Jones NL, Spatafora JW (2007). A multi-gene phylogeny of Clavicipitaceae (Ascomycota, Fungi): Identification of localized incongruence using a combinational bootstrap approach. Molecular Phylogenetics and Evolution 44: 1204-1223.
Svobodová Y (1966). Chmelia slovaca gen. nov., a dematiaceous fungus, pathogenic for man and animals. Biológia, Bratislava 21: 81-88.
Tanaka A, Tsuge T (2000). Structural and functional complexity of the genomic region controlling AK-toxin biosynthesis and pathogenicity in the Japanese pear pathotype of Alternaria alternata. Molecular Plant-Microbe Interactions 13: 975-986.
Tao W-C, Zhang W, Yan J-Y, Hyde KD, McKenzie EHC, Li X-H, Wang Y (2014). A new Alternaria species from grapevine in China. Mycological Progress 13: 1119-1125.
Thomma BPHJ (2003). Alternaria spp.: from general saprophyte to specific parasite. Molecular Plant Pathology 4: 225-236.
Timmer LW, Solel Z, Gottwald TR, Ibanez AM, Zitko SE (1998). Environmental factors affecting production, release, and field populations of conidia of Alternaria alternata, the cause of brown spot of citrus. Phytopathology 88: 1218-1223.
Togashi K (1926). On a new species of Alternaria causing a leafspot disease of Gomphrena globosa L. Bulletin of Imperial College of Agriculture and Forestry (Morioka) 9: 1-16.
Toth B, Csosz M, Szabo-Hever A, Simmons EG, Samson RA, Varga J (2011). Alternaria hungarica sp. nov., a minor foliar pathogen of wheat in Hungary. Mycologia 103: 94-100.
Tran-Dinh N, Hocking A (2006). Isolation and characterization of polymorphic microsatellite markers for Alternaria alternata. Molecular Ecology Notes 6: 405-407.
Tritt A, Eisen JA, Facciotti MT, Darling AE (2012). An integrated pipeline for de novo assembly of microbial genomes. PLoS ONE 7: e42304.
Turgeon BG (1998). Application of mating type gene technology to problems in fungal biology. Annual Review of Phytopathology 36: 115-137.
Twaroch TE, Arcalís E, Sterflinger K, Stöger E, Swoboda I, Valenta R (2012). Predominant localization of the major Alternaria allergen Alt a 1 in the cell wall of airborne spores. Journal of Allergy and Clinical Immunology 129: 1148-1149.
Vakalounakis DJ (1989). Alternaria alternataf. sp. cucurbitae on cucumber and other cucurbits. Cucurbit Genetics Cooperative Report 12: 1-4.
Van der Merwe NA, Steenkamp ET, Rodas C, Wingfield BD, Wingfield MJ (2012). Host switching between native and non-native trees in a population of the canker pathogen Chrysoporthe cubensis from Colombia. Plant Pathology 62: 642-648.
Vilgalys R, Hester M (1990). Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172: 4238-4246.
Waals JE van der, Korsten L, Slippers B (2004). Genetic diversity among Alternaria solani isolates from potatoes in South Africa. Plant Disease 88: 959-964.
Wallroth CFW (1833). Flora cryptogamica Germaniae sectio 2. J.L. Schrag, Nürnberg, Germany.
Wang Y, Geng Y, Ma J, Wang Q, Zhang X-G (2011). Sinomyces: a new genus of anamorphic Pleosporaceae. Fungal Biology 115: 188-195.
Wang Y, Pei Y-F, O’Neill NR, Zhang X-G (2010). Ulocladium cantlous sp. nov. isolated from northwestern China: its morphology and molecular phylogenetic position. Mycologia 102: 374-383.

White TJ, Bruns T, Lee S, Taylor J (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR protocols: a guide to methods and applications (Innis MA, Gelfand DH, Sninsky JJ, White TJ, eds). Academic Press, San Diego, California, USA: 315-322.
Wiltshire SP (1933). The foundation species of Alternaria and Macrosporium. Transactions of the British Mycological Society 18: 135-160.
Wiltshire SP (1938). The original and modern conceptions of Stemphylium. Transactions of the British Mycological Society 21: 211-239.
Woo PCY, Chong KTK, Tse H, Cai JJ, Lau CCY, Zhou AC, Lau SKP, Yuen KY (2006). Genomic and experimental evidence for a potential sexual cycle in the pathogenic thermal dimorphic fungus Penicillium marneffei. FEBS Letters 580: 3409-3416.
Wu HC, Wu WS (2003). Sporulation, pathogenicity and chemical control of Alternaria protenta a new seedborne pathogen on sunflower. Australasian Plant Pathology 32: 309-312.
Xue F, Zhang XG (2007). Ulocladium capsicuma, a new species identified by morphological and molecular phylogenetic data. Sydowia 59: 161-178.
Yoon JT, Lee JT, Park SD, Park DO (1989). Effects of meteorological factors on the occurrence of Alternaria leaf spot caused by Alternaria alternata f. sp. mali. Korean Journal of Plant Pathology 5: 312-316.
Zhang Y, Schoch CL, Fournier J, Crous PW, Gruyter J de, Woudenberg JHC, Hirayama K, Tanaka K, Pointing SB, Spatafora JW, Hyde KD (2009). Multi-locus phylogeny of Pleosporales: a taxonomic, ecological and evolutionary re-evaluation. Studies in Mycology 64: 85-102.
Zhang YM, Koko TW, Hyde KD (2011). Towards a monograph of Dothideomycetes: Studies on Diademaceae. Cryptogamie, Mycologie 32: 115-126.
Zitter TA, Drennan JL (2005) Shift in performance of fungicides for the control of tomato early blight. In: Proceedings in the 20th annual tomato disease workshop. Ohio State University, Ohio: 28-30.

