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Introduction 
Biorefinery can provide an alternative way to produce, among others, fuels and chemicals in a sustainable 

manner, thereby decreasing fossil fuel dependency. Climate change due to global warming is a troubling 

problem for modern society and forms a large environmental threat to human society and ecosystems 

globally (Mikael Höök, Xu Tang, 2013). The global warming phenomenon is caused by an increase of 

greenhouse gasses in earth’s atmosphere. The consumption of fossil fuels if one of the major causes leading 

to an accumulation of carbon dioxide and other greenhouse gasses. Our society is highly dependent on the 

usage of fossil fuels for the production of materials, chemicals and fuels. Biorefinery is the concept of 

producing fuels, chemicals, materials and power from various biomass sources. A few examples of biomass 

sources suitable for biorefining are: Agricultural waste streams, micro-algae and duckweed, but in principle 

any organic material can be the source material in biorefineries. An example of a complex biorefinery is 

shown in figure 1. This figure shows how different organic raw materials e.g. straw, Algae and sugar crops, 

are converted to multiple different products like biodiesel, cattle feed and bioethanol. This is done through 

multiple processing steps which include pretreatments, conversions and purifications. Such a scheme is an 

example of a so-called superstructure. Superstructures are typical for biorefinery schemes. Biorefineries 

consist of a chain of unit operations that transform the biomass source into one or more products through 

multiple steps. For example, in a micro-algae biorefinery, the algae need to be concentrated, disrupted and 

the lipids need to be converted to usable fuel. For each of these steps, also referred to as levels in this 

thesis, multiple techniques are available. This leads to a lot of possible operation chains or “routes”. An 

oversight of these possible techniques and how they can be connected to form working operation chains is 

called a superstructure. Slegers (2014) has made such a superstructure for an algae biorefinery, which can 

be seen in figure 2. Biorefineries are essential elements in a biobased-econemy. 

 

Figure 1 A biorefinery with multiple biomass sources, unit operations and end-products. 
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Superstructures can be made for any multi-step process chain. Although this study focusses on biorefineries 

as an example for superstructures, superstructures can be found in any process chain where you can choice 

between several techniques. A few examples are given below: 

- Nitrile production from amino acids 

- Production of powdered milk from fresh milk 

- A water hyacinth biorefinery to produce proteins for cattle feed 

- The preparation of edible potato. (Different ways of cutting, spicing, baking, side dish choice, 

topping).  

Modelling superstructures and solving respective optimising problems reveals the most efficient route 

through a superstructure. With the many possible operation chains that a superstructure can provide the key 

question is: “which route is most efficient?”. The definition of efficient depends on the requirements 

determined by the designer of the process. This question can be solved using mathematical models for each 

unit operation. When sequentially executing the models in the order of a route in the superstructure, an 

estimate of the efficiency of that route can be made. Doing this for each route in a superstructure can predict 

the most efficient process chain (Zondervan et al, 2011).  

 

Figure 2 A superstructure for an algae biorefinery as used in Slegers (2014). At the top, the 

levels for this process are defined. This superstructure is aimed at the production of biodiesel 
as sole product. This superstructure describes 126 possible process chains. 
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Figure 3 the superstructure for an algae biorefinery as shown in figure 2 with an extra 
dewatering step indicated by the blue arrows. The number of possible routes through the 

superstructure grows by 42(from 126 to 168) routes by the addition of this unit.  

 

In a superstructure the different routes that can be taken is not the only variable, also process conditions 

can vary within a unit operation and affect the overall performance. These variables in operating conditions 

are called decision variables. The implementation of decision variables in a superstructure makes the 

optimisation problem more complex, but can provide information on optimal control of the unit operations. 

For example, the concentration factor of the initial algae broth in an algae biorefinery has a significant impact 

on the size of the flows for the rest of the process chain. The implementation of decision variables in a 

superstructure makes finding the best route and conditions much more difficult, optimisation algorithms are 

required to find the optimal conditions for each route. Optimisation of superstructures and process conditions 

has been done with various techniques in different papers (Slegers, 2014), (Wang et al, 2013), (Yeomans, H. 

Grossmann, I.E. 1999). Formulation and optimisation of a superstructure can be tedious if inefficient 

formulation formats are used and can become unmanageable if problem size increases. Superstructure 

modelling can be a time consuming task, the time taken strongly depends on the method by which the 

superstructure optimisation problem is formulated in a modelling environment. Here, superstructure 

formulation is defined as connecting the functions for the unit operations according to the superstructure and 

defining the optimisation problem such that a solution can be found by an optimisation method. Yeomans 

(1999) used a mixed integer nonlinear programming formulation while Slegers (2014) connected all the unit 

operations for each of the  routes manually. 

Manual assembly of all routes may work well for small superstructure systems, but will quickly become 

unmanageable when the superstructure size grows since the number of possible routes grows exponentially 

with superstructure size. Simplifications to a system need to be made in order to analyse large 

superstructures, these simplifications come in the form of deleting subunits from the superstructure that 

seem unlikely to be included in the optimal route. Every simplification made negatively influences the 

completeness and reliability of the outcome. This challenge leads to the following research question:  
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- How can the number of simplifications in superstructure based research be minimised in order to 

increase the quality and completeness of such research?  

In this thesis an approach is proposed to improve current methods by avoiding manual assembly. The 

feasibility of this approach is tested by comparing it with two methods that use manual assembly. This leads 

us to the objective of this thesis: 

- To produce a framework for superstructure formulation and optimisation to reduce time-consuming 

and inefficient manual input in order to make superstructure formulation and optimisation easier and 

more efficient.  

This framework needs to meet the following requirements: 

- The framework needs to be flexible so that superstructures can be readily modified 

- The framework needs to be easy to use 

- The framework needs to be applicable to all process based superstructures 
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Methods 
In this chapter the approach to creating the framework is discussed. First different approaches for 

mathematical formulation of the problem are assessed, then a discussion on optimisation tools, followed by 

the introduction of an exemplary superstructure. 

