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Introduction 

 

The order Carnivora contains 270 extant species, living in all major habitat types around the 

globe and varying considerably in life history traits (Agnarsson et al., 2010, Brooke et al., 2014). 

Besides a carnivorous feeding ecology, the order also contains species that are omnivorous (e.g. 

maned wolf, Chrysocyon brachyurus), herbivorous (e.g. giant panda, Ailuropoda melanoleuca), 

and frugivorous (e.g. African palm-civet, Nandinia binotata). The carnivorous species show a 

large variation in body mass, varying from the least weasel (Mustela nivalis) weighing 

approximately 80 g to the polar bear (Ursus maritimus) weighing up to 365 kg (Gittleman, 1985). 

The body mass of the terrestrial carnivores relates to the size of their prey. Species weighing less 

than about 20 kg thrive on invertebrate and small vertebrate prey whereas species of more than 

20 kg feed on vertebrate prey near their own mass (Carbone et al., 1999, Gittleman, 1985). 

Compared to the behaviour and morphology of these species, relatively few comparative studies 

have been performed on the digestive physiology and metabolism as affected by the feeding 

ecology. Energy expenditure and requirements in carnivores have been linked to feeding 

strategies and to body size (Carbone et al., 1999, Carbone et al., 2007, McNab, 2000). Regarding 

digestive physiology, Clauss et al. (2010) reviewed literature data on the digestive efficiency in 

groups of carnivores (canids, felids, hyenids, mustelids, ursids, pinnipeds) and showed that the 

variation in efficiency of protein and fat digestion among studied carnivores is low. For domestic 

cats (Felis catus), however, it was highlighted that fat digestion is less efficient than that in dogs 

(Canis familiaris) (Clauss et al., 2010).  

 

The digestive physiological and metabolic traits of dogs and cats have been studied in detail and 

a range of similarities but also differences between these species have been revealed. Cats show 

various “metabolic idiosyncrasies”, such as a reduced capacity to down-regulate amino acid 

catabolism and a low synthesis capacity for niacin, taurine and arginine, which were suggested to 

reflect the carnivorous nature of cats (Morris, 2002). As these idiosyncrasies are not or to a lesser 

extent shown by dogs, dogs have been labelled in authoritative scientific reference books as 

omnivorous in nature (Hand et al., 2010, NRC, 2006). However, the ‘omnivorous’ physiological 

and metabolic traits do not match with the carnivorous foraging ecology of the dog’s ancestor, 

i.e. the grey wolf (C. lupus). We have recently postulated that the differences in foraging ecology 

between the wild relatives of domestic dogs and cats might underlie the differences in specific 

traits (Bosch et al., 2014).  



Wildcats (F. silvestris) and feral/stray domestic cats are predominantly solitary and hunt 

individually catching a variety of mainly rodents (e.g. mice, voles) but also lagomorphs, birds 

reptiles and insects can be part of their diet (Malo et al., 2004, Pearre and Maass, 1998, Plantinga 

et al., 2011). Larger prey and opportunistic feeding have been reported like for feral cats on 

Macquarie Island (Australia) where cats preyed on rabbits over 1300 g and scavenged on dead 

elephant seals (Mirounga leonina) and penguins particularly during Winter time (Jones, 1977). It 

is difficult to actually measure kill rates of and biomass consumed by cats in the field, but 

estimates can be made. With an average prey mass of cats of 41.2 g (1.16% of their body mass) 

(Pearre and Maass, 1998) and an average energy content of 221 kJ (Kremen et al., 2013), an adult 

cat of 4 kg with a daily energy requirement of 334.7 kJ/kg (Van Aarde, 1980) has to consume six 

prey. When preying on mice or voles (respectively 73.4 and 180.5 kJ, Kremen et al. 2013) the cat 

would require about 18 mice or 8 voles every day. Small prey species such as those from the 

genus Microtus or Peromyscus reach high population densities and remain fairly common 

(Gittleman, 1985) and can support small carnivores like cats.  

