Comparative monitoring of knowledge for climate closing conference

This research was funded by:

Rathenau Instituut
Participants

- Adam Parris  
- Asher Minns  
- Barend van der Meulen  
- Bjorn-Ola Linnér  
- Edwin Horlings  
- Elizabeth Koier  
- Patrick Monfray  
- Pier Vellinga  
- Richard Klein  
- Roger Street  
- Roland Scholz  
- Stefan de Jong  
- Suraje Dessai  
- Tjerk Wardenaar  
- Wouter Boon

NoAA RISA
Tyndall Centre
Rathenau Instituut
NORD-STAR
Rathenau Instituut
Rathenau Instituut
JPI Climate
Knowledge for Climate
Stockholm Environment Institute/NORD-STAR
UKCip
ETH Zürich
Rathenau Instituut
University of Leeds
PNO Consultants
Utrecht University
Comparative Monitoring of Knowledge for Climate

• What factors influence the organization, dynamics and outcomes of large scale multi-actor, multi-measure research programmes (MAPs)?

• Our aim is to inform policy makers and research managers on how to improve and optimize the execution of MAPs with the ultimate goal to improve societal impact in addition to scholarly quality.
Goals of the workshop

1. Exchanging shared problems and attempts to solve them
2. Testing the general applicability of the project’s results
3. Formulating new research questions
Overarching results

1. Every major effort to address a grand societal challenge should contain an element of knowledge co-production

2. Knowledge co-production is not (yet) self-evident. It needs to be actively organised.

3. The organisation of knowledge co-production should be sound for it to live up to its promises, which involves:
   1. aligning incentives and protecting participants
   2. organising for impact
   3. training and skills
The organisation of transdisciplinary research programmes and projects

Wouter Boon
Utrecht University
Involvement of stakeholders

- Stakeholders can be sponsors, informants, recipients, shapers, reviewers, reflectors, or centrals

- Programmes organise stakeholder involvement differently

- Challenges: matching local needs; traditional and transdisciplinary science; providing access to poorly organised stakeholders
Early user involvement

• Close association between the involvement of stakeholders in the proposal phase and in the funded programme itself:
  – User involvement in the proposal phase raises the likelihood of actual involvement during the programme
  – User involvement in the proposal phase raises the likelihood of financial contributions to the programme
Programmes as research coordination

• Multi-actor research programmes can be seen as an instrument for research coordination

• Consortia’s network composition at the outset influenced their coordination approach
  − Network administrative organisation
  − Lead organisation governed network
  − Repercussions for openness, clique forming, etc.
Local transdisciplinary projects

6 augustus 22:00 – 24:00 LT

Urban heat island?

Health impact?

Innovative measures?

Heusinkveld et al. (2011)
Out of their comfort zone...

- Scientific knowledge production with strong societal interest, contextualised local knowledge base

- Team of (knowledge) producers and users: diverse backgrounds
Challenge 1

- Balance the convergence and divergence of epistemic contributions

- Management during project is less important than careful balancing of divergence and convergence during the design stage of projects
  - project structure, level of partner diversity, project size
Challenge 2

- Important but vulnerable: ‘home organizations’ of team members value knowledge products differently

- Protection: large-scale research programme creates safe haven
  - Alignment of incentive systems is important (shielding)
  - Organisation of work (nurturing)
  - Creating narrative and championing (empowerment)
Thank you for your attention!