Mathematical problem formulation 
The design of a framework strongly depends on the mathematical formulation of the problem and the 

corresponding solver. The solver needs to be reliable and applicable to all optimisation problems found in 

superstructures.  Due to the non-linear characteristic of practically all process oriented superstructures there 

are two possible mathematical formulations of the problem, a Nonlinear Programming problem (NLP) or 

Mixed Integer Nonlinear programming problem (MINLP). 

Non-linear Programming problems 

A nonlinear programming problem is defined as: 

                                                                             𝑀𝑖𝑛𝑖𝑚𝑖𝑠𝑒 𝑓(𝑥) 

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡: 𝐶(𝑥) ≤ 0 

𝐶𝑒𝑞(𝑥) = 0 

𝐴𝑥 ≤ 𝑏 

𝐴𝑒𝑞 𝑥 = 𝑏𝑒𝑞 

𝑙𝑏 ≤ 𝑥 ≤ 𝑢𝑏  

𝑥 ∈  ℝ 

 

Where C(x), describes nonlinear inequality (≥ or ≤) constraints (eq. 1), Ceq(x), describes equality (=) 

constraints (eq. 2). C(x) and Ceq(x) are sets of equations.  “A”, describes linear inequality constraints (eq. 3), 

Aeq describes linear equality constraints (eq. 4) and lb, ub describe the lower and upper bounds respectively 

of decision variable set x(eq. 6) (Kuh, H.W. 2013)(Floudas, C.A. 1995) . A, Aeq, lb and ub are matrices. In 

the superstructures that were evaluated for this thesis, no linear (in)equalities were present. 

This type of optimization problem can be reliably solved with the genetic algorithm and the interior point 

method. The preferred solver for this in Matlab is the fmincon function. Fmincon uses the interior point 

method by default, and returns the value of decision variables so that the objective function is optimised. 

The required input is:  

- A function to be optimised, the first output of this function needs to be the objective value. 

- A set of decision variables available for optimisation.  

- A set of initial values for the decision variables.  

Optional input for fmincon is:  

- A set of linear constraints, A and b. 

- A set of lower and upper bounds for each decision variable, lb and ub.  

- A set of nonlinear constraints in the form of a function that provides Ci, the nonlinear inequality 

constraints, and Ceq, the nonlinear equality constraints.  

- In the additional input “Options” the maximum number of iterations, outputs etc. can be specified to 

tailor fmincon to your problem and required accuracy of the solution.  

In a superstructure each route can be solved as a separate NLP problem. As a superstructure gets larger, the 

number of routes increases exponentially. As a result the computational time also grows exponentially with 

the superstructure size.  

(1) 

(2)

(3)

(4)

(5)

(6) 
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Mixed Integer Non-linear Programming problems 

 

A mixed-integer nonlinear programming problem is defined as:  

                                                                             𝑀𝑖𝑛𝑖𝑚𝑖𝑠𝑒 𝑓(𝑥) 

𝑆𝑢𝑐ℎ 𝑡ℎ𝑎𝑡: 𝐶(𝑥) ≤ 0 

𝐶𝑒𝑞(𝑥) = 0 

𝐴𝑥 ≤ 𝑏 

𝐴𝑒𝑞 𝑥 = 𝑏𝑒𝑞 

𝑙𝑏 ≤ 𝑥 ≤ 𝑢𝑏  

𝑥 ∈  ℝ 

𝑦  𝑥 

𝑦 ∈  ℤ 

Where C(x) describes nonlinear inequality constraints(eq. 7), Ceq(x) describes equality constraints(eq. 8), A 

describes linear inequality constraints (eq. 9), Aeq describes linear equality constraints (eq. 10) and lb, ub 

describe the lower and upper bounds of decision variable set x (eq. 11). The difference between MINLP and 

NLP problems lies in Y. Y is a subset of variable set x (eq. 13) that contains the integer variables (eq. 14) 

(Floudas, C.A. 1995). In superstructures that were evaluated for this thesis, no linear (in)equalities were 

present. 

 

Usually, to solve this type of problem a NLP algorithm is combined with a branch and bound algorithm with 

mutations, similar to the genetic algorithm. There is no reliable solver within Matlab to tackle this particular 

difficult type of problems. Different solvers are available as extensions of Matlab, like the KNITRO tool pack 

in the Matlab extension, Tomlab. KNITRO uses an algorithm of the class interior point and active set to solve 

NLP problems and supports MINLP solving by Branch and bound and hybrid Quesada-Grossman (which works 

by solving the MINLP problem first as an NLP problem, then as an MILP problem) algorithms.  

In a superstructure, the whole system can be analysed at once as a MINLP problem, where integer decision 

variables indicate a chosen subunit from the next level. As a superstructure gets larger, the computational 

time when solving it as an MINLP problem, grows linearly.  

NLP vs. MINLP 

The decision of whether to formulate the superstructure as a set of NLP problems or as a MINLP problem is 

fundamental to the design of the framework. A practical oriented comparison of these methods is shown in 

table 1. 

  

(7) 

(8) 

(9) 

(10)

(11)

(12) 

(13) 

(14) 
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Table 1 A comparison of NLP or MINLP problem formulation of the superstructure. 

 Set of NLPs MINLP 

Computational time in 

relation to problem size 

+/- 

Grows exponentially with 

problem size 

+ 

Grows linearly with problem size 

Reliability of solving the 

problem in relation to 

problem size 

++ 

Takes longer, but unchanging 

reliability 

+/- 

Becomes more unreliable, the 

chance of getting stuck increases 

Steadiness in time taken for 

solving a problem 

++ 

Each NLP adds a more or less 

fixed amount of time 

- 

Inherently, branch and bound 

has no guarantee to find a 

solution in a set amount of time 

Software requirements Matlab  Matlab + Tomlab 

Solver fmincon KNITRO 

 

The steadiness of time taken and reliability of finding a solution in a set amount of time led to the decision to 

formulate the superstructure optimisation problem as a set of NLP problems. The exponential growth of 

computational time for a NLP formulation is a drawback when compared to the linear growth of a MINLP 

formulation. There are however two options in the NLP formulation to decrease computational time that are 

unavailable for MINLP formulation: 

- The number of decision variables per route 

- Parallel computing 

NLP problems can be formulated using only the decision variables that apply to the route, therefore limiting 

the number of decision variables in each NLP route. The number of decision variables per route grows as 

process chains grow longer, but not when increasing the number of routes. MINLP problems have to analyse 

all decision variables of the entire superstructure at the same time.   