 

In contrast to the assumed ‘omnivorous’ nature of dogs, modern-day wolves are carnivores with a 

varied but essentially animal-based diet and vegetal matter (nutritionally) being a minor to 

negligible component. Wolves predominantly live and hunt in packs on large ungulates but also 

opportunistically feed on smaller mammals (e.g. beavers, lagomorphs, rodents), birds, reptiles, 

fish, and insects (Bosch et al., 2014). The amount of vegetal matter is low and composed out of 

grasses and various species of berries and nuts with a contribution to the total biomass consumed 

varying from 0.1% to 3%. Wolves can ingest large amounts of animal tissues, with feast meal 

weights of up to 22% of their body weight (Stahler et al., 2006). Wolves do not consume the 

rumen contents but consume the rumen and intestinal walls. Estimates of daily biomass 

consumed in 19 studies ranged from 0.5 to 24.8 kg per wolf (Mech and Boitani, 2003). Based on 

energetic requirements (5 × basal metabolic rate; 70 × BM
0.75

) and energy content of prey (7.7 

kJ/g), a 35 kg wild wolf would require about 3.25 kg prey (Mech and Boitani, 2003). Based on 

our own estimates, a prey like an adult moose (Alces alces) would provide 8.2 kJ/g edible 

biomass and the wolf would require 3.05 kg every day. The number of prey to supply the biomass 

depends on the size of prey but also on the size of the pack and biomass lost to scavengers. With 

an average pack size of 8 hunting on a moose (Mech and Boitani, 2003) of 350 kg and edible 

biomass of 70%, the pack needs to kill a moose approximately once every 10 days. Obviously, 

these are rough estimations and prey interval will vary considerably given the variation in prey 

type and size and in energy expenditure and pack size (2 to 42 individuals, Mech and Boitani, 

2003). Other large carnivores like cougars (Puma concolor) kill on average one ungulate every 9 

days but also prey on smaller nonungulates (Knopff et al., 2010), Amur tigers (Panthera tigris 

altaica) kill every 3.7 to 10.1 days (Miller et al., 2013), and lions (Pathera leo) have a prey every 

2.5 days in the plains and 3 to 3.5 days in the woodlands (Schaller, 1972).  

 

It is important to point out that prey and carrion availability as well as prey vulnerability 

fluctuates around the year, for example due to cold and deep snow in Winter in the northern 

temperate and droughts and disease outbreaks during the dry season on the African savannah 

(Pereira et al., 2014). This can result in seasonal food shortages that carnivores have to cope with. 

A pack of wolves may go days consuming only smaller prey and left-overs of old prey (Mech, 

1970) and wolves have been observed to scavenge on bone and hide for even up to 10 weeks 

(Stahler et al., 2006). Also cougars have been observed to go without an ungulate kill for 75 days, 

but survived by consuming smaller meals consisting of other carnivores, small mammals, birds, 



or carrion (Knopff et al., 2010). To have such a feast-or-famine lifestyle and withstand periods of 

food shortages like wolves and other carnivores experience, animals may respond in different 

ways. Predictable seasonal declines in food availability may result in torpor and hibernation, 

strategies to reduce metabolic rates (Millar and Hickling, 1990). Alternatively, energy may be 

stored in the form of endogenous lipid reserves or exogenous food caches. Wolves tend to 

increase lipid stores during Fall and Winter and caching of prey parts is also performed by 

wolves (Mech and Boitani, 2003). Wolves can also quickly recover from weight loss after 

fasting. Captive wolves lost 7-8% of their body mass after 10 days of fasting, which was 

replenished after 2 days of consuming white-tailed deer meat with daily amounts between 15 and 

19% of their body mass (Kreeger et al., 1997). Resistance to prolonged periods of famine is also 

shown by dogs. The longest fast of a dog on record is 117 days with the dog weighing only 37% 

of its initial body weight when the fast was stopped (Howe et al., 1912). Ability to efficient use 

energy stores, decrease metabolic losses and to endogenously synthesise essential nutrients for 

on-going metabolic processes would be vital for survival prolonged periods of food shortage. 

During prolonged fasting where glycogen stores may become exhausted, the available lipid stores 

need to be effectively used for energy purposes and body proteins preserved (phase II of fasting). 

Ability of body tissues like the brain and heart to use ketone bodies from fatty acid catabolism 

decreases the demand for glucose from amino acids via gluconeogenesis pathways (McCue, 

2010). Dogs efficiently switch to peripheral use of ketone bodies during fasting (de Bruijne and 

van den Brom, 1986) making them less dependent on amino acid catabolism for glucose. 

Conservation of body proteins is a common and vital coping strategy in animals adapted to 

seasonal fasting. Cats, however, are less capable of conserving protein as they maintain high 

activities of amino acid catabolizing enzymes for gluconeogenesis (Morris, 2002). This low 

ability to down-regulating enzymes involved in amino acid catabolism also becomes apparent 

when fed a diet without protein; adult cats produce twice as much urinary urea as dogs (243 vs. 

