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Abstract

Epigenetic modifications, such as DNA methylation variation, can generate heritable
phenotypic variation independent of the underlying genetic code. However, epigenetic
variation in natural plant populations is poorly documented and little understood.
Here, we test whether northward range expansion of obligate apomicts of the common
dandelion (Taraxacum officinale) is associated with DNA methylation variation. We
characterized and compared patterns of genetic and DNA methylation variation in
greenhouse-reared offspring of T. officinale that were collected along a latitudinal tran-
sect of northward range expansion in Europe. Genetic AFLP and epigenetic MS-AFLP
markers revealed high levels of local diversity and modest but significant heritable dif-
ferentiation between sampling locations and between the southern, central and north-
ern regions of the transect. Patterns of genetic and epigenetic variation were
significantly correlated, reflecting the genetic control over epigenetic variation and/or
the accumulation of lineage-specific spontaneous epimutations, which may be selec-
tively neutral. In addition, we identified a small component of DNA methylation dif-
ferentiation along the transect that is independent of genetic variation. This epigenetic
differentiation might reflect environment-specific induction or, in case the DNA
methylation variation affects relevant traits and fitness, selection of heritable DNA
methylation variants. Such generated epigenetic variants might contribute to the adap-
tive capacity of individual asexual lineages under changing environments. Our results
highlight the potential of heritable DNA methylation variation to contribute to popula-
tion differentiation along ecological gradients. Further studies are needed using higher
resolution methods to understand the functional significance of such natural occurring
epigenetic differentiation.
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the leading edge of the migration front during range
expansion, plants have to adapt to novel biotic and abi-
otic conditions (Davis & Shaw 2001). Numerous asexual
plant species consist of individual clonal genotypes of
which many have successfully colonized a wide range

Introduction

Plant species have the ability to respond to a changing
climate by phenotypic plasticity, adaptation and migra-
tion towards more suitable habitats (Nicotra et al. 2010).

In practice, these processes are intermingled; for exam-
ple, adaptive changes may arise during migration. At
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of new habitats (Hollingsworth & Bailey 2000; Ahmad
et al. 2008; Zhang et al. 2010). Because of their limited
within-lineage genetic variation, asexuals largely rely
on the capacity of phenotypic plasticity to cope with
new environmental conditions (Castonguay & Angers
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2012). An important question is to determine what fac-
tors enable asexuals to successfully persist in changing
climatic conditions.

Recent findings suggest that epigenetic mechanisms,
such as histone modification and DNA methylation,
may represent an additional source of phenotypic varia-
tion that is relevant to both within-generation pheno-
typic plasticity and, if stably transmitted, also heritable
adaptation (Angers et al. 2010). Epigenetic mechanisms
play an important role in regulating gene expression
and stabilizing the genome by repressing harmful
genetic elements, such as transposable elements
(Henderson & Jacobsen 2007). In plants, DNA methyla-
tion variation also shows substantial heritability
(Cervera et al. 2002; Anway et al. 2005; Jablonka & Raz
2009; Johannes et al. 2009; Cortijo et al. 2014). Without
changing the genetic code, epigenetic mechanisms can
generate stable phenotypic variation contributing to
phenotypic plasticity both in sexual (Bossdorf et al.
2010; Zhang et al. 2013) and in asexual species (Angers
et al. 2010; Latzel & Klimesova 2010). In particular, in
plants, stable DNA methylation variation can account
for heritable trait differences that persist for multiple
generations (Cubas et al. 1999; Cortijo ef al. 2014). Varia-
tion in epigenetics may not only arise spontaneously
(Becker et al. 2011; Schmitz & Ecker 2012) but may also
be environmentally induced (Verhoeven ef al. 2010b;
Dowen et al. 2012; Sahu et al. 2013).

The current knowledge of epigenetic variation derives
mainly from studies using model species under con-
trolled conditions. It has been only recently that studies
have started to focus on patterns of DNA methylation
variation in natural systems, in order to understand the
evolutionary and ecological role of epigenetics (Boss-
dorf et al. 2008; Richards 2008; Bossdorf & Zhang 2011).
Studies in natural plant populations have shown that
DNA methylation variation can be correlated with eco-
logical stresses (Herrera & Bazaga 2011) and habitats
(Gao et al. 2010; Lira-Medeiros et al. 2010; Paun et al.
2010). Further, common garden studies on the clonally
reproducing and invasive Japanese knotweed revealed
habitat differentiation by DNA methylation and only
limited genetic variation (Richards et al. 2012). These
findings suggest that epigenetic variation may enable
individual asexual lineages to adapt under changing
environments.

