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Abstract 
 

 

 

Turnip is a Brassica rapa morphotype that develops a tuber from the enlargement of the transition 

zone between hypocotyls and roots. Despite genetic and physiological studies little is known about the 

molecular factors determining turnip tuberization. The design of a custom  B. rapa microarray allowed 

for the first time a genome-wide transcriptomic profiling during turnip tuber development. The highest 

variation in transcriptional changes occurred between 14 and 21 days after sowing (DAS), one week 

earlier than tuber initiation which occurred between 21 and 28 DAS. Weigthed Co-expression 

Network Analysis (WGCNA) was used to identify 16 modules of co-expressed genes characterized by 

distinctive profiles and that can be explored for future co-expression analysis. Modules with similar 

profiles were grouped and the resulting five clusters were used for pathway analysis using MapMan 

ontology. MapMan BINs showed significant enrichment for certain clusters and allowed to describe 

turnip tuber development. Turnip tuber accumulates sucrose, glucose, fructose but little starch. A 

detailed analysis of genes involved in the sucrose and starch metabolism was carried out to gain 

insights into the transcriptional regulation of the pathway.  

 
 

Keywords: Brassica rapa, turnip tuber, transcriptomic profiling, pathway analysis, sucrose and starch 

metabolism 
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Introduction 
 

Brassica rapa  
Brassica rapa L. (2n=2x=20) is one of the three diploid Brassica species and has been cultivated for 

many centuries all over the Europe and Asia (Dixon 2007). Natural and human selection for such 

geographically wide cultivation regions resulted in a rich abundance of morphotypes to be used as 

leafy vegetables, oilseed crops or edible tubers (Bonnema et al. 2011). Nonetheless, B. rapa genetic 

diversity has been associated more to the accessions geographical origin than to their morphological 

aspects, suggesting the involvement of few genes in the morphotype diversification (Zhao et al. 2005; 

Del Carpio et al. 2011). 

Turnip (Brassica rapa ssp. rapa) is a morphotype characterized by an enlarged tuber and it is 

cultivated both as vegetable and fodder crop. The interest in turnip tuberization is placed in the context 

of the investigation on the genetics underlying the B. rapa morphological variation (Zhang et al. 

2014). Moreover, research on turnip can also generate knowledge on the tuberization process itself and 

establish a comparison with the long-standing researches on other crops.  

 

 

Research on turnip tuberization 
Turnips develop tubers in the transition zone between root and hypocotyls although the contribution of 

the two tissues varies among different accessions (Takahashi et al. 1994; Zhang et al. 2014). The 

development and growth of storage organs involves a complex interaction of genetic, physiological 

and environmental factors.Genetic studies showed that the morphological variation for turnip tuber is 

under control of many quantitatively inherited traits with a complex genetic control. Quantitative trait 

loci (QTLs) for turnip tuber traits have been mapped across the genome on the majority of 

chromosomes (1, 2, 3, 4, 6, 7 and 9) (Lou et al. 2007; Lu et al. 2008; Kubo et al. 2010). However, 

none of these QTLs have been fine mapped yet.  

Different in vitro studies have been carried out to determine the physiology of tuber development. The 

increase in radial dimensions of the tubers was primarily related to vascular cambium activity 

stimulated by sugars and phytohormones (Peterson 1973). In fact, the growth of excised tuber tip was 

promoted by a combination of auxins, cytokinins, sucrose and myo-inositol. Moreover, turnip 

epicotyls elongated through the continuous application of gibberellins (GA3) were observed 

differentiating aerial tuber-like organs once the hormone application was suspended (Nishijima et al. 

2005). Nonetheless, recent investigations showed opposite results and the role of hormones is still 

questioned. In fact, tuber initiation of turnip explants grown in vitro was not dependent upon addition 

of gibberellins (GA3) and was inhibited by the addition of cytokinins (BAP) (Temesgen 2012; Zhang, 

personal communication). However, turnip explants could form tubers in presence of auxins and 

sucrose, confirming their promoting role. Further, turnip tuber development and filling have also been 

studied relatively to sucrose metabolism through enzymatic assays (Gupta et al. 2001). Despite these 

studies, a comprehensive understanding of the molecular and metabolic factors determining turnip 

tuberization is still lacking. Further research is required and additional knowledge can be derived from 

research on other crops.  

Up to now, tuberization been more intensively investigated in crops like potato (Solanum tuberosum) 

(Xu et al. 1998; Jackson 1999; Abelenda et al. 2014; Kloosterman et al. 2013), radish (Raphanus 

sativus) (Ting and Wren 1980; Rouhier and Usuda 2001)), sweet potato (Ipomea batatas) (Wilson and 

Lowe 1973; You et al. 2003) and sugar beet (Beta vulgaris) (Lukaszewska et al. 2012). Research on 

those crops, especially in potato, have revealed some of the mechanisms involved in tuber formation 

and can provide additional knowledge for research in turnip. In potato, the transition from stolen to 

tuber is a photoperiod-dependent process sharing components with the flowering regulatory pathway 

(Abelenda et al. 2014). Particularly, a homologue of the flowering signal FLOWERING LOCUS T 

(FT), StP6A, acts as mobile tuberization signal under inducing conditions (Navarro 2011). The role of 

hormones is also fundamental. Tuberisation is induced from reduced level of gibberellins in the sub 

apical region of the stolen (Vreugdenhil and Sergeeva 1999). Instead, auxins and strigolactones have 

an antagonistic effect on onset of potato tuber, with auxin promoting tuber formation and 

strigolactones repressing bud outgrowth (Roumeliotis et al. 2012).  
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Genomic approaches 
The recent sequencing of the B. rapa genome offered the opportunity to broaden the research on the 

morphological diversification of  B. rapa species and so on turnip (Wang et al. 2011). The evidence of 

a whole genome triplication after the divergence from Arabidopsis thaliana suggested that multiple 

orthologs of the same gene may have undergone neo- or sub-functionalization facilitating the 

emergence of genetic factors responsible for the extreme morphological variation (Cheng et al. 2014). 

Further, genomic resources allowed comparative genomic studies to investigate selection signatures 

across different morphotypes. Recently, a DH line of turnip accession VT_117 was re-sequenced, 

assembled and annotated to be compared with the B. rapa reference genome from the Chinese cabbage 

Chiifu (Lin et al. 2014).  

The availability of the genome sequence allows the investigation of transcriptome, that means of the 

gene expression at the genome level. While transcriptomic profiling with microarray have been carried 

out to study seed development of B. rapa (Basnet et al. 2013), this work represents the first attempt on 

developing turnip tuber. Transcriptomic profiling has been widely applied to many crops to obtain 

valuable insights into developing plant tissue or organs. Relatively to storage organ, transcriptomic 

studies have been carried out on potato tubers (Kloosterman et al. 2005; Kloosterman et al. 2008), 

sweet potato tuberous root (Firon et al. 2013) and radish (Mitsui et al. 2015).  

Moreover, transcriptomic profiling allowed the so called genetical genomics studies (Jansen and Nap 

2001). In fact, transcript abundance is a heritable trait and can be measured in a segregating population 

to map expression quantitative trait loci (eQTL) that can help to disentangle the transcriptional 

regulatory mechanisms of complex trait. In this sense, transcriptomic profiling of a developing organ 

may provide valuable information to be used for further expression studies or genetical genomics 

approaches.  

 

 

Objectives 
The aim of the present work is to characterise the turnip tuber formation through analysis of 

transcriptomic profiling data from microarray. The four main objectives of the analysis are:  

 

1) obtaining a global overview of the transcript abundance across the tuber developmental stages;  

2) defining modules of co-expressed genes and characterize their expression profiles; 

3) investigating co-expression modules for over- (or under-) presence of gene functional 

categories; 

4) investigating the role genes of functional categories known to be involved in turnip tuber 

development (carbohydrates, hormones, etc.). 

