

Biobased Chemistry and Technology

Thesis Biobased Chemistry and Technology

A framework for formulating and
optimising a superstructure

Tim Hoogstad

June 2015

1

2

A framework for formulating and
optimising a superstructure

Name course : Thesis project Biobased Chemistry and
Technology

Number : BCT-80424
Study load : 24 ects
Date : June 2015

Student : Tim Hoogstad
Registration number : 910910-361-010
Study programme : MBT (Biotechnology)
Report number : 023BCT

Supervisor(s) : Ellen Slegers
Examiners : Ton van Boxtel
Group : Biobased Chemistry and Technology
Address : Bornse Weilanden 9
 6708 WG Wageningen
 the Netherlands
 Tel: +31 (317) 48 21 24
 Fax: +31 (317) 48 49 57

3

4

Contents

Introduction ... 6

Methods .. 10

Mathematical problem formulation .. 10

Non-linear Programming problems ... 10

Mixed Integer Non-linear Programming problems ... 11

NLP vs. MINLP ... 11

Optimisation tools .. 12

Genetic algorithm .. 12

Branch and bound ... 13

Interior point method ... 13

Dynamic programming ... 14

Route analysis ... 14

Conceptual superstructure ... 15

Input format .. 16

Results and Discussion ... 17

The Framework .. 17

Comparing the framework with other methods ... 22

Challenges .. 22

Conclusion ... 24

References ... 25

Appendix A: The manual .. 26

5

6

Introduction
Biorefinery can provide an alternative way to produce, among others, fuels and chemicals in a sustainable

manner, thereby decreasing fossil fuel dependency. Climate change due to global warming is a troubling

problem for modern society and forms a large environmental threat to human society and ecosystems

globally (Mikael Höök, Xu Tang, 2013). The global warming phenomenon is caused by an increase of

greenhouse gasses in earth’s atmosphere. The consumption of fossil fuels if one of the major causes leading

to an accumulation of carbon dioxide and other greenhouse gasses. Our society is highly dependent on the

usage of fossil fuels for the production of materials, chemicals and fuels. Biorefinery is the concept of

producing fuels, chemicals, materials and power from various biomass sources. A few examples of biomass

sources suitable for biorefining are: Agricultural waste streams, micro-algae and duckweed, but in principle

any organic material can be the source material in biorefineries. An example of a complex biorefinery is

shown in figure 1. This figure shows how different organic raw materials e.g. straw, Algae and sugar crops,

are converted to multiple different products like biodiesel, cattle feed and bioethanol. This is done through

multiple processing steps which include pretreatments, conversions and purifications. Such a scheme is an

example of a so-called superstructure. Superstructures are typical for biorefinery schemes. Biorefineries

consist of a chain of unit operations that transform the biomass source into one or more products through

multiple steps. For example, in a micro-algae biorefinery, the algae need to be concentrated, disrupted and

the lipids need to be converted to usable fuel. For each of these steps, also referred to as levels in this

thesis, multiple techniques are available. This leads to a lot of possible operation chains or “routes”. An

oversight of these possible techniques and how they can be connected to form working operation chains is

called a superstructure. Slegers (2014) has made such a superstructure for an algae biorefinery, which can

be seen in figure 2. Biorefineries are essential elements in a biobased-econemy.

Figure 1 A biorefinery with multiple biomass sources, unit operations and end-products.

Biodiesel Glycerin

C6 sugars

Bioethanol

Pyrolysis

Lactic acid

Saw mill residues

CO2

Hydrogen

Sugar cropsAlgae

Conversion

Oil residues

Pulp

production

Oil cropsFresh grasses / silage

Pressing 1

Upgrading

Electricity &

heat

Hydrogen

Straw Wood chips

Pretreatment

C5&C6

sugars

Electricity & heat

Pulp

Starch crops

Drying

WaxesBiomethane

Biomethane

Extraction

Pressing 2

Steam

reformingHydrolysis
Lignin&

C6 sugars

O
th

e
r

re
s

o
u

rc
e

s

FeedFertilizer Pulp&Paper

Omega 3FT-Biofuels

Mechanical

fractionation

Syngas

Amino acids

Oil

Destillation

(alcohol)

Fermentation

Biogas

Fibres

Biorefinery plant

Sulfite

liquor

Methanisation

Lignin

Phenols

Combustion

Filtration

Paper making

Esterification

Gasification
Green

pressate

Anaerobic

fermentation

Biomaterials

Catalytic reaction

(Synthesis)

Enzymatic

hydrolysis

Separation

7

Superstructures can be made for any multi-step process chain. Although this study focusses on biorefineries

as an example for superstructures, superstructures can be found in any process chain where you can choice

between several techniques. A few examples are given below:

- Nitrile production from amino acids

- Production of powdered milk from fresh milk

- A water hyacinth biorefinery to produce proteins for cattle feed

- The preparation of edible potato. (Different ways of cutting, spicing, baking, side dish choice,

topping).

Modelling superstructures and solving respective optimising problems reveals the most efficient route

through a superstructure. With the many possible operation chains that a superstructure can provide the key

question is: “which route is most efficient?”. The definition of efficient depends on the requirements

determined by the designer of the process. This question can be solved using mathematical models for each

unit operation. When sequentially executing the models in the order of a route in the superstructure, an

estimate of the efficiency of that route can be made. Doing this for each route in a superstructure can predict

the most efficient process chain (Zondervan et al, 2011).

Figure 2 A superstructure for an algae biorefinery as used in Slegers (2014). At the top, the

levels for this process are defined. This superstructure is aimed at the production of biodiesel
as sole product. This superstructure describes 126 possible process chains.

8

Figure 3 the superstructure for an algae biorefinery as shown in figure 2 with an extra
dewatering step indicated by the blue arrows. The number of possible routes through the

superstructure grows by 42(from 126 to 168) routes by the addition of this unit.

In a superstructure the different routes that can be taken is not the only variable, also process conditions

can vary within a unit operation and affect the overall performance. These variables in operating conditions

are called decision variables. The implementation of decision variables in a superstructure makes the

optimisation problem more complex, but can provide information on optimal control of the unit operations.

For example, the concentration factor of the initial algae broth in an algae biorefinery has a significant impact

on the size of the flows for the rest of the process chain. The implementation of decision variables in a

superstructure makes finding the best route and conditions much more difficult, optimisation algorithms are

required to find the optimal conditions for each route. Optimisation of superstructures and process conditions

has been done with various techniques in different papers (Slegers, 2014), (Wang et al, 2013), (Yeomans, H.

