

Manure, an important input in sustainable vegetable production

Manure use in field vegetable production in the Netherlands

ir. J.J. de Haan & ing. W.C.A. van Geel

Manure is an important input in vegetable production

- For farmer
 - (Cheap) nutrient source
 - Organic matter source to maintain soil fertility
 - Improve crop yields and financial return
- For society
 - Closing nutrient and carbon cycles
 - Reducing greenhouse gas emissions
 - Improving water quality
- Conditions
 - Apply manure with 4 R's of Nutrient Stewardship
 - Apply manure with the right technique

Manure cheap source of nutrients in NL

Manure production

- Surplus of slurry in the Netherlands
 - Negative prices slurry
- Production 170 Mkg P₂0₅
 - Average 90 kg/ha

Manure use in vegetables

- Maximum use of organic fertilizers within legislation
- Preference for manures with high organic matter content

	Cattle slurry	Pig slurry
Manure disposal costs per ton	€ 0-10	€ 10-20
Value of nutrients in manure per ton	€ 10	€ 13
Total value per ton	€ 10-20	€ 23-33
Amount of manure by limit of 60 kg P ₂ 0 ₅ ton/ha	40	13
Total value for vegetable farmers per ha	€ 400-800	€ 300-430

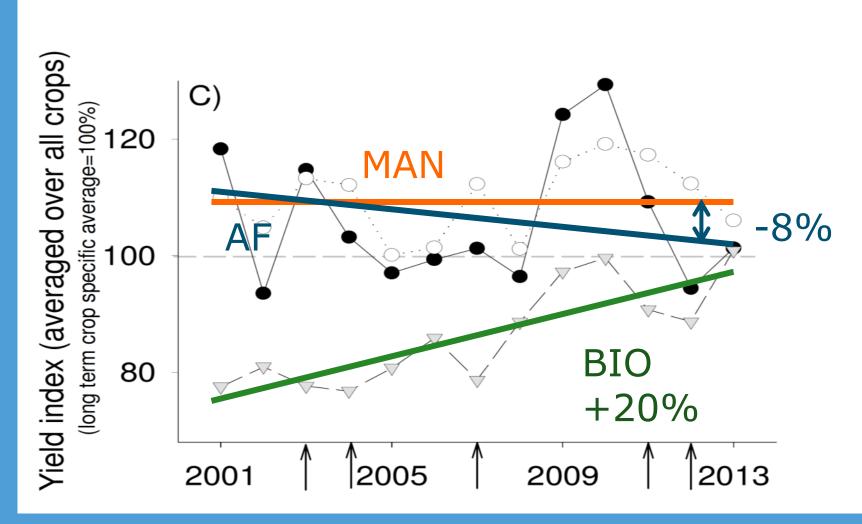
Value of organic matter in manure: Experiment Soil quality of sandy soils

Conventional

No organic matter input AF Normal organic matter input MAN

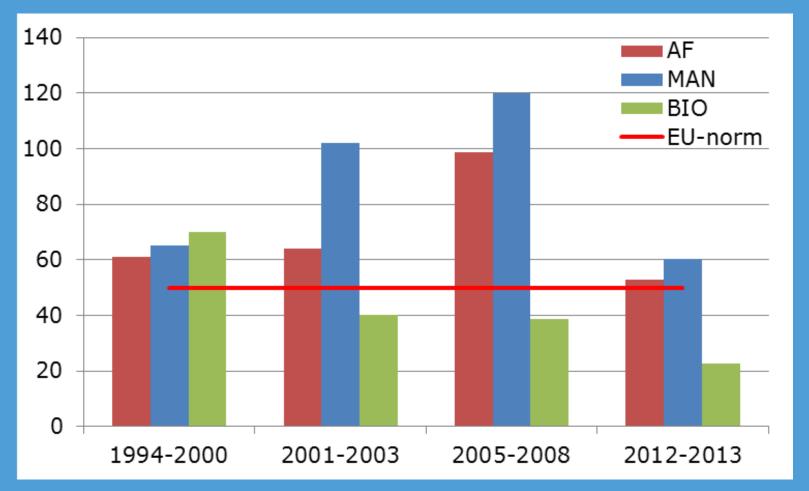
Mineral concentrates from slurry and chemical fertilizers

