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Abstract 
 

Tracking down the crop nutrient status over the growing season is the most principle step 
for monitoring crop health status in precision agriculture. As a measure of the crop response 
to nitrogen application, the nutrient status is also related to chlorophyll content and an 
indicator of photosynthetic activity. To detect the growth problem within the crop fields, 
the crop N status monitoring can be used as a solution. The main objective of this study was 
to derive an alerting service for potato growth development from crop monitoring time-
series in the precision agriculture. A potato field located in the South of the Netherlands was 
used as a case study to answer the research objectives. The first step in this research was 
comparing the three different N status measurement methods over the temporal 
development. After that, the relationships between crop biophysical and biochemical 
parameters over the growing season were analysed. The crop biophysical indicator that is 
highly related to the potato N status was identified from the regression analysis between 
the eight well-known VIs (NDVI, EVI, WDVI, REP, MCARI/OSAVI, TCARI/OSAVI, CIgreen and 
CIred-edge) and the chlorophyll content (on the leaf and canopy level). The results showed that 
the chlorophyll ratio index TCARI/OSAVI has the strongest relationship with the leaf 
chlorophyll among the eight VIs, even though the coefficient of determination value was 
relatively low (R2=0.517). With a high coefficient of determination value (R2=0.858), CIred-edge 
has the strongest relationship with the chlorophyll canopy. Next, the TCARI/OSAVI and CIred-

edge time series data over the growing season were used in the time series similarity 
measures. The time series similarity measures based on the distance measures (Manhattan 
distance, Euclidean distance and Root Mean Square distance) and the correlation measures 
were used to calculate the crop growth deviation from each experimental plot or subplot 
towards two selected reference plots: maximum yield and mean curve approach. The 
results showed that both Euclidean distance and RMSD were the best similarity measures in 
characterizing the growth status of each experimental plot and subplot over the growing 
season. However, the Euclidean distance was used in this research to derive the alerting 
service using the Control Chart theory. The alerting services were available in the 30x30 m 
experimental plot level and 13x30 m experimental subplot level. In the plot level, the 
alerting services were acquired using the two different reference plot approach. The results 
showed that the alerting services were able to give alerts to specific plot or subplot with 
considering the changes in the plot or subplot condition): changes from “in control” state 
(green) to alert state (yellow) or “out-of-control” state (red). The alerting services were 
validated using fused satellite and UAV imagery dataset (STRS dataset) and twelve subplots 
validation set from the Cropscan dataset. The validation results showed that the alerting 
services were working properly for both dataset. 

Keywords: nutrient status, nitrogen, maximum yield approach, mean curve approach, 
time series similarity measures, remote sensing, control chart, alerting service. 
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CHAPTER 1: INTRODUCTION 
 
1.1 Context and background  

In the coming decades, global agriculture must simultaneously produce more food to feed a 
growing population whilst adapting to climate change, an increasing threat to agricultural 
yields (IAASTD, 2009; INRA/CIRAD, 2011; Lobell et al., 2011; The Hague Conference, 2010; 
Foresight, 2011). This scenario calls for the introduction of modern technologies to improve 
crop yield, provide information to enable better in-field management decisions, reduce 
chemical and fertilizer costs through more efficient application, permit more accurate farm 
records, increase profit margin and reduce pollution. In other words, there is a need for 
farming with precision to optimize inputs and outputs (Seelan et al., 2003). Precision 
agriculture, with its ability as a key of sustainable intensification method, aims to maximize 
the agricultural production in a sustainable manner (The Royal Society, 2009).  

Remote sensing technology that allows non-destructive acquisition of information about the 
Earth’s surface can facilitate the implementation of precision agriculture (Liaghat & 
Balasundram, 2010). During the last two decades, development in remote sensing data 
acquisition capabilities, data processing and interpretation of ground based, airborne and 
satellite observations have made it possible to couple remote sensing technologies and 
precision crop management systems (Waheed et al., 2006). With the ability to identify 
variation in biophysical parameters, such as canopy nitrogen content and plant biomass 
(Clevers & Kooistra, 2012), remote sensing has a key role in agricultural monitoring (Jones & 
Vaughan, 2010).  

Farmers throughout the world are constantly searching for ways to maximize their returns 
and precision agriculture has potential to support this (Seelan et al., 2003). Along with the 
development of precision agriculture, the use of global navigation satellite systems, remote 
sensing and near-sensing instruments on tractors, as well as in situ wireless sensor 
networks, provide the modern farmer with a wealth of data (Kooistra et al., 2012).  Through 
these methods, the density of the time-series data has increased. Even though the time-
series data from remote sensing are highly available, the knowledge of making benefit of 
the data to optimize the management activities and natural resources in the precision 
agriculture has not been used.  

The current issue faced by most farmers is to detect which areas of their fields that have a 
growing problem and need immediate action. Combining the field knowledge of the farmers 
and the available remote sensing data will, hopefully, be able to solve the problem. 

1.2 Problem definition  

Remote sensing has been widely used in the agricultural sector for many years. The ability of 
remote sensing to produce repeatable measurements from a field, without destructive 
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sampling of the crop, has made remote sensing methods valuable for precision agriculture 
applications (Hatfield & Prueger, 2010). The availability of consistent time-series sensor 
data, with a high spatial and temporal resolution to detect anomalies in crop development, 
is a critical user requirement for the application of remote sensing in precision agriculture 
(Gebbers & Adamchuk, 2010; Hatfield & Prueger, 2010). The prodigious innovation in the 
spatial, spectral and temporal resolution has contrived tremendous data availability that can 
be used to monitor crop growth and real-time detection.  

Of particular significance to precision agriculture is the nutrient status, a measure of the 
crop response to nitrogen application, which is related to chlorophyll content and which can 
be as indicator of photosynthetic activity (Haboudane et al., 2002). Currently, there are 
different spectral vegetation indices to measure the nitrogen status in crops. Spectral 
Vegetation Indices (VIs) calculated as linear combinations of near infrared (NIR) and VIS red 
reflectance have been found to be well correlated with canopy cover, leaf area index (LAI) 
and absorbed photosynthetically active radiation (APAR) (Broge & Mortensen, 2012; Elvidge 
& Chen, 1995; Myneni & Williams, 1994). Indices such as the ratio vegetation index and 
normalized difference vegetation index (NDVI) perform exceptionally well for tracking green 
biomass or leaf area index through the season, or for detecting uneven patterns of growth 
within a field (Jackson & Huete, 1991; Wiegand et al., 1991). The most representative VI for 
nitrogen status or chlorophyll content of crops will be able to provide the best reflection of 
the crop growth condition. 

VIs can be derived from satellite-mounted sensors or sensors mounted on tractors (Yara N-
sensor, Crop Circle, Cropscan (by hand), and Greenseeker) (Duisterwinkel, 2013). Since 
vegetation indices have the ability to identify variation in crop properties, the availability of 
VI time-series data is increasing. Several studies (Sakamoto et al., 2005; Xin et al., 2002; 
Zhang et al., 2003) have used VI time series data from satellites to monitor global and local 
crops phenology. However, there is still a lack of scientific knowledge to use time-series 
analysis techniques to optimize the management activities and use of natural resources in 
precision agriculture. 

Recently, a new method has been developed to investigate abrupt changes in the satellite 
image time series data for forested areas (Verbesselt et al., 2010). The method iteratively 
estimates the time and number of abrupt changes within time series, and characterizes 
change by its magnitude and direction. Time series similarity offers its ability to derive 
statistical inferences about the relationship between time series of different data sets 
(Bretherton et al., 1992 and Tippett et al., 2008). There are several time-series similarity 
methods for change detection explained by Lhermitte et al. (2011). Current research 
(Kooistra et al., 2012) has adopted the Euclidean distance to calculate deviating nitrogen 
conditions between two different points in time and detect a potential need for 
management action. This research gives an idea of how to use time series techniques to 
detect crop status changes for a local scale application in precision agriculture. 
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Figure 1: Potato Growth Mean and Maximum Curve Simulation (Simulated Values) 

As for detecting crop growth anomalies using the time series technique, one should be able 
to compare the time-series spectrum with the reference spectrum of the healthy crop. A 
representative VI can be used as a time-series dataset to produce a crop growth reference 
curve. There are different ways to determine the time-series reference spectrum. First, 
deciding the reference curve by selecting the area that produces the maximum yield at the 
end of the growing season and using its VI time-series data for the whole growing season as 
a reference (Figure 1). Second, calculating the VI mean value for each observation date and 
deriving a mean curve crop growth as reference curve. The second method can be used for 
near real time alerting services. On the other hand, the first method is still hard to use since 
the curve is only available at the end of the growing season, but can be used as a long term 
solution.  

In summary, after deciding the reference curve, the deviation of the crop growth can be 
detected. Whether the crop growth needs management attention or not will depend on the 
threshold values. This study will derive an alerting service to detect changes in the crop 
fields. The changes detection will be derived from the established reference curve deviation 
using time series analysis. Finally, an alerting service from crop monitoring time-series in 
precision agriculture will be created. 

1.3 Research objectives and research questions  

The main objective of this research is to derive an alerting service from crop monitoring 
time-series in the precision agriculture. This involves determining the VI that is most 
sensitive to the crop health status as well as the time series technique that can be used to 
detect changes in the crop compared to the reference curve. Finally, to be able to detect the 
changes, the thresholds of the alerting service from the reference curve have to be 
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established. The potato field, which is located in the South of the Netherlands, will be used 
as a case study to answer the research objectives. 

To achieve these objectives, the following research questions will be answered: 
Q1: Which VIs provide a good representation of the N status in the potato crop? 
Q2:  How can the optimal growth curve for the potatoes - the reference curve - which is 

represented by VI time-series, be determined?  
Q3:  Which time-series analysis method can be adopted to evaluate deviation from the 

established reference curve to characterize the growth status?  
Q4:  Which thresholds are relevant to detect deviating plant growth and which can be used 

to derive the alerting service?  
Q5:  How can the accuracy of the potato growth alerting service be validated? 
 

1.4 Outline of the report 

This thesis report consists of six chapters. In the second chapter a complete literature 
review about main topics of the research are conferred: an introduction of precision 
agriculture including remote sensing application in precision agriculture and comprehensive 
explanations about: nitrogen status assessment methods, similarity measures for time series 
analysis, and statistical control chart. The third chapter mainly explains about the materials 
and methods involved in the research which starts with the detail of the study area; the 
data used; and data analysis methods to answer each research question in Section 1.3. The 
achieved results from each proposed method are gathered in the fourth chapter. While in 
the fifth chapter, the results are mainly discussed in broader context and linked to the 
scientific literature. Finally, the last chapter elucidates overall recommendations and 
remarks for future research. 
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CHAPTER 2: LITERATURE REVIEW 
 
This chapter presents a complete literature review on the main topics of the research. The 
main topics covered are: the introduction of precision agriculture (Section 2.1); crop 
nitrogen status assessment methods in the precision agriculture (Section 2.2); remote 
sensing based VIs adopted for precision agriculture (Section 2.3); time series similarity 
measures (Section 2.4); and, the control chart theory (Section 2.5).  

2.1 Introduction of Precision Agriculture  

Sustainability was originally used to refer the agricultural and industrial technologies that 
are able to prevent or reduce environmental degradation and are often associated with 
economic activity (Bongiovanni & Lowenberg-DeBoer, 2004). Adding the sustainability term 
to the concept of agricultural and food systems can be traced to environmental concerns 
that started to appear in the 1950s – 1960s (Pretty, 2008). The concerns mainly related to 
the fact that world population continues to increase which, as a result, leads to an increase 
in the absolute demand for food. On the other hand, the increase of agricultural production 
leads to significant amounts of pollutants in the environment brought by fertilizers and 
pesticides during the agricultural process. This created a growing pressure for farmers to 
keep producing more foods whilst keeping the right amounts of fertilizer and pesticides in 
their crop fields. Site-specific crop management (SSCM) with its ability to manage the farm 
fields’ variability can be a smart solution. SSCM is the idea of doing the right thing, at the 
right place and at the right time. This developing system for agricultural management is 
incorporating variable-rate technology, which is also known as one of the choices within 
Precision Agriculture. Precision agriculture uses intensive data and information collection, 
processing in time and space to make more efficient use of farm inputs, leading to improved 
crop production and environmental quality (Harmon et al., 2005). While farmers tend to 
treat their fields uniformly in conventional agriculture, precision agriculture introduces the 
benefits of field micromanaging. With precision agriculture, the crop fields can be divided 
into management zones that each receives customized management inputs based on 
varying soil types, landscape position, and management history (Mulla, 2013).  

From the mid-1970s to the early 1980s, better field investigation methods (including soil 
survey, soil sampling, aerial photography, and crop scouting) resulted in a better awareness 
of soil and crop condition variability within fields (Robert, 2012). The field investigation 
methods lead to an understanding of crop management by zones to increase the profit and 
protect the environmental condition. Precision agriculture introduced new technologies, 
such as global positioning system (GPS), geographic information systems (GIS) and 
microcomputers in the late 1990s. These technologies provide farmers the information 
collection about their fields. At that time, farmers increasingly realized how much farming 
data were spatially correlated (Blackmore, 2003). GPS is used to locate an exact point 
location within a field. The GPS working process is started with the radio signal 
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transmittance from twenty-four satellites. A GPS receiver requires at least four satellites to 
determine a point of location on earth, of which the fourth satellite provides error 
correction. An exact point is found later by determining the distance from three satellites.   

 
Figure 2: Precision Agriculture system (Picture copyright by CAERT, Inc.) 

 

The other technology, GIS, refers to computer software that provides data storage, retrieval, 
and transformation of spatial data (Rains & Thomas, 2009). Field-attributes data, such as 
nutrient level, soil type, and fertilization level, will be stored as layers in the GIS software for 
precision agriculture (Error! Reference source not found.. The field location is normally 
stored by its latitude and longitude as determined using GPS. Using the combination a GPS 
and GIS, farmers are able to record the positions and variability of a field, store the data in 
the software, and analyse the characteristics between layers to develop application maps or 
apply variable rate technology (VRT) to vary the output of fertilizer and pesticides. Variable 
rate fertilizer application is using GPS to tell the operator the exact location of the tractor 
within a field. Then the GPS links with GIS to tell the controller about the field characteristics 
in that location. After getting information about the precise amount of fertilizer to apply at 
the location, the controllers then manipulates the machinery to apply the optimal level of 
fertilizer (Rains & Thomas, 2009). 

Precision agriculture quickly generated strong interest, mainly because of associated new 
technologies, the concept made good sense, and it offered new routes for agro-industries 
and agri-businesses. Within the last decade, precision agriculture has been applied to a 
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variety of practices, crops and countries. From its first idea to manage variable rate 
applications of fertilizers, now the use of precision agriculture encompasses all management 
practices on a spatial and temporal basis (Robert, 2012). This is clearly evident by the 
development of several new technologies and manuscripts published in the area of 
precision agriculture in international journals and also by the variety of papers presented at 
the major international conferences on precision agriculture from different countries 
around the world (Bakhtiari & Hematian, 2013). New technologies involved in precision 
agriculture involve data collection and information management, as well as technological 
advances in field positioning, remote sensing, computer processing, yield monitoring and 
sensor design (Mulla & Schepers, 1997). 

2.1.1 Remote Sensing in Precision Agriculture 

The beneficial use of spatial imagery in agriculture for crop management has been known as 
early as 1929 when aerial photography was used to map soil resources (Seelan et al., 2003). 
The ability of remote sensing to derive information on the earth surface without making 
direct contact makes it beneficial for agricultural use. The introduction of satellites as a new 
technology for remote sensing acquisition methods offered farmers a greater result than 
the aerial photography method. In the beginning of its development, remote sensing had 
not made significant inroads to precision agriculture due to its long data acquiring time. 
Precision agriculture needs a frequent, or even near real time, information of crop condition 
throughout the growing season and often requires high spatial resolution. In the past, 
satellites were unable to fulfil the farmers’ needs due to the long pre-processing time of 
satellite images, low availability of satellite images within a growing season, and an 
expensive cost of the high spatial satellite images. To solve the problems, efforts 
subsequently started the design of satellite imaging systems that had the higher spatial 
resolution and quicker revisit cycles required for precision agriculture (Mulla, 2013). 
IKONOS, a high spatial resolution satellite, was launched in 1999 to collect 4 m resolution 
imagery in 4 multispectral bands and 1 panchromatic band with a 5 days revisit cycle. In 
2001, another high resolution satellite known as Quickbird was launched to produce 0.6 – 
2.4 m image resolution in the blue, green, red, and near infrared with a revisit frequency of 
1 – 3 days. Wu et al. (2007) made a comparison of Quickbird satellite imagery with petiole 
nitrate concentrations and SPAD chlorophyll readings to detect nitrogen status of potato 
canopies. These two satellites have steadily gained a substantial base of commercial 
subscribers interested in precision agriculture applications (Mulla, 2013). The development 
of satellite remote sensing for precision agriculture has been followed by the launch of 
three other satellites: RapidEye, GeoEye, and WorldView. With the improvement of spatial 
and spectral resolution of satellite images, farmers are now able to use the data for 
different kind of precision agriculture applications.  

In addition to satellite-mounted sensors, low altitude sensors and sensors mounted on 
tractors also provide remote sensing data collection. Low-altitude remote sensing is 
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controlled from the ground to capture images at lower heights. Helicopters, airplanes and 
unmanned aerial vehicles (UAVs) can produce images with higher resolution and better 
details of soil and crop status, which are requirements for precision agriculture method. One 
advantage of the low-altitude remote sensing is their ability to provide real time basis of 
image and location information. This information stored in a mounted-microprocessor or 
mounted-storing device can be downloaded later and also can be carried out through 
internet (Swain et al., 2007).  Apart from all described remote sensing methods above, there 
are also sensors that can be carried by a scout to the field and are able to spot check the 
health of plants and soil properties. These sensors use light reflectance on the leaf to 
determine chlorophyll levels, which is known to be related nitrogen levels in the plants 
(Rains & Thomas, 2009).  

Remote sensing can be used for precision agriculture in a number of ways including by 
providing input on soil and plant condition and variability to the overall management and 
decision support system (Brisco et al., 1998). The integration of data coming from remote 
sensing platforms such as satellites, aircrafts, UAV, sensors mounted on the tractor and 
hand-held sensors, are able to provide farmers with the field-scale analysis. This benefit 
means remote sensing has an important role in the precision agriculture method. Although 
RS cannot capture all types of agricultural information, it can reliably provide accurate and 
timely information to guide agronomic and economic decision-making (Liaghat & 
Balasundram, 2010). 

2.1.2 Remote Sensing for Vegetation 

Keeping up with the information about nutrient status, water-stress condition and the 
possibility of insect attacks are the main concerns of agricultural operations. The 
conventional method using visual examination has several restrictions; human eye and 
aerial photography are unable to discriminate between healthy foliage and foliage in a 
stress condition. Modern remote sensing methods are able to overcome this problem by 
recording beneficial information related to the interaction of electromagnetic radiation with 
soil or plant material (Mulla, 2013). Using the knowledge of plant structure and how energy 
can be recorded throughout sensors are the essence of remote sensing methods.  

Vegetation interacts with solar radiation in a different way compared to other materials. 
The absorbance, transmittance and reflectance of electromagnetic radiation depend on the 
plant foliage materials. The plant foliage materials, such as water content, carbon content, 
nitrogen content and, most importantly, photosynthetic pigments, of each plant are 
influencing the spectral characteristics as shown in Figure 3. The amount of radiation 
reflected from plants is inversely related to the radiation absorbed by plant pigments, and 
varies within the wavelength of incident radiation (Mulla, 2013). In the red and blue parts of 
the visible wavelengths, the reflectance is mainly influenced by the photosynthetic 
pigments. The chlorophyll pigment in green-leaf chloroplasts strongly absorbs radiation in 
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red and blue visible wavelengths, removes these colours from white lights, and leaves the 
predominant but diminished reflectance for visible wavelengths concentrated in the green 
(Lillesand et al., 2007). Other plant pigments, such as anthocyanin and carotenoids, are also 
important (Blackburn, 2007). In the near-infrared (NIR) plateau, reflectance is affected by 
multiple scattering of photons within the leaf, related to the internal structure, fraction of 
air spaces and air-water interfaces that refract light within leaves (Jacquemoud and Ustin, 
2008). The reflectance in the mid-infrared (MIR) is primarily influenced by water content. 
The primary and secondary absorptions of water in leaf reflectance are greatest in spectral 
bands centred at 1450, 1940 and 2500 nm, with important secondary absorptions at 980 nm 
and 1240 nm (Carter, 1991). 