Grossmann, I.E. 1999). Formulation and optimisation of a superstructure can be tedious if inefficient

formulation formats are used and can become unmanageable if problem size increases. Superstructure

modelling can be a time consuming task, the time taken strongly depends on the method by which the

superstructure optimisation problem is formulated in a modelling environment. Here, superstructure

formulation is defined as connecting the functions for the unit operations according to the superstructure and

defining the optimisation problem such that a solution can be found by an optimisation method. Yeomans

(1999) used a mixed integer nonlinear programming formulation while Slegers (2014) connected all the unit

operations for each of the routes manually.

Manual assembly of all routes may work well for small superstructure systems, but will quickly become

unmanageable when the superstructure size grows since the number of possible routes grows exponentially

with superstructure size. Simplifications to a system need to be made in order to analyse large

superstructures, these simplifications come in the form of deleting subunits from the superstructure that

seem unlikely to be included in the optimal route. Every simplification made negatively influences the

completeness and reliability of the outcome. This challenge leads to the following research question:

9

- How can the number of simplifications in superstructure based research be minimised in order to

increase the quality and completeness of such research?

In this thesis an approach is proposed to improve current methods by avoiding manual assembly. The

feasibility of this approach is tested by comparing it with two methods that use manual assembly. This leads

us to the objective of this thesis:

- To produce a framework for superstructure formulation and optimisation to reduce time-consuming

and inefficient manual input in order to make superstructure formulation and optimisation easier and

more efficient.

This framework needs to meet the following requirements:

- The framework needs to be flexible so that superstructures can be readily modified

- The framework needs to be easy to use

- The framework needs to be applicable to all process based superstructures

10

Methods
In this chapter the approach to creating the framework is discussed. First different approaches for

mathematical formulation of the problem are assessed, then a discussion on optimisation tools, followed by

the introduction of an exemplary superstructure.

Mathematical problem formulation
The design of a framework strongly depends on the mathematical formulation of the problem and the

corresponding solver. The solver needs to be reliable and applicable to all optimisation problems found in

superstructures. Due to the non-linear characteristic of practically all process oriented superstructures there

are two possible mathematical formulations of the problem, a Nonlinear Programming problem (NLP) or

Mixed Integer Nonlinear programming problem (MINLP).

Non-linear Programming problems

A nonlinear programming problem is defined as:

 𝑀𝑖𝑛𝑖𝑚𝑖𝑠𝑒 𝑓(𝑥)

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡: 𝐶(𝑥) ≤ 0

𝐶𝑒𝑞(𝑥) = 0

𝐴𝑥 ≤ 𝑏

𝐴𝑒𝑞 𝑥 = 𝑏𝑒𝑞

𝑙𝑏 ≤ 𝑥 ≤ 𝑢𝑏

𝑥 ∈ ℝ

Where C(x), describes nonlinear inequality (≥ or ≤) constraints (eq. 1), Ceq(x), describes equality (=)

constraints (eq. 2). C(x) and Ceq(x) are sets of equations. “A”, describes linear inequality constraints (eq. 3),

Aeq describes linear equality constraints (eq. 4) and lb, ub describe the lower and upper bounds respectively

of decision variable set x(eq. 6) (Kuh, H.W. 2013)(Floudas, C.A. 1995) . A, Aeq, lb and ub are matrices. In

the superstructures that were evaluated for this thesis, no linear (in)equalities were present.

This type of optimization problem can be reliably solved with the genetic algorithm and the interior point

method. The preferred solver for this in Matlab is the fmincon function. Fmincon uses the interior point

method by default, and returns the value of decision variables so that the objective function is optimised.

The required input is:

- A function to be optimised, the first output of this function needs to be the objective value.

- A set of decision variables available for optimisation.

- A set of initial values for the decision variables.

Optional input for fmincon is:

- A set of linear constraints, A and b.

- A set of lower and upper bounds for each decision variable, lb and ub.

- A set of nonlinear constraints in the form of a function that provides Ci, the nonlinear inequality

constraints, and Ceq, the nonlinear equality constraints.

- In the additional input “Options” the maximum number of iterations, outputs etc. can be specified to

tailor fmincon to your problem and required accuracy of the solution.

In a superstructure each route can be solved as a separate NLP problem. As a superstructure gets larger, the

number of routes increases exponentially. As a result the computational time also grows exponentially with

the superstructure size.

(1)

(2)

(3)

(4)

(5)

(6)

11

Mixed Integer Non-linear Programming problems

A mixed-integer nonlinear programming problem is defined as:

 𝑀𝑖𝑛𝑖𝑚𝑖𝑠𝑒 𝑓(𝑥)

𝑆𝑢𝑐ℎ 𝑡ℎ𝑎𝑡: 𝐶(𝑥) ≤ 0

𝐶𝑒𝑞(𝑥) = 0

𝐴𝑥 ≤ 𝑏

𝐴𝑒𝑞 𝑥 = 𝑏𝑒𝑞

𝑙𝑏 ≤ 𝑥 ≤ 𝑢𝑏

𝑥 ∈ ℝ

𝑦 𝑥

𝑦 ∈ ℤ

Where C(x) describes nonlinear inequality constraints(eq. 7), Ceq(x) describes equality constraints(eq. 8), A

describes linear inequality constraints (eq. 9), Aeq describes linear equality constraints (eq. 10) and lb, ub

describe the lower and upper bounds of decision variable set x (eq. 11). The difference between MINLP and

NLP problems lies in Y. Y is a subset of variable set x (eq. 13) that contains the integer variables (eq. 14)

(Floudas, C.A. 1995). In superstructures that were evaluated for this thesis, no linear (in)equalities were

present.

Usually, to solve this type of problem a NLP algorithm is combined with a branch and bound algorithm with

mutations, similar to the genetic algorithm. There is no reliable solver within Matlab to tackle this particular

difficult type of problems. Different solvers are available as extensions of Matlab, like the KNITRO tool pack

in the Matlab extension, Tomlab. KNITRO uses an algorithm of the class interior point and active set to solve

NLP problems and supports MINLP solving by Branch and bound and hybrid Quesada-Grossman (which works

by solving the MINLP problem first as an NLP problem, then as an MILP problem) algorithms.

In a superstructure, the whole system can be analysed at once as a MINLP problem, where integer decision

variables indicate a chosen subunit from the next level. As a superstructure gets larger, the computational

time when solving it as an MINLP problem, grows linearly.

NLP vs. MINLP

The decision of whether to formulate the superstructure as a set of NLP problems or as a MINLP problem is

fundamental to the design of the framework. A practical oriented comparison of these methods is shown in

table 1.

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

12

Table 1 A comparison of NLP or MINLP problem formulation of the superstructure.

