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Abstract 

 
Tropical deforestation is considered the second largest source of anthropogenic greenhouse 

gas emissions. Consequently, there is a need to identify land use change and forestry 

activities - in particular those that are linked to the drivers of deforestation and forest 

degradation - and to assess their potential contribution to the mitigation of climate change. In 

this study, we aimed to (i) assess the suitability of global land cover maps for deforestation 

drivers’ analysis and (ii) to analyse gross carbon emissions per driver using sample-based 

driver data and global forest biomass maps in the pan-tropical region for the 1990-2005 time 

period. First, our study assessed three global land cover maps for deforestation drivers’ 

classification in Africa and South America: Modis500, CCI-LC and GLC-SHARE land cover 

maps. We showed that there are opportunities to use global land cover maps for deforestation 

drivers’ analysis, in particular with the CCI-LC product in the two continents. The estimated 

overall accuracies of the CCI-LC products were 60% and 90% in Africa and South America, 

respectively. User and producer’s accuracies for each driver class were also reported. We 

concluded that the CCI-LC product could be used for the agriculture driver classification in 

both continents although this product will overmap agriculture class in Africa- i.e. low user 

accuracy. Second, we estimated carbon losses per driver in South America for the 1990-2005 

time period based on the 2010 global remote sensing survey of the FRA2010 and the 

deforestation drivers classification dataset. Forest cover changes per driver were combined 

with Yong et al. (2014) pan-tropical biomass map to estimate carbon losses. The method was 

validated with high-resolution carbon maps for both Colombia and Peru. We showed that 

there were gross carbon losses from deforestation of 195±4.2 MtC.yr
-1 

and 246±4.9 MtC.yr
-1

 

for the 1990s and the 2000s, respectively. Agriculture account for circa 90% of the total 

carbon emissions for the two periods. Our study also demonstrated that circa 80% of the 

carbon losses from deforested occurred in the tropical rainforest ecosystem. Our estimates of 

carbon losses from deforestation are significantly lower compared to earlier published 

estimates. 

 

Keywords: Climate change, tropical deforestation, deforestation drivers’ classification, 

global land cover maps, carbon emissions from deforestation, pantropical biomass maps.  
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Chapter 1. Introduction 
Tropical deforestation is considered the second largest source of anthropogenic greenhouse 

gas (GHG) emissions (IPCC, 2007) and is expected to remain a major emission source for the 

future (MEA, 2005). Despite relevant efforts to reduce deforestation, around 13 million 

hectares of forests is lost every year (FAO, 2010). The reduction of GHG emissions from 

tropical deforestation is now recognized as an essential component of international efforts to 

mitigate climate change. Reducing emissions from deforestation and degradation whilst 

simultaneously enhancing the carbon stock of tropical forests (REDD+) is seen as leverage 

for mitigating climate change. REDD+ initiatives aimed at implementing national 

measurement, reporting and verification (MRV) systems according to the international Good 

Practice Guidelines (GPG) of the intergovernmental Panel on Climate Change (IPCC) 

(GOFC-GOLD, 2010). This includes estimating and monitoring changes of both the area of 

deforestation and degradation, and the terrestrial carbon stock densities per unit area (IPCC, 

2006). 

1.1. Background information 
One of the key inputs into the IPCC framework is the carbon stocks of the forests undergoing 

change. In order to estimate the magnitude of carbon emissions from deforestation two 

variables have to be determined. The difference between the pre- and post- deforestation or 

degradation carbon stocks is the emission factors (EFs), which are the carbon emissions per 

unit area due to forest cover change. The product of the EF and the area of forest change, also 

called Activity Data (AD), provides the estimate of the total carbon emissions (IPCC, 2006). 

These two variables are the most important components to estimate carbon emissions, no 

matter the approach used (Houghton, 2012). That is why the UNFCCC negotiations 

(UNFCCC, 2009; 2010) have encouraged annexe I countries to identify land use, land use 

change and forestry activities, in particular those that are linked to the drivers of deforestation 

and forest degradation, and to assess their potential impact to climate change (Hosonuma et 

al., 2012).  

 

Deforestation and forest degradation are caused by multiple drivers and pressures, including 

proximate/direct- and underlying/indirect- causes. Proximate causes are human activities or 

immediate actions that directly impact forest cover and loss of carbon; conversely, underlying 

drivers are based on a synergy of multiple factors driven by economic, institutional, 

technological, cultural, and demographic variables (Geist and Lambin, 2002). Direct drivers 

can be grouped into different categories such as commercial and subsistence agriculture, 

mining, infrastructure extension and urban expansion (Kissinger et al., 2012). Rademaekers 

et al. (2010) stated that there is rarely a single direct or indirect driver responsible for 

deforestation but, most often, multiple processes work simultaneously or sequentially causing 

deforestation.  

 

The need for data on drivers and activities causing forest carbon change is relevant not only 

for assessing deforested areas but is also fundamental for the development of policies and 

measures, such as REDD+ (Boucher, 2011; UNFCCC, 2010). Nevertheless, quantitative 

national-level information on drivers and activities causing deforestation and forest 

degradation are widely unknown (Houghton, 2012). In addition, Hosonuma et al. (2012) 

stated that the fraction of deforestation in a country caused by a specific driver (e.g. 

agriculture expansion vs. infrastructure) cannot be answered for many developing countries. 
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One of the reasons is that previous studies (Geist and Lambin 2001) have mainly been based 

on local-scale studies or regional to global assessments (De Fries et al., 2010, Boucher et al., 

2011). In addition, some studies (Kissinger et al., 2012) gave insights on drivers that lead to 

deforestation and forest degradation at continental scale. The synthesis showed that 

agriculture is the most significant driver of deforestation, but with differences in terms of 

geographical distribution and magnitude between commercial and subsistence agriculture, 

followed by infrastructure development and wood extraction. Growing populations of 

shifting cultivators and smallholders used to be considered as the main driver of deforestation 

and forest degradation. Kissinger et al. (2012) and Boucher et al. (2011) have also shown that 

commercial actors currently play a larger role in the expansion of agriculture into forests, in 

particular agribusinesses linked to international markets (Rudel et al., 2009).  

 

High GHG emissions from deforestation and forest degradation mostly occur in the tropical 

regions, where forest carbon density is the highest (Baccini et al., 2012). Therefore, 

quantifying the roles of forests as carbon stores, sources of carbon emissions and carbon 

sinks has become one of the key factors to understanding the global carbon cycle (FAO, 

2010, Canadell et al., 2007). That is why the Kyoto Protocol and the UNFCCC request all 

member countries to assess and report national GHG emissions regularly, including 

emissions and removals of carbon reflected as stock changes in forests (UNFCCC, 2009). In 

order to estimate carbon stock, one approach is to map vegetation types within a landscape 

and assign a carbon density value to each vegetation type, using either international or 

locally-derived values from field based inventory (GOFC-GOLD, 2009). The IPCC has 

developed guidelines, methods and default values for the parameters needed to assess carbon 

stocks and their changes in forests (IPCC, 2006), including both carbon emissions and 

removals. It has therefore provided all countries with the means of estimating and reporting 

carbon stocks, greenhouse gas emissions and removals. However, this method can have high 

uncertainty, especially at global scale or when using default carbon density values (Mitchard 

et al., 2013).  

 

Recently, efforts have been made to quantify the amount of carbon stored in Aboveground 

Biomass (AGB) in the pan-tropical region, but most of the time with high uncertainties 

(Baccini et al., 2012; Houghton et al., 2012). Salimon et al. (2011) stated that biomass 

estimation methods range from ground-based and site specific to remotely sensed and global 

(e.g. Achard et al., 2014; Baccini et al., 2012, Harris et al., 2012; FAO, 2010; Saatchi et al., 

2011; Chave et al., 2005; GOFC-GOLD, 2009). Quantifying emissions from deforestation 

has largely made use of simple book-keeping models based around FAO and IPCC data 

(Morton et al., 2009; IPCC, 2007) and, more recently, explicit forest biomass maps to 

quantify carbon stocks before deforestation at a pixel level (Harris et al., 2012). The Global 

Forest Resources Assessment (FRA) published by the FAO provides a comprehensive 

accounting of AGB carbon stocks for tropical forests and other wooded lands. The FRA 2010 

(FAO, 2010) estimates are derived from national forest inventories. Additionally, Baccini et 

al. (2012) estimated the CO2 emissions from tropical deforestation for the period 2000-2010 

using satellite derived biomass, satellite-derived biomass weighted by deforestation and FRA 

2010 biomass. In addition, Houghton (2012) provided a review of the link between carbon 

emissions and deforestation drivers at global scales. The study showed that shifting 

cultivation is of greatest importance over the period 1990-2009 while the conversion of 

forests to permanent croplands in the tropics was responsible for the second largest emissions 

of carbon. Conversely, Tubiello et al. (2015) showed that crop and livestock activities have 

become the dominant source of AFOLU emissions. This study also highlighted the large 
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uncertainties that characterize emission estimates in the AFOLU sector; therefore 

quantification of AFOLU emission sources and sinks still remains uncertain, even at global 

scale (Tubiello et al., 2015). 

1.2. Problem statement 
Understanding drivers of deforestation and their importance are relevant for the development 

of policies and measures that aim to alter current trends in forest activities toward a more 

climate and biodiversity friendly outcome (Hosonuma et al., 2012). However, the availability 

of data on drivers remains uncertain in many REDD+ countries (Kissinger et al., 2012). So 

far, analyses of drivers have largely been based on local or regional case studies (Geist and 

Lambin, 2002) or on coarser assessments on the continental and global scales (DeFries et al., 

2010, Rademaekers et al., 2010). Spatial assessments of proximate deforestation drivers 

based on remote sensing techniques and ground data have recently become available that 

allow for a more comprehensive assessment of the deforestation drivers in the pan-tropical 

region (FAO, 2010; ongoing work of Veronique De Sy). Nevertheless, the existing imagery 

is, in some regions, not sufficient to assess follow-up land use due to low resolution and/or 

cloud cover. Therefore, the use of existing global land cover maps might provide an 

alternative source of information to overcome this issue. 