The NLP problems do not depend on intermediate values from each other for solving, and can thus be solved 

parallel to each other. An octacore processor can therefore solve 8 NLPs at the same time, while for an 

MINLP problem the cores cannot be used as efficiently. The parallel nature also allows outsourcing of (part 

of) the NLP problems to servers or computer clusters while this would be harder for MINLP problems.  

Optimisation tools 
Optimisation problems come in many forms and multiple options to solve these problems exist, a 

comprehensible explanation of the tools considered for this thesis is given below. The focus lies on providing 

a basic understanding how the techniques work rather than a complex mathematical analysis. 

Genetic algorithm 

The genetic algorithm is based on the principles behind natural selection. A random set of numbers is 

evaluated. Successful numbers become parents and create offspring children with similar characteristics. The 

new generation of numbers also consists of a few clones of the best scoring parents and some new random 

numbers. These new random numbers are called mutations. This is illustrated in figure 4.Over the 

generations the population will eventually concentrate on an optimum. 
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Figure 4 illustration of the formation of the new generation in the genetic algorithm. 

Branch and bound 

The branch and bound method is an important tool for integer or mixed-integer optimisation problems. It is 

used to find an optimal discrete value after an optimal continuous solution is found. Figure 5 illustrates this 

method. After a non-discrete solution is found, two new optimisation problems are generated with extra 

boundaries. For example, if the non-integer optimum is found at a decision variable value of 3.3 while an 

integer solution is required, two new problems are generated looking at optimal solutions ≤3 and ≥4 (the 

branch). The answers to these new problems are compared, and the path of the lower value is not further 

pursued (the bound). This process is repeated until an optimal integer solution is found (Claassen et al, 

2007).  

 

Figure 5 Branch and bound method for finding an optimal discretised solution. The white 
circles are optimal, non-discrete solutions, the green circles are discrete optimal solutions of 
branched optimisation problems and the purple circle is the best discrete solution to the 
overall problem. The values in the circles are the objective value function. Source: 
http://www.gurobi.com/resources/getting-started/mip-basics 

 

Interior point method 

The interior point method is an algorithm that solves optimisation problems in polynomial time by using 

Newton’s method, which is illustrated in figure 6. A few modifications are made to an optimisation problem 

before Newtons method is applied. A constrained problem is turned into an unconstrained problem by 
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applying either Lagrange multiplier methods or the implementation of logarithmic barrier functions, 

depending on the type of constraint (Jensen et al, 2003 for further reading). Newton’s method finds the 

intersection of the derivative with the horizontal axis where the original function has an optimum. This is 

done by finding the second degree derivative at an initial point in the curve, this second degree derivative is 

extended linearly to the horizontal axis. From the X-value at this point, a new second derivative is made and 

extended linearly to the horizontal axis e.g. x1 and x2. This process is repeated until the intersection 

between the horizontal axis and the first derivative is approached as precise as required.  

 

Figure 6 illustrates the iterative process of Newton’s method to find an intersection with the 
x-axis of a curve. The derivative of initial point is X0 is determined and linearly extended to 

the x-axis, this gives us the new derivative value of X1. Source: 
http://tutorial.math.lamar.edu/Classes/CalcI/NewtonsMethod.aspx 

 

Dynamic programming  

Dynamic programming is a method for solving superstructure optimisation problems. The disadvantages of 

the method were too large for dynamic programming to be a viable method. Dynamic programming is a 

method that solves a optimisation problem by breaking it down into smaller and simpler sub-problems which 

are solved individually. The optimal solution for a small sub-problem is quickly found and saved in the 

memory. Then a larger sub-problem is formulated which contains the previous-sub problem. Instead of 

solving this new sub-problem as a whole, the optimal solution to the first problem is used as a basis 

(Claassen et al 2007). This can be illustrated by thinking of the problem and its sub-problems as an onion. 

The core of the onion forms the most basic sub-problem. Once a solution to this problem is found, the 

problem is expanded by adding an extra layer to the problem. Basically, for each point of a optimisation 

problem the optimal solution is listed in a large table. Since no infinite solutions can be stored for continuous 

variables, discretisation of variables is required. Discretisation of variables causes rounding errors in each 

discretisation, leading to an overall error accumulation throughout the process. This accumulation error is the 

reason for abandoning this method.  

Route analysis 
The number of possible routes through a superstructure grows exponentially with the problem size. You can 

analyze the total number of routes through a system by splitting it into smaller pieces and analyzing the 

number of routes to reach each subunit. This can be done with the simple equation: 

# 𝑠𝑢𝑏𝑢𝑛𝑖𝑡𝐴 =  ∑ # 𝑠𝑢𝑏𝑢𝑛𝑖𝑡 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑠𝑢𝑏𝑢𝑛𝑖𝑡 𝑖𝑛 𝑎 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑠𝑡𝑎𝑔𝑒 𝑡ℎ𝑎𝑡 𝑖𝑠 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 𝑠𝑢𝑏𝑢𝑛𝑖𝑡𝐴    (15)  

Where # is “number of possible routes through the superstructure to get to a subunit”. This equation is 

applied on each subunit from start to end. Figure 7 illustrates how the number of routes through a 
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superstructure can be calculated. Figures 2 & 3 illustrate the rapid growth of the number of possible routes 

through a superstructure when the superstructure increases in size. 

 

Figure 7 Illustration of calculating the number of possible routes through a superstructure. 

The numbers in the boxes indicate how many possible routes there are in the superstructure 
to get to that particular unit operation from the start. The system is analysed from left to 
right by applying eq. 15. 

Conceptual superstructure 
To create a framework for a superstructure, it is easiest to start with a simple system and gradually add 

complexity. Therefore a conceptual superstructure is used, which contains a limited number of routes and 

uses simple subunit functions. The main advantage of starting with very simple systems is that all important 

elements e.g. number of routes, route composition, proper optimisation, are known by heart by the 

designer. This gives the designer the ability to spot problems and flaws in an early stage and correct the 

framework accordingly.  

