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Abstract 
The most important quality attribute of fresh beef is its colour. The colour of meat depends on 

three forms of myoglobin. The centre of the meat contains deoxymyoglobin and gives it its 

purple colour. The outside of the meat, which is in contact with oxygen, contains oxymyoglobin. 

This gives the meat its desirable red colour. In time, these two forms of myoglobin are 

transformed to metmyoglobin. Metmyoglobin is responsible for the undesirable brown colour. 

Factors involved in the discolouration of beef are autoxidation, metmyoglobin reductase activity 

and oxygen consumption rate. Discolouration is not caused by one factor, but by a combination 

of several technological, intrinsic and extrinsic factors. 

The aim of this thesis is to investigate the possibility of a relationship between the instrumental 

colour measurements (RGB measurement) and myoglobin. 

In this research rib eye was used which was cut out of one animal to reduce some technological, 

intrinsic and extrinsic factors. Meat samples were packaged aerobically and in modified 

atmosphere (MA) (60% 0 2 , 30% C0 2 , 10% N^ and stored in cold storage rooms at 2°C and 

7°C. The colour of the meat was measured in R-, G- and B-values using a digital camera and a 

computer program. Determination and quantification of the three forms of myoglobin was done 

by using the method of Krzywicki. 

It was not possible to relate beef colour to myoglobin using a digital camera and computer 

software. 

Measuring the R-, G- and B-values, the surface method was found to be more accurate than the 

point measurement. 

With the pigment analysis method of Krzywicki it was not possible to distinguish between 

deoxymyoglobin and oxymyoglobin. During the extraction deoxymyoglobin was converted to 

oxymyoglobin. Nevertheless the method was suitable for the quantification of oxymyoglobin and 

metmyoglobin. 

During the experiment the R-value of the aerobic samples declined fastest. The R-value became 

less than at day 0 after 2 (7°C) and 6 (2°C) days. A lower storage temperature results in a longer 

colour stability of the meat. The MA packaged meat remained red for the duration of the 

experiment. In none of the experiments changed the G- or B-value considerably in time. 

In all experiments the percentage of oxymyoglobin and metmyoglobin showed a tendency with 

the corresponding R-values, but the correlation coefficient was low. Against all expectations, no 

analytical relation could be made between the R-value and the percentage of oxymyoglobin. This 

was caused by the large biological variation in meat colour, the inaccuracy of the RGB measuring 

method and the method of Krzywicki. 

All meat samples showed the relation that when the percentage of oxymyoglobin decreased, the 

percentage of metmyoglobin increased. Meat stored at 7°C showed an accelerated increase in the 

percentage of metmyoglobin and a decrease in the percentage of oxymyoglobin in relation to 

meat stored at 2°C. 

R-, G- and B- values can be used as an indication to estimate the pigment composition of the 

meat. This is nothing more than a superficial relation. 
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Samenvatting 
Het meest belangrijke kwaliteitsatribuut van vers rundvlees is de kleur. Kleur van het vlees hangt 

af van de drie verschillende vormen van myoglobine. De kern van het vlees bevat 

deoxymyoglobine en heeft een paarse kleur. De buitenkant van het vlees, dat in contact staat met 

zuurstof, bevat oxymyoglobine. Dit geeft het vlees de gewenste rode kleur. Na verloop van tijd 

worden deze twee vormen myoglobine omgezet in metmyoglobine. Metmyoglobine is 

verantwoordelijk voor de ongewenste bruine kleur van vlees. 

Factoren die betrokken zijn bij de verkleuring van rundvlees zijn auto-oxidatie, metmyoglobine 

reductase activiteit en het zuurstof consumptie niveau. Verkleuring van vlees wordt niet 

veroorzaakt door één enkele factor, maar door een combinatie van verschillende technologische, 

intrinsieke, en extrinsieke factoren. 

Het doel van dit onderzoek is om een relatie aan te tonen tussen de instrumentele kleur van 

rundvlees en myoglobine. 