 

Furthermore, the types of drivers of deforestation have great influence on the forest carbon 

impacts and the choice of data sources and methods used to measure and monitor them 

(Kissinger et al., 2012). Although carbon emissions from fossil fuel use are relatively well 

quantified, emissions from LUC are the most uncertain component of the global carbon cycle 

(Harris et al., 2012). Large uncertainties in emission estimates arise from inadequate data on 

the carbon density of forests (Houghton et al., 2012; Baccini et al., 2012). Currently the 

carbon stocks for a region or country are often based on guideline mean biomass values for 

particular vegetation types (IPCC, 2003) or on country-specific mean carbon stock values, i.e. 

FRA 2010 (FAO, 2010). That is why Mitchard et al. (2013) suggests that pantropical biomass 

maps can provide much better estimates of carbon stocks at a project or national level. 

Additionally, little is known yet on the link between carbon emissions and deforestation 

drivers because there are information gaps in the follow-up land use after deforestation 

(Kissinger et al., 2012; Harris et al., 2012). This implies that there is a need to have robust 

and complete deforestation driver data to generate a gross emission estimate per driver. 

Therefore, sample-based deforestation driver data combined with wall-to-wall biomass data 

can be integrated to estimate carbon changes and gross carbon emissions per deforestation’s 

driver. 

1.3. Research objectives 
Given the current gap in knowledge and understanding of drivers on national, regional and 

global levels and the link between carbon emissions and drivers, the overall objectives of this 

thesis are to develop approaches to (i) overcome the lack of information on deforestation 

drivers and to (ii) estimate the gross carbon emissions related to each drivers in (sub)tropical 

non-annex 1 countries. The thesis is set out to: 

- Assess the suitability of global land cover data to improve the deforestation driver’s 

analysis in the pan-tropical region; and 

- Analyse gross carbon emissions per driver at tile, country, regional and continental  

scales using sample-based driver data and global forest biomass maps in the pan-

tropical region.  
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In the following pages the report of the thesis is presented. Chapter 2 describes all data sets 

used and presents the methodology developed to analyse the data. Results for the accuracy 

assessment of the global land cover maps are described and discussed in Chapter 3. Results 

for the carbon emissions analysis are presented in Chapter 4 including comparison of the 

results with other studies. Finally, some conclusions and recommendations are given in 

Chapter 5 for future research. 
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 Chapter 2. Material and methods 

2.1. Assessment of global land cover maps for deforestation drivers 

analysis 
The assessment of the global land cover maps for the deforestation drivers’ analysis in the 

pan-tropical region was carried out for two epochs: 1990-2000 and 2000-2005. The accuracy 

assessment was done both in Africa- including Southern Africa, Eastern Africa and Central 

Africa - and in South America. For the aim of the study, only the proximate/direct drivers 

were analysed. Also, only the drivers related to deforestation were included in our study 

because forest degradation is hard to detect, therefore it requires fine resolution optical 

imagery or LiDAR (Herold et al., 2011) and is usually not reflected by a change in the land 

cover class (Achard et al., 2014).  

 

Figure 2.1 gives a general overview of the method, which was used for assessing the 

suitability of global land cover maps to analyse the deforestation drivers for the two epochs 

considered in this study, i.e. 1990-2000 and 2000-2005. The different steps of the 

methodology are detailed in the next sections. All developing steps were conducted in R (R 

Development Core Team 2013), supported by ArcGIS and Google Earth for visualization. 

 

 

Figure 2.1: Flowchart of the method for deforestation drivers’ classification assessment for 

1990-2000-2005. 
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2.1.1. Data acquisition 
This study aimed to assess three global land cover datasets for deforestation drivers 

classification: the CCI land cover map 2000-2005, GLC SHARE map, and the MODIS 500m 

land cover map 2000-2005. Table 2.1 below provides a description of the three global land 

cover maps considered in our study whilst table 2.2 compares several key indicators of these 

land cover maps. 

 

Table 2.1: General overview of the land cover datasets. Source: adapted from Potere and 

Schneider (2007) 

 

Table 2.2: Comparison of key indicators for each land cover maps. Source: adapted from 

Potere and Schneider (2007) and Kuenzer et al. (2014) 

 

As reference data, our study used a deforestation drivers' classification dataset based on the 

ongoing work of Veronique De Sy. Her study is currently using the 2010 global remote 

sensing survey (RSS) of the FRA2010 to assess regionally specific deforestation drivers, by 

visual interpretation of forest change patches and follow-up land use in deforestation areas 

(FAO and JRC, 2012) using Landsat Global Land Survey datasets and Google Earth. The 

RSS global sampling grid consists of 13 689 sites and covers the globe between 75 degrees 

North and South in latitude (figure 2.2). A systematic sampling design based on each 

longitude and latitude intersection was implemented. Each sample tile covers a 10 by 10 

kilometre square at every one-degree latitude and longitude junction (approximately 100 km 

apart) (FAO, 2009). 

Code Map Producer Specifications / Source 

CCI-LC Climate Change 

Initiative Land Cover 

CCI-LC partnership Global land cover map, raster, 

http://www.esa-landcover-

cci.org/?q=node/123 

GLC-

SHARE 

Global Land Cover 

SHARE 

Food and Agriculture 

Organization of the 

United Nations (FAO) 

Global land cover map, raster,  
http://www.fao.org/geonetwork/srv
/en/main.home?uuid=ba4526fd-
cdbf-4028-a1bd-5a559c4bff38 

MOD500 MODIS Land Cover 

500 m (Schneider et 

al., 2009) 

University of 

Wisconsin and Boston 

University (US-NASA) 

Global land cover, raster,  

http://sage.wisc.edu/people/schneid

er/research/data_readme.html 

Code Spatial resolution Time of data 

collection 

Products and 

methods used 

Classification 

scheme  

Land cover 

classes 

CCI-LC 300m for 2005 and 

2010 and 1000m 

for 2000   

1998-2012 MERIS time series 

and spot VGT 

FAO LCCS 22 

GLC-

SHARE 

30 arc second 

(1,000m). 

2000, 2009 

and 2012  

National or regional 

data, Globcover 

2009, MODIS VCF 

2010 and Cropland 

database 2012. 

FAO LCCS 11 

MOD500 463 m 2001-2011 Multi-spectral 

MODIS 

observations 

IGBP 17 

http://www.esa-landcover-cci.org/?q=node/123
http://www.esa-landcover-cci.org/?q=node/123
http://www.fao.org/geonetwork/srv/en/main.home?uuid=ba4526fd-cdbf-4028-a1bd-5a559c4bff38
http://www.fao.org/geonetwork/srv/en/main.home?uuid=ba4526fd-cdbf-4028-a1bd-5a559c4bff38
http://www.fao.org/geonetwork/srv/en/main.home?uuid=ba4526fd-cdbf-4028-a1bd-5a559c4bff38
http://sage.wisc.edu/people/schneider/research/data_readme.html
http://sage.wisc.edu/people/schneider/research/data_readme.html
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Figure 2.2: Distribution of the 13 689 FRA 2010 RSS global survey sites. Inset shows detail 

of sample sites across parts of Europe and North Africa. Source: FAO (2009) 

 

Table 2.3 describes the deforestation drivers included in the deforestation drivers 

classification dataset. 

 

Table 2.3: Drivers classification and codes. Source: Adapted from FAO (2010) 

Main class (code) Sub-class (code) 

Forest (100) 

Agriculture (200) Crop agriculture (250) Small-holder crop agriculture (210) 

Commercial crop agriculture (220) 

Tree crops (230) 

Pasture / grazing land (240) 

Built-up (300) 

Mining (400) 

Other (500) Other land with tree cover (520) 

Grass and herbaceous (530) 

Water (600) 

No data (999) 

2.1.2. Reclassification of the global land cover maps  
Forest definitions change from country to country based on national definitions, cultural 

values and the purpose of the assessment and the methodology used (FAO, 2010). In this 

study, the definition of forest provided by FAO was applied and was defined as land spanning 

more than 0.5 ha with more than 10% tree canopy cover and trees higher than 5 m (or having 

the potential to reach a height of 5 m) (FAO, 2000). In addition, table 2.2 shows that the three 

global land cover maps have different land cover classification systems. CCI-LC, GLC-

SHARE and MODIS500 maps have 22, 11 and 17 different land cover classes, respectively. 

Therefore, we had to aggregate all classes to have a generalized global legend based on a set 

of common classifiers. Annexe 1 gives an overview of the land use/driver classification 

system which have been adapted from Kuenzer et al. (2014).  

2.1.3. Accuracy assessment  
The first step of the accuracy assessment was to undertake a deforestation drivers' 

classification using the global land cover maps and the 2010 global RSS of the FRA2010. 

Figure 2.3 illustrates the method we developed in order to classify the deforestation drivers. 

For the 1990-2000 and 2000-2005 time periods, our study was interested in determining what 
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the fate of the forest was both during the 1990s and the 2000s. The 2010 global RSS dataset 

allowed us to select the patches converted to non-forest land uses during the 1900s and the 

2000s. Then, we were able to classify the follow-up land use after deforestation and see 

whether forest was converted either to cropland, grassland, wetlands, settlements, other land 

or remains forest by using the global land cover maps of 2000 and 2005. 

 

 
 

Figure 2.3: Classification process of the follow-up land use after a deforestation event using 

global land cover maps. 

 

Once the deforestation drivers’ classification was performed, we computed a confusion 

matrix for each global land cover product by comparing our results to the reference data, i.e. 

deforestation drivers’ classification by visual assessment. It gives us overall (e.g. overall 

accuracy) and per deforestation drivers summary metrics of land cover classification 

accuracy class (e.g. commission and omission error) at continental scale (see equation 2.1, 

2.2 and 2.3). The structure of the confusion matrix and the calculation of the classification 

assessment are illustrated in figure 2.4.  

