Plant Breeding for a Biobased Economy

Luisa Trindade

Wageningen UR Plant Breeding

The world in 2050...

Changing world – new challenges

- Can nine billion people be fed equitably, healthily and sustainably?
- 2. Can we cope with the future demands on **water**?
- 3. Can we provide enough **energy** to supply the growing population coming out of poverty?
- 4. Can we mitigate and adapt to **climate change**?
- Can we do all this in the context of redressing the decline in biodiversity and preserving ecosystems?

Better plants for new demands

We need to produce more with less inputs

Plant Breeding targets

- High yield and yield stability
- Biomass of good quality
 - Food/feed (ingredients)
 - Biobased applications require different properties

Crops able to grow on marginal lands

- Salt, drought, cold, heat,...
- Sustainable crops
 - Efficient in use of water
 - Efficient in use of nutrients
- Resistance to pathogens

Breeding for biomass quality

- Right components with the required properties
- Facilitates the biorefining/extraction process
- Sustainability of the chain

WAGENINGEN UR For quality of life

Which crops to target?

The best crops and breeding targets will depend on the location, agro- and socio-economic environment

...but they have to fulfil the following demands:

- High yield
- Good quality (cell wall, oils, starch...)
- Fulfil sustainability criteria
- Adapted to local agro-economic situation
- Good position in breeding of the crop (plant material, breeding tools, expertise).
- Suitability for available production chains

luisa.trindade@wur.nl

Biobased Production Chains with Potential

- Potato bio-refinery
- Sugar beet for the production of bio-chemicals
- Miscanthus bio-refinery
- Oil crops for biobased chemicals
- New grasses for bio-refinery
- New crops for natural rubber (guayule and dandelion)
- Maize bio-refinery: for feed and energy
- Microalgae

Koops and Trindade. Nov 2010. Research Vision on Plant Breeding for biobased production chains. Report 352. PRI - WUR

Breeding of Lignocellulosic crops

Cell walls for bioethanol

Is it possible to create lignocellulosic feedstocks that are more amenable to bioprocessing? (Less Pretreatment, Less Enzyme, More Yields)

Getting more out of potatoes

Products:

- Starch
- Protein (for feed)
- Fiber (for feed)

After BBE Breeding

Products:

- Starch (improved properties)
- Protein
- Pectins
- Terpenes (for bio-plastics)
- Health compounds
- Fiber

Plant oils for industrial applications

Improving oil composition in crambe Erucic acid 'nн Lubricant **Bio-diesel** Crambe Aim Erucamide: -slip agent in plastics Improve the yield and quality of Crambe oil: 1) Tilling population 2) Genetic modification **EU-project ICON** WAGENINGENUR Biodiesel from Jatropha 12 different fatty Very high quality bioacids diesel!

Jatropha

Aim

Explore Jatropha natural biodiversity

10

Guayule for rubber and latex

Guayule

Rubber and latex

WUR - Whole chain approach

- Complementary expertise at the 5 science groups
 - Many (EU) collaborative projects
- Together we create unique opportunities for NL in biobased chains

The Biobasers