 

 

  



 

 

5 
 

Materials and Methods 
 
The present work involved only the analysis of microarray data. The experimental procedures that 

generated this data were carried out by dr. Ningwen Zhang. Data analysis was carried out on the 

statistical software environment R (Ihaka and Gentleman 1996).  

 

 

Plant Material 
A doubled haploid (DH) line DH-VT_117 was chosen from DH lines generated from the Japanese 

vegetable turnip accession VT_117 (CGN15201). The genome of DH-VT_117 has been recently 

resequenced, re-annotated and compared with the B. rapa reference genome form Chinese cabbage 

Chiifu and the resequenced oil type RC_144 (Lin et al. 2014). The turnip VT_117 is characterized  by 

round-shaped, red peel tuber, primarily composed by enlarged hypocotyls, and early flowering (60-80 

days after sowing). The plants were grown with a standard pot soil in a climate chamber, with 20/18 

°C day/night temperature and 16h/8h day/night length. The experimental design consisted of two 

biological repeats grown over 6 time points: 7, 14, 21, 28, 35 and 42 days after sowing. Each 

biological repeat was obtained by pooling three different turnip tubers. Hypocotyls tissues were 

removed from the plants and immediately immersed into liquid nitrogen to prevent RNA degradation. 

 
 

RNA isolation 
RNA isolation was done using RNeasy mini kit  according to the manufacturer’s instructions (Qiagen, 

Milden, Germany) followed by DNase treatment (AmpGrade I, Invitrogen, Burlington, ON, Canada) 

and a purification step (RNeasy Mini Kit, Qiagen). The quantity of RNA was determined by 

NanoDrop ND-100 UV–VIS spectrophotometer and quality was assessed by A260/A280 and 

A260/A230 ratio (NanoDrop Technologies, Inc., Wilmington, DE, USA) as well as by 1% agarose 

gel.  

 
 

Microarray probe design and hybridization 
A custom microarray was designed using the whole genome sequence of B. rapa cv. Chiifu 

(morphotype Chinese cabbage) version 1.0 (Wang et al. 2011). The predicted genes models of the 

genome sequence were used to design oligonucleotides probes (60-mer) for a two-colour Agilent 

microarray platform. The microarray contains 61,551 probes which represent 39,498 B. rapa genes 

assigned to one of the ten chromosomes and 1406 B. rapa genes assigned to scaffolds. Of the total 

40,904 B. rapa  genes, 20,647 were represented on the microarray by two probes. These two probes 

are different as the starting nucleotide of the 60-mer differs. Nonetheless, in the following text they are 

defined as “duplicated” probes as designed on the same gene. 

Cy3 and Cy5 dyes were incorporated into cDNA samples according to the Agilent two-colour 

microarray based gene expression analysis (Low input quick Amp labelling G4140-90050) protocol 

(Agilent Technologies, Inc., Santa Clara, CA, USA) and hybridized on arrays following a self-self 

design. To obtain this design, technical replicated of each sample were labelled with Cy3 and Cy5and 

hybridized on the same array. In total twelve hybridizations were carried out consisting of samples 

from six time points, each having two biological replicates. Slides were scanned and raw expression 

values were extracted using Agilent Feature Extraction software. 

 

Pre-processing 
Raw expression values of the microarray were acquired with Agilent Feature Extraction software. No 

background correction was applied as no major benefits were previously found for Agilent platforms 

(Zahurak et al. 2007). The signals of the two dyes, red (R) and green (G), were transformed by a 

logarithm base 2 and the spot for each gene i was represented in terms of expression ratios M and 

expression intensity A: 
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Mi =log2
𝑅

𝐺
= log2 𝑅 −  log2 𝐺 (1) 

 

Ai = 
(log 2R + log 2G)

2
  (2) 

The advantage of logarithmic transformation is that it treats numbers and reciprocals symmetrically.  

For the same gene i, an up-regulation of 2-fold results in result in Mi =  log2(2) = 1 while a down-

regulation of the same magnitude will be Mi = log2(0.5) = -1, thus giving equal weight to different 

direction of  gene regulation. Normalization within slides was carried out with locally weighted linear 

regression (lowess) to correct for many source of variation, namely the different labelling efficiencies 

of the two dyes. Lowess is a common scatter plot smoother (Cleveland 1979). A non-parametric 

regression is fitted for each data point to emphasize the effect of the neighbour data points. The fitted 

values are then subtracted from the M-values of each spot according to the formula (Smyth and Speed 

2003): 

Ni = Mi –loess(Ai)  (3) 

 

While normalization within slides shifts M-values around zero by correcting for intensity and spatial 

bias, normalization between slides accounts for variation due to differences between arrays. 

Normalization between slides was carried out by means of quantile normalization (Bolstad et al. 

2003).  The method enforces the distribution of probe intensities of each array to be the same across 

arrays. Give a dataset of n arrays (columns) with p probes (rows): 1) each column is sorted; 2) for each 

row is calculated the mean; 3) the mean replace the values of each element of the row, 4) the correct 

column are rearranged to have the same order as the initial matrix. Due to the self-self design, both 

signals R and G measured the transcript abundance detected by each probe. Therefore, the normalized 

A values were used for downstream analysis. All the pre-processing steps were carried out with R-

Bioconductor package limma (Smyth 2005). 

 

 

Principal components analysis 
Principal components analysis (PCA) is a data reduction procedure commonly applied to large 

multivariate datasets. PCA was applied  log transformed and normalized expression values of the all 

dataset. The procedure was implemented with the pricomp function of R using the covariance matrix 

without scaling the data.  

 

 

Weighted gene co-expression analysis 
Weighted Gene Co-expression Network Analysis (WGCNA) is a method that allows to construct a 

correlation-based network of modules composed by co-expressed genes (Zhang and Horvath 2005). 

The network approximates a scale-free topology where the distribution of the nodes connectivity k 

follows the power law p(k)∼k
−γ

 . This determines that few nodes (genes) are highly connected and act 

as hubs of co-expressed modules. First, a similarity matrix sij is computed using pairwise correlations 

between genes using Pearson correlation or methods robust to outliers such as Spearman correlation or 

biweight midcorrelation (Wilcox 2012; Langfelder and Horvath 2012). The similarity matrix is 

defined “unsigned” (3) or “signed” (4) based on whether the correlations are calculated in absolute 

terms or not. sij is then transformed in adjacency matrix aij through a function that highlights strong 

correlations and penalizes the weaker ones on an exponential scale (5). 

 

sij
unsigned

= |cor(xi, xj)| (3) or sij
signed

= 
1+|𝑐𝑜𝑟 (xi,xj)|

2
 (4) 

      

aij = |sij|
β
 (5) 

 

The  choice of the 𝛽 parameter is based on the scale free topology criterion (Zhang and Horvath 

2005).The adjacency information is further transformed into a topological overlap matrix (TOM) (6). 

 



 

 

7 
 

TOMij = 
 𝑎𝑖𝑢 𝑎𝑢𝑗 + 𝑢 𝑎𝑖𝑗

min   𝑎𝑗𝑢𝑢 , 𝑎𝑗𝑢𝑢  +1− 𝑎𝑖𝑗
  (6) 

 

 DissTOMij = 1 – TOMij  (7) 

 

TOM uses the adjacency information to highlight connections shared between pair of genes i and j 

with all other genes u of the matrix. This method was found to give co-expressed modules with 

preserved biological information (Ravasz et al. 2002). It can be shown that 0 < TOMij < 1, then TOM 

can be subtracted to 1 to obtain a dissimilarity measure that range between 0 and 1(6) (Zhang and 

Horvath 2005). DissTOM was used as distance measure for hierarchical clustering. Modules were 

defined with the dynamic tree cut algorithm included in WGCNA package (Langfelder et al. 2008). 