 
Figure 2.4: The confusion matrix and the measures of classification accuracy. Source: 

adapted from Foody, G. (2001) 

 

𝑂𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟 = (1 − (
𝑛𝑖𝑖

𝑛+𝑖

)) × 100 

𝐶𝑜𝑚𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟 = (1 − (
𝑛𝑖𝑖

𝑛𝑖+

)) × 100 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑ 𝑛𝑘𝑘

𝑞
𝑘=1

𝑛
× 100 

(2.1) 

(2.2) 

(2.3) 
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2.2. Gross carbon emission estimates per deforestation driver 
Estimates of carbon emissions from deforestation require information on both the area of 

forest loss over time and the changes in carbon stocks on land that is cleared. Both terms 

(area and changes in carbon stocks) can be represented on a gross or net basis. This thesis 

focused on the gross carbon emission estimates from deforestation only. In addition, we 

decided to focus our analysis in the South American continent where there is currently a more 

robust sample-based deforestation driver analysis than in Africa and in South-East Asia. 

Figure 2.5 gives a general overview of the different steps that were followed for the gross 

carbon estimates per driver between 1990-2000 and 2000-2005. More details on the different 

steps are given in the next sections. All developing steps were conducted with R (R 

Development Core Team, 2013) and supported by ArcGIS 10.1 and Google Earth for 

visualization. 

 

 

Figure 2.5: Flowchart of the method for gross carbon emissions per drivers between 1990-

2000 and 2000-2005.  

2.2.1. Data acquisition 
In order to carry out the estimation of gross carbon emissions related to deforestation drivers, 

this study combined forest biomass maps and deforestation driver data. The changes in land 

use and the deforestation rate estimates were based on the previous analysis of the 

deforestation drivers by using the sample-based driver data (see sampling design in section 
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2.1.1). The estimates of forest carbon stocks were based on Yong forest biomass product 

(Yong et al., 2014). This product is a fusion of the Saatchi forest biomass product (Saatchi et 

al., 2011) available at the Jet Propulsion Laboratory, California Institute of Technology 

website (http://carbon.jpl.nasa.gov/data/dataMain.cfm) and the Baccini forest biomass 

product (Baccini et al., 2012) available at the Woods Hole Research Centre website 

(http://www.whrc.org/mapping/pantropical/carbon_dataset.html). Both Baccini and Saatchi 

maps use spaceborne LiDAR data from the Geoscience Laser Altimeter System (GLAS) as 

samples of forest structure distributed across the tropics, but the two approaches use a 

different method to extend the isolated GLAS footprints to full-coverage AGB maps. Yong 

map at 1km resolution is based on a fusion method to increase the accuracy of regional 

biomass estimates by using higher-quality calibration data. In this fusion method, the biases 

in the source maps were first adjusted to correct for over- and underestimation by comparison 

with the calibration data. In addition, the FAO Ecozone Map (FAO, 2012) (figure 2.6) 

available at the FAO website (http://www.fao.org/geonetwork/srv/en/main.home) was 

combined with aboveground biomass map in order to estimate carbon emissions for the major 

tropical ecosystems (tropical rainforests, moist deciduous forests, dry forests, mountain 

ecosystems, shrubland, subtropical humid forests and steppe).  

 

 
Figure 2.6: FAO Ecozone map in South America. The black squares represent our sample 

design. Source: FAO (2012) 

2.2.2. Gross carbon emission estimates  
This study followed the Guidelines for National GHG Inventories (IPCC, 2006) to quantify 

carbon emissions per driver. The methodological approach consists of combining information 

on the extent of human activities called activity data (AD) with coefficients that quantify 

emissions or removals per unit area called emission factors (EFs) (figure 2.7). We considered 

http://carbon.jpl.nasa.gov/data/dataMain.cfm
http://www.whrc.org/mapping/pantropical/carbon_dataset.html
http://www.fao.org/geonetwork/srv/en/main.home
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only the areas that were classified as forest at the beginning of a defined time interval - either 

for the years of 1990 or 2000 time period - and then converted to non-forest by the end of the 

time interval.  

 
Figure 2.7: Methodological approach of the IPCC to calculate human-induced GHG 

emissions by sources and removals by sinks in forestland. Source: IPCC (2006). 

 

The estimates of AD were determined by using the sample-based deforestation driver 

analysis carried out by the work of Veronique De Sy, whilst total forest biomass carbon 

stocks were estimated using Yong et al. (2014). In order to estimate the EFs, we assigned a 

biomass value before deforestation, called biomassbefore, and a biomass value after 

deforestation, called biomassafter, to each deforested patches in order to estimate the biomass 

loss from deforestation. However, there is no data available to estimate the biomassbefore in a 

deforested patch because the temporal resolution of the forest biomass map is circa 2000. 

Therefore, we made the assumption that forest patches in the same ecozone than a deforested 

patch well-represent the biomassbefore value of the deforested patch. In addition, as the forest 

and deforested polygons included in our study usually contain fragmented land cover and are 

relatively small leading to a limited number of 1 km resolution pixels (Achard et al., 2014), 

we considered for the driver classes (e.g. forest, agriculture, other land use, etc.) the average 

biomassbefore and biomassafter values in each ecosystem. The biomass loss per driver was then 

estimated by subtracting the biomassbefore and biomassafter values. Figure 2.8 summarizes the 

different steps followed for the biomass loss estimates.  
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Figure 2.8: Flowchart of the biomass loss estimates per driver 

 

Furthermore, Yong et al. (2014) only estimate the AGB and above-ground carbon portion. 

Therefore, we derived the total carbon estimates (above and below-ground) by using the 

equation 2.4 used by Saatchi et al. (2011):  

𝑇𝑜𝑡𝑎𝑙 𝐵𝑖𝑜𝑚𝑎𝑠𝑠 = 𝐴𝐺𝐵 + 0.489 × 𝐴𝐺𝐵0.89 
where AGB is the aboveground biomass loss estimates. 

 

In order to compute the EFs per driver, we estimated the total carbon as 49% of total biomass 

(Asner et al., 2014; 2012). The same EF estimates were applied for the 2000-2005 time 

period. Finally, we estimated the carbon emissions from deforestation for the periods 1990-

2000 and 2000-2005 as the product of net forest loss per driver and total forest biomass 

carbon stocks loss. Our method, therefore, assumed that all carbon in AGB is emitted 

immediately to the atmosphere at the time of clearing as we did not attempt to track the fate 

of all carbon pools through time.  
 

 
 

 

 

(2.4) 
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The proportions of gross carbon emission per sample unit were then extrapolated to the 

continental level. To do so, several variables were calculated. First, we computed the area of 

land (gla) within the tile using equation 2.5:  
𝑔𝑙𝑎 = 𝑡𝑜𝑡𝑎𝑙 − 𝑤𝑎𝑡𝑒𝑟 − 𝑛𝑜𝑑𝑎𝑡𝑎 

Where total is the total area in the tile, water and nodata are the areas of water and no data in 

the tile, respectively.  

 

Then, we computed a latitude correction factor (corrlat) for each tile. This was done to avoid 

an increasing “weight” of samples in the high latitudes due to the curvature of the Earth 

(FAO, 2010). 
𝑖𝑓 𝑙𝑎𝑡 ≤ 60° 𝑡ℎ𝑒𝑛 𝑐𝑜𝑟𝑟𝑙𝑎𝑡 = cos(𝑙𝑎𝑡) 

𝑖𝑓 𝑙𝑎𝑡 ≥ 60° 𝑡ℎ𝑒𝑛 𝑐𝑜𝑟𝑟𝑙𝑎𝑡 = 2 × cos(𝑙𝑎𝑡) 
 

These two variables allowed us to calculate the weight of the sample i (wi) using the 

following equation:  

𝑤𝑖 =
𝑔𝑙𝑎𝑖×𝑐𝑜𝑟𝑟𝑙𝑎𝑡𝑖

∑ 𝑔𝑙𝑎𝑖𝑖 ×𝑐𝑜𝑟𝑟𝑙𝑎𝑡𝑖
 

where gla is the area of land within a tile and corrlat is a latitude correction factor.  

 

The next step was to annualize our carbon losses estimates (paloss). Equation 2.8 gives an 

example for the 1990-2000 time period:  

𝑝𝑎𝑙𝑜𝑠𝑠9000 =
𝑙𝑜𝑠𝑠9000

𝑔𝑙𝑎×(𝑗𝑑𝑎𝑡𝑒00−𝑗𝑑𝑎𝑡𝑒90)
 

where loss9000 is the carbon loss in 1990-2000 and jdate00 and jdate90 are the julian date of 

image acquisition for 1990 and 2000, respectively. 

 

The samples ‘average value of carbon losses at continental scale (𝑝𝑎𝑙𝑜𝑠𝑠9000 for the 1990 −
2000 time period) and standard deviation (std) were then calculated using the following 

equations: 

𝑝𝑎𝑙𝑜𝑠𝑠9000 =
∑ 𝑊𝑖×𝑝𝑎𝑙𝑜𝑠𝑠9000𝑖 ∈𝑆

∑ 𝑊𝑖𝑖 ∈𝑆
 

 

𝑠𝑡𝑑 =  √
∑ 𝑊𝑖×(𝑝𝑎𝑙𝑜𝑠𝑠9000−𝑝𝑎𝑙𝑜𝑠𝑠9000)2

𝑖 ∈𝑆

∑ 𝑊𝑖𝑖 ∈𝑆
 

where Wi is the weight of the sample i and paloss9000 is the carbon loss of the sample i 

between 1990 and 2000. 
 

Final values of annual carbon loss in forest area either during the 1990s and the 2000s at 

continental level (total carbon loss) were then obtained by multiplying the average of carbon 

losses (𝑝𝑎𝑙𝑜𝑠𝑠9000) and the standard deviation (std) by the area of the South American 

continent (A) provided by FAO (2010):  

𝑡𝑜𝑡𝑎𝑙 𝑐𝑎𝑟𝑏𝑜𝑛 𝑙𝑜𝑠𝑠 9000 = 𝑝𝑎𝑙𝑜𝑠𝑠9000 × 𝐴 ± 1.96 × 
𝑠𝑡𝑑

√𝑁
× 𝐴 

where 𝑝𝑎𝑙𝑜𝑠𝑠9000 is the average value of gross carbon emission, std is the standard deviation 

of gross carbon emission, A is the total areas of the South America continent and N is the 

total number of samples.  

 

 
 

(2.9) 

(2.10) 

(2.11) 

(2.7) 

(2.8) 

(2.5) 

(2.6) 
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2.2.3. Method for validation 
There are still few reference datasets available for validation of carbon emission estimates. 