Slurry and chemical fertilizers


Organic

High organic matter input BIO

Farmyard manure and slurry



Crop yield trend 2001-2013

Nitrate concentrations in groundwater mg NO₃-/I

Value of Organic Matter

Value manure

Cattle slurry € 36/ton (6-300) Pig slurry € 10/ton (2-90)

	Cattle slurry	Pig slurry
Manure disposal costs per ton	€ 0-10	€ 10-20
Value of nutrients in manure per ton	€ 10	€ 13
Values of organic matter in manure	€ 36	€ 10
Total value per ton	€ 46-56	€ 33-43
Amount of manure by limit of 60 kg P ₂ 0 ₅ ton/ha	40	13
Total value for vegetable farmer per ha	€ 1840-2240	€ 430-560

Application of manure: use of 4 R's

4R Principles of Nutrient Stewardship

RIGHT SOURCE

Matches fertilizer type to crop needs.

RIGHT RATE

Matches amount of fertilizer to crop needs.

RIGHT TIME

Makes nutrients available when crops need them.

RIGHT PLACE

Keeps nutrients where crops can use them.

5th R: right technique

Right source: selection of manure type

- Nutrient content: fertilizer replacement value
 - Nitrogen
 - Slurries: 55-80% of CAN
 - Solid manures: 30-60% of CAN
 - Compost 10% of CAN
 - Phosphate: 60-100%, (100% long term)
 - Potassium: 100%
- Crop requirements: nutrient ratios
- Organic matter content: org matter/nutrient ratio

Average composition of some organic manures (g/kg)

	Total N	% N- NH ₃	P ₂ O ₅	K ₂ O	N/P	Org. natter	Org. matter/F	D
Slurry (liquid manu	ıre)							
Cattle	4.1	49	1.5	5.8	2.7	64	43	
Pigs	7.1	65	4.6	5.8	1.5	43	9	
Solid manure								
Cattle (on straw)	5.3	17	2.8	6.1	1.9	152	54	
Chickens	29	11	24	19	1.2	401	17	
Compost					\ /		\	
Household compost	13	0.1	6.3	11	2.0	242	38	
Green compost	5.0	0.1	2.2	4.2	2.3	179	81	

New ways to change manure composition

Manure digestion

- Energy production
- Input: manure + other material
- Output: gas + digestate
- Increase NRF with 10%

Manure processing

- Separation of slurry + Reversed osmosis
- Output
 - Solid fraction (P-rich)
 - Mineral concentrate (N-K fertilizer)
 - Permeate

Example separation of pig slurry

Effect on the composition of the separated fractions (kg/ton)

					N-tot./	
	OM	N tot.	N-NH ₃	P_2O_5	P_2O_5	
Input slurry	45	7.0	60%	4.0	1.8	
						1
Separation (high effic	iency te	chnique	e)			
Solid fraction	146	10.5	57%	18.7	0.6	
Liquid fraction	25	6.4	58%	1.4	4.5	
Ultra filtration and rev	ersed	osmoses	of the	liquid fra	ction	
Mineral concentrates	17 /	8.1	90%	0.5	17.3	

Right application: prevention of ammonia volatilization

Application technique	NH3-volatilization (% Nm)
Surface spreading	75-80%
Surface spreading + incorporation	20-30%
Injection	≤5%

Placement of manure (row application)

- Improves N P K fertilizer use
- Most effective on poor soils, slightly or not on rich soils
- Application at planting or before hilling of potato on clay soils

Manure is an important input in vegetable production

- For farmer
 - (Cheap) nutrient source
 - Organic matter source to maintain soil fertility
 - Improve crop yields and financial return
- For society
 - Closing nutrient and carbon cycles
 - Reducing greenhouse gas emissions
 - Improving water quality
- Conditions
 - Apply manure with 4 R's of Nutrient Stewardship
 - Apply manure with the right technique

Thank you for your attention

Contact: janjo.dehaan@wur.nl