 
Figure 3: Specific absorption coefficient of (left scale) chlorophyll a+b (cm2µg-1) and (right scale) water 

(cm2g-1) and dry matter (cm2g-1). Picture taken from Jacquemoud et al. (2000) 
 

The high contrast in the reflectance behaviour between the red and NIR area (Figure 4: 
Typical spectral signature for vegetation (Picture adapted from Gaussman, 1977) can form 
vegetation indices that are able to monitor plant-health issues such as salt excessive, 
drought, nitrogen deficiencies and fungal pathogens. A high level of water related stress 
results in the noticeable changes of the photosynthetic pigments. The changes lead to 
yellow coloured leaves which provides an indication of chlorosis (reflectance of red 
wavelengths are equal to green). The phenomenon can be detected earlier using remote 
sensing, especially with the use of hyperspectral imaging. Besides the ability to detect the 
drought problems within the plants, hyperspectral and multispectral imaging are also able 
to detect the fungal pathogens which can cause serious yields losses. The changes of leaf 
pigments and moisture content within the plants can be used as an indication of pathogens 
detection needs. 
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Figure 4: Typical spectral signature for vegetation (Picture adapted from Gaussman, 1977) 

The successful nitrogen SSCM application is relying on the ability to identify areas in the field 
that have a differential response to nitrogen. The identification can be done using stem 
juices analysis or chlorophyll content estimation. The chlorophyll pigments in the leaf tissues 
are related to the concentration of leaf nitrogen (Thomas & Gausmann, 1977). 
Approximately 75% of the plant’s total nitrogen is contained in the chloroplasts, mostly in 
Rubisco and chlorophyll binding proteins (Lawlor, 1993). Therefore, remote sensing offers 
spectral indices derived from the reflectance in the visible wavelengths and NIR to detect 
the nitrogen status and nitrogen deficiencies detection within the plants. 
 
2.2 Nitrogen status assessment methods in precision agriculture 

Besides hydrogen, carbon and oxygen, nitrogen (N) is required by plants in the largest 
quantity and most frequently becomes the limiting factor in crop productivity. For potato 
crops, proper rate and timing of N application are critical factors in optimizing potato tuber 
yield and quality, and minimizing environmental pollution (Wu et al., 2007). N deficiency can 
substantially reduce yield, whereas excessive N application can delay tuber maturity, lower 
tuber quality and increase the chance of nitrate contamination of surface and groundwater 
(Errebhi et al., 1998 and Zvomuya et al., 2003). To solve this dilemma, an adequate 
assessment of nitrogen status and its variability in the crop field have to be determined. At 
this time, there are various methods available to obtain timely assessment of the crop N 
status. Crop N status assessment can be carried out at the tissue, leaf and canopy level. 
Methods based on tissue analysis, such as Kjeldahl-digestion and Dumas-combustion 
(Muñoz-Huerta et al., 2013), have been widely applied to plants due to their reliability in 
organic nitrogen determination, but they are time-consuming and destructive. To minimize 
the drawbacks from Kjeldahl-digestion and Dumas-combustion methods, another method 
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such as Petiole Sap Nitrate Concentration (PSNC) test is now mainly used to assess the crop 
N status in the plant tissue measurement (Goffart et al, 2008). N assessment at the leaf or 
plant level involves the tools that are normally used to measure leaf chlorophyll content, 
which is highly related to plant N status (i.e., Minolta SPAD-502, Dualex, and Chlorophyll 
fluorescence). In this report, the most common commercial handheld chlorophyll meters - 
Minolta SPAD - will be used to assess the crop N status for leaf level measurement. At the 
canopy scale, N status assessment relies on remote sensing methodology (based on spectral 
canopy characteristics) which aims to estimate canopy structure parameters such as LAI 
(Goffart et al, 2008). The most frequent tools for ground-based remote sensing are hand-
held radiometer Cropscan, Yara N-Sensor and GreenSeeker, and QuickBird for satellite-
mounted sensors. An N status assessment at the canopy scale will not be carried out in this 
report. 

2.2.1 Kjeldahl Digestion and Dumas Combustion 

One of the methods which have been widely used to determine nitrogen in plant tissue is 
the Kjeldahl digestion. This method was proposed by Johan Kjeldahl in 1883 (Kjeldahl, 1883). 
The procedure can be divided into three major steps. The first step is called wet digestion; 
the collected sample is mixed with sulphuric acid in a Kjeldahl flask then heated until it 
clarifies as CO2 evolves. The second process’s (distillation) main purpose is turning 
ammonium sulphate solution from the first process into ammonia. Before further 
processing, ammonia solution is heated to release the gas, which passes through a 
condenser and is then trapped in a receiving solution (boric acid, standard acid (HCl) or 
sulphuric acid) contained in a flask. T last step is ammonium estimation (Muñoz-Huerta et 
al, 2013). This method has some drawbacks, one of which is the inability to measure nitrate 
and nitrite. Kjeldahl Digestion is only able to measure organic nitrogen bound in the tri-
negative state (Pontes et al., 2009).  

To overcome the Kjeldahl method deficiencies, Jean-Baptiste Dumas proposed a combustion 
method for total nitrogen determination (Dumas, 1831). The Dumas method is being 
revived due to the availability of automated analytical instruments which determine C, H, N, 
and S on the same sample and O with a simple modification. The Dumas method normally 
involves an initial oxidation step, followed by the passage of the gases through a reduction 
furnace to reduce NOx to N2 (Carter, 1993). After that, carbon dioxide and gaseous nitrogen 
are separated and CO2 is removed to measure only the gas nitrogen concentration. The final 
product of the combustion procedure is N2 instead of ammonia, but an incomplete 
combustion causes nitrogen loss in the sample (Unkovich et al., 2008). In this report, the 
combination of wet-chemistry analysis and the Dumas combustion method are applied to 
get the N concentration percentage within the study area.  
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2.2.2 Petiole Sap Nitrate Concentration (PSNC)  

Due to its efficiency in the measurement process, the petiole sap nitrate concentration 
(PSNC) test has become the most commonly used method to assess the N status in crops. 
The PSNC test is able to perform a quick diagnostic in monitoring nitrate level changes of a 
crop. The procedure starts with collecting the youngest mature leaves and petioles (the 
transition between the stem and the leaf blade) from the field. After the handling and 
storing process, the petioles are cut into half inch pieces, and then the sap is extracted to 
determine the nitrate content of the samples (Hochmuth, 2012). Two different types of 
instruments are reported in several studies - Nitrate Specific Electrode (NSE), and the 
combination of nitrate test strips and a hand-held reflectometer (Goffart et al., 2008 and 
Muñoz-Huerta et al, 2013).  

In general, the nitrate test strips method turns the two-reactive zones into a red-violet 
combination when exposed to nitrate contained in the sample. A handheld-reflectometer 
Nitrachek (Montemurro, 2010) is produced to measure nitrate test colour changes. The 
reflectometer measures the amount of light reflected from the test strip pad, converts this 
reflectance to concentration, and displays solution concentrations in mgL-1NO3- (Jemison 
and Fox, 1988). Due to the high value of tissue nitrate-N concentrations of many crops 
during early growing season, a sample dilution is required for the direct measurement using 
reflectometer (Williams & Maier, 1990). One study showed an excellent relation between 
the Nitrachek readings and standard concentrations of nitrate solutions (MacKerron et al., 
1995 and Goffart et al., 2008). The PSNC values from the NSE instrument are significantly 
correlated to the dry petiole nitrate concentration values which are obtained from the same 
sampled material, although appreciable scatter of the data appears around the best-fit 
regression (Westcott et al., 1993 and Zhang et al., 1996). The scatter of the data are caused 
by a meter limitation and the use of dry petioles. 

Goffart et al. (2008) reported that PSNC has been shown to be very responsive to various 
rates of nitrogen supply, either in soil or from fertilizer application. However, nitrogen can 
be stored in the other parts of the plant, as reduced N in leaf lamina or as nitrate in stems 
and lower leaves, which makes it immeasurable by the PSNC test (MacKerron et al., 1995). 
This shows one of the limitations using PSNC measurement to assess plant N status. PNSC 
changes over the growing season does not only depend on the N factor within the crop 
field. Weather conditions (rain periods) and soil nitrogen supply availability are responsible 
for temporary peaks in PSNC values, probably reflecting an increase in the supply of nitrate 
to the roots (MacKerron et al., 1995). Based on the same N-uptake values observed for 
different cultivars during the growing season, significantly different PSNC values can be 
observed (Laurent & Lancelot, 1999). Cultural practices such as mode of application, 
irrigation and types of N fertilizer can significantly influence the PSNC values. Therefore, 
crop management applications have to be considered while giving an analysis from the 
PSNC test.  
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Even though the PSNC test are considered as the quickest method among the other invasive 
methods to assess the crop N status, it still remains time consuming compared to methods 
using chlorophyll meters or a radiometer (Goffart et al., 2008). Several drawbacks such as 
the inaccurate results compared to an analytical laboratory method and inconsistent 
readings due to extreme environments should be considered while using the PSNC test.  

2.2.3 Chlorophyll Meters 

Chlorophyll is the most important biomolecule for photosynthesis process, responsible for 
allowing plants to absorb energy from the light. Leaf chlorophyll content can be used as a 
nitrogen status indicator because this is an essential element in photosynthetic protein 
synthesis (Taiz & Zeiger, 2010 and Demotes-Mainard et al., 2008). Furthermore, the 
deficiency of nitrogen usually leads to green colour loss in the leaves and a decrease in the 
leaf area and photosynthesis process (Bojović & Marković, 2009). Based on this fact, leaf 
chlorophyll content measurement tools (i.e. Minolta SPAD-502, Dualex, and Chlorophyll 
fluorescence) have been used to assess N status in the crops. These tools are part of the N 
status assessment at the leaf level, which are normally known as chlorophyll meters. There 
are two similar devices working with the same wavelengths: Soil Plant Analysis 
Development (SPAD)-502 chlorophyll meter (Minolta, Japan) and Hydro N-tester or HNt 
(Yara, Oslo, Norway). Dualex is a newer device that focuses on polyphenolic compound 
content measurement in the leaves using two wavelengths (375 nm and 650 nm), whereas 
the SPAD-502 and N-tester use two light sources on 650 nm and 940 nm. Both SPAD-502 
and N-tester (Figure 5) provide a leaf greenness measurement, which is highly correlated to 
leaf chlorophyll and nitrogen content. The two instruments have a different sampling 
method: SPAD has individual measurement, while the N-tester gives a mean value of 30 
readings (Gianquinto et al., 2011). Since the leaf analysis in this study has been done using 
SPAD-502, emphasis is specified to the SPAD-502 chlorophyll meter.  

The SPAD-502 determines the relative chlorophyll content by measuring the absorbance of 
the leaf between two wavelength regions. By taking advantage of the chlorophyll 
characteristic, the SPAD-502 utilizes two light–emitting diodes at 650 nm (peak chlorophyll 
absorption area) and 940 nm (non-chlorophyll absorption area), and a photodiode detector 
to sequentially measure light transmission through leaves from red and infrared light 
(Markwell et al., 1995). The light transmitted by a leaf is then converted into electrical 
signals, amplified, and converted into digital signals (Gianquinto, 2004). The SPAD-502 
chlorophyll index digital display value ranges from 0 to 50, while it ranges from 0 to 800 for 
N-tester measurement (Goffart et al., 2008). The values measured by SPAD-502 are proven 
to give a good estimation of the amount of chlorophyll present in the potato plant leaf (Vos 
& Bom, 1993). Uddling et al. (2007) have determined the non-linear relationship between 
chlorophyll concentration and SPAD values for potato crops with a relatively-good 
correlation value (r2=0.46).  
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Figure 5: SPAD-502 chlorophyll meter and N-tester  

(Photos taken from The Garden ProfessorsTM blog and Agri Con website respectively) 
 
The PSNC test determines the concentration of nitrate as the inorganic N reserve (Westcott 
et al., 1993), whereas SPAD meter estimates the N status based on its correlation with the 
chlorophyll content (Martin, 1995 and Gerendás & Pieper, 2001). Compared with the PSNC 
response to nitrogen, the time-course of values from the SPAD and N-tester reacts poorly to 
increasing N fertilizer rates applied at planting time (Gianquinto et al., 2004). This is related 
to the deficiencies of the optical sensing method which does not allow over fertilized plant 
detection. Due to its low sensitivity in the potato crop case, the SPAD or N-tester can only 
be used to compare low N-uptake crops (non-fertilized plot) and high N-uptake crops  
(fertilized plot). The method can then only detect deficiency situations for N (Goffart et al., 
2008). In potato crops, the SPAD-502 chlorophyll meter does not respond as rapid as PSNC. 
Based on the study conducted by Wu et al. (2007), the SPAD-502 was able to detect severe 
N deficiencies about one month after emergence, while the PSNC test responded within two 
weeks. Apart from the proneness, chlorophyll meters are relatively easy to use and provide 
rapid on-site indications of the nutritional status of the crops (Gianquinto et al., 2011). 
However, Martínez and Guiamet (2004) showed that time of measurement, irradiance and 
plant water status must be considered when using the SPAD chlorophyll meter. 

2.3 Vegetation Indices 

Applying variable rate nitrogen fertilization is seen as one of the objectives in precision 
agriculture applications. Due to the high influence of nitrogen supply to the yield 
production, farmers and agricultural managers are interested in crop status monitoring 
within specific critical points in time: first in earlier growth stages, in order to supply 
adequate fertilizers quantities for a normal growth of the crop; and second, during an 
advanced development stage for health monitoring and the prediction of yield (Haboudane 
et al., 2002). This purpose can mostly be fulfilled by remote sensing methods which are able 
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to provide time-specific information about the conditions of crop parameters. Baret et al. 
(2007) has proven the ability of remote sensing observations to quantify crop stress level 
using a variable derived from the leaf area index (LAI) and Chlorophyllab multiplication as the 
representative of the nitrogen content in the canopy level. Nitrogen concentration in green 
vegetation is related to chlorophyll content, and therefore indirectly to one of the basic 
plant physiological processes: photosynthesis (Haboudane et al., 2002). Nitrogen shortage 
within the crops will lead to lower chlorophyll content, which will increase the reflectance in 
visible wavelengths. Based on this condition, one way to assess nitrogen variability is by 
estimating crop canopy chlorophyll concentration from crop leaves and canopy reflectance 
(Daughtry et al., 2000).  

 
Figure 6: Absorption spectra of the major plant pigments (Blackburn, 2007). 

 
Extracting spectral information related to N uptake using various VIs has been developed to 
enhance the capability of detecting canopy N variations (Blackmer et al., 1996). A wide 
variety of chlorophyll indices have been established to maximize the relationship between 
the measured spectral response and plant N status. Many of these indices employ narrow 
band (hyperspectral) data that include bands within the red edge region (Daughtry et al. 
2000, Haboudane et al. 2002). Clevers and Kooistra (2012) investigated the use of cropscan 
datasets to find the best representative VI for estimating canopy chlorophyll content in a 
potato crop. The research involved six different VIs to investigate the best VI for monitoring 
chlorophyll and nitrogen content within the crop field. 

Increasing efforts have focused on understanding the relationships between vegetation 
optical properties and photosynthetic pigments concentrations within green leave tissues 
such as chlorophylls and carotenoids (Wu et al., 2008). From the optical point of view, 
photosynthesis pigments have different spectral behaviour, with specific absorption 
features at different wavelengths (Figure 6Figure 6: Absorption spectra of the major plant 
pigments (Blackburn, 2007).), which allow remote sensing techniques to discriminate their 
respective effects on vegetation reflectance spectra (Chappelle et al., 1992; Blackburn, 
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1998; and Haboudane et al., 2002). These characteristics have supported the development 
of various approaches based on model inversion or the use of semi-empirical and empirical 
methods to estimate the chlorophyll content at the leaf and canopy level (Daughtry et al., 
2000).  

Table 1: Vegetation Indices for this thesis report 

 
1 C = 2 for the current study area (Kooistra et al. 2013). 2 Wavelength at 800 will be replaced by 780 nm 

VIs are combinations of surface reflectance at two or more wavelengths built to emphasize 
a specific vegetation property. The development of different spectral band combinations, 
known as VIs, has a main purpose of decreasing the spectral effects caused by external 
factors such as atmosphere and soil background. As one of the empirical methods, VIs can 
be classified into two groups: slope-based and distance-based VIs (Jackson & Huete, 1991). 
Slope-based VIs use simple linear combinations that emphasize the difference in vegetation 
spectral reflectance in the red and NIR wavelengths. The slope-based VIs include the RATIO, 
NDVI, SAVI, RVI, NRVI, TVI, CTVI, TTVI and EVI (Silleos, et al., 2006). Different from slope-
based VIs, the distance-based VIs require the establishment of a soil line. Pixels that are 
located near the soil line are assumed to represent the soil, and those far away are assumed 
to represent vegetation (Mróz & Sobieraj, 2004). To get the VIs’ value, the calculations are 
made by measuring the perpendicular distance of each point compared to the soil line. The 
parent index from this group is the Perpendicular Vegetation Index, which was suggested by 
Richardson and Wiegand in 1977. The other indices that are part of distance-based VIs are 
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PVI1, PVI2, DVI, TSAVI, MSAVI and WDVI. In addition to those two VI groups, there are 
orthogonal VIs and Red Edge Inflection Point (REIP).  

VIs have been highly developed for agricultural remote sensing studies and management 
purposes in the last 30 years. However, the effectiveness of these indices is dependent on 
crop phenological development and management practices (Hatfield & Prueger, 2010). After 
conducting research on four crops (corn, soybean, wheat and canola) over eight years, 
Hatfield and Prueger (2010) found six different VIs that are most useful depending on crop 
phenology and management practices: (a) simple ratios for biomass; (b) NDVI for 
intercepted photosynthetically active radiation (PAR); (c) SAVI for LAI at early growth stages; 
(d) EVI for LAI at later stages; (e) CIgreen for leaf chlorophyll; (f) NPCI for chlorophyll during 
later stages; and, (g) PSRI to quantify plant senescence. 

To answer the research questions in this report, the calculations of the selected VIs (Table 1) 
will be made. These VIs are known as the most commonly used indices - both in terms of 
multispectral and hyperspectral indices - to generate the nitrogen content and chlorophyll 
information within the crops. The reflectance values for VI calculation purposes were 
derived from Cropscan measurements. To calculate the TCARI/OSAVI and MCARI/OSAVI 
based on the given formula in Table 1, the wavelengths of 550, 670, 700 and 800 nm are 
needed. However, the CropScan MSR16R is not able to measure at 800 nm. Therefore, the 
defined wavelength on 800 nm will be replaced by the wavelength at 780 nm. 

2.4 Similarity Measures in Time-Series Analysis 

The number of satellite sensors and close sensing sensors that are able to provide data with 
high temporal resolution has increased in recent years. Most of these sensors are able to 
acquire daily information of terrestrial processes, which makes it possible to monitor the 
crop condition continuously and dynamically (Ji-hua & Bing-fang, 2008). VIs allow reliable 
spatial and temporal comparison of terrestrial photosynthetic activity and canopy structural 
variations (Huete et al., 2002). Therefore, VI time-series data are able to represent the true 
surface measurements which are beneficial for crop monitoring purposes both in large scale 
and small scale areas. The analysis of the VI time-series through time permits the extraction 
of appropriate metrics to describe vegetation dynamics, allowing better monitoring and 
understanding of the biophysical changes in the vegetation cover and phenology in different 
ecosystems (Bradley & Mustard, 2008). In terms of providing precision agriculture with the 
crop temporal information for management purposes, the analysis of VI time-series could 
be applied. Zarco-Tejada et al. (2005) have used time-series data from several VIs, 
calculated from airborne hyperspectral sensors, to understand within-field yield variability 
in cotton (Gossypium hirsutum L.) over an entire growing season. NDVI time-series have also 
been used for estimating the bimodal agriculture areas using Fourier analysis (Canisius et al., 
2007). 
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To analyse the temporal changes within the crop development phase, there are different 
type of time-series analysis methods that can be applied to detect the changes within the 
time-series data. Lhermitte et al. (2011) explained that the possible methods range from a 
point time scale (e.g., post-classification analysis of single date images and interpretation of 
the results over time) to a bi-temporal (e.g., bi-temporal change detection) and continuous 
timescale (e.g., classification and change detection based on temporal trajectory analysis). 
Temporal similarity of trajectories is performed the same as similarity analysis on time series 
data sequences (Dodge et al., 2009). Based on Serrà and Arcos (2014), similarity measure is 
the most essential ingredient of time series clustering and classification systems. However, 
different studies have shown the various purposes of time series similarity measures. Tippet 
et al. (2008) have used time series similarity in the form of regression-based methods as an 
absolute criterion to derive statistical inferences between different time series datasets. For 
this first purpose, various methods have been applied in remote sensing studies to resolve 
the relation between remote sensing time series data with bio-physical and geophysical 
variables (Lhermitte et al., 2011). The methods can be reflected in different approaches 
which range from singular vector decomposition (SVD) and canonical correlation analysis 
(CCA), to more commonly employed methods based on regression and correlation analysis 
(Buermann et al., 2003; Verbesselt et al., 2006; Lhermitte et al., 2011). The cross-correlation 
analysis were applied to study the connection between a meteorological drought index KBDI 
and remote sensing index (NDWI) which are both known to be related to vegetation 
moisture dynamics (Verbesselt et al., 2006). 

Second, time series similarity has been employed as a relative criterion to numerically 
characterize the relationship between time series, not to derive statistical inferences, but to 
provide a decision criterion to cluster/discriminate time series (Lhermitte et al., 2011). As an 
example of this time series similarity context, Huang and Siegert (2006) have used NDVI 
time series data to monitor the desertification processes in North China. The classification 
methods started with detecting the temporal behaviour pattern of each vegetation cover 
(NDVI peak locations in growing season or non-growing season), the similarity measures 
then supply the premise to cluster the satellite pixel time series data in homogeneous 
groups based on minimization of within group temporal similarity and maximization of 
between group temporal similarity (Lhermitte et al., 2011). As a comparison to this 
approach, the similarity measures can be used for change detection purposes. A study 
conducted by Linderman et al. (2005) showed the changes detected in overall vegetation 
activity and its timing across Sub-Saharan Africa between different years using MODIS data 
includes the examination of magnitude, extent and nature of changes in photosynthetic 
activity. This study showed the possibility of similarity measures discriminating changes in 
time-series. 