 Set of NLPs MINLP

Computational time in

relation to problem size

+/-

Grows exponentially with

problem size

+

Grows linearly with problem size

Reliability of solving the

problem in relation to

problem size

++

Takes longer, but unchanging

reliability

+/-

Becomes more unreliable, the

chance of getting stuck increases

Steadiness in time taken for

solving a problem

++

Each NLP adds a more or less

fixed amount of time

-

Inherently, branch and bound

has no guarantee to find a

solution in a set amount of time

Software requirements Matlab Matlab + Tomlab

Solver fmincon KNITRO

The steadiness of time taken and reliability of finding a solution in a set amount of time led to the decision to

formulate the superstructure optimisation problem as a set of NLP problems. The exponential growth of

computational time for a NLP formulation is a drawback when compared to the linear growth of a MINLP

formulation. There are however two options in the NLP formulation to decrease computational time that are

unavailable for MINLP formulation:

- The number of decision variables per route

- Parallel computing

NLP problems can be formulated using only the decision variables that apply to the route, therefore limiting

the number of decision variables in each NLP route. The number of decision variables per route grows as

process chains grow longer, but not when increasing the number of routes. MINLP problems have to analyse

all decision variables of the entire superstructure at the same time.

The NLP problems do not depend on intermediate values from each other for solving, and can thus be solved

parallel to each other. An octacore processor can therefore solve 8 NLPs at the same time, while for an

MINLP problem the cores cannot be used as efficiently. The parallel nature also allows outsourcing of (part

of) the NLP problems to servers or computer clusters while this would be harder for MINLP problems.

Optimisation tools
Optimisation problems come in many forms and multiple options to solve these problems exist, a

comprehensible explanation of the tools considered for this thesis is given below. The focus lies on providing

a basic understanding how the techniques work rather than a complex mathematical analysis.

Genetic algorithm

The genetic algorithm is based on the principles behind natural selection. A random set of numbers is

evaluated. Successful numbers become parents and create offspring children with similar characteristics. The

new generation of numbers also consists of a few clones of the best scoring parents and some new random

numbers. These new random numbers are called mutations. This is illustrated in figure 4.Over the

generations the population will eventually concentrate on an optimum.

13

Figure 4 illustration of the formation of the new generation in the genetic algorithm.

Branch and bound

The branch and bound method is an important tool for integer or mixed-integer optimisation problems. It is

used to find an optimal discrete value after an optimal continuous solution is found. Figure 5 illustrates this

method. After a non-discrete solution is found, two new optimisation problems are generated with extra

boundaries. For example, if the non-integer optimum is found at a decision variable value of 3.3 while an

integer solution is required, two new problems are generated looking at optimal solutions ≤3 and ≥4 (the

branch). The answers to these new problems are compared, and the path of the lower value is not further

pursued (the bound). This process is repeated until an optimal integer solution is found (Claassen et al,

2007).

Figure 5 Branch and bound method for finding an optimal discretised solution. The white
circles are optimal, non-discrete solutions, the green circles are discrete optimal solutions of
branched optimisation problems and the purple circle is the best discrete solution to the
overall problem. The values in the circles are the objective value function. Source:
http://www.gurobi.com/resources/getting-started/mip-basics

Interior point method

The interior point method is an algorithm that solves optimisation problems in polynomial time by using

Newton’s method, which is illustrated in figure 6. A few modifications are made to an optimisation problem

before Newtons method is applied. A constrained problem is turned into an unconstrained problem by

14

applying either Lagrange multiplier methods or the implementation of logarithmic barrier functions,

depending on the type of constraint (Jensen et al, 2003 for further reading). Newton’s method finds the

intersection of the derivative with the horizontal axis where the original function has an optimum. This is

done by finding the second degree derivative at an initial point in the curve, this second degree derivative is

extended linearly to the horizontal axis. From the X-value at this point, a new second derivative is made and

extended linearly to the horizontal axis e.g. x1 and x2. This process is repeated until the intersection

between the horizontal axis and the first derivative is approached as precise as required.

Figure 6 illustrates the iterative process of Newton’s method to find an intersection with the
x-axis of a curve. The derivative of initial point is X0 is determined and linearly extended to

the x-axis, this gives us the new derivative value of X1. Source:
http://tutorial.math.lamar.edu/Classes/CalcI/NewtonsMethod.aspx

Dynamic programming

Dynamic programming is a method for solving superstructure optimisation problems. The disadvantages of

the method were too large for dynamic programming to be a viable method. Dynamic programming is a

method that solves a optimisation problem by breaking it down into smaller and simpler sub-problems which

are solved individually. The optimal solution for a small sub-problem is quickly found and saved in the

memory. Then a larger sub-problem is formulated which contains the previous-sub problem. Instead of

solving this new sub-problem as a whole, the optimal solution to the first problem is used as a basis

(Claassen et al 2007). This can be illustrated by thinking of the problem and its sub-problems as an onion.

The core of the onion forms the most basic sub-problem. Once a solution to this problem is found, the

problem is expanded by adding an extra layer to the problem. Basically, for each point of a optimisation

problem the optimal solution is listed in a large table. Since no infinite solutions can be stored for continuous

variables, discretisation of variables is required. Discretisation of variables causes rounding errors in each

discretisation, leading to an overall error accumulation throughout the process. This accumulation error is the

reason for abandoning this method.

Route analysis
The number of possible routes through a superstructure grows exponentially with the problem size. You can

analyze the total number of routes through a system by splitting it into smaller pieces and analyzing the

number of routes to reach each subunit. This can be done with the simple equation:

𝑠𝑢𝑏𝑢𝑛𝑖𝑡𝐴 = ∑ # 𝑠𝑢𝑏𝑢𝑛𝑖𝑡 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑠𝑢𝑏𝑢𝑛𝑖𝑡 𝑖𝑛 𝑎 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑠𝑡𝑎𝑔𝑒 𝑡ℎ𝑎𝑡 𝑖𝑠 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 𝑠𝑢𝑏𝑢𝑛𝑖𝑡𝐴 (15)

Where # is “number of possible routes through the superstructure to get to a subunit”. This equation is

applied on each subunit from start to end. Figure 7 illustrates how the number of routes through a

15

superstructure can be calculated. Figures 2 & 3 illustrate the rapid growth of the number of possible routes

through a superstructure when the superstructure increases in size.

Figure 7 Illustration of calculating the number of possible routes through a superstructure.

The numbers in the boxes indicate how many possible routes there are in the superstructure
to get to that particular unit operation from the start. The system is analysed from left to
right by applying eq. 15.