However, we were able to validate the carbon emission estimates in two different countries: 

Colombia and Peru. As reference data, we used a high-resolution mapping of carbon stocks in 

the Colombian Amazon and in Peru developed by Asner et al. (2012) and Asner et al. (2014), 

respectively. These two maps were made by Airborne LiDAR technology and are available at 

the Canergie Air Observatory Website 

(https://codex.dge.carnegiescience.edu/groups/cao/maps). We used a linear regression to 

compare carbon emission estimates from Yong et al. (2014) forest biomass map and Asner et 

al. (2014; 2014) carbon stock maps. We therefore calculated the root mean squared error with 

respect to the 1:1 line to evaluate the deviation from the reference data. 

https://codex.dge.carnegiescience.edu/groups/cao/maps
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 Chapter 3. Assessment of global land cover maps for deforestation 

drivers analysis 

3.1. Results 
In this section, the results of the different global land cover products for deforestation drivers’ 

detection for both Africa and South America will be described. For each land cover product, 

summary metrics of land cover classification accuracy such as omission error, commission 

error and overall accuracy will be presented. There are four driver’ classes included in our 

assessment analysis: agriculture, infrastructure, other land use and water.  

3.1.1. Assessment of global land cover products in Africa 
Table 3.1 shows the area proportion of the four drivers from the three global land cover maps. 

Overall, agriculture and other land use driver classes have the highest area proportion while 

water and infrastructure make up a much smaller proportion of the driver classification. For 

both MODIS and CCI-LC datasets, agriculture is the most common driver while other land 

use constitutes the predominant driver in GLC-SHARE product.  

 

Table 3.1: Area proportions in percentage per driver in the land cover maps in Africa. 
 MODIS GLC-SHARE CCI-LC 

 2000 2005 2000 2005 2000 2005 

Agriculture 72.0 80.1 34.6 25.6 89.9 90.4 
Infrastructure NA 0.1 NA 0.1 0.3 NA 
Other land use 27.7 19.8 64.9 74.1 9.7 9.4 
Water 0.3 NA 0.6 0.2 <0.1 0.2 

 

Table 3.2 lists the results of the accuracy assessment for each land cover type in both the 

baseline year 2000 and 2005 using MODIS datasets. The table indicates that agriculture 

driver class has the lowest omission errors (or the highest producer accuracy) for both 2000 

and 2005 with percentage values of 20.5% and 16.1%, respectively, while infrastructure 

(100.0% and 97.4% for 2000 and 2005, respectively), other land use (55.1% and 74.9% for 

2000 and 2005, respectively), are somewhat higher (table 3.2). Agriculture has the lowest 

commission error (or the highest user accuracy) in 2000 (22.2%) while infrastructure has the 

lowest commission error in 2005 (0.0%). However, the latter result has to be interpreted 

carefully as the total area of infrastructure represents only 0.1% of the total area. A high 

commission error, i.e. 54.3% for other land use class in 2005, indicates that a small number 

of areas that are not other land use are committed to this class. The overall accuracies of the 

MODIS datasets in our study are 68.7% and 59.7% for 2000 and 2005, respectively. 

 

Table 3.2: Confusion matrix for MODIS land cover map in Africa. 
 Omission error (%) Commission error (%) Overall accuracy (%) 

 2000 2005 2000 2005 2000 2005 

Agriculture 20.5 16.1 22.2 36.8 

68.7 59.7 
Infrastructure 100.0 97.4 NA 0.00 
Other land use 55.1 74.9 54.0 54.3 
Water 100.0 100.0 100.0 NA 

 

Table 3.3. illustrated the results for GLC-SHARE dataset. The table shows that other land use 

class has the lowest omission errors for both 2000 and 2005 of 19.9% and 15.3%, 

respectively, while agriculture (54.9%, 67.9% for 2000 and 2005, respectively), infrastructure 



Chapter 3. Assessment of global land cover maps for deforestation analysis 

 

 

 

 

16 

 

(100.0% and 95.9% for 2000 and 2005, respectively) and water (87.3% and 79.2% for 2000 

and 2005, respectively) classes show higher omission errors. However, agriculture has the 

lowest commission error in 2000 (25.6%) while infrastructure has the lowest commission 

error in 2005 (21.5%). Again, the latest result has to be analysed carefully as the area of 

infrastructure represents only 0.1% of the total area. It can be observed that the overall 

accuracies of GLG-SHARE datasets for the deforestation driver classification are around 

60.00% and around 50.00% for 2000 and 2005, respectively. 
 

Table 3.3: Confusion matrix for GLC-SHARE land cover map in Africa. 
 Omission error (%) Commission error (%) Overall accuracy (%) 

 2000 2005 2000 2005 2000 2005 

Agriculture 54.9 67.9 25.6 24.2 

58.8 51.9 
Infrastructure 100.0 95.9 NA 21.5 
Other land use 19.9 15.3 49.3 56.1 
Water 87.3 79.2 85.3 84.3 

 

Table 3.4 demonstrates that agriculture driver has the lowest omission errors for both 2000 

and 2005 with error values of 6.4% and 6.0%, respectively with CCI-LC products. 

Infrastructure (100.0% for both 2000 and 2005), other land use (85.7% and 85.5% for 2000 

and 2005, respectively) and water (20.9% and 19.3% for 2000 and 2005, respectively) show 

higher omission errors. However, water has the lowest commission error in 2000 (9.7%) 

while infrastructure has the lowest commission error in 2005 (36.9%). The overall accuracies 

of CCI land cover maps for our study are 57.9% and 60.5% for 2000 and 2005, respectively. 

 

Table 3.4: Confusion matrix for CCI land cover map in Africa. 
 Omission error (%) Commission error (%) Overall accuracy (%) 

 2000 2005 2000 2005 2000 2005 

Agriculture 6.4 6.0 42.7 39.8 

57.9 60.5 
Infrastructure 100.0 100.0 100.0 NA 
Other land use 85.7 85.5 36.5 36.9 
Water 20.9 19.3 9.7 38.6 

 

Furthermore, it is also relevant to see how the omitted and committed errors are allocated 

amongst the other driver classes. Figure 3.1 emphasizes that most of the commission error 

results from confusion with both the agriculture and other land use classes. Figure 3.1a and 

3.1b show the repartition of the committed and omitted deforested areas per driver for 

CCI2000 and CCI2005 products, respectively. Figure 3.1a and figure 3.1b show that most of 

the omitted and the committed areas of agriculture are allocated in other land use class for 

both 2000 and 2005. In addition, the misclassified and omitted areas of the other land use 

class are related to agriculture class. Finally, figure 3.1a shows that the omission and 

commission errors for both infrastructure and water classes are distributed amongst the 

agriculture driver class (e.g. 99.1% and 0.0% of omission error and commission error, 

respectively for infrastructure) and other land use class (e.g. 0.9% and 100.0% of omission 

error and commission error, respectively for infrastructure). Figure 3.1b shows that a similar 

tendency occurs in 2005. 
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Figure 3.1: Distribution of the committed and omitted deforested areas per driver for 

CCI2000 (figure 3.1a) and CCI2005 (figure 3.1b) land cover maps in Africa. 

3.1.2. Assessment of global land cover products in South America 
Table 3.5 shows the area proportion of the four drivers from the three global land cover maps 

in South America. Overall, we found similar results than in Africa. Agriculture and other land 

use driver classes comprise the majority of the drivers’ area proportion in the three products 

with agriculture being the most common class for the three datasets. Again, water and 

infrastructure make up a smaller proportions.  

 

Table 3.5: Area proportions in percentage per driver in the land cover maps in South 

America. 
 MODIS GLC-SHARE CCI-LC 

 2000 2005 2000 2005 2000 2005 

Agriculture 75.2 65.3 71.2 59 93.4 88.2 
Infrastructure 0.1 2 NA 1.0 0.2 1.6 
Other land use 24.3 32.2 27.6 37.1 5.7 8.1 
Water 0.4 0.5 1.2 2.9 0.7 2.1 

 

The confusion matrix for MODIS products depicts that agriculture driver has the lowest 

omission errors for both 2000 and 2005: 23.0% and 29.7%, respectively. Infrastructure 

(70.1% and 51.1% for 2000 and 2005, respectively), other land use (66.9% and 42.6% for 

2000 and 2005, respectively), have somewhat higher omission and commission errors (table 

3.6). Water has the lowest commission errors in 2000 (0.0%) and in 2005 (0.0%). However, 

this result has to be interpreted carefully as the area of water comprises only 0.1% of the total 

area. The overall accuracies of MODIS dataset in South America are 72.9% and 67.1% for 

2000 and 2005, respectively. 

 

 

 

 

 

 

 

(a) (b) 
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Table 3.6: Confusion matrix for MODIS land cover map in South America. 
 Omission error (%) Commission error (%) Overall accuracy (%) 

 2000 2005 2000 2005 2000 2005 

Agriculture 23.0 29.7 5.5 6.9 

72.9 67.1 
Infrastructure 70.1 51.1 43.4 4.8 
Other land use 66.9 42.6 93.5 88.1 
Water 95.7 80.8 0.0 0.0 

 

Table 3.7 shows that agriculture (25.7%) has the lowest omission errors for 2000 while water 

(15.4%) has the lowest omission error in 2005 with the GLC-SHARE dataset. Agriculture has 

the lowest commission error for both 2000 (4.1%) and 2005 (5.1%). The overall accuracies of 

the GLG-SHARE datasets in South America for the deforestation driver classification are 

72.6% and 88.4% for 2000 and 2005, respectively. 

 

Table 3.7: Confusion matrix for GLC-SHARE land cover map South America. 
 Omission error (%) Commission error (%) Overall accuracy (%) 

 2000 2005 2000 2005 2000 2005 

Agriculture 25.7 36.4 4.1 5.1 

72.6 88.4 
Infrastructure 100.0 65.6 NA 5.2 
Other land use 42.6 39.3 87.3 88.9 
Water 37.9 15.4 31.2 27.4 

 

CCI land cover maps shows better results in South America than the previous two land cover 

products (table 3.8). The confusion matrix for CCI land cover product illustrates that 

agriculture driver has the lowest omission and commission errors for both 2000 and 2005 

with percentage values of 4.8%, 7.1%, 5.1% and 5.1%, respectively. Infrastructure, other land 

use and water show higher omission and commission errors (table 3.8). The overall 

accuracies of CCI land cover maps in South America are 90.2% and 88.4% for 2000 and 

2005, respectively. 