SUMMARY

The omnipresent dematiaceous hyphomycete genus Alternaria is associated with a wide variety of substrates including seeds, plants, agricultural products, humans, soil and even the atmosphere. It includes saprophytic, endophytic and pathogenic species, among which multiple plant pathogens, post-harvest pathogens, and human pathogens (causative agents of phaeohyphomycosis and hypersensitivity reactions). Molecular studies reveal that the Alternaria complex comprises nine genera; Alternaria, Chalastospora, Crivellia, Embellisia, Nimbya, Stemphylium, Ulocladium, Undifilum and Sinomyces. Within this complex several genera are non-monophyletic and Alternaria species cluster into multiple distinct species clades, which are not always correlated with speciesgroups based on morphological characteristics. The most commonly reported species in literature and type species of the genus Alternaria, A. alternata, also comprises one such a species-group. The small-spored Alternaria species within this group are mainly described based on morphology and / or host-specificity, but are difficult to distinguish based on molecular techniques alone. As A. alternata is considered as one of the most prolific producers of fungal allergens and is reported as pathogen on over 100 host plants, correct species identification is of utmost importance. The research presented in this thesis discusses the taxonomic status of Alternaria and its related genera, with a further focus on the two biggest and most important species complexes; the large-spored A. porri and small-spored A. alternata species complexes. With the phylogenies and classifications presented in this thesis, more robust and understandable taxonomy and nomenclature in Alternaria and allied genera within the Alternaria complex are created.

Chapter 1 gives a general introduction to the genus Alternaria and related genera. The history of the genus and its economic importance as plant pathogen, post-harvest pathogen, causative agent of phaeohyphomycosis and common allergen causing hypersensitivity reactions are summarized. The introduction of the morphological species complexes, based on characters of the conidia, the pattern of chain formation, and the nature of the apical extensions of conidia are treated. These morphological species-groups do not always correlate with molecular species-groups. Molecular studies recognise seven Alternaria species-groups, within the Alternaria complex; A. alternantherae, A. alternata, A. brassicicola, A. infectoria, A. porri, A. radicina and A. sonchi. Besides Alternaria, eight other genera are assigned to the Alternaria complex based on molecular and morphological studies; Chalastospora, Crivellia, Embellisia, Nimbya, Stemphylium, Ulocladium, Undifilum and Sinomyces.

Chapter 2 focusses on the relationship of Alternaria and its closely related genera within the broader Alternaria complex. The phylogenetic lineages within the Alternaria complex are delineated based on nucleotide sequence data of parts of the 18 S nrDNA (SSU), 28 S nrDNA (LSU), the internal transcribed spacer regions 1 and 2 and intervening 5.8S nrDNA(ITS), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), RNA polymerase second largest subunit (RPB2) and translation elongation factor 1-alpha (TEF1) gene regions. The phylogenetic data reveal a Stemphylium clade sister to Embellisia annulata and a big Alternaria clade. The Alternaria clade contains six monotypic lineages and 24 internal clades, which are treated as sections of Alternaria. In order to create a stable phylogenetic taxonomy, and supported by i) a well-supported phylogenetic node in multiple analyses, ii) a high-similarity of clades within Alternaria based on SSU, LSU and ITS data, and iii) variation in the clade order between the different gene phylogenies, 13 genera (Allewia, Brachycladium, Chalastospora, Chmelia, Crivellia, Embellisia, Lewia, Nimbya, Sinomyces, Teretispora, Ulocladium, Undifilum and Ybotryomyces) are placed into synonymy
with Alternaria. When applicable, the former generic names are retained but now with a different taxonomic status as section name. Embellisia annulata is synonymized with Dendryphiella salina, and together with D. arenariae placed in the new genus Paradendryphiella. The sexual genera Clathrospora and Comoclathris, with asexual forms linked to Alternaria, cluster within the Pleosporaceae, as does Alternaria, but outside Alternaria s. str. The genus Alternariaster, described to accommodate Alternaria helianthi, clusters within the Leptosphaeriaceae.