Conceptual superstructure
To create a framework for a superstructure, it is easiest to start with a simple system and gradually add

complexity. Therefore a conceptual superstructure is used, which contains a limited number of routes and

uses simple subunit functions. The main advantage of starting with very simple systems is that all important

elements e.g. number of routes, route composition, proper optimisation, are known by heart by the

designer. This gives the designer the ability to spot problems and flaws in an early stage and correct the

framework accordingly.

The complexity of the subunits does not matter as long as the correct inputs and output formats are used

and generated. As a result the problem in the conceptual superstructure can be a simpler linear

programming problem. The conceptual superstructure used for framework design is shown in figure 8.

Figure 8 The layout of the conceptual superstructure used in framework design. It has 9
subunits (the numbers in the boxes) and 6 possible routes. Subunits will operate in the
following fashion: variable = variable + a random number, for 5 variables.

16

Input format
The goal of the superstructure framework is to solve superstructure optimisation problems, while minimising

the amount of manual input and coding required to do this. Therefore it is important to find the most

condensed form of input that can be used to define a superstructure. For example: a list of decision variables

used per route has thus far been the norm for manual input when it comes to decision variables, while only a

list of which subunits require which decision variable(s) and a list of routes is required to automatically

construct this list. A function providing this list already saves the effort of considering each route again and

summing up the decision variables for this route. This kind of consideration is made for each of the current

manual inputs so a template for minimal input can be derived. The framework uses these inputs to formulate

the entire superstructure as a set of NLP problems in a format that is usable by fmincon for optimisation.

17

Results and Discussion

The Framework
The framework consist of 7 functions. The approach that the framework takes for formulating and optimising

a superstructure is shown in figure 9. Each of the manual inputs as shown in figure 9 are elaborated on in

the following subsections. The framework was made using the exemplary superstructure from the method

section.

Figure 9 The different steps for formulating a superstructure through the framework. The
steps are placed in the white boxes and the function(s) that are used in this step are placed
in blue boxes. A distinction is made between manual input (orange) and actions that are

done automatically by the framework (blue).

Superstructure formulation

The first manual input that needs to be defined is the shape of the superstructure (see Figure 9). The shape

of a superstructure is a description of connections between subunits. There are multiple ways to formulate

the shape. In the methods section the format of describing a superstructure for an MINLP problem was

introduced. The MINLP format of formulating a superstructure shape requires subunits to be placed in certain

levels (e.g. harvesting, disruption, conversion etc.) whereafter “forbidden” connections to the next level are

described. This method has its disadvantages, especially in larger and chaotic systems. An early indication of

one of these disadvantages can be seen in figure 2. One route uses microwave assisted dry conversion,

however, the microwave assisted dry conversion requires a drying step beforehand. This drying step is

currently placed in the disruption level, although it does not perform actual disruption. This does not lead to

any difficulties in this model, but when analysing large and complex superstructures, it becomes harder to

subdivide every subunit in a specific level of the superstructure. To avoid this problem, another method of

describing the shape of a superstructure is proposed that does not have this disadvantage, the so-called

“Arrow Matrix”

18

The Arrow Matrix (AM) describes the superstructure by defining connections that are allowed. The Arrow

Matrix literally describes each “arrow” going from one subunit to the next. One arrow is defined as a 1x2

vector containing the number of the subunit from which the arrow originates to the subunit it points to. An

example: [5,9] would mean that subunit number 5 is compatible with subunit number 9. The AM method

results in an N by 2 matrix. Figure 10 illustrates how the arrowmatrix is made from an exemplary

superstructure.

Figure 10 The arrowmatrix (AM) is made by describing each connection in a superstructure
as a 1x2 vector. E.g., if unit 4 can be followed by unit 7, then [4,7] is added to the AM
(illustrated in orange in the figure).

For Slegers’ (2014) model, which has 126 routes, The AM would result in a 46x2 matrix. This may seem

large, but the input format is so easy that describing 46 connections takes a couple of minutes. The main

advantages of the AM method over the MINLP format are its simplicity, easy modification of the

superstructure and abandon the need to assign a level to each subunit. The latter is especially useful in

complex and chaotic superstructures as seen in Figure 1. In the example given in figures 2 and 3, where one

additional subunit was added to the superstructure in figures 2 & 3, the number of possible routes increased

with 42, while the arrow matrix only increases in size by 9. An increase of 9 rows is even close to a worst

case scenario, as adding a subunit similar to enzymatic direct conversion in this superstructure increases the

size of the arrow matrix by 2 while adding 24 routes to the superstructure.

From the AM a list of all possible routes through the superstructure can be derived. This is done by the

RMTFbuilder. This function can effectively map all possible routes through the superstructure and places

them in a Route matrix (RMF) containing all the function handles in the order of operation. The RMF is used

by following builder functions as well. The RMTFbuilder needs to be able to recognise where to start and

where to end, this is made possible by a fixed subunit, which is always numbered 1 and is placed in front of

the superstructure, and one subunit which is always numbered 0 which is placed at the end of the

superstructure. The last subunit does not require a functions while and the first can be either an empty

function or one where initial values are defined.

19

Function combining

Next to the shape of the superstructure, another task that requires excessive manual work is combining the

functions for all subunits into one function for each route. Each route will be separately optimised. Combining

functions is done by filling in the output of one function as the input of the following function. This action is

performed for each unit in a route from first to last.

For this task to be automated, it is imperative that subunits have compatible inputs and outputs, otherwise it

is simply impossible to achieve. A suggested formulation of inputs and outputs is as follows: There is one

argument that needs iteration over the different subunits, which contains all values for the likes of

concentrations, flows, and energy consumptions (this argument will be referred to as the Primary Component

Matrix (PCM)). This argument is the first input and first output of each subunit function. The second input is

a list of decision variables required for that specific route. All subsequent arguments can contain inputs that

are identical for each subunit function e.g. parameters like, density, viscosity, gas constants etc. As second

output, the value of the objective function is required.

When the requirements of standardised subunit formulation are met, all functions in a route can be combined

into one function for each route. This results in a Route Matrix with Total Functions (RMTF). These functions

will be used in the optimisation process.

Decision variables

The minimal required input to define which decision variables per route are used, is a list of which unit

operation uses which decision variable. This list with Decision Variables per Unit Operation (DVUO) together

with the list of which subunits are used per route, the RMF, can be combined to derive the decision variables

used per route (DVPR). The DVUO is formulated as shown in table 2. The function first recognises which

subunits are used in a route through the RMF and then lists all associated decision variables for that route.

Thereafter, all unique elements from this list are identified, sorted and placed in the DVPR matrix. This

process is done for each route in the RMF.