The complexity of the subunits does not matter as long as the correct inputs and output formats are used 

and generated. As a result the problem in the conceptual superstructure can be a simpler linear 

programming problem. The conceptual superstructure used for framework design is shown in figure 8.  

 

Figure 8 The layout of the conceptual superstructure used in framework design. It has 9 
subunits (the numbers in the boxes) and 6 possible routes. Subunits will operate in the 
following fashion: variable = variable + a random number, for 5 variables. 
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Input format 
The goal of the superstructure framework is to solve superstructure optimisation problems, while minimising 

the amount of manual input and coding required to do this. Therefore it is important to find the most 

condensed form of input that can be used to define a superstructure. For example: a list of decision variables 

used per route has thus far been the norm for manual input when it comes to decision variables, while only a 

list of which subunits require which decision variable(s) and a list of routes is required to automatically 

construct this list. A function providing this list already saves the effort of considering each route again and 

summing up the decision variables for this route. This kind of consideration is made for each of the current 

manual inputs so a template for minimal input can be derived. The framework uses these inputs to formulate 

the entire superstructure as a set of NLP problems in a format that is usable by fmincon for optimisation. 
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Results and Discussion 

The Framework 
The framework consist of 7 functions. The approach that the framework takes for formulating and optimising 

a superstructure is shown in figure 9. Each of the manual inputs as shown in figure 9 are elaborated on in 

the following subsections. The framework was made using the exemplary superstructure from the method 

section. 

 

Figure 9 The different steps for formulating a superstructure through the framework. The 
steps are placed in the white boxes and the function(s) that are used in this step are placed 
in blue boxes. A distinction is made between manual input (orange) and actions that are 

done automatically by the framework (blue). 

Superstructure formulation 

The first manual input that needs to be defined is the shape of the superstructure (see Figure 9). The shape 

of a superstructure is a description of connections between subunits. There are multiple ways to formulate 

the shape. In the methods section the format of describing a superstructure for an MINLP problem was 

introduced. The MINLP format of formulating a superstructure shape requires subunits to be placed in certain 

levels (e.g. harvesting, disruption, conversion etc.) whereafter “forbidden” connections to the next level are 

described. This method has its disadvantages, especially in larger and chaotic systems. An early indication of 

one of these disadvantages can be seen in figure 2. One route uses microwave assisted dry conversion, 

however, the microwave assisted dry conversion requires a drying step beforehand. This drying step is 

currently placed in the disruption level, although it does not perform actual disruption. This does not lead to 

any difficulties in this model, but when analysing large and complex superstructures, it becomes harder to 

subdivide every subunit in a specific level of the superstructure. To avoid this problem, another method of 

describing the shape of a superstructure is proposed that does not have this disadvantage, the so-called 

“Arrow Matrix” 
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The Arrow Matrix (AM) describes the superstructure by defining connections that are allowed. The Arrow 

Matrix literally describes each “arrow” going from one subunit to the next. One arrow is defined as a 1x2 

vector containing the number of the subunit from which the arrow originates to the subunit it points to. An 

example: [5,9] would mean that subunit number 5 is compatible with subunit number 9. The AM method 

results in an N by 2 matrix. Figure 10 illustrates how the arrowmatrix is made from an exemplary 

superstructure.  

 

Figure 10 The arrowmatrix (AM) is made by describing each connection in a superstructure 
as a 1x2 vector. E.g., if unit 4 can be followed by unit 7, then [4,7] is added to the AM 
(illustrated in orange in the figure).  

For Slegers’ (2014) model, which has 126 routes, The AM would result in a 46x2 matrix. This may seem 

large, but the input format is so easy that describing 46 connections takes a couple of minutes. The main 

advantages of the AM method over the MINLP format are its simplicity, easy modification of the 

superstructure and abandon the need to assign a level to each subunit. The latter is especially useful in 

complex and chaotic superstructures as seen in Figure 1. In the example given in figures 2 and 3, where one 

additional subunit was added to the superstructure in figures 2 & 3, the number of possible routes increased 

with 42, while the arrow matrix only increases in size by 9. An increase of 9 rows is even close to a worst 

case scenario, as adding a subunit similar to enzymatic direct conversion in this superstructure increases the 

size of the arrow matrix by 2 while adding 24 routes to the superstructure.  

From the AM a list of all possible routes through the superstructure can be derived. This is done by the 

RMTFbuilder. This function can effectively map all possible routes through the superstructure and places 

them in a Route matrix (RMF) containing all the function handles in the order of operation. The RMF is used 

by following builder functions as well. The RMTFbuilder needs to be able to recognise where to start and 

where to end, this is made possible by a fixed subunit, which is always numbered 1 and is placed in front of 

the superstructure, and one subunit which is always numbered 0 which is placed at the end of the 

superstructure. The last subunit does not require a functions while and the first can be either an empty 

function or one where initial values are defined. 
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Function combining 

Next to the shape of the superstructure, another task that requires excessive manual work is combining the 

functions for all subunits into one function for each route. Each route will be separately optimised. Combining 

functions is done by filling in the output of one function as the input of the following function. This action is 

performed for each unit in a route from first to last.  

For this task to be automated, it is imperative that subunits have compatible inputs and outputs, otherwise it 

is simply impossible to achieve. A suggested formulation of inputs and outputs is as follows: There is one 

argument that needs iteration over the different subunits, which contains all values for the likes of 

concentrations, flows, and energy consumptions (this argument will be referred to as the Primary Component 

Matrix (PCM)). This argument is the first input and first output of each subunit function. The second input is 

a list of decision variables required for that specific route. All subsequent arguments can contain inputs that 

are identical for each subunit function e.g. parameters like, density, viscosity, gas constants etc. As second 

output, the value of the objective function is required. 

When the requirements of standardised subunit formulation are met, all functions in a route can be combined 

into one function for each route. This results in a Route Matrix with Total Functions (RMTF). These functions 

will be used in the optimisation process. 

Decision variables 

The minimal required input to define which decision variables per route are used, is a list of which unit 

operation uses which decision variable. This list with Decision Variables per Unit Operation (DVUO) together 

with the list of which subunits are used per route, the RMF, can be combined to derive the decision variables 

used per route (DVPR). The DVUO is formulated as shown in table 2. The function first recognises which 

subunits are used in a route through the RMF and then lists all associated decision variables for that route. 