In dit onderzoek zijn riblappen gebruikt, afkomstig uit één dier om verschillende technologische, 

intrinsieke en extrinsieke factoren te elimineren. Het vlees werd verpakt in omgevingslucht en in 

veranderde gassamenstelling (60% 0 2 , 30% C0 2 , 10% NJ en opgeslagen in koelcellen van 2°C 

en 7 C. De kleur van het vlees werd gemeten als rood, groen en blauw (RGB) waarde met behulp 

van een digitale camera en computerprogramma met de naam Peer V i l . Het isoleren en 

kwantificeren van de drie vormen van myoglobine werd gedaan met behulp van de methode van 

Krzywicki. 

Het was niet mogelijk om de kleur van rundvlees te relateren aan myoglobine met behulp van een 

digitale camera en computersoftware. 

Voor het meten van de RGB waarde bleek de oppervlaktemethode nauwkeuriger dan de 
puntmethode. 

De methode van Krzywicki bleek niet in staat om deoxymyoglobine en oxymyoglobine apart te 
detecteren. Tijdens de extractie werd deoxymyoglobine meteen omgezet in oxymyoglobine. 
Desondanks was de methode geschikt voor de kwantificatie van oxymyoglobine en 
metmyoglobine. 

Bij de in omgevingslucht verpakte vleesmonsters daalde de R-waarde het snelst. De R-waarde 

daalde onder het niveau van dag nul na 2 (7°C) en 6 (2°C) dagen. Opslag bij een lagere 

temperatuur zorgt voor een langere kleur stabiliteit. Het vlees verpakt onder veranderde 

gassamenstelling bleef tijdens het hele experiment rood van kleur. De G- en B-waarde 

veranderde niet noemenswaardig veel gedurende het experiment. 

In alle experimenten vertoont het percentage oxymyoglobine en metmyoglobine een duidelijke 

tendens met de gemeten R-waarde, maar de correlatie coëfficiënt is laag. In tegenstelling tot alle 

verwachtingen kon er geen analytisch verband worden aangetoond tussen de gemeten R-waarde 

en het percentage oxymyoglobine. Dit werd veroorzaakt door de grote biologische variatie in de 

kleur van het vlees en de onnauwkeurigheid van de RGB meetmethode en de methode van 

Krzywicki. 
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Bij alle vleesmonsters steeg het percentage metmyoglobine als het percentage oxymyoglobine 

daalde. Vlees dat bij 7°C is opgeslagen vertoonde een versnelde toename van het percentage 

metmyoglobine en afname in het percentage oxymyoglobine ten opzichte van vlees opgeslagen 

bij 2°C. 

Rood, groen en blauw waarden van vlees kunnen worden gebruikt als een indicatie voor het 

voorspellen van de pigment samenstelling in het vlees. Dit is niet meer dan een oppervlakkige 

relatie. 
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1 Introduction 

The most important factor on which consumers base their judgement of a piece of meat is 

appearance. Appearance determines how consumers perceive quality and significantly influence 

purchasing behaviour. Therefore it is commercially important to understand the mechanisms 

how appearance of the meat changes in time. 

Appearance is based on the combination of several factors. One of those factors is the colour of 

meat. The colour of meat is caused by myoglobin. Myoglobin is a haem protein and in the meat it 

is present in three different forms. These are deoxymyoglobin, oxymyoglobin and metmyoglobin. 

Meat colour depends on the ratio in which these three forms of myoglobin are present. When a 

piece of meat is cut, the centre has a purplish like colour, because the majority of the myoglobin 

is present in the deoxymyoglobin form. Consumers prefer the meat to have a bright red colour, 

which is present when the majority of the myoglobin is present in the oxymyoglobin form. In 

time, the two forms of myoglobin mentioned before are transformed to metmyoglobin. This 

gives the meat its undesirable brown colour. 

The colour and discolouration of the meat depends on different factors. No single factor is 

responsible for the colour and discolouration of the meat. Some of these factors are the history 

of the animal, muscle type, storage and display conditions. In order to research the impact of 

these factors on the colour of meat it is necessary to determine the amount, and in which form, 

the myoglobin is present. The method that is used until now relies on the extraction and 

quantification of the three forms of myoglobin out of the meat. This is a time consuming 

process. This study attempts to relate the instrumental colour to the amount of the related forms 

ot myoglobin. In this way it is less time consuming to determine the amount and form of 

myoglobin. 

