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ABSTRACT 
 
In the context of REDD+, the accurate identification of active forest change areas from 

remote sensing sensors is essential to monitor, report and verify tropical deforestation 

efficiently. Landsat imagery is considered the most viable option due to its high-resolution 

data, and extensive and free archive. However, the high level of noise (e.g. clouds or climatic 

disturbances) in Landsat data from tropical areas reduces the reliability of the detection of 

deforestation. Pre-processing is essential in order to detect deforestation reliably, but for 

Landsat no comprehensive methodology for cloud screening is available, and the correction 

of external disturbances remains to be addressed. The main objective is to improve the 

detection of deforestation from Landsat image time series by including information of the 

spatial neighbourhood of a pixel. First the preprocessing is enhanced by distinguishing 

between outliers and potential change events with a temporal threshold. Next, the information 

present in the spatial context of a pixel is used to correct for the influence of external 

disturbances. The detection of deforestation is based on the corrected time series and uses the 

Break detection For Additive Season and Trend Monitor (BFASTmonitor) method. A series 

of experiments are described that have two different objectives: (i) define the optimal value 

of the temporal threshold that removes remnant outliers and test its influence on the detection 

of deforestation, (ii) optimize the selection of neighbouring pixels whose spectral information 

is used to correct for external disturbances. The influence of each test on the detection of is 

determined and the approach that allows for the most accurate detection is chosen. Outliers 

could be distinguished from deforestation events with a temporal threshold shorter than a 

year (104 days) but the detection was only slightly improved. In fact, before removing 

remnant outliers, the overall accuracy was 87%, and the commission and omission errors 

were 8.5% and 4.5%, and after the removal the corresponding values were 87.25%, 7% and 

5.75%. The spatial neighborhood information could not be used to correct effectively for the 

effect of external disturbances, notably during the monitoring period, due to the high level of 

noise present in the data. The overall accuracy was lowered to 59.68% and the commission 

and omission errors rose to 17.74% and 22.58%. Results highlight that the combination of 

Landsat data with techniques that correct for external disturbances using the spatial context of 

a pixel remains complicated due to the irregularity of the data and to cloud contamination. 

Further efforts are needed to develop and optimize approaches that reduce the noise from 

Landsat and Landsat-derived time series in tropical areas.  

Keywords: Landsat, tropic, deforestation, monitoring, spatial, temporal, disturbance 
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1- Introduction 
 

Carbon dioxide (CO2) is the most important greenhouse gas (Hyman et al., 2002), and its 

concentration in the atmosphere continues to increase, hence accelerating global warming 

(Cox et al., 2000). Forest cover change through deforestation is one of the major contributors 

to atmospheric CO2 (Gibbs et al., 2007; Houghton, 1991; House et al., 2002). With the aim to 

reduce the rates of deforestation and forest degradation processes, the United Nations 

Framework Convention on Climate Change (UNFCCC) proposed a mechanism known as 

Reducing Emissions from Deforestation and Forest Degradation (REDD+) whereby 

developing countries are compensated monetary for keeping their forests intact for specified 

period of time (Holloway & Giandomenico, 2009; Phelps et al., 2010; Román-cuesta, 2010). 

REDD+ uses a definition of deforestation that relies on thresholds related to the area affected, 

to vegetation height and to tree canopy cover. Any area that is considered as deforested has to 

extend over a minimum of 0.05-1ha, have a tree canopy cover between 10 and 30% and a 

maximum tree height of 5m (Herold & Johns, 2007). In other terms, deforestation is the 

conversion of forest to another land-cover type (Herold & Skutsch 2011). 

Understanding the impact of deforestation and regrowth processes in carbon dynamics 

requires an accurate account of carbon stocks. Therefore it needs a quantification of forest 

biomass variability as well as an extensive mapping of forest disturbances and regrowth over 

time. Hence, the data collected for this purpose must cover large areas and be recorded over 

long periods of time. The use of remote sensing techniques from satellite platforms presents 

various advantages in this regard when compared to approaches based on inventories. While 

inventories rely on sampling, and are therefore limited by the frequency and distribution of 

the samples (Powell et al. 2010), remote sensing techniques can provide frequent information 

on state of forest over large areas. In addition to that, remote sensing techniques can give a 

deeper understanding on forest dynamics. It is possible to derive indicators of ecosystem 

dynamics and to analyse their temporal behaviour, both from a historic perspective and in 

near-real time, while accounting for seasonal ecosystem variation. As a result, early alerts of 

crucial changes can be produced in an accurate and cost effective way (Verbesselt et al., 

2012). In the context of REDD+, remote sensing is a key observation tool that includes 

mainly optical data, but also thermal, Synthetic Aperture Radar (SAR) and Light Detection 
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And Ranging (LiDAR) data. Time series derived from remote sensing can be used to fill 

historic monitoring gaps and to compare historical and expected forest changes to the desired 

state. As a result, remote sensing data are combined with ground measurements to estimate 

and monitor changes in the area affected by deforestation or degradation and changes in the 

density of carbon stock. The final objective is to measure, report and verify forest carbon 

emissions in an objective, practical and cost-effective way (De Sy et al. 2012). 

 

Implementing REDD+ in an effective way translates into ensuring fast responses or 

interventions to forest changes. This relies on the identification of active forest change areas 

(hotspots), and near-real time detection is central in this regard (De Sy et al. 2012). 

Monitoring and verifying tropical deforestation in an efficient way depends on two aspects: 

(i) a sufficiently high spatial resolution and (ii) the temporal density of observations (DeFries 

et al. 2005). This last aspect translates into a sufficient temporal resolution and into the 

capacity to observe surface through the atmosphere, where clouds represent the main obstacle 

for an accurate observation (Asner, 2001).  

Clouds produce abnormally low NDVI values that reduce the data quality (Bradley et al., 

2007). The accuracy of the detection of abrupt and climatic changes, which depends on the 

magnitude of the change versus the signal-to-noise ratio is then affected (Verbesselt et al., 

2010; Verbesselt et al. 2012). However, the usefulness of remote sensing data from the 

different sensors available for tropical forest monitoring is limited. On one hand optical 

sensors are affected by recurrent cloudiness and on the other hand there is a lack of 

consistent, continuous and affordable coverage from sensors that are not affected by 

cloudiness (e.g. SAR or LiDAR data). This is partly due the lack of useful optical data when 

cloudiness is recurrent over the area, and to the lack of consistent, continuous and affordable 

coverage from standard fine resolution data or from SAR and LiDAR data, which are not 

affected by cloudiness (De Sy et al. 2012). Using different sensors in a synergic way, to 

benefit from their different spectral, spatial and temporal characteristics, offers a solution for 

limitations in data availability (cloudiness and limited temporal and spatial coverage of a 

certain area) (De Sy et al. 2012; Goetz et al. 2009). Coarse resolution optical sensors (e.g.  

the Moderate Resolution Imaging Spectroradiometer, MODIS) acquire frequent observations 

over large areas. They are therefore useful in overcoming issues with data gaps due to cloud 

cover (Morton et al. 2006) but not to identify small scale deforestation patches (Achard et al. 

2007; Jin and Sader 2005; Olander et al. 2008; Verbesselt et al., 2010). However, coarse 
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resolution optical sensors can be useful to locate hotspots of forest area changes that can later 

on be analysed with finer spatial resolution data (De Sy et al. 2012). Optical medium 

resolution sensors such as Landsat measure with a finer spatial resolution, which is 

particularly suitable for monitoring small scale changes (Morton et al. 2006; DeFries et al. 

2005). Furthermore, using Landsat images from current and previous missions allows users 

to obtain a detailed dense and extensive historical record of forest dynamics (Kennedy et al. 

2010). However, the minimum revisiting time of Landsat (each 16 days) is often extended 

because of cloud contamination (Hilker et al. 2009), which is a main issue for data 

interpretation in tropical areas (Olander et al. 2008; Herold & Johns 2007, Asner 2001).  

For near real-time detection of deforestation, the fusion of coarse spatial resolution data, 

which have a high temporal resolution, with moderate spatial and temporal resolution data 

offers great possibilities. They allow to identify areas of rapid change that can later on be 

analysed in detail with finer spatial resolution data, and to develop a warning system. It has 

been proposed for example to use a combination of Landsat time- series data and MODIS 

imagery to overcome issues with MODIS products (different images of the same area have 

varying pixel size, viewing angle and area of coverage). Therefore Xin et al (2013) suggested 

a method to use Landsat time-series to predict the value of a future MODIS image. In this 

way, which assumes that no disturbance has occurred before the future MODIS image is 

recorded, it is possible to compare the predicted expected value with the real recording. If 

there is a difference between both spectral signatures, this difference is used to represent the 

change. However, in general terms, fusion techniques need to be further developed, tested 

and evaluated (De Sy et al. 2012). Even though using a single satellite sensor instead of a 

fusion of several generally limits the advantages from combining spatial, spectral and 

temporal resolutions (Xin et al. 2013), as long as the products derived are useful, using single 

sources is considered the best choice due to its simplicity (De Sy et al. 2012). Landsat 

imagery offers an optimal combination of high resolution data, extensive archive and freely 

accessible data, and is therefore the most viable option when monitoring deforestation in the 

context of REDD+ (Olander et al. 2008; Defries et al. 2007; Herold & Johns 2007). 

 

Many approaches have been proposed to detect changes using Landsat time series (e.g. 

LandTrendr (Kennedy et al. 2007), Vegetation Change Tracker (Huang et al. 2010) or curve 

fitting algorithms (Powell et al. 2010)) but are not adapted for near-real time purposes. Near 

real-time change detection algorithms must be capable of distinguishing the normal 
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phenological cycle from abnormal behaviour in newly acquired satellite data (Verbesselt et 

al. 2012).  Several near-real time detection approaches have been developed using MODIS 

imagery (Jiang et al. 2010; Verbesselt et al. 2012; Verdin et al. 2005; White & Nemani, 

2006) and could potentially be used with Landsat products. Among those, the BFASTmonitor 

approach optimizes detection because it uses the full temporal detail of the time series, does 

not depend on user-defined vegetation-specific thresholds and can deal with missing data in 

an effective way (Verbesselt et al. 2012). It is an extension of the Break Detection For 

Additive Season and Trend season-trend model (BFAST), which detects and characterizes 

changes only in historic time-series (Verbesselt et al. 2010). Instead, BFASTmonitor allows 

for the detection and characterization of the change in near-real time by first analysing the 

historic time-series and identifying a stable part of the historic time-series. Next, it adjusts a 

season-trend model to this stable period, representing the expected variation of the data. 