Similarity measures can be generally categorized into four classes: lock-step measures; 
elastic measures; threshold-based measures; and, pattern-based measures (Ding et al., 
2008). The most widely known measure for lock-step measures is Euclidean distance, which 
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is defined as the square root of the sum of the squared differences between corresponding 
data points in two time series data sets (Nakamura et al., 2013). Besides being parameter-
free and easy to implement, the complexity of evaluating Euclidean distance and its variants 
from Lp-norms is linear (Ding et al., 2008). To solve different sampling rates problems in the 
lock-step measures, DISSIM distance was introduced by Frentzos et al. (2007). Dynamic time 
wrapping (DTW) is one of the examples from the elastic measures group (Figure 7). As a 
classic approach to compute similarity between two time series, DTW works by warping the 
time series in the temporal domain so that the accumulated cost of this alignment is 
minimal (Serrà & Arcos, 2014). Based on Nakamura et al. (2013), other measures that fall 
into the elastic measures category are longest common sub sequences (LCSS), edit distance 
with real penalty (ERP), edit distance on real sequence (EDR) and angular metric for shape 
similarity (AMSS). The Threshold query based similarity (TQuEST) distance was presented by 
Aßfalg et al. (2006). This measure starts with accepting a user-provided threshold indicated 
by τ and converts the sequence data to threshold crossing. The threshold crossing will be 
treated as points in two-dimensional space which is composed only of data points above the 
τ (Nakamura et al., 2013). The similarity output is then defined as the Minkowski sum (Ding 
et al., 2008). The last class is a pattern-based measure which is known as Spatial Assembling 
Distance (SpADe). Based on Chen et al. (2007), SpADE is able to measure distances between 
shape-based time series of which the calculation is based on the detection of the best 
combination of local pattern match (LPMs) by calculating the shortest path in matching 
matrix. 

 
Figure 7: The illustration of Euclidean distance (top), DTW alignment (centre), and MJC (bottom). X axis indicates each 

time point or sample, while y axis shows magnitude (in this context, magnitude is analogy of the value from each 
sample). Picture is taken from Serrà and Arcos (2014). 



 CHAPTER II  20

 

 
The time series similarity measures can also be categorized based on the data 
characteristics. The measures can be divided into three major categories dependent on 
whether they work (i) directly with original time series data, (ii) indirectly with 
transformations taken out from the original time series data, or (iii) indirectly with metrics 
derived from the original time series data (Lhermitte et al., 2011). In this thesis report, the 
data came from the original time series data.  Therefore, the original time series data 
approaches will be used to detect the area within the crop field that needs a management 
action. The most widely known approaches can be distinguished into: (i) distance measures 
and (ii) correlation measures. 

Known as the most commonly used distance measures, Minkowski distance (DMink) is a 
generalization of both the Euclidean distance (DE) and the Manhattan distance (DMan). Based 
on Lhermitte et al. (2011), the Minkowski distance between two individual time series 𝑓𝑓𝑝𝑝(𝑡𝑡) 
and 𝑓𝑓𝑞𝑞(𝑡𝑡) collected in 𝑡𝑡 time, for pixels 𝑝𝑝 and 𝑞𝑞 respectively, is given by: 
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, where 𝑓𝑓𝑡𝑡

𝑝𝑝 is the 𝑓𝑓𝑝𝑝(𝑡𝑡) time series value at moment 𝑡𝑡 and number of samples 𝑁𝑁 in the time 
series while 𝑟𝑟 indicates a user-defined integer. If the 𝑟𝑟 value in Equation (1) is defined as 1 
then this equation indicates the Manhattan distance DMan, while the Euclidean distance DE is 
indicated by 𝑟𝑟=2. The infinite form of DMink, which indicates by 𝑟𝑟 = ∞ is also known as 
Chebyshev distance. For the relatively large training set size, Euclidean distance is known to 
be strongly competitive with more complex similarity measures (Ding et al., 2008). However, 
these distance measures are very sensitive to noise and requires the time series to have 
equal length. 

The other methods that are part of the time series similarity approach are correlation 
measure and root mean square distance (RMSD). The original time series data can use these 
two approaches without making assumptions on interpolation or curve fitting (Lhermitte et 
al., 2010). The most commonly used correlation measure, described by Liao (2005), is 
Pearson’s cross-correlation coefficient (DCC). This cross-correlation coefficient is defined as 
the degree of linear relationship between time series (Lhermitte et al., 2011): 
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Where 𝑓𝑓𝑡𝑡
𝑝𝑝 and 𝑓𝑓𝑡𝑡

𝑞𝑞 are time series values at moment t and the mean values of the 
corresponding series are indicated by 𝑓𝑓̅𝑝𝑝 and 𝑓𝑓̅𝑞𝑞. N is the length of the time series, while 𝑠𝑠 is 
specifying the delay (lag) between both time series. If s = 0, then the DCC is computing the 
similarity between two time series without time shift (Lhermitte et al., 2010). The value of 
DCC ranges from -1 to 1. When the DCC shows a value that is close to 1, it indicates the 
increase in linear relationship and shows the opposite if the value is close to -1 (Lhermitte et 
al., 2011).  

The RMSD values quantify the straight-line inter-point distance in a multi-temporal space 
(Lhermitte et al., 2010). The low values give representation of high temporal similarity. The 
RMSD measure defined as:  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �∑ �𝑓𝑓𝑡𝑡
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Where 𝑓𝑓𝑡𝑡
𝑝𝑝 and 𝑓𝑓𝑡𝑡

𝑞𝑞 are time series values at moment t and N is the length of the time series. 
Both DCC and RMSD are often used as similarity measures for remote sensing time series. 
Lhermitte et al. (2010) has applied these two similarity measures in the control pixel 
selection. 

2.5 Control Chart 

The basic idea of control charts was first developed by Shewhart (1931) for industrial 
product control purposes. A control chart is a plot which contains a time sequence with 
additional decision lines. The decision lines are used to determine whether a process is in 
control or not (Ryan, 2011). The control chart construction is based on the statistical 
principle. The statistical principle allows the balance between fast “out of control” 
occurrence detection with a minimum amount of false alarms (Ryan, 2011). 

The concepts underlying the control chart are the natural variability in any manufacturing 
process that can be quantified with a set of control limits and the variation exceeding these 
limits signals a change in the process (SAS Institute Inc., 1999). This idea applies to more 
than just manufacturing process. Control charts were also used by Podur et al. (2002) to 
detect the significant changes in the mean and variance of the annual fire occurrences and 
burned areas in Canada. While Moameni and Zinck (1997) have also used statistical quality 
control charts to investigate variability in soil properties and control the mean of soil 
variables.  

The principle of the control chart is shown in Figure 8. The central line (CL) on the control 
chart indicates the average (expected value) of the summary statistic when the process is in 
statistical control. The upper and lower control limit, shown as UCL and LCL, indicate the 
range of variation to be expected in the summary statistic when the process is in statistical 
control. The control limits are commonly computed as 3.09σ limits, representing three 
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standard errors of variation in the summary statistic above and below the central line. The 
orange colour dash-lines at ± 1,96σ are called warning lines or, relating to their position, the 
lower warning limit (LWL) and upper warning limit (UWL) (Massart et al., 1997).  

 

 
Figure 8: The control chart basic form 

 

The bell-shaped curve at the left side of the vertical line in Figure 8 shows an ideal condition 
of normal distribution in the data (monitored process). As explained before, the CL 
supposedly signifies the value of mean, standard deviation or other statistics (Moameni & 
Zinck, 1997). The two small areas in the curve, which are located below the LCL and above 
UCL, indicate that the process is out of control. Therefore, the probabilities of these areas 
are required to be as low as possible. If the purpose of the chart is to control the process 
mean, µ, while the control limits were rounded to ±3σ, then the probability would be 
0.00135 for each area (or 0.0027 for both) if X has a normal distribution (Moameni & Zinck, 
1997). If the normal distribution of the process is unknown, then 3σ or 3.09σ limits are more 
appropriate to use (Moameni & Zinck, 1997). 

In this report, control charts will be used to establish the alerting service threshold. The 
similarity measures values will be used as the input process of the control chart. Both 
control and warning limits will be decided based on the management needs, which later 
control whether the potato crop conditions are under control or not. 
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CHAPTER 3: MATERIALS AND METHODS 
 
3.1 Study Area  

To address the research questions, a case study of an agricultural field situated in the 
southern part of Netherlands will be included. The study area selected for this purpose is a 
potato field near the Dutch village of Reusel in the province of Noord-Brabant, located at 
51°19’ N and 5°10’14” E (Figure 9).         

 
Figure 9: Location of the study area, setup of experimental subplots and Nitrogen application rates on the 

potato fields (Gevaert et al., 2015) 
 

This field was the subject of a research project executed by the Wageningen University (WU) 
Laboratory of Geo-information Science and Remote Sensing (GRS) under the Smart 
Inspectors project. For the purpose of this study, four distinct nitrogen fertilization rates (0, 
90, 162 and 252 kg N/ha) were applied to the field in the beginning of the 2013 growing 
season (Table 2). Additional fertilizer was also applied during the growing season based on 
the recommendations from sensors attached to the tractor. The variable rate technology 
was used to control the fertilizer level in the experimental fields. As the sensor attached on 
the tractor detected the nitrogen deficiencies, the fertilizer was applied automatically to the 
field. Another fertilization (N-vlb) applied to the plant leaves occurred as part of the 
management application to each experimental plot which summed up to 32 kg N ha-1 
throughout the growing season.  
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Table 2: The initial, additional and Total N fertilization in kg per hectare (ha) 
applied to the experimental plots over the growing season 

 

Twelve 30 m x 30 m experimental plots (three per fertilization rates) were defined in the 
fields. For the purpose of this research, each experimental plot was divided in half to 
analyse the left and right parts of the tractor driving plots separately. The tractor driving 
path was not included in the experimental plots to avoid the disturbance in the surface 
reflectance. Therefore, the 24 13×30 m experimental subplots will be used in this study 
(Figure 10). 

3.2 Available Data 

For this study area, three datasets will be used: one obtained from cropscan, one from fused 
imagery and crop data which contain the N status (N%, plant sap and SPAD Chlorophyll 
meter data), LAI and chlorophyll data from the potato field. 

3.2.1 Cropscan Dataset  

The average spectral reflectance for the 24 experimental subplots were obtained on a 
weekly basis between June 6, 2013 and August 23, 2013 (Figure 10). Eleven spectral 
measurements were taken per experimental subplot using a Cropscan Multispectral 
Radiometer (Table 4). The cropscan dataset for the 24 subplots with 11 observations over 
the growing season, including a broad range of plant health parameters, will be used to 
define the most representative VI for potato crop health status. The spectral measurements 
from the 24 experimental subplots will be used to calculate the eight VIs: Normalized 
Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Weighted Difference 
Vegetation Index (WDVI), Red-Edge Position (REP), the ration between MCARI and OSAVI 
(MCARI/OSAVI), the ration between TCARI and OSAVI (TCARI/OSAVI), Chlorophyll Index (CI) 
green and Chlorophyll Index (CI) red-edge. The VIs will be calculated based on the formulas 
presented in Table 1.  
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  Table 3: Specifications of CS MSR16R 

        
                          Figure 10: Twenty-four experimental subplots location 
 
A Cropscan Multispectral Radiometer (MSR16R, Cropscan Inc.) has sixteen spectral bands, 
which measures simultaneously the reflected and incoming radiation in narrow spectral 
bands (Table 3). Reflectance is measured through a 28 degree field-of-view (FOV) aperture 
and incoming radiation is measured through a cosine-corrected sphere. Calibration is 
performed by pointing the 28 degree FOV aperture towards the sun using an opal glass. 
With this calibration, the spectral reflectance is derived (Clevers & Kooistra, 2012). 

3.2.2 Fused satellite and UAV Imagery data 

The UAV hyperspectral images were obtained with the Specim ImSpector V10 2/3” 
spectrograph. A GPS inertia navigation system (INS, XSens, and MTi-G-700) and a Panasonic 
GXI +14 mm camera obtained the geographical location and provided data for a Digital 
Surface Model (DSM) which the hyperspectral images were orthorectified. The system was 
mounted on an Aerialtronics Altura AT8 octocopter. This platform has a maximum payload 
of 2 kg and a flight-time of 5-8 minutes (Kooistra et al., 2013). Since the operational costs of 
the UAV are high, available imagery from the growing season are limited. UAV imagery are 
available from four dates: June 6th, June 14th, July 5th and July 17th. 
 
The satellite data was generated from Formosat-2 images, with eight cloud-free scenes over 
the study area from March 1st to September 25th. However, the spatial and spectral 
resolutions of the Formosat-2 imagery are inadequate for precision agriculture applications. 
Therefore, the STR dataset, which is a simulated dataset from Formosat-2 imagery and UAV 
imagery, will be used in this research. This dataset is a result of previous research performed 
by Gevaert et al. (2015). The imagery from both platforms were combined in two ways. 
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Firstly, data fusion methods brought the spatial resolution of the Formosat-2 imagery (8 m) 
down to the spatial resolution of the UAV imagery (1 m). Two data fusion methods were 
applied: an unmixing-based algorithm and the Spatial and Temporal Adaptive Reflectance 
Fusion Model (STARFM). 
 
3.2.3 Crop Data 

3.2.3.1 Crop N Status over growing season 

The crop N status was measured over the growing season using three methods: the Dumas-
combustion method, PSNC test and chlorophyll meter (Minolta SPAD-502). Both the Dumas-
combustion method and the PSNC test are crop N status assessments at the plant tissue 
level, while measurement using SPAD-502 is carried out at the leaf level. Due to its 
destructive sampling and time consuming drawbacks, the nutrient status measurement 
using the Dumas-combustion method were completed on the plots on a monthly basis. As 
explained by Clevers and Kooistra (2012), the measurement started with sampling from the 
experimental plots and was followed by wet-chemistry analysis. The destructive sampling 
was taken by harvesting one row of potatoes over one linear meter each time (0.75 m2). The 
next step was determining the vegetation dry weight and N concentration after going 
through a drying process for 24 hours at 70oC. The latter process was based on the Dumas 
method (Hansen, 1989; Clevers & Kooistra, 2012). The end results of this process were fresh 
and dry aboveground weights, dry matter content, total N concentration in the 
aboveground parts and total N content. Within this report, the N concentration will be used 
to compare the N status in the crop with other assessment methods. 

Table 4: Dumas-combustion, PSNC test, SPAD-502, Cropscan and LAI acquired dates in the 
experimental plots over 2013 growing season 

Dumas-
combustion PSNC test Chlorophyll meter 

(SPAD) Cropscan LAI 

- 06 June 2013 06 June 2013 06 June 2013 06 June 2013 
14 June 2013 14 June 2013 14 June 2013 14 June 2013 14 June 2013 

- 21 June 2013 21 June 2013 21 June 2013 21 June 2013 
- 26 June 2013 26 June 2013 26 June 2013 26 June 2013 
- 05 July 2013 05 July 2013 05 July 2013 05 July 2013 
- 12 July 2013 12 July 2013 12 July 2013 12 July 2013 
- 17 July 2013 17 July 2013 17 July 2013 17 July 2013 

26 July 2013 26 July 2013 26 July 2013 26 July 2013 26 July 2013 
31 July 2013 31 July 2013 31 July 2013 31 July 2013 31 July 2013 

- - 16 August 2013 16 August 2013 16 August 2013 
- 23 August 2013 23 August 2013 23 August 2013 23 August 2013 

The PSNC test was easier to apply and less destructive compared to the Dumas-combustion 
method. In this report, the PSNC test was applied to the experimental plots ten times during 
the growing season (Table 4). The measurement values were averaged per plot. The PSNC 
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test gave the NO3 blade ppm value which will be used to compare the N status condition. 
The Dumas-combustion and PSNC test were only applied to eight plots (A, B, C, D, E, F, G 
and H). However, the chlorophyll meter measurement (SPAD-502) included all experimental 
plots (the measurement was acquired for both the left and right side). Besides measuring 
the N status in the potato crops, SPAD-502 was also used for calculating the chlorophyll 
(g/m2) which will be explained later in this report. 

3.2.3.2 Crop biophysical and biochemical variables 

Crop biophysical and biochemical variables calculated in this report will be the Leaf Area 
Index (LAI) and leaf chlorophyll. The measurements were applied to all experimental plots 
using a handheld chlorophyll meter (Minolta SPAD-502) and Plant Canopy Analyser (LAI-
2000) to calculate leaf chlorophyll and LAI, respectively. Between June 6th 2013 and August 
23rd 2013, six SPAD leaf chlorophyll readings were produced per row (12 readings per plot) 
on a weekly basis. To get the SPAD value for each plot (total of 24 experimental subplots), 
the average value was generated from 12 readings. One of the purposes of this study is to 
find the best VI that is most representative for the N status in the crops. Since a direct 
relation between the VI and the N status cannot be acquired due to the limited N status 
data during the growing season, the leaf chlorophyll and chlorophyll canopy value will be 
used to find the best VI.  

The amount of chlorophyll in the leaf level cannot be directly translated from the SPAD 
measurement values. The SPAD measurement values, which range from 0 to 50, are the 
relative amount of chlorophyll present in the leaves, and are shown as digital numbers 
without the unit of measurement. In order to translate SPAD readings to leaf chlorophyll 
concentration values, an exponential regression proposed by Uddling et al. (2007) can be 
used. In this report, the leaf chlorophyll concentration values will be attained from: 

𝑦𝑦 = 0.913𝑒𝑒0.0415 𝑥𝑥                                                                                                                     (4) 
          
Where y = chlorophyll concentration and x = SPAD-502 value. The chlorophyll canopy values 
in this report will be multiplication results from chlorophyll leaf concentration and LAI. The 
LAI measurement was acquired on the same day as the chlorophyll meter measurement. 
The LAI readings were taken from the third and tenth row of each plot and six LAI values 
were taken per row. Each reading per plot was the average value from 12 LAI readings. The 
total LAI readings over the growing season were 11 weekly measurements starting from 6 
June until 23 August 2013 (Table 4). 

Basically, the field measurements were taken for each 13 x 30 m experimental subplots 
(Figure 10). These 13 x 30 m subplots are results from the large plot (30 x 30 m) division into 
two part, left side and right side. For comparing the N status which was derived from three 
different methods, the large plots (i.e. A through L) will be used. The same large plots will 
also be used in identifying relationships between leaf chlorophyll with plant sap and 
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calculating the regression analysis to find the best representative VI for crop N status. 
Conversely, in the similarity measures with mean curve approach, the 13 x 30 m subplots 
will be used (i.e. plot AL, AR, BL, BR, CL…, and LR). 

3.3 Methods 

The outline of the proposed methodology in this thesis research is presented in the 
flowchart below (Figure 11). The flowchart explains the step-by-step methods that will be 
applied in order to achieve the research objectives in Section 1.3. The research is divided 
into five phases, of which each phase is intended to answer each research question. The first 
phase focuses mainly on analysing the best VI that gives a good representation in estimating 
the potato N status over the growing season. Before analysing the best VI, several analyses 
related to crop biophysical and biochemical parameters will be conducted beforehand. The 
analysis will start by comparing the N status over the growing season, which is derived from 
three different methods: the Dumas-combustion test, PSNC test and chlorophyll meter. 
Secondly, the relation between the N status in crops with chlorophyll concentration both in 
the leaf and canopy level will be identified, where the chlorophyll concentration in the leaf 
level will be calculated using Equation (3). Next, the VIs’ pattern over the growing season 
will be analysed. The purpose of this analysis is to find out the variability in each 
experimental plot over the growing season. The last part of this phase is to derive the VIs’ 
value from the Cropscan data and identify the best VI that is able to give a good 
representation of the N status in the potato crop over the growing season. This phase is 
explained in section 3.3.1. 

After deciding the best representative VI for the N status, the time series profile of the VI 
will be set for each experimental plot. The next phase of the research is to determine the 
optimal growth curve for the potatoes - the reference curve - represented by the time-
series of the VI identified in phase one. In this report, two approaches are used to construct 
the reference curve: the maximum yield approach and the mean curve approach. For the 
maximum yield approach, the yield analysis will be used. The methods that will be used in 
the second phase are explained in section 3.3.2. 

Phase three is a reflection of the third research question. The main purpose of phase three 
is to confer the time-series analysis method that can be adopted to evaluate deviation from 
the established reference curve. Performing the time series similarity measures on the VI 
time series data will make it possible to characterize the growth status within the 
experimental plots. Therefore, the growth deviation, which is indicated by the VI values, can 
be tracked along the growing season. This phase is extensively explained in section 3.3.3. 
Using the characteristic of the data, the proper time series similarity measures will be 
chosen to solve the problem. 
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Figure 11: Methodology Flowchart 
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The fourth phase of the methodology flowchart is to determine the threshold value for the 
maximum acceptable difference, or deviation, between two VI time series. This phase has a 
relevancy to detect deviating plant growth which can be used to derive an alerting service. 
This phase is described in section 3.3.4. 

After accomplishing phase four, the last phase is to validate the alerting service. Two 
approaches will be adopted to validate the accuracy of the potato growth alerting services. 
Firstly, the image based dataset of Geveart et al. (2015) will be used to check the alerting 
service’s threshold sensitivity to plant growth deviation. Secondly, the 12 validation subplots 
will be used to evaluate the alerting service for the subplots level. Section 3.3.5 gives a 
complete explanation of this last phase. 