The focus of this study is on epigenetic variation dur-
ing range expansion in asexual plant species. We com-
pare patterns of genetic and heritable DNA methylation
variation in natural populations of apomictic dandelions
(Taraxacum officinale) along a geographic transect of
their range expansion. Taraxacum officinale reproduces
sexually or asexually via apomixis, that is production of
nonfertilized seeds (Asker & Jerling 1992), and in
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Europe, it shows a pattern of geographic parthenogene-
sis reflecting postglacial range expansion (Menken et al.
1995; Verduijn et al. 2004). After the last retreat of land
ice, approx. 10000 years ago obligate apomicts
migrated from glacial refugia towards northern Europe
(Comes & Kadereit 1998). Triploid apomictic lineages
co-occur with diploid sexually reproducing dandelions
in south central Europe, the area of the glacial refugia,
and new apomictic (triploid) lineages arise through
hybridization between sexual mothers and apomictic
pollen donors (Richards 1973; Mogie & Ford 1988; Tas
& Van Dijk 1999). It is believed that apomictic lineages
are continuously formed in these mixed populations,
and together with the northward migration, this process
may account for the high levels of clonal diversity typi-
cally observed in northern European populations of
apomictic dandelions (Van der Hulst et al. 2001). Previ-
ous work on apomictic dandelions showed that herita-
ble DNA methylation changes can be triggered by
exposure to ecological stresses (Verhoeven et al. 2010b)
and by the hybridization of sexual and asexual dande-
lions, which gives rise to novel apomictic plants (Verho-
even et al. 2010a).

Heritable epigenetic modifications can be function-
ally targeted (for instance when a specific environmen-
tal cue triggers a specific epigenetic modification) or
essentially random (Shea ef al. 2011) and range from
transient to very stable across generations (Becker
et al. 2011; Cortijo et al. 2014). Targeted epigenetic
effects could function as an underlying mechanism for
specific stress responses, inherited stress ‘memory’ and
transgenerational phenotypic plasticity. By contrast,
random epigenetic variation, if stably inherited, could
function as a basis for natural selection on epimuta-
tions (Hirsch ef al. 2012). Environmental stress, such as
exposure to novel habitats during range expansion,
can change DNA methylations, histone modifications,
transposon silencing and gene expression, which sub-
sequently generates random and novel genetic and
epigenetic variation (Rapp & Wendel 2005; Bilichak
et al. 2012). In that case, we would expect that DNA
methylation variation is increased in apomictic dande-
lions of northern regions due to their history of
encountering novel biotic and abiotic environments
during their northward range expansion. We would
also expect DNA methylation variation to differentiate
along the geographic transect. As environmental con-
ditions change, DNA methylations can specifically be
modified and can result in different epigenetic pat-
terns associated with the habitats along the range
expansion gradient. In addition, selection acting on
random but stable epimutations may also contribute
to differentiation between habitats in the DNA methy-
lation profile.
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Here, we studied epigenetic variation along a geo-
graphic transect of northward migration of apomictic
dandelion in north western Europe. We used offspring
from field-derived plants to analyse the heritable com-
ponent of DNA methylation variation. With this experi-
mental design, the captured heritable component of
DNA methylation variation potentially includes both
DNA methylation polymorphisms that are stably trans-
mitted for many generations (e.g. Cortijo et al. 2014)
and possible environmentally induced methylation
modifications associated with the maternal growing
environment (Verhoeven et al. 2010b). Specifically, we
tested the following hypotheses: (i) northern popula-
tions show higher levels of DNA methylation variability
than southern populations. Such a pattern could arise
because of higher levels of stress-induced DNA methy-
lation modifications in the lineages’ novel northern
environments. (ii) Regions along the transect are epige-
netically differentiated. This could arise from environ-
ment-specific DNA methylation patterns. (iii) DNA
methylation variation patterns are partly autonomous,
that is independent of underlying genetic variation.
DNA methylation variation can be controlled by, or act
independent of, underlying genetic polymorphisms
(Richards 2006). A relevant issue is therefore the degree
of independence from the underlying genetic code in
epigenetic variation. Many of the known epialleles are
associated with silencing of transposable elements that
can affect the expression of nearby genes (Paszkowski
& Grossniklaus 2011). However, some features of the
DNA methylome show autonomous variation indepen-
dent of genetic variation (Cubas et al. 1999; Kalisz &
Purugganan 2004; Marfil et al. 2012; Schmitz et al. 2013).
Sequence-independent epialleles can potentially allow
for adaptive dynamics that cannot be explained by the
genetic code alone (Bossdorf et al. 2008), which may be
particularly relevant in asexuals since they have limited
within-lineage genetic variation (Castonguay & Angers
2012; Verhoeven & Preite 2014).

Materials and methods

Study species and sampling design

The common dandelion, Taraxacum officinale, is a wide-
spread perennial plant species that is dispersed through
seeds. For the description of the taxon T. officinale, for-
merly grouped in the sections Vulgaria and Ruderalia,
see Kirschner & étépének (2011). In spring 2011, we col-
lected seeds from apomictic dandelions in ten areas
(which we refer to as populations) along a south-north
transect from Luxembourg to central Sweden (Fig. 1).
This transect covers a large portion of the apomicts’ dis-
tribution in north western Europe. The southernmost

Fig. 1 Sampling localities grouped in three regions indicated
by the following: white circle, south; black triangle, centre; and
grey rectangle, north. For further description of the localities,
see Table 1.