Finally it assesses if the model remains stable for incoming data, and hence is able to signal a 

break if their variation differs from the expected one (Verbesselt et al. 2012). 

 

2- Problem definition 
 

Deforestation in the tropics is responsible for most of the global net carbon flux derived from 

land use changes (Achard et al. 2007). The importance of monitoring it in near-real time to 

enable early warnings and responses has been widely acknowledged in the scientific 

community (Morton et al. 2006; Verbesselt et al. 2012). However, a comprehensive approach 

to monitor globally and in near-real time forest disturbances including small scale human 

activities is lacking (Xin et al. 2013). This is due to various specific reasons. In the following 

part the different reasons are reviewed in detail together with the current state of the art of 

methodologies that address them.  

 

2-1- The problem of cloud removal in change detection with Landsat data:  
The benefits of using enhanced quality data where clouds have been removed when applying 

methods for change detection has been acknowledged (Verbesselt et al. 2010).  However, 

cloud coverage and cloud shadow currently remains one of the main challenges when 

correcting signal contamination in tropical areas that are often cloudy (Gibbs et al. 2007; 
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Hagolle et al. 2010; Townshend & Justice, 2002), and clouds and cloud shadows need to be 

precisely identified and removed to enable for an automated time series analysis (Zhu & 

Woodcock, 2012).   

 
Several approaches have been developed for cloud screening in data from coarse resolution 

sensors, and are therefore not specific to Landsat. They depend on the spectral bands 

available on the specific sensor, and on the characteristics of each type of cloud. For 

example, they use visible and thermal infrared bands to locate clouds because clouds are 

colder than the surface and are in this case applied to MODIS or Advanced Very High 

Resolution Radiometer (AVHRR) data (Ackerman et al. 1998; Saunders & Kriebel, 1988), or 

short wave infrared (SWIR) bands to detect high clouds in  Airborne Visible/Infrared 

Imaging Spectrometer (AVIRIS) data (Gao et al. 1993). The neighbouring information is also 

used to discriminate clouds (Ackerman et al. 1998; Saunders & Kriebel, 1988). Other 

algorithms rely on multi-temporal observations to detect clouds, but they are not common 

and follow different approaches. For instance, they look for low correlation between 

successive images (Lyapustin et al. 2008), or rely on daily temperature observations to 

analyse the smooth variations and classify outliers as clouds (Reuter et al. 2005).  

 

Current cloud screening methods for Landsat imagery are very heterogeneous and follow 

different approaches. It is possible to use classification methods in each acquired scene 

(Hansen et al. 2008; Kennedy et al. 2007; Sano et al. 2007) as well integrated segmentation 

and object based classification (Goodwin et al. 2013). Another possibility is to use single-

date Landsat imagery cloud/shadow screening approaches that rely on spectral filters, to 

distinguish clouds and cloud shadows from surfaces with similar spectral signatures 

(Goodwin et al., 2013). One of those approaches has been used traditionally to remove clouds 

from Landsat scenes, and is referred to as Automatic Cloud Cover Assessment (ACCA) 

algorithms (Irish et al. 2006; Choi & Bindschadler, 2004; Roy et al. 2010) but is not 

sufficiently precise for time series analysis regarding the location and boundaries of clouds 

and cloud shadows. Other single-date screening algorithms are based on MODIS algorithm 

(Oreopoulos et al. 2011). They are implemented as the Landsat Ecosystem Disturbance 

Adaptive Processing System (LEDAPS) for geometric and radiometric correction, and have 

been adapted from the MODIS Adaptive Processing System (MODAPS) (Masek et al. 2006; 

Feng et al. 2012; Justice et al. 2002). LEDAPS enables users to rapidly produce surface 
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reflectance products from raw radiometry for a large amount of Landsat images (Feng et al. 

2012) but may nevertheless not detect clouds accurately when the area is largely covered by 

them (Zhu & Woodcock 2012). Finally the Function of mask (Fmask) approach uses a 

probability mask and a scene-based threshold for the classification of pixels contaminated by 

clouds (Zhu & Woodcock 2012). Fmask is successful in classifying clouds and cloud 

shadows as such (high producer accuracy). Despite the fact that thin warm clouds may not be 

detected (omission errors), it is still possible to remove them with atmospheric correction.  

The main limitation for Fmask results from the fact that it applies a scene-based threshold to 

all pixels, and therefore its results may not be good enough in scenes with complex surface 

reflectance (Zhu  & Woodcock 2012). 

 

There is no comprehensive set of algorithms available for cloud detection in Landsat imagery 

(Hagolle et al. 2010; Zhu & Woodcock, 2012). Despite using high resolution data and the 

recent improvements in high-level preprocessing techniques, cloud detection methods need to 

be further optimized (Hagolle et al. 2010; Tucker & Townshend, 2000, Michishita et al. 

2014). When analysing time series, it is possible to use the temporal context of an 

observation. This is based on the assumption that a change in the vegetation due to 

deforestation shows a recognizable abrupt drop of the NDVI value and is followed by a 

gradual increase over time (regrowth). The concept is in fact a simple adaptation of the 

approach proposed by Viovy et al. (1992) known as the best index slope extraction (BISE) 

filter. The concept relies therefore on the fact that a drop due to a change in vegetation will be 

distinct from the high-frequency change derived from cloud conditions, where the sharp 

decrease in vegetation index value is immediately followed by an increase.  

 

2-2- The effect of external disturbances 
Some challenges still remain to improve the detection of deforestation with methods designed 

to work in near real time. The importance of pre-processing methods to enhance the quality 

of the data and the reliability of the detection with BFASTmonitor has been acknowledged 

(Verbesselt et al. 2012). Reducing noise in the time series involves screening effectively 

cloud cover and cloud shadows, but other external disturbances affect as well the data 

quality. The external disturbances can include seasonal or phenological effects, errors in the 

radiometric or atmospheric correction, topographic impacts or effects of the bidirectional 

reflectance distribution function (Lhermitte et al. 2011) as well as human-induced or climatic 
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disturbances (Nelson, 1994). For example, drought is likely to be the main natural factor 

affecting ecosystems productivity in the context of climate change (Malhi et al. 2009). 

Correcting for the effect of external disturbances in the time series is challenging, because the 

change observed in a certain area can be due to natural climatic variations, to anthropogenic 

disturbance, or to a combination of both (Coppin et al. 2004). The spectral properties of the 

disturbance are of particular importance (Schroeder et al. 2011), and it is possible to improve 

further the detection of changes by including spectral information present in the spatial 

context of a given area. Some approaches have been proposed in literature that can correct for 

the effect of external disturbances and phenological variations in a certain patch by including 

the spectral information of neighbouring areas. In the case of the Regeneration Index (RI) 

approach (Diaz-Delgado et al. 1998), the correction relies on the selection of neighbouring 

control plots, unaffected by the studied change, that describe the vegetation behaviour in the 

case that no change had occurred (Lhermitte et al. 2010). However the approach depends on 

static reference data, which are not always available or have a coarse scale. Furthermore, the 

method cannot consider heterogeneity within each studied area (Lhermitte et al. 2010). This 

approach was adapted by Lhermitte et al. (2010) to correct for those disadvantages, in an 

index referred to as pixel-based Regeneration Index (pRI). The pRI can quantify vegetation 

dynamics separately for each pixel within an affected area, by incorporating information of 

control pixels. The control pixels are selected based on the similarity of their time series and 

on the spatial context (Lhermitte et al. 2011). The pRI has traditionally been applied for fire 

assessment purposes, with different indices derived from MODIS,	   Landsat	   and	   SPOT 

(Lhermitte et al. 2011; Veraverbeke et al. 2010, 2011, 2012). The pRI is acknowledged to be 

a valuable tool to represent intra-annual variations when data from moderate to coarse spatial 

resolution are used (e.g. from SPOT or MODIS). Landsat products have been used in bi-

temporal estimates of fire impact on vegetation over non-tropical areas (Lhermitte et al. 

2011). The correction of external disturbances with the pRI based on irregular Landsat 

products with a high amount of missing data (tropical areas), and on a monitoring approach 

robust to data gaps such as BFASTmonitor remains to be assessed. 

 

2-3.Research objectives and research questions 
The main objective of this study was to improve the detection of deforestation from Landsat 

image time series. First, we tested an approach to remove remnant outliers from NDVI 

Landsat time series and evaluated its performance with BFASTmonitor. We then assessed  



8	  
	  

  



9	  
	  

Fig. 1. Location of the study area (red) in the northern part of Brazil, state of Pará. 

whether combining BFASTmonitor with an analysis of the spectral and spatial properties of 

the detected disturbance improved further the accuracy of the BFASTmonitor results. 
 

The research questions this study aimed to answer were:  

1. Can we distinguish temporally outliers from a deforestation event in our area?  

2. Can remaining outliers robustly be removed from Landsat image time series, to 

improve Landsat-based deforestation monitoring? 

3. Can spatial neighbourhood information be used correct for the influence of external 

disturbances?  

3- Materials  
 

3-1. Study area 
The study area is located in the northeast area of the region of Pará, in the north of Brazil. 