Wouter Boon (w.p.c.boon@uu.nl)
Research questions

• Questions:
  1. Protection: what is the role of users in creating and maintaining niche boundaries?
  2. Aggregation: how do niche products relate to other user locales, practices and situations?
Evaluation of transdisciplinary research

Local contributions poorly represented in WoS

Authorships poorly reflect input societal actors

Too early to introduce altmetrics

Science System Assessment

Societal debate → Focus on wide range of societal actors

Investments → Involvement of societal actors in research
ORGANIZATION OF CLIMATE PROGRAMMES
Qualitative case study

ORGANIZATION OF CLIMATE PROGRAMMES
Qualitative case study

ORGANIZATION OF CLIMATE PROGRAMMES
Qualitative case study

ORGANIZATION OF CLIMATE PROGRAMMES

- Grants and innovation consultancy
- Offices in Belgium, France, Germany, Italy, the Netherlands, UK
- Consultant Energy & Environment
Qualitative case study

ORGANIZATION OF CLIMATE PROGRAMMES

Client ambitions

INITIATE

Project opportunity

Linking clients

APPLICATION

REALISE

Public ambitions
Survey on research context and skills

ORGANIZATION OF CLIMATE PROGRAMMES

• Comparative study (MAPs vs traditional)
• PhDs from NL and UK
• 167 filled-out questionnaires (41% resp.)
• Items on:
  – Research context / project characteristics
  – Skill development
  – Personality type / individual characteristics
PhDs that participate in MAPs:

- Work more often in multidisciplinary research projects (NL, UK)
- Have a larger involvement of stakeholders in their project (NL, UK)
- Are more involved in society-oriented activities, like giving policy workshops (NL, UK)
- Produce more society-oriented output, like newspaper articles (NL)

- Report higher translation & dissemination skills, like developing work relations with people for business/government (NL, UK)
- Report higher transferable skills, like project management (NL, UK)

- No differences between MAP and other PhDs on academic research and communication skills
MAPs can play a larger role:

**ORGANIZATION OF CLIMATE PROGRAMMES**

- Observed differences between MAPs and traditional trajectories small
- Variances within MAPs large:
  - Large proportions of MAP PhDs have “traditional trajectory”

How?

- More focus on characteristics of PhD projects in MAPs
- More focus on supervision of PhDs
- More focus on individual characteristics in hiring procedures
Thanks!

ORGANIZATION OF CLIMATE PROGRAMMES

Tjerk Wardenaar MA MSc
Consultant Energie & Milieu | PNO Consultants
+31 6 5277 2204 | tjerk.wardenaar@pnoconsultants.com
Qualitative case study

ORGANIZATION OF CLIMATE PROGRAMMES
Qualitative case study

ORGANIZATION OF CLIMATE PROGRAMMES
Qualitative case study

ORGANIZATION OF CLIMATE PROGRAMMES

- Grants and innovation consultancy
- Offices in Belgium, France, Germany, Italy, the Netherlands, UK
- Consultant Energy & Environment
Qualitative case study

ORGANIZATION OF CLIMATE PROGRAMMES

Client ambitions

INITIATE

Project opportunity

APPLY

Linking clients

REALISE

Public ambitions
Survey on research context and skills

ORGANIZATION OF CLIMATE PROGRAMMES

• Comparative study (MAPs vs traditional)
• PhDs from NL and UK
• 167 filled-out questionnaires (41% resp.)
• Items on:
  – Research context / project characteristics
  – Skill development
  – Personality type / individual characteristics
PhDs that participate in MAPs:

- Work more often in multidisciplinary research projects (NL, UK)
- Have a larger involvement of stakeholders in their project (NL, UK)
- Are more involved in society-oriented activities, like giving policy workshops (NL, UK)
- Produce more society-oriented output, like newspaper articles (NL)
PhDs that participate in MAPs:

- Work more often in multidisciplinary research projects (NL, UK)
- Have a larger involvement of stakeholders in their project (NL, UK)
- Are more involved in society-oriented activities, like giving policy workshops (NL, UK)
- Produce more society-oriented output, like newspaper articles (NL)

- Report higher translation & dissemination skills, like developing work relations with people for business/government (NL, UK)
- Report higher transferable skills, like project management (NL, UK)
**PhDs that participate in MAPs:**

- Work more often in multidisciplinary research projects (NL, UK)
- Have a larger involvement of stakeholders in their project (NL, UK)
- Are more involved in society-oriented activities, like giving policy workshops (NL, UK)
- Produce more society-oriented output, like newspaper articles (NL)