Table 2 The format for describing decision variables per unit operation, the number of the
row corresponds with the number of the subunit it represents, so the order of this vector is
fixed.

Unit operation (row number): Decision variables used:

1 DV 1

2

3 DV 2, DV 3

4 DV 1, DV 4

Lower and Upper bounds

The minimal required input to define which lower and upper bounds are used per route, is a list of which

decision variable is subjected to which bounds. This is described in the Lower Bounds, Upper Bounds matrix

(LBUB) and is formulated as shown in table 3. The function that is used to build matrices describing the

lower and upper bounds uses the LBUB and DVPR matrices to create the Lower Bound Matrix (LBM) and

Upper Bound Matrix (UBM).

20

Table 3 The format for describing which decision variables are subjected to which lower and

upper bounds, empty bound values are substituted by - infinite and + infinite respectively.

Decision variable (row number): Decision variables used:

DV 1 lower bound value, upper bound value

DV 2 lower bound value

DV 3

DV 4 lower bound value, lower bound value

Non-linear constraints

The key of non-linear constraints is that at one specific subunit in a route, for one specific component, either

the input or output of that subunit is subjected to restrictions. This can be either equality constraints or

inequality constraints. For the inequality constraints, the subjected value can be either greater or equal than

(≥), or smaller or equal than (≤) a given value. The last characteristic causes the non-linear equality and

inequality constraints to be handled slightly different. The minimal input required for the non-linear

constraints consists of:

- The subunit for which these restrictions are applicable.

- The position of the relevant component in the primary component matrix.

- The value of the boundary.

- Whether the boundary value should be compared to the input or the output of the function.

- Whether the value should be greater or equal than (≥), or smaller or equal than (≤) the boundary

value (for inequality constraints only).

A template for defining these values is shown in tables 4 and 5.

Table 4 Format for describing equality constraints, filled with example values.

Subunit

(functionhandle)

Index of component

in PCM

Boundary value Input or output (1 or

0 respectively)

@subunit1 2 21.4 1

@subunit3 6 -80 1

@subunit4 6 40 0

21

Table 5 Format for describing inequality constraints, filled with example values.

Subunit

(functionhandle)

Index of

component in

PCM

Boundary value Input or output

(1 or 0

respectively)

Above or

below

boundary

value (1 or -1

respectively)

@subunit1 4 21.4 1 1

@subunit2 3 4 0 -1

@subunit5 4 50 1 1

There are two reasons why nonlinear constrains are the most complex items to implement. First, they need

to be formulated as a function instead of regular values. Second, they apply to intermediate values within

the route which cannot be found by functions from the RMTF.

The approach for an efficient non-linear constraint function builder is to first create separate matrices for:

- Combined functions of all subunit functions op to (and including if input or output = 1) the subunit

given in column 1 of the constraint matrix for each subunit in the constraint matrix present in a

route. Named Non-Linear (in)equality Constraints functions (NL(i)eqCONf).

- The boundary values corresponding to the functions in NL(i)eqCONf for each route, named Non-

Linear (in)equality Constraint numbers (NL(i)eqCONn.

- A list of indices of the constrained component in the primary component matrix corresponding to the

functions and numbers in NL(i)eqCONf and NL(i)eqCONn, named “Function output indices (in)

equality” (fOutindices(i)eq).

And for inequality constraints only:

- A matrix with multiplication factors, either 1 or -1, to indicate whether the value should be ≥ or ≤

the boundary value given in NLieqCONn.

When these matrices are constructed, it is possible to write a function that gives the equation sets Ci(x) and

Ceq(x) as output required for fmincon. If the above matrices are not pre-constructed, they would have to be

evaluated with every iteration of fmincon, significantly slowing the process to the point of unviability as every

iteration takes approximately a second. By pre-constructing these matrices, only a “read” operation has to

be performed on the matrices.

The final non-linear constraint function evaluates the function from NL(i)eqCONf with the decision variables

and subjects the outcome to the boundary values given in NL(i)eqCONn through the mapping provided by

fOutindices(i)eq. It does so for both equality and inequality constraints to give final values of Ci(x) ≤ 0 and

Ceq = 0 as used by fmincon for each route. This function is called Non-Linear Constraints for fmincon

(NLCONforFmincon).

Optimisation

Every input required for fmincon is described by the framework. These inputs can be combined and

evaluated by fmincon for each route. This is done by a for-loop where every route, i.e. every row, of RMTF,

DVPR, LBM, UBM and the NLCONforFmincon function where NLCONforFmincon is dependend on the PCM,

DVPR, DVIPR, route/row number, NLeqCONf ,NLeqCONn, fOutindiceseq, NLieqCONf, NLieqCONn,

fOutindicesieq and multiplicationfactorieq, is evaluated.

22

Comparing the framework with other methods
The framework was applied to the algae biorefinery superstructure, as shown in table 6. This allowed

comparison to two other methods for formulating a superstructure. The effectiveness of the framework is

evaluated based on time taken, amount of code written and the number of files required to formulate a

superstructure. The other methods are the original method from Slegers 2014 and Houthoff’s MSc thesis

project. The results of this comparison are displayed in table 6.

Table 6 A comparison of different methods of superstructure formulation.

 Enumeration

(slegers,201

4)

NLP optimisation

with manual routing

(Houthoff,2015)

NLP optimisation

through

framework

Number of routes

analysed

126 19 126

Time taken for

formulation

± 9 days

minimum

± 2 days ± 2 hours

Amount of code ± 15.000 lines ± 400 lines ± 250 lines

Number of files

for formulation

and optimisation

2 39

(Would be 253 for 126

routes)

1

The framework significantly reduces the time taken, code used and files used for formulating and optimising

a superstructure compared to the two previously used methods. Furthermore, the framework provides

flexibility to a superstructure and will reduce the risk of forgetting routes. The framework cannot be

compared to an MINLP formulation since there is no data available yet. Further research can provide this

data and complete the comparison.

Challenges

Integer decision variables

The framework work is based on NLP problems. The NLP approach causes a challenge when integer decision

variables are used in the superstructure as those variables cannot be handled by the solver. There are two

possibilities to implement integer decision variables in this framework:

- Implement the integer variable as a continuous variable and round it to an integer within the unit

operation.

- Turn the integer decision variable into extra unit operations for every possible value of the decision

variable and solve it through extra routes instead of as a decision variable.

The first of the options is only suitable for a “large” range of possible values for the decision variable while

the second option is only suitable for a “small” range of values. In this case, large can be defined as >5 and

small as <5.