The area, which can be located with Fig. 1, is limited by the coordinates -48° 15' 49.5" and -

48° 7' 25.9674" in longitude and -2° 53' 33.6192" and -2° 42' 11.8224" in latitude. The site 	  

covers an area of 325 710 km2 (21 km x 15.5 km). The forest in the region of Pará is 

evergreen (Uhl & Vieira, 1989) and the climate is humid tropical, with an annual rainfall 	  

average of 2200 mm. The dry season usually takes place from July to November (Asner et 

al.,  2001), with generally less than 50 mm per month (Pereira et al., 2002). Often June and 

December are dry enough to allow logging operations (Pereira et al., 2002). The area has 

soils classified as argisols and the topography is flat to mildly undulating (Asner et al., 2001). 
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This site is particularly interesting for our study because it is located in the tropics and it is 

among the states with higher deforestation rates (together with the states of Mato Grosso, 

Maranhao and Roraima (UNEP-GEAS, 2010). Pará has been subjected to heavy logging 

activities from the end of the 1960s, because the Belém-Brazilia highway enabled easy access 

to the region. The land was sold for low prices, resulting in an expansion of cattle ranches 

that transformed large areas of forest into pasture (Uhl & Vieira, 1989). However ranching 

gradually decayed due to economic and ecological constraints, and timber exploitation 

activities developed strongly (Uhl & Vieira, 1989). In the last years, the financial support 

from the Brazilian government to soybean agriculture notably increased the extent of 

cultivated areas in the Paragominas region (Souza et al. 2009). Deforestation is therefore 

mainly due to commercial logging and to conversion of forest land to agriculture (WWF, 

2013). For commercial logging, trees are cut and sold as timber or pulp. It can occur 

selectively (i.e. selective logging), where only the valuable species are cut, or by clear-

cutting, where all the trees in the area are removed (Tropical Rain Forest Information Center, 

1998). Both logging procedures use heavy machinery to remove trees and build roads, which 

is a major cause of disturbance (Tropical Rain Forest Information Center, 1998). When the 

area is deforested for agricultural purposes, the deforestation procedure usually involves 

slashing and burning the area. Small landholders of the state of Pará practiced slash and burn 

extensively in the past, and therefore this practice occurs generally over smaller areas than 

modern intensive agriculture (Rodrigues et al, 2003). The trends seem to indicate a general 

decrease in the rate of deforestation for this state, even though the years of 2012 and 2013 

registered a general increase (UNEP-GEAS, 2010; WWF, 2013).  

	  

3.2. Data 
Vegetation dynamics were analysed from the NDVI product of Landsat 4-5 TM and Landsat 

ETM+ geo-referenced imagery (with ground control points), covering the period from 1987 

to 2014. These scenes belong to path/row 223/062 and have a spatial resolution of 30m and 

were sourced from the Earth Explorer site of USGS (www.earthexplorer.usgs.gov). 

 

Areas that had remained as forest until the start of the monitoring period were identified 

using the Landsat Vegetation Continuous Field dataset of year 2000 (VCF) and the Landsat 

Forest Cover Change (FCC). Both datasets are Landsat-based products and have a spatial 

resolution of 30m (GLCF-GSFC, 2014). They were obtained from the Global Land Cover 
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Facility site (www.landcover.org). The VCF dataset estimates the percentage of horizontal 

ground in each pixel that is covered by woody vegetation of a height of 5m or more (Sexton 

et al. 2013). The FCC dataset is based on the VCF products and identifies the changes in 

forest cover between the years 2000 and 2005 with a certain probability per pixel. It enabled 

us to locate the pixels that had remained as forest up year 2005 included. This study does not 

aim to evaluate and improve the temporal delay of the detection of deforestation with 

BFASTmonitor. Instead, it is focused on improving the spatial accuracy. Therefore, the 

monitoring was not performed in near-real time. FCC data extend up to year 2005, hence the 

start of the monitoring period was fixed and corresponded to year 2006. The F-mask layer 

available for each Landsat scene in the corresponding Surface Reflectance product was used 

to remove clouds as much as possible.  

 

Rainfall data from Tropical Rainfall Measuring Mission (TRMM) of NASA, of Level 3 

(3B43) were used to calculate standard precipitation index (SPI) in order to estimate the 

occurrence of drought in the area (McKee, et al. 1993). TRMM data are recorded monthly 

from 1998 to 2013, and are available for free download from the website of the NASA-

Goddard Earth Sciences Data and information services Centre (http://disc.sci.gsfc.nasa.gov). 

For validation, the study used True Colour composites created using the Surface Reflectance 

product (bands 1, 2 and 3). The statistical analysis of time-series, the pre- and postprocessing 

of Landsat imagery and the validation were performed in the opensource R software for 

statistical computing (version 3.0.2) (R Development Core Team, 2011), where the 

BFASTmonitor function is developed within the bfast package. 

 

3.3. Selection of forested pixels 
To select only the pixels that had remained forest during the historic period, it was taken into 

account that REDD+ considers an area as forest if 30% or more of its extent is covered by 

trees (Herold & Johns, 2007). It was possible to select pixels that fulfil this criterion using 

VCF layer of year 2000., by selecting only the pixels with a percentage of woody vegetation 

equal or higher to 30%. Next, the FCC layer was used to further select those pixels that were 

classified as Persistent Forest between the years of 2000 and 2005 with a probability of 90%. 

Fig. 2 presents the forested pixels analysed in this study, overlaid over a true colour 

composite of a Landsat acquisition of the study area. 
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Fig. 2 Pixels considered as forest at the start of the monitoring period in year 2006 (in light green). 

This selection of pixels is based on the VCF layer of year 2000 and on the FCC layer of years 2000-

2005. The final pixels selected for the study has at least 30% of woody vegetation cover by year 200. 

Furthermore, they remained as forest between years 2000 and 2005 with a probability of at least 90%. 

The background shows a true-colour Landsat acquisition of the study area 

 

4-Methods 
 

An overview of the study methodology is shown in Fig. 3. The first analysis tests if removing 

remnant outliers (mostly clouds) improves the accuracy of the detection of deforestation with 

BFASTmonitor, compared to the BFASTmonitor result where remnant outliers have not been 

removed (sections 4.1 and 4.2.). After this, the most accurate dataset is chosen, and we seek 

to further improve the detection with a spatial analysis. Therefore the second analysis tests if 

including information of the neighbouring area of a certain pixel can optimize the detection. 

The result of this step is compared with the previous results. Finally, the most accurate 

BFASTmonitor is chosen. 

 

4.1- Preliminary analysis: Adjusting the temporal threshold approach 
Outliers can result from a variety of causes, such as atmospheric influences, sensor 

performance, or the efficiency of post-acquisition cloud algorithms (Geerken, 2009). The  



13	  
	  

 

Fig. 3 Overview of the study methodology. The accuracy of the detection of deforestation with 

BFASTmonitor is tested before (Run 1) and after (Run 2) an approach that aims to remove remnant 

outliers. The most accurate change detection procedure of both cases is selected. Then an additional 

procedure is tested, that builds upon the previously selected one (Run 1 or Run 2). This additional 

procedure includes information of the spatial context of a pixel (Run 3). Finally the most accurate 

approach is selected. 

 

objective of the preliminary analysis was to define a temporal threshold that could 

differentiate clearly the drop in NDVI caused by an outlier (e.g. cloud) from that of 

deforestation. First, three test values for the temporal threshold were defined based on a 

literature review. The values were then tested, and the one that produced more accurate 

results was chosen. There is evidence in literature that the scientific community does not have 

an integrated view of the recovery processes of forests, and that detailed long-term studies are 

needed to achieve a complete understanding (Chazdon, 2003). The factors influencing 

recovery are directly and indirectly linked to the ability of the affected area to sprout or 

resprout, where the type of deforestation plays a major role (e.g. in the presence of burning 

practices , the recovery will be slower). Literature indicates that the identification of a clear 



14	  
	  

response to a certain disturbance in temporal behaviour of vegetation may not be possible, 

because recovery processes following different kinds of disturbances (natural or 

anthropogenic) overlap both in space and in time (Chazdon 2003). Furthermore, the recovery 

process can present an important spatial heterogeneity (Chazdon, 2003). Characterizing 

recovery processes is very complex and was out of the scope of this study. It is possible 

however to make some relative and quantitative estimations. As stated previously, logging 

(selective or clear-cutting) and slash and burn are the main deforestation activities occurring 

in the region of Pará. Selective logging and clear-cutting may present faster rates of recovery 

than areas where slash and burn practices occurred, however the size of the area affected 

could play an important role. Furthermore, forest areas in the study have low land-use 

intensity in the historic period because they are assumed to have remained as forest. Also, 

remnant forests are found nearby, which can shorten recovery through seed dispersion. 

Therefore disturbed patches in our area are expected to present relatively accelerated 

recovery rates. It is difficult to derive quantitative measures for the recovery because studies 

measuring recovery are rare in the scientific literature, but some of them can be found related 

to the recovery after logging in other tropical areas, and can be useful for our purpose. In 

Indonesia, one year after logging the density of trees was of 41% of the previous levels 

(Cannon, 1998). In Brazil, in the Tapajos National Forest, growth increased only the first 3 

years after logging (Chazdon, 2003). Finally, in Malaysia, one year after logging the area 

contained biomass between 44 and 67% of the pre-logging levels (Pinard et al. 1996). Based 

on these studies, a temporal threshold of less than one year was considered as suitable for the 

distinction of outliers from deforestation events in the NDVI time series. Different temporal 

threshold values were selected for testing, to assess their effect on the accuracy of 

BFASTmonitor. Finally the most appropriate temporal threshold value was chosen for the 

further steps. 

 

4.2- Removing remnant outliers 
The objective of the next step of this study was to remove the outliers that previous pre-

processing techniques (Fmask) could not remove, i.e. remnant outliers. This is important 

because, as discussed previously, traditional cloud algorithms such as Fmask may have a 

limited success removing clouds and therefore not taking this into account can affect 

negatively the accuracy of change detection. Hence the goal was to determine whether 

additional outlier removal techniques can improve detection of the deforestation. We 
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corrected the outlier values with a temporal threshold approach that aimed to be conservative. 

This approach determined whether the period measured from the moment the NDVI value 

dropped under the median until the moment it recovered could correspond to a deforestation 

event, or if on the contrary it was too short to be plausible and corresponded instead to an 

outlier.  

 

 

 
Fig. 4 Illustration of the concept applied to remove remnant outliers from NDVI time series with the 

temporal threshold approach. The observations with an NDVI value lower than that of the median 

NDVI of the time series are considered as potential remnant outliers, and tested with the temporal 

threshold approach. The temporal threshold represents a certain length of time, that discriminates 

potential disturbance cases from outliers as follows. First the length of time between the observations 

immediately preceding and following a potential outlier are identified. Next, the time span between 

such observations is measured, and compared to the temporal threshold. Measured time spans shorter 

than the temporal threshold are considered unrealistic, and therefore the outlier observation was 

discarded. 