3.3.1. Vegetation Indices for potato N status (Phase 1) 

3.3.1.1 N Status comparison with different measurement methods 

The N status measurements over the growing season in this report used three different 
methods: wet chemistry analysis + the Dumas-combustion method; PSNC test, also known 
as the Plant Sap test; and chlorophyll meter analysis (Minolta SPAD-502). To give an 
overview of N status changes within the potato crop over the growing season, all N status 
values from the different methods were plotted over time. Although the number of 
observations varied between each method (Table 4), the overall conditions in the beginning 
and at the end of the growing season were still comparable. The N status development plots 
were made using the Python programming language. Besides comparing the N status in the 
potato crop with the three different measurement methods, the N status development 
plots will also give information related to the N status for each 30 x 30 m experimental plot 
over the growing season.  

To examine the relation between the N statuses acquired from the three different methods, 
a regression model will be created using the Minitab 14 software. Since the data from the 
Dumas-combustion method only are available on three dates (14 June, 26 July and 31 July), 
any regression analysis related to this method will be calculated using 24 samples for each 
variable. The relationships among these three methods will be assessed by the coefficient of 
determination (R2).  

3.3.1.2 Relationships between crop biophysical and biochemical parameters 

The relationships between the N status in the potato crop with the chlorophyll 
concentration values (both at the leaf level and canopy level) are essential information. As 
explained by Taiz and Zeiger (2010), leaf chlorophyll content can be used as an N status 
indicator. Therefore, it is necessary to check the relationship amongst these crop 
parameters as a validation phase before making use of chlorophyll content in further 
calculations. The leaf chlorophyll concentration values will be calculated using Equation (4). 
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This parameter will then be paired with the N status value to find their relation using 
regression analysis.  

The other crop biophysical parameter - chlorophyll canopy - will also be paired with the crop 
N status to find their relationship. The chlorophyll canopy values will be calculated using: 

𝐶𝐶ℎ𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑦𝑦𝑦𝑦𝑦𝑦 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑐𝑐ℎ𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑦𝑦𝑦𝑦𝑦𝑦 ∗ 𝐿𝐿𝐿𝐿𝐿𝐿                                                             (5) 

Besides investigating the overall relationship between the N crop status and the chlorophyll 
content (at leaf and canopy level), the influences of temporal and spatial scales and 
different fertilizer levels will also be analysed. The analysis will use a stepwise regression 
that is provided by Minitab 14. The most influencing factor for the relationship between the 
N crop status and the chlorophyll content values will later be identified using this analysis.  

3.3.1.3 Relationships between VIs and chlorophyll content 

The relationships between the eight different VIs with chlorophyll content will be 
investigated to examine the most representative VI that is able to detect the N status in the 
potato crop over the growing season. The previous study conducted by Clevers and Kooistra 
(2012) used six VIs (REP, MTCI, MCARI/OSAVI, TCARI/OSAVI, CIgreen, and CIred-edge) to find the 
best VI for crop chlorophyll content. In this research, well-known satellite-derived VIs are 
also considered, including NDVI, WDVI and EVI. VIs used in this report will be calculated 
using the formulas in Table 1 with reflection values from Cropscan measurements. 
Regression analyses will then be applied to find the best VI. 

Statistical Analysis 

Both simple linear regression and non-linear regression will be used to model the 
relationship between the chlorophyll content (both in the leaf and canopy level) and 
predictor variables (eight VIs). Goodness of fit, or how well a model fits the data, will be 
evaluated based on the coefficient of determination (R2). The selection of the best VI will be 
based on the combination of the R2 value and standard error of the regression (S). The S 
value provides important information that R2 cannot provide.  

 
Figure 12: Illustration of S calculation 
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The S value, as shown in Figure 12, represents the average distance that is calculated from 
the observed values to the regression line (Frost, 2014). Therefore, the S value explains how 
wrong the regression model is. A low S value specifies that the observations are closer to 
the fitted line. The best VI will be decided by the highest R2 value and the lowest S value. 

3.3.2 Optimal growth curve for potato crop (Phase 2) 

To answer the second research question, a reference curve needs to be constructed in 
Phase 2. In this report, there are two approaches to acquire the reference curve: maximum 
yield and mean curve approach. These two approaches have their own emergence - the 
maximum yield approach is most likely to achieve the long term goal, while the mean curve 
can be used in near real time purposes. The reason that the maximum yield approach 
should be used for a long term goal alerting service is that maximum yield value can only be 
generated at the end of the growing season. This means that this approach cannot be used 
for near real time acquisition.  

The mean curve is generated from calculating the mean value from 24 experimental 
subplots for each observation date over the growing season. The mean curve end result will 
be considered as the optimal growth curve for potatoes (reference curve). Deviations of the 
12 experimental plots from the reference curve can then be calculated. The method 
presented by Bala and Islam (2009) gives an insight of mean curve approach in constructing 
a regression model to predict the potato yield in Bangladesh.  

Maximum yield approach 

Constructing a reference curve based on the maximum yield approach is performed by 
selecting the experimental plot which produces the highest amount of yield. This 
information can be gathered from the yield analysis which is normally done by the farm 
management. When the field that produces the maximum yield has been found, the VI time 
series value from this experimental plot will be used as the reference curve. 

Mean curve approach 

After selecting the best representative VI for potato health status in Phase 1, the time-series 
of the selected VI will be calculated for all 24 experimental subplots over the growing 
season. To generate a reference curve using the mean curve approach, the 24 subplots will 
be used to get the mean value for each observation date and will be assigned as the 
reference value (Figure 13). After establishing the reference curve, the 12 plots (A, B, C, D, E, 
F, G, H, I, J, K, and L) will then be compared to the reference curve using the similarity 
measures which will be explained later in Section 3.3.3. The other data from the STR dataset 
will be used for the validation process (Figure 11).  
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Figure 13: Sampling design for mean curve approach 

 
As seen in Figure 13, the 24 experimental subplots will be divided into two groups: the 
calibration (thresholds) dataset and the validation dataset. The calibration dataset will be 
used in Section 4.3 and 4.4 for performing the similarity measures and control chart in the 
subplots level using the mean curve approach; whilst the validation dataset will be used in 
Section 4.5 for alerting service validation purposes in the subplots level.  

3.3.3 Similarity measures in time series analysis for deviation detection (Phase 3) 

The purpose of this research question is establishing proper similarity measures to detect 
the difference between temporal profiles. Therefore, the deviation between the 
experimental plots’ time series profiles with the reference curve can be calculated. The 
deviation or difference occurring in the similarity measures will be able to emphasize the 
variety of crop development patterns due to the different fertilizer treatments applied over 
the growing season. There are several time-series analysis methods for change detection 
explained by Lhermitte et al. (2011). Similarity measures such as Euclidean Distance, 
Manhattan Distance, Principal Component Analysis (DPCA) and Fourier based were revealed 
sensitive to quantify the difference in time-series values (Lhermitte et al., 2011). A previous 
research (Kooistra et al., 2012) adopted the Euclidean distance between two individual 
points in time to calculate deviating nitrogen conditions and a potential need for a 
management action in the field.  

Similarity is considered as the measure that establishes an absolute value of resemblance 
between two vectors, in principle isolated from the rest of the vectors and without 
assessing the location inside the solution space. The time series distance measures are 
normally divided into four categories: shape based, edit based, features based and structure 
based. The commonly used similarity measures for original time-series data will be 
performed in this report. Therefore, the similarity measures that will be used in this report 
comes from the shape based category and correlation measures as an additional method. 
The measures from the shape based measures category that will be used in this report are: 
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Manhattan distance (DMan) and Euclidean distance (DE). As it is explained in Section 2.4, 
these two measures are derived from Minkowski distance and explained by: 

𝐷𝐷𝑀𝑀𝑀𝑀𝑀𝑀 = ��𝑓𝑓𝑡𝑡
𝑝𝑝 − 𝑓𝑓𝑡𝑡

𝑞𝑞�                                                                                                             (6)
𝑁𝑁
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                                                                                                          (7) 

, where 𝑓𝑓𝑡𝑡
𝑝𝑝 is the 𝑓𝑓𝑝𝑝(𝑡𝑡) time series value at moment 𝑡𝑡 and number of samples 𝑁𝑁 in the time 

series. Using these two similarity measures, the difference between the two time-series 
(reference plot with other experimental plot) will be calculated. The distance will be 
calculated for each observation date over the growing season. The distance between two 
points at moment t is calculated using all measurements at moment t and before t, except 
for the first point measurement. To illustrate this calculation, a first distance measurement 
only calculates the distance at the first date of measurement. While the second distance 
measurement calculates the accumulation of the values from first date and second date to 
measure the difference. 
 
The other similarity measures that will be used in this report are Pearson’s correlation 
coefficient (DCC) and root mean square distance (RMSD). Both these measures follow the 
same rules as Manhattan and Euclidean distance. For DCC, the correlation of two time series 
at moment t is translated as the accumulation of all measurements at t and before t. 
However, this does not apply to the measurement on the first observation date, as this is 
the initial time series value. As it explained in Section 2.4, Lhermitte et al. (2011) defined the 
Pearson’s correlation coefficient with the equation: 

𝐷𝐷𝐶𝐶𝐶𝐶 =
∑ ��𝑓𝑓𝑡𝑡

𝑝𝑝 − 𝑓𝑓̅𝑝𝑝� ∗ �𝑓𝑓𝑡𝑡−𝑠𝑠
𝑞𝑞 − 𝑓𝑓̅𝑞𝑞��𝑁𝑁−1

𝑡𝑡=0

�∑ �𝑓𝑓𝑡𝑡
𝑝𝑝 − 𝑓𝑓̅𝑝𝑝�

2𝑁𝑁−1
𝑡𝑡=0 ∗ �∑ �𝑓𝑓𝑡𝑡−𝑠𝑠

𝑞𝑞 − 𝑓𝑓̅𝑞𝑞�
2𝑁𝑁−1

𝑡𝑡=0

                                                               (2) 

Where 𝑓𝑓𝑡𝑡
𝑝𝑝 and 𝑓𝑓𝑡𝑡

𝑞𝑞 are time series values at moment t and the mean values of the 
corresponding series are indicated by 𝑓𝑓̅𝑝𝑝 and 𝑓𝑓̅𝑞𝑞. N is the length of the time series, while 𝑠𝑠 is 
specifying the delay (lag) between both time series. A DCC value that is close to 1 gives the 
indication of an increasing linear relationship, whereas a value of -1 indicates a decrease in 
the linear relationship (Lhermitte et al., 2010). In this report, the s was specified as 0 which 
means the DCC estimates time series similarity without the time shift.  
 
Using the RMSD, the straight-line inter-point distance was calculated for each corresponding 
observation date over the growing season. The RMSD is explained as: 
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𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �∑ �𝑓𝑓𝑡𝑡
𝑝𝑝 − 𝑓𝑓𝑡𝑡

𝑞𝑞�
2𝑁𝑁−1

𝑡𝑡=0

𝑁𝑁2                                                                                                 (3) 

Where 𝑓𝑓𝑡𝑡
𝑝𝑝 and 𝑓𝑓𝑡𝑡

𝑞𝑞 are time series values at moment t and N is the length of the time series. 
The same rules that are applied to DMan, DE, and DCC also applied to RMSD. A low RMSD 
value indicates a high temporal similarity between two time series in moment t, while a high 
value indicates the opposite. To calculate the RMSD between each assigned reference plot 
in section 3.3.2 with the other experimental plots, equation (3) will be applied. 

3.3.4 Plant growth alerting service (Phase 4) 

As shown in the methodology flowchart (Figure 11), the purpose of Phase 4 is to define the 
thresholds for the alerting services. The thresholds in the alerting services indicates whether 
the growth development of each experimental plot, when compared to the reference curve, 
is considered as within the control condition or not. To specify these alerting service 
thresholds, the control chart method will be used in this report. The results of the distance 
measures and correlations between two comparable time series in Phase 3 will be checked 
using the control chart theory to see whether these values lay in the acceptable area of the 
control chart or not. If the distance measures or the correlation values from Phase 3 are 
located in the area above the upper control limit or below the lower control limit, then the 
control chart will trigger alerts for the N status condition in the potato crop. This alert will 
inform the farmer of that at a specific point in time in a specific experimental plot, the 
growth pattern of the potato crop did not follow the reference curve (healthy potato) and 
needs management attention. In this report, the mean of the data will be used to construct 
the control charts. The control limits will be computed as µ+3σ (UCL) and µ-3σ (LCL), whilst 
the warning limits will be calculated as µ ± 2σ.  

Three different results will be derived from Section 4.3: a plant growth alerting service using 
the maximum yield approach for the plot level, a plant growth alerting service using the 
mean curve approach for the plot level, and a plant growth alerting service using the mean 
curve approach for the subplots level. In the subplots level, only the alerting service using 
the mean curve approach will be tested. The reason for this is that the mean curve approach 
is assumed to be the best approach for within season monitoring. 

3.3.5 Alerting services validation (Phase 5) 

The alerting services in Phase 4 will be constructed using two different reference curve 
approaches in the plot level: maximum yield and mean curve approach. Therefore, to 
validate the alerting services, both approaches will be evaluated using image based dataset 
of Geveart et al. (2015). The STR dataset is a simulated dataset from the Formosat-2 
imagery and the UAV imagery which will be used to test the accuracy of the alerting services 
for different type of spectral and spatial resolution datasets. 
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The first step in the validation phase is to generate the VI time series from the 12 
experimental plots from the STR dataset. Then the distance differences between the 
experimental plots and the potato growth reference curve (both approaches) will be 
calculated using time series similarity measures. After calculating the deviation from the 11 
experimental plots (maximum yield approach) or 12 plots (mean curve approach) to the 
reference curve, the plots that have an alert during the growing season will be investigated. 
To validate the alerting services, the yield result for the plots that have an alert will be 
compared with others to see whether they have a low yield result at the end of the growing 
season or not. In this validation, the management application (e.g., nutrient application, 
irrigation) for the experimental plots will be considered, since it might contribute to the 
potato yield end-result. Finally, to validate the alerting service using the mean curve 
approach in the subplots level, the validation subplot dataset (Figure 13) will be used in this 
phase.  
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CHAPTER 4: RESULTS 
 
4.1 Vegetation Indices for potato N status (Phase 1) 

To answer the Phase 1 main question which is defining the best VI that gives a good 
representation in estimating the potato N status over the growing season, two other 
analyses were conducted. The first analysis compared the N crop status over the growing 
season using three different measurement methods: the Dumas-combustion method, PSNC 
test or plant sap, and chlorophyll meter using Minolta SPAD-502. The second analysis was 
conducted to see the relation between plant biophysical and biochemical parameters. After 
that, regression analysis was used to find the best VI that best represents the N potato 
status. 

4.1.1 N Status comparison with different measurement methods 

N status plots comparison 

The N potato status was acquired using three measurement types: the Dumas-combustion 
method, PSNC tests and the chlorophyll meter method. The Dumas-combustion analysis 
determines the information related to fresh and dry above ground weight, dry matter 
content and total N concentration in the above ground parts. In this report, N concentration 
was selected as the N potato status that will be compared to the other two methods in the 
next step of this section. The PSNC tests were acquired for ten observation dates over the 
growing season for the 30x30 m experimental plots. However, only eight plots had the plant 
sap NO3 information from the PSNC test (A, B, C, D, E, F, G and H). The last measurement 
was conducted at the leaf level using the chlorophyll meter method. Minolta SPAD-502 was 
used to measure the N status in 24 13x30 m experimental plots for 11 observation dates 
over the growing season. Since the N status values over the growing season from all three 
measurements should be compared, the uniformity of the data was set as such: eight 30x30 
m plots (A, B, C, D, E, F, G and H) were involved and 10 observation dates were used (except 
for N concentration which only has 3 observation dates). 

All the N status values, which were generated from three different measurements, showed 
an overall decreasing pattern over the growing season. The highest N status readings were 
found in approximately 46 until 56 days after planting (DAP) for all the three methods. 
These values then smoothly decreased along the growing season in the SPAD measurement 
readings, while a more rapid decline occurred in the PSNC test values, also known as petiole 
sap NO3 values. The decreasing pattern found in the petiole sap values from the PSNC test 
over the growing season was most likely due to the depletion of soil nitrogen supply and the 
increase of the potato canopy size.  
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Figure 14: N status values over the growing season acquired from Dumas-combustion method 

 

 

 
Figure 15: N status values over the growing season acquired from chlorophyll meter (SPAD) measurement 

 
 

 
Figure 16: N status values over the growing season acquired from PSNC (Plant sap) test 

1st Fertilizer Addition 2nd Fertilizer Addition 

1st Fertilizer Addition 2nd Fertilizer Addition 

1st Fertilizer Addition 2nd Fertilizer Addition 
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The PSNC test values at the end of the growing season was relatively low: 1934 – 3267 ppm 
NO3 for plot A – D and 510 – 674 ppm NO3 for plot E – H, but these values were acceptable. 
These results show that the potato crops had sufficient nitrogen supply to meet the tuber 
yield and size distribution targets. 

The plot with the highest N fertilizer among these eight experimental plots (plot E) shows 
the delayed decline over the growing season. This shows in both the PSNC test plot (Figure 
16) and the SPAD measurement plot (Figure 15). This condition cannot be tracked down by 
the N concentration value from the Dumas-combustion method since there were only three 
observation dates available over the growing season. 

Table 5: Management decision in the experimental plots over the growing season 

 

Gradual steep decreases were found in almost all nitrate concentration readings (PSNC 
tests) from 26 June until 12 July 2013, with only plot E showing different behaviour 
(increasing value on 12 July). Similar, but less intense, decreasing patterns were also found 
in the SPAD readings for the same dates. The decrease appearing in both the SPAD and 
PNSC readings were most likely due to the potato development, while the “dry event” 
influenced the N uptake from the soil. 

As shown in Table 5, additional fertilizer was applied twice to the specific plots. The first 
additional fertilizer was applied to plot B and plot J on 5 July 2013 with the amount of 29 
and 22 kg per hectare, respectively. This fertilizer application influenced both the SPAD and 
PSNC tests on multiple readings in following measurement periods. The effects of the 
fertilizer application was shown in the nitrate concentration reading with an increasing 
value for plot B on 26 July 2013. A week after (31 July 2013), an increasing value was 
detected in the SPAD readings for experimental plot B, while the values for the eight other 
plots decreased (Figure 15). The second fertilizer application were also observed in the SPAD 
readings on 16 August 2013 (this date was not included in the plot, due to the data 
uniformity). Even though the main increase appeared a month after the application, the 
increasing values of plot A, B, C and D still appeared on 23 August 2013. Differing from the 
SPAD readings, the second fertilizer event which was applied to plot A, B, C, D, I, J, K and L, 
with the amount of fertilizer as shown in Table 2, was affecting the nitrate concentration 
readings on 31 July. Figure 16 shows an increase in the plot A, B, C and D readings for the 
measurement on 31 July 2013 which is most likely influenced by the fertilizer addition in the 
crop field. The effect of irrigation on the experimental plots still could not be found in the 
three N status plots.  
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Another difference was shown at the end of the growing season. The N concentration plots 
show that the values were relatively low with no specific difference between each of the 
plots (the values were uniformly low), while in the SPAD and PSNC test plots the values for 
each plot were more diverse. 

Relationship of different N status measurements 

The relationship between N concentrations with the other two N status measurement 
methods were done using the regression analysis of 24 samples over the growing season. As 
seen in Figure 17, the N concentration values in the beginning and at the end of the growing 
season (the only available measurement) show significant relationships to both SPAD and 
PSNC test values. These were shown by relatively high R2 values: 0.868 for the relationship 
between N concentration with SPAD values; and 0.848 for the relationship between N 
concentration and nitrate nitrogen from the PSNC test. 

 

Figure 17: Relationship between N concentration (Dumas-combustion method) with SPAD 
values (left) and with PSNC test method (right) from the measurements taken in the beginning 

and at the end of growing season. 

However, these relationships only reflected the condition of observations in the beginning 
and at the end of the growing season. As shown in Table 4, the observation dates that were 
available for the N concentration values were 14 June, 26 July and 31 July 2013. Since the 
data was not available after additional fertilizers were applied to the experimental plots, the 
effect of the fertilizer treatment could not be compared through the relationship plots in 
Figure 17.  

Figure 18 shows the relationship between the PNSC test values (nitrate nitrogen 
concentration) and the SPAD measurement. From 80 samples gathered from ten 
observation dates for eight 30x30 m experimental plots (A through H), the PSNC test values 
range from 510 to 9266 ppm NO3. The values range from 32.31 to 49.11 for the SPAD 
measurements. The R2 value of 0.75 shows that the relationship between these two 
measurement methods is moderately high. Both measurements have high N status values at 
the beginning of the growing season, but decreases over time. 



 CHAPTER IV  41

 

 

 
Figure 18: Relationship between PNSC test and SPAD values with additional explanatory variables: based 

on plots (above) and based on observation date (below) 

The SPAD values (N leaf level) were shown to be sensitive to the high nitrate concentration 
values acquired from the PSNC test, but deviated more when the nitrate concentration 
values were low. Figure 18 shows that the SPAD values were varied around 32 – 40 for the 
nitrate concentration value around 800 ppm NO3.  

