Research evaluation in the

Netherlands: a library perspective

Wouter Gerritsma, Library Wageningen UR

Introduction

- Research evaluation in the Netherlands
- Bibliometric evaluation
- Impact factors
- Citation analysis

Research evaluation in the Netherlands

- Based on a 6 year cycle
 - Supervised by Quality Assurance Netherlands Universities (QANU).
 - Standard Evaluation Protocol (SEP)
 http://www.vsnu.nl/web/show/id=53923/langid=43/; in English)
 - Self assessments and external reviews

SEP criteria

- Quality
- Productivity
- Relevance
- Vitality

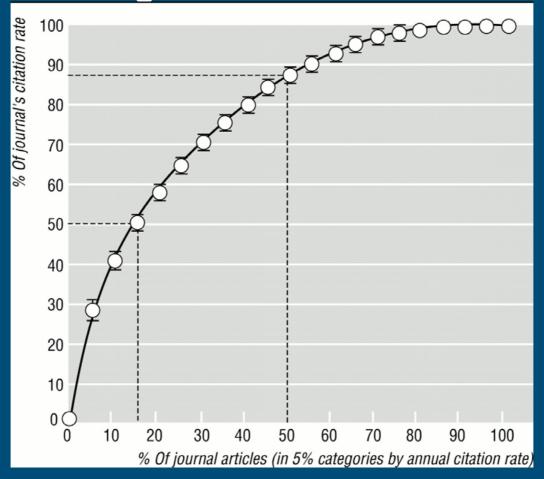
Procedures

- External reviews are internally prepared
 - Productivity is extracted from publication databases (repositories play an important role)
 - Relevance, bibliometric analyses do play a role
 - Vitality, SWOT analyses are popular.

Bibliometrics analyses

- Bibliometric analysis is not stipulated by the SEP
- It is valued by the preparing committee
 - Used internally to judge researchers and research groups
 - Not always used by the peer review committee

Bibliometric analysis


A word of warning: Impact factors

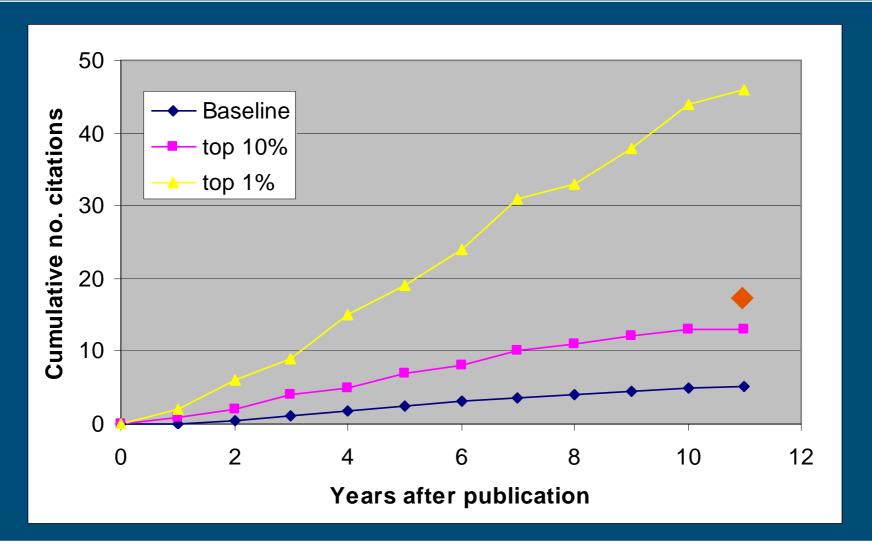
- Measure for the quality of journals
 - "... it is also used for assessment of the quality of individual papers, scientists and departments. For the latter a scientific basis is lacking, as we will demonstrate in this contribution" (Opthof, 1997)

Opthof, T. (1997). Sense and nonsense about the impact factor. *Cardiovascular Research* 33(1): 1-7. http://dx.doi.org/10.1016/S0008-6363(96)00215-5

50 % of articles generate 90% of citations

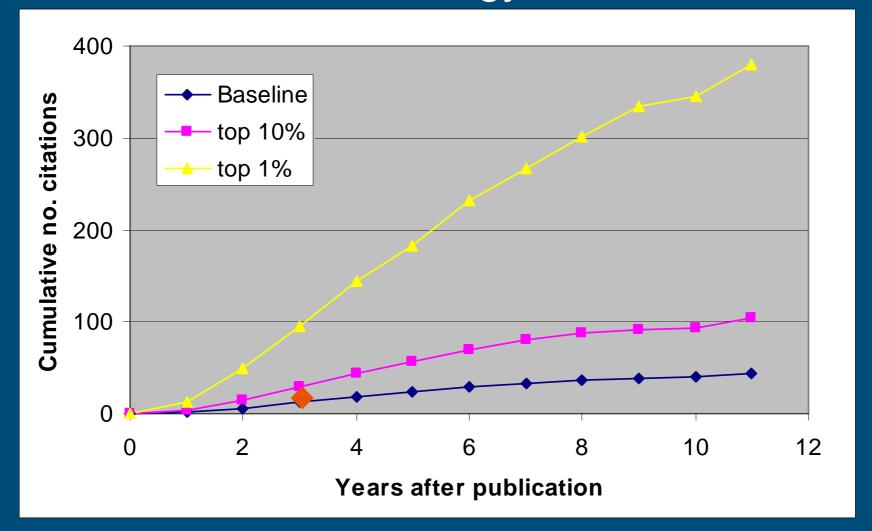
Seglen, P. O. (1997). Why the impact factor of journals should not be used for evaluating research. *BMJ* **314**(7079): 497-502. http://bmj.bmjjournals.com/cgi/content/full/314/7079/497

Bibliometric analysis


Citation data can be derived from many resources The main question is:

How do we compare numbers?