The algorithm cuts the dendrogram at variable heights and allows a higher number of objects to be 

assigned to a cluster compared to constant height cut-off values. Each module can be summarized with 

the “Module Eigengene” (ME), the first principal component calculated using all the probes in the 

module (Horvath and Dong 2008). Paerson correlation between MEs can be used to merge similar 

module preserving the biological information. WGCNA method was implemented using the relative R 

package (Langfelder and Horvath 2008).   

 
 

Functional annotation and pathway analysis 
Pathway analysis (also enrichment analysis) is a common analysis that allows to define the biological 

meaning of the extensive lists of genes resulting from genomic data without the burden of a tedious 

manual search (Tipney and Hunter 2010). Although different methods have been elaborated, a 

common practice is to assign a functional annotation to the genes and test the annotated terms for 

under- or over-representation in a subset of data with the Fisher’s exact test. Functional annotation of 

the probes was done using the MapMan ontology, a plant specific gene ontology (Thimm et al. 2004). 

MapMap is organized in 35 functional categories (BINs) and the file with the mappings between B. 

rapa  genes and MapMan categories was downloaded at 

http://mapman.gabipd.org/web/guest/mapmanstore. Enrichment of MapMan BINs in WGCNA 

modules was calculated using the probes retained for WGCNA analysis as background and the probes 

of the module as subset. An example of contingency table is given below. Fisher’s exact test calculates  

a probability (p-value) for the frequency of the annotated term in the subset with the frequency 

expected by chance given his occurrence in the background. A cut-off (eg p-value <0.05) is set to 

define term as enriched. 

 

 

Differential expression 
Differential expression analysis was used to select genes with expression values significantly different 

across time points. From the complete dataset, negative controls and 66 probes that could not be 

mapped to the B. rapa genome v1.0 were removed. Further, probes with expression values lower than 

the 95
th
 percentile of negative control expression values were considered not reliable and were also 

filtered out. For each the resulting 51,469 probes a linear model was fit with the package limma. 

Difference in expression values between consecutive time points were tested with the empirical Bayes 

t-test (Smyth 2005). Significant probes between time points were defined at false discovery rate (FDR) 

<0.05 and log fold change >1.5 (Benjamini and Hochberg 1995). 
 
 
  

http://mapman.gabipd.org/web/guest/mapmanstore
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Results and Discussion 
 

Pre-processing of the data 
The dataset presented expression values for all the probes with no missing values or bad quality spots. 

The quality of the microarrays data was assessed before normalization through the inspection of box-

plots and smoothed densities plots of M- and A-values of raw expression values for each array (Figure 

1). M-values presented bimodal distributions around positive modes as expected due to the self-

hybridization design and the known dominant fluorescence of the red over the green dye. Nonetheless, 

M-values showed also negative values due to higher G signal compared to R. This was the result of 

the known gene specific dye bias that determines a different incorporation of the two dyes for different 

genes (Dobbin et al. 2005). However, the self-self design determined the use of the A-values as a 

measure of transcript abundance, therefore the probe-dye interaction bias was not further investigated. 

The distributions of the A-values were similar across arrays and presented skewness to the left, with 

the majority of the probes expressed at low intensities. 

 

 
Figure 1. Box-plot and smoothed densities plot of M (upper) and A (lower) values for each of the twelve arrays. 

Each array is labelled as “time point T of replicate R ”. 

 

The dependency of the log ratios M respect to the log intensities A was assessed through a MA plot, a 

scatter plot commonly used as diagnostics to visualize microarray signals (Figure 2). The general 

trend for all the arrays was a non-linear increase in expression values of the red over the green signal 

with the increase of the intensity. Spike-in and control probes are highlighted by different colors. The 

position of Agilent’s negative controls  (SLV1, yellow), and non-organism spike-in (ERCC, dark 

green) on the lowest intensities suggests a good quality of the hybridization. 

 

 
Figure 2. MA plot of the first array, before (left) and after lowess normalization within array (right). 
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Lowess regression was applied separately to each array to correct the trend of the M-values. Although 

the self-hybridization design determined the use of the intensity A as expression for downstream 

analysis, normalization within array was still recommended to reduce the noise during the execution of  

the between array normalization. Lowess had effect on log ratios and the results was a centring of the 

MA plot around M=0 (Fig. 2). Further confirmation of the good hybridization results from the position 

of the control probes with a titration series (1:1, red; 1:3, orange and 1:10, blue). The ratio represented 

different quantity of RNA labelled with the two different dyes and the expected position. In fact, a 

ratio of 1:1, 1:3 and 1:10 were respectively found at log2(1)= 0, log2(3) = 1.58 and log2(10) = 3.32. 

Similarly, the reciprocals of the titration ratios were found at negative values of the log values of the 

ratios. Furthermore, the application of the quantile normalization enforced the A signal of each array 

to assume the same distribution allowing a better comparability of the arrays in absence of connected 

design.  

The normalized A signal was then used to identify samples outliers and to assess the quality of the 

biological replicates. Multivariate dataset characterized by the “small n large p” are particular sensitive 

to sample outliers which may interfere with the real biological signal within the experiment. A 

hierarchical clustering with Euclidean distance was applied with the UPGMA algorithm on the twelve 

arrays (Figure3).  

 

 
Figure 3. Hierarchical clustering of the twelve samples. Each array is labelled as “time point T of replicate R ”.Biological 

repeats cluster together at each time point showing no sample outlier. 

 

No outliers were found as the biological replicates were clustered together at each time point. 

Clustering results were confirmed by the high correlation of biological replicates across time points, 

showing Pearson correlation coefficients greater than 0,99 (Appendix A, Table 1). 

The microarray presented 20,257 couple of duplicated probes (see Methods for a definition of 

duplicated probes) out the total 61,551 mapping to annotated B. rapa genes. Pearson correlation 

coefficients (PCC) between duplicated probes were calculated to investigate the validity of the custom 

array. The distribution of all PCC is shown in Figure 4. The two biggest bins contained 46.9% of the 

total duplicated probes (9,679/20,647) and showed PCC higher than 0.8 across time points, suggesting 

that they were actually mapping the same gene. However,  the remaining 53.9% (10,968/20,647)  of 

the duplicated probes showed decreasing values of PCC between 0.8 and -1. Also, 14.5% 

(3,011/20,647) had negatively correlated expression profiles across the six time points. Assuming the 

good design of the probes, this result might be explained through alternative splicing (AS) of B. rapa 

genes. However, a recently comprehensive analysis of  B. rapa transcriptome with RNAseq found AS 

events only on 7,688 genes (Tong 2013). Therefore the phenomenon of AS cannot entirely explain the 

behaviour of the duplicated probes on the custom microarray. Alternatively, it can be argue the wrong 

design of some microarrays probes since based on predicted gene models. Overall, in absence of a 

clear reason to motivate the exclusion of low correlated probes, all the probes were retained for further 
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analysis, being aware that this may have resulted in probes mapping the same genes but clustered in 

different co-expression modules.   

 

 
Figure 4. Distribution of Pearson correlation coefficients (PCC) among duplicated probes on the array. Probes are grouped in 

bins of 0.1. The y-axis displays the number of probes while the x-axis displays the PCC from -1 to 1. 