part of the transect is situated close to the area of mixed
sexual-asexual populations in south central Europe
where new apomicts can arise from sexual ancestors
(Menken et al. 1995; Verduijn et al. 2004). Within each
population, we collected one seed head from each of 16
different fields within an approximate 5-10 km radius
to obtain an unbiased sample of the genetic diversity of
the local population (Table 1). Sampling localities were
usually pastures and some fallows, roadsides and forest
glades. From each field-collected seed head, we grew
one offspring. Seeds were germinated on moist filter
paper in Petri dishes for 11-16 days (10-h dark: 14-h
light; 15: 20 °C). Individual seedlings were transplanted
into 1-L pots containing a mixture of 80% potting soil
and 20% pumice. The plants were grown for 3 months
in a fully randomized design in the greenhouse (8-h
dark: 16-h light; 16: 21 °C) and watered several times
per week, depending on the rate of water loss. In addi-
tion, plants received 50 mL of half-strength Hoagland

© 2015 John Wiley & Sons Ltd

85UB017 SUOWILLIOD) SAIE8ID 3|qedlidde auyy Ag peusenob ae safoiie YO '8sn J0 S9|Nn 10} Akeiqi8UIUO 8|1 UO (SUONIPUOD-PUR-SLLLIBY WD A3 | 1M Aleid U1 |uo//:SANLY) SUOTIPUOD pue SIS | U1 89S *[7202/90/G2] U0 A%iqiauliuo A|im ‘Jlupeg 1| e yosessay puy Asiealun usbuiueBe Aq 62€£T 90UW/TTTT OT/I0P/W00 A3 (1M Alelq1jBul|uo//Sdny woi) papeojumoq *T 'STOZ ‘XP62S9ET



Table 1 Overview of the sampled apomictic dandelions

1D Region Population Latitude Longitude

63°49'33.06"N  20°15'46.94"E
N_2 North Soderra, SE 62°37'56.17"N  17°56/27.13"E
N_1 North Uppsala, SE 59°51'30.82"N  17°38'20.15"E
C 3 Centre Skinninge, SE 58°23'42.97"N  15°05'11.80"E
C 2 Centre Varnamo, SE 57°10'59.38"N  14°02'52.15"E
C_1 Centre Marum, DK 56°01'35.80"N  12°16/51.78"E
S 4  South Meldorf, GE 54°05'23.93"N  9°04'31.76"E
S 3 South Ostbevern, GE  52°02'11.44"N  7°50'32.57"E
S 2 South Heteren, NL 51°56'56.18"N  5°45'03.24"E
S1 South Hosingen, LU 50°03'11.34"N  6°04'40.66"E

N 3 North  Umea, SE

For each of the 10 areas, 16 plants were propagated in the
greenhouse. DNA extracted from fresh leave tissue was used
to analyse the genetic variation with amplified fragment length
polymorphism (AFLP) and the epigenetic variation with
methylation-sensitive AFLP (MS-AFLP). Two samples failed to
give reliable AFLP fragments (in C1 and S3) resulting in 158
samples and 160 samples for MS-AFLPs.

nutrient solution once a week. All plants were con-
firmed to be triploid, and thus apomictic, using a flow
cytometer (Partec Ploidy Analyser) by checking their
nuclear DNA content against a diploid reference plant
(Tas & Van Dijk 1999).

DNA isolation, AFLP and MS-AFLP

DNA was isolated from approximately 1 cm® of leaf tis-
sue following the CTAB procedure by Rogstad (1992)
with minor modifications (Vijverberg et al. 2004). The
leaf tissue was collected in microtubes and kept on ice,
which contained two 1/8” steel balls. Afterwards, the
leaf tissue was homogenized in the CTAB buffer using
a Tissuelyser II (Qiagen, the Netherlands). The DNA
pellets were dissolved in 50 pL TE and stored at
—20 °C until usage.

While the AFLP protocol uses the enzyme Msel as the
frequent cutter (Vos et al. 1995), the MS-AFLP protocol
uses the DNA methylation-sensitive enzymes Mspl and
Hpall in parallel batches (Xiong ef al. 1999; Keyte et al.
2006), each in combination with the same rare cutter
EcoRI (Reyna-Lopez et al. 1997). Mspl and Hpall are iso-
schizomers that recognize the same tetranucleotide
sequence, 5-CCGG, whereas the cytosines can be
methylated on one or both DNA strands, referred as
hemi and fully methylated. Mspl and Hpall cut depend-
ing on the exact methylation status of the restriction site
(e.g. see Schulz et al. 2013): both enzymes cut if the
restriction site is free from cytosine methylations (type
), only Mspl cuts if the internal cytosine is hemi- or
fully methylated (type II), only Hpall cuts if the external
cytosine is hemimethylated (type III), and additionally,
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sites that are fully methylated at the external cytosine
or hemi- or fully methylated at both internal and exter-
nal cytosines are not accessible for Hpall and Mspl (type
IV). The advantage of screening with both isoschizo-
mers is the possibility to distinguish DNA methylation
polymorphism from genetic polymorphism, where the
fragment is absent due to mutation at the restriction site
(Schulz et al. 2013).