 

Table 3.8: Confusion matrix for CCI land cover map in South America. 
 Omission error (%) Commission error (%) Overall accuracy (%) 

 2000 2005 2000 2005 2000 2005 

Agriculture 4.8 7.1 5.1 5.1 

90.2 88.4 
Infrastructure 83.9 34.1 33.8 12.0 
Other land use 83.9 73.6 86.1 81.5 
Water 40.8 18.3 5.9 18.5 

 

Figure 3.2a and 3.2b depicts the repartition of the committed and omitted deforested areas per 

driver for CCI2000 and CCI2005 products, respectively. As already shown in Africa (see 

figure 3.1a and figure 3.1b), most of the omitted and the committed areas of agriculture are 

allocated in other land use driver class for both 2000 and 2005. The commission and 

omission errors of other land use class are due to agriculture driver class. Similar to Africa, 

figure 3.2a and 3.2b show that the omission and commission errors for both infrastructure and 

water classes are distributed amongst agriculture driver class (e.g. 92.0% and 65.0% of 

omission error and commission error, respectively for infrastructure in 2000) and other land 

use class (e.g. 8.0% and 35.0% of omission error and commission error, respectively for 

infrastructure in 2000).  

 

 

 



Chapter 3. Assessment of global land cover maps for deforestation analysis 

 

 

 

 

19 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Distribution of the committed and omitted deforested areas per driver for 

CCI2000 (figure 3.2a) and CCI2005 (figure 3.2b) land cover maps in South America. 

3.2. Discussion 

3.2.1. Suitability of global land cover maps in Africa 
In Africa, the deforestation drivers’ classification is estimated to be rather uncertain in all 

datasets (see overall accuracies estimates of the three products). In general, water and 

infrastructure classes show the lowest overall mapping accuracies. However, water and 

infrastructure have an area proportion rather low compared to agriculture and other land use 

classes, therefore this findings have to be interpreted carefully. Other land use class also has 

low overall mapping accuracies, expect for GLC-SHARE product where this class has the 

highest producer accuracy. In particular, CCI-LC maps indicate the lowest producer and user 

accuracies for this class. Moreover, it seems that GLC-SHARE map shows lower omission 

error and higher commission errors for other land use class. For all the datasets, a lot of 

confusion exists between this class and agriculture (see figure 3.1 for CCI-LC products). A 

similar pattern exists for water and infrastructure with major confusion between these classes 

and both agriculture and other land use classes. Furthermore, MODIS500 and CCI-LC 

products were relatively proficient for the agriculture class in our study. Nevertheless, the 

commission error for this class is relatively high in CCI-LC maps (see table 3.4) with a lot of 

confusion with other land use class.  

 

Therefore, our study highlights a general inability of the global land cover mapping 

approaches to clearly discriminate deforestation drivers in Africa. Confusion in the 

deforestation drivers’ classes could be explained by a wrong classification of this class in the 

reference dataset but also by scaling effects between validation dataset (visual assessment 

using Landsat datasets) and the global land cover maps. Differentiating these deforestation 

drivers’ classes is difficult with coarse resolution spectral-temporal data alone in the African 

continent. However, one could think about using CCI-LC maps in order to classify the 

agriculture class in Africa. The high producer’s accuracy for this class using CCI-LC maps 

indicates an accurate mapping of all areas that actually represent this class on the ground. The 

main limitation of this suggestion is that agriculture class shows a low user accuracy, 

(a) (b) 
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therefore, users will likely overmap this class while using CCI-LC datasets (Herold et al., 

2008) for the analysis of deforestation drivers in Africa.  

3.2.2. Suitability of global land cover maps in South America 
Overall, our study shows better results on the capacity of global land cover maps for the 

analysis of deforestation drivers in South America than in Africa for the three datasets. 

However, the overall accuracy of these datasets is variable and only CCI-LC maps ‘overall 

accuracies meet the nominal standard of 85% recommended by Anderson et al. (1976). Other 

land use class is estimated to be rather uncertain in all datasets and is mainly confused with 

agriculture class. Like in Africa, CCI-LC maps indicate the lowest producer and user 

accuracies for agriculture class. In addition, water and infrastructure show relative high 

omission and commission errors in all the datasets. However, water class demonstrates low 

commission error in the CCI2000 land cover map while infrastructure class has low 

commission errors in both MODIS2005 and GLC-SHARE products. The bottom line is that 

these two classes with high omission errors and low commission errors are under-mapped in 

our analysis. As shown in figure 3.2, most of the errors for these two classes result from 

confusion with agriculture and other land use classes. The accuracy of the agriculture 

classifications in our study were relatively high, probably because regionally abundant land 

cover classifications typically generate higher accuracy ratings (Wickham et al., 2010).  

 

In summary, our study demonstrates again that the coarse resolution of the global land cover 

maps is a limitation for deforestation drivers’ classification. Only CCI-LC maps seem to have 

potential to analyse the deforestation drivers’ classification, in particular for agriculture driver 

class which presents high overall mapping accuracies. Unlike in Africa, this class does not 

have a high commission error, therefore, one will not face overmapping issues for agriculture 

driver classification. In addition, some areas have been classified as other land use by the 

interpreter in the reference data, although they could have been classified as agriculture. 

Indeed, in some situations, by using a visual assessment approach, the interpreter was not 

capable of determining whether one area should be included in other land use class or in 

agriculture class instead. Therefore, CCI-LC maps could be also used in order to check 

whether one area has been correctly classified as other land use or should be, in fact, labelled 

as agriculture class. 
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Chapter 4. Gross carbon emission estimates per deforestation driver 

4.1. Results 
In this section, the results of the gross carbon emissions analysis per driver will be described. 

First, we will present the estimation of the biomass and EFs in each ecosystem. Second, the 

results of the total gross emissions per driver at continental level will be presented. Then, the 

changes overtime of carbon emissions driven by pasture expansion and crop agriculture will 

be described. Finally, the validation of our method will be presented.  

4.1.1. Estimation of biomass and carbon losses in South America 
Figure 4.1 shows the biomass estimates from the Yong forest biomass map for different land 

uses (e.g. forest, crop agriculture, mixed agriculture, tree crops, pasture, other land use, 

mining, water and infrastructure) in each ecosystem encountered in South America. However, 

one can see that not all the drivers are represented in the different ecosystems. For instance, 

in subtropical steppe ecozone, there are only forest, other land use and pasture land uses 

represented in our sample design. In addition, we decided to assign biomass values equal to 

zero for both water and infrastructure assuming that the AGB is null in these two land uses. 

We made this assumption because water and infrastructure patches are very small compared 

to the pixel size of the forest biomass map. Therefore, their biomass values are likely 

overestimated as they are most of the time surrounding by forest patches.  

 

Overall, figure 4.1 depicts that forest land use has the highest biomass values in all the 

ecozones, except for the sub-tropical steppe ecozone (figure 4.1b). In addition, mixed 

agriculture class shows high biomass values compare to the other classes in most of the 

ecozones. Agriculture and pasture classes have, in general, the lowest biomass values, if one 

does not consider water and infrastructure classes. It is also interesting to see that tree crops 

class show both high biomass values (e.g. tropical mountain system ecozone) and low 

biomass values (e.g. tropical rainforest) compared to the other driver classes. Other land use 

class shows relatively high biomass values in the different ecozones. Figure 4.1 also 

demonstrates that there is high variability of the biomass values within most of the different 

land uses classes in each ecozone. 
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Figure 4.1: Average biomass estimates for land uses in subtropical humid forest (figure 

4.1a), subtropical steppe (figure 4.1b), temperate mountain system (figure 4.1c), tropical 

deciduous forest (figure 4.1d), tropical dry forest (figure 4.1e), tropical mountain system 

(figure 4.1f), tropical rainforest (figure 4.1g) and tropical shrubland (figure 4.1h) 

ecozones.   

 

Figure 4.2 illustrates the EF estimates per deforestation driver in each ecosystem. As 

described in the section 2.2.2, the EFs have been estimated by subtracting an average forest 

biomass value to the biomassafter in a deforested patch at ecozone level. The biomass loss 

estimates were then converted into carbon loss by assuming that 49% of the biomass is made 

of carbon. If one does not consider water and infrastructure, crop agriculture shows, in 

general, the highest EF estimates followed by pasture. In tropical deciduous forest (figure 

4.2b) and tropical dry forest (figure 4.2c), there is no significant differences of EF estimates 

between the classes. Conversely, there are significant differences between classes in tropical 

rainforest and tropical mountain systems ecozones. One can also see that in subtropical 

steppe ecozone, the average EF value of other land use class is negative (figure 4.2e). Further 

in our analysis, we considered this negative value as an outlier and replace it by a value of 

zero.  

(b) (a) 

(c) (d) 

(e) (f) 

(g) (h) 
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Figure 4.2: Average EF estimates per driver in tropical rainforest (figure 4.2a), tropical 

deciduous forest (figure 4.2b), tropical dry forest (figure 4.2c), tropical shrubland (figure 

4.2d), subtropical steppe (figure 4.2e), subtropical humid forest (figure 4.2f), temperate 

mountain system (figure 4.2g), and tropical mountain system (figure 4.2h) ecozones. 