 
As microarrays determine transcript abundance through hybridization, the measurements of gene 

expression lack of sensitivity and accuracy compared to traditional non high-throughput molecular 

biology techniques. Thus, a recommended practice is to validate  microarray results through qRT-PCR 

in order to establish correlations between the two measurements. The RNA samples used in this 

project were also used for qRT-PCR experiment on 21 candidate genes (Habtemariam 2012 

). As that dataset was not available,7 out 21 genes were chosen for a visual inspection and comparison 

of the expression profiles from microarray with a similar plot showed in Habtemariam (2012). The 

two plots are shown in Figure 5. Overall, the expression of the seven genes as detected with the 

microarray resulted similar to that one detected through qRT-PCR. A difference in the magnitude of 

the fold change can be ascribed to the difference in accuracy of the two methods. 

Altogether, these results suggested a successful hybridization and a general good quality of the arrays. 

The biological replicates were consistent across time points and sample outliers were not found. A 

minor presence of low or even negative correlations between duplicated probes could be caused by 

alternative splicing on B. rapa gene, wrong design of the oligonucleotides or inaccurate prediction of 

gene models in the genome. Since it was not possible to discriminate among these possible causes, all 

the duplicated probes were kept for further analysis. 
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Figure 5. Indirect assessment of the reproducibility of the microarray through comparison of the expression profiles of seven 

genes as measured with the microarray (upper) and with RT-PCR (lower) by Habteramiam (2012). 

 

 

 

Global overview of transcript abundance 
All the 62,800 microarray probes showed binding to transcripts across all samples with no missing 

values. Control probes and probes that could not be mapped on the B. rapa genome v1.0 were 

excluded, resulting in a final dataset of 61,461 probes which detected transcripts of 40,838 B. rapa 

genes. 37,713 genes present homology with Arabidopsis thaliana genes, while the remaining 3,125 are 

considered unique gene of B. rapa species. 

Turnip plants harvested at each time point of the experiment are shown in Figure 6A.Turnip growth 

during 42 days presented two different phases as major morphological modifications appeared only at 

28 days after sowing (DAS). A first phase corresponded to the three earlier time points (7, 14, 21 

DAS) and  was determined by seed germination, seedling establishment and elongation. The second 

phase started with an established tuber (28 DAS) that underwent changes in length and thickness in the 

later time points (35 and 42 DAS). Thus, turnip tuber initiation is likely to take place between 21 and 

28 DAS.  

The profiles of the retained probes give a global overview of the transcriptome during the six time 

points (Figure 6B). Overall, two phases can also be distinguished regarding the dynamics of transcript 

abundance. The wider range of intensities detected at earlier stages (7 DAS) declines progressively till 

21 and 28 DAS (time point 3 and 4). This phase corresponds to the morphological changes from the 

germination of the seed until the enlargement of the tuber (28 DAS). Then, the range of transcript 

assumes an increasing range of intensities until 42 DAS. This second phase corresponds to the growth 

of the tuber through filling with reserve substances (Figure 6A). The global overview of all probes 

profiles suggested that turnip transcriptome encounters massive changes in expression profiles at the 

interval 21-28 DAS, corresponding to major morphological changes in turnip tuber. Similarly, global 

coordinated change of gene expression profiles in correspondence of major developmental stages has 

been observed in other systems as Arabidopsis (Schmid et al. 2005), grape (Deluc et al. 2007) and 

wheat (Wan et al. 2008).    
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Figure 6. A) Development of turnip tuber at 7, 14, 21, 28, 35 and 42 days after sowing (DAS). Two plants were harvested at 

each time point and hybridized to the custom microarray. B) Global overview of the profile of all transcripts of turnip. 

Expression values are normalized to the mean to facilitate the visualization. C) Principal components analysis (PCA) based 

on transcriptional profiles during turnip development (7 – 42 DAS). 

 

In order to assess the quality of the biological replicates and to obtain an overview of the global 

variation in transcript abundance, Principal components analysis (PCA) of the 61,461probes was 

performed (Figure 6C). The first two principal components (PC1 and PC2) captured 59% of the total 

variance, with 42,6% and 16,4% respectively (Appendix B Table 1). In accordance with the results of 

the clustering of the samples, biological replicates were found grouping together. PC1 discriminates 

the different time points, with the highest variation at the earlier time points (14-21 DAS). Basnet et al. 

(2013), while studying the transcriptome profiling of seed development in B. rapa pack choi and oil 

type, suggested to indicate the two time points with the highest distance on the PCA biplot as the right 

timing to carry out genetical genomics studies. However before drawing similar conclusion in turnip, 

it should be investigated if the variation in transcript abundance observed in the present work has 

similar timing in other turnip accessions. 

 

 
  

C 
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Identification of co-expression modules 

Genes transcribed with similar expression profiles often belong to similar or connected pathways. 

Clustering co-expressed genes is common practice to infer associations between profiles and 

biological functions allowing to reconstruct such pathways. Clustering was implemented using the 

WGCNA algorithm, a method which performs hierarchical clustering on a dissimilarity matrix 

calculated by Topological Overlap (TO) distance. Since TO is based on the computation of pairwise 

correlation between probes, a subset with the 20% most variable probes (10,280 out of 61,461 , 

mapping 7,654 genes) was retained to reduce the computational burden. The choice of the β 

parameter, which is required to construct the adjacency matrix, was carried out upon analysis of the fit 

of the network to the scale-free topology criterion (see Methods). The attempts to construct an 

unsigned network failed for reasonable values of β. A signed network was then built after defining a 

value of 18 for β (Appendix B, Figure 1). Probes were clustered together and a total of 56 co-

expression modules were identified using a dynamic tree-cutting algorithm in order to assign all the 

probes to a cluster (Appendix B, Figure2). A minimum cluster size was set to 50 so that one of the 56 

modules resulted composed by probes that could not be assigned to the any other modules. The global 

profile of the modules was summarized by “Module Eigengene (ME)” and MEs correlated above 0.9 

were grouped together to obtain a final number of 16 modules (Appendix B, Figure 2). Each module 

was characterized by a free-scale topology with few hub genes highly connected to the other genes. 

Hub genes define biological significant modules and are often key regulatory genes of pathways 

(Horvath and Dong 2008). However, as it was decided not to pursue with the co-expression analysis, 

modules were organized in five major clusters and assigned to each of the cluster if exhibiting clear 

similarities in expression patterns. 

The 16 co-expression modules identified with the WGCNA method are presented in Figure 7. The 

five clusters are numbered by Latin number I-V and displayed on the right side of the image. Modules 

showed difference in patterns and size, ranging from a minimum of 56 to a maximum of 4,710 probes. 