23

Local versus global optima

The fmincon solver finds a local minimum while global minima need to be found for superstructure

optimisation. A multistart option can be implemented to counter this problem. This can be done by placing

the final for loop that contains the fmincon operation into another for loop that will perform all optimisations

several times. The more times an optimisation is performed, the greater the chance that the global optimum

is found.

Recycling of streams within a route

The modelling of recycling side streams in process systems can be challenging. In this framework it is

currently possible to recycle using fixed side streams through the use of nonlinear equality constrains and it

is possible to recycle within the same unit operation. A small change needs to be implemented to the

function combining process to allow iterative recycling over a multi-unit operation loop. Further research is

required.

24

Conclusion
In the introduction three requirements were posed for this framework. The framework needed to be flexible,

easy to use and applicable to all process related superstructures. The flexibility is realised by the usage of

the arrowmatrix, the addition or deletion of subunits from a superstructure is easy and quick. The framework

is easy in use due to the input formats and minimal manual coding, no advanced understanding of Matlab is

required to apply the framework. The framework is applicable to all process related superstructures due to

the use of NLP problems, which have very reliable solvers.

25

References
Claassen, Hendriks, Hendrix (2007) Decision science. Wageningen, Wageningen academic publishers.

Floudas, C.A. Nonlinear and Mixed-integer optimisation fundamentals and applications. Oxford University

Press, Inc. 1995

Hööka, M., Xu Tangb. Depletion of fossil fuels and anthropogenic climate change—A review. Energy Policy.

Volume 52, January 2013, Pages 797–809.

Houthoff, I. Development of a sustainable biorefinery process from microalgae. Biobased Chemistry and

Technology. MSc thesis, 2015

http://tutorial.math.lamar.edu/Classes/CalcI/NewtonsMethod.aspx, retrieved may 2015.

http://nl.mathworks.com/help/gads/how-the-genetic-algorithm-works.html, retrieved may 2015.

http://www.gurobi.com/resources/getting-started/mip-basics, retrieved may 2015

Kuhn, H.w. Nonlinear Programming: A Historical View. Traces and Emergence of Nonlinear Programming

2014, pp 393-414

Ranjan Parajuli, Tommy Dalgaard, Uffe Jørgensen, Anders Peter S. Adamsen, Marie Trydeman Knudsen,

Morten Birkved, Morten Gylling, Jan Kofod Schjørring, Biorefining in the prevailing energy and materials

crisis: a review of sustainable pathways for biorefinery value chains and sustainability assessment

methodologies, Renewable and Sustainable Energy Reviews, Volume 43, March 2015, Pages 244-263.

Slaper, T, F. Hall, T, J. "The Triple Bottom Line: What Is It and How Does It Work?" Indiana Business Review.

Spring 2011, Volume 86, No. 1. 2011.

Slegers, P.M. Koetzier, B.J. Fasaei, Wijffels, F. R.H. van Straten, G. van Boxtel, A.J.B.A model-based

combinatorial optimisation approach for energy-efficient processing of microalgae, Algal Research, Volume 5,

July 2014, Pages 140-157.

Wang, B. Gebreslassie, B. H. You, F. Sustainable design and synthesis of hydrocarbon biorefinery via

gasification pathway: Integrated life cycle assessment and technoeconomic analysis with multiobjective

superstructure optimization, Computers & Chemical Engineering, Volume 52, 10 May 2013, Pages 55-76,.

Yeomans, H. Grossmann, I.E. A systematic modeling framework of superstructure optimization in process

synthesis. Computers & Chemical Engineering. Volume 23, Issue 6, 1 June 1999, Pages 709–731.

Zondervan, E. Nawaz, M. De Haan, A.B. Woodley, J.M. Gani, R. Optimal design of a multi-product biorefinery

system. Computers & Chemical Engineering. Volume 35, Issue 9, 14 September 2011, Pages 1752–1766

26

Appendix A: The manual

Manual for the superstructure
formulation and optimisation framework
By: Tim Hoogstad, version June 2015

(Matlab version 2014b)

Contents
List of abbreviations .. 27

Scope .. 27

Contents of the toolbox .. 27

Description of functions, inputs and outputs .. 28

BMbuilder .. 28

DVPRbuilder .. 28

NLCONforFmincon .. 28

NLeqCONbuilder ... 28

NLieqCONbuilder .. 29

OG ... 29

RMTFbuilder... 29

Superstructure formulation (inputs and function execution order) ... 31

Step 0. Requirements and framework tuning .. 31

Step 1. Shape formulation and function combination ... 32

Step 2. Defining Decision variables ... 34

Step 3. Defining DV boundaries ... 35

Step 4. Define the non-linear (in)equalty constrains ... 36

Step 5. Define additional parameters ... 36

Superstructure optimising... 37

27

List of abbreviations
Other abbreviations may be from these abbreviations

AM – Arrow Matrix

CON – Constraints

DV – Decision Variable

DVI – Decision Variable Index

Eq – Equality

FHM – Function Handle Matrix

Ieq – Inequality

LB – Lower Bound

NL – Non-Linear

PCM – Primary Component Matrix

PR – Per Route

RMF - Route Matrix with Function handles

RMTF – Route Matrix with Total Functions

UB - Upper Bound

UO – Unit operation

Scope
This framework provides an easy way for superstructure formulation and optimisation, thereby reducing

time-consuming manual input. In the framework the superstructure formulation is done by a series of

functions and requires a limited amount of manual input. The functions formulate the superstructure as a

series of non-linear programming problems, one Non-linear programming problem for each possible route.

Superstructure optimisation is done by solving these NLP problems in Matlab with the function Fmincon.

Contents of the toolbox
The toolbox consists of a script template and the following functions:

- BMbuilder.m

- DVPRbuilder.m

- NLCONforFmincon.m

- NLeqCONbuilder.m

- NLieqCONbuilder.m

- OG.m

- RMTFbuilder.m

First a description of the function inputs and outputs is given, whereafter the functions are applied to an

exemplary superstructure.

28

Description of functions, inputs and outputs

BMbuilder
function [LBM , UBM] = BMbuilder(DVPR, LBUB)

Description

The BMbuilder creates arrays that describe the upper and lower boundaries of decision variables, compatible

with Fmincon.

Inputs

- DVPR, as created by DVPRbuilder

- LBUB, manual input describing the LB and UB per DV

Outputs

- LBM, a matrix listing all lower bounds(columns) applicable in each route(rows) as used by Fmincon

- UBM, a matrix listing all upper bounds(columns) applicable in each route(rows) as used by Fmincon

DVPRbuilder
function [DVPR , DVIPR] = DVPRbuilder(RMF , DVUO, FHM , Order)

Description

The DVPRbuilder creates lists for all decision variables and their index in the order matrix per route

Inputs

- RMF, as created by RMTFbuilder

- DVUO, manual input describing which DVs are used by which UO

- FHM, manual input defining the function handles for each UO

- Order, the order of the decision variables that is handled.