4.1.2. Carbon emissions estimates per driver in South America 
Figure 4.3 illustrates the annual gross emissions per driver in South America for 1990-2000 

and 2000-2005 time periods with both absolute and percentage values. At continental scale, 

our estimates of annual carbon loss are 195 ±4.2 MtC.yr
-1 

and 246±4.9 MtC.yr
-1

 for the 1990s 

and the 2000s, respectively, thus showing significant difference for the two periods. Figure 

4.3a also shows that agriculture (174.5 MtC.yr
-1

 and 227.2 MtC.yr
-1 

for 1990-2000 and 2000-

2005, respectively) contribute the most to annual gross emissions followed by other land use 

(11.2 MtC.yr
-1

 and 11.1 MtC.yr
-1

), water (7.6 MtC.yr
-1

 and 5.8 MtC.yr
-1

), infrastructure (2.1 

MtC.yr
-1

 and 1.8 MtC.yr
-1

), and mining (1.4e
-2

 MtC.yr
-1

 and 0.9e
-3

 MtC.yr
-1

). Within the 

agriculture class, pasture (149.2 MtC.yr
-1

 and 180.2 MtC.yr
-1 

for 1990-2000 and 2000-2005, 

respectively) has the highest annual gross emissions followed by crop agriculture (18.6 

MtC.yr
-1

 and 39.1 MtC.yr
-1

), mixed agriculture (5.2 MtC.yr
-1

 and 6.7 MtC.yr
-1

), and tree 

crops (1.4 MtC.yr
-1

 and 1.2. MtC.yr
-1

). Furthermore, figure 4.3b depicts that there are no 

significant changes within a driver class in terms of percentage of the total annual emissions 

for the two periods.  

 

 

 

 

 

 

(b) (a) 

(c) (d) 

(e) (f) 

(g) (h) 
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Figure 4.3: Absolute (figure 4.3a) and percentage (figure 4.3b) carbon emission values per 

driver for 1990-2000 and 2000-2005 in South America. 

 

Our study highlights spatial and temporal patterns of carbon losses resulting from forest to 

non-forest (figure 4.4). The main area of carbon loss in both periods is in the so called ‘arc of 

deforestation’ of the Brazilian Amazon (red dashed line/circle in figure 4.4a),  particularly in 

the Mato-Grosso and NE Brazil-Caatinga. In this specific area, carbon losses are mainly 

driven by pasture expansion with some patches of crop agriculture as well as other land use 

driver in smaller proportions. In addition, one can point out a hot-spot of carbon emissions in 

the area of the Colombian Amazon (black dashed circle in figure 4.4a). Our study also shows 

that there are high carbon emissions in the region of Santa-Cruz, Bolivia, mainly driven by 

crop agriculture, other land use and water (dark blue dashed ellipse in figure 4.4a). The study 

also shows the allocation of the annual gross emissions amongst the different ecozones in 

South America (figure 4.4b). Our results show that most of the carbon losses from 

deforestation occurred in tropical rainforest ecosystem (158 MtC.year
-1

 and 209 MtC.year
-1

 

for the 1990s and the 2000s, respectively). This ecozone comprises around 80% of the annual 

total carbon losses at continental scale for the two time periods. Tropical deciduous forest 

ecozone (15.3% and 11.5% for 1990-2000 and 2000-2005, respectively) comprises the 

second largest annual gross carbon emissions followed by tropical dry forest (1.6% and 1.7% 

for 1990-2000 and 2000-2005, respectively). The other ecozones (e.g. subtropical humid 

forest, tropical shrubland, tropical/temperate mountain system, and subtropical steppe) 

comprise only a very small proportion of the annual carbon losses in South America.  

 

 

 

(b) (a) 
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Figure 4.4: Spatial pattern of carbon losses per driver for the 1990-2005 time period (figure 

4.4a) and the proportions carbon emission per ecosystem (figure 4.4b) in South America.  

 

Our study also analyses the distribution of each driver amongst the different ecozones. Figure 

4.5 shows all deforestation drivers mainly occur in the tropical rainforest ecozone. In 

addition, one can see that there are some changes between the two time periods. For instance, 

while around 60% of the annual carbon emissions from crop agriculture expansion occurred 

in tropical rainforest during the 1990s, around 80% took place in the same ecoregion during 

the 2000s. We found a similar tendency for mining class. Finally, figure 4.5 depicts that some 

drivers are limited to only two or three ecozones (e.g. crop agriculture, pasture and mining), 

while the other driver classes are ecologically more widespread.  

(a) 

(b) 
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Figure 4.5: Proportions carbon emission per driver in the different ecozones for 1990-2000 

and 2000-2005 in South America. 

 

Figure 4.6 shows the changing of carbon losses driven by both pasture expansion and crop 

agriculture between the 1990s and the 2000s. The red pies show an increase of carbon 

emissions between the two periods while the green pies show a decrease in carbon emissions. 

Figure 4.6a shows clearly that new deforestation hot-spots related to pasture expansion took 

place deeper in the amazon rainforest in the 2000s than in the 1990s. Figure 4.6b also depicts 

new hotspots of carbon emissions from crop agriculture expansion to a lesser extent. 

However, crop agriculture expansion’s new hotspots occurred mainly at the amazon forest 

‘frontier and anthropogenic activities related to crop agriculture have not progressed in the 

heart of the amazon rainforest as much as pasture.  
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Figure 4.6: Changing carbon emissions driven by pasture expansion (figure 4.6a) and crop 

agriculture (figure 4.6b) between 1990 -2000 and 2000 -2005 time period 

4.1.3. Validation method 
The comparison of forest biomass map derived EFs values against Asner carbon stocks maps 

EFs values is shown in figure 4.7. The RMSE with respect to the 1:1 line is 38.51 MgC/ha for 

the EF estimates. Our method does not show a linear fit with the reference carbon stock data 

for the EF estimates with a slope of 0.96 and a R-squared of 0.266. In addition, figure 4.7 

shows that water and mixed agriculture driver classes tend to be overestimated using the 

Yong global forest biomass map while other land use, mining, crop agriculture and pasture 

are underestimated. We assess the potential bias of our results by comparing EF estimates 

derived from our study to EF estimates derived from the reference datasets. The average 

relative difference is a -20% lower EF estimate from our study compared to the reference 

dataset. The highest bias occurred in the Colombian’s tropical rainforest for the ‘other land 

use’ driver where the relative difference is -92.3% whilst the Peruvian tropical rainforest has 

the lowest bias (-6.1%) for the same driver. 

 

 

 

 

 

 

(a) (b) 
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Figure 4.7: Comparison of forest biomass maps derived emission factor values with Asner 

carbon stocks map emission factor values. 

4.2. Discussion 
In this section, we will discuss the results obtained during the carbon emissions analysis in 

South America. First, we will compare our estimates of forest biomass with the IPCC 

AFOLU guidelines (2006). Then, we will liken our findings to the estimates of both EFs and 

annual gross carbon losses with other studies. Finally, we will analyse the spatial patterns of 

carbon losses in the South American continent.  

4.2.1. Comparison forest biomass estimates with other studies 
Our estimates of forest biomass for the year 2000 in tropical rainforest, tropical moist 

deciduous forest, tropical dry forest, tropical shrubland, tropical mountain systems, 

subtropical humid forest, subtropical steppe and the temperate mountain systems ecozones 

are 250 Mg.ha
-1

, 80 Mg.ha
-1

, 25 Mg.ha
-1

, 5 Mg.ha
-1

, 220 Mg.ha
-1

, 85 Mg.ha
-1

, 1 Mg.ha
-1

 and 

132 Mg.ha
-1

, respectively. Table 4.1 depicts that our estimates for tropical rainforest, tropical 

moist deciduous forest, tropical dry forest, tropical shrubland, tropical mountain systems, 

subtropical humid forest, and subtropical steppe ecozones are 20%, 175%, 740%, 1500%, 

4.5%, 160%, 7900% lower than the IPCC AFOLU guidelines (2006) estimates, respectively. 

Conversely, our estimate of forest biomass in temperate mountain system ecozone is 3.7% 

higher than the IPPC estimates. The FAO (2010) forest biomass estimate is 245 Mg/ha. 

However, this study does not give an estimate of forest biomass per ecozone but rather gives 

an average value from all the ecozones.  
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Table 4.1: Forest Biomass estimates in different ecozones from our study and the IPCC 

AFOLU Guidelines (2006) in South America.  

Domain Ecological zone 
Aboveground 

Biomass (Mg.ha
-1

) 
from IPCC (2006) 

Aboveground 
Biomass (Mg.ha

-1
) 

from this study 

Area included 
per tile (km

2
) 

from this study 

Tropical 

Tropical rainforest 300 250 18,000 
Tropical moist deciduous 
forest 

220 80 4,600 

Tropical dry forest 210 25 3,100 
Tropical shrubland 80 5 14 
Tropical mountain systems 230 220 2,500 

Subtropical 
Subtropical humid forest 220 85 760 
Subtropical steppe 80 1 240 

Temperate 
Temperate mountain 
systems 

130 135 380 

 

The discrepancies between the IPCC estimates and our study can be explained by the spatial 

resolution of the Yong biomass map (1 km resolution) and the size of the FRA2010 polygons. 

Figure 4.8a shows some FRA2010 polygons overlapping the Yong biomass map. It is clear 

that some pixels comprise both forest and deforested polygons (red dashed circle in figure 

4.8a). Therefore, when forest and non-forest land uses are mixed within one pixel, this would 

very likely lead to both an underestimation of the forest biomass and an overestimation of the 

non-forest land uses biomass. This is confirmed by the high variability of biomass estimates 

shown in figure 4.1. High resolution carbon maps, such as Asner’s maps used for the 

validation of our results, do not seem to have this issue in which there is no forest and non-

forest polygons mixed in one pixel (figure 4.8b).  

 

 

 

 

 

 

 

 

 

 

Figure 4.8: Representation of forest (in black) and deforested (in white) polygons on the 

biomass map for Yong map (figure 4.8a) and Asner map (figure 4.8b). 

 

Nevertheless, this assumption cannot completely explain the very high variations between our 

study and the IPCC estimates in ecozones such as tropical dry forest, tropical shrubland, 

subtropical humid forest and subtropical steppe. These discrepancies could also be explained 

by the few observations we have in these areas (see table 4.1). Therefore, the number of 

samples considered in our study for these ecosystems might not be sufficient enough in order 

to estimate their forest biomass values. In addition, Yong forest biomass map has few 

calibration data in dry areas with low vegetation cover (e.g. shrubland, subtropical steppe, 

tropical dry forest) for the South American region (Yong et al., 2014). Finally, Avitabile et 

al. (2011) argued that IPCC tier 1 estimates tends to overestimate biomass values for 

Ugandan forest compared to country-specific field data. This finding could also justify the 

discrepancies found in South America.  