492 probes (4.78% of 10,280) could not be assigned to any cluster and were included in module 1 

(“grey”, cluster I). The majority of the probes (4,710, 45.81%) were assigned to module 2 and were 

expressed in a steady-state down-regulated manner. Instead, three modules (3 to 5) showed a decline 

in transcript abundance not constant. In these modules the expression was rapidly down-regulated until 

21 DAS and then appeared more stable. Modules 2-5 were grouped in cluster II. A total of 692 probes 

(6.73%) were included in four modules (6 to 9, cluster III) characterized by transient peak increases in 

the expression profiles. The peaks of expression showed a gradually delayed timing between module 6 

and 8 (14-21 DAS), module 7 (21 DAS) and module 9 (21-28 DAS). Conversely, three modules 

presented a transient down regulated profile (10 to 12, cluster IV). Module 10 (120 probes, 1.16%) 

was down regulated between 14 and 28 DAS while module 11 (56, 0.54%) peaks at 21 DAS and 

module 12 (156, 1.51%) at 21-28 DAS. A group of modules were identified by probes with an 

upregulated profile (13 to 16, cluster V). Module 14 was the second biggest module (1930 probes, 

18.77%) and presented a continuous upregulation from 7 to 42 DAS. Instead, module 15 (689 probes, 

6.7%) was characterized by stable expression at earlier stages (7-14 DAS), up-regulation (14-35 DAS) 

and stable expression at later stages (35-42 DAS). Module 13 (56, 0.54%) also showed up-regulated 

expression although with a transient peak at 14 DAS. Finally, module 16 (548 probes, 5.33%) showed 

upregulation till 28 DAS and stable expression at later stages (35-42 DAS). Given these results, cluster 

analysis revealed that transcriptional expression during turnip tuber formation and development is not 

only a progressive process, where genes show a continuous up- or down-regulation, but also a 

dynamic process with genes showing transient variation in transcript abundance.  
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Figure 7.Co-expression modules resulted from WGCNA analysis named with a number and colours corresponding to the 

dendrogram in Appendix B Figure 2. The number of probes in each module is shown within brackets. The expression 

profiles are presented as expression normalized to the mean for each probe (y-axis) versus days after sowing (DAS, x-axis). 

The normalization by subtracting the mean allows to highlight the profiles rather than the magnitude of expression. The 

sixteen modules were further grouped in five clusters for pathway analysis (right column). Modules grouped on the same 

cluster are indicated by a square line and the resulting cluster is displayed next to that. Clusters are visualized by the mean 

expression profiles of all the probes. 
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Pathway analysis 
In order to determine associations between different transcriptional profiles and biological functions of 

the genes, pathway analysis was performed aiming to detect significant overrepresentation of 

annotation  terms in the modules identified through WGCNA. The five major clusters were used to 

perform pathway analysis. The MapMan ontology was used to map the probes to 35 functional 

categories (BIN). All the probes used for WGCNA could be mapped to a MapMan BIN. Probes 

designed on unique B. rapa genes that have no significant homology to A. thaliana genes, were 

assigned to the BIN 35 (“not_assigned”). Association between MapMan BINs and clusters was tested 

with Fisher`s exact test at p-value < 0.05 and the results for the fifteen BINs with higher number of 

annotated probes are shown in Figure 8. Results for the other twenty BINs are presented in Appendix 

C Figure 1. A significant overrepresentation could not be found for all of the functional categories. In 

fact, thirteen BINs (“hormone metabolism” , “not_assigned”, Figure.8; “redox”, “minor CHO 

metabolism”, “TCA”, “cofactor-vitamin metabolism”, “tetrapyrrole synthesis”, “glycolysis”, 

“biodegradation of xenobiotics”, “OPP”, “ATP synthesis”, “glyoxylate cycle”, “polyamine 

metabolism”, “S-assimilation”, Appendix C Figure 1) were not over-represented in any of the clusters.  

 

 

 
 

Figure 8. Pathway analysis result for the fifteen MapMan BINs with the highest number of probes over five clusters. The top 

graphic shows the expression profiles for the five clusters and the total number of probes in each of the cluster. Expression 

profiles are represented as mean log 2 expression levels of all the probes (y-axis) over days after sowing (DAS, x-axis). The 

bottom graphic shows the number of annotated term of each BIN over the five clusters. Different shades of red are used to 

shows the significance of the Fisher`s exact text expressed as –log10(P-value). Significance threshold was set at –log10(0.05) 

= 1.3 and is shown with light red colour. Increasing colour intensity corresponds to lower P-values. Black spots indicate 

absences of that BIN in the relative cluster. 
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Conversely, six BINs were overrepresented in more than one cluster (“RNA”, “misc_Phosphate”, 

“transport”, “cell wall”, “major CHO metabolism”; Figure 8; “amino acid metabolism”, Appendix C, 

Figure 1). The functional categories that showed enrichment were further investigated to study if the 

overrepresentation was determined by specific pathways (subcategories) that composed each BIN. As 

expected, most of the terms annotating specific pathways showed no significant enrichment. This can 

be explained with the size of the five clusters which resulted too big to be characterized with this 

analysis. Therefore, in the following  paragraphs, specific pathways of each BIN are mentioned only 

when the majority of the probes were present in the cluster enriched for that specific BIN.  

Photosynthesis related genes were strongly down-regulated during turnip development. In fact, almost 

all the probes mapping genes related to photosynthesis processes (307, 95.3%) are clustered in profile 

II showing a constant reduction in transcripts across the six time points. This is not surprising as the 

turnip tuber has a function as storage organ. Downregulation of genes associated with photosynthesis 

has been observed also in developing embryo in B. rapa (Basnet et al. 2013). Genes related to lipid 

metabolism are over-represented in cluster II with more than half of the annotated probes (145, 

63.59%).These probes were mainly involved in fatty acids synthesis and elongation, lipid degradation 

and lipid transfer proteins. A third functional category with terms that enriched profile II was stress 

with 342 probes (59.89%), mainly represented by genes involved in plant defense mechanisms and 

pathogen –related (PR) proteins. 

The BIN “misc_Phosphate” is a miscellanea group of enzymes involved in many different processes. 

It showed enrichment in profile II and III, meaning that the probes were highly expressed at earlier 

stages (7 – 14 DAS). This BIN includes Class III peroxidases proteins which are considered to play an 

important role during plant development due to their role in cell wall loosing and stiffening (Francoz 

et al. 2015).  

Cluster III presented also enrichment for other three functional categories: cell wall, RNA and 

secondary metabolism. Cell wall counted 14% of the annotated probes (54 out of 385) and contained 

genes coding for UGP-dehydrogenases (UGD), enzymes involved in the synthesis of cell wall 

carbohydrates precursors, and cellulose synthases (CesA), which synthesize the glucan microfibrils in 

the apoplastic space (Olek et al. 2014). RNA BIN was represented by most of the transcription factors 

(TFs) families. Particularly, the MYB domain had many members showing a transient upregulated 

expression with peak at 21-28 DAS, during tuber initiation. MYB85, MYB46 and MYB63 were 

included in this cluster. Those three genes are considered upstream of the transcriptional network that 

regulates secondary cell wall biosynthesis (Schuetz et al. 2012). This correlated with the observation 

that turnip tuber at 28 DAS presented differentiate secondary growth elements (Zhang et al. 2014). 

Another TF family with members in cluster III was the AUX/IAA family, including TFs that regulate 

plant development and auxin-induced gene expression (Reed 2001).  

Cluster V grouped probes with high transcript abundance at later stages of turnip tuber development. 

RNA BIN was enriched with 468 probes (33% of the total), mainly belonging to B3 and Triple-helix 

TFs families. Protein also showed enrichment in cluster V, however no specific subcategories were 

found overrepresented. Interestingly, genes associated to plant development and cell cycle showed 

enrichment only for this cluster. Especially, all the genes annotated for the subcategories cell cycle and 

cell division were upregulated throughout turnip tuber development. Similarly, upregulation of cell 

division genes was observed during development of tuberous sweet potato roots (Firon et al. 2013).  

Overall, pathway analysis of co-expressed genes provided an overview of the main biological 

processes that turnip tuber underwent during development. The five clusters showed enrichment for 

multiple MapMan categories. This was expected considering the size of the clusters and the cross-talk 

between many pathways that may occur during plant development. On the other side, BINs certainly 

involved in the regulation of tuber development, for instance hormone metabolism, showed no 

enrichment for any of the clusters.  