- Report higher translation & dissemination skills, like developing work relations with people for business/government (NL, UK)
- Report higher transferable skills, like project management (NL, UK)

- No differences between MAP and other PhDs on academic research and communication skills
MAPs can play a larger role:

- Observed differences between MAPs and traditional trajectories small
- Variances within MAPs large:
  - Large proportions of MAP PhDs have “traditional trajectory”
MAPs can play a larger role:

- Observed differences between MAPs and traditional trajectories small
- Variances within MAPs large:
  - Large proportions of MAP PhDs have “traditional trajectory”

How?

- More focus on characteristics of PhD projects in MAPs
- More focus on supervision of PhDs
- More focus on individual characteristics in hiring procedures
Thanks!

Tjerk Wardenaar MA MSc
Consultant Energie & Milieu | PNO Consultants
+31 6 5277 2204 | tjerk.wardenaar@pnoconsultants.com
Science System Assessment
Methodology

• Operationalization of (sub)concepts
• 17 projects
• In-depth interviews
• Document analysis
• Analysis in progress: in-depth results of 1 case presented here
Science System Assessment

- Community
- Home organisation
- Niche

Local vs. Global
1. Set-up of niche boundaries?

- Key processes in niche protection (Smith & Raven, 2012)
1. Set-up of niche boundaries?

Science System Assessment

- **Pre-project**
  - 2007: IPCC report
  - 2 university groups, 1 consultancy company

- **Agenda-setting**
  - 2008: Start CCSP definition study Heat in the City
  - 3 university groups, 3 research institutes

- **Project**
  - 2009: Start KfC project
  - 3 universities groups, 2 research institutes, 2 municipalities

- **Follow-up project**
  - 2010: Policy workshop Heat stress Rotterdam
  - 2 university groups, 4 research institutes, 2 consultancy companies, 6 municipalities

- 2011: End presentation KfC project
- 2012: Science System Assessment

- **Key Processes:**
  - Shielding
  - Nurturing: network building, learning, expectations
  - Empowerment
2. Aggregation of niche results

- Niche
  - Nurturing
    - Network building
    - Expectations
    - Learning
  - Shielding
  - Empowering

- Home organisations

- Community of Practice
- Scientific community
- Etc.

- Aggregation
- Framing

Local level

Global level
2. Aggregation of niche results

- Struggle to align with rules of ‘home organizations’; representation
- Link to ‘global’ community but leave room for local interpretations as articulated by users
- Geographical dispersion: choice for skills; knowledge is tacit and ‘unsticky’
Conclusions

• Users co-produce niche boundaries through shielding, nurturing and empowering
• Empowerment: users co-produce narrative (vis-à-vis anti-narratives)
• Protection and aggregation: incentives; transfer; representation
Discussion

• Currently, 15 projects studied in Knowledge for Climate

• Further research: comparison to other projects in which protection is differently organized:
  − other programmes?
  − monodisciplinary projects?
  − other sectors?
  − other kinds of users?
Evaluation of transdisciplinary research

• Classical output indicators fall short
• Scientific output does not adequately represent the nature and design of transdisciplinary research programmes or the process of knowledge co-production
• The societal impact of a transdisciplinary programme is multidimensional. There are different types of impact, achieved through a range of channels.
• Achieving specific impacts requires a custom organisation: every type of impact is associated with different variables.
Training of early career scientists

• Collaborative PhD training trajectories impart a broader set of skills.

• An optimal effect of collaborative training trajectories on skill development depends on three conditions.
  • PhD students should be exposed to and participate in actual multi- and transdisciplinary processes.
  • The development of a broader set of skills depends on involvement in both academic and society-oriented activities and processes. A challenge-driven approach should be an addition to rather than a substitute for an academic outlook.
  • Most of the variance in skill development is explained by initial skill levels, mindset, and attitude.