116 mg kg
-0.75

 d
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) (Hendriks et al., 1997). American mink (Mustela vison), a small opportunistic 

carnivore like the cat, has relatively poor adaptations to food deprivation (Mustonen et al., 2005). 

During fasting, body protein catabolism of mink continues with reductions of 54-67% in liver 

proteins and 23-31% in muscle proteins after 5-7 days of fasting. After 7 days of fasting, 

proteolysis is increased (phase III). Several bear species like brown bears (Ursus arctos) and 

polar bears (Ursus maritimus) have even the capacity to reduce N losses 0 by recycling urea N 

back to protein and go for months without any food (Nelson, 1987, Stenvinkel et al., 2013).  

 

At times of feast, when large ungulates are killed, wolves in general rapidly open the body cavity 

and the internal organs such as the liver and heart are consumed (Stahler et al., 2006), a 

consumption behaviour also observed in cougars (Beier et al., 1995) and in lions (Schaller, 

1972). The liver of an ungulate would provide stored vitamin A and potentially glycogen. Like 

most carnivores, dogs transport vitamin A mainly as retinyl esters bound to lipoproteins in the 

blood (Schweigert et al., 1990). Dogs are also able excrete vitamin A and retinyl esters via the 

urine, which makes them more resistant to hypervitaminosis A (Raila et al., 2000) and can be 

considered as functional for wolves and other carnivores consuming large quantities of vitamin 

A.  

 

The array of physiological and metabolic traits showed by dogs are hypothesised to be shaped by 

the carnivorous feast-or-famine lifestyle rather than an omnivorous foraging ecology of their 

ancestor, the wolf (Bosch et al., 2014). At present, these traits are not well studied in other large 

carnivorous species. It may be expected that similar capacities are also found in, for example, 



cougars, tigers and bears, that share a feast-or-famine lifestyle and enabling them to survive 

prolonged periods of food shortage as observed in nature.  

 

Acknowledgements 

 

Iris Zweekhorst and Kikkie Poels are thanked for their contributions to the literature review on 

the foraging ecology of large terrestrial carnivores.  

 

Literature Cited 

 

Agnarsson I, Kuntner M, May-Collado LJ (2010) Dogs, cats, and kin: A molecular species-level 

phylogeny of Carnivora. Molecular Phylogenetics and Evolution 54: 726-745 

Beier P, Choate D, Barrett RH (1995) Movement patterns of mountain lions during different 

behaviors. Journal of Mammalogy 76: 1056-1070 

Bosch G, Hagen-Plantinga EA, Hendriks WH (2014) Dietary nutrient profiles of wild wolves: 

insights for optimal dog nutrition? British Journal of Nutrition: accepted for publication 

Brooke ZM, Bielby J, Nambiar K, Carbone C (2014) Correlates of research effort in carnivores: 

Body size, range size and diet matter. PLoS ONE 9: e93195 

Carbone C, Mace GM, Roberts SC, Macdonald DW (1999) Energetic constraints on the diet of 

terrestrial carnivores. Nature 402: 286-288 

Carbone C, Teacher A, Rowcliffe JM (2007) The costs of carnivory. PLoS Biology 5: 0363-0368 

Clauss M, Kleffner H, Kienzle E (2010) Carnivorous mammals: Nutrient digestibility and energy 

evaluation. Zoo Biology 29: 687-704 

de Bruijne JJ, van den Brom WE (1986) The effect of long-term fasting on ketone body 

metabolism in the dog. Comparative Biochemistry and Physiology Part B: Comparative 

Biochemistry 83: 391-395 

Gittleman JL (1985) Carnivore body size: Ecological and taxonomic correlates. Oecologia 67: 

540-554 

Hand MS, Thatcher CD, Remillard RL, Roudebush P, Novotny BJ (2010). Small Animal Clinical 

Nutrition, Ed 5, Mark Morris Institute, Topeka, KS, U.S., pp 1313 

Hendriks WH, Moughan PJ, Tarttelin MF (1997) Urinary excretion of endogenous nitrogen 

metabolites in adult domestic cats using a protein-free diet and the regression technique. Journal 

of Nutrition 127: 623-629 

Howe PE, Mattill HA, Hawk PB (1912) Distribution of nitrogen during a fast of one hundred and 

seventeen days. Journal of Biological Chemistry 11: 103-127 

Jones E (1977) Ecology of the feral cat, Felis catus (L.), (Carnivora: Felidae) on Macquarie 