Overall, pathway analysis resulted limited for fully describing tuber development. Many MapMan 

BINs showed no enrichment in any of the clusters. On the other side, when BINs showed enrichment, 

the inspection of subcategories showed that few of them were overrepresented in single clusters. In 

order to characterize a specific pathway during turnip development, a different approach was then 

used. 
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Insights into sucrose and starch metabolism 
The availability of a custom genome-wide microarray dataset allowed the parallel investigation of 

genes belonging to the same metabolic pathway during turnip tuber development. The tuber represents 

the storage organ of the turnip and it is characterized by high carbohydrates content, mainly composed 

in sucrose, glucose, fructose and starch (Temesgen 2012; Zhang et al. 2014). Therefore, in order to 

gain insights on the transcriptional regulation of genes involved in the sucrose and starch metabolism, 

the MapMan BINs “major CHO metabolism” and “glycolysis” were selected for further investigation. 

However, an exhaustive characterization of the regulation of starch biosynthetic pathway appeared not 

possible based on the pathway analysis results. In fact, only cluster IV (transient downregulation) and 

V (upregulation) were enriched for “major_CHO_metabolism”, while no overrepresentation was 

found for “glycolysis”. Moreover, many genes coding for the enzyme of the pathway could not be 

found in any of the clusters as the WGCNA was implemented on a small subset of the data (10’280 

out of 61,461 probes). A different approach for selecting genes was then used. Differential expression 

analysis was carried out on the complete dataset resulting in 28,751 differentially expressed genes 

between consecutive time points at FDR<0.05 and absolute fold change of 1.5. Genes annotated in the 

MapMan BINs “major CHO metabolism” and “glycolysis” were selected as genes involved in the 

starch biosynthetic pathway. A schematic representation of the fourteen principal reaction of starch 

pathway is presented in Figure 9. B .rapa genes that were differentially expressed between time points 

and that are coding for the enzymes of the reactions in Figure 9 are listed in Table 1. Most of the 

genes orthologs of the same Arabidopsis gene presented similar expression profiles, therefore one only 

the most representative profile was chosen and displayed in the figure in order to facilitate the 

visualization. If B. rapa orthologs of the same genes showed different profiles, both were selected for 

representation (reactions 1A, 1B, 7, 11). 

Sucrose is synthesized in the source tissues as mature leaves and transported through the phloem to 

sink tissues as young leaves, roots and storage organs as tubers (Farrar 1996). Once in the sink tissues 

of the plant, sucrose is unloaded from the phloem and transported to the sink cells, where it can be 

localized in the apoplast, in the cytoplasm or in the vacuole. Sucrose is first cleaved into glucose or 

fructose by the enzyme invertase, which can also be localized in the apoplast (cell wall), cytoplasm or 

vacuole (Sturm and Tang 1999). In total, eleven genes coding for invertase enzymes showed 

significant changes between time points (reaction 1, Table1).  All invertase located in the cell wall 

(1A) were downregulated during turnip development, although Bra036653, one of the two orthologous 

of BFRUCT3, showed a transient peak of expression at 21-28 DAS. Vacuolar invertase were 

represented are represented by two orthologs of ATBETAFRUCT4 which showed differential 

expression but with different profiles. In fact, Bra019749 presented a relatively stable expression 

while Bra026984 was strongly upregulated from 21DAS. Five cytosolic invertase orthologs of four 

different A. thaliana genes were expressed in a constant up or down-regulation manner. In summary, 

while most of invertase including the ones located at the cell wall were downregulated, two cytosolic 

invertase (Bra011567 and Bra034659) were strongly up-regulated from 28 DAS, the first time point 

were turnip tuber was visible.  

Alternatively, after being transported from the phloem, sucrose can be degraded by sucrose synthase 

(SUS) in fructose and uridine-5`-diphosphate (UDP) glucose (reaction 2). In total five B. rapa  genes, 

orthologs of SUS6, SUS3 and SUS1, code for sucrose synthase and showed significant changes in 

expression although not in a coordinate manner. Orthologs of SUS6 (Bra003845 and Bra 015995) and 

SUS3 (Bra036282) had a slightly increasing expression with a transient down regulation at 35 and 21 

DAS respectively. Orthologs of SUS1 (Bra002332 and Bra006578) instead were strong up-regulated 

at 21 DAS. Overall, while most of invertase appeared down-regulated, sucrose synthase were mainly 

up-regulated. For most of these genes, the switch in expression took place between 21 and 28 DAS, 

when the turnip tuber initiation is most likely to occur. These expression profiles contrast with 

measurements of enzymatic activity carried out during tuber grown over 66 days (Gupta et al. 2001). 

In fact, while turnip tuber was gaining most of its biomass, it was detected an increasing activity of 

invertase and a decreasing of sucrose synthase. On the other hand, studies in potato showed a 

correlation between developmental changes on transcript abundance and enzyme level at early stages 

of tuberization (Appeldoorn et al. 1997; Kloosterman et al. 2005). The balance between the activity of 

invertase and sucrose synthase is considered fundamental to determine sink development and it 

appeared to be conserved among plant species (Koch 2004). High levels of invertase are thought to be 
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important for sink tissue initiation and expansion, while sucrose synthase are more relevant at later 

stages during organ storage and maturation. Therefore the discrepancy between the results here 

presented and the work of Gupta et al. (2001) could be explained with difference in the plant material 

and timing of the measurements, as the activity enzymes was assayed at later stages. 

The products of sucrose cleavage may undergo many different downstream reactions. UDP-glucose 

can enter in the cell wall metabolism or be used to re-synthesize sucrose (reaction 3 and 4). 

Interestingly, the two reactions are directed towards sucrose synthesis but, while genes coding or 

sucrose-phosphate synthase (SPS, reaction 4) were all up-regulated during turnip development, genes 

coding for sucrose phosphatase (SPP, reaction 3) were also expressed in a down-regulated manner. 

Alternatively, UDP-glucose can be phosphorylated by the UGPase in glucose-1-phosphate (reaction 

5). Similarly, glucose and fructose are phosphorylated in glucose-6-phosphate and fructose-6-

phosphate by hexokinase and fructokinase respectively (reaction 6 and 7). Interestingly, genes coding 

for these three enzyme shown similar expression profiles as up-regulation with switch at earlier stages 

(14-21DAS) or transient up-regulation with peak at 21DAS. It was also notable that the three genes 

coding for the hexokinase are all orthologs of Arabidopsis HKL1. Together with the aforementioned 

enzymes of reaction 1A and 1B, HKL1 orthologs represent then another example of differential 

expression within paralogs.  

The reversible isomerisation between the hexose phosphates is catalyzed by the enzyme 

phosphoglucose isomerase (PGI, reaction 8) and phosphoglucomutase (PGM, reaction 9-10) (Keeling 

and Myers 2010). None of the B. rapa  genes coding for the enzyme PGI were differentially 

expressed, therefore it is not possible to speculate about the conversion glucose-fructose. 

Alternatively, glucose-6-P  is converted in glucose-1-P by the enzyme PGM directly in the cytosol 

(cytosolic PGM, reaction9) or, after being  imported, into the amyloplast (plastidic PGM, reaction 10). 

Synthesis of starch is dependent upon import of glucose-6-P in the amyloplast and mutants for both 

PGM isoforms have shown to hamper starch accumulation in potato (Tauberger et al. 2000; Fernie et 

al. 2002). An interesting observation was that two genes coding for cytosolic PGM were differentially 

expressed and both up-regulated during turnip tuber development. This contrasts with research in 

potato where the cytosolic PGM was to found to have a relative stable expression during tuber 

development (Kloosterman et al. 2005). Therefore the different transcription regulation of PGM 

between potato and turnip may suggest different abundance of the respective enzymes. This could 

determine the difference in accumulation of starch or simple sugars as glucose, fructose between the 

two species. However this hypothesis is fairly simplistic as it does not take into account post-

translation modifications, protein turnover and the actual enzymatic activity, all processes that play a 

fundamental role in the regulation of starch metabolism (Kötting et al. 2010). 