Thereafter, all unique elements from this list are identified, sorted and placed in the DVPR matrix. This 

process is done for each route in the RMF. 

Table 2 The format for describing decision variables per unit operation, the number of the 
row corresponds with the number of the subunit it represents, so the order of this vector is 
fixed. 

Unit operation (row number): Decision variables used: 

1 DV 1 

2  

3 DV 2, DV 3 

4 DV 1, DV 4 

 

Lower and Upper bounds 

The minimal required input to define which lower and upper bounds are used per route, is a list of which 

decision variable is subjected to which bounds. This is described in the Lower Bounds, Upper Bounds matrix 

(LBUB) and is formulated as shown in table 3. The function that is used to build matrices describing the 

lower and upper bounds uses the LBUB and DVPR matrices to create the Lower Bound Matrix (LBM) and 

Upper Bound Matrix (UBM).  
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Table 3 The format for describing which decision variables are subjected to which lower and 

upper bounds, empty bound values are substituted by - infinite and + infinite respectively. 

Decision variable (row number): Decision variables used: 

DV 1 lower bound value, upper bound value 

DV 2 lower bound value  

DV 3  

DV 4 lower bound value, lower bound value 

 

Non-linear constraints 

The key of non-linear constraints is that at one specific subunit in a route, for one specific component, either 

the input or output of that subunit is subjected to restrictions. This can be either equality constraints or 

inequality constraints. For the inequality constraints, the subjected value can be either greater or equal than 

(≥), or smaller or equal than (≤) a given value. The last characteristic causes the non-linear equality and 

inequality constraints to be handled slightly different. The minimal input required for the non-linear 

constraints consists of:  

- The subunit for which these restrictions are applicable. 

- The position of the relevant component in the primary component matrix. 

- The value of the boundary. 

- Whether the boundary value should be compared to the input or the output of the function.  

- Whether the value should be greater or equal than (≥), or smaller or equal than (≤) the boundary 

value (for inequality constraints only). 

 

A template for defining these values is shown in tables 4 and 5. 

Table 4 Format for describing equality constraints, filled with example values. 

Subunit 

(functionhandle) 

Index of component 

in PCM 

Boundary value Input or output (1 or 

0 respectively) 

@subunit1 2 21.4 1 

@subunit3 6 -80 1 

@subunit4 6 40 0 
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Table 5 Format for describing inequality constraints, filled with example values. 

Subunit 

(functionhandle) 

Index of 

component in 

PCM 

Boundary value Input or output 

(1 or 0 

respectively) 

Above or 

below 

boundary 

value (1 or -1 

respectively) 

@subunit1 4 21.4 1 1 

@subunit2 3 4 0 -1 

@subunit5 4 50 1 1 

 

There are two reasons why nonlinear constrains are the most complex items to implement. First, they need 

to be formulated as a function instead of regular values. Second, they apply to intermediate values within 

the route which cannot be found by functions from the RMTF. 

The approach for an efficient non-linear constraint function builder is to first create separate matrices for:  

- Combined functions of all subunit functions op to (and including if input or output = 1) the subunit 

given in column 1 of the constraint matrix for each subunit in the constraint matrix present in a 

route. Named Non-Linear (in)equality Constraints functions (NL(i)eqCONf). 

- The boundary values corresponding to the functions in NL(i)eqCONf for each route, named Non-

Linear (in)equality Constraint numbers (NL(i)eqCONn. 

- A list of indices of the constrained component in the primary component matrix corresponding to the 

functions and numbers in NL(i)eqCONf and NL(i)eqCONn, named “Function output indices (in) 

equality” (fOutindices(i)eq).  

 

And for inequality constraints only: 

- A matrix with multiplication factors, either 1 or -1, to indicate whether the value should be ≥ or ≤ 

the boundary value given in NLieqCONn. 

 

When these matrices are constructed, it is possible to write a function that gives the equation sets Ci(x) and 

Ceq(x) as output required for fmincon. If the above matrices are not pre-constructed, they would have to be 

evaluated with every iteration of fmincon, significantly slowing the process to the point of unviability as every 

iteration takes approximately a second. By pre-constructing these matrices, only a “read” operation has to 

be performed on the matrices.  

The final non-linear constraint function evaluates the function from NL(i)eqCONf with the decision variables 

and subjects the outcome to the boundary values given in NL(i)eqCONn through the mapping provided by 

fOutindices(i)eq. It does so for both equality and inequality constraints to give final values of Ci(x) ≤ 0 and 

Ceq = 0 as used by fmincon for each route. This function is called Non-Linear Constraints for fmincon 

(NLCONforFmincon). 

Optimisation 

Every input required for fmincon is described by the framework. These inputs can be combined and 

evaluated by fmincon for each route. This is done by a for-loop where every route, i.e. every row, of RMTF, 

DVPR, LBM, UBM and the NLCONforFmincon function where NLCONforFmincon is dependend on the PCM, 

DVPR, DVIPR, route/row number, NLeqCONf ,NLeqCONn, fOutindiceseq, NLieqCONf, NLieqCONn, 

fOutindicesieq and multiplicationfactorieq, is evaluated.  
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Comparing the framework with other methods 
The framework was applied to the algae biorefinery superstructure, as shown in table 6. This allowed 

comparison to two other methods for formulating a superstructure. The effectiveness of the framework is 

evaluated based on time taken, amount of code written and the number of files required to formulate a 

superstructure. The other methods are the original method from Slegers 2014 and Houthoff’s MSc thesis 

project. The results of this comparison are displayed in table 6. 

Table 6 A comparison of different methods of superstructure formulation. 

 Enumeration 

(slegers,201

4)  

NLP optimisation 

with manual routing 

(Houthoff,2015)  

NLP optimisation 

through 

framework 

Number of routes 

analysed 

126 19 126 

Time taken for 

formulation 

± 9 days 

minimum 

± 2 days ± 2 hours 

Amount of code ± 15.000 lines ± 400 lines ± 250 lines 

Number of files 

for formulation 

and optimisation 

2 39 

(Would be 253 for 126 

routes) 

1 

 

The framework significantly reduces the time taken, code used and files used for formulating and optimising 

a superstructure compared to the two previously used methods. Furthermore, the framework provides 

flexibility to a superstructure and will reduce the risk of forgetting routes. The framework cannot be 

compared to an MINLP formulation since there is no data available yet. Further research can provide this 

data and complete the comparison. 