Island. Australian Wildlife Research 4: 249-262 

Knopff KH, Knopff AA, Kortello A, Boyce MS (2010) Cougar kill rate and prey composition in 

a multiprey system. Journal of Wildlife Management 74: 1435-1447 

Kreeger TJ, DelGiudice GD, Mech LD (1997) Effects of fasting and refeeding on body 

composition of captive gray wolves (Canis lupus). Canadian Journal of Zoology 75: 1549-1552 

Kremen NA, Calvert CC, Larsen JA, Baldwin RA, Hahn TP, Fascetti AJ (2013) Body 

composition and amino acid concentrations of select birds and mammals consumed by cats in 

northern and central California. Journal of Animal Science 91: 1270-1276 

Malo AF, Lozano J, Huertas DL, Virgos E (2004) A change of diet from rodents to rabbits 

(Oryctolagus cuniculus). Is the wildcat (Felis silvestris) a specialist predator? Journal of Zoology 

263: 401-407 



McCue MD (2010) Starvation physiology: Reviewing the different strategies animals use to 

survive a common challenge. Comparative Biochemistry and Physiology - A Molecular and 

Integrative Physiology 156: 1-18 

McNab BK (2000) Energy constraints on carnivore diet. Nature 407: 584 

Mech LD (1970) The wolf: the ecology and behavior of an endangered species. The Natural 

History Press, Garden City, NY, U.S. 

Mech LD, Boitani L (2003). Wolves: behavior, ecology, and conservation, University of Chicago 

Press, Chicago, IL, U.S., pp 466 

Millar JS, Hickling GJ (1990) Fasting endurance and the evolution of mammalian body size. 

Functional Ecology 4: 5-12 

Miller CS, Hebblewhite M, Petrunenko YK, Seryodkin IV, Decesare NJ, Goodrich JM, Miquelle 

DG (2013) Estimating Amur tiger (Panthera tigris altaica) kill rates and potential consumption 

rates using global positioning system collars. Journal of Mammalogy 94: 845-855 

Morris JG (2002) Idiosyncratic nutrient requirements of cats appear to be diet-induced 

evolutionary adaptations. Nutrition Research Reviews 15: 153-168 

Mustonen AM, Puukka M, Pyykonen T, Nieminen P (2005) Adaptations to fasting in the 

American mink (Mustela vison): nitrogen metabolism. Journal of Comparative Physiology B: 

Biochemical, Systemic, and Environmental Physiology 175: 357-363 

Nelson RA (1987) Black bears and polar bears-still metabolic marvels. Mayo Clinic Proceedings 

62: 850-853 

NRC (2006) Nutrient requirements of dogs and cats. National Academies Press, Washington, 

D.C., U.S. 

Pearre S, Maass R (1998) Trends in the prey size-based trophic niches of feral and house cats 

Felis catus L. Mammal Review 28: 125-139 

Pereira LM, Owen-Smith N, Moleón M (2014) Facultative predation and scavenging by 

mammalian carnivores: Seasonal, regional and intra-guild comparisons. Mammal Review 44: 44-

55 

Plantinga EA, Bosch G, Hendriks WH (2011) Estimation of the dietary nutrient profile of free-

roaming feral cats: possible implications for nutrition of domestic cats. British Journal of 

Nutrition 106: S35-S48 

Raila J, Buchholz I, Aupperle H, Raila G, Schoon HA, Schweigert FJ (2000) The distribution of 

vitamin A and retinol-binding protein in the blood plasma, urine, liver and kidneys of carnivores. 

Veterinary Research 31: 541-551 

Schaller GB (1972) The Serengeti lion: a study of predator-prey relations. University of Chicago 

Press, Chicago, IL, U.S. 

Schweigert FJ, Ryder OA, Rambeck WA, Zucker H (1990) The majority of vitamin A is 

transported as retinyl esters in the blood of most carnivores. Comparative Biochemistry and 

Physiology - A Physiology 95: 573-578 

Stahler DR, Smith DW, Guernsey DS (2006) Foraging and feeding ecology of the gray wolf 

(Canis lupus): lessons from Yellowstone National Park, Wyoming, USA. Journal of Nutrition 

136: S1923-S1926 

Stenvinkel P, Fröbert O, Anderstam B, Palm F, Eriksson M, Bragfors-Helin AC, Qureshi AR, 

Larsson T, Friebe A, Zedrosser A et al. (2013) Metabolic Changes in Summer Active and Anuric 

Hibernating Free-Ranging Brown Bears (Ursus arctos). PLoS ONE 8: e72934 

Van Aarde RJ (1980) The diet and feeding behaviour of feral cats, Felis catus at Marion Island. 

South African Journal of Wildlife Research 10: 123 -128 

 