Finally, glucose-1-P molecule is processed in the amyloplast by glucose-1-phosphate adenylyl 

transferase (AGPase, reaction 11), granular and soluble starch synthase (SS, reaction 12) to finally 

result in amylose, and the first component of starch. Additionally, branching enzyme as the 1,4-α-

glucan branching enzyme (SBE, reaction 13) may activate to change the structure and folding of the 

starch complexes resulting in production of amylopectin (Keeling and Myers 2010). A total of 

fourteen genes were differentially expressed for these three reactions during turnip tuber development 

(Table 1). For most of these genes, the expression appeared up-regulated with a switch at 28 or 35 

DAS. This appeared delayed compared to enzymes upstream in the pathway (reactions 1, 2, 6, 7, 9) 

and it correlated with the morphological observations of filling turnip tuber. Moreover, the expression 

of enzymes 11-13 resulted highly coordinated. Similar observations were made during tuber 

development in potato (Kloosterman et al. 2005). This may suggest that the transcriptional regulation 

of the starch biosynthesis pathway in turnip resembles the one in potato. Although appealing, this 

comparison if far from being conclusive. In fact, it should be pointed out that the orthology between 

the genes described in Kloosterman et al. 2005 and the turnip genes was not explored. The relevance 

of studying the sequence similarities relies on the evidence that enzymes involved in reactions 11-13 

form heterotetrametric complex, together with other isoforms, and/or have particular localization 

(Ballicora et al. 2004). Therefore a complete overview should consider all the genes of the pathway.  
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Figure 9. Schematic representation of the thirteen main reactions involved in the starch metabolism during six time points of 

turnip tuber development (7 – 42 DAS). Genes expression levels are represented as false colour boxes, one for each time 

point. Expression levels are represented by the Z-score which is obtained by normalizing the expression level to the mean and 

dividing by the standard deviation. Each reaction is summarized by the most representative profiles according to the 

orthology of B. rapa genes to A .thaliana gene. If all B. rapa genes orthologs to the same A. thaliana  gene have similar 

profiles, only a representative profile is shown. Conversely, if orthologs to the same gene have different profiles, all of them 

are shown and indicated by a star (reactions, 1A, 1B, 7, 11). The reactions: 1A, cell wall invertase (orthologs to AT1G62660, 

AT3G13790); 1B, vacuolar invertase (AT1G12240); 1C cytsolic invertase (AT1G22650, AT1G35580, AT3G06500, 

AT4G34860); 2, sucrose synthase (AT1G73370, AT4G02280, AT5G20830); 3, sucrose phosphatase (AT1G51420, 

AT2G35840,  AT3G54270); 4,  sucrose phosphate-synthase (AT4G10120, AT5G11110, AT5G20280); 5, UGPase 

(AT5G17310, AT3G03250); 6,  fructokinase (AT3G59480, AT2G31390, AT2G31390); 7, hexokinase (AT1G50460); 8, 

phosphoglucose isomerase (NS, no significant probes found); 9, cytosolic phosphoglucomutase (AT1G23190, AT5G51820); 

10, plastidic phosphoglucomutase (AT1G70820, AT5G17530); 11, AGPase (AT5G19220, AT1G27680, AT1G74910, 

AT2G21590, AT2G21590, AT4G39210, AT5G48300); 12, starch synthase (AT1G32900, AT3G01180); 1,4-α-glucan 

branching enzyme (AT2G36390). A detailed list of all the significant B. rapa genes orthologs to the aforementioned A. 

thaliana gene is presented in Table 1. The background of the image is from Kloosterman et al. (2005), the expression profiles 

are from the original data of the present work. 
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Table 1. Classification of B. rapa genes putatively involved in starch metabolism.   
 

KEGG annotation 

[international enzyme 

name] 

B. rapa genes: 

differentially 

expressed / 

total annotated 

B. genes code Homologous 

Arabidopsis thaliana 

reaction 

Fig. 9 

cell wall  invertase 

[EC 3.2.1.26] 

4/15 Bra027030, Bra036653 AT1G62660 

(BFRUCT3)  

1a 

Bra021508, Bra027397 AT3G13790 

(ATCWINV1) 

vacuolar invertase 

[EC 3.2.1.26] 

2/3 Bra019749, Bra026984 AT1G12240 

(ATBETAFRUCT4)  

1b 

cytosolic 

invertase 

[EC 3.2.1.26] 

5/11 Bra016091 AT1G22650  1c 

Bra034413 AT1G35580 (CINV1)  

Bra029583 AT3G06500  

Bra011567, Bra034659 AT4G34860  

sucrose synthase 

(SUS) [EC 2.4.1.13] 

5/7 Bra003845 Bra015995 AT1G73370 (SUS6)  2 

Bra036282 AT4G02280 (SUS3)  

Bra002332, Bra006578 AT5G20830 (SUS1)  

sucrose-phosphatase 

(SPP) [EC 3.1.3.24 ] 

5/7 Bra030439 AT1G51420 (SPP1)  3 

Bra023033, Bra017287 AT2G35840   

Bra014826, Bra007060 AT3G54270 (SPP3)  

sucrose-phosphate 

synthase (SPS)  

[EC 2.4.1.14] 

3/6 Bra033195 AT4G10120 

(ATSPS4F) 

4 

Bra006090 AT5G11110 

(ATSPS2F, KNS2) 

Bra002289 AT5G20280 

(ATSPS1F)  

UTP-glucose-1-

phosphate 

uridylyltransferase 

(UGPase) [EC 2.7.7.9]  

2/2 Bra006395 AT5G17310 (UGP2) 5 

Bra032004 AT3G03250 (UGP1)  

fructokinase  

[EC 2.7.1.4] 

4/15 Bra003378, Bra007452 AT3G59480  6 

Bra018248, Bra022839 AT2G31390  

hexokinase [EC 

2.7.1.1] 

3/10 Bra014254, Bra018850, 

Bra030490 

 

AT1G50460 (HKL1)  7 
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Table 1. Classification of B. rapa genes putatively involved in starch metabolism.   

 

KEGG annotation 

[international  

enzyme name] 

Brassica 

rapa genes: 

differentially 

expressed / total 

annotated 

B. genes code Homologous 

Arabidopsis 

thaliana 

reaction 

Fig. 9 

cytosolic 

phosphoglucomutase  

(PGM)  [EC 5.4.2.2] 

2/3 Bra016357 AT1G23190 

(PGM3)  

9 

Bra028278 AT5G51820 

(PGM1, 

STF1)  

plastidic 

phosphoglucomutase  

(PGM) [EC 5.4.2.2] 

2/2 Bra016184 AT1G70820  10 

Bra023623 AT5G17530 

(PGM2)  

glucose-1-phosphate 

adenylyltransferase 

(AGPase) [EC 2.7.7.27]  

9/13 Bra002221, 

Bra023713 

AT5G19220 

(APL1)  

11 

Bra032842 AT1G27680 

(APL2)  

Bra015883 AT1G74910  

Bra026500, 

Bra030291 

AT2G21590 

(APL4)  

 

Bra033604,  AT4G39210 

(APL3)  

Bra037495, 

Bra015135 

AT5G48300 

(ADG1)  

starch synthase 

(SS) [EC 2.4.1.21] 

2/9 Bra010189 AT1G32900 

(GBSS1)  

12 

Bra021486 AT3G01180 

(ATSS2)  

1,4-α-glucan branching 

enzyme  

(SBE)[EC 2.4.1.18]  

1/3 

 

Bra005269 AT2G36390 

(BE3)  

13 
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Conclusions 
 

 

This work presented the results of the first genome-wide transcriptomic profiling during turnip tuber 

development. The availability of a custom B. rapa  microarray represents a valuable resource to 

investigate transcriptional changes at the genome level. However, analysis of the duplicated probes on 

the microarray showed that the number of poorly correlated duplicated probes exceeds the number of 

B. rapa genes proven to undergo alternative splicing. This let us conclude that some probes may not 

detect the genes for which they have been designed, thus introducing a bias in downstream analysis. 