There were some values that showed different behaviour from the rest of the observation 
values (the red circle). In Figure 18, the values from plot A, B, C and D were acquired on 31 
July 2013. These N status values were located away from the regression line. The values 
were high for the PSNC test and relatively low for the SPAD measurement. This behaviour 
indicates that a management application was applied to the experimental plots. Based on 
the given information in Table 5, a fertilizer application was applied to the eight 
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experimental plots (A, B, C, D, I, J, K and L) on 26 July 2013. Based on this information it can 
be concluded that the values for plot A, B C and D from the PSNC tests increased on 31 July 
due to the response from the fields initiated by the applied fertilizer application. Since the 
measurement data from the SPAD and PSNC tests were gathered on the same date, it can 
be concluded that the PSNC test is more sensitive to the N application. 

4.1.2. Relationships between crop biophysical and biochemical parameters 

Figure 19 shows the relationship between the leaf chlorophyll and the nitrate concentration 
derived from the PSNC tests with all data included in the calculation. The overall relationship 
between these two variables is relatively significant, with the coefficient of determination R2 
equal to 0.745. Since the leaf chlorophyll values were calculated from the SPAD values using 
Equation (4), then the uncommon behaviour that occurred in Figure 18 was expected in 
Figure 19. As shown in Figure 18, there was an uncommon behaviour taking place in the 
observations collected from July 31 for plot A, B, C and D. These outlier values show that the 
influence of additional fertilizer application in the specific experimental plots can be 
detected by the PSNC test as soon as one week after the application was applied. These 
values were also shown in the relationship between PSNC test values with leaf chlorophyll 
(red circle).  

 
Figure 19: Scatter plot of PSNC test (Y) and leaf chlorophyll (X) using all data from 10 observation dates 

 
Apart from that, the relationship between the PSNC test values with leaf chlorophyll 
concentration shows a better result than the relationship between the PSNC test and 
chlorophyll canopy. The coefficient of determination (R2= 0.075), as shown in Figure 20, 
clearly indicates that the relationship between the PSNC test and the chlorophyll canopy is 
significantly low. This condition might be explained by the fact that both parameters 
represent the values at different scales. The PSNC test was conducted at the leaf level, while 
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the chlorophyll canopy represents the chlorophyll content at the canopy level. Therefore, 
the relation between these two variables is insignificant. 

 
Figure 20: Scatter plot of PSNC test (Y) and canopy chlorophyll (X) using all data from 10 observation dates 

 
Figure 21 shows the relationship between the nitrate nitrogen values from the PSNC test 
and the leaf chlorophyll (g/m2) based on the date of the observations. The relationship 
between these two variables showed insignificant results at the beginning of the growing 
season (6 June – 26 June). The R2 values on 6 June and 21 June were almost close to 0. This 
was another indication that there was almost no relation between the PSNC test values with 
leaf chlorophyll at the beginning of the growing season. Conversely, the rest of the 
calculations show relatively significant results for the two variables. The most significant 
relationship between the two variables was shown on the seventh observation (17 July). On 
31 July the PSNC test was able to detect the second additional fertilizer application, which 
resulted in an insignificant relationship (p-value = 0.157) between the two variables. The 
overall relationship between the PSNC test and leaf chlorophyll can be seen from Table 6. 

The previous result shows that the relationship of the PSNC test and the canopy chlorophyll 
for all observations was insignificant (Figure 20). One of the purposes of this section is to 
find out the relationship between PSNC test values with chlorophyll canopy based on the 
date of observations. As it had been carried out (Table 6), the relationship between these 
two parameters shows insignificant results at the beginning of the growing season between 
the first and third observation. Besides those particular dates, the relationship between 
these two values over the growing season were relatively significant. Therefore, a 
recalculation was made to see the overall relationship between the PSNC test values with 
chlorophyll canopy by excluding the observations between 6 until 21 June. As shown in 
Appendix 2, the coefficient of determination still shows a relatively low value (R2 = 0.231). 
This emphasizes that the insignificant result between these two variables was caused by 
different measurement levels at the crop, not due to outlier values on specific observation 
dates. 
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Table 6: R2, S value and p-value for the relationship between PSNC test – leaf chlorophyll and PSNC 
test – Chlorophyll Canopy at each date of observations 

 

 

 
Figure 21: Relationship between PSNC test (Y) and leaf chlorophyll (X) based on the specific observation time. 
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The relationship between the PSNC test and the leaf chlorophyll based on the initial 
fertilizer applied to the experimental plots before planting is shown in Figure 22. The 
relationships between the PSNC test values and the leaf chlorophyll for all the fertilization 
levels (0, 90, 162, 252 kg N h-1) show significant results (p-value < 0.05) with moderately 
high R2 values. The highest relationship between the PSNC test and the leaf chlorophyll was 
found in the plots with an initial fertilizer level of 90 kg N h-1

, while the lowest one was the 
plots with an initial fertilizer level of 252 kg N h-1. 
 

 
Figure 22: Scatter plot of PSNC test (Y) and leaf chlorophyll (X) using all data from 10 observation dates 

 
To investigate the effects of the temporal aspects and level of initial fertilizer on the 
relationship between the PSNC test values and the leaf chlorophyll, a regression analysis 
was applied to the observed data over the growing season with the observation date and 
fertilizer level as the explanatory variables. Using Minitab 12, the coefficient of 
determination showed an increasing value (R2=0.9118). This explains that the relationship 
between the PSNC test values and the leaf chlorophyll is considered to be significant with 
the influence of two explanatory variables (fertilization level and date of observation). 

4.1.3 Relationships between VIs and chlorophyll content  

The last step of phase 1 was to identify the best VI that is able to give a good representation 
of the N status in potato crops over the growing season. To find this VI, eight VIs derived 
from Cropscan data were regressed to leaf chlorophyll content and chlorophyll canopy 
which was calculated from the SPAD measurement data.  
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Figure 23: Relationships between leaf chlorophyll (g/m2) and eight different vegetation indices 
(observations from 6 – 14 June were excluded). 
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Figure 24: Relationships between chlorophyll canopy and eight different vegetation indices 
(observations from 6 – 14 June were excluded). 
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Table 7: The summary of R2, S-Values and p-values between leaf chlorophyll or chlorophyll canopy 
with eight different vegetation indices for all observations (above) and with data exclusion 

(below). 
 

 

 

Leaf chlorophyll was selected due to its good relationship with nitrate concentration for all 
observations over the growing season, whilst the chlorophyll canopy was expected to give a 
good representative of the nitrogen status for the canopy level. A relationship analysis 
between the eight VIs and leaf chlorophyll content was done twice. The first analysis 
included all observation dates, the results of which can be seen in Appendix 3. In the second 
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analysis, the relationships were calculated without including the observations on 6 June and 
14 June 2013. The exclusion of these observations was due to the values in the beginning of 
the growing season being considered to have a different pattern than the remaining 
observations. The same regression analyses were also applied twice in calculating the 
relationships between the chlorophyll canopy and the eight vegetation indices. 

The scatter plot in Appendix 3 shows that the NDVI, EVI and WDVI were bad indices to 
determine the chlorophyll at the leaf level. These indices were easily saturated in the high 
values which made them insensitive to the crop development. The REP, CIgreen, and CIred-edge 
were also found insignificant to the leaf chlorophyll content, which can be seen from their 
low R2 values and unknown pattern in the scatter plot (Appendix 3). The low relationship 
between leaf chlorophyll and the three indices (REP, CIgreen, and CIred-edge) were suspected to 
be due to the influence of the observation on 6 June and 14 June 2013. The values from 
these dates were not following the overall pattern. The scattering points observed from 
these dates were most likely the results of tissue age and irradiance during plant growth. 
Therefore, the second regression analyses were made to analyse the relationships of the 
leaf chlorophyll with all indices without the influence of the first two observation dates. 
However, the R2 values from the second analysis show an increasing result for REP, CIgreen, 
and CIred-edge. Conversely, R2 values from the other three vegetation indices (NDVI, EVI and 
WDVI) were decreasing. Figure 23 shows that the REP, CIgreen, and CIred-edge have a linear 
relationship with the leaf chlorophyll in the second regression analysis. On the contrary, 
both the MCARI/OSAVI and TCARI/OSAVI have non-linear relationships with the leaf 
chlorophyll content, either in the first or the second regression analysis. Based on the 
summary from Table 7, the TCARI/OSAVI has the strongest relationship with leaf chlorophyll 
both in the first and the second regression analyses. The R2 and S-value for the relationship 
between the TCARI/OSAVI and leaf chlorophyll are 0.517 and 0.055, respectively (using 
exponential regression with all observations included). The R2 value and S-value for the 
relationship between the TCARI/OSAVI and leaf chlorophyll excluding the observation on 6 
June and 14 June were 0.595 and 0.0398. The MCARI/OSAVI has the second strongest 
relationship with the leaf chlorophyll. 

The same procedures were applied to find the best relationship between the chlorophyll 
canopy and the eight vegetation indices. Among the eight vegetation indices, five indices 
(EVI, WDVI, REP, CIgreen and CIred-edge) were shown to have a significant linear relationship 
with the chlorophyll canopy (Appendix 4). In the second regression analysis, most of the R2 
values increased and the S-values were smaller than in the first analysis. CIred-edge had the 
strongest relationship with the chlorophyll canopy which is shown by its relatively high R2 
(0.858) and the lowest S-value (0.4080120) compared to the other seven VIs (Table 7). The 
second best VI, both from the first and second regression analysis results, was CIgreen.  

The exclusion of the observation on 6 June and 14 June 2013 changed the R2 values, but it 
did not change the results of the best VI for both the leaf chlorophyll and the chlorophyll 
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canopy. The VI that had the strongest relationship with the leaf chlorophyll or chlorophyll 
canopy will be used in the next phase to generate the reference curve for potato growth. In 
this report, the TCARI/OSAVI showed the strongest relationship with leaf chlorophyll, whilst 
CIred-edge showed the strongest relationship towards chlorophyll canopy. Therefore, these 
two VIs will be used in further phases. 

4.2 Optimal growth curve for potato crop (Phase 2) 

Based on the result from Phase 1, the TCARI/OSAVI and CIred-edge were proven to give a good 
representation of the N potato status in the leaf and canopy level respectively. Therefore, 
the values from these two indices will be used to construct the optimal growth curve, also 
known as a reference curve, over the growing season. In this phase, the reference curve will 
be calculated using two different approaches: the maximum yield and the mean curve 
approach. In the beginning of the research, an optimum quality approach was considered as 
one of the methods to generate the reference curve. The optimum quality of the potato is 
the equilibrium point which meets the best value of the yield harvester and the potato’s 
under water weight (OWG). However, the available OWG data are only available for 8 
experimental plots (Table 8). Therefore, the optimum quality approach was taken out from 
this research report. 

The two reference curves from this phase (based on the maximum yield and the mean curve 
approach) will be used in Phase 3 as reference curves to calculate the difference (deviation) 
between each experimental plot for the TCARI/OSAVI and CIred-edge using similarity 
measures. However, only the mean curve approach will be used in Phase 3 to perform the 
similarity measures in the subplots level. The difference of each experimental plot curve or 
subplot curve compared to the reference curve will give appropriate information to the 
farmer regarding potato growth development. 

4.2.1 Maximum yield approach 

The maximum yield approach was selected as one of the reference curve construction 
approaches due to that its results are normally expected at the end of the growing season. 
Based on the yield harvester map in Appendix 5, the average yield harvester values for each 
experimental plot were calculated using R and ArcMap 10.2 (the tractor path was excluded 
from the calculation). As shown in Table 8, the maximum yield was produced by Plot C 
(73,887.89 kg/ha). Therefore, Plot C will be used as the reference curve based on the 
maximum yield approach.  

In section 4.3.1, the TCARI/OSAVI and CIred-edge values over the growing season from each 
experimental plot will be compared to the values from Plot C. The deviation or the 
difference between each plot from its reference plot (Plot C) will be calculated using 
similarity measures for time series analysis as explained in section 3.3.3. Experimental plots 
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plot that have a growth problem are expected to deviate far from the reference plot over 
the growing season. 

Table 8: Yield harvester for 12 experimental plots 

  
Note: 1 ton/ha = 907.18474 kg/ha (Source: Google). OWG= Potato’s Under Water Weight. 
OWG represents the quality of the potato. 

 
4.2.2 Mean curve approach 

As seen in Figure 13, the reference curve based on the mean curve approach was 
established by calculating the average value from 24 experimental subplots on each 
observation date. 

 
Figure 25: Reference curve based on the mean curve approach design (left). Calibration and validation subplot 

dataset design (right). 
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Figure 26: Optimum growth curve for potato using CIred-edge (top). Optimum growth curve for potato using TCARI/OSAVI 

(down). Optimum growth curve with highest yield approach (green plot) and mean curve approach (blue plot). 

In section 4.3.2, the TCARI/OSAVI and CIred-edge values over the growing season from 12 
experimental plots (A through L) will be compared to the reference curve from the mean 
curve approach (Figure 26). The mean curve approach will also be used in section 4.3.3 to 
perform similarity measures on the subplots level using 12 experimental subplots from the 
calibration dataset (Figure 25). The deviation or the distance difference between each plot 
and subplot from the reference plot will be calculated using similarity measures for time 
series analysis as explained in section 3.3.3.  

4.3 Time series similarity measures for deviation detection (Phase 3) 

Performing similarity measures to the temporal series of VIs from the experimental plots is 
an important phase when deriving the alerting service. The two different reference curves 
which was established during Phase 2 were simulated as the optimum potato growth curve. 
For Phase 3 four different time series similarity measures were conducted to calculate the 
distance difference between each experimental plot and subplot relative to the reference 
curve. Since there are two reference curve approaches, the analysis at the experimental 
plots level (i.e.: plot A, B, C) will be explained for each approach (Section 4.3.1 and Section 
4.3.2), while the analysis at the subplots level (i.e.: plot AR, BL or CR) will be made using the 
mean curve approach (Section 4.3.3). Plots or subplots that have severe differences or 
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deviations from the reference plot are assumed to experience growth related issues due to 
the improper amount of N in the crops. To derive the alerting service, the distance values 
established during this phase will be plotted in the next phase by using the control chart 
theory. 

4.3.1 Similarity measures using maximum yield approach in the plot level 

There were four similarity measures (DMan, DE, DCC, and RMSD) evaluated in this phase to 
investigate whether the four distinct initial fertilization levels applied to the experimental 
plots resulted in a significant temporal profile difference. Two VIs (CIred-edge and 
TCARI/OSAVI) were used as the time series input data. The CIred-edge values were used in the 
similarity measures as the representation of the N status in the canopy level whilst the 
TCARI/OSAVI was assumed to give a good representation of the N status at the leaf level. 
Therefore, the analysis was done separately. 

CIred-edge (N status indicator in the canopy level) 
Appendix 6 and Figure 27 show the results of the time series similarity measures using the 
Manhattan distance (DMan) and the Euclidean distance (DE), where both measures were 
derived from the Minkowski distance. There were relatively small differences detected 
between the CIred-edge values from the reference plot (Plot C) compared with the other 11 
experimental plots in the beginning of the growing season (Appendix 6). However, each plot 
started to deviate away from the reference curve along with the crop development over the 
growing season. This was indicated by the increase of the DMan values starting from the 
fourth observation (26 June 2013). The highest deviation differences were clearly seen from 
the plots with an initial fertilization level of 0 kg N h-1. Starting from the fourth observation 
(26 June 2013), plots with an initial fertilizer level of 0 kg N h-1 (plot F, J, and B) were 
deviating away from the reference plot. The sudden increase in the distance difference from 
these plots occurred on the sixth observation (12 July 2013). The distance values for plot F, 
J, and B were relatively similar at the 5th and 6th observation. However, at the end of the 
growing season, plot F had the highest deviation distance to the reference plot, followed by 
plot J and H. As shown in the case by DMan, plot F had the highest distance value. This was 
due to the two additional fertilizer applications that was applied to plot J and B on 5th and 
18th of July. Furthermore, the additional fertilizer applications caused difference reductions 
for plot J and B. As a consequence, plot B and J show a less deviating curve compared with 
plot F at the end of the growing season. 

It was expected that the distances between the plots compared to their reference plot (Plot 
C) would depend on their fertilization levels at the beginning of the growing season. Based 
on the same initial fertilizer level (252 kg N h-1) plot A, E, and I were expected to have 
closely related DMan values over the growing season. However, plot E showed close 
distances to reference plot on the first five observations (6 June – 5 July), whilst plot A and I 
deviated slightly from the reference plot.  
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Figure 27: CIred-edge time series similarity measures using Euclidean Distance method. Plot C was assigned as the reference plot (maximum yield approach). The X-axis shows weekly 

observations over the growing season. The Y-axis shows the Euclidean distance between the experimental plots and the reference plot (Plot C) for each observation date. 
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At the end of the growing season, the distance order was changed due to the additional 
fertilizer applied to plot A and I on 18 July 2013. Plot A and I deviated less from the 
reference curve compared to plot E at the end of the growing season. As for plot G and K, 
these deviated moderately from plot C in the beginning of the growing season. Even though 
they had a similar initial fertilization level (162 kg N ha-1) with reference plot C, the two 
plots showed a different growth pattern with this plot from 6 June until 5 July 2013. 
However, starting from the sixth observation, plot G and K had the least distance (a more 
similar growth pattern) from plot C as expected.  

The time series similarity measures using DE shows a better illustration of the crop condition 
over the growing season (Figure 27). Differing from DMan, DE was able to capture the 
distance variations from each plot starting from the first observation. Even though the order 
of the distance was not based on the initial fertilizer level, the DE values clearly show that 
each plot performs slightly different from the reference plot on the first observation on 6 
June 2013. The distances for plot B, F and J from the reference plot C increased significantly 
on the fourth observation (26 June 2013). It is clearly seen that plots with an initial fertilizer 
level of 0 kg N h-1 did not perform as well with plots that received initial fertilizers. To pursue 
the ideal crop development, which is indicated by a small distance difference to the 
reference plot, the first additional fertilizer were applied to plot B and J with amounts of  29 
kg N h-1 and 22 kg N h-1 respectively on 5 July 2013. The second additional fertilizer was 
applied on 18 July 2013 to plot B and J. However, these two plots were unable to keep up 
with an optimal crop development. This resulted in the high distance differences between 
reference plot C with plot B and J at the end of the growing season. The significant distance 
difference of plot B, F and J to its reference curve were positively related with the yield 
production data in Table 8. Based on Table 8, these three plots produced the lowest yield at 
the end of the growing season.  

The order of the distance difference for all the plots at the end of the growing season were 
well explained by DE measure. Based on the information of management activities in Table 
2, there were additional fertilizer applications applied to eight plots (A, B, C, D, I, J, K and L) 
on 18 July 2013. The effect of the fertilizer applications can be clearly seen in Figure 27. At 
the end of the growing season, the plots that did not get an additional fertilizer application 
(E, F, G and H) on 18 July 2013 show higher deviation from the reference plot compared 
with the other plots in the same initial fertilization group. As an example, plot H had a 
higher distance difference compared with the other two plots in its group (plot D and plot L) 
which had the same initial fertilization level of 90 kg N h-1.  

Appendix 7 shows the result of the time series similarity measures using the correlation 
coefficient distance (DCC). Differing from the other three similarity measures used in this 
report (DMan, DE and RMSD), DCC values ranged from 1 to -1. A DCC value that is close to 1 
gives an indication of an increasing linear relationship, whereas a value of -1 indicates a 
decrease in the linear relationship (Lhermitte et al., 2010). In the beginning of the growing 
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season (06 June 2013), all plots showed linear relationships to the reference plot C. Starting 
from the third observation (21 June 2013), plot F had a decreasing relationship with the 
reference plot C, but showed improvements starting from the fifth observation. At the end 
of the growing season, plot F had a relatively good relation with plot C. This result was quite 
opposite with the result from the other three similarity measures, where plot F had a 
relatively high difference with plot C at the end of the growing season. Plot B and J started 
to decrease on the sixth observation (12 July 2013) and kept decreasing until the end of the 
growing season. On 26 July 2013 (the 8th observation), the plots were mainly formed into 
three groups. The first group consisted of plot D, G, A and I (all of which have the closest 
positive relationship with reference plot C). The second group consisted of plot F, K, L and E; 
and the last group consisted of plot B, J and H. The order of the plots in terms of the 
distance difference from the reference plot was slightly different from the other three 
similarity measure methods. The most distinct difference between the DCC approach and the 
other three distance measures was that DCC was not able to detect plot F as one of the most 
deviating plots from reference plot C. The result of the time series similarity measure using 
the Root Mean Square Distance (RMSD) method can be seen in Appendix 8. RMSD was able 
to detect crop development changes for each plot based on the different initial fertilizer 
levels and management activities (additional fertilizer application and irrigation). Similar 
with DE, the RMSD method was able to detect the distance variability of all plots starting 
from the first observation. The order of the RMSD distance difference between the plots 
and reference plot C throughout the growing season were similar to the Euclidean distance. 
The effects of the additional fertilizer application applied to the eight experimental plots on 
18 July 2013 were also visible in the end of growing season.  
 