Outputs

- DVPR, DVs(columns) used per route (rows)

- DVIPR, DVIs(columns) used per route (rows)

NLCONforFmincon
function [Ciout,Ceqout] = NLCONforFmincon(Components, DV, routenumber,

NLeqCONf, NLeqCONn, fOutindiceseq, NLieqCONf, NLieqCONn, fOutindicesieq,

multiplicationfactorieq)

Description

Uses premade outputs from other functions and formats them to be compatible and quickly accessible by

Fmincon.

Inputs

- Components, the PCM

- DV, the DVs for the route described in routenumber

- Routenumber, the number of the route

- NLeqCONf, as created by NLeqCONbuilder

- NLeqCONn, as created by NLeqCONbuilder

- Foutindiceseq, as created by NLeqCONbuilder

- NLieqCONf, as created by NLieqCONbuilder

- NLieqCONn, as created by NLieqCONbuilder

- foutindicesieq, as created by NLieqCONbuilder

- multiplicationfactorieq, as created by NLieqCONbuilder

Outputs

- Ciout, describing the inequality constraints in a format compatible with Fmincon

- Ceqout, describing the equality constraints in a format compatible with Fmincon

NLeqCONbuilder
function [NLeqCONf, NLeqCONn, fOutindiceseq] = NLeqCONbuilder(RMF,NLeqCON)

29

Description

NLeqCONbuilder creates one function handle matrix and two arrays describing the non-linear equality

constraints per route.

Inputs

- RMF, as created by RMTFbuilder

- NLeqCON, manual input describing non-linear equality constrains

Outputs

- NLeqCONf, combined functions of the route up to the point where the equality constraint is in place

- NLeqCONn, the value that the outcome of the function described in NLeqCONf needs to match

- fOutindiceseq, the index of the component which is subjected to the constraint in the PCM

NLieqCONbuilder
function [NLieqCONf, NLieqCONn, fOutindicesieq, multiplicationfactorieq] =

NLieqCONbuilder(RMF,NLieqCON)

Description

NLieqCONbuilder creates one function handle matrix and three arrays describing the non-linear equality

constraints per route.

Inputs

- RMF, as created by RMTFbuilder

- NLieqCON, manual input describing non-linear inequality constrains

Outputs

- NLeqCONf, combined functions of the route up to the point where the equality constraint is in place

- NLeqCONn, the value that the outcome of the function described in NLeqCONf needs to match

- fOutindiceseq, the index of the component which is subjected to the constraint in the PCM

- multiplicationfactorieq, an list of indicators whether the function outcome should be above or below

the reference value from NLeqCONn

OG
function varargout = OG(func,outputNo,varargin)

Description

The Output Grabber (OG) grabs the output(s) of your choice for direct input in another function without

needing extra lines of code.

Inputs

- Func, the function it needs to grab the output from

- OutputNo, the number(s) of the output(s) it needs to grab

- Varargin, the original inputs for func

Outputs

- Varargout, the requested output(s) of the function func

RMTFbuilder
function [Routematrixfunctions, RoutematrixTotalfunction] = RMTFbuilder(

Compatibilitymatrix, Functionhandlematrix)

Description

The RMTFbuilder formulates the shape of the superstructure in a forms the basis for the rest of the

framework and describes the combined functions for each route.

Inputs

- Compatibilitymatrix, manual input describing the connections between UOs, also referred to as AM

- FunctionHandleMatrix (FHM) manual input linking to the functions that describe the UOs

30

Outputs

- Routematrixfunctions (RMF), a matrix listing all UOs (columns) per route (rows)

- Routematrixtotalfunctions, a matrix containing one combined function per route describing the entire

route

31

Superstructure formulation (inputs and function execution order)
The general approach and different steps within the framework are summarised in figure 11. Each of the

manual inputs is described in this chapter.

Figure 11 the general approach and steps taken by the framework, a distinction is made between
manual input and automated actions.

Step 0. Requirements and framework tuning

Function formats

Create functions for all UOs with consistent inputs and outputs. Adjust functions RMTFbuilder,

NLeqCONbuilder and NLieqCONbuilder to your function inputs.

The functions that were written for each unit operation have to be uniform in input and output formats. Each

unit has three obliged inputs.

- The Primary Components Matrix (PCM) where every component that requires iteration over the unit

operations is listed e.g. concentrations of compounds, energy consumption and co-streams.

- The Decision Variables Per Route for each route (DVPR) so that fmincon only varies the right DVs.

- The Decision Variables Index Per Route (DVIPR) so that UOs know which DV was originally meant.

On top of these three obligatory arguments additional inputs can be used that describe parameters (par) of

which the value does not change, e.g. densities of compounds, gas constants.

Each function has two obligatory outputs, a new version of the PCM with modified values and the value of the

objective function for the new PCM.

An example of a function and the arguments in Matlab could be:

function [PCM, Objective] = Centrifuge(PCM , DV, DVI, par)

32

Changing function formats in the framework

The framework is adjusted to the previously shown format of inputs and outputs. If you want to add another

input argument there are a few functions in the framework that need to be adjusted. For example, we want

to use the following function format.

function [PCM, Objective] = Centrifuge(PCM , DV, DVI, par, Add)

In RMTFbuilder.m change lines 64 and 67 from:

R = @(PCM,DV,DVI,par) RMF{1,1}(PCM,DV,DVI,par);
RT = @(PCM,DV,DVI,par) RMF{m,n}(R(PCM,DV,DVI,par),DV,DVI,par);

To:

R = @(PCM,DV,DVI,par,Add) RMF{1,1}(PCM,DV,DVI,par,Add);
RT = @(PCM,DV,DVI,par,Add) RMF{m,n}(R(PCM,DV,DVI,par,Add),DV,DVI,par,Add);

In NLeqCONbuilder.m and NLieqCONbuilder.m the same changes have to be made, located on lines 22 & 24

and 24 & 26 respectively.

In NLCONforFmincon.m the following changes have to be made.

Change line 27 to:

[Tempout] = NLeqCONf{routenumber,n}(Components,DV,DVI,par, Add);

Change line 47 to:

[Tempout] = NLieqCONf{routenumber,n}(Components,DV,DVI,par, Add);

Function contents

Within the functions a small operation is required at the start to correctly formulate the decision variables.