Challenges 

Integer decision variables  

The framework work is based on NLP problems. The NLP approach causes a challenge when integer decision 

variables are used in the superstructure as those variables cannot be handled by the solver. There are two 

possibilities to implement integer decision variables in this framework: 

- Implement the integer variable as a continuous variable and round it to an integer within the unit 

operation. 

- Turn the integer decision variable into extra unit operations for every possible value of the decision 

variable and solve it through extra routes instead of as a decision variable. 

The first of the options is only suitable for a “large” range of possible values for the decision variable while 

the second option is only suitable for a “small” range of values. In this case, large can be defined as >5 and 

small as <5.    
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Local versus global optima 

The fmincon solver finds a local minimum while global minima need to be found for superstructure 

optimisation. A multistart option can be implemented to counter this problem. This can be done by placing 

the final for loop that contains the fmincon operation into another for loop that will perform all optimisations 

several times. The more times an optimisation is performed, the greater the chance that the global optimum 

is found.  

Recycling of streams within a route 

The modelling of recycling side streams in process systems can be challenging. In this framework it is 

currently possible to recycle using fixed side streams through the use of nonlinear equality constrains and it 

is possible to recycle within the same unit operation. A small change needs to be implemented to the 

function combining process to allow iterative recycling over a multi-unit operation loop. Further research is 

required. 
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Conclusion 
In the introduction three requirements were posed for this framework. The framework needed to be flexible, 

easy to use and applicable to all process related superstructures. The flexibility is realised by the usage of 

the arrowmatrix, the addition or deletion of subunits from a superstructure is easy and quick. The framework 

is easy in use due to the input formats and minimal manual coding, no advanced understanding of Matlab is 

required to apply the framework. The framework is applicable to all process related superstructures due to 

the use of NLP problems, which have very reliable solvers. 
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Appendix A: The manual 
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By: Tim Hoogstad, version June 2015               
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List of abbreviations 
Other abbreviations may be from these abbreviations 

AM – Arrow Matrix 

CON – Constraints 

DV – Decision Variable 

DVI – Decision Variable Index 

Eq – Equality 

FHM – Function Handle Matrix 

Ieq – Inequality 

LB – Lower Bound  

NL – Non-Linear 

PCM – Primary Component Matrix 

PR – Per Route 

RMF -  Route Matrix with Function handles 

RMTF – Route Matrix with Total Functions  

UB - Upper Bound 

UO – Unit operation 

Scope 
This framework provides an easy way for superstructure formulation and optimisation, thereby reducing 

time-consuming manual input. In the framework the superstructure formulation is done by a series of 

functions and requires a limited amount  of manual input. The functions formulate the superstructure as a 

series of non-linear programming problems, one Non-linear programming problem for each possible route. 

Superstructure optimisation is done by solving these NLP problems in Matlab with the function Fmincon.  

 

Contents of the toolbox 
The toolbox consists of a script template and the following functions: 

- BMbuilder.m 

- DVPRbuilder.m 

- NLCONforFmincon.m 

- NLeqCONbuilder.m 

- NLieqCONbuilder.m 

- OG.m 

- RMTFbuilder.m 

First a description of the function inputs and outputs is given, whereafter the functions are applied to an 

exemplary superstructure.  
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Description of functions, inputs and outputs 

BMbuilder 
function [ LBM , UBM ] = BMbuilder( DVPR, LBUB ) 

Description 

The BMbuilder creates arrays that describe the upper and lower boundaries of decision variables, compatible 

with Fmincon. 

Inputs 

- DVPR, as created by DVPRbuilder 

- LBUB,  manual input describing the LB and UB per DV 

Outputs 

- LBM, a matrix listing all lower bounds(columns) applicable in each route(rows) as used by Fmincon 

- UBM, a matrix listing all upper bounds(columns) applicable in each route(rows) as used by Fmincon 

DVPRbuilder 
function [ DVPR , DVIPR ] = DVPRbuilder( RMF , DVUO, FHM , Order) 

Description 

The DVPRbuilder creates lists for all decision variables and their index in the order matrix per route 

Inputs 

- RMF, as created by RMTFbuilder 

- DVUO, manual input describing which DVs are used by which UO 

- FHM, manual input defining the function handles for each UO 

- Order, the order of the decision variables that is handled. 

Outputs 

- DVPR, DVs(columns) used per route (rows) 

- DVIPR, DVIs(columns) used per route (rows) 

NLCONforFmincon 
function [ Ciout,Ceqout ] = NLCONforFmincon( Components, DV, routenumber, 

NLeqCONf, NLeqCONn, fOutindiceseq, NLieqCONf, NLieqCONn, fOutindicesieq, 

multiplicationfactorieq ) 

Description 

Uses premade outputs from other functions and formats them to be compatible and quickly accessible by 

Fmincon. 

Inputs 

- Components, the PCM 

- DV, the DVs for the route described in routenumber 

- Routenumber, the number of the route 

- NLeqCONf, as created by NLeqCONbuilder 

- NLeqCONn, as created by NLeqCONbuilder 

- Foutindiceseq, as created by NLeqCONbuilder 

- NLieqCONf, as created by NLieqCONbuilder 

- NLieqCONn, as created by NLieqCONbuilder 

- foutindicesieq, as created by NLieqCONbuilder 

- multiplicationfactorieq, as created by NLieqCONbuilder 

Outputs 

- Ciout, describing the inequality constraints in a format compatible with Fmincon 

- Ceqout, describing the equality constraints in a format compatible with Fmincon 

NLeqCONbuilder 
function [ NLeqCONf, NLeqCONn, fOutindiceseq ] = NLeqCONbuilder( RMF,NLeqCON ) 
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Description 

NLeqCONbuilder creates one function handle matrix and two arrays describing the non-linear equality 

constraints per route.  