TCARI/OSAVI (N status indicator in the leaf level) 

As described in the beginning of section 4.3, the time series similarity measures would be 
carried out two times by using the CIred-edge and TCARI/OSAVI time series data. Appendix 9 
shows the time series similarity measure performed using DMan. The DMan differences 
between the 11 experimental plots to the reference plot C were relatively small in the 
beginning of the growing season. In the case of DE and RMSD, the distance differences were 
more significant in the beginning of the growing season (Figure 28 and Appendix 9). Since 
the four distinct initial fertilizers were applied to the soil during the planting time, the clear 
distance differences from each plot were expected to start from the first observation (6 
June 2013). Based on the distance difference clear illustration given in the beginning of the 
growing season, DE and RMSD were more suitable to characterize the growth status over 
the growing season. Differing from the results of the similarity measures using the CIred-edge 
time series, Plot F and J did not appear to have the highest distance differences with the 
reference plot C at the fourth observation using the TCARI/OSAVI time series data. Figure 28 
shows that starting from the third observation (21 June 2013); plot A, plot B, plot E and plot 
K had the highest distance differences compared to the reference plot C.  
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Figure 28: TCARI/OSAVI time series similarity measures using Euclidean Distance method. Plot C was assigned as the reference plot (maximum yield approach). The X-axis shows weekly 

observations over the growing season. The Y-axis shows the Euclidean distance difference between the experimental plots and the reference plot (Plot C) for each observation date.
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The high deviation values between plot A, B, E and K compared to the reference plot C 
continued until the end of the growing season. The same pattern was found using the DCC 
method (Appendix 9). As seen in Appendix 9, the correlation between plot F, B and K to the 
reference plot C started to decrease as early as on the second observation date (14 June 
2013). However, the relation between plot K and reference plot C started to improve on the 
ninth observation date. The correlation between plot E and the reference plot C decreased 
steeply on the seventh observation date (17 July 2013). On the sixth observation date a 
steep decrease also occurred for plot B.  

The plots that had similar TCARI/OSAVI values with the reference plot C in the beginning of 
the growing season were plot H, K and F (Figure 28). However, plot L started to deviate 
away from the reference plot on the fifth observation (5 July 2013), whilst plot H started to 
deviate at the end of the growing season. The effects of the additional fertilizer application 
on 5 July 2013 applied to plot B and J was not seen in the similarity measures using DE. 
However, on the eight observation date (26 July 2013) they could be slightly seen using the 
DCC method. On the eight observation and onwards, Plot E, F, G, and H clearly showed sharp 
deviations from the other plots as an effect from the additional fertilizer application applied 
on 18 July 2013. Even though TCARI/OSAVI was assigned as the best representative VI for 
leaf chlorophyll (R2=0517), this VI did not perform as well as CIred-edge. This fact was proven 
by the inability of the TCARI/OSAVI to detect the high deviation of plot F and J as the CIred-

edge did. The TCARI/OSAVI also detected high distance values from plots that had a relatively 
high initial fertilizer level, such as plot K. This information may indicate that the 
TCARI/OSAVI could possibly lead to false alerts in Section 4.4.  

4.3.2 Similarity measures using mean curve approach in the plot level 

The second similarity measures were applied using the mean curve approach. Instead of 
choosing one of the experimental plots as the reference plot, this method calculated the 
average (mean value) from all 24 experimental subplots (Figure 13) for each observation 
date to construct it. Based on the explanation in section 4.2.2, the 12 experimental plots 
were compared to the mean curve (reference plot) using four similarity measure methods 
(DMan, DE, DCC, and RMSD). In section 4.4, the distance values from these 12 experimental 
plots will be used to set up the control limits in the control chart. At the end, the approach 
to generate the control limits (the thresholds of alerting service) will be tested using the 
same 12 experimental plots from the STR datasets. 

Mean curve approach with CIred-edge time series data 

Figure 29 shows the time series similarity measures performed with DE for the 12 
experimental plots (A, B, C, D, E, F, G, H, I, J, K, and L). Similar with the previous analysis 
using the maximum yield approach in section 4.3.1, DE and RMSD were able to detect the 
distance differences variability in the beginning of the growing season (6 June 2013), while 
the results from the DMan approach showed relatively similar distance values from all plots 
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on 6 June (Appendix 10). Plot J and F (initial fertilizer of 0 kg N ha-1) deviated significantly 
from the reference plot starting from the fourth observation (26 June 2013), whilst with 
DMan, these two plots started to deviate significantly on the fifth observation (5 July 2013). 
However, even though DMan performed slightly worse than RMSD and DE in the beginning of 
the growing season, the range of the distance difference values were bigger (0 – 3.5) than DE 
(0 – 1.2) or RMSD (0 – 0.20). Differing from the result using the maximum yield approach 
(Figure 27), plot B (initial fertilizer level of 0 kg N ha-1) did not deviate significantly from the 
reference plot on the second observation (14 June 2013). On the contrary, Plot C (initial 
fertilizer of 162 kg N ha-1) deviated the most from the reference plot on the second 
observation. However, Plot C started to perform better from the fifth observation (5 July 
2013) and onwards. This development was most likely due to the additional fertilizer of 50.2 
kg N ha-1 applied to plot C on 18 July 2013. As the crops in plot C reacted to the fertilizer 
application the distance differences to the reference plot started to decrease from 26 July 
2013 and onwards.  

In the previous result (Figure 27), plot A performed generally well against the reference plot 
C with the maximum yield approach. Even though the crop development in plot A was not 
completely similar to the reference plot C, the distance differences between plot A and the 
reference plot C were relatively low over the growing season. The time series similarity 
measure performed by DE showed a different result: Plot A was significantly deviating from 
the reference plot starting from the fifth observation (Figure 29). On that observation date 
(5 July 2013), the distance difference of plot A from the reference plot was even higher than 
plot B (initial fertilizer of 0 kg N ha-1). However, plot A performed slightly better after the 
fertilizer application applied on 18 July 2013. Plots with an initial fertilizer of 162 kg N ha-1 
(plot C, G, and K) showed relatively similar crop developments with the reference curve over 
the growing season; their DE values or RMSD were relatively low over the temporal 
development (Figure 29 and Appendix 10). The effects of the second fertilizer application 
(18 July 2013) were clearly seen in the plots with an initial fertilizer of 90 kg N ha-1. On the 
ninth observation and onwards, plot H deviated away from the reference plot. This is shown 
by the high distance difference from plot H to the reference plot on 31 July 2013 and 
onwards; whilst the distance difference values of plot D and L were relatively much lower 
than plot H.  

The time series similarity measures performed by DCC can be seen in Appendix 10. DCC was 
able to emphasize low relationships between two plots with an initial fertilizer of 0 kgNha-1 
(Plot F and B) to the reference plot. As we can see in Appendix 10, the relationship of plot F 
and B to the reference plot started to significantly decrease on the second observation date 
(14 June 2013) until the end of the growing season, while the other plot with an initial 
fertilizer of 0 kg N ha-1, plot J, had a good relationship with the reference plot until the 
fourth observation. However, this similarity measure was not clearly able to detect the 
expected decrease in the relationship between plot H and the reference plot.  
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Figure 29: CIred-edge time series similarity measures using Euclidean Distance method for the plot level. Mean curve was assigned as the reference plot. The X-axis shows weekly 

observations over the growing season. The Y-axis shows the Euclidean distance between the experimental plots and the reference plot for each observation date. 
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Figure 30: TCARI/OSAVI time series similarity measures using Euclidean Distance method for the plot level. Mean curve was assigned as the reference plot. The X-axis shows weekly 

observations over the growing season. The Y-axis shows the Euclidean distance between the experimental plots and the reference plot for each observation date. 
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Mean curve approach with TCARI/OSAVI time series data 

Figure 30 shows the time series similarity measure performed with DE using the mean curve 
approach as the reference curve. This approach gave essentially the same portrait as the 
one given by the maximum yield approach (Figure 28). The TCARI/OSAVI was not precisely 
able to differentiate the growth development of the experimental plots based on the initial 
fertilizer level. This can be seen from the time series similarity measures in Figure 30 and 
Appendix 11. From Figure 30, we can see that the distance difference values from the plots 
with an initial fertilizer of 0 kgNha-1 (plot B, plot F, and plot J) were not located close to each 
other; there were no specific deviation pattern. These three plots were expected to have 
approximately similar distances from the reference plot. However, the TCARI/OSAVI was 
only able to detect the growth problem, which was indicated by the high distance difference 
values, from plot B; whilst plot F’s distance difference values were relatively low over the 
growing season. This pointed out one of the evidences that TCARI/OSAVI was not able to 
perform a good potato growth detection.  
 
4.3.3 Similarity measures using mean curve approach in the subplots level 

For the subplots level, the similarity measures were applied to both the CIred-edge and 
TCARI/OSAVI time series using the mean curve approach as the reference plot. Based on the 
explanation in section 4.2.2, the 12 experimental subplots from the calibration dataset (plot 
AL, BR, CL, DL, ER, FR, GR, HL, IL, JR, KL, and LR) were compared to the mean curve 
(reference plot) using the four similarity measure methods (DMan, DE, DCC, and RMSD). Later, 
in section 4.4.3, the distance values from these 12 experimental subplots will be used to set 
up the control limits in the control chart. At the end, the approach to generate the control 
limits (the thresholds of the alerting service) will be tested in Section 4.5.3 with another 12 
experimental subplots from the validation dataset (plot AR, BL, CR, DR, EL, FL, GL, HR, IR, JL, 
KR, and LL). 

Mean curve approach with CIred-edge time series data 

Figure 31 shows the time series similarity measures performed by DE for the 12 chosen 
subplots (AL, BR, CL, DL, ER, FR, GR, HL, IL, JR, KL, and LR). Similar with the previous analysis 
using the maximum yield approach in section 4.3.1, DE and RMSD were able to detect the 
distance differences variability in the beginning of the growing season (6 June 2013), while 
the results from the DMan approach showed relatively similar distance values from all plots 
on 6 June (Appendix 12).  

Plot FR (initial fertilizer of 0 kg N ha-1) started to deviate away from the reference curve on 
the fourth observation until the end of the growing season. The other two subplots with 
similar initial fertilizers, plot BR and plot JR, deviated significantly from the reference plot 
starting from the sixth observation (Figure 29). Differing from the results shown in Section 
4.3.1, plot AL, the left side of plot A, showed high distance difference values from the 
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reference plot starting from 5 July until the end of the growing season. This result was not a 
form of false detection from the Euclidean measure approach. Yet, the result was related to 
the underdevelopment of plot AL which was proven by the low yield production at the end 
of the growing season (Appendix 5). On the ninth observation (31 July 2013), there were 
two distinct groups seen in Figure 29: group one consisted of plot LR, IL, GR, CL, KL, and DL; 
while the second group consisted of plot ER, BR, JR, HL, AL and FR. The effects of the 
additional fertilizer application were slightly visible with the DE and RMSD approach. As an 
example: plot DL and LR showed smaller deviations to reference plot compared with plot HL 
starting from 31 July 2013 (2 weeks after the additional fertilizer application was applied). 

 
Figure 31: CIred-edge time series similarity measures using Euclidean Distance method for the subplot level. Mean curve 

was assigned as the reference plot. The X-axis shows weekly observations over the growing season. The Y-axis shows the 
Euclidean distance between the experimental plots and the reference plot for each observation date. 

The time series similarity measure performed with DCC can be seen in Appendix 12. In the 
beginning of the growing season, all twelve subplots show linear relationships to the 
reference plot (the mean curve approach). On the sixth observation date (12 July 2013), the 
relationship between plot JR and the reference plot decreased and continued over the 
temporal development. On the same observation date a major decrease was also found in 
the relationship between plot BR and the reference plot. However, the DCC method could 
not detect the expected decrease in the relationship between plot FR and the reference plot 
as DE and RMSD did. This draws the conclusion that DE and RMSD are the best similarity 
measures to detect the difference between each plot to the reference plot (both 
approaches). 
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Mean curve approach with TCARI/OSAVI time series data 

In Section 4.3.1, we saw that performing time series similarity measures on the 
TCARI/OSAVI time series data gave undesired results. Differing from the results using the 
CIred-edge data, some plots that had a low initial fertilizer level did not significantly deviate 
from the reference plot C (the maximum yield approach) as expected. In this section, four 
similarity measures were performed on the TCARI/OSAVI data from 12 subplots (AL, BR, CL, 
DL, ER, FR, GR, HL, IL, JR, KL, and LR).  

 
Figure 32: TCARI/OSAVI time series similarity measures using Euclidean Distance method for the subplot level. Mean 
curve was assigned as the reference plot. The X-axis shows weekly observations over the growing season. The Y-axis 

shows the Euclidean distance between the experimental plots and the reference plot for each observation date. 

Figure 32 shows the time series similarity measures performed with DE. In the beginning of 
the growing season, the distance difference from plot FR (initial fertilizer of 0 kg N ha-1) to 
the reference plot was relatively high. Over the temporal development, the distance 
difference values showed significant improvements: plot FR did not deviate much from the 
reference plot, starting from the sixth observation until the end of the growing season. 
Similar with plot FR, the distance differences of plot JR (initial fertilizer of 0 kg N ha-1) to the 
reference plot were relatively medium over the growing season and considered as low at 
the end of the growing season. These results, once again, show the inability of TCARI/OSAVI 
to represent the potato growth condition. The plots that should have deviated away from 
the reference plot (i.e.: FR and JR) did not perform as they were supposed to, whilst the plot 
that had a high initial fertilizer level (i.e.: plot KL) tended to have highly deviating values 
from the reference plot starting from the fifth observation (Appendix 13). 
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4.4 Plant growth alerting service using control chart theory (Phase 4) 

In this phase, the statistical control charts theory was used to determine the plant growth 
alerting service. Based on the theory of control charts, a set of thresholds was constructed 
to detect a so called “out of control process”. In this report, the control limits of the control 
chart were computed as µ + 3σ (UCL) and µ - 3σ (LCL), whilst the warning limits were 
calculated as µ ± 2σ (UWL and LWL). Several dataset combinations were tested to find the 
best observation date for constructing the control chart thresholds (limits). There were 
three main different alerting services constructed in this section: an alerting service based 
on the maximum yield approach for the plot level, an alerting service based on the mean 
curve approach for the plot level and an alerting service based on the mean curve approach 
for the subplot level. Therefore, the results from each alerting service are shown separately. 

4.4.1 Plant growth alerting service for maximum yield approach (Plot level) 

Time series data from two VIs were used in the previous section to calculate the distance 
difference between each plot to the reference plot. Because of this, two control charts were 
established in this section: a control chart that was based on the distance values from the 
CIred-edge time series data and one that was based on the distance values from the 
TCARI/OSAVI time series data. Based on the analysis in Section 4.3, there were two similarity 
measures that represented the growth deviation detection of each plot compared to the 
reference plot the best over the growing season: DE and RMSD. However, DE was not used 
to generate the alerting service in this section. 

4.4.1.1 Alerting service for Euclidean distance values from CIred-edge time series 

Figure 33 shows the alerting service for the first six observation dates using DE values with 
control chart theory. The DE values from the first four observation dates (6 June, 14 June, 21 
June and 26 June) were used to construct the thresholds (limits) of the control charts. The 
yellow lines in Figure 33 and Figure 34 indicate the warning limits which were calculated 
using µ ± 2σ; whilst the red lines (UCL and LCL) were calculated using µ ± 3σ. Distance values 
from the plots that were located above the upper warning limit or below the lower warning 
limit would receive an alert. The alert would then be considered as growth problem 
indication within the experimental plot. If the distance value from a plot was located above 
the upper the UCL or below the LCL, then the plot would be classified as “out of control”.  
 
With the thresholds constructed from the first four observations, control charts from 6 June 
until 21 June 2013 show that all plots were in control (Figure 33). Starting from 26 June, the 
control charts show that plot B, F and J (yellow dots) were located above the Upper Warning 
Limit (UWL). This shows that these plots started to deviate away from the reference plot at 
this date, thus triggering the alert state. On the next observation (7 July 2103), Plot F and J 
entered the out of control state, while plot B was still at the warning state. 
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Figure 33: Control charts of the first six observations date which show the status of each plot (Constructed using Python Programming Language). The black line indicates control line (CL), 
yellow lines indicate warning limits (UWL&LWL) and red lines indicate control limits (UCL&LCL). First 4 observations (6 June, 14 June, 21 June and 26 June) are used as calibration dataset. 
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Table 9: Alert service for 11 experimental plots at each specific observation date using Euclidean 
distance values (from CIred-edge data). Green indicates plot is under control, yellow means plot is 
in “alert” state (above 2σ from the mean) and red indicates that the plot is out of control (above 

3σ from the mean). 

 

 
Figure 34: Control chart for all plots together over the growing season (constructed using Minitab 17). The black line 

indicates control line (CL), yellow lines indicate warning limits (UWL&LWL) and red lines indicate control limits 
(UCL&LCL). The first 4 observations (6 June, 14 June, 21 June and 26 June) are used as calibration dataset. 

As shown in Figure 33, the thresholds from the control chart concept were able to 
determine the status for every experimental plot on each specific observation date. The 
control chart approach enables the ability to determine which plots are close to or far from 
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the reference plot. In that sense, the plots that are far from the reference plot at some point 
(over the thresholds) will trigger an alert and an appropriate management action should be 
initiated thereafter. The alerting service summary (from both Figure 33 and Figure 34) for all 
experimental plots over the growing season can be seen in Table 9. Green circles represent 
plots that are within the acceptable areas (in control condition). Yellow circles represent 
plots in the alert state (above 2σ from the mean), while red circles represent an out of 
control state (above 3σ from the mean). 

Table 10: The order of yield harvester (from highest to lowest) 

 

Table 9 shows that plots B, F and J were in the alerting state starting from the fourth 
observation (26 June). Plot F and J were assigned as out of control states starting from the 
fifth observation until the end of the growing season; whilst plot B started to be in out of 
control state at 12 July 2013 (sixth observation). The purpose of the alerting service was to 
detect plots with growth problems indicated by high distance differences to the reference 
plot. These plots were then expected to produce low yields at the end of the growing season 
if no management application was applied. To prove whether the alerting service using the 
control chart theory worked properly, the status of three plots (plot B, F and J) were cross-
checked with the yield harvester data in Table 10. Table 10 shows that these three plots 
(plot B, F and J) were producing low amounts of yield at the end of the growing season. Plot 
H, which was in an alert state starting from the sixth observation, also produced low yields 
at the end of the growing season (Table 10). This proves that the alerting service with 
threshold values (UWL, LWL, UCL and LCL) constructed from the first four observation dates 
worked properly.  

However, this alerting service (Table 9) could not detect the changes in the plots with 
management applications interference, for example: the additional fertilizer on 5 July and 
18 July did not change the state of the experimental plots. This was due to the use of DE 
(Equation 7): a cumulative calculation was applied to all iterations following the first one. As 
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a consequence, an increasing trend appeared in the DE data series (Figure 35) which lead to 
the inability of the alerting service to detect management applications.  

 
Figure 35: Trend analysis for Euclidean distance value over the growing season (top) and 

control chart over the growing season using residual data from de-trended process (down) 

Two actions were initiated to solve the problem: (1) the de-trended DE values were used to 
construct the control charts and (2) the DE values were used to construct the control charts 
with the cumulative thresholds method applied to each observation date. To initiate the 
first action, the data was de-trended and the trend influence were taken out from the DE  
data series before constructing the control charts. Next, the residual data series (the de-
trended data) were used to perform the control chart approach. In this report, the control 
chart thresholds were constructed from the first four observation dates (Figure 35). Table 
11 (top) shows the alerting service summary for all plots over the growing season using the 
de-trended approach. Differing from the alerting service without de-trending process, this 
alerting service was able to track the influence of the fertilizer application. The effects of the 
first and second additional fertilizer application on specific experimental plots can be seen 
on the alerting service: the alert state of plot B was changed to normal state on 31 July 2013 
after the additional fertilizer was applied. However, this method was unreliable to get within 
season detection. The trend pattern was only possible to calculate after all the observations 



 CHAPTER IV  70

 

were collected. In other words, the detection could only be made at the end of the growing 
season. Therefore, this method was more suitable for the evaluation process than the 
detection phase. 

The second solution used the cumulative thresholds method for each observation date. For 
example, the data from the first observation date were used to construct the thresholds for 
the first control chart (6 June 2013). For the second control chart (14 June 2013), data from 
the first and second observation date were used to construct the control chart threshold. 
This method made the thresholds shift for each observation date, which followed the trend 
pattern in the data. 

Table 11: Alert service for 11 experimental plots at each specific observation date using de-trended 
data from Euclidean distance values (top); and using Euclidean distance values with cumulative 

thresholds method (bottom). 

 

 

Appendix 14 shows the control charts for the first eight observation dates with thresholds 
that changed over the temporal development. The summary of the alerting service which 
performed the cumulative threshold method can be seen in Table 11 (bottom). Similar with 
the de-trended method, this method was unable to give fast alert detections and insensitive 
to detect growth problems in plots with a medium amount of initial fertilizer (for example: 
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90 kg N ha-1). As seen in Table 10, plot H (initial fertilizer of 90 kgNha-1) was producing the 
second lowest yield at the end of the growing season. However, this plot was categorized as 
an alert at the end of the growing season, which made it impossible to initiate any 
management actions and fix the growth problem (Table 11).  Based on these results, the 
best way to construct the alerting service is using the DE data series where the control chart 
thresholds are calculated from the first four observations. 

4.4.1.2 Alerting service for Euclidean distance values from TCARI/OSAVI time series 

As it was emphasized in Section 4.3.1, the TCARI/OSAVI was not able to represent the 
potato growth condition. In the time series similarity measures performed in that section, 
the TCARI/OSAVI data did not give expected results. For example: the plots that should have 
deviated away from the reference plot (i.e.: F and J) did not perform as expected, whilst the 
plots that had a high initial fertilizer level (i.e.: plot K) tended to deviate highly from the 
reference plot starting from the fifth observation (5 July 2013). These unexpected findings 
influenced the alerting service results. Appendix 15 shows the control charts for the first six 
observations using TCARI/OSAVI Euclidean distance data series with thresholds generated 
from the first four observation dates.  