 

4.3-Applying BFASTmonitor to NDVI time series 
BFASTmonitor detects disturbances in the time series, from a date that separates historic and 

monitoring period. Therefore, disturbances are detected by comparing the variation of the 

data in the monitoring period with the variation of the data in a stable historic period. The 
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comparison involves identifying a stable part of the historic period, and modelling its 

variation. This model represents the normal dynamics for the historic period in the area, i.e. 

the variation that is expected in the monitoring period. The model has certain unknown 

parameters, which are the intercept, the slope, the amplitudes and the phases, and which are 

estimated based on the stable historic period. The model fitted is robust against gaps in the 

time series because the missing observations are not considered for the estimation of the 

unknown model parameters (Verbesselt et al. 2012). If this model does not remain stable for 

the incoming observations in the monitoring period, i.e. if there is an abnormal variation, then 

a disturbance is detected.  

 

It is very important to select a stable historic period free of disturbances, to ensure that the 

model fitted represents accurately the normal expected behaviour of vegetation. Different 

approaches are available for this selection, and in order to choose the best adaptation of the 

BFASTmonitor model the characteristics of the area and of the data were considered. The 

typical interval between Landsat acquisitions is not regular, and the presence of outliers 

(mainly due to clouds) varies from pixel to pixel. This results in time series composed of 

relatively sparse sections, and which are furthermore likely to contain outliers even after the 

step of removing the remnant ones. To ensure that the pixels analysed contained sufficient 

data and that would therefore not fit the BFASTmonitor model based on a few observations,  

the pixels that presented less than 80 observations in the historic period and less than 44 in 

the monitoring period after the removal of remnant outliers were masked out, and were 

therefore not used for the validation of the temporal threshold approach nor for the spatial 

context analysis. Appendix 1 shows the amount of observations per pixel in the study area.  

 

Seasonality in the data is assumed to be marginal because the forest type is evergreen (Reiche 

et al. 2015). It is reasonably safe to assume that the pixels analysed remained as forest in the 

history period. However climatic disturbances may have taken place in the historic period, 

and can also produce a pattern in the model fitted to the historic period, with an increasing or 

decreasing trend (decreasing is the more likely due to drought). Including the trend 

component in the model would lead to inaccurate predictions of the values in the monitoring 

period, i.e. wrong detections. For these reason we omitted the seasonal and trend components 

of the model, fitting only the intercept to the stable historic period.  
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To optimize the selection of the stable historic period, it was also needed to consider the 

method used for its selection. BFASTmonitor allows the user to choose among three 

methods. One of the proposed methods is the reversed-ordered-cumulative sum (CUSUM) of 

residuals (ROC) (Pesaran & Timmermann 2002). The ROC approach uses only the last 

observations of the historic period, and moves backward in time while calculating the 

cumulative prediction error of the model. It defines the start of the stable historic period at the 

moment in time when the model breaks down due to a structural change (Verbesselt et al. 

2012). The advantage of this method is that it uses only part of the historic data, therefore 

allowing for a more accurate model to be fitted. However, it is not designed to detect with 

accuracy the time of a possible disturbance in the historic period, which means that it can be 

influenced by the presence of outliers. The stable historic period selected can be too short or 

not representative of the dynamics of the pixel (Verbesselt et al. 2012), therefore this 

approach was not used. Another alternative is to use the Bai and Perron method (Bai & 

Perron, 2003). The Bai and Perron approach can fit a linear regression with a certain amount 

of breaks to our time series. It allows estimating the unknown regression coefficients of the 

model together with the breakpoints. The advantage of this method is that it allows estimating 

with more precision the time of a possible disturbance in the historic period (Verbesselt et al. 

2012). The Bai and Perron approach estimates the unknown coefficients of the model by 

minimizing the sum of squared residuals. The estimators of the breakpoints of the historic 

period are those that minimize globally the sum of the squared residuals over all the 

segments. In fact, an algorithm evaluates which partitions of the linear regression achieve a 

global minimization of the overall sum of squared residuals (Bai & Perron, 2003). However, 

it was not possible to implement this method to the data in R software. 

 

Other alternatives are possible as well, that are similar to the Bai and Perron approach but are 

too computationally extensive (such as applying BFAST to the historic period to estimate 

with more accuracy the disturbances in the historic period) or are not automated (such as 

using expert knowledge of the area to manually select the historic period) (Verbesselt et al. 

2012). Another aspect to consider of the area and data is the abundance of gaps and outliers. 

Even though curve fitting approaches like BFASTmonitor can help remove the remaining 

noise (Geerken, 2009), large data gaps may cause strong oscillations in the harmonic model 

(Brooks et al. 2012), such as the one BFASTmonitor fits to the historic period. The accuracy 

of fitting harmonics to such irregular data is very low. Given that it is assumed that the pixels 
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were not deforested in the historic period, structural changes were not expected to occur 

during that time that could lead to wrong estimations of the model parameters (i.e. inaccurate 

stable historic period selected). The choice was to use the full length of the historic period as 

stable period, because this approach was more robust against outliers and against missing 

data, and was simple and computationally possible. Therefore after those considerations, the 

choice was made to use all the historic period as stable period and to fit a model to it that 

included only the intercept. 

 

4.4-Validation approach 
For the validation, independent random samples were generated for each BFASTmonitor 

result: half of the samples belonging to the Deforested class and the other half belonging to 

the Non Deforested class. The Deforested class refers to the pixels where BFASTmonitor 

signalled a break with negative magnitude. Similarly, the Non Deforested class, refers to 

pixels where BFASTmonitor did not signal a negative break (i.e. either signalled a positive 

break or did not detect any change). A total of 400 validation samples were generated per test 

(200 among the pixels of the Deforested class and 200 among those of the Non Deforested 

class) to validate the results before and after the removal of remnant outliers. The result after 

including information of the spatial neighbourhood was validated with 172 pixels belonging 

to the Deforested class of BFASTmonitor and 200 belonging to the Non Deforested class. 

The tests regarding the selection of control pixels in the monitoring period were validated 

with a total of 300 samples each (150 samples of each BFASTmonitor class) 

 

The validation also utilized Landsat Surface Reflectance products of the data, (bands 1, 2 and 

3) to produce True Colour composites of each acquisition with the band combination Red= 

band 3, Green = band 2, and Blue = band 1. An example is shown in Fig.5. Each validation 

sample generated was overlayed to several RGB plots, generated for different moments in 

time, in order to assign the sample to a class (Deforested or Non Deforested) in an 

independent way. The corresponding confusion matrices were finally derived, and used to 

compare the different results of BFASTmonitor. 
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Fig. 5 An example of the validation procedure. A validation sample (in red) is plotted over a True 

Colour composite of the study area based on Landsat Surface Reflectance products (date: 2008-06-

27). The composite is created with bands 3, 2 and 1 in R software. 

	  

4.5-Spatial context approach 
In the main part of this study, it was assessed whether correcting the signal of pixels to 

remove the effect of external disturbances in the time series improved the detection of 

deforestation with BFASTmonitor in the area. The objective was to produce time series  

where the effect of external disturbances was minimised, and test whether the use of such 

time series could improve the detection of deforestation with respect to the previous results 

obtained after removing remnant outliers. 

 

4.5.1-Pixel-based Regeneration Index (pRI) 

We aimed to produce time series where the effect of external disturbances was minimised. 

The correction of time series can be done using the pixel based Regeneration Index (pRI) of 

Lhermitte et al (2010), which has the advantage of not depending on static reference data and 

of considering each pixel independently. This index also quantifies vegetation regrowth and 

heterogeneity within a deforested plot (Lhermitte et al. 2011). For this, the pRI employs 

information of reference pixels located close to the considered focal pixel. It is based on the 

assumption that the vegetation growth of the reference plots indicates the pattern of 

vegetation growth in the focal pixel, in case the focal pixel had not been deforested. 
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Reference pixels, called also control pixels, are therefore used as predictors of vegetation 

growth in the focal pixel. Therefore, the pRI index masks out possible external influences in 

the focal pixel (Lhermitte et al. 2011), and any change that may be present in the focal pixel 

can be interpreted as due to deforestation and to the following regeneration. The pRI is 

calculated with the following formula for the pRI: 

 

𝑝𝑅𝐼! =   
𝑉𝐼!"#$%!

𝑉𝐼!"#$%"&!                     (1) 

 

where 𝑉𝐼!"#$%!  is the NDVI value of the focal pixel at the moment t and 𝑉𝐼!"#$%"&!
 is the mean 

vegetation index of the selected control pixels at moment t. 

	  

4.5.2-Similarity analysis approach  

The Fig.6(A) below shows an overview of the conceptual approach for the similarity analysis 

approach. First the analysis focused on the historic period of a certain focal pixel and of the 

pixels within its neighbourhood. The purpose was to identify neighbours that presented a 

similar evolution of vegetation for that period of time as the focal pixel. The reason behind 

this is that those selected neighbours would predict the temporal pattern of vegetation in the 

focal pixel in the monitoring period with better accuracy than the other neighbours. They 

ensured that the pRI time series of the focal pixel would not present the effect of 

environmental disturbances in the monitoring period. The selected neighbours are referred to 

as xH pixels (see Fig.6 (A)). 

 

In the next step only the monitoring period of the focal pixel and of the xH pixels (neighbours 

selected in the previous step) was considered. The xH pixels selected may or may not be 

similar to the focal one in the monitoring period, resulting therefore in three different possible 

scenarios (depicted in Fig.7.). The first scenario (Case 1 of Fig.7) would occur when the focal 

pixel is deforested while most of the xH pixels were not. This would produce pRI values close 

to 1 before the deforestation event. During the deforestation and recovery process, pRI values 

would decrease and increase, respectively. Once the recovery process has finished, values 

would again fluctuate around 1. Given that the pRI is calculated with the average of the xH 

pixels, the behaviour of a particular xH pixel has relatively less importance, depending on the 

xH amount selected. The second case scenario (Case 2 in Fig.7) corresponds to the situation 
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where all the pixels involved (focal and xH) belonged to a deforestation plot. They would 

remain similar throughout the monitoring period, and the pRI time series would be relatively 

stable around the value 1. The third possibility (Case 3 in Fig.7) involved the focal pixel not 

being deforested while most of the xH pixels were.  
 