A global overview of the transcript abundance showed that turnip tuber development requires massive 

changes in the all transcriptome. In fact, turnip tuber showed major morphological changes between 

21 and 28 DAS when most of the genes showed changes in their expression profiles. The highest 

variation in transcript abundance occurred between 14 and 21 DAS, suggesting this time points as the 

right timing for further genetical genomics studies.  

WGCNA identified 16 co-expressed modules that were organized with a scale free topology. In each 

module, few genes were highly connected and represented the hub genes, supposedly the key regulator 

genes of the module. Modules and hub genes can be further used for coexpression analysis. 

The 16 modules were grouped in five clusters that were used for testing overrepresentation of 

MapMan functional categories. Results showed that the clusters were enriched for specific functional 

categories that characterize the different developmental stages. However, some pathways containing 

genes  known to be involved in tuberization, as hormones, were not overrepresented. It can be 

conclude that this analysis only gives a broad overview of the biological processes involved  in tuber 

development. 

Turnip tubers accumulate sucrose, glucose, fructose but little starch. In order to obtain insights into the 

transcriptional regulation of the sucrose and starch metabolism, a detail analysis of the genes encoding 

the main enzymes of the pathway was carried out. Invertase and sucrose synthase showed opposite 

profiles, with invertase highly expressed at earlier stages and sucrose synthase at later stages. 

However, enzymatic assays on developing tuber of a different turnip accession showed the opposite 

behaviour (Gupta et al. 2001). Further research can investigate gene expression, enzymatic activity 

and sugar content on the same plant material to better characterize the balance between the two paths 

of sucrose cleavage paths.  

Overall, most of the genes encoding enzymes downstream of sucrose synthase showed coordinate 

upregulation. This part of the pathway is also co-ordinately upregulated during potato tuber 

development. Considering this, comparison of expression profiles between the two species cannot 

elucidate their difference in starch accumulation. The only exception is represented by cytosolic 

phosphoglucomutase which appears strongly upregulated in turnip and relatively stable in potato. A  

variation in abundance and activity of this enzyme could influence the rate of glucose-6-phosphate 

imported into the amyloplast where the starch synthesis occurs. It would be interesting to validate this 

hypothesis by measuring carbohydrate content and gene expression among turnip accession varying 

for carbohydrates composition. 

The characterization of sucrose and starch metabolism in turnip presented in this work is based on 

orthology of B. rapa genes with A. thaliana and selection of differential expressed probes across time 

points. However, not all the A. thaliana genes annotated in the pathway have been experimentally 

validated, therefore B. rapa genes that appeared differentially expressed may be not involved in the 

pathway. Moreover, processes as post-translation modifications, protein turnover and the actual 

enzymatic activity also play a role in determining the role of the different enzymes in a metabolic 

pathway. Considering this, the description of the sucrose and starch metabolism here presented is 

meant to provide a first insight into the transcriptional regulation but further research is recommended.  
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Appendix A – Microarray quality 
 

 
Table 1. Correlation matrix displaying pairwise Pearson correlation coefficients (PCC)calculated on raw expression values of 

the twelve arrays across the six time points. Each array is labelled as “time point T of replicate R ”. PCC between biological 

replicates are highlighted by squares and present values above 0.99. 

 

 

 
T1_R1 T1_R2 T2_R1 T2_R2 T3_R1 T3_R2 T4_R1 T4_R2 T5_R1 T5_R2 T6_R1 T6_R2 

T1_R1 1.000 0.991 0.977 0.975 0.944 0.936 0.916 0.917 0.886 0.886 0.880 0.878 

T1_R2 0.991 1.000 0.972 0.970 0.936 0.930 0.911 0.910 0.882 0.881 0.875 0.873 

T2_R1 0.977 0.972 1.000 0.995 0.969 0.961 0.941 0.942 0.909 0.911 0.904 0.903 

T2_R2 0.975 0.970 0.995 1.000 0.970 0.962 0.941 0.942 0.909 0.911 0.905 0.903 

T3_R1 0.944 0.936 0.969 0.970 1.000 0.994 0.980 0.979 0.953 0.953 0.945 0.942 

T3_R2 0.936 0.930 0.961 0.962 0.994 1.000 0.983 0.981 0.959 0.956 0.946 0.943 

T4_R1 0.916 0.911 0.941 0.941 0.980 0.983 1.000 0.995 0.980 0.979 0.969 0.964 

T4_R2 0.917 0.910 0.942 0.942 0.979 0.981 0.995 1.000 0.982 0.984 0.974 0.970 

T5_R1 0.886 0.882 0.909 0.909 0.953 0.959 0.980 0.982 1.000 0.991 0.984 0.982 

T5_R2 0.886 0.881 0.911 0.911 0.953 0.956 0.979 0.984 0.991 1.000 0.991 0.989 

T6_R1 0.880 0.875 0.904 0.905 0.945 0.946 0.969 0.974 0.984 0.991 1.000 0.995 

T6_R2 0.878 0.873 0.903 0.903 0.942 0.943 0.964 0.970 0.982 0.989 0.995 1.000 
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Appendix B – WGCNA 

 
Figure 1. Diagnostic plots for network construction. Left plot shows different β parameters (x-axis) relative to their fit of the 

free topology criterion expressed with R2 (y-axis). The free topology criterion is set to R2=0.8 (red line). A value of 18 was 

chosen for the  β parameter as the first value below the red line. Right plot shows the distribution of the connectivity k (x-

axis) of the resulting network for β = 18. The free scale topology is confirmed as few probes presented high connectivity 

being the hubs. 

 

 
 

Figure 2. Construction of network with WGCNA. The dendrogram resulted from hierarchical clustering on a dissimilarity 

matrix base on DissTOM distance  (see Methods). Branching cut of the dendrogram resulted in 56 co-expression modules 

(upper coloured bar) that were further merge if the correlation of MEs was higher than 0.9. This resulted in 16 final modules 

(lower coloured bar). 

 

 
 

 
Table 1. Components resulted from Principal components analysis and variance explained. 

variance PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 

explained 42.6 16.4 8.7 6.1 4.8 4.5 4.2 3.5 3.2 2.8 2.9 

cumulative 42.6 59.1 67.8 73.9 78.8 83.3 87.6 91.1 94.3 97.1 100 
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Appendix C – Enrichment analysis 
 

Figure 1. Pathway analysis result for all the 35 MapMan BINs five clusters. The top graphic shows the expression profiles for 

the five clusters and the total number of probes in each of the cluster. Expression profiles are represented as mean log 2 

expression levels of all the probes (y-axis) over days after sowing (DAS, x-axis). The bottom graphic shows the number of 

annotated term of each BIN over the five clusters. Different shades of red are used to shows the significance of the Fisher`s 

exact text expressed as –log10(P-value). Significance threshold was set at 0.05 (light red). Black spots indicate absences of 

that BIN in the relative cluster. 
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