Table 12: Alerting service for 11 experimental plots at each specific 
observation date using TCARI/OSAVI Euclidean distance data series 

 

As we can see from the alerting service summary (Table 12), alerts started to appear for plot 
A and K from the fifth observation date (5 July 2013). On the following observation, another 
two plots (plot B and E) triggered alerts. Since plot A and K were supposed to have good 
growth conditions, the alerts for these were considered as “false alarms”. Plots that should 
have gotten alerts early on, such as plot F and plot J, did not start to trigger alerts before on 
the seventh observation date. The alerting service using the TCARI/OSAVI data was not 
completely ineffective, but half of the results ended up triggering false alarms. Therefore, 
the alerting service in this report performed better using the results generated from DE or 
RMSD using the CIred-edge data series.  
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4.4.2 Plant growth alerting service for mean curve approach (Plot level) 

Based on the DE measure executed by the within season alerting service using the mean 
curve approach in Section 4.3.2, the alerting service for the mean curve approach at the plot 
level was carried out in this section. 

Table 13: Alerting service for 12 experimental plots using CIred-edge Euclidean distance 
data series with mean curve approach. 

 

The alerting service was initiated to check the plant growth development for the 12 
experimental plots over the growing season. The observation dates from 6 June until 5 July 
2013) were used to calculate the control chart thresholds (UCL, UWL, LWL and LCL).  From 
Table 13 we can see that plot F and plot J were in the out of control state starting from the 
fifth observation (5 July 2013) until the end of the growing season. While plot B triggered a 
warning alert on the sixth observation (12 July 2013), plot A and E started to be in the out of 
control state at the same time. On 26 July 2013, both plot I and L triggered alerts which 
continued until the end of the growing season.  

The major difference between the results from Table 12 and Table 13 is that plot A was in an 
out of control state starting from 12 July 2013 until the end of the growing season using the 
mean curve approach, while the results using the maximum yield approach did not show 
this behaviour. However, the alerting service using the mean curve approach was able to 
detect the warning state from the potato growth over the growing season even though the 
accumulation effects were inevitable.  

4.4.3 Plant growth alerting service for mean curve approach (Subplot level) 

The time series similarity measures that were performed in Section 4.3.3 used the CIred-edge 
time series data with the reference plot taken from the mean curve approach. In this 
section, the alerting service was initiated to check the plant growth development for the 
subplots from the calibration dataset (Plot AL, BR, CL, DL, ER, FR, GR, HL, IL, JR, KL, and LR) 
using the best time series similarity measure (DE) data series. 
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Table 14: Alerting service for 12 experimental subplots using CIred-edge 
Euclidean distance data series with mean curve approach 

 

 
Figure 36: Control charts of the first six observations date which show the status of each subplot (Constructed using 

Python Programming Language). The black line indicates control line (CL), yellow lines indicate warning limits 
(UWL&LWL) and red lines indicate control limits (UCL&LCL). First 5 observations (6 June, 14 June, 21 June, 26 June and 5 

July) were used as calibration dataset. 



 CHAPTER IV  74

 

Figure 36 shows the control charts for the 12 experimental subplots from the first six 
observation dates (6 June – 12 July) based on the DE values. The observation dates from 6 
June until 5 July 2013) were used to calculate the control chart thresholds (UCL, UWL, LWL 
and LCL). The summary of the control chart results can be seen in Table 14. From Table 14, 
we can see that plot FR was in the alert state starting from the fourth observation (26 June 
2013). On the next observation (5 July 2013), plot AL and FR were in the out of control state; 
whilst plot JR triggered an alert. Plot HL was in the alert state from the eight until the ninth 
observation (26 July – 31 July 2013) and the out of control state starting from the tenth 
observation date until the end of the growing season. At the end of the growing season, plot 
CL, DL and KL were still in the control state. Any plots in an alert state would be an 
indication to the farmers that necessary measures and immediate actions should be taken. 

4.5 Alerting services validation (Phase 5) 

In this section, two approaches were carried out to validate the alerting services in section 
4.4. The first approach used the STR dataset from the Geveart et al. (2015) study to validate 
the alerting service using the maximum yield approach and the mean curve approach in the 
plot level. While in the second approach, the 12 experimental subplots from the validation 
dataset (AR, BL, CR, DR, EL, FL, GL, HR, IR, JL, KR, and LL) were used to validate the alerting 
service with the mean curve approach in the subplot level. Before performing the control 
chart theory, each approach would calculate the DE values from each experimental plot or 
subplot to the selected reference plot (plot C for maximum yield approach and “the mean 
value” plot for the mean curve approach).  

4.5.1  Validation of the alerting service with maximum yield approach for the plot 
level 

To generate the alerting service, the CIred-edge values were calculated from the daily STR 
dataset. For validation purposes, the CIred-edge time series were used to calculate the 
similarity measure (DE) on a weekly basis from each experimental plot (A, B, D, E, F, G, H, I, J, 
K and L) compared to the reference plot (Appendix 17). Since plot C produced the highest 
yield at the end of the growing season, it was assigned as the reference plot. The distance 
values were then plotted in the control chart and analysed using the threshold values which 
were calculated using the data from the first four observation dates (6 June, 14 June, 21 
June and 26 June 2013).  

Table 15 shows the alerting service summary for the 11 experimental plots from the first 
observation date (6 June) until the ninth observation (31 July). The alerting service was only 
able to analyse the crop’s state until the ninth observation due to that the STR dataset were 
only available from 6 June until 2 August 2013 (Appendix 17). 
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Table 15: Alerting service for 11 experimental plots at each specific 
observation date using Euclidean distance from STR dataset 

 

In Table 15 we can see that plot B started to receive an alert on 26 June 2013; whilst plot J 
entered the out of control state at the same day. On 12 July 2013, three plots (D, F and H) 
were in the alert state and started to be in the out of control state on 17 July (plot H) and 25 
July (plot D and F). By cross checking the results with the yield harvester data in Table 10, 
we can see that the alerting service successfully detected the plots with the lowest yield 
production using the information from the STR dataset. 

4.5.2  Validation of the alerting service with mean curve approach for the plot 
level 

Before constructing the alerting service based on the mean curve approach, the DE values 
were calculated from each experimental plot to the reference plot over the growing season. 
To be able to compare the alerting service that used the Cropscan data (Section 4.4.2) with 
the alerting service established in this section, the STR dataset were recalculated, similar 
with Section 4.5.1, from daily to weekly observations. 

Table 16: Alerting service for 12 experimental plots using Euclidean 
distance values from STR dataset 
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Table 16 shows the alerting service for the 12 experimental plots using the mean curve 
approach to generate the reference plot. In this validation phase, the STR dataset were used 
to evaluate the effectivity of the alerting service using different sources of data. From Table 
16 we can see that Plot B got an alert on the fourth observation date, while plot J started to 
receive out of control states from here on until the end of the growing season. Plot E was in 
the alert state on the fifth observation date (5 July 2013), but changed to the out of control 
phase on the next observation date (12 July 2013). However, plot F did not receive any 
alerts over the growing season when the mean curve approach was applied. As seen in 
Table 15, plot F started to get alerts on 12 July 2013 from the alerting service that used the 
maximum yield approach (plot C as reference plot). Even though this alerting service was 
not able to detect the growth problem in plot F, it still detected the growth problems from 
the other plots that known for their low yield productions at the end of growing season (i.e.: 
plot B, J, H and E). 

4.5.3  Validation of alerting service with mean curve approach for the subplot 
level 

As depicted in Figure 25, the validation of this alerting service (the mean curve approach) 
was done using the 12 experimental subplots from the validation dataset. The Euclidean 
distance between these 12 experimental subplots (AR, BL, CR, DR, EL, FL, GL, HR, IR, JL, KR, 
and LL) and the reference curve (“mean value plot”) were calculated over the growing 
season. These values were then plotted using the control chart theory to detect the plots 
with growth problems. Based on the analysis in Section 4.4.3, the control chart thresholds 
were calculated using the dataset from the first five observation dates. The same threshold 
calculation approach was applied in this section to check the accuracy of the alerting 
service. 

Table 17: Alerting service for 12 experimental subplots at each specific 
observation date using Euclidean distance values from CIred-edge data series 

 

Table 17 shows that on the fifth observation date (5 July) plot JL started to get an alert; 
whilst the other 10 plots were still in the in control state. On the sixth observation date, plot 
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EL entered the out of control state and continued in this state until the end of the growing 
season. For plot FL, alerts were seen from 12 July until 26 July 2013, but started showing out 
of control states starting from 31 July 2013. Plot BL entered the alert state on the sixth 
observation date and plot HR started to be in the alert state from the ninth observation 
date. 

Table 18: Yield Harvester for 12 experimental subplots (highest to lowest) 

 

Even though the reference plot used for this alerting service was based on the mean curve 
approach, the service was able to detect plots that produced low yields (Table 18) at the 
end of the growing season. This proves that the control chart thresholds effectively 
detected the growth issues over the growing season. 
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CHAPTER 5: DISCUSSION 
 
This chapter reflects on the results considering the research questions proposed in Section 
1.3. The results are mainly discussed in broader context and linked to the scientific 
literatures. 

5.1 Vegetation Indices for potato N status (Phase 1) 

There were three analyses enclosed in Phase 1: the N crop status comparison using three 
different measurements over the growing season; analysing the relations between the 
plant’s biophysical and biochemical parameters; and finding the best VI that best 
represented the N potato status. Therefore, the discussion will be based on each step 
explained in Section 4.1. 

5.1.1 N Status comparison with different measurement methods 

Three N status measurements were plotted over time (Figure 14-16) to analyse possible 
trend patterns over the growing season. Haboudane et al. (2004) stated in their study that 
plant N variations may cause biochemical changes at the leaf and canopy level (i.e. LAI). The 
N status from all three measurements showed relatively high values in the beginning of the 
growing season and started to decline over the development of the potato growth. The 
declining trend was related to the development of the potato canopy size which was 
indicated by the increase of the plant biomass and LAI. This condition can be seen in 
Appendix 18 where the LAI from all plots show relatively high values while the N status 
values from the PSNC test are on their lowest (5 July - 12 July).  

Based on the information of management decision in Table 5, additional fertilizer 
applications were applied to selected plots on two observation dates over the growing 
season, i.e.: on 5 July and 18 July. These fertilizer applications were supposed to influence 
the N status readings around three weeks after the application was applied. Figure 15 and 
Figure 16 show that the PSNC test were more sensitive to the fertilizer application than the 
SPAD chlorophyll meter. This behaviour was visible during the observation on 31 July 2013, 
where the PSNC test values from plot A, B, C, D, I, J, K and L increased (higher) while the 
SPAD values were still low. This shows that PSNC test were able to respond faster 
(approximately 2 weeks after the application was applied) than the SPAD readings. The 
results were similar to a study conducted by Wu et al. (2007). One of the points discussed in 
their study was that SPAD readings did not respond as rapidly as petiole NO3-N 
concentrations to N fertilization throughout the growing season (Wu et al., 2007). The 
difference between the two measurements could possibly have occurred due to the 
different level of measurements: the PSNC test was acquired in the plant tissue level, while 
the SPAD chlorophyll meter was acquired in the leaf level. Figure 18 shows the relationship 
between the PNSC test values (nitrate nitrogen concentration) with the SPAD measurement. 
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The overall relationship between the nitrate nitrogen concentrations (PSNC test) and the 
SPAD measurement were 0.75 with p-value < 0.05 (significant). However, the SPAD values 
deviated more in the low nitrate concentration values. This condition is shown in Figure 18: 
the SPAD values varied around 32 – 40 for nitrate concentration values around 800 ppm 
NO3. 

5.1.2. Relationships between crop biophysical and biochemical parameters 

The overall relationship between the leaf chlorophyll and the nitrate concentration derived 
from the PSNC test was moderately high (R2=0.745) as seen in Figure 19. However, an 
uncommon pattern was seen in the PSNC test values on 31 July for plot A, B, C and D. The 
PSNC values for these plots had increased while the leaf chlorophyll values showed 
relatively low values. This was related to the ability of the PSNC test to respond to the 
additional fertilizer application on 18 July 2013. Apart from that, the relationship between 
PSNC test and leaf chlorophyll was better than the overall relationship (all observations 
were bulked) between the PSNC test and the canopy chlorophyll (R2= 0.075). 

The overall relationship between the PSNC test and the canopy chlorophyll showed 
insignificant results when all data were bulked into the calculation. However, better results 
were seen for the relationships based on the specific time of the growing season. From 
Table 6, we can see that the relationship between the PSNC test and the chlorophyll canopy 
were significant starting from the fourth observation (26 June 2013) until the end of the 
growing season. This proved that the chlorophyll canopy values were able to give good 
representations of the N status in the canopy level. Therefore, in section 4.1.3 the best VI 
was not only identified for the leaf chlorophyll, but also for the chlorophyll canopy. 

5.1.3. Relationships between VIs and chlorophyll content 

The first objective of this thesis research was to find the best VI that would provide a good 
representation of the N status in the potato crop over the growing season. Eight VIs that are 
normally used in precision agriculture fields were calculated to analyse their ability to detect 
changes in the crop N status over the growing season. Since the crop N status were well 
related to both the leaf chlorophyll and the chlorophyll canopy, the regression analysis were 
applied to find the best relation between the eight VIs with chlorophyll content in the leaf 
and canopy level. The results in Table 7 show that the chlorophyll ratio index TCARI/OSAVI 
represented the best VI for leaf chlorophyll, even though the coefficient of determination 
value was relatively low (R2=0.517). Similar results were also found in a research conducted 
by Wu et al. (2008). In their study, the correlation coefficient between the original 
TCARI/OSAVI [670,800] and the chlorophyll content was 0.4984. However, a strong 
correlation was achieved if the wavelengths that were used in TCARI/OSAVI (670 and 800 
nm) were replaced by 705 and 750 nm. In the case of this study, the relation between the 
TCARI/OSAVI and the leaf chlorophyll became weaker in line with the temporal 
development. This fact was proven in the time series similarity measures and alerting 
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service derived from this VI. The TCARI/OSAVI was not able to perfectly detect the crop N 
development over the growing season (Figure 28) and tended to give 50% of false alarms in 
the alerting service. In other words, even though this VI showed the highest relation with 
leaf chlorophyll compared with other VIs, the values of the correlation itself should be 
considered. 

The best VI for chlorophyll canopy based on the results in Table 7 was CIred-edge. The 
relationship between the CIred-edge and the chlorophyll canopy was relatively high, which was 
shown by the coefficient of determination value = 0.858. This result was related to the 
significance of wavelengths in the red-edge region to estimate the chlorophyll content 
(Clevers & Kooistra, 2012). The result was also confirmed by the study of Clevers and 
Gitelson (2013) on another potato site. In their study, the results of R2 value of the linear 
relationship between the CIred-edge and nitrogen content on the potato site was relatively 
high (0.89). Even though the result was not shown in this report, an additional calculation 
was made for the TCARI/OSAVI. TCARI/OSAVI [750,710] was calculated from the Cropscan 
data and the relationship between this VI and the chlorophyll canopy showed a relatively 
high value (R2=0.784); whilst the relationship between TCARI/OSAVI [750,710] and the leaf 
chlorophyll showed an insignificant result (R2=0.08). 

5.2 Optimal growth curve for potato crop (Phase 2) 

As explained in Section 4.2, the optimal growth curve for potato growth in this report was 
acquired using two different approaches: (1) the maximum yield approach and (2) the mean 
curve approach. In the beginning of the study, there was another approach that was 
considered important to use: the optimum quality approach. However, the available data 
related to the potato quality were not available for all experimental plots and subplots level. 
Therefore, this approach was eliminated from this study.  

The importance of the maximum yield approach is that the potato development curve is 
expected to follow the curve from the plot that produces the highest yield at the end of the 
growing season. Therefore, any experimental plot that has a VI curve apart from the 
reference curve (maximum yield plot) are considered to have a growth problem. Using 
control chart theory these growth problems will result in alerts, similar to those triggered by 
the alerting services in Section 4.4. However, a reference curve that is the result of the 
maximum yield approach can only be used in on-coming growing seasons. This is due to the 
yield harvester information only being available at the end of the growing season. To solve 
the problem with real time detection or within season detection, assuming that there are no 
history of previous yield harvester data, the mean curve approach can be used. In the study 
conducted by Bala and Islam (2009), the mean curve approach was generated by calculating 
the average value of the VI on a specific date from all available potato plots consisting of 
different levels of initial fertilizer. In Section 4.3.2 and 4.3.3, the mean curve was assumed to 
be the optimum growth curve for the potato crop. Therefore, in those two sections, the 
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plots that deviated away from the mean curve (at certain thresholds) was considered as 
plots with a growth problem and in need of immediate action. Since the mean curve 
approach was assumed as the best approach for within season detection or real time 
detection, the analysis in the subplots level was only made using this approach (Section 
4.3.3). 

5.3 Time series similarity measures for deviation detection (Phase 3) 

The third objective in this research was to analyse the time-series similarity measures that 
could be adopted to evaluate the deviation from the established reference curve to 
characterize the growth status. The idea of using time series similarity measures to detect 
changes in the potato crop N status was first applied in the study conducted by Kooistra et 
al. (2012). In their study there were three aspects which needed to be done before the N 
status changes could be detected. First, a crop biophysical indicator highly related to the 
potato N status over the growing season had to be defined. After that, the growth reference 
curve of the potato crop over the growing season had to be determined to compare the 
status of experimental plots. Then, the method to detect the change in the crop N status 
had to be chosen. The steps in their study were adapted in this thesis research. The crop 
biophysical indicator highly related to the potato N status was identified from the regression 
analysis between the VIs and chlorophyll content (leaf and canopy level). Based on the 
result from section 4.1.3, the best biophysical indicators were TCARI/OSAVI and CIred-edge.  

In the second step, obtaining the optimum growth curve or reference curve, was also done 
in this research by using two different approaches: the maximum yield curve and the mean 
curve approach. For the maximum yield approach, plot C was selected as the reference 
curve based on the yield harvester information in Table 8; whilst the reference curve using 
the curve approach was generated from the average values of all experimental plots on 
each observation date (Figure 25). As explained in Section 5.2, the mean curve approach 
was considered as a better approach to carry out within season alerting service. Therefore, 
for the analysis in the subplot level in Section 4.3.3, only the reference plot based on the 
mean curve approach was applied to the data series. 

The literature study was carried out in Section 2.4 to check the capability of time series 
similarity measures in detecting changes within VI time series data. A previous study 
conducted by Lhermitte et al. (2011) explained that similarity measures based on distance 
measures or correlation measures were able to detect the changes in time series data. 
Based on this study, four similarity measures (DMan, DE, DCC, and RMSD) were performed to 
two VIs (CIred-edge and TCARI/OSAVI) with two different reference curve approaches 
(maximum yield and mean curve approach) in two experimental area levels (the plot level 
and the subplot level). The results of the similarity measures were given in Section 4.3.1 – 
4.3.3. In general, three analysis were made: similarity measures using the maximum yield 
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approach for the plot level, similarity measures using the mean curve approach for the plot 
level, and similarity measures using the mean curve approach for the subplot level.  

Similarity measures using maximum yield approach for the plot level 

In Section 4.3.1, four similarity measures (DMan, DE, DCC, and RMSD) had been carried out on 
the two best biophysical indicators (TCARI/OSAVI and CIred-edge) time series data. Plot C was 
assigned as the reference curve based on the maximum yield approach, as explained in 
section 4.2.1. In this plot level analysis, each experimental plot (A, B, D, E, F, G, H, I, J, K and 
L) was compared to the reference plot C and the distance differences were calculated. 
Based on the results on Figure 27, Appendix 6, and Appendix 8; the time series similarity 
measures based on distance measures were generally able to detect the changes of the 
potato crop growth development. This can be seen by the ability of the three similarity 
measures to respond to the changes in the N status of the potato crops based on their initial 
fertilizer level and additional fertilizer over the growing season. However, the sensitivity of 
each of them was divergent. In the beginning of the growing season, DE and RMSD were 
able to give a better portrait of the growth condition in the crops (Figure 27 and Appendix 
8). Differing from the DMan values that were relatively similar for all experimental plots, DE 
and RMSD values were showing more variations since the first observation. The variations 
were expected as early as the first observation (6 June 2013) since the initial fertilizers were 
applied to the soil before planting.  
  
From Appendix 6, we can see that the DMan values were ranging from 0 to 5 over the 
growing season, whilst the DE values were ranging from 0 – 1.5. The difference between 
these two values were related to the definition of the DE itself. Based on the definition in 
Cha (2007), DE is known as the shortest distance between two points, while DMan is 
explained as the sum of the absolute differences of their Cartesian coordinates (Xu, 2104). 
From the visual illustration given by the spatial study of Shadid et al. (2009) and Xu (2014), 
we can see that DE tends to underestimate the distance while DMan tends to overestimate 
the distance (Appendix 19). However, in this report, DE and RMSD were proven to show a 
better growth detection than DMan over the growing season. As seen in Figure 27 and 
Appendix 8, the difference between one plots to another were clearer over the growing 
season. This means that these two similarity measures were able to differentiate plots 
based on their initial and additional fertilizer level. The effects of the additional fertilizer on 
5 and 18 July 2013 were also clearer in the time series similarity measures performed by DE 
and RMSD than from DMan (Figure 27, Appendix 6, and Appendix 8).  
 