Chapter 3 describes the reappraisal of the genus Alternariaster. Alternaria helianthi, the causal agent of leaf spot on Helianthus annuus (sunflower) was segregated from Alternaria based on conidial morphology, and placed in the new genus Alternariaster. A molecular study confirmed the segregation from Alternaria (Pleosporaceae), and placed the genus in the Leptosphaeriaceae. A multi-gene phylogeny of parts of the ITS, LSU, RPB2 and GAPDH gene regions placed a fungal pathogen associated with leaf spot on Bidens sulphurea (yellow cosmos) in Brazil in close relation with Alternariaster helianthi. Morphologically the newly found pathogen has smaller conidia to Al. helianthi, and lacks oblique or transverse septa, which can be present in $A l$. helianthi. Pathogenicity studies on 18 plant species from the family Compositae showed that the newly found fungus was only able to infect B. sulphurea, whereas $A l$. helianthi could infect H. annuus and Galinsoga quadriradiata, a yet unreported host of Al. helianthi. Based on the close phylogenetic relation to Al. helianthi, but distinct morphological and pathogenicity characters, the fungal pathogen associated with leaf spot on B. sulphurea is newly described as Al. bidentis.

Chapter 4 treats the Alternaria species which form the largest section of Alternaria, section Porri. This section contains almost all Alternaria species with medium to large conidia with long beaks, some of which are important plant pathogens. A multi-gene phylogeny on parts of the ITS, GAPDH, RPB2, TEF1 and Alternaria major allergen (Alt a 1) gene regions, supplemented with morphological and cultural studies, forms the basis for species recognition in this section. The polyphasic data reveal 63 species in section Porri, of which 10 are newly described, and 27 names are synonymized. The three known Alternaria pathogens causing early blight on tomato, A. cretica, A. subcylindrica and A. tomatophila, are synonymized under the older name A. linariae. A third pathogen, A. protenta, is reported as the cause of early blight of potato, next to A. solani and A. grandis. Alternaria protenta was formerly known as pathogen of H. annuus, but is here reported from hosts from four different plant families. Next to the known pathogen on sweet potato, A. bataticola, three more species are delineated, of which two are newly described as A. ipomoeae and A. neoipomoeae. Two clades with isolates causing purple blotch on onion are confirmed as A. allii and A. porri, but they cannot adequately be distinguished based on their numbers of beaks and branches as described previously. The Passifloraceae pathogen A. hawaiiensis is synonymized under A. passiflorae, although it was described as lacking multiple beaks, which is a characteristic of A. passiflorae. From the data of these pathogens on onion and the Passsifloraceae, it can be deduced that the number of beaks does not seem to be a valid morphological character for species differentiation within section Porri.

Chapter 5 treats the small-spored Alternaria species, which reside in section Alternaria. A lot of confusion around the naming of species within this section exists, since the naming is mostly based on morphology and host-specificity, although the molecular variation is minimal. Whole genome sequencing, combined with transcriptome profiling and multi-gene sequencing of nine gene regions, SSU, LSU, ITS, GAPDH, RPB2, TEF1, Alt a 1, endopolygalacturonase (endoPG) and an anonymous gene region (OPA10-2), is used to create a clear and stable species classification in this
section. The nine sequenced Alternaria genomes, A. alternantherae, A. alternata, A. arborescens, A. avenicola, A. brassicicola, A. citriarbusti, A. gaisen, A. infectoria, A. papaveraceae, A. solani, and A. tenuissima, range in size from $32.0-39.1 \mathrm{Mb}$. The number of repetitive sequences varies significantly, with a relatively low percentage of repeats within section Alternaria. The genome identity within section Alternaria is high, compared to the genome identity for isolates from other sections to the A. alternata reference genome. Similarly, a relatively low percentage of single nucleotide polymorphisms (SNPs) were observed in genomic and transcriptomic sequences between isolates from section Alternaria, compared to the percentage of SNPs found in isolates from different sections compared to the A. alternata reference genome. The topology of a phylogenetic tree based on the whole-genome and transcriptome reads was congruent with multigene phylogenies based on commonly used gene regions. A set of core proteins was extracted from the genome and transcriptome data, and primers were designed on two eukaryotic orthologous group (KOG) protein loci with a relatively low degree of conservation within section Alternaria. The phylogenies from these two gene regions, KOG1058 and KOG1077, could not distinguish the described morphospecies within section Alternaria better than the phylogenies based on the nine commonly used gene regions for Alternaria. Based on genome and transcriptome comparisons and molecular phylogenies, Alternaria section Alternaria consists of only 11 phylogenetic species and one species complex. Thirty-five morphospecies, which cannot reliably be distinguished based on the multi-gene phylogeny, are synonymized under A. alternata. The subclades that are formed by these isolates are incongruent between the different gene regions sequenced; no two genes show the same groupings for any of the over 100 isolates. A sequence-based identification guide is provided for the species which are now recognized in section Alternaria. None of the genes sequenced in this study can distinguish all of the species recognized here on its own.