The protocol for AFLP and MS-AFLP was adapted
from Keyte et al. (2006) with some modifications. Based
on previous pilot tests, we selected four EcoRI/Msel pri-
mer combinations for AFLP analysis (AAC/CTA,
AAC/CAA, AAC/CTT and ACC/CTA) and seven
EcoRI/Mspl-Hpall primer combinations for the MS-
AFLP analysis (ACA/TAC, ACA/TCA, AAC/TAG,
AG/TCA, AG/TAC, ACC/TCA and ACC/TAG). In
Table S1 (Supporting information), all adapters and pri-
mers used for the AFLP and MS-AFLP protocol are
summarized. Fifty nanograms of DNA was digested for
three hours at 37 °C in a total volume of 20 puL with ten
units of EcoRI (100 000 U/mL), Msel (50 000 U/mL),
MsplI (100 000 U/mL) or Hpall (50 000 U/mL). The cor-
responding buffer was added to the digestion mix, and
on top of that for the digestion with Msel, we added
2 pg of BSA (restriction enzymes, restriction buffer and
BSA; New England BioLabs, Bioke, the Netherlands).
Adapters were then ligated in a total reaction volume
of 30 pL containing: 1 unit of T4 DNA ligase and corre-
sponding ligase buffer (ThermoFisher scientific, the
Netherlands), 3.75 pmol of EcoRI adapter and, respec-
tively, 37.5 pmol of Msel or Mspl/Hpall adapter for
18 h at 22 °C followed by 10 min at 65 °C. The ligation
product was diluted to 15% in sterile water. Pre-ampli-
fication was performed in a total volume of 50 pL using
1 x buffer, 125 nmol MgCl2, 25 U Taq DNA poly-
merase (all from GC biotech BV, the Netherlands),
10 nmol dNTPs (ThermoFisher scientific), 15 pmol of
each preselective primer (Table S1, Supporting informa-
tion) and 10 pL of diluted ligation product. The reaction
started with 2 min hold at 72 °C followed by 20 cycles
of 30 s at 94 °C, 30 s at 56 °C, 2 min at 72 °C and fin-
ished with 10-min incubation at 60 °C and hold at
10 °C. These pre-amplified products were diluted to
5% in sterile water. The selective amplification was
performed in a total volume of 25 uL containing
1 x buffer, 37.5 nmol MgCl2, 1.25 U Taq DNA poly-
merase (all from GC biotech B.V.), 7.5 nmol dNTPs
(ThermoFisher scientific), 10 ng BSA, 5 pmol labelled
selective EcoRI primer, 20 pmol selective Msel, Hpall/
Mspl primer and 5 pL diluted PCR product. The selec-
tive amplification was started with 2-min hold at 94 °C,
followed by 10 cycles of 30 s at 94 °C, 30 s at 65 °C,
2 min at 72 °C and 25 cycles with 30 sec at 94 °C, 30 s
at 56 °C, 2 min at 72 °C and ended with 10 min at
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60 °C before hold at 10 °C. The final PCR product was
diluted to 2.5% in sterile water and analysed on the
ABI 3130 genetic analyser (Life Technologies Europe
BV, the Netherlands).

To avoid systematic biases, we used a randomized
block design to run all samples through the MS-AFLP
and AFLP protocols. The samples were divided into
four blocks, and each block was divided into four sub-
blocks, each sub-block containing one individual per
population. Additionally, 10% of the total number of
samples was run as technical duplicates in order to
quantify error rates and 10% as negative controls to
check for peaks that indicate contamination signals and
carry over effects (Bonin et al. 2007). Samples were fully
randomized within sub-blocks, and blocks went
through the laboratory protocols sequentially. This pro-
cedure ensured that any block-specific technical biases
are randomly distributed over the ten populations and
do not cause a specific bias that is correlated with the
transect.

Fragment scoring

The fragments were analysed and scored using GENE-
MAPPER 3.7 (Life technologies Europe BV). Fragments
between 100 and 500 base pairs were scored, and frag-
ments that showed up in any of the negative controls
were discarded. We used a semi-automated bin setting
to identify marker loci as bins that had at least one
sample showing a peak height above 50. Markers were
scored as ‘present’ when peak height exceeded a rela-
tive peak-specific threshold (mean peak height minus
two times the standard deviation) and if peak height
exceeded a minimum absolute threshold of 10.
Monomorphic loci, singletons and doubletons (i.e. when
only 1-2 samples had a deviating status) were dis-
carded. In a preliminary data analysis, we detected a
significant block-specific bias: a subset of fragments was
present in nearly all samples from one block but never
in samples from any of the other blocks. We subse-
quently tested each marker for association with blocks
using logistic regression, and we excluded all markers
from further analysis that showed a significant block
effect (P <0.05). Additionally, we discarded all loci
from analysis that showed more than two mismatches
across the 16 pairs of duplicates. This resulted in a final
data set of 85 polymorphic AFLP loci in 158 samples
and 96 polymorphic MS-AFLP loci in 160 samples
(Table 1).