In the case of the similarity measures based on the correlation coefficient (Appendix 7), the 
result was quite different from the distance measures. The DCC values from all experimental 
plots in the beginning of the growing season showed a strong relationship to reference plot 
C (value=1). Over the temporal development, the relationships of the experimental plots to 
the reference plot C varied based on the initial fertilizer level. The relationships of the plots 
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with 0 kgNha-1 initial fertilizer (plot B and plot J) decreased over the time. However, DCC was 
not able to clearly distinguish the real growth pattern from the experimental plots; for 
example: plot F that should have had a low relationship with reference plot C, showed the 
opposite result.  
 
The results from the time series similarity measures based on distance measures can be 
used by the farmer or the farm management to check the growth condition (N status) of the 
crops on a specific time and location. However, the selection of the VI is very important. In 
Section 4.3.1, the similarity measures were carried out twice: (1) to CIred-edge time series and 
(2) to the TCARI/OSAVI time series. These two VIs were selected based on their relationship 
with chlorophyll content in Section 4.1.3. The relationship between CIred-edge with the 
chlorophyll canopy was relatively high (R2 = 0.858); whilst the relationship between the 
TCARI/OSAVI with the leaf chlorophyll was 0.517 (all data bulked). Based on the DE result in 
Figure 28, the TCARI/OSAVI was not able to differentiate between the plots with high initial 
fertilizer levels and the ones with low initial fertilizer levels. The TCARI/OSAVI tended to give 
false growth conditions over the growing season. Similar conditions were also found in the 
results from the other three similarity measures (Appendix 9). These conditions were most 
likely related to the low coefficient correlation values between TCARI/OSAVI and leaf 
chlorophyll (R2 = 0.517). Generally, leaf chlorophyll is influenced by the development stage 
of the potato crop. After the full crop coverage, the potato structure will influence the 
vegetation reflectance and the TCARI/OSAVI values. Therefore, the TCARI/OSAVI was not 
able to give a good representation of the N status condition for the crops in the leaf level.  
 
Similarity measures using mean curve approach for both plot and subplot level 

In Section 4.3.2 and 4.3.3, the time series similarity measures were conducted with the 
reference plot based on the mean curve approach for both plot and subplot level. The 
reference plot based on the mean curve approach was acquired from the average value of 
the 24 experimental subplots (Figure 25) for each observation date over the temporal 
development. Selecting the right reference plot is the most important step when 
constructing an alerting service, because different reference plots gives different results. 
The maximum yield approach proved to give a good representation of the crop growth and 
N status condition over the growing season (Section 4.3.1). However, the mean curve 
approach was initiated to tackle the problem that the maximum yield approach had. As 
explained in Section 4.2, to obtain the optimum growth curve based on the maximum yield 
approach, the yield harvester information needed to be gathered at the end of the growing 
season. This made the maximum yield approach unusable for within season detection.  
 
The similarity measures based on the distance measures (DMan, DE, and RMSD) and the 
correlation measure (DCC) were performed on both the CIred-edge and TCARI/OSAVI data 
series. The results from the similarity measures on the plot level using CIred-edge (Figure 29 
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and Appendix 10) showed slightly different results than the one from maximum yield 
approach (Figure 27 and Appendix 6 - Appendix 8). With this reference curve approach, plot 
C (the plot that produced the highest yield) deviated away from the reference curve at the 
beginning of the growing season and starting to be in a good condition over the temporal 
development. However, this approach was able to perfectly detect the high deviation from 
plots with an initial fertilizer level of 0 kgNha-1 (plot B, F and J). The same conditions were 
also applied in the subplot level. In the case of the TCARI/OSAVI data series, the results of 
the time series similarity measures for both levels (plot and subplot) showed that this VI 
tended to give a false condition of the potato growth development. Similar with the results 
from the maximum yield approach, in Figure 30 and Figure 32 we can see that two plots 
with an initial fertilizer level 0 kgNha-1 (plot J and plot F) did not deviate much from the 
reference plot. This made a final conclusion that the similarity measures performed with the 
mean curve approach gave comparable results with the ones from the maximum curve 
approach. However, choosing the best VI series had to be done carefully. 
 
5.4 Plant growth alerting service using control chart theory (Phase 4) 

The main objective of this research was to derive an alerting service from the crop 
monitoring time series which in this report the time series data were taken from the 
Cropscan dataset. To derive an alerting service for the crop development, the range of 
acceptable growth conditions needed to be set. Later, four different thresholds (LWL, UWL, 
LCL and UCL) were calculated in Section 4.4 to decide which experimental plots or subplots 
that should get an alert over the crop developments. These thresholds were used in the 
statistical control charts in Section 4.4.1 – 4.4.3 as part of the alerting services. Following the 
similarity measures analyses in Section 4.3, the alerting services were mainly carried out in 
three different parts: an alerting service based on the maximum yield approach for the plot 
level, an alerting service based on the mean curve approach for the plot level and an 
alerting service based on the mean curve approach for the subplot level.  

The alerting service based on the maximum yield approach for the plot level 

The alerting service based on the maximum yield approach in Table 9 used the DE values 
from section 4.3.1. The control chart thresholds were calculated from DE values from the 
first (6 June 2013) until the fourth observation date (26 June 2013). As seen from the 
summary in Table 9, the alerting service using the maximum yield approach (Plot C as the 
reference curve) was able to detect the plots with the alert state as early as the fourth date 
of observation. The plots that mainly produced low yields at the end of the growing season 
(Table 10) were detected perfectly by the alerting service. Plot F (the lowest yield) started to 
get an alert on 26 June 2013 and changed to the out of control state on 5 July 2013 until the 
end of the growing season. Plot B and J were in the alert state on 26 June 2013 (fourth 
observation) and changed to the out of control state on the fifth (Plot J) and sixth 
observation (Plot B). As seen in Figure 35, the DE values data series that were plotted in the 
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control chart had an increasing trend. Even though the increasing trend appeared in the 
data series, the control chart approach in Figure 33 still fulfilled the Nelson rules (Nelson, 
1984). However, this control chart was not able to detect the management applications 
interference due to the cumulative calculation in the distance measure (Equation 7). To 
improve the control chart result, two actions were initiated: (1) the de-trended DE values 
were used to construct the control charts and (2) the DE values were used to construct the 
control charts with the cumulative thresholds method applied to each observation date. The 
alerting service from the first solution (Table 11), control chart with de-trended data, 
successfully detected the crop growth condition by emphasizing the influence of the 
additional fertilizer application. However, the trend pattern in the data series was only 
possible to obtain while all the observations over the growing season had been collected. In 
other words, the detection could only be made at the end of the growing season. Therefore, 
this method is more suitable for the evaluation process than the detection phase. 

The alerting service derived from the second solution is shown in Table 11 (down). Similar 
with the de-trended method, this method was also unable to give fast alert detection and 
insensitive to detect growth problem in the plots with medium amount of initial fertilizer 
(i.e. 90 kgNha-1). During the research, an additional control chart method (I-MR chart) was 
applied. However, this method was only giving an alert to plot F over the growing season. 
Therefore, the best way to construct the alerting service based on the maximum yield 
approach was by using the DE data series where the control chart’s thresholds were 
calculated from the first four observations. 

In section 4.4.1, there were two DE data series used to generate the alerting services in 
Table 9 and Table 12: the data series from CIred-edge (Figure 27) and the data series from 
TCARI/OSAVI (Figure 28). As it has been explained, the alerting service that was based on 
the maximum yield approach using the CIred-edge Euclidean distance data series (Table 9) was 
able to detect the plots with growth problems. Differing from this result, the alerting service 
that was based on the TCARI/OSAVI tended to give false alarms. As explained in Section 
4.4.1, plot K, with an initial fertilizer of 162 kgNha-1, got alerts starting from the fifth 
observation. This condition did not fit the yield harvester information in Table 8. Therefore, 
the alerts that were given to plot K, one of the examples, were considered as false alarms. 
The TCARI/OSAVI was proven to give false alarms and was deemed unfit to be the input data 
for the alerting services. 

The alerting services based on the mean curve approach for both plot and subplot level 

The alerting services based on the mean curve approach for both plot and subplot level can 
be seen in Table 13 and Table 14. The different colours that appeared in the alerting service 
summary in both Table 13 and Table 14 indicated different states of the crop development. 
The green circle is a sign of the under control state from the crop development. If the 
distance difference from the plot or subplot to the reference plot was located above UWL (2 
standard deviations from the mean) or below the LWL, then the experimental plot or 
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subplot would be assigned with the yellow circle (warning state). If the condition worsened 
and the distance difference values was larger than three standard deviations from the 
mean, the plot or subplot would be shown as red circle. 

From Table 13, we can see that plot F and plot J were in the out of control state starting 
from the fifth observation until the end of the growing season. Plot A and E were in the out 
of control state on the sixth observation (12 July 2013); while plot B got an alert on the 
same date and changed to the out of control state on the seventh observation. The alerting 
service in the plot level using the mean curve approach resulted in the condition that plot A 
was in the out of control state starting from the sixth observation. This condition was 
different from the other approach (Table 9) where plot A got an alert only at the end of the 
growing season (23 August 2013). As it can be seen from the DE measure on Figure 29, the 
mean curve approach was able to better emphasize the real condition of plot A. In the 
beginning of the growing season, the left side of plot A had a growth problem (Table 14); 
whilst the right side of plot A tended to grow normally. However, the crop condition from 
the left part of plot A got better during the development of the crop. Since the CIred-edge time 
series values for plot A was calculated from the average value of both the right and the left 
side of plot A, the general condition for plot A became less good. This condition was 
captured by the alerting service using the mean curve approach. 

Table 19: Yield harvester for 12 experimental subplots in the calibration dataset 

 

In the subplot level, the alerting service also gave good growth detections. As we can see in 
Table 14, subplots that produced low yields at the end of the growing season (Appendix 5), 
such as FR, JR, ER, AL and BR, clearly got alerts as early as the fourth observation date. 
Subplot FR was in an alert state on the fourth observation, while subplot JR started to get an 
alert on the fifth observation date (5 July 2013). These two subplots produced low yields at 
the end of the growing season: 56.71 ton/ha and 68.25 ton/ha respectively (Table 19). The 
other subplot that produced low yields at the end of growing season, subplot AL, was in the 
out of control state starting from the fifth observation date. With its ability to detect the 
growth problem within the experimental subplots over the growing season, the alerting 
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service using the mean curve approach was proven to give accurate alerts. Alerting services 
that detect when plots changes their state from green to yellow circle or from green to red 
circle, can be used by farmers to take additional measurements or management actions to 
solve the problems within the crop field. 

5.5 Alerting services validation (Phase 5) 

To validate the alerting services based on the maximum yield approach and mean curve 
approach, the STR dataset from a previous study conducted by Gevaert et al. (2015) were 
used in this report. The purpose of this validation was to evaluate the effectivity of the 
alerting service, including the calculation to construct the thresholds, from different sources 
of data. There were two approaches involved in the validation process: (1) using the STR 
dataset from the Geveart et al. (2015) to test the alerting service in the plot level; and (2) 
using the 12 experimental subplots from the validation dataset (AR, BL, CR, DR, EL, FL, GL, 
HR, IR, JL, KR, and LL) to validate the alerting service with the mean curve approach in the 
subplot level.  

The result of the alerting service validation with the maximum yield approach for the plot 
level can be seen in Table 15. Similar with the alerting service result from the Cropscan 
dataset in Section 4.4.1, both plot B and J started to get an alert from the fourth observation 
date. Plot F, another plot from the plot group with an initial fertilization level of 0 kg N ha-1, 
started to be in the alert state on the sixth observation date. The main difference between 
the two alerting services, the one using the Cropscan dataset and the one using the STR 
dataset, was that plot D, which got an alert on 12 July 2013 (Table 15), did not get any alerts 
in the alerting service using the Cropscan data. The difference occurred due to the different 
equipment that were used to collect the data within the field. However, the alerting service 
still successfully detected the plots with the lowest yield production (Table 10). 

The STR dataset was originally available on a daily basis (Appendix 17). However, for 
validation purposes, the alerting service from the STR dataset was calculated based on a 
weekly basis. This made the alerting services from the two different datasets easier to 
compare. The alerting service that used the mean curve approach for the STR dataset can be 
seen in Table 16. This alerting service was not able to detect the growth problem in plot F; 
while the growth problems from the other plots that were known for their low yield 
productions at the end of growing season (i.e.: plot B, J, H and E) were still detected. 
Therefore, the alerting service still counted as an accurate tool to derive crop growth alerts 
from different types of data sources. 

The second validation process using the 12 experimental subplots from the validation 
dataset was done to check the alerting service with the mean curve approach for the 
subplot level. This alerting service revealed new information that within a 30 x 30 m 
experimental plot the crops would sometimes react differently towards the initial or 
additional fertilizer. The alerting services based on the experimental subplot gave a better 
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alert of the crop growth condition over the growing season. The alerting service in Table 17 
was able to detect plots that produced low yields (Table 18) at the end of the growing 
season. This proves that the control chart thresholds effectively detected the growth issues 
in the subplot level over the growing season. 
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CHAPTER 6: Conclusions and Recommendations 
 
Tracking down the crop nutrient status over the growing season is the most principle step 
for monitoring crop health status in precision agriculture. As a measure of the crop response 
to nitrogen application, nutrient status is also related to chlorophyll content and an 
indicator of photosynthetic activity. Ground based measurements of crop parameters data; 
close sensing data; fused satellite and UAV Imagery data were used in this study to identify 
the relationship between crop N status and chlorophyll content over the growing season. 
Based on the result from this study: the relationship between the PSNC tests (nitrogen 
nitrate) and the leaf chlorophyll was relatively high; whilst the relationship between the 
nitrogen nitrate and chlorophyll canopy was insignificant when all the data were bulked. As 
explained in this study, the relationship between the chlorophyll canopy and the nitrogen 
nitrate improved when the analyses were based on specific dates of observations in the 
productive part of the season. This study also analysed three different N status 
measurement methods: the Dumas-combustion method, the PSNC test or plant sap, and 
chlorophyll meter using Minolta SPAD-502; and compared the relationships between 
chlorophyll content and the crop biophysical indicators. 

The data series of the best representative crop biophysical indicator were used in this study 
to perform the time series similarity measures over the growing season. Then the distance 
differences from the similarity measures were plotted using control chart theory to derive 
the alerting service. The following conclusions were made based on all the results and 
discussions from this study: 

• A similar pattern was found when all three N status measurements were plotted over 
time: the N status from all three measurements showed relatively high values in the 
beginning of the growing season and started to decline over the development of the 
potato growth.  

• The PSNC test was clearly able to respond faster (approximately 2 weeks) than the SPAD 
readings to the additional fertilizer application during the growing season.  

• The overall relationship between the leaf chlorophyll and the nitrate concentration 
derived from the PSNC test was moderately high (R2=0.745). However, the PSNC test 
responded faster to the additional fertilizer application on 18 July 2013. 

• The overall relationship between the PSNC test and the canopy chlorophyll showed 
insignificant results when all the data were bulked into the calculation. However, better 
results were seen for the relationships based on specific points in time within the 
growing season. 

• Considering the results from the coefficient of determination (R2), S values and p-values; 
the following conclusions were made: 
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(a) The TCARI/OSAVI index was found to be the best VI for representing the N status at 
the leaf level over the growing season. However, its low R2 value (0.517) affected the 
performance of this index in the time series similarity measures analyses and the 
results from the alerting services. 

(b) CIred-edge seemed to be the best VI to represent the N status condition at the canopy 
level over the growing season.  

• The study proved that the time series similarity measures based on the distance 
measures were able to detect the changes within the experimental plots or subplots 
with different level of accuracy. However, the selection of VI data series was very 
important. The time series similarity measures using the two VIs gave different results: 

(a) The similarity measures performed using the CIred-edge time series data were able 
detect the growth problems from the experimental plots or subplots and also able to 
distinguish the plots or subplots based on their initial fertilizer level. 

(b) The results from the similarity measures that were performed using the 
TCARI/OSAVI data series showed that: the TCARI/OSAVI tended to give a false 
condition of the potato growth development and could not distinguish the plots 
based on their initial fertilizer level. 

• The time series similarity measures based on the mean curve approach were able to give 
good results; as good as the ones from the maximum yield approach. Therefore, if there 
is no history of previous yield harvester data, reference plots based on the mean curve 
approach can be used as an alternative for within season detection. 

• The control chart thresholds can be determined using control chart theory. However, 
choosing the best control chart and determining the thresholds should be done carefully 
by paying attention to the Nelson’s rule. 

• Since the alerting services in this study were unable to detect the effects of the 
management activities due to the effect of the DE cumulative calculation, then changes 
from green circles to yellow or red circles could be an indication for the farmers to take 
immediate actions (i.e.: additional measurement or other management actions). 

• The alerting services also proved that they properly detected plots with growth 
problems or plots that produced low yields at the end of the growing season using the 
STRS dataset (Fused satellite and UAV Imagery data). 

Recommendations: 

• As explained before, the alerting services in this study were unable to detect the effects 
of the management activities due to the effect of the DE cumulative calculation. Two 
actions were initiated to solve this problem. However, the strategy could not be used due 
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to its low sensitivity and late detection. It would be very beneficial if subsequent studies 
can find solutions to this problem. 

• To be able to compare the results from the alerting service that used the Cropscan 
dataset with the one that used the STR dataset, the STR dataset was changed from daily 
to weekly observations. In subsequent studies, the daily observations from the high 
temporal resolution data, as in the STR dataset, should be used to derive the alerting 
services. 

• Subsequent studies using fused satellite and UAV imagery data, such as the STRS dataset 
in this study, should review the data interpolation carefully. As seen in this study, the 
data after the interpolation took place (Appendix 20) showed a different pattern than 
what it was supposed have. 
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APPENDICES 
 

Appendix 1: Relationship between Chlorophyll Canopy and Nitrogen Nitrate (PSNC test) 
based on the specific observation time. 

 

Appendix 2: Recalculation of the relationship between PSNC test and Chlorophyll Canopy 
(exclude observation on 6 – 21 June 2013) 
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Appendix 3: Relationships between leaf chlorophyll (g/m2) and eight different vegetation 
indices. 
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Appendix 4: Relationships between chlorophyll canopy and eight different vegetation 
indices. 
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Appendix 5: Yield harvester map from the potato field 
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Appendix 6: CIred-edge time series similarity measures using Manhattan Distance method. Plot C was assigned as the reference plot (maximum yield 
approach). The X-axis shows weekly observations over the growing season. The Y-axis shows the Manhattan distance between the experimental plots 
and the reference plot (Plot C) for each observation date. 
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Appendix 7: CIred-edge time series similarity measures using Correlation Coefficient method. Plot C was assigned as the reference plot (maximum yield 
approach). The X-axis shows weekly observations over the growing season. Y-axis shows the correlation coefficient between the experimental plots and 
the reference plot (Plot C) for each observation date. 

 



 APPENDICES  106

 

Appendix 8: CIred-edge time series similarity measures using RMSD method. Plot C was assigned as the reference plot (maximum yield approach). The X-
axis shows weekly observations over the growing season. Y-axis shows the RMSD difference between the experimental plots and the reference plot 
(Plot C) for each observation date. 
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Appendix 9: TCARI/OSAVI time series similarity measures using Manhattan Distance, 
RMSD methods and Coefficient Correlation. The Y-axis shows the distance measures 
between the experimental plots and the reference plot (Plot C) for each observation date. 
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Appendix 10: CIred-edge time series similarity measures using Manhattan Distance, RMSD methods 
and Coefficient Correlation. The Y-axis shows the distance measures between 12 experimental 
plots and the reference plot (mean curve approach) for each observation date. 
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Appendix 11: TCARI/OSAVI time series similarity measures using Manhattan Distance, RMSD 
methods and Coefficient Correlation. The Y-axis shows the distance measures between 12 
experimental plots and the reference plot (mean curve approach) for each observation date. 
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Appendix 12: CIred-edge time series similarity measures using Manhattan Distance, RMSD methods 
and Coefficient Correlation for 12 experimental subplots. The Y-axis shows the distance measures 
between the subplots and the reference plot (mean curve approach) for each observation date. 
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Appendix 13: TCARI/OSAVI time series similarity measures using Manhattan Distance, RMSD methods 
and Coefficient Correlation for 12 experimental subplots. The Y-axis shows the distance measures 
between the subplots and the reference plot (mean curve approach) for each observation date. 
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Appendix 14: CIred-edge control charts of the first eight observations date using cumulative threshold 
method (the thresholds were recalculated for each observation using cumulative calculation). 
Control charts were constructed using Python.  
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Appendix 15: TCARI/OSAVI Control charts of the first six observations date which show the status 
of each plot (Constructed using Python Programming Language). The black line indicates control 
line (CL), yellow lines indicate warning limits (UWL&LWL) and red lines indicate control limits 
(UCL&LCL). First 4 observations (6 June, 14 June, 21 June and 26 June) are used as calibration 
dataset. 
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Appendix 16: CIred-edge control charts of the first eight observations date for 12 experimental 
subplots. The thresholds were calculated using the first five observation date data.  
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Appendix 17: The Euclidean distance for CIred-edge time series from STR dataset over the growing 
season: daily values (top) and weekly values (down). 
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Appendix 18: The PSNC test values and LAI over the growing season. 

 

Appendix 19: The illustration of Euclidean distance and Manhattan distance. The black line 
is Euclidean distance and the blue lines are the possible Manhattan distance. 
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Appendix 20: The CIred-edge time series from the STR data and Cropscan data. The CIred-edge 
interpolated values after 17 July 2013 from the STR dataset were overestimated. 
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