Chapter 6 investigates the molecular diversity of indoor Alternaria isolates in the USA, with the help of a phylogeographic / population genetic approach. Isolates collected throughout the USA were identified using ITS, GAPDH and endoPG gene sequencing, followed by genotyping and population genetic inference of the section Alternaria isolates and 37 reference isolates, using five microsatellite markers. Phylogenetic analyses revealed that 98% (153 isolates) of the indoor isolates consisted of species from Alternaria section Alternaria. The remaining 2% (three isolates) represented one section Infectoriae and two section Pseudoulocladium isolates. From the 153 isolates that belonged to section Alternaria, one could be assigned to A. burnsii, 15 to the A. arborescens species complex and the remaining 137 isolates were identified as A. alternata. Based on the microsatellite data, no specific indoor population could be distinguished. However, the microsatellite data did correlate with the phylogenetic data. Population assignment analyses of the A. alternata isolates suggested that subpopulations did not exist within the sample, which we thus divided into four artificial subpopulations to represent four quadrants of the USA. Genotypic diversity was extremely high for all quadrants and a test for linkage disequilibrium suggested that A. alternata has a cryptic sexual cycle. The SouthWest-USA population displayed the highest level of uniqueness, based on private alleles. Intriguingly, the highest amount of gene flow, between SouthWest-USA and SouthEast-USA, correlated with the west-to-east movement of the antitrade winds. This suggests that indoor A. alternata isolates, although extremely diverse, have a continental distribution and high levels of gene flow over the continent.

Chapter 7 discusses the data presented in this thesis. The implications of the performed studies are placed in a broader context, with a focus on the relation between morphology and the new species classification based on molecular tools and the use of genome data in contrast to multi-gene data.

ACKNOWLEDGEMENTS

Where to start? That is easy! There is only one person who really made this thesis possible, and that is my promotor Pedro Crous. Pedro, many thanks for believing in me, and the opportunity you gave me to start my own PhD project in your group at the CBS-KNAW. You had asked me earlier to start my own PhD project, but since I had already planned to start a family I thought a PhD would not fit that picture. However, after the birth of my first daughter, you still believed I would be able to successfully finish a PhD , and asked me the same question again. It was never my intention to pursue a PhD degree, but I did always regret that I did not go to University, and I loved to perform research, although I was not fond of having to give oral presentations. With the support and encouragements of my parents and partner, I decided to grab the chance you gave me. I hope the completion of this thesis will not be the end of us working together, and that we will publish many more nice manuscripts together.

Next to Pedro, I of course want to thank Pierre de Wit, my other promotor, for his critical comments, and valuable input he made during this study. I also want to thank my co-promotor and daily supervisor Ewald Groenewald, and when Ewald wasn't available, Lorenzo Lombard, for all their help with my research. Both of you always took the time to help me wherever you could. I would also like to mention Lute-Harm Zwiers, who unfortunately left the CBS-KNAW when I just started my PhD, but taught me a lot, while working on the Phoma / Ascochyta mating-type article together. Lute-Harm, thank you for everything. Of course I cannot forget to mention Hans de Gruyter (nVWA NPPO-NL, Wageningen), for whom I performed the lab work during his part-time PhD study. He showed me how a PhD worked, and as his "paranimf" I could even see how the actual PhD defence goes in practice. Hans, thank you for the nice cooperation, and I wish you all the best at nVWA and with your family. I am sure we shall keep in contact. When I refer to Hans, I also have to mention Maikel Aveskamp, the other PhD student working on Phoma at the same time. Since Hans was only at the CBS one day a week, I mostly worked together with Maikel in the lab. Maikel, thank you for the collaboration and good luck with your career and your lovely family. Back to the present, I want to thank Michael Seidl (Laboratory of Phytopathology, WUR), who helped / helps me with the genome work. Michael, thank you for all our discussions, and your sincere interest in my progress. I am sure our collaboration will not end here, and I hope we shall be able to publish some (more) nice manuscripts together. I would also like to thank Sandra Videira, who started her PhD in our research group at the same time period as I did. Sandra, thank you for all the conversations on our PhD projects and daily topics, and for being my "paranimf". I wish you good luck with the final part of your PhD and all the best with the rest of your career and future life with Luís. To William Quaedvlieg, the former PhD student from our group and room-mate in the PhD room, thank you for all the talks and discussions, and wish you the best with your career. To my other (current) room-mates, Tao Yang and Xuewei Wang, I wish you all the best with your PhD, and Chaetomium work, respectively.

I also want to mention the technicians in our group, Mieke Starink and Arien van Iperen, thank you both for the nice conversations and help when necessary. And of course, Mieke, thank you for being my other "paranimf". A special thanks to Janneke Bloem, who helped me with isolating DNA and performing PCR amplifications while she was working as a technician in our group. Janneke, good luck with your career at the NIOO, and hope to see you again. There are two German postdocs that previously worked in our research group whom I would like to mention, Ulrike Damm and Manfred Binder, thank you both for sharing your knowledge with me. I really appreciated the conversations with both of you. I shall not mention all the guests
who visited our group while I worked here the last 8 years, first as technician and then as PhD student, because I am sure I will forget some of them. But if you feel addressed, thank you for all the nice conversations! Also the staff from the Collection, thank you for the support and nice small talks, although I did not join you at the coffee table that much anymore after starting my own PhD project. Two persons whom I do want to mention by name are Marjan Vermaas and Manon Verweij. Marjan, thank you for all the help with taking pictures and creating beautiful photo plates and all the interest you showed in my PhD progress. Manon, I would like to thank you for all the help you gave me with the lay-out of the manuscripts, and eventually this thesis, and all the other help you ever gave me. It was a pleasure to get to know you a bit better during the congress in Thailand. Finally a general thank you to all other scientific and supporting staff at the CBS-KNAW, who made my stay at the CBS-KNAW a pleasant one.