The profiles for the selected Mspl and Hpall markers
were combined into a matrix of the four possible
methylation conditions: type I) fragment is present in
both Mspl and Hpall profiles, type II) fragment is pre-
sent only in Mspl profile, type III) fragment is present

only in Hpall profile and type IV) the absence of frag-
ment from both profiles. Type II is often interpreted as
evidence for CG methylation and type III is often
interpreted as CHG methylation (Schulz et al. 2013),
but this interpretation is questioned (Fulnecek &
Kovaiik 2014). Type IV can have multiple causes: both
inner and outer cytosines are hemi- or fully methy-
lated, the outer cytosine is fully methylated, and a true
fragment absence due to a sequence polymorphism in
the restriction site condition (Salmon et al. 2008). Due
to its uninformative status, we excluded fragments of
type IV from logistic regression analysis. For multivari-
ate analyses of cytosine methylations, we followed the
analysis approach of Schulz efal. (2013) and we
recoded the MS-AFLP combined matrix into two data
sets: data set M containing methylated loci where the
methylated state (types II and III) equals 1 and the
unmethylated state (type I) equals 0, and data set U
representing unmethylated loci where type I is scored
as 1 and types II and III are scored as 0. Both matrices
M and U contain the same information, but down-
stream analysis based on pairwise distance matrix that
emphasize shared 1's can differ between the M and U
coding. As pointed out by Schulz et al. (2013), func-
tionally different patterns may emerge when empha-
sizing shared methylated sites or shared unmethylated
sites in the genome. In both M and U matrices,
ambiguous type IV loci were coded as zeros following
Schulz et al. (2013). Scoring error rates based on the 16
replicate samples were 4.3%, for the AFLP profile,
6.5% for the Mspl profile and 5.0% for Hpall. Because
we used a randomized design for the greenhouse
experiment and for the laboratory protocols, the scor-
ing errors are randomly distributed over the experi-
mental design and therefore may cause undesired
noise but no systematic bias in the results. Addition-
ally, we evaluated how the patterns detected in our
study are affected using different criteria of repeatabil-
ity and error rates. Using lower error rates reduced
the number of loci retained in the analyses consider-
ably, leading to undesirably small data sets. However,
we found that results remained qualitatively well com-
parable (Tables S2-S7, Supporting information).

Statistical analysis

To check for broad geographic patterns in Europe, we
partitioned the transect into three regions: south, centre
and north (Figs 1 and 3) and we performed several
analyses to detect differentiation and diversity patterns
at the regional level. In addition, more fine-grained pat-
terns were analysed at the levels of population or/and
latitude. First, clonal lineages were identified using
GENOTYPE based on the AFLP profiles. Assuming
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some level of scoring error and within-lineage mutation,
this program uses the empirical distribution of all pair-
wise genetic distances between samples to set an appro-
priate threshold for lineage assignment; this distribution
is typically bimodal as a result of within-lineage varia-
tion and genetic variation between lineages and the
appropriate threshold lies in between (Meirmans & Van
Tienderen 2004). Pairwise distances between individuals
were based on dice similarities: 1—(2a/(2a+b)), where a
is the number of shared 1’s and b the number of the
number of loci with discordant information. In our
data, ten mismatches of a total of 85 polymorphic loci
were allowed as a maximum distance between lineage
members (Fig. S1, Supporting information). Clonal
diversity within populations and within regions was
captured as the number of clonal lineages divided by
total number of plants per group. Shannon-Weaver
indices were calculated for small sample sizes as an
additional measure of clonal diversity (Chao & Shen
2003) using GENODIVE (Meirmans & Van Tienderen
2004). The regional differences within these Shannon—
Weaver indices were then tested using a bootstrapping
approach, that is resampling the individuals from the
regions and comparing the indices (Manly 1991).

Second, multivariate analyses were performed that
detect genomic diversity by quantitatively analysing
the calculated pairwise dice similarity scores. PCoAs
were plotted for AFLP and MS-AFLP (M&U) profiles
based on the first two dimension calculated with the
R-function pcoa() from the package Ape with an addi-
tive constant to modify the nondiagonal distances to
Euclidean (Cailliez 1983) and hence can be represented
in n — 1 dimensions. A hierarchical AMOVA (amova(),
R-function from the package Pegas with 10 000 permu-
tations) was performed to evaluate genetic (AFLP loci)
and epigenetic variation (MS-AFLP loci from M and U
profiles) among regions, among populations within
regions and within populations. Fst was calculated
and averaged across all loci for the AFLP and M pro-
files (fst(), R-function from package Vegan). Permuta-
tion tests for homogeneity of multivariate dispersion
were calculated with 999 permutations (betadisper()
and permutes(), R-functions from package Vegan). This
is a multivariate analogue to Levene’s homogeneity of
variances test; it evaluates whether different groups
have different levels of variation, irrespective of differ-
ences in group means.