- Scientist Z. Math has a publication from 1996 with 17 citations
- Scientist M. Biology has a publication from 2003 with 24 citations

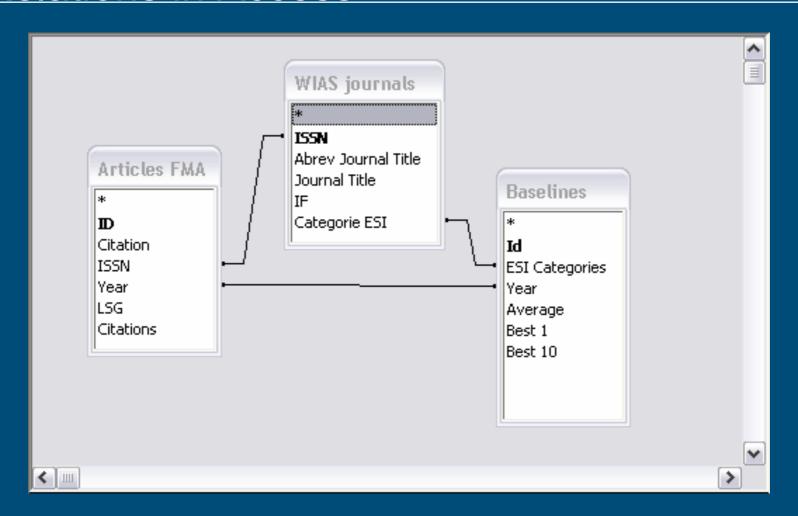


Baseline mathematics

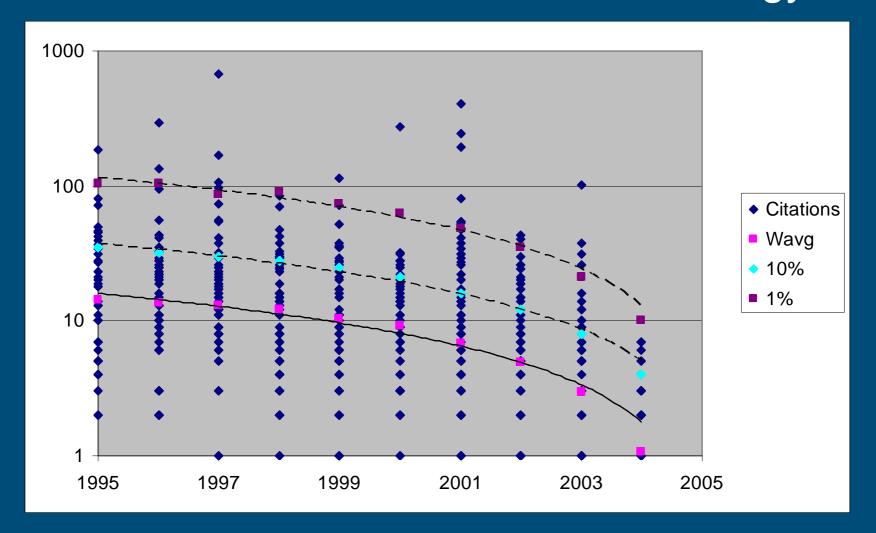
Baseline Molecular Biology

Essential Science Indicators (ESI)

- Database that presents analyses of the most recent (10 years + year building) data from SCI
- Comparisons between countries, institutes, researchers en journals
- Hot papers
- Research fronts
- Baselines



Steps in citation analysis


- On the basis of authors names, all publications are checked for citations in WoS, downloaded to EndNote, subsequently to Access
- Baselines are retrieved from ESI
- Journals categories are checked in ESI
- The three tables are linked by ISSN and category names
- Analyses are made for authors, research groups and Institutes

Relations in Access

Graduate School in Environment/Ecology

Evaluation of a research institute

	All groups	Group 1	Group 2	Group 3
Agricultural Sciences	3,82	3,86	3,87	3,60
Biology & biochemistry	0,91	1,55	0,44	1,09
Chemistry	1,76		1,76	
Clinical medicine	1,73	1,81	1,11	
Microbiology	1,70	0.57		1,73
Overall impact	2,06	2,08	2,26	1,84

Evaluation of candidates

Author	# Papers 1994-2003	#Citatio ns	Relative Impact	RI 1994- 1998	RI 1999- 2003	#pape rs top 10%	#pape rs top 1%
а	80	1565	1,64	1,76	1,52	4	2
b	65	498	1,93	1,84	1,95	17	1
С	93	972	1,15	1,39	0,9	8	0
d	88	1886	1,86	1,69	1,94	16	3
е	57	346	0,75	0,58	0,83	3	0

Tools at hand

- Subscription citation products
 - Web of Science (WOS) (= Science Citation Index)
 - Essential Science Indicators (ESI)
 - Scopus (new, Elsevier product)
- Free available Web services
 - Google Scholar http://scholar.google.com/
 - Citeseer http://citeseer.ist.psu.edu/
 - Smealsearch http://smealsearch2.psu.edu/

Scopus

- Scopus has some important advantages
 - Comprehensive citation reports
 - Substantially larger journal base
 - Author disambiguation
 - Cooperation with third parties
 - Institute disambiguation

Thank you for your attention

© Wageningen UR