Before thanking the persons who supported me in my personal life, I would like to take the opportunity to thank one more person who stimulated me in my career. Paul Savelkoul was my supervisor while working at the VUmc. Although the job mainly consisted of diagnostic work, he stimulated me, and gave me the opportunity to work on small research projects alongside my daily work. Paul, with your support I could really develop my love for performing research, which now eventually resulted in obtaining my PhD degree. Thank you for your trust.

Finally I would like to thank my family, whose support enabled me to finish my PhD study. I want to highlight some of them, but I will do this in Dutch.

Allereerst mijn ouders, Sjaak en Herma Woudenberg. Toen ik aan dit project begon, heb ik hen gevraagd of ze mij waar nodig wilden helpen met de opvang van de kinderen. Pap en mam, het was heerlijk om altijd op jullie terug te kunnen vallen, en ons totaal geen zorgen te hoeven maken om de meiden. We wisten dat er goed voor ze werd gezorgd en dat ze het prima naar hun zin hadden. Helaas gooide papa zijn ziekte de boel behoorlijk in de war, maar gelukkig gaat het alweer een stuk beter. Hopelijk kunnen jullie samen nog lang genieten van het leven en de kleinkinderen. Nogmaals ontzettend bedankt voor al jullie steun. Dan wil ik ook mijn schoonmoeder Willeke Piket en schoonzussen Barbara en Yvette Piket bedanken. Wanneer we toch in de knoei zaten met de meiden konden we altijd nog op jullie terugvallen, bedankt hiervoor! Ook wil ik graag mijn schoonvader nog even noemen, John Piket, die helaas mijn promotie niet meer mee zal maken. John was altijd oprecht geïnteresseerd in mijn onderzoek en, zo hoorde ik later, was zelfs bereid geweest om mij te vergezellen naar Amerika zodat ik niet alleen naar mijn eerste congres zou hoeven. Ik weet zeker dat hij trots op me zou zijn, John, we zullen je nooit vergeten. En dan uiteraard mijn partner Roy Piket. Roy, zonder jouw steun was dit zeker niet mogelijk geweest. Vooral de keren dat ik een week op pad moest voor het bijwonen van een congres en jij, met wat hulp van mijn ouders, zonder klagen of problemen de zorg voor onze twee meiden op je nam. Zelfs toen Demi pas vijf maanden oud was, en we ook nog een twee-is-nee peuter rond hadden lopen. Bedankt dat je mij vanaf het begin hierin voor de volle 100% hebt gesteund en geen moment hebt getwijfeld of ik dit wel zou kunnen. Ik heb mij wel meerdere keren afgevraagd of je wel helemaal door had waar ik aan begon, maar uiteindelijk heb je wel gelijk gekregen. Als laatste lijkt het mij op zijn plaats om nog mijn excuses te maken tegenover mijn fantastische, lieve, eigenwijze meiden Quinty en Demi Piket. Sorry meiden, voor de keren dat mama er niet was, lichamelijk of geestelijk, maar ook ontzettend bedankt voor alle afleiding die jullie mij gaven. Hoewel ik toch stiekem toe moet geven dat ik soms ook blij was met de afleiding die mijn werk mij gaf van alle baby / peuter / kleuter problemen. Ik ben nu al ontzettend benieuwd hoe jullie toekomst eruit gaat zien!

CURRICULUM VITAE

Joyce Woudenberg was born on July $15^{\text {th }} 1980$ in Cothen, The Netherlands. In 1998, after she obtained her VWO-diploma at the Revius Lyceum in Doorn, she started with a HLO-study at the Hogeschool Utrecht. Here she fulfilled a diagnostic internship at the microbiology laboratory of the UMC Utrecht, and a research internship on the typification of Legionella isolates from surface water at Kiwa N.V. Water Research. She obtained her HLO-diploma in the Medical Microbiology in 2002.

After graduation she started as a research technician at the NCCB (Dutch Culture Collection of Bacteria), part of the CBS-KNAW, on a project funded by the Dutch ministry VROM, now called Ministry of Infrastructure and the Environment. The project aimed at confirming the identity of genetically modified organisms from Dutch laboratories. Besides this project she helped maintaining the bacterial collection, performed bacterial identifications for external applicants and wrote ISO-protocols for the upcoming ISO-certification of the CBS-KNAW Collection. Due to a reorganization at the CBS-KNAW in 2004, she had to search for a new challenge, which she found at the VU Medical Center in Amsterdam. Here she worked in the Molecular Epidemiology (MEP) group, part of the Medical Microbiology and Infection prevention (MMI) department. The MEP focused on the typification of bacteria, mainly with Amplified Fragment Length Polymorphism, to detect and control hospital infections. She was also trained to work in the Virology, Serology and Molecular Diagnostic groups. In addition to the diagnostic work, she got the opportunity to work on multiple small research projects. The MEP group was located at the university building, together with the research group of the MMI department; this stimulated her love of performing research.

