

ECN Outline

- The greenhouse gas signal in the atmosphere
 - The role of the planetary boundary layer
- Observations: scales in time and space
- Inverse transport model techniques
- Results
 - Local
 - Global
 - Regional
- Outlook
 - Measurement techniques
 - Modelling
 - Networks

COP15, Copenhagen Holland House

sing in situ observations to verify greenhouse gas emissions

- The answer is in the (lower) atmosphere:
- We will need all observations and more, the system is still poorly constrained
- We cannot relive the past, we should measure (more) now!

COP15, Copenhagen Holland House December 9, 2009

sing in situ observations to verify greenhouse gas emissions

www.ecn.nl

ECN Why greenhouse gas observations in the atmosphere?

- Actual concentrations in air determine the greenhouse effect
- Direct message to public and policy
- Airborne fraction of fossil fuel CO₂ is key parameter
- Emissions are uncertain: long atmospheric life-time of GHG allows us to trace location and size of emission (hopefully)

Main goals:

- Improved process understanding and calibration of biogeochemical models
- Monitor the trends of regional to global fluxes as a response to climate change and mitigation
- An independent emission verification system

COP15, Copenhagen Holland House December 9, 2009

sing in situ observations to verify greenhouse gas emissions

ECN Representativity of in situ sampling

- Local climatology
- · Local sources and sinks
- Vertical extent of the measurement
- Timing of the sampling
- The rectifier effect, correlation of fluxes with:
 - Nighttime shallow boundary layer
 - Daytime well mixed high boundary layer
- High resolution (time+space) & accurate modelling is required

COP15, Copenhagen Holland House December 9, 2009 sing in situ observations to verify greenhouse gas emissions

ECN (Inverse) modelling techniques (1)

- Global models have in last 10 yrs evolved from coarse (6°x8°) to medium resolution (0.5°-1°)
- Mesoscale models have evolved to resolutions of ~2x2 km
- Most driven by global meteorological fields from Numerical Weather Prediction models: ECMWF IFS, UKmo, GFS
- Typical examples
 - Eulerian global models: TM5, LMDZ, TM3
 - Eulerian mesoscale: RAMS, WRF, Chimere
 - Lagrangian models: Flexpart, NAME, Stilt

COP15, Copenhagen Holland House

sing in situ observations to verify greenhouse gas emissions

Direct (matrix) inversions No need for prior estimates, variances or covariance Data assimilation (Bayesian) Needs information on error variation and covariances Needs prior estimate Examples: Fan et al, Science, 1998 Bousquet, Science, 2002 Kaminski, Science, 2002-> Transcom 3

ECN Conclusions and take home messages

Conclusions

- · Continuous in situ observations in the PBL are representative for large areas
- · High resolution inversions for independent emmision verification are becoming feasible now, provided the required observations

Take home menu:

- The answer is in the (lower) atmosphere
- · We will need all current observations and more, the system is still poorly constrained
- We cannot relive the past, we should measure (more) now!
- Transport models will (always) need improvements

sing in situ observations to verify greenhouse gas emissions

www.ecn.nl

Acknowledgements

- EU FP5/6:
 - CHIOTTO
 - CarboEurope-IP
 - NitroEurope-IP
 - IMECC
 - Geomon
- FP7:
 - GHGEurope
 - ICOS
- **VROM**
- Senter/Novem ROB
- Klimaat voor Ruimte:
 - ME-2

ECN crew:

Pim van den Bulk, Piet Jongejan, Gerben Pieterse, Rob Rodink, Bart Verheggen, Elena Popa

sing in situ observations to verify greenhouse gas emissions