(A) 

 
(B) 

Fig. 6 Flowchart of the three steps involved in the spatial analysis. (A):Overview of the process. First 

the effect of external disturbances in the historic period is removed by selecting, those neighbouring 

pixels with higher temporal similarity with the focal pixel (xH pixels).Second, to ensure that 

neighbouring pixels affected by a change are discarded, only those xH pixels with less similarity 

considering only the behaviour during monitoring are selected. Finally, the pRI time series is 

calculated. (B): Flowchart of the steps taken in the spatial analysis, detailing the tests performed to 

optimize the selection of control pixels during the monitoring period. To select the least similar 

neighbours to the focal pixel during the monitoring, two approaches are tested (the Median Approach 

and the Dissimilarity Threshold Approach), that aim to discard the neighbours affected by a change 

(e.g. deforestation) during the period of monitoring. Next, a calibration of the pRI is performed, to 

adjust the window size and amount of control pixels used to the characteristics of the area. 
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Fig. 7 Three possible case scenarios occurring during the selection of control pixels in the monitoring 

period. Case 1: the focal pixel is deforested while most of the control pixels selected based on the 

historic period (called xH pixels) were not. The pRI remains close to 1 in the historic period and drops 

during the deforestation event in the monitoring before the deforestation event. Case 2: all the pixels 

involved (focal and xH) belonged to a deforestation plot. The pRI remains relatively stable during the 

monitoring period, fluctuating around 1. Case 3: the focal pixel is not deforested during the 

monitoring period while most of the xH pixels are. The pRI shows a change of positive magnitude.  
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This would result in a pattern directly opposite to that of the first case scenario, because pRI 

values would then increase during deforestation and decreasing during recovery. Only the 

first scenario was of interest, because the pRI could then show a negative drop during the 

time of deforestation, which may be detected as structural change by BFASTmonitor. To 

ensure that the focal pixels analysed belonged to the first scenario, a selection was made 

among the xH pixels (which were similar to the focal one only in the historic period) to obtain 

a certain xM amount of pixels corresponding to those xH pixels that were dissimilar to the 

focal one in the monitoring period (xH > xM). The selection of xM pixels was delicate and 

involved certain criteria. A certain xH pixel could be selected as xM pixel if it was less similar 

to the focal pixel in the monitoring period than in the historic period. In addition to this, it 

was necessary to add an extra criterion to guarantee that the xH pixel analysed was not 

deforested, and to therefore reduce noise in the pRI time series for the monitoring period. We 

tested two approaches: the Median approach (Approach A) and the Dissimilarity threshold 

approach (Approach B), and selected the approach that returned the most accurate results. 

Both approaches are detailed further below. The xM pixels finally selected were the reference 

(or control) pixels, and were used to calculate the pRI time series over both historic and 

monitoring period. This pRI time series was the input for BFASTmonitor. Later on, we 

validated this BFASTmonitor result and compared it with previous runs. 

 

4.5.2.1-Similarity measure 

A correct selection of neighbouring pixels (xH and xM) is essential, and is performed by 

analysing the similarity between the time series of the focal pixel and that of the 

neighbouring pixel. For that, we relied on the Root Mean Square Distance (RMSD) as 

similarity measure. The RMSD calculates the distance between corresponding observations 

along the time series. In case one of the observations is missing, the RMSD does not take it 

into account. In this way RMSD accounts for missing values and provides a robust estimation 

of similarity between irregular time series. The RMSD takes into account the within-class 

heterogeneity caused by local ecological differences, as well as amplitude translations 

resulting from different backgrounds (soil type, understory vegetation) (Lhermitte et al. 

2010). 

 

After a preliminary analysis in a few random samples, the necessity to reduce the noise in the 

pRI time series during the historic period was evident. We needed to select as xH pixels the 
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most similar neighbours of a focal pixel, and furthermore those neighbours needed to be as 

similar as possible. We therefore used a threshold in this selection, of RMSD = 0.0025. This 

criterion ensured that only neighbours with RMSD values lower than 0.0025 were selected 

for the next stage. This analysis was identical for the following tests and steps.  

 

4.5.2.2-Selection of control pixels in the monitoring period 

As stated above, in the monitoring period, it was important to optimize the selection of the xM 

pixels to reduce the risk of false detections. Two different approaches were developed and 

tested: the Median Approach and the Dissimilarity Threshold Approach. In the first stage of 

the spatial analysis this was done with a fixed window size and fixed amount of control 

pixels xM. Fig. 6(B) details the tests we performed in the monitoring period and the tests 

related to the calibration of the similarity analysis. The calibration tests are explained further 

below. The objective of the Median and the Dissimilarity Threshold Approaches was to 

produce pRI time series with reduced noise in the monitoring period, where the negative drop 

in the NDVI due to deforestation would be visible.  

 

For that, it was necessary to ensure on one hand that the pixels selected for the calculation of 

the pRI were less similar to the focal pixel in the monitoring than in the historic period. On 

the other hand, it was important that pixels were not too dissimilar. In fact, if that was the 

case, the pRI time series in the monitoring period would not produce accurate detections. 

Both approaches were evaluated in a test site contained within the study area and validated 

independently. The most accurate one was chosen for the second stage of the spatial analysis. 

Approach B was applied in an additional test area, because the results of the first area did not 

contain enough pixels for the validation. In fact only 60 pixels had been signalled as 

deforested by BFASTmonitor in the test area, so it was applied it in a second test area and 

both validation results were combined to reach a total around 200 samples for each class. 

Approach B is very restrictive, when compared to Approach A, and only few pixels can be 

analysed with it. 

 

A-Median approach  

This approach uses the median NDVI over the monitoring period to select the xM pixels that 

are more likely to not have suffered from deforestation during that time. The procedure is as 
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follows. For a certain pixel time series, the first step calculates the median NDVI over the 

historic period. This represents the undisturbed NDVI value of the pixel. Next, the procedure 

calculates the median NDVI over the monitoring period. After that, both median values are 

compared. It is assumed that non-deforested pixels present a higher median than those pixels 

that have been deforested. Based on this assumption, the approach aims to select those xM 

pixels where the median NDVI value over historic and monitoring periods are as close as 

possible. In particular, the criterion used required a median NDVI value calculated over the 

monitoring period to be at least 80% of the value over the historic period.  

 

B-Dissimilarity threshold approach 

The Dissimilarity threshold approach relied on the use of two thresholds to define which 

degree of dissimilarity was the maximum accepted in the monitoring period. After a 

preliminary analysis in several random deforested samples, the value we used was of    

RMSD = 0.003. This allowed us to select control pixels that would produce a pattern of 

deforestation as recognizable as possible.  

 

4.5.2.3-Calibration of Similarity Analysis: window size and amount of control pixels. 

The neighbouring pixels for each part of the analysis (xH and xM) are selected based on time 

series similarity and spatial context. They are selected only within a certain neighbourhood of 

the focal pixel, referred to further on as window wk*k, where k is the length of the window 

side. This is due to the underlying assumption that there is a decrease in the spatial 

correlation of environmental conditions when control pixels are selected further away from 

the focal one. This phenomenon is called window size effect (Lhermitte et al. 2010). Due to 

the window size effect, the window used needs to be small enough to ensure high spatial 

correlation between the neighbours and the focal pixel. At the same time, the window size 

had to remain big enough to guarantee that part of the pixels that fell within the window were 

not affected by deforestation. It was therefore necessary to define the window size. 

Furthermore, also the number of neighbouring pixels to use for the pRI calculation had to be 

defined, to ensure that we select only the most similar candidates by using the discrimination 

power of the VIt time series (Lhermitte et al. 2010). For that, three window sizes were 

defined and tested with a fixed amount of control pixels. Each result was validated and 

finally the most appropriate window size among them was chosen. Similarly, two different 
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amounts of control pixels were then tested and validated using the selected window size, and 

the one returning the most accurate results was chosen. After the calibration it was possible to 

determine which window size and which amount of control pixels among the values tested 

were the most appropriate for the characteristics of the data.. The accuracies of each test were 

judged considering the overall accuracy as well as the omission and commission errors. It is 

important to acknowledge that the values of the window size and of the amount of control 

pixels are an orientation. A sensitivity analysis should be run in order to define the optimal 

combination of both parameters for our study area. Furthermore, the results of our tests are 

difficult to extrapolate to other areas or studies.  

 

4.6 Characterizing drought in the study area  
In order to have a general understanding of the dynamics of climatic disturbances that may 

have affected the results, TRMM rainfall data were collected and used to estimate the 

occurrence of drought. Drought is in fact the main natural factor affecting ecosystems 

productivity in the context of climate change (Malhi et al. 2009) and the calculation was done 

using the standard precipitation index (SPI). This index presents the incremental rainfall 

deficit that originates drought at different timescales (McKee, et al. 1993). For the amazon 

forest, an SPI calculated at 6-months timescales is considered appropriate to distinguish 

incremental dry anomalies between the dry and wet seasons (Li et al. 2008). 
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5- Results 
	  

5-1-Removing remnant outliers: Preliminary tests on the temporal threshold 
A literature review of the length of recovery processes after deforestation (Section 4.1) 

showed that the value of the temporal threshold should be shorter than one year. Therefore 

the effect on the detection accuracy of different temporal thresholds was analysed, using the 

following values for the threshold: 104, 272 and 303 days.	  The time of the detected change 

with BFASTmonitor for each case is presented in Fig.8. The detection of deforested areas 

achieved different overall accuracies with each tested value. A threshold of 104 days 

produced the most accurate result, with an overall accuracy of 87.25%, as well as the lower 

values for the commission error (equal to 7%) and for the omission error (equal to 5.75%). 

Opposite to this, the results of the highest value of the temporal threshold (303 days) 

produced the less accurate results: an overall accuracy of only 64.75% and higher 

commission and omission errors (respectively equal to 17.50% and 17.75%). The 

intermediate value of the temporal threshold (272 days) produced results that are in between 

those obtained with the shortest and the highest values, but that are nevertheless closer to the 

detection results of the highest temporal threshold tested (i.e. to 303 days). The overall 

accuracy reached using the 272 days threshold only reached 68.5%, and the commission and 

omission errors remained high, with values of13.50% and 18% respectively. After this test, 

the 104 days were chosen as the appropriate temporal threshold, and was applied in all next 

analysis. 