Correlations between AFLP, MS-AFLP and geo-
graphic distances were tested using mantel tests (man-
tel() with 999 permutations from the R package Vegan).
Geographic distances were either coded as km distances
between the 10 populations, or as proxies for regional
distances: same region = 0, adjacent regions =1 and
nonadjacent regions =2. Of special interest is the

© 2015 John Wiley & Sons Ltd

EPIGENETIC VARIATION IN TARAXACUM 4411

partial mantel correlation test (partialmantel() with 999
permutations from Vegan) between MS-AFLP loci and
geographic or regional distances, after controlling
for the effect of genetic distances. This captures epige-
netic differentiation that is uncorrelated with genetic
differentiation.

In addition to the pairwise distances based multivari-
ate analyses that describe genomewide patterns of vari-
ation, we analysed single markers individually. Logistic
regression models evaluate whether the marker status
of the M profile of MS-AFLP and the AFLP profile asso-
ciates with region, population and the latitude of the
sampling site. As mentioned above, we handled here
the ambiguous type IV status as missing data for the M
profile. This analysis was performed with the R-func-
tion glm() using binomial error distribution and a logit
link function. The P-values where corrected for multiple
testing at a false discovery rate of 0.05 with the function
p. adjust().

Results

Clonal diversity

The AFLP profile consisting of 158 samples revealed 63
clonal lineages (with a maximum of 10 marker differ-
ences allowed within lineage, see Fig. S1 supporting
information). The 15-16 sampled plants per population
represented on average 9-13 different clonal lineages.
The regional clonal diversity showed a weak decrease
from south (52%) to centre (51%) to north (48%). This
decrease in diversity was supported by a decrease in
the corrected Shannon-Weaver index: south (1.6), centre
(1.5) and north (1.4) with a significant clinal pattern
along the transect: south > centre (P =0.05) and
south > north (P <0.01; P-values based on boot-
strapped indices with 9999 permutations). Most clonal
lineages occurred exclusively in a single region. Thir-
teen clonal lineages occurred in multiple regions: four
widespread lineages were found in all three regions,
centre and north shared four lineages, centre and south
shared three lineages, and north and south shared two
lineages (Fig. 2, Table S8, Supporting information).

Genetic and epigenetic variation

AMOVA revealed that the great majority of the molec-
ular variation (92% of the genetic variance, and 96% of
the epigenetic M and 97% of the epigenetic U profiles)
was partitioned within populations, while the small
remaining portion was partitioned among populations
within regions and among regions (Table 2). Lack of
strong regional differentiation is also visible in the
principal coordinate analysis (PCoA) plots that are
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north (48%)

centre
(51%)

south (52%)

Fig. 2 Venn diagram with number of clonal lineages per region.
In total, 63 clonal lineages were found based on the amplified
fragment length polymorphism (AFLP) data set. In brackets, the
percentage of clonal diversity within region is shown: number
of clonal lineages divided by total number of plants per region.

Table 2 Variance partitioning (AMOVA) for amplified frag-
ment length polymorphisms (AFLP) and methylated /unmethy-
lated profiles based on methylation-sensitive AFLPs (MS-AFLP)

Among
populations
Among within Within
regions regions population
AFLP
Df 2 7 148
SSD 0.174 0.223 2.988
Mol. var. (%) 4.8 34 91.8
P <0.01 ns
MS-AFLP methylated
Df 2 7 150
SSD 0.771 1.286 19.936
Mol. var. (%) 2.1 2.0 95.9
P <0.01 ns
MS-AFLP unmethylated
Df 2 7 150
SSD 0.164 0.540 7.693
Mol. var. (%) 0.2 3.1 96.7
P ns <0.01

Table shows the output of R-function amova() from package
Pegas. Df: degrees of freedom. SSD: sum of square deviation.
Mol. var (%): Molecular variation percentages derive from vari-
ance components sigma 2. P: P-values deriving from 10 000
permutations, ns: not significant.

based on pairwise AFLP and MS-AFLP distances
(Fig. 3). Despite the small percentage of variation
partitioned among regions, these variance compo-
nents were significant for the genetic and methylated

variation profiles (Table 2). The regional differentiation
was somewhat more pronounced in the AFLP than in
the methylated data: genetic regional differentiation of
4.8% compared to methylated regional differentiation
of 2.1%. Analysis of single markers also showed stron-
ger genetic than epigenetic differentiation, with only
few MS-AFLP markers significantly associated with
regions (Table 3). Consistent with the limited regional
differentiation, measures of genetic subdivision among
populations showed low values: Fstapp = 0.04 and
Fstys apLp = 0.027, indicating high migration across the
populations.

Within regions, levels of MS-AFLP variation were
higher than levels of AFLP variation, especially in the
M profiles (Fig. 4). The analysis of within-region geno-
mic diversity, that is average distance to the regions’
centroid, did not show a clinal pattern along the south-
to-north transect (permutation test: P > 0.05; Fig. 4).