In 2007 she got the opportunity to return to the CBS-KNAW, this time in the Evolutionary Phytopathology group of Pedro Crous. As a research technician she assisted two PhD students with unraveling the fungal genus Phoma and allied genera, and other PhD students and postdocs when necessary. When time allowed, she was supported in performing her own research. This eventually resulted in two first-author publications and the start of her own PhD project in 2011, on which this thesis is based.

LIST OF PUBLICATIONS

Berner D, Cavin C, Woudenberg JHC, Tunali B, Büyük O, Kansu B (2015). Assessment of Boeremia exigua var. rhapontica, as biological control agent of Russian knapweed (Rhaponticum repens). Biological Control 81: 65-75.
Woudenberg JHC, Seidl MF, Groenewald JZ, Vries M de, Stielow JB, Thomma BPHJ, Crous PW (2015). Alternaria section Alternaria: species, formae speciales or pathotypes. (Submitted).
Woudenberg JHC, Van der Merwe NA, Jurjević Ž, Groenewald JZ, Crous PW (2015). Diversity and movement of indoor Alternaria alternata across the mainland USA. Fungal Genetics and Biology 81: 62-72.
Wijayawardene NN, Crous PW, Kirk PM, Hawksworth DL, Boonmee S, Braun U, Dai D-Q, D'souza MJ, Diederich P, Dissanayake A, Doilom M, Hongsanan S, Jones EBG, Groenewald JZ, Jayawardena R, Lawrey JD, Liu J-K, Lücking R, Madrid H, Manamgoda DS, Muggia L, Nelsen MP, Phookamsak R, Suetrong S, Tanaka K, Thambugala KM, Wanasinghe DN, Wikee S, Zhang Y, Aptroot A, Ariyawansa HA, Bahkali AH, Bhat DJ, Gueidan C, Chomnunti P, Hoog GS de, Knudsen K, Li W-J, McKenzie EHC, Miller AN, Phillips AJL, Piątek M , Raja HA, Shivas RS, Slippers B, Taylor JE, Tian Q, Wang Y, Woudenberg JHC, Cai L, Jaklitsch WM, Hyde KD (2014). Naming and outline of Dothideomycetes-2014 including proposals for the protection or suppression of generic names. Fungal Diversity 69: 1-55.
Woudenberg JHC, Truter M, Groenewald JZ, Crous PW (2014). Large-spored Alternaria pathogens in section Porri disentangled. Studies in Mycology 79: 1-47.
Alves JL, Woudenberg JHC, Duarte LL, Crous PW, Barreto RW (2013). Reappraisal of the genus Alternariaster (Dothideomycetes). Persoonia 31: 77-85.
Woudenberg JHC, Groenewald JZ, Binder M, Crous PW (2013). Alternaria redefined. Studies in Mycology 75: 171-212.
Damm U, Cannon PF, Woudenberg JHC, Crous PW (2012). The Colletotrichum acutatum species complex. Studies in Mycology 73: 37-113.
Damm U, Cannon PF, Woudenberg JHC, Johnston PR, Weir BS, Tan YP, Shivas RG, Crous PW (2012). The Colletotrichum boninense species complex. Studies in Mycology 73: 1-36.
Gruyter J de, Woudenberg JHC, Aveskamp MM, Verkley GJM, Groenewald JZ, Crous PW (2012). Redisposition of Phoma-like anamorphs in Pleosporales. Studies in Mycology 75: 1-36.
Woudenberg JHC, Gruyter J de, Crous PW, Zwiers L-H (2012). Analysis of the matingtype loci of co-occurring and phylogenetically related species of Ascochyta and Phoma. Molecular Plant Pathology 13: 350-362.
Aveskamp MM, Gruyter J de, Woudenberg JHC, Verkley GJM, Crous PW (2010). Highlights of the Didymellaceae: A polyphasic approach to characterise Phoma and related pleosporalean genera. Studies in Mycology 65: 1-60.
Gruyter J de, Woudenberg JHC, Aveskamp MM, Verkley GJM, Groenewald JZ, Crous PW (2010). Systematic reappraisal of species in Phoma section Paraphoma, Pyrenochaeta and Pleurophoma. Mycologia 102: 1066-1081.
Relyveld GN, Westerhof W, Woudenberg J, Kingswijk M, Langenberg M, VandenbrouckeGrauls CM, Bos JD, Savelkoul PHM (2010). Progressive macular hypomelanosis is associated with a putative Propionibacterium species. Journal of Investigative Dermatology 130: 1182-1184.