1.1 Aim 

A new technology of measuring colour is using a digital camera in combination with computer 

software. In this way, the colour of the meat can be defined as an R-, G- and B-value instead of 

lor example L a b . The aim of this thesis is to investigate the possibility of a relationship between 

the instrumental colour measurements (RGB measurement) and myoglobin. The two objectives 

are to optimise the instrumental colour measurement and to find an accurate method to quantify 

the different forms of myoglobin in the meat. 
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2 Literature review 

Consumer's preferences for meat, from a sensory standpoint are influenced by appearance, 

tenderness, flavour and juiciness. The most important of these is appearance. Appearance 

determines how consumers perceive quality and significantly influences purchasing behaviour 

(Resurreccion, 2003). 

The typical red colour of fresh meat can change during time to a less desirable brown colour. 

This is caused by the oxidation of the myoglobin, which gives the meat its red colour. 

2.1 Myoglobin 

Mac 

Figure 2.1: Structural representation of myoglobin (Hutchings, 1994). 

Myoglobin is the haem protein primarily responsible for meat colour. In the living cell, it serves 

both as an oxygen storage and oxygen deliver}' function. The exact length of the polypeptide 

chain of myoglobin is species dependent, but contains approximately 153 amino acids in 

mammals and a secondary structure which is 80% alpha helix (Faustman and Cassens, 1990). 

Myoglobin is a monomeric, globular haem protein with a molecular weight of approximately 

17.000 D. It possesses a haem prosthetic group, which is responsible for oxygen binding and 

confers an intense red or brown colour on the protein (Renerre, 1990). The haem prosthetic of 

myoglobin is composed of an iron atom, which is bound within a protoporphyrin ring by four of 

the iron atom's six co-ordination sites. The haem group is attached to the apoprotein at the fifth 

co-ordination site by a bond between the iron atom and a histidine residue. The sixth site is 

available for binding a variety of ligands (Faustman and Cassens, 1990). 

The globin portion of the molecule serves to confer water solubility upon the hydrophobic haem 

group and protects the haem iron from oxidation (Comforth and Jayasingh, 2004). 

The haem iron may exist in a reduced ferrous (Fe+2), or oxidized ferric (Fe+3) form. Ferrous haem 

iron, that contains water at the sixth site is, called deoxymyoglobin. A piece of meat in which 

myoglobin is the predominant pigment form will appear purplish-red in colour. When oxygen 

occupies the sixth site of the ferrous haem, oxymyoglobin is formed. Oxymyoglobin is 
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responsible for the desirable cherry-red colour of fresh meat. These two reduced forms of 

myoglobin can be oxidized to the undesirable brownish red metmyoglobin, in which the haem 

iron is converted to the ferric state and water occupies the sixth site. Metmyoglobin is incapable 

of binding oxygen and is therefore physiologically inactive. Oxymyoglobin is more stable towards 

oxidation than deoxymyoglobin, due to hydrogen bonding between the bound oxygen and a 

distal histidine residue of the apoprotein. Metmyoglobin may be converted back to a 

physiologically active form by enzymes known as metmyoglobin reductases, but this is a difficult 

process (Faustman and Cassens, 1990). 

The colour of meat and meat products depends on the concentration of meat pigments, the 

chemical state of these pigments and physical characteristics of the meat, e.g. light scattering 

properties. During storage, the rate of metmyoglobin accumulation on the surface of beef meat is 

related to many intrinsic factors (e.g. pH, muscle type, animal age, breed, sex etc.), extrinsic ones 

(pre-slaughter treatments, electrical stimulation, hot-boning, etc.) and technological ones 

(temperature, type of packaging, light etc.). In fresh meat, oxidation to metmyoglobin is affected 

by the reducing capacity of the muscle, oxygen availability and myoglobin autoxidation rate 

(Renerre, 1990). 

Table 2.1: Colour perceived by consumer and consumer discrimination in relation to the percentage of 

metmyoglobin in the meat (Kropf, 2004). 

% of metmyoglobin 

20 

40 

60 

Colour and consumer discrimination 

Cherry-red, buy 

Starting to see difference, still bought 

Brown, not bought 

| Brown to grey-greenish, not bought 
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Oxymyoglobin 

Fe2+-0, 

Metnryoglobin 

Fe 3 + H,0 
Deoxymyoglobin 

Fe 2 +H 20 

1 = reduction 

2 = oxidation 

3 = oxygenation 

4 = deoxygenation 

5 = reduction 

6 = oxidation 

Figure 2.2: Three forms of myoglobin. 