Inputs 

- RMF, as created by RMTFbuilder 

- NLeqCON, manual input describing non-linear equality constrains 

Outputs 

- NLeqCONf, combined functions of the route up to the point where the equality constraint is in place 

- NLeqCONn, the value that the outcome of the function described in NLeqCONf needs to match 

- fOutindiceseq, the index of the component which is subjected to the constraint in the PCM 

 

NLieqCONbuilder 
function [ NLieqCONf, NLieqCONn, fOutindicesieq, multiplicationfactorieq ] = 

NLieqCONbuilder( RMF,NLieqCON ) 

Description 

NLieqCONbuilder creates one function handle matrix and three arrays describing the non-linear equality 

constraints per route.  

Inputs 

- RMF, as created by RMTFbuilder 

- NLieqCON, manual input describing non-linear inequality constrains 

Outputs 

- NLeqCONf, combined functions of the route up to the point where the equality constraint is in place 

- NLeqCONn, the value that the outcome of the function described in NLeqCONf needs to match 

- fOutindiceseq, the index of the component which is subjected to the constraint in the PCM 

- multiplicationfactorieq, an list of indicators whether the function outcome should be above or below 

the reference value from NLeqCONn 

OG 
function varargout = OG(func,outputNo,varargin) 

Description 

The Output Grabber (OG) grabs the output(s) of your choice for direct input in another function without 

needing extra lines of code. 

Inputs 

- Func, the function it needs to grab the output from 

- OutputNo, the number(s) of the output(s) it needs to grab 

- Varargin, the original inputs for func 

Outputs 

- Varargout, the requested output(s) of the function func 
 

RMTFbuilder 
function [ Routematrixfunctions, RoutematrixTotalfunction ] = RMTFbuilder( 

Compatibilitymatrix, Functionhandlematrix  ) 

Description 

The RMTFbuilder formulates the shape of the superstructure in a forms the basis for the rest of the 

framework and describes the combined functions for each route. 

Inputs 

- Compatibilitymatrix, manual input describing the connections between UOs, also referred to as AM 

- FunctionHandleMatrix (FHM) manual input linking to the functions that describe the UOs 
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Outputs 

- Routematrixfunctions (RMF), a matrix listing all UOs (columns) per route (rows) 

- Routematrixtotalfunctions, a matrix containing one combined function per route describing the entire 

route 
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Superstructure formulation (inputs and function execution order) 
The general approach and different steps within the framework are summarised in figure 11. Each of the 

manual inputs is described in this chapter. 

 

Figure 11 the general approach and steps taken by the framework, a distinction is made between 
manual input and automated actions. 

Step 0. Requirements and framework tuning 
 

Function formats 

Create functions for all UOs with consistent inputs and outputs. Adjust functions RMTFbuilder, 

NLeqCONbuilder and NLieqCONbuilder to your function inputs. 

The functions that were written for each unit operation have to be uniform in input and output formats. Each 

unit has three obliged inputs.  

- The Primary Components Matrix (PCM) where every component that requires iteration over the unit 

operations is listed e.g. concentrations of compounds, energy consumption and co-streams. 

- The Decision Variables Per Route for each route (DVPR) so that fmincon only varies the right DVs. 

- The Decision Variables Index Per Route (DVIPR) so that UOs know which DV was originally meant. 

On top of these three obligatory arguments additional inputs can be used that describe parameters (par) of 

which the value does not change, e.g. densities of compounds, gas constants. 

Each function has two obligatory outputs, a new version of the PCM with modified values and the value of the 

objective function for the new PCM.  

An example of a function and the arguments in Matlab could be: 

function [ PCM, Objective ] = Centrifuge( PCM , DV, DVI, par) 
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Changing function formats in the framework 

The framework is adjusted to the previously shown format of inputs and outputs. If you want to add another 

input argument there are a few functions in the framework that need to be adjusted. For example, we want 

to use the following function format. 

function [ PCM, Objective ] = Centrifuge( PCM , DV, DVI, par, Add) 

 
In RMTFbuilder.m change lines 64 and 67 from: 

R =  @(PCM,DV,DVI,par) RMF{1,1}(PCM,DV,DVI,par); 
RT = @(PCM,DV,DVI,par) RMF{m,n}(R(PCM,DV,DVI,par),DV,DVI,par); 

 
To: 

R =  @(PCM,DV,DVI,par,Add) RMF{1,1}(PCM,DV,DVI,par,Add); 
RT = @(PCM,DV,DVI,par,Add) RMF{m,n}(R(PCM,DV,DVI,par,Add),DV,DVI,par,Add); 
 

In NLeqCONbuilder.m and NLieqCONbuilder.m the same changes have to be made, located on lines 22 & 24 

and 24 & 26 respectively. 

In NLCONforFmincon.m the following changes have to be made.  

Change line 27 to: 

[Tempout] = NLeqCONf{routenumber,n}(Components,DV,DVI,par, Add); 

 

Change line 47 to: 

[Tempout] = NLieqCONf{routenumber,n}(Components,DV,DVI,par, Add); 
 

Function contents 

Within the functions a small operation is required at the start to correctly formulate the decision variables. 

This operation ensures that decision variables always have the same index in the input, even when some are 

not used in a route. Copy/paste the following to the beginning of all unit operations: 

for n = 1:size(DVI,2) 
DVnew(DVI(n)) = DV(n); 
end 
DV = DVnew; 
 

Step 1.  Shape formulation and function combination 
This step takes you through the process that converts a superstructure from paper to the format used in this 

framework by using a small exemplary superstructure, which is shown in figure 12.  
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Figure 12 Exemplary superstructure 

In the superstructure add a UO to the beginning and end of the superstructure then number all UOs, the 

result is shown in figure 13. The first one has to be number 1, the final one has to be number 0. 