Genetic and epigenetic correlation

Because the regions north, centre and south are dis-
tributed along a linear transect, differentiation between
these regions may derive from adaptation to the regio-
nal conditions or from neutral isolation by distance.
Correlations between genetic and geographic distances
(km distances between populations) were weak yet sig-
nificant (R = 0.106, P = 0.001), and epigenetic variation
showed an even weaker correlation with geographic
distance (using the epigenetic M profile: R = 0.048,
P < 0.05 but not significant for U profiles). Additionally,
we used partial mantel tests to detect geographic pat-
terns of epigenetic variation after controlling for genetic
effects; that is, we looked for geographic patterns in the
MS-AFLP data that did not simply mirror geographic
patterns in the genetic data. When testing the correla-
tion between autonomous MS-AFLP profiles and geo-
graphic km distances no evidence was found at the
level of populations. When tested at the regional level,
after correcting for AFLP variation, a significant correla-
tion was observed between MS-AFLP profiles and
regional distances (M profile: partial mantel correlation
R =0.049, P < 0.05; not significant for the U profile MS-
AFLP data).

Visualization of the four most common clonal lin-
eages (occurring in all three regions, see Table S8, Sup-
porting information) shows genetic clustering but
limited clustering based on their epigenetic profiles
(Fig. 5). While there is a clear overall correlation
between AFLP and MS-AFLP profiles across all clonal
lineages (Mantel test correlation between AFLP and M
profiles: R =0.163, P =0.001; AFLP and U profiles:
R =0.068, P = 0.07), this absence of obvious epigenetic
clustering supports the idea that there is also some
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Fig. 3 Principal coordinate analyses based on genetic (AFLP) and epigenetic (MS-AFLP) distances shown as methylated loci (M) and
unmethylated loci (U) based on the mixed scoring approach (see Materials and Methods). Regions are displayed by colour: white

circle = south, black triangle = centre, grey rectangle = north.

Table 3 Results for single-marker tests using generalized lin-
ear models. Number of significant loci (P-value adjusted for
multiple testing at FDR 0.05) and proportion of differentiated
genetic and epigenetic loci that associate with population,
region or latitude

Significantly differentiated

AFLPs (n = 85) MS-AFLPs (1 = 96)

Differentiation by

Population 15 loci — 18% ns
Region 12 loci — 14% 2 loci — 2.1%
Latitude 5 loci — 6% ns

n = total number of polymorphic loci.

fraction of the DNA methylation variation that is inde-
pendent from genetic background.

Discussion

In this study, we explored patterns of epigenetic varia-
tion in apomictic dandelion populations along a north-
ward range expansion gradient. We hypothesized that
range expansion could result in certain patterns of epi-
genetic variation: (i) increased levels of epigenetic varia-
tion towards the north and (ii) in regional epigenetic
differentiation. We found limited evidence for regional
sequence-independent epigenetic differentiation and no
gradient in levels of epigenetic variation. While much
of the heritable epigenetic variation was intertwined
with genetic variation, a fraction of the DNA methyla-
tion differentiation between regions along the transect
was not associated with genetic variation. This autono-
mous fraction of epigenetic variation is interesting
because it shows a potential contribution to phenotypic

© 2015 John Wiley & Sons Ltd

variation and plasticity beyond what can be explained
by genetic variation; however, this fraction is quite small.

Genetic and epigenetic patterns in apomictic
dandelions

The analysis of the offspring of sampled apomictic dande-
lions along the latitudinal transects revealed very high clo-
nal diversity. Novel apomictic lineages are continuously
formed from mixed sexual-apomictic populations and
subsequently migrate northwards. That probably accounts
for the high clonal diversity observed in all sampling loca-
tions, which is consistent with previous reports (Van der
Hulst et al. 2001). We observed a moderate decrease in
clonal diversity towards the north, possibly reflecting clo-
nal selection in response to environmental variability
when migrating away from the location of origin.

The hypothesis that epigenetic variation increases
towards the north was not supported. This may be
because exposure to novel climatic conditions does not
trigger enhanced levels of epigenetic variation. An alter-
native explanation is that such an epigenetic signal is
very transient and is not reflected anymore in present-
day standing variation. Also, increased biotic stress
exposure towards the north might be partly counter-
acted by reduced abiotic stress levels along the same
gradient (Verhoeven & Biere 2013), resulting in similar
overall levels of stress along the transect. Modest levels
of differentiation in epigenetic variation were observed
at a regional, local and clinal level along the transect as
hypothesized, which suggests environment-related epi-
genetic patterns. Such environment-associated epige-
netic differentiation could arise from either induction of
heritable epigenetic modifications by the environment
or divergent selection on stable epimutations.
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Autonomous epigenetic variation