 

5-2- Effect of removing remnant outliers: comparison before and after its 
application 
First BFASTmonitor was applied to the data prior to the removal of remnant outliers, and the 

resulting map is shown in Fig.9(A). The detection of deforested areas achieved an overall 

accuracy of 87% and presented a relatively low omission error (4.5%) and commission error, 

which was slightly higher and reached 8.5%. After removing remnant outliers with the 

chosen temporal threshold of 104 days (see Fig.8 (A) for the detection map), the detection 

result showed a slight improvement in the overall accuracy, which increased to 87.25%. The 

commission error decreased to 7%. However, the omission error increased but remained 

relatively low (5.75%). The comparison of both cases, which is depicted in Fig.9 (B), and 
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illustrates the slight improvement obtained in the case where remnant outliers were removed. 

Therefore the approach to remove remnant outliers with a temporal threshold of 104 days 

was selected and applied in the following steps. 
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Fig. 8 Deforested areas detected by applying BFASTmonitor on NDVI time series where remnant 

outliers have been removed using different values of the temporal threshold: (A) 104 days, (B) 272 

days and (C) 304 days). The graph shown in (D) compares the validation results of the three tests. 



29	  
	  

A 
 

B 

87.00

8.50 4.50

87.25

7.00 5.75

Overall	  accuracy Comission	  error Omisson	  error

Before removing remnant outliers
After removing remnant outliers

Overall accuracy Commission error Omission error
 

Fig. 9 Deforested areas detected by applying BFASTmonitor on NDVI time series where remnant 

outliers are present (A). The detection result obtained after removing the remnant outliers from the 

NDVI time series with the chosen value of the temporal threshold (104 days) is displayed in Fig.8(A). 

The graph shown in (B) compares the validation results both cases. 

 

 

5-3- Selection of control pixels during the monitoring period: testing the Median 

Approach and the Dissimilarity Threshold Approach 
The Median and Dissimilarity Threshold approaches were tested and validated to assess if 

they optimize the selection of control pixels in the monitoring period. Fig.10 shows the 

detection result with BFASTmonitor and the comparison of the validation results for the 

Median approach and for the Dissimilarity Threshold approach. The detection of deforested 



30	  
	  

areas with the Median Approach was significantly better than with the Dissimilarity 

Threshold Approach. The Median Approach reached an overall accuracy of 70.67% and a 

relatively lower commission error of 11.33%, respectively compared to 53% and 25.33% 

with the Dissimilarity Threshold Approach. The values of the user’s accuracy were relatively 

similar, with an omission error of 18% for the Median Approach, as opposed to 21.67% 

obtained with the Dissimilarity Threshold Approach. Therefore the Median approach 

produced more accurate results than the Dissimilarity Threshold approach. However, the 

addition of this method decreased the quality of the detection compared to results after the 

removal of remnant outliers (shown in Fig 8 (A) and 9(B)). This may be due to the excessive 

presence of gaps in the time series of certain pixels, which can be appreciated in the example 

time series shown in Fig. 11. This example shows that the effects of including the Median 

approach vary depending on the pixel.  The Example pixel 1 of Fig.11 (A) shows that the 

Median Approach can produce more stable pRI time series. Also, the detection is improved 

because the change detected by BFASTmonitor is negative, and corresponds to the change 

caused by deforestation, observed in the validation step. In this case, the Median Approach 

represents an improvement, compared to Fig.11 (B) where such approach is not used, and 

where the magnitude of the change detected is positive. However, the Example pixel 2 of 

Fig.11 (C) shows a situation where the Median Approach does not affect the detection 

(Fig.11 (D)). Between the two tests analysed, the Median approach was chosen as the most 

appropriate to optimize the selection of control pixels in the monitoring period.  
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                                          C                                                                               D 

 
 

Fig. 10 Deforested areas detected applying BFASTmonitor on pRI time series which were calculated 

using different approaches to optimize the selection of control pixels in the monitoring period (see 

Section 4.5.2.2.) in subsets of the study area. For the calculation of the pRI the window size analysed 

was fixed in 7x7 and the amount of control pixels used was fixed in 6 pixels. (A): using the Median 

Approach in a subset of the study area, and (C and D) using the Dissimilarity Threshold Approach in 

two different subsets of the study area. In particular, (C) corresponds to the same subset of the study 

area as used in (A), and (D) corresponds to an additional subset, that was necessary to reach a 

minimum amount of processed pixels. The comparison of the three outputs is presented in (B). 
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Example pixel 1: deforested in year 2008 
(A): without Median Approach:                                  (B): with Median Approach: 

 
Example pixel 2: deforested in year 2007 

(C) : Without Median Approach:                        (D): With Median Approach: 

 

Fig. 11 Example of pRI time series and detection result with BFASTmonitor obtained on two pixels 

using 7x7 window and 6 control pixels. Example pixel 1 was deforested during 2008. (A) shows that 

including the Median Approach improves the detection (with a pRI time series more stable, and 

negative change detected). In contrast, (B) shows the result when no Median Approach is used 

(noisier pRI time series and positive change detected). Example pixel 2, deforested in 2007, shows in 

(C) a case where the Median Approach does not affect the detection compared to the situation where 

no Median Approach is used (D). 

1985% 1995% 2005% 2010%1990% 2000%

0.
6%

0.
8%

1.
0%

1.
1%

1.
2%

0.
7%

0.
9%

0.6
$

0.8
$

1.0
$

1.2
$

1.4
$



33	  
	  

5-4- Calibration of the pRI: window size and amount of control pixels 
Next, we tested different window sizes in the test area, with the Median approach selected 

before. The window sizes chosen were of 7x7, 17x17 and 25x25. The corresponding 

detection maps for each test in the subset area are presented in Fig. 10(A), and 1.  

The detection of deforested areas achieved different overall accuracies with each tested 

window. The smaller window (7x7) produced the most accurate detection results, with the 

higher overall accuracy (of 70.67%) and lower commission error (11.33%).  The detection 

results obtained with bigger window sizes show less accuracy when the window size 

increases, while remaining in general terms similar to those produced with the smaller 

window size. The overall accuracy of the intermediate and biggest windows are indeed very 

close (respectively, 67.33% and 66.67%), as well as the commission errors (13.33% and 

17.67% respectively). The omission error is optimal when the window size is the biggest 

(15.67), followed by the smaller window size (18%) and by the intermediate window size 

(19.33%). Hence the smallest window size tested, of 7x7, was chosen for the following steps. 

The comparison of the performance of the detection using a median approach for varying 

window sizes is summarized Fig. 12(B). 

 

Finally the effect on the accuracy of varying the number of reference pixels selected for the 

calculation of the pRI was analysed. This was performed by testing two different amounts of 

reference pixels, equal to 6 and to 12 control pixels, while maintaining the window size fixed 

in 17x17. The corresponding detection maps in the subset areas are displayed in Fig.12(B) 

and 13(A). 

The detection showed relatively similar results in both cases, but it was optimized when the 

amount of control pixels was smaller (6 pixels used) than when higher amounts were used 

(12 pixels). The overall accuracy reached was of 67.33%, in contrast to only 64% when 12 

control pixels were employed. The commission and omission errors are also better in the case 

that uses 6 pixels. The results show indeed lower commission and omission errors in that 

case, which are 13.33% and 19.33%, as opposed to 14.33% and 21.67% when 12 control 

pixels are used. Therefore the amount of control pixels used for the pRI calculation was 6. 

The comparison of both tests is shown in Fig. 13(B). 
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Fig. 12 Deforested areas detected applying BFASTmonitor on pRI time series which were calculated 

using different window sizes. The pRI time series were obtained using the Median Approach, which 

is used for the selection of the control pixels in the monitoring period (Section 4.5.2.2). For the pRI 

calculation, in this case, the amount of control pixels used was fixed in 6 pixels, and the window size 

analysed varied: (A) 17x17 and (B) 25x25. The detection map resulting from a test with window size 

of 7x7 are shown in Fig 10(A). The graph shown in (C) compares the validation results of the three 

outputs. 
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Fig. 13 Deforested areas detected applying BFASTmonitor on pRI time series which were calculated 

varying the amount of control pixels. The pRI time series were obtained using the Median Approach, 

which is used for the selection of the control pixels in the monitoring period (Section 4.5.2.2). For the 

pRI calculation, in this case, the window size was fixed in 17x17 and the amount of control pixels 

varied: (A) using 12 control pixels. The detection map resulting from using 6 control pixels is 

displayed in Fig.12(A). The graph shown in (B) compares the validation results both cases. 

 

5-5- Effect of including information of the spatial context 
In the second stage of the spatial analysis the results of those previous tests were used to 

implement the approach in the study area. Deforestation was detected with BFAST monitor 

including a spatial analysis performed with the Median approach a 7x7 window size and 6 

reference pixels for the pRI calculation. The detection map resulting is shown in Fig 14. The 
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overall results obtained after including the spatial context represent a strong decrease in the 

detection accuracy, compared to the approach where remnant outliers were removed from the 

NDVI time series but no spatial context analysis was implemented. The overall accuracy 

drops from 87.25% in the case of no spatial analysis to 59.68% when such analysis is 

included. The commission and omission errors are dramatically increased, with commission 

errors that increase from 7% to 17.74% respectively and omission errors rising from 5.75% to 

22.58% respectively. Fig.14 (B) compares the detection results of both cases, allowing seeing 

the effect of including the spatial context analysis in the detection.  Fig.15 presents the time 

series of a pixel where the detection was correct after removing remnant outliers, but where 

including the spatial analysis produced a wrong detection. The historic period of this pixel 

presents a drop in the NDVI value around year 1990, which may be due to a deforestation 

event that was not detected with the VCF and FCC layers. 
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Fig. 14 Deforested areas detected with BFASTmonitor after an analysis of the spatial neighbourhood 

of each pixel was carried to produce pRI time series. The pRI time series were calculated as follows: 

First remnant outliers were removed from NDVI time series with a temporal threshold of 104 days. 