(a) (b) 
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4.2.2. Comparison of carbon losses estimates with other studies 

Table 4.2 compares the EF estimates per driver from our study to the ones provided by the 

IPCC Guidelines (2006). As we expected, the table illustrates that our study underestimates, 

in general, the EF estimates when one compares our results with the IPCC (2006) estimates. 

Our EF estimates are, in average, 98%, 307%, 1650%, 1500%, 55%, 423%, 1600% and 

230% lower than the IPCC estimates for tropical rainforest, tropical moist deciduous forest, 

tropical dry forest, tropical shrubland, tropical mountain systems, subtropical humid forest, 

subtropical steppe and the temperate mountain systems ecozones, respectively.  

 

Table 4.2: EF estimates per driver in different ecozones from our study and the IPCC 

AFOLU Guidelines (2006) in South America. 

Domain Ecological zone Driver 
EFs (MgC.ha-1) from 

IPCC (2006) 
EFs (MgC.ha-1) from 

this study 

Tropical 

Tropical rainforest 

Crop agriculture 

150 

98.49 

Pasture 76.09 

Tree crops 81.43 

Mixed agriculture 31.64 

Other land use 54.48 

Mining 39.2 

Infrastructure 121.68 

Water 121.68 

Tropical moist deciduous 
forest 

Crop agriculture 

110 

28.84 

Pasture 22.76 
Tree crops 27.84 

Mixed agriculture 16.64 
Other land use 14.85 

Mining NA 
Infrastructure 37.98 

Water 37.98 

Tropical dry forest 

Crop agriculture 

105 

8.69 
Pasture 0.69 

Tree crops NA 
Mixed agriculture 1.97 

Other land use 0.87 
Mining NA 

Infrastructure 11.64 
Water 11.64 

Tropical shrubland 

Crop agriculture 

40 

NA 
Pasture 2.37 

Tree crops NA 
Mixed agriculture NA 

Other land use NA 
Mining Na 

Infrastructure NA 
Water NA 

Tropical mountain systems 

Crop agriculture 

115 

91.2 
Pasture 64.88 

Tree crops 44.85 
Mixed agriculture 28.16 

Other land use 45.61 
Mining 96.86 

Infrastructure 107.8 
Water 107.8 
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These discrepancies have been already explained in the previous section and are mainly 

related to the presence of both forest and non-forest polygons in a large number of pixels in 

the forest biomass map as well as the few number of observations in some ecozones and the 

few calibration data for the forest biomass map in dry areas. In addition, the discrepancies 

between the IPCC AFOLU Guidelines estimates and our study can also be explained by the 

difference in the estimations of biomass left (biomass after) in a site after a deforestation event. 

For the IPCC estimates, it is assumed that all biomass is cleared when preparing a site for 

non-forest land uses, thus, the default for biomassafter is 0 MgC ha
-1

 (IPCC, 2006). 

Conversely, our study aimed to estimate the “true” biomassafter values. Indeed, depending on 

the forest conversion type (e.g. agriculture, pasture, other land use), the biomassafter values 

might differ, in particular whether there are woody elements left on a specific deforested site 

or not. Finally, the estimates of EFs show large relative error ranges which could also be 

explained by the uncertainties in the Yong biomass map (figure 4.2). 

 

Table 4.2: (Continued) 

Domain Ecological zone Driver 
EFs (MgC.ha-1) 

from IPCC (2006) 
EFs (MgC.ha-1) 
from this study 

Subtropical 

Subtropical humid forest 

Crop agriculture 

110 

5.92 
Pasture 14.06 

Tree crops 1.29 
Mixed 

agriculture 
4.08 

Other land use 31.11 
Mining NA 

Infrastructure 42.01 
Water 42.01 

Subtropical steppe 

Crop agriculture 

40 

NA 
Pasture 0.27 

Tree crops NA 
Mixed 

agriculture 
NA 

Other land use 0.49 
Mining NA 

Infrastructure NA 
Water NA 

Temperate 
Temperate mountain 

systems 

Crop agriculture 

115 

NA 

Pasture NA 

Tree crops NA 

Mixed 
agriculture 

NA 

Other land use 35.15 

Mining NA 

Infrastructure NA 

Water NA 

 

Table 4.3 illustrates the comparison of our estimates of carbon losses during the period 1990-

2000 to a recent carbon emissions from tropical deforestation studiy by Achard et al. (2014) 

and the FAO estimates (FAO, 2010). Our continental estimates are lower than the estimates 

from Achard et al. (2014) and FAO (2010) studies (table 4.3). Although our sampling 

approach is similar to the study carried out by Achard et al. (2014), their approach seems to 

vary widely from our study. First, Achard et al. (2014) used Baccini and Saatchi forest 

biomass maps while we used the Yong forest map. The latest map results in a fusion between 
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Baccini and Saatchi map and it shows a better accuracy of regional biomass estimates (Yong 

et al., 2014). Moreover, both Achard and FAO studies used biomassafter values equal to zero 

while our study intends to estimate the “true” biomass left after deforestation event if one 

considers that the biomassafter values differ per driver, in particular when there are still woody 

elements left in a deforested site. In addition, the FAO study also includes  the carbon losses 

from forest degradation (FAO, 2010) which is not considered in our study, unless 

deforestation is following deforestation.  

 

We also compare our results for the period 2000-2005 with the same studies mentioned in the 

previous paragraph and with two recent other estimates of carbon emissions from tropical 

deforestation by Wood Hole Research Centre (WHRC) (Baccini et al., 2012) and WinRock 

International (Harris et al., 2012) as well (table 4.3). Similar to the period 1990-2000, our 

annual carbon losses estimates are lower than the four other studies considered here. Besides 

the differences already mentioned in the previous paragraph between our study and 

Achard/FAO studies, these two studies cover the complete decade while our study covers 

only the first half of the 2000s, i.e. from year 2000 to year 2005. In addition, Achard et al. 

(2014) state that the spatial information from our sampling design has a much higher spatial 

detail compare to the one used in Baccini and Harris studies. In addition, Grainger (2008) 

states that the estimates described in the FRA 2010 are derived from national forest 

inventories and the use of national statistics is known to be limited in terms of data quality 

and consistency between countries. Finally, all the studies analysed the carbon losses in both 

Central and South America, while our study covers only South America.  

 

Table 4.3: Annual carbon losses from gross loss of tropical forest cover for periods 1990-

2000 and 2000-2005 in South America (values in MtC.yr
-1

) 

 Annual carbon losses 
(MtC.yr

-1
) 

Period 1990-2000  
Our study with Ecozone/Yong 195 
Achard et al. (2014) with average Baccini/Saatchi 443.4 
FAO (2010) 357.7 

Period 2000-2005  
Our study with Ecozone/Yong 246 
Achard et al. (2014) with average Baccini/Saatchi 
for the period 2000-2010 

464.8 

FAO (2010) for the period 2000-2010 340.1 
Baccini et al. (2012) 470 
Harris et al. (2012) 440 

 

Furthermore, we want to compare our annual carbon losses per driver for the two periods 

with other studies. We do the comparison of our result with a study carried out by the WHRC 

(Houghton, 2012). However, we find it hard to do a realistic comparison between the two 

studies because the respective drivers’ classification systems differ widely. Only the 

definitions of pasture seem to be quite similar in the two studies, therefore we find it 

reasonable to compare annual carbon losses from pasture expansion. Our estimate for pasture 

expansion is slightly higher than the estimates from Houghton study. Houghton et al. (2012), 

showed that forest conversion to pasture emitted 130 MtC.yr
-1

 for 1990-2000
 
while our study 

showed a carbon loss value around 160 MtC.yr
-1

 for the 1990-2005 time period. In addition, 

the proportion of pasture expansion in our study (75%) is much higher than the one found on 

Houghton study (25%). It was also interesting to see that crop agriculture and pasture 
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emissions have continued to grow between the two decades in our study. This is supported by 

Tubiello et al. (2015) study which analysed the contribution of AFOLU activities to global 

warming at global level. They highlighted that agriculture emissions have continued to grow, 

at roughly 1% annually, and remained larger than the land use sector from 1990 to 2012. 

4.2.3. Spatial patterns of carbon losses 
Our results showed that there are spatial and temporal patterns of carbon losses from 

deforestation. We have shown that the main area of carbon losses in both periods was in the 

so called ‘arc of deforestation’ of the Brazilian Amazon. This is in line with Achard et al. 

(2014) who have shown similar outcomes. We also pointed out two other hot-spots of carbon 

emissions in the area of the Colombian Amazon and in the region of Santa-Cruz. In addition, 

Achard et al. (2014) study has not described the proportions of carbon losses per driver whilst 

our study depicted that carbon losses are mainly driven by pasture and crop agriculture 

expansions in South America. Theses drivers showed new hotspots of deforestation between 

the 1990s and the 2000s mainly located in the amazon rainforest, particularly for pasture. 

This is in line with the increase of carbon losses for pasture and crop agriculture between the 

two time periods. There is a higher loss of biomass when deforestation events occur in intact 

tropical rainforest ecosystem than in already degraded ecosystems.  
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Chapter 5. Conclusions and recommendations 

5.1. Conclusions 
The work presented in this thesis aimed at answering two main questions: How global land 

cover datasets can support the quantification and assessment of deforestation drivers in 

REDD+ countries?; and, How can gross carbon emissions per deforestation driver be 

estimated by using global forest biomass maps and sample-based driver data in the pan-

tropical region countries?  

 

As explained in chapter 3, our study assessed three different global land cover maps against 

reference data for deforestation drivers’ classification both in Africa and South America. 

Overall, global land cover maps showed potential opportunities for deforestation drivers’ 

analysis. Although our study showed limitations of the MODIS and GLC-SHARE datasets to 

clearly discriminate deforestation drivers in Africa, the CCI-LC products depicted promising 

results. The latest products have proven to be useful for classifying agriculture driver class in 

both Africa and South America. In the African continent, the user can expect to classify 

accurately all areas that actually represent agriculture on the ground. However, due to its high 

commission error, our study demonstrated that one will likely overmap this class with the 

CCI-LC datasets. Like in Africa, the CCI-LC maps had high producer accuracies, however 

they also showed high user accuracies for the agriculture class. Therefore, overmapping for 

the agriculture class will be much lower in South America than in Africa. Additionally, our 

study showed another possible use of the CCI global land cover map in South America. Other 

land use class had high commission errors which were most of the time confused with the 

agriculture class. However, in the reference data, some polygons have been classified as other 

land use by the interpreter, although they probably could have been classified as agriculture. 