The correlation between genetic and epigenetic varia-
tion observed in our study shows that a large part of
the epigenetic variation is not sequence independent
which may imply that much of the epigenetic variation
is not autonomous but rather under genetic control
(Richards 2006). To date, epigenetic polymorphism has
generally shown association with DNA sequence, for
example with transposable elements (Paszkowski &
Grossniklaus 2011; Schmitz et al. 2013). It is important
to point out that the observed correlation can either
derive from genetic control over DNA methylation pat-
terns, or from the build-up of lineage-specific (and
potentially autonomous) epimutations within clonal lin-
eages that may also create statistical associations
between genetic and epigenetic patterns. It has been
shown for Arabidopsis thaliana that differences in DNA
methylation status can accumulate over generations
similar to, but less stable than genetic mutations (Becker

et al. 2011). In our study, in addition to sequence-associ-
ated DNA methylation, small but significant regional
epigenetic differentiation persisted after controlling for
the correlation with genetic variation. This portion of
epigenetic variation likely reflects epigenetic differentia-
tion that is not under genetic control, and such autono-
mous, heritable epigenetic  differentiation = may
contribute to phenotypic variation that cannot be
explained by genetic variation alone. It has been pro-
posed that such additional epigenetically mediated phe-
notypic variation could play a role in plant adaptation
to rapidly changing conditions (Bossdorf et al. 2008;
Massicotte & Angers 2011). We detected this autono-
mous fraction of epigenetic variation only in the M pro-
files (which emphasizes shared cytosine methylation
between plants) and not in the U profiles (which
emphasizes cytosine that are not methylated). In the
interpretation of Schulz et al. (2013), this could indicate
a larger contribution to differentiation of epigenetically
silenced loci compared to transcriptionally active loci.
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Natural epigenetic variation

Several recent studies have revealed an association of
natural epigenetic variation with environment-specific
traits within genetically uniform groups (Gao et al. 2010;
Lira-Medeiros et al. 2010; Richards et al. 2012). Studies in
natural populations of sexually reproducing plants
demonstrated a correlation between genetic and epige-
netic markers, while a proportion of epigenetic variation
showed sequence-independent differentiation (Li et al.
2008; Herrera & Bazaga 2010; Schulz et al. 2014). Also, in
natural populations of animal species and in nectar-in-
habiting yeast, some evidence for distinct and ecologi-
cally relevant epigenetic patterns was found (Herrera
et al. 2011; Massicotte et al. 2011; Schrey et al. 2012). Our
study differs from these and related studies because we
did not base directly on field-collected material (or vege-
tatively derived offspring), but on natural DNA methyla-
tion variation that persists through apomictic seed
production. Hence, our findings contribute to the field of
ecological epigenetics in natural populations by pointing
out epigenetic differentiation in the component of natural
DNA methylome variation that is heritable, which argu-
ably is the most relevant fraction of epigenetic variation
for adaptation (Bossdorf et al. 2008).

The detection of linear patterns of genetic variation
and the presence of widespread clonal lineages along the
transect are in line with the postglacial latitudinal range
expansion of Taraxacum officinale. However, alternative
historical migration routes may exist as well; apomictic
dandelions also persisted in glacial refugia in south-east-
ern Europe and may have colonized Sweden entering
from the north and migrating to the south. In support of
this possibility, we observed a distinct group of a few
samples in the AFLP data set (upper left corner in
Fig. 3A) that might reflect plants originating from a dif-
ferent glacial refugium. However, these plants did not
have deviating MS-AFLP profiles (Fig. 3B and C). If these
individuals would indeed represent a group of plants
with a different historical background, the similarity of
their epigenetic profiles would further support our main
conclusion that regional epigenetic differentiation exists
partly independent of the genetic background.

Detecting cytosine methylations

To compare genetic and epigenetic variation, we ascer-
tained the detection of purely epigenetic variation by
scoring a combination of the two methylation-sensitive
enzyme profiles (Mspl and Hpall). The ability to detect
purely epigenetic variation (autonomous from genetic
variation) is an important strength of MS-AFLPs, and
this method has been used successfully to describe
patterns of epigenetic variation in a wide range of dif-
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ferent species (e.g. Cervera et al. 2002; Salmon et al.
2008; Herrera et al. 2011; Massicotte et al. 2011). How-
ever, there are also a number of technical limitations of
MS-AFLPs, including the relatively low numbers of loci
and the lack of information about sequence context
(Becker et al. 2011; Schrey et al. 2013). Better methylome
screening is possible, for example whole-genome bisul-
phite sequencing (Becker et al. 2011) or reduced repre-
sentation bisulphite sequencing (Meissner et al. 2005).
However, these and other sequencing-based methods
are not yet cost-effective when using sample sizes typi-
cal for ecological population studies and are challenging
to use in species without a reference genome.

Conclusion

Natural populations of apomictic dandelions along a
northward range expansion gradient revealed high
levels of heritable genetic and epigenetic variation, but
limited regionally structured variation and no enhanced
epigenetic variation with increasing latitude. Therefore,
we did not find evidence of increased levels of inher-
ited DNA methylations in northern, potentially more
stressful, environments. The observed regional differen-
tiation is partly correlated with genetics and partly non-
correlated. In addition to within-lineage genetic
variation, it is this sequence-independent epigenetic
variation that may contribute to phenotypic variation
and adaptation in asexual plant lineages. Studies like
ours can demonstrate the potential of epigenetic varia-
tion in natural populations, but to understand its func-
tional consequences, studies that link DNA
methylations to their function and detect epigenetic
variation at higher resolution are necessary.
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