Next, pRI time series were derived using a 7x7 window size and 6 control pixels. The calculation of 

the pRI included an implementation of the Median approach for the selection of control pixels during 

the monitoring period (Section 4.5.2.2). The comparative deforested areas were detected applying 

BFASTmonitor on NDVI time series where remnant outliers had been removed using the optimal  

temporal threshold (104 days) is shown in Fig. 8 (A). The graph shown in (B) compares the validation 

results both cases. 
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1- Detection after removing remnant outliers 

 

2- Detection after removing remnant outliers and including a spatial context analysis 

 

3- Validation 

 
Fig. 15 Example pixel illustrating the effect of the spatial analysis on the detection with 

BFASTmonitor.(1) Shows the NDVI time series and detection result after removing remnant outliers, 

where no change is detected. (2) Presents the pRI time series and detection result after the spatial 

context analysis, where a change is detected in the end of year 2007. However the validation 

procedure does not reveal a change, as shown in (3), where the validation sample is overlaid with an 

RGB composite of a Landsat image at the beginning of year 2008. The change detected in (2) is 

therefore wrong. 
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5-6- Occurrence of drought in the area 
The occurrence of drought in the area was estimated by calculating the SPI with a time step 

of 6 months, based on monthly rainfall data (TRMM). The resulting time series is shown in 

Fig.16, and illustrates the occurrence of moderately dry and extremely dry drought events 

around years 2009 and 2010 respectively. 

 

 

 
Fig. 16 Detection of drought occurring in the area with SPI time series. The calculation is based on 

Level 3 TRMM data from1998 to 2013, recorded monthly. The TRMM data are available freely from 

the NASA-Goddard Earth Sciences Data and information services Centre 

(http://disc.sci.gsfc.nasa.gov). 
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6- Discussion 
 

This study does not draw clear conclusions of whether the temporal threshold approach can 

remove remnant outliers in a way that improves the detection of deforested areas with 

BFASTmonitor. On one hand, the detection results of applying such temporal threshold are 

slightly more accurate than the detection results where no temporal threshold has been 

applied (section 5.2). On the other hand, the improvement is very subtle and therefore may be 

due to the normal variation of the validation data collected.  

Shorter temporal thresholds remove a smaller amount of observations and produce also more 

accurate detection results in comparison to larger thresholds. Hence it is important that the 

temporal threshold approach remains conservative towards the data, to avoid removing data 

that do not correspond to noise or that can be used accurately by the detection method despite 

corresponding to an outlier. Besides, it is reasonable to expect that values shorter than the one 

used in this study could produce better results, up to a certain limit. The lowest accuracy was 

achieved when spatial context is used, compared to the cases where no spatial context 

analysis was performed. The main reason behind this lack of improvement is attributed to the 

noise present in the pRI time series during the monitoring period. This is explained by the 

presence of excessive noise in the Landsat NDVI time series, due to undetected clouds and 

other external disturbances occurring in the time of monitoring. 

 

Clouds are acknowledged to be a problem for forest monitoring in the tropics (Gu et al. 2012; 

Gu et al. 2009; Kennedy et al. 2010; Michishita et al. 2014; Poulter & Cramer 2009). 

Previous research applied BFASTmonitor on Landsat data of tropical areas of Ethiopia and 

could produce accurate results without relying on gap-filling methods (DeVries et al., 2013). 

However, cloudiness in Landsat data can as well cause the detection of abnormal changes, 

and cloud masking remains a critical challenge when monitoring deforestation with 

BFASTmonitor in the tropics (Reiche et al. 2015; Romijn et al. 2012). Current clouds 

screening methods for Landsat data are not comprehensive (Hagolle et al. 2010; Zhu & 

Woodcock, 2012) and the results depend on the data type and site (Schultz et al. 2013). The 

method proposed here is simple and consists on a conservative threshold-based approach for 

Landsat data that discriminates clouds from real changes. It is tested by assigning different 

values to the temporal threshold, all shorter than a year. The choice of values shorter than a 

year is supported by other studies in literature. For example the work of Kennedy et al. 
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(2010) assumes that artificial changes do not last more than a year. Similarly, Huang et al. 

(2010) consider the time for the reestablishment of a new forest stand as superior to a year (at 

least a couple of years). Also Poulter & Cramer (2009) considered very short temporal 

thresholds by defining a certain variation in the index as unrealistic if it occurs within a 

period of 6 weeks. Furthermore, the results illustrate that the more conservative temporal 

threshold values (i.e. the shorter values) produce more accurate results. This coincides with 

previous findings of Reiche et al. (2015) who showed that the accuracy of detecting 

deforestation with Landsat with BFAST monitor decreases when the amount of missing data 

increases. The study applies BFASTmonitor on Landsat irregular data over the tropics. In 

accordance with previous studies (DeVries et al., 2013), the detection of deforestation in a 

tropical area before removing remnant clouds was effective despite the presence of outliers, 

with an overall accuracy of 87 %. The temporal threshold method to remove remnant outliers 

produced a slightly more accurate detection of deforestation than in the case where no 

removal of remnant clouds was applied. However, this is not necessarily due to the effect of 

the temporal threshold. It may be due to the validation procedure, where independent sets of 

validation samples were created, and therefore may reflect the normal variation between 

samples. However, results also showed that most of the noise is not removed or smoothed 

from the NDVI time series. This was in line with our expectations, because of the simplicity 

of the remnant cloud removal approach and because previous authors had already highlighted 

the importance of data preprocessing to produce reliable and high quality NDVI time series 

from Landsat and improve deforestation detection with BFASTmonitor (Schultz et al. 2013; 

Verbesselt et al. 2012). Furthermore, this result is similar to the findings of previous studies. 

Kennedy et al. (2010) presented an algorithm to separate ephemeral change from real change. 

They acknowledge the fact that Landsat time series still presented important persistent 

cloudiness or gaps after applying their cloud screening algorithm. In such cases, they adapted 

their approach to detect changes in longer time scales. 

 

BFAST monitor can detect deforestation in the tropics (DeVries et al., 2013) but has the 

potential to be further improved by a correction of the effect of external disturbances based 

on a spatial context analysis (Lhermitte et al. 2010). Here, we proposed to combine 

BFASTmonitor, which is a monitoring approach robust against missing data, with a pixel 

based regeneration approach that can remove the effect of external influences in the time 

series. The external disturbances can be caused by uncertainties in the radiometric or 
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atmospheric corrections as well as by topographic effects, vegetation phenology or climatic 

events (Lhermitte et al. 2011). The pRI has previously been used for fire assessment purposes 

with different sensors and indices (Lhermitte et al. 2011; Veraverbeke et al. 2010, 2011, 

2012). However it has not been tested for NDVI data from Landsat in tropical areas and it has 

not been combined with BFASTmonitor for the purpose of monitoring deforestation.  Our 

results show that a small window size (7x7) and a small number of control pixels (6 control 

pixels) produce more accurate results with BFASTmonitor for the case studied here. It can be 

explained as follows. In bigger window sizes, pixels distant to the focal pixel can be selected 

as control ones but may have different meteorological conditions than the focal pixel during 

the monitoring period, and can therefore be dissimilar (Lhermitte et al. 2010; Veraverbeke et 

al. 2010). Also, regarding the amount of control pixels, this can be explained by a finite 

beneficial effect of averaging, that smoothens out random noise and produces a more stable 

pRI time series, which is also more similar to that of the focal pixel. However, using a too 

large number of control pixels will decrease the similarity because it will introduce pixels 

that are not so similar in the calculation (Veraverbeke et al.  2010). Previous studies found 

similar results concerning the calibration of the pRI for their particular cases (Lhermitte et al. 

2011; Veraverbeke et al. 2010). However, they used different data and study area. Both 

Veraverbeke et al. (2010) and Lhermitte et al. (2011) relied on Landsat sensors but did not 

use the NDVI, did not monitor deforestation and did not do it in tropical areas. The same 

theoretical background supports the results of this study, but the numerical comparison 

between our study and that of Veraverbeke et al. (2010) and Lhermitte et al. (2011) is not 

applicable due to the difference in data and study area. In fact the calibration results depend 

on the spatial resolution of the data and on the scale of the vegetated areas (Lhermitte et al. 

2010). The correct window size for the whole area depends on the location of the affected 

pixels in the affected area or patch (Li et al. 2008; Veraverbeke et al. 2010). Pixels close to 

the boundaries of the patch will require smaller window sizes. Similarly, pixels in the middle 

of large patches will need larger window sizes (Veraverbeke et al., 2010). The area analyzed 

here did not present big deforested areas during the monitoring period, because most of the 

large patches were deforested previously and were therefore masked out from the analysis 

(they did not belong to the class forest). This can explain the fact that the best window was 

the smallest one. Previous studies (Veraverbeke et al., 2010) mention that the accuracy may 

be better close to the perimeters of the affected areas, because the window size is smaller and 

the pixels contained in it are expected to be more similar than in bigger windows. Authors 
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signal that it is inevitable, since in the middle areas of the patch, the potentially most similar 

pixels have also been affected by the change. (Veraverbeke et al.  2010). Our results show 

that the pRI produces worse detections with BFASTmonitor when compared to the situation 

where no spatial context is included. In general, the pRI time series are relatively stable 

during the start of the historic period, but become highly noisy towards the end of the historic 

period as well as during the monitoring. Other studies have reported noise in the pRI time 

series derived from Landsat, and the implications of it differ per case. Some do not signal a 

need to reduce noise (Veraverbeke et al., 2010), probably due to the choice of a study area 

outside of the tropical region. On the other hand, other studies acknowledge the importance 

of removing external influences when using Landsat products, and recognize the pRI as able 

to provide valuable representations of regeneration processes when data different than 

Landsat are used, prioritizing the use of moderate to coarse spatial resolution are used (SPOT 

or MODIS) (Lhermitte et al. 2011). In this case, studies that develop approaches to remove 

noise from pRI time series are extremely rare, with only the work of Lhermitte et al. (2011), 

which assessed regrowth after fire events in savannah ecosystems with SPOT-

VEGETATION NDVI data. The authors used an integrated change approach to assess intra-

annual dynamics of the regrowth. Such approach uses integrated metrics of intra-annual 

dynamics, that the authors derived from the SPOT data using pRI time series, and can remove 

random noise from the pRI time series. The authors recognize that, even though this 

technique is robust to noise, it needs to be tested and refined for different ecosystems. In fact, 

the environmental and change event characteristics will vary for different areas. Therefore the 

interpretation of the presented technique is likely to vary as well (Lhermitte et al. 2011). 