Therefore, one can argue that the CCI-LC maps could be used to check whether one polygon 

has been correctly classified as other land use or should, in fact, be labelled as agriculture 

class. In conclusion, the CCI-LC maps could provide an alternative to fill the gaps in the 

deforestation drivers’ analysis but also improve the current drivers’ classification, in 

particular in South America. 

 

In this study, we also performed carbon losses estimates per driver in South America for the 

1990-2005 time period integrating sampled-based driver data with wall-to-wall biomass data 

i.e. Yong et al. (2014) forest biomass map. First of all, we compared our results of forest 

biomass estimates with IPCC (2006) estimates. Our results demonstrated discrepancies 

between the two studies. Our approach seems to have a tendency to under-estimate the forest 

biomass with coarse forest biomass maps. Furthermore, we compared the EF estimates from 

our study with the IPCC estimates. Again, our study showed lower estimates than the IPCC 

estimates. This might be explained by the different approaches used by the two studies. For 

the IPCC estimates, it is assumed that all biomass is cleared while we presumed that there is 

biomass left after a deforestation event in a specific site. Additionally, our validation method 

has proven that the Yong global forest biomass map tends to under-estimate carbon stocks 

compared to reference data when one uses the average biomass values at ecosystem level. 

This could, therefore, justify the discrepancies between our study and IPCC estimates. Third, 

we analysed the annual carbon losses from deforestation at continental scale and compared 

our results with other studies. The comparison depicted that our study under-estimated the 

annual carbon losses in South America. Again, this could be explained by the fact that our 
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approach differs widely from the other studies in terms of forest biomass map used, EF 

estimates method, and the time period considered. In summary, our study showed 

opportunities to improve tier 1 GHG emission factors for deforestation by using global forest 

biomass maps. In addition, our results demonstrated the importance of carbon losses from 

forest in tropics, in particular from pasture and crop agriculture expansion. These results are, 

therefore, useful to further inform the current climate policy debate on land use change, 

suggesting that more efforts should be directed to further explore options for climate change 

mitigation in the AFOLU sector (Tubiello et al., 2015).  

5.2. Recommendations 
Overall, this analysis has proven that the coarse resolution of the global land cover maps is a 

limitation for deforestation drivers’ classification whilst also providing some opportunities. 

However, this may still be a matter of further investigation. First, one could investigate other 

land cover products currently available. For instance, the discrete SERENA land cover 

product (Blanco et al., 2013) for Latin America and the Caribbean (LAC) for the year 2008 

with a 500m resolution proved to be quite accurate which, therefore, could eventually 

improve the deforestation drivers analysis. Furthermore, in this study, we decided to 

aggregate driver classes into four main classes (e.g. agriculture, other land use, water and 

infrastructure) in order to simplify our assessment. However, it would be interesting to divide 

these classes according to the classification provided in table 2.3. This could allow us to see 

whether the confusion in one aggregated class comes from a specific sub-class or not. Finally, 

the driver classification in the reference data (deforestation drivers’ classification with visual 

assessment) has been performed using high-resolution datasets (e.g. Landsat with a 30m 

resolution), whilst our driver’s classification was  performed using global land cover maps 

with coarse resolution. In this situation, Boschetti et al. (2004) recommended to use the 

‘Pareto Boundary’ method which allows us to determine the maximum user and producer's 

accuracy values that could be attained jointly by a low-resolution map. This method could 

help us to understand whether the limited accuracy of a low spatial resolution map is given by 

poor performance of the classification algorithm or by the low resolution of the remotely 

sensed data, which had been classified (Boschetti et al., 2004). 

 

During the implementation of the carbon emissions analysis presented in this thesis, the 

authors faced some challenges. We came across several questions, thus, further research on 

the carbon emissions analysis might be needed to improve our approach. First of all, we 

decided to subset our samples per ecozone at a continental scale (see figure 2.6). Therefore, 

our study assumed that a land use’ biomass value, i.e. forest, crop agriculture, pasture, in a 

specific ecozone is comparable all over the continent. However, this assumption could be 

criticized because within an ecozone there are areas much dryer than others and vice-versa. 

Therefore, the authors propose to create sub-ecozones at a regional scale in order to decrease 

the uncertainties of our estimates. Furthermore, our driver classification for the EF estimates 

did not distinguish patches with either woody or non-woody elements. Therefore, one could 

think about creating for each deforestation’s driver class, a class including the areas with 

woody elements and another class with non-woody areas. Obviously, this would help us to 

optimize our approach. Our study also showed that our method underestimates, in general, 

the biomass values and emission factors. This was clearly confirmed by our validation 

method using high resolution carbon stock maps (Asner et al., 2014; 2012). One of the 

reasons of these discrepancies was related to the difference between polygon minimum 

mapping unit (MMU) area and pixel size of the forest biomass map. Therefore, to overcome 

this issue, we recommend to remove the polygons with a MMU lower than the pixel size and 
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the polygons mixed with other type of land use (e.g. forest and non-forest) in one pixel. 

Additionally, it would be relevant to use the bias ‘assessment of the EF estimates from the 

validation method in order to correct our estimation. Finally, our method has shown 

limitations due to the uncertainty in the spatial distribution of tropical forest biomass from the 

current global forest biomass maps, in particular in dry areas with low vegetation cover 

where calibration data are missing. That is why Mitchard et al. (2013) and Avitabile et al. 

(2011) state that the future priorities for the reduction in uncertainties in estimates of carbon 

emissions from land-use changes in the tropics lie in the improvement of regional forest 

inventories for assessing carbon content at a local scale for all kind of ecosystems. The two 

new global biomass products of Baccini (30m resolution) and Saatchi (100m resolution) 

announced to be released soon would eventually decrease these uncertainties, in particular, 

the Saatchi map which estimates the wood density. It would, therefore, be interesting to test 

our method using these two new products. 
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Annexes 

Annexe 1: FAO Land Cover Classification System legend with corresponding classes from individual global legends. 

Source: adapted from Kuenzer et al. (2014) 
Drivers classification FAO LUCS FAO LCCS CCI-LC GLC-SHARE MOD500 

Class Generalized class 
description 

Class Generalized class 
description 

Class Generalized class 
description 

Class Class description Class Class description Class Class description 

100 Forest 11 Forest 1 Evergreen needle 
leaf trees 

70 Tree cover, needle 
leaved, evergreen, 
closed to open (>15%) 

  1 Evergreen needle 
leaf forest 

    2 Evergreen broadleaf 
trees 

50 Tree cover, 
broadleaved, 
evergreen, closed to 
open (>15%) 

  2 Evergreen broadleaf 
forest 

    3 Deciduous needle 
leaf trees 

80 Tree cover, needle 
leaved, deciduous, 
closed to open (>15%) 

  3 Deciduous needle 
leaf forest 

    4 Deciduous 
broadleaf trees 

60 Tree cover, 
broadleaved, 
deciduous, closed to 
open (>15%) 

  4 Deciduous broadleaf 
forest 

            

    5 Mixed/other trees 90 Tree cover, mixed leaf 
type (broadleaved 
and needle leaved) 

4 Tree covered areas 5 Mixed forest 

          8 Woody savannahs 

  12 Other wooded land   100 Mosaic tree and 
shrub (>50%)/ 
herbaceous cover 
(<50%) 

    

      110 Mosaic herbaceous 
cover (>50%)/ tree 
and shrub (<50%) 

    

          9 Savannahs 
      160 Tree cover, flooded, 

fresh or brakish water 
    

      170 Tree cover, flooded, 
fresh or saline water 

7 Mangroves   
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Annexe 1: (Continued) 

Drivers classification FAO LUCS FAO LCCS CCI-LC GLC-SHARE MOD500 

Class Generalized class 
description 

Class Generalized class 
description 

Class Generalized class 
description 

Class Class description Class Class description Class Class description 

500 Other 520 13 Other land with tree 
cover 

6 Shrubs 120 Shrubland 5 Shrubs Covered Areas 6 Closed shrublands 

       150 Sparse vegetation (tree, 
shrub, herbaceous 
cover) (<15%) 

8 Sparse vegetation 7 Open shrublands 

  530 14 Grass and 
herbaceous cover 

  140 Lichens and mosses     

     7 Herbaceous 
vegetation 

130 Grasslands 3 Grassland 10 Grasslands 

  540 19 Wetlands 9 Other shrub/ 
herbaceous 
vegetation 

180 Shrub or herbaceous 
cover, flooded, 
fresh/saline/brakish 
water 

6 Herbaceous vegetation, 
aquatic or regularly 
flooded 

11 Permanent wetlands 

  510 17 Bare land 11 Snow and Ice 220 Permanent snow and 
ice 

10 Snow and glaciers 15 Snow and ice 

     12 Barren 200 Bare areas 9 Bare soil 16 Barren or sparsely 
vegetated 

200 Agriculture 15 Agricultural crops 8 Cultivated and 
managed 
vegetation/ 
agriculture (incl. 
mixtures) 

20 Cropland, irrigated or 
post-flooding 

2 Cropland 12 Croplands 

      10 Cropland, rainfed     
      30 Mosaic cropland 

(>50%)/ natural 
vegetation (tree, shrub, 
herbaceous cover) 
<50%) 

    

      40 Mosaic natural 
vegetation (tree, shrub, 
herbaceous cover) 
(>50%)/ crop land 
(<50%) 

    

          14 Cropland/natural 
vegetation mosaic 
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Annexe 1: (Continued) 

Drivers classification FAO LUCS FAO LCCS CCI-LC GLC-SHARE MOD500 

Class Generalized class 
description 

Class Generalized class 
description 

Class Generalized class 
description 

Class Class description Class Class description Class Class description 

300 Built-up 16 Built up habitation 10 Urban/ built-up 190 Urban areas 1 Artificial surfaces 13 Urban and built-up 

600 Water 18 Water 13 Open water 210 Water bodies 11 Water bodies 0 Water 

 