This operation ensures that decision variables always have the same index in the input, even when some are

not used in a route. Copy/paste the following to the beginning of all unit operations:

for n = 1:size(DVI,2)
DVnew(DVI(n)) = DV(n);
end
DV = DVnew;

Step 1. Shape formulation and function combination
This step takes you through the process that converts a superstructure from paper to the format used in this

framework by using a small exemplary superstructure, which is shown in figure 12.

33

Figure 12 Exemplary superstructure

In the superstructure add a UO to the beginning and end of the superstructure then number all UOs, the

result is shown in figure 13. The first one has to be number 1, the final one has to be number 0.

Figure 13 the superstructure after numbering and adding a function at the start and end

Now the Arrow Matrix (AM) can be produced. The arrow matrix is a n by 2 array. Where n stands for the

total amount of connections between Unit Operations. Each row n describes one connection in the

superstructure. The format of AM and how it is produces is illustrated in figure 14.

34

Figure 14 The format and production of the Arrow Matrix

Besides the AM, also the Function Handle Matrix (FHM) needs to be made. For the conceptual superstructure,

the FHM would be the following:

FHM(1) = {@UOstart};
FHM(2) = {@Cent};
FHM(3) = {@Floc};
FHM(4) = {@Cent2};
FHM(5) = {@Filtr};
FHM(6) = {@Beadmill};
FHM(7) = {@Enzym};
FHM(8) = {@SCmeth};

Note how the row number corresponds to the given UO number. UOstart is an empty function defining the

starting point of the superstructure. UO labelled with “0” is just a concept indicating the end, it does not

need a function.

Run the RMTFbuilder as shown in the template script.

Step 2. Defining Decision variables
For structure and formulation of the remaining problem, it is best that the decision variables are in a fixed

order and defined in a structure array. The order does not matter as long as it is consistent. This can be

done in Matlab in the following manner:

DV =

struct('Confac',1,'Floccon',2,'Beadfill',3,'Cooling',4,'ExtracTemp',5,'MethFlo

w',6);

Order = [DV.Confac DV.ConChi DV.Beadfill DV.ExtracTemp1 DV.ExtracTemp2

DV.MethFlow];

Note: The actual initial values for the decision variables are defined just before optimisation.

The minimal required input to define which decision variables per route are used, is a list of which unit

operation uses which decision variable. This list with Decision Variables per Unit Operation (DVUO) together

with the list of which subunits are used per route, the RMF, can be combined to derive the decision variables

used per route (DVPR). The DVUO is formulated as shown in table 7.

35

Table 7 The format for describing decision variables per unit operation, the number of the row
corresponds with the number of the subunit it represents, so the order of this vector is fixed.

Unit operation (row number): Decision variables used:

1
2 DV 1
3 DV 1, DV 2
4

5
6 DV 3, DV 4
7 DV 5
8 DV 6

In Matlab this would look like:

DVUO{1} = [];
DVUO{2} = [DV.Confac];
DVUO{3} = [DV.Confac DV.Floccon];
DVUO{4} = [];
DVUO{5} = [];
DVUO{6} = [DV.Beadfill DV.cooling];
DVUO{7} = [DV.ExtracTemp];
DVUO{8} = [DV.MethFlow];

Run the DVPRbuilder as shown in the template script.

Step 3. Defining DV boundaries

Lower and Upper bounds

The required input to define which lower and upper bounds are used per route, is a list of which decision

variable is subjected to which bounds. This is described in the Lower Bounds, Upper Bounds matrix (LBUB)

and is formulated as shown in table 8.

Table 8 The format for describing which decision variables are subjected to which lower and upper
bounds, empty bound values are substituted by - infinite and + infinite respectively.

Decision variable (row number): Decision variables used:

DV 1 lower bound value, upper bound value
DV 2 lower bound value, upper bound value
DV 3 lower bound value, upper bound value
DV 4 lower bound value, upper bound value

DV 5 lower bound value, upper bound value
DV 6 lower bound value, upper bound value

Or in Matlab syntax for our sample superstructure:

LBUB(1,:) = [DV.Confac, 1,40];
LBUB(2,:) = [DV.Floccon, 0.001,0.151];
LBUB(3,:) = [DV.Beadfill, 75,85];
LBUB(4,:) = [DV.Cooling, 513,533];
LBUB(5,:) = [DV.ExtracTemp1, 308,348];
LBUB(6,:) = [DV.MethFlow, 0.01,10];

Run the BMbuilder as shown in the template script.

36

Step 4. Define the non-linear (in)equalty constrains
Create NLeqCON and NLieqCON and execute NLeqCONbuilder and NLieqCONbuilder

The input required for the non-linear constraints consists of: the subunit for which these restrictions are

applicable, the position of the relevant component in the primary component matrix, the value of the

boundary, whether the boundary value should be compared to the input or the output of the function, and,

for inequality constraints only, whether the value should be greater or equal than (≥), or smaller or equal

than (≤) the boundary value. A template for defining these values is shown in tables 9 and 10.

Table 9 Format for describing equality constraints, filled with example values.

Subunit (functionhandle) Index of component in PCM Boundary value Input or output (1 or 0
respectively)

@UO1 2 80 1

@UO3 6 -80 1
@UO4 6 90 0

Table 10 Format for describing inequality constraints, filled with example values.

Subunit
(functionhandle)

Index of component in
PCM

Boundary value Input or output (1 or 0
respectively)

Above or below
boundary value
(1 or -1
respectively)

@UO2 3 4 0 -1
@UO5 4 50 1 1

In Matlab this would look like:

NLeqCON(1,:) = {@Cent2, 2, 80, 1};
NLeqCON(2,:) = {@Filtr, 6, -80, 1};
NLeqCON(3,:) = {@Beadmill, 6 ,90 ,0};

NLieqCON(1,:) = {@Beadmill, 3, 4, 0, -1};
NLieqCON(2,:) = {@SCmeth, 4, 50, 1, 1};

Run the NLeqCONbuilder and NLieqCONbuilder as shown in the template script.

Step 5. Define additional parameters
Define all additional parameters your superstructure requires.

37

Superstructure optimising
Each route is analysed separately as an NLP. This is done by using a for loop with an increasing

routenumber. In accordance with the routenumber, specific information is extracted from the RMTF, DVPR,

DVIPR etc. and put in a temporary vector. In this for loop, the initial values for the components in the PCM

and the initial values for the decision variables need to be defined. The outcome of the optimisation by

Fmincon is rerun through the function from RMTF to gain the outcome of the objective function. These values

are stored in two result matrices. All these operations are uniform and premade in the template script.

Run the premade optimisation section from the template script.

Matlab will still assign values from non-successful optimisations to the result matrices. Therefore rerun the

optimisation specifically for the best few outcomes to see if indeed an optimal solution was found.