Following this recommendations, further research could investigate whether the approach 

proposed by Lhermitte et al. (2011) can significantly reduce noise in pRI time series 

calculated from Landsat data of tropical areas, where cloudy and missing observations are 

numerous, and assess the performance of BFASTmonitor on them.  

 

There is no evidence in literature of other approaches similar to the Median approach being 

employed to distinguish deforested from non-deforested pixels in pRI. Despite this, the use of 

the median is regarded as more robust against variations in the data than other measures by 

other studies (Lhermitte et al. 2010). Also, previous studies carried relatively similar 

approaches to find areas where the percent tree cover was changed, that used the mean and 

standard deviation instead of the median (DeFries et al. 2002). In the mentioned study, 
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several training sites were used to calculate the mean percent of tree cover. Next, two 

particular values of the percent tree cover were compared. In case their difference exceeded 

two standard deviations from the mean, a change was signaled. 

 
As signaled previously, the noise that is particularly present in some parts of the pRI time 

series (particularly during the monitoring period and the end of the historic period) can be 

due to external disturbances that started and evolved during that time. The SPI is designed to 

represent drought at any time scale (McKee et al. 1993) and has been used to detect droughts 

in the amazon (Zeng et al., 2008). The SPI results (Fig.15) show the occurrence of a severe 

drought around year 2010 in the area. There is evidence in literature that a previous very 

severe drought occurred in 2005 in the southern two-thirds of Amazonia, which was driven 

by an elevated sea surface temperature in the tropical Atlantic ocean (Marengo et al. 2008; 

Phillips et al. 2009). The fact that this drought did not affect directly the northern regions of 

Brazil (Marengo et al. 2008), where our study area is located, explains why the SPI does not 

reflect the episode. The drought detected in 2010 by the SPI is in accordance with previous 

findings (Marengo et al. 2011), which describe a widespread drought taking place in the 

Amazon in that year, due to an El Niño event that was intensified because of warming of the 

North Atlantic ocean (Marengo et al. 2011). Despite the SPI results, the link between the 

droughts detected and the noise present in the pRI time series during the monitoring period is 

not clear. Scientists recognize changes in the intensity and length of dry seasons in the 

Amazon, and connect such changes with lower river water and discharge levels (Marengo et 

al. 2011). They acknowledge in a general way the possibility that they cause profound 

environmental impacts (Marengo et al. 2011), namely through increases in tree mortality 

(Nepstad et al. 2007). However, it is difficult to deduce that droughts are having such an 

environmental impact from our pRI data. On one hand, the drought of 2010 was reported to 

have caused lower precipitation levels, lower streamflow levels, higher surface temperatures 

and increased evapotranspiration (Marengo et al. 2011), but the pRI time series do not show a 

clear pattern reflecting such changes in the pRI time series around year 2010. Also, Marengo 

et al. (2008) states that the drought of 2005 in the south of Brazil may have caused lower 

river levels northern regions, but there is no clear evidence or quantification of it in literature 

(Marengo et al. 2008). On the other hand, in general terms and from the sample time series 

analyzed, there is no evident contrast in the pRI series between the noise present in year 2010 

and the noise present in other years of the historic or monitoring period. The noise level 
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seems relatively constant and stable throughout all the period, in particular throughout the 

monitoring. 

Such observations cannot, however, discard the possible disturbing effect that external 

climatic disturbances can have in the pRI time series presented, and that has been 

acknowledged before (Lhermitte et al. 2010). Nevertheless, it is difficult to determine which 

climatic events may have contributed to the noise of the pRI at each moment and to which 

extent. We argue here that the noise in NDVI time series from Landsat over tropical areas is 

too important, and may be hiding the presence of climatic disturbances in the pRI data, 

especially during the monitoring period. Reducing the level of noise is likely to have a major 

effect on the distinguishability of deforestation patterns in the pRI time series by 

BFASTmonitor, and hence a positive effect on the detection accuracy. 

 

The results of this study highlight the importance of removing noise in Landsat NDVI over 

tropical areas for detection of deforestation. They emphasize as well the need of removing 

noise from pRI time series, which translates into optimizing the existing noise-removal 

methods (Lhermitte et al. 2011) and developing new ones if necessary. 

 

The criterion used to define pixels as forested in our study area masked out the majority of 

the pixels, leaving for the analysis a small part. This is a criterion based on the classes and 

probabilities of the VCF and FCC layers. This can explain the fact that the optimal window 

size was the smallest tested (of 7x7), because the forest patches present were of relatively 

reduced size. Despite the fact that the VCF and FCC layers have a very low Root Mean 

Square Error, their accuracy does not reach 100% (Sexton et al., 2013), so it is important to 

acknowledge possible mistakes in the pixels analyzed when interpreting the validation 

results. 

 

This study is not performed in near real time because the analysis was too computationally 

extensive for the timeframe available. For the same reason it did not measure the time delay 

of the detection. However, the validation procedure allowed estimating in general and 

qualitative terms the temporal performance of BFASTmonitor and compare it after the spatial 

context had been included. A general decrease in the temporal accuracy was apparent, 

explained by the presence of noise discussed above.Validation depended on the visual 

interpretation of Landsat surface reflectance imagery. This implies the validation may be 
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subjective to a certain level. Also, without having ground truth data or satellite imagery of a 

higher spatial resolution, the validation may have produced artificially high commission and 

omission errors (e.g. validation samples in the border between a deforested patch and a 

forest). Besides, having satellite imagery with higher temporal resolution or from sensors 

which are not affected by clouds could have made meaningful an assessment of the temporal 

delay in the detection.  

 

This study relies on the NDVI as an indicator of vegetation dynamics. However, there is 

evidence in literature that this index may not reflect properly the different stages of regrowth 

in tropical areas, because young regenerating forests present higher NDVI values than mature 

ones (Shimabukuro et al., 1998). Also, several studies highlight the limitations of the NDVI 

in tropical areas, due to its saturation at moderate to high biomass levels (Huete 1997; 

Phompila et al. 2014; Viña 2012; Wang et al. 2005). Even though saturation was not an issue 

in the work presented here, several studies signal the advantages of other vegetation indices 

(Darmawan & Sofan 2014; Huete 1997; Viña 2012). For example, the Enhanced Vegetation 

Index has been shown to be detect abrupt changes in tropical peat swamp areas with BFAST 

in a more accurate way than NDVI (Darmawan & Sofan 2014). However further efforts in 

this direction could determine which vegetation index is most appropriate for tropical 

evergreen forests (Foody et al. 2003). 

 

Further efforts are needed to determine if the following topics can contribute to increase the 

accuracy of the detection of deforestation in the tropics from Landsat data with 

BFASTmonitor. The use of shorter temporal threshold values may clarify if the temporal 

threshold value represents a significant improvement in the accuracy of the results.  

Besides that, the use of single sensors is preferred compared to the fusion of several sensors, 

due to its simplicity (De Sy et al., 2012). However, recent efforts demonstrated that the fusion 

of Landsat NDVI and PALSAR time series can improve the accuracy of the detection when 

compared to that of single sensor systems, also in cases with a high amount of missing data 

due to persistent cloudiness (Reiche et al., 2015). However authors signal that further 

research is needed to assess the behavior of the fusion approach under different change 

scenarios, and that the near real time fusion capabilities must still be addressed (Reiche et al., 

2015). 
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The calibration of the spatial context analysis requires a sensitivity analysis to be carried out 

for each site (Lhermitte et al. 2010). Veraverbeke et al. (2010) signal that the pRI procedure 

could be improved by adapting the settings of the control pixel selection to the distance from 

the focal pixel to the perimeter of the affected patch. It could also be improved by enhancing 

the performance of the selection in areas where the unchanged pixels belong to highly 

heterogeneous land cover types (where the procedure is expected to fail to select similar 

pixels for small window sizes with accuracy). They recognize the difficulty of those 

recommendations, but acknowledge that the selection procedure could be further improved in 

that way (Veraverbeke et al. 2010). 

 

The change detection analysis including the spatial context should be made more efficient 

computationally, so that it can be tested and eventually implemented in near real time. Reiche 

et al. (2015) recommend adapting the monitoring framework by using BFAST instead of 

BFASTmonitor if the monitoring period in the tests exceeds 2.75 years, because BFAST is 

able to detect multiple changes while BFASTmonitor can deal only with single events 

(Reiche et al., 2015).Validation can be improved by incorporating ground data or by using 

the TimeSync tool presented by Cohen et al. (2010), that allows to compare the results from 

change detection algorithms with that of users. Ultimately, an integrated approach that 

combines remote sensing-based and ground-based monitoring methods is necessary to 

enhance the capabilities to monitor deforestation in near real-time (DeVries et al., 2013). 

 

 

7- Conclusion 
	  

	  

This study aimed to correct for the effect of outliers and of external disturbances and test 

whether it improved the detection of BFASTmonitor. Outliers could be distinguished from 

deforestation events with a temporal threshold shorter than a year (104 days). However, it is 

not clear whether the removal of remaining outliers improved the detection of deforestation. 

A slight improvement was observed, which may have been due to the normal variation of the 

validation samples collected. The spatial neighborhood information could not be used to 
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correct effectively for the effect of external disturbances, notably during the monitoring 

period, due to the high level of noise present in the data.  

The results highlight the importance of pre-processing the time series used as input for 

monitoring approaches such as BFASTmonitor. The use of NDVI imagery with remnant 

outliers after applying Fmask produces acceptable results, that can however be optimized. 

Theoretically the use of input time series where the effect of external disturbances is 

corrected for (as with the pRI approach) should help in this direction, but the use of Landsat 

data for the calculation of the pRI remains complicated due to their irregularity and to cloud 

contamination. Few approaches have been proposed to reduce noise from time series such as 

the pRI ones (Lhermitte et al. 2011), and further efforts are needed to test such approaches or 

develop new ones, and ultimately be able to use a spatial context analysis to improve the 

detection of deforestation in the tropics.  
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a) Amount of observations before 

the removal of remnant outliers in the 
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removal of remnant outliers in the 

historic period 
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after the removal of remnant outliers in 
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