 

Figure 13 the superstructure after numbering and adding a function at the start and end 

Now the Arrow Matrix (AM) can be produced. The arrow matrix is a n by 2 array. Where n stands for the 

total amount of connections between Unit Operations. Each row n describes one connection in the 

superstructure. The format of AM and how it is produces is illustrated in figure 14.  
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Figure 14 The format and production of the Arrow Matrix 

Besides the AM, also the Function Handle Matrix (FHM) needs to be made. For the conceptual superstructure, 

the FHM would be the following: 

FHM(1) = {@UOstart}; 
FHM(2) = {@Cent}; 
FHM(3) = {@Floc}; 
FHM(4) = {@Cent2}; 
FHM(5) = {@Filtr}; 
FHM(6) = {@Beadmill}; 
FHM(7) = {@Enzym}; 
FHM(8) = {@SCmeth}; 
 

Note how the row number corresponds to the given UO number. UOstart is an empty function defining the 

starting point of the superstructure. UO labelled with “0” is just a concept indicating the end, it does not 

need a function. 

Run the RMTFbuilder as shown in the template script. 

Step 2.  Defining Decision variables 
For structure and formulation of the remaining problem, it is best that the decision variables are in a fixed 

order and defined in a structure array. The order does not matter as long as it is consistent. This can be 

done in Matlab in the following manner: 

DV = 

struct('Confac',1,'Floccon',2,'Beadfill',3,'Cooling',4,'ExtracTemp',5,'MethFlo

w',6); 

 
Order = [DV.Confac DV.ConChi DV.Beadfill DV.ExtracTemp1 DV.ExtracTemp2 

DV.MethFlow]; 

 
Note: The actual initial values for the decision variables are defined just before optimisation. 

The minimal required input to define which decision variables per route are used, is a list of which unit 

operation uses which decision variable. This list with Decision Variables per Unit Operation (DVUO) together 

with the list of which subunits are used per route, the RMF, can be combined to derive the decision variables 

used per route (DVPR). The DVUO is formulated as shown in table 7. 
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Table 7 The format for describing decision variables per unit operation, the number of the row 
corresponds with the number of the subunit it represents, so the order of this vector is fixed. 

Unit operation (row number): Decision variables used: 

1  
2 DV 1 
3 DV 1, DV 2 
4  

5  
6 DV 3, DV 4 
7 DV 5 
8 DV 6 

 

In Matlab this would look like: 

DVUO{1} = []; 
DVUO{2} = [DV.Confac]; 
DVUO{3} = [DV.Confac DV.Floccon]; 
DVUO{4} = []; 
DVUO{5} = []; 
DVUO{6} = [DV.Beadfill DV.cooling]; 
DVUO{7} = [DV.ExtracTemp]; 
DVUO{8} = [DV.MethFlow]; 

 
Run the DVPRbuilder as shown in the template script. 

Step 3.  Defining DV boundaries 

Lower and Upper bounds 

The required input to define which lower and upper bounds are used per route, is a list of which decision 

variable is subjected to which bounds. This is described in the Lower Bounds, Upper Bounds matrix (LBUB) 

and is formulated as shown in table 8. 

Table 8 The format for describing which decision variables are subjected to which lower and upper 
bounds, empty bound values are substituted by - infinite and + infinite respectively. 

Decision variable (row number): Decision variables used: 

DV 1 lower bound value, upper bound value 
DV 2 lower bound value, upper bound value 
DV 3 lower bound value, upper bound value 
DV 4 lower bound value, upper bound value 

DV 5 lower bound value, upper bound value 
DV 6 lower bound value, upper bound value 

 

Or in Matlab syntax for our sample superstructure: 

LBUB(1,:) = [DV.Confac, 1,40]; 
LBUB(2,:) = [DV.Floccon, 0.001,0.151]; 
LBUB(3,:) = [DV.Beadfill, 75,85]; 
LBUB(4,:) = [DV.Cooling, 513,533]; 
LBUB(5,:) = [DV.ExtracTemp1, 308,348]; 
LBUB(6,:) = [DV.MethFlow, 0.01,10];   
 

Run the BMbuilder as shown in the template script. 
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Step 4.  Define the non-linear (in)equalty constrains 
Create NLeqCON and NLieqCON and execute NLeqCONbuilder and NLieqCONbuilder 

The input required for the non-linear constraints consists of: the subunit for which these restrictions are 

applicable, the position of the relevant component in the primary component matrix, the value of the 

boundary, whether the boundary value should be compared to the input or the output of the function, and, 

for inequality constraints only, whether the value should be greater or equal than (≥), or smaller or equal 

than (≤) the boundary value. A template for defining these values is shown in tables 9 and 10. 

Table 9  Format for describing equality constraints, filled with example values. 

Subunit (functionhandle) Index of component in PCM Boundary value Input or output (1 or 0 
respectively) 

@UO1 2 80 1 

@UO3 6 -80 1 
@UO4 6 90 0 

 

Table 10 Format for describing inequality constraints, filled with example values. 

Subunit 
(functionhandle) 

Index of component in 
PCM 

Boundary value Input or output (1 or 0 
respectively) 

Above or below 
boundary value 
(1 or -1 
respectively) 

@UO2 3 4 0 -1 
@UO5 4 50 1 1 

 

In Matlab this would look like: 

NLeqCON(1,:) = {@Cent2, 2, 80, 1}; 
NLeqCON(2,:) = {@Filtr, 6, -80, 1}; 
NLeqCON(3,:) = {@Beadmill, 6 ,90 ,0}; 

 
NLieqCON(1,:) = {@Beadmill, 3, 4, 0, -1}; 
NLieqCON(2,:) = {@SCmeth, 4, 50, 1,  1}; 

 
Run the NLeqCONbuilder  and NLieqCONbuilder as shown in the template script. 

Step 5. Define additional parameters 
Define all additional parameters your superstructure requires. 
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Superstructure optimising 
Each route is analysed separately as an NLP. This is done by using a for loop with an increasing 

routenumber. In accordance with the routenumber, specific information is extracted from the RMTF, DVPR, 

DVIPR etc. and put in a temporary vector. In this for loop, the initial values for the components in the PCM 

and the initial values for the decision variables need to be defined. The outcome of the optimisation by 

Fmincon is rerun through the function from RMTF to gain the outcome of the objective function. These values 

are stored in two result matrices. All these operations are uniform and premade in the template script. 

Run the premade optimisation section from the template script. 

Matlab will still assign values from non-successful optimisations to the result matrices. Therefore rerun the 

optimisation specifically for the best few outcomes to see if indeed an optimal solution was found.  

 

 