Verkley GJM, Woudenberg JHC, Gruyter J de (2010). Ascochyta manawaorae. Fungal Planet 45, Persoonia 24: 128-129.
Aveskamp MM, Verkley GJM, Gruyter J de, Murace MA, Perelló A, Woudenberg JHC, Groenewald JZ, Crous PW (2009). DNA phylogeny reveals polyphyly of Phoma section Peyronellaea and multiple taxonomic novelties. Mycologia 101: 363-382.
Aveskamp MM, Woudenberg JHC, Gruyter J de, Turco E, Groenewald JZ, Crous PW (2009). Development of taxon-specific sequence characterized amplified region (SCAR) markers based on actin sequences and DNA amplification fingerprinting (DAF): a case study in the Phoma exigua species complex. Molecular Plant Pathology 10: 403-414.
Bruijnesteijn van Coppenraet LES, Savelkoul PHM, Buffing N, Bijl MW van der, Woudenberg J, Lindeboom JA, Kiehn TE, Haverkort F, Samra Z, Kuijper EJ (2009). Amplified fragment length polymorphism analysis of human clinical isolates of Mycobacterium haemophilum from different continents. Clinical Microbiology and Infection 15: 924-930.
Damm U, Woudenberg JHC, Cannon PF, Crous PW (2009). Colletotrichum species with curved conidia from herbaceous hosts. Fungal Diversity 39: 45-87.
Gruyter J de, Aveskamp MM, Woudenberg JHC, Verkley GJM, Groenewald JZ, Crous PW (2009). Molecular phylogeny of Phoma and allied anamorph genera: towards a reclassification of the Phoma complex. Mycological Research 113: 508-519.
Schoch CL, Crous PW, Groenewald JZ, Boehm EWA, Burgess TI, Gruyter J de, Hoog GS de, Dixon LJ, Grube M, Gueidan C, Harada Y, Hatakeyama S, Hirayama K, Hosoya T, Huhndorf SM, Hyde KD, Jones EBG, Kohlmeyer J, Kruys A, Li YM, Lücking R, Lumbsch HT, Marvanová L, Mbatchou JS, McVay AH, Miller AN, Mugambi GK, Muggia L, Nelsen MP, Nelson P, Owensby CA, Phillips AJL, Phongpaichit S, Pointing SB, Pujade-Renaud V, Raja HA, Plata ER, Robbertse B, Ruibal C, Sakayaroj J, Sano T, Selbmann L, Shearer CA, Shirouzu T, Slippers B, Suetrong S, Tanaka K, Volkmann-Kohlmeyer B, Wingfield MJ, Wood AR, Woudenberg JHC, Yonezawa H, Zhang Y, Spatafora JW (2009). A class-wide phylogenetic assessment of Dothideomycetes. Studies in Mycology 64: 1-15.
Woudenberg JHC, Aveskamp MM, Gruyter J de, Spiers AG, Crous PW (2009). Multiple Didymella teleomorphs are linked to the Phoma clematidina morphotype. Persoonia 22: 56-62.
Zhang Y, Schoch CL, Fournier J, Crous PW, Gruyter J de, Woudenberg JHC, Hirayama K, Tanaka K, Pointing SB, Spatafora JW, Hyde KD (2009). Multi-locus phylogeny of Pleosporales: a taxonomic, ecological and evolutionary re-evaluation. Studies in Mycology 64: 85-102.
Loo IHM van, Diederen BMW, Savelkoul PHM, Woudenberg JHC, Roosendaal R, Belkum A van, Lemmens-den Toom N, Verhulst C, Keulen PHJ van, Kluytmans JAJW (2007). Methicillin-resistant Staphylococcus aureus in meat products, the Netherlands. Emerging Infectious Diseases 13: 1753-1755.

Education Statement of the Graduate School
 Experimental Plant Sciences

Issued to:	Joyce H.C. Woudenberg
Date:	10 September 2015
Group:	Evolutionary Phytopathology (CBS-KNAW) \& Phytopathology
University:	Wageningen University \& Research Centre

- Writing a review or book chapter

MSc courses
Laboratory use of isotopes
5.5 credits*

2) Scientific Exposure

- EPS PhD student days

PhD day 2013, Leiden University
Nov 29, 2013
GET2GETHER event, StayOkay, Soest
Jan 29-30, 2015

- EPS theme symposia

| EPS theme 2 symposium/WCS day: Interactions between plants and biotic agents, Utrecht University | Jan 24, 2013 |
| :--- | :--- | | EPS theme 2 symposium/WCS day: Interactions between plants and biotic agents, Utrecht University | Feb 20, 2015 |
| :--- | :--- |

- NWO Lunteren days and other National Platforms
- Seminars (series), workshops and symposia

CBS Seminar series (every Monday morning), Utrecht
Yearly meeting of KNVM Section Mycology, Utrecht
Mini-symposium 'Intraspecific pathogen variation-implications and opportunities', Wageningen
2011-2015
Nov 30, 2012

CBS Spring symposium 1F=?G, Amsterdam
Jan 22, 2013
CBS Spring symposium fungal genera and genomes, Amsterdam
Apr 10-11, 2013

Yearly meeting of KNVM Section Mycology, Utrecht
Apr 24-25, 2014
The second international workshop on Ascomycete systematics, Amsterdam
Nov 28, 2014

- Seminar plus
- International symposia and congresses

APS annual meeting 2012, Providence, RI, USA
Aug 04-08 2012
APS-MSA annual meeting 2013, Austin, TX, USA
Aug 10-14 2013
IMC 10, Bangkok, Thailand
Aug 03-08, 2014

- Presentations

APS annual meeting, Providence, RI, Poster: Multi-gene phylogeny reveals two new species-groups within Alternaria
CBS Seminar Series: Alternaria and allied genera
APS annual meeting, Austin, TX: Phylogenetic lineages within Alternaria and allied genera
CBS Seminar Series: Alternaria redefined
Friday morning meeting, Lab. of Phytopath., WU: A systematic revision of the genus Alternaria
CBS Spring symposium fungal genera and genomes: Alternaria redefined
IMC 10, Thailand, Poster: Large-spored Alternaria pathogens in section Porri disentangled
GET2GETHER event: Large-spored Alternaria pathogens in section Porri disentangled
Aug 06, 2012

IAB interview
Meeting with a member of the International Advisory Board of EPS
Dec 17, 2012
Aug 11, 2013
Dec 02, 2013
Feb 28, 2014
Apr 252014
Aug 03-08, 2014
Jan 29-30, 2015
Jan 05, 2015

- Excursions

Fungal Foray, APS annual meeting
Aug 04, 2012
22.0 credits*

3) In-Depth Studies	date
- EPS courses or other PhD courses	
Introduction to Bioinformatics for Molecular Biologists	Nov 12-23, 2012
The Power of RNA-seq	Dec 16-18, 2013
- Journal club	
- Individual research training	

Individual research training

- Skill training courses

Techniques for writing and presenting a scientific paper
Information Literacy including endnote
Mini-symposium 'how to write a world-class paper'
Dec 11-14, 2012
Ot 17 2013
Crafting your career, CWTS/Rathenau institute
WGS PhD Workshop Carousel
Organisation of PhD students day, course or conference
Membership of Board, Committee or PhD council
Member of "evenementen commisie" CBS

Herewith the Graduate School declares that the PhD candidate has complied with the educational requirements set by the
Educational Committee of EPS which comprises of a minimum total of 30 ECTS credits

The research described in this thesis, was conducted at the Centraalbureau voor Schimmelcultures / CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands.

Financial support for the research was provided by the Dutch Ministry of Education, Culture and Science through an endowment of the FES programme "Making the tree of life work" and the Royal Netherlands Academy of Arts and Sciences (KNAW).

Financial support from Wageningen University and the Centraalbureau voor Schimmelcultures / CBS-KNAW Fungal Biodiversity Centre for printing this thesis is gratefully acknowledged.

The Training and Supervision Plan was completed at the Graduate School of Experimental Plant Sciences.

Layout and design thesis:

Manon van den Hoeven-Verweij.

Front and back cover:

Solanum lycopersicum leaf showing early blight symptoms (photograph by P.W. Crous) with composite picture of different Alternaria conidia arranged in a branching pattern on the front. Back cover insets: conidiophores and conidia of Alternaria arborescens, A. photistica and A. carthami (from top to bottom). Design: Marjan Vermaas.

Printed by:

Gildeprint - www.gildeprint.nl

[^0]: \equiv Thyrospora radicina (Meier, Drechsler \& E.D. Eddy) Neerg., Bot. Tidsskr. 44: 361. 1939.
 \equiv Pseudostemphylium radicinum (Meier, Drechsler \& E.D. Eddy) Subram., Curr. Sci. 30: 423. 1961.
 Alternaria selini E.G. Simmons, Mycotaxon 55: 109. 1995.
 Alternaria smyrnii (P. Crouan \& H. Crouan) E.G. Simmons, Mycotaxon 55: 41. 1995.
 Basionym: Helminthosporium smyrnii P. Crouan \& H. Crouan, Florule Finistère (Paris): 11. 1867.
 \equiv Macrosporium smyrnii (P. Crouan \& H. Crouan) Sacc., Syll. Fungorum (Abellini) 4: 527. 1886.

[^1]: ${ }^{1}$ Departamento de Fitopatologia, Universidade Federal de Viçosa, 36570-000, Viçosa, MG, Brazil; corresponding author e-mail: rbarreto@ufv.br;
 ${ }^{2}$ CBS-KNAW Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD, Utrecht, The Netherlands;
 ${ }^{3}$ Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands;
 ${ }^{4}$ Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands

[^2]: ${ }^{1}$ CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8,3584 CT Utrecht, Netherlands; ${ }^{2}$ WUR, Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, Netherlands;
 ${ }^{3}$ ARC-Plant Protection Research Institute, P. Bag X134, Queenswood, 0121, South Africa;
 ${ }^{4}$ Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa

[^3]: ${ }^{1}$ CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands;
 ${ }^{2}$ WUR, Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands;
 ${ }^{3}$ Department of Genetics, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0002, South Africa;
 ${ }^{4}$ EMSL analytical, Inc., 200 Route 130 North, Cinnaminson, NJ, USA