In figure 2.2 the three different forms of myoglobin are shown. The colour change between the 

three different forms of myoglobin can clearly be seen. In appendix 1 the reactions are written 

down that can take place during the oxidation of oxymyoglobin to metmyoglobin. 

Immediately after cutting the meat is purplish-red (deoxymyoglobin). Deoxymyoglobin is very 

unstable and as oxygen from the air comes in contact with the exposed meat surfaces, it is 

absorbed and binds to the haem group. The meat surface blooms as the myoglobin becomes 

oxygenated and produces a cherry-red colour (oxymyoglobin). The meat will turn brown in time 

because of the formation of metmyoglobin. Metmyoglobin is very stable and is difficult to turn 

back into deoxymyoglobin or oxymyoglobin. 

The three forms of myoglobin are all present in meat and are always in equilibrium with each 

other. On the surface of the meat, there is enough oxygen available and oxymyoglobin will be 

formed. But when oxygen penetrates in the meat it is used to oxidise reduced compounds. This 

results in an oxygen gradient ranging from saturation on the surface to zero in the centre of the 

meat. Between these zones there is a region with little oxygen. In this region metmyoglobin is 

formed. 
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I 
Surface 

A lot of oxygen 

Little oxygen 

No oxygen 

oxymyoglobin 

oxymyoglobin 

metmyoglobin 

myoglobin 

myoglobin 

Fresh beef Old beef 

Figure 2.3: Generalised schematically description of the colour of the meat in relation to the oxygen 

availability. 

2.2 Myoglobin oxidation and reduction mechanisms 

According to several studies, the development of metmyoglobin depends essentially on the 

myoglobin oxidation rate, the enzymic ferrimyoglobin reduction and the oxygen consumption 

rate. The mechanisms involved and their relative importance in meat discolouration have been 

extensively studied but are not yet well established (Renerre, 1990). 

2.2.1 Autoxidation 

The most important reaction in the discolouration of the meat is the oxidation of the native 

ferrous form to metmyoglobin. This reaction is termed autoxidation since it proceeds with 

oxygen. The mechanism remains largely unknown, but involves a non-enzymic spontaneous 

oxidation by free oxygen, which determines the rate of discolouration. The reaction is highly 

temperature dependent with a Q1(, of about 5 and an activation energy of 24 to 27.8 kcal mol \ 

Other important factors are the pH of the meat, the presence of concentrated salts, oxidation-

reduction mediators and catalytic amounts of heavy metals. 

Biological factors such as muscle type can also play an important role. It was shown that less 

stable muscles have the highest autoxidation rate, as can be seen in table 2.2. Between beef 

muscles, variability in their vulnerability to haem pigment oxidation appears to be related to the 

amount of oxygen entering the exposed meat surface over time. This could depend on whether 

differences in myoglobin oxidation rates are determined by the pigment composition and its 

properties, and/or on the surrounding environment myoglobin (Renerre, 1990). 
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Table 2.2: Mean values for colour stability, autoxidation rate, MetMb reductase activity and oxygen consumption rate 

for Tensor fasciae latae (stable) and Psoas major (unstable) (Renerre, 1990). 

Colour stability 

(%RMO - R580, 30°C, 5 h) 

Autoxidation rate 

(% MetMb h-') 

MetMb reductase activity 

(nmol MbC>2 min-1 g"1 meat) 

Oxygen consumption rate 

(nmol O2 min-1 g-1 meat) 

Tensor fasciae latae 

(Triangle muscle) 

16.3 ± 2.7 

19.4 ± 4.6 

34.9 ± 7.9 

821 ± 181 

Psoas major 

(Tenderloin) 

13.1 ±1 .8 

29.2 ± 6.0 

37.9 ± 10.6 

1216 ± 251 

2.2.2 Metmyoglobin reductase activity 

Fresh meat doesn't show the characteristic brown colour of metmyoglobin. Enzymes available in 

the meat reduce metmyoglobin (Fe3+) into myoglobin (Fe2+) which is able to bind oxygen and 

give the meat the desirable cherry-red colour. In time the amount of metmyoglobin in the meat 

rises and the meat turns brown. This is caused by a decrease in enzyme activity during ageing of 

the meat. The decrease in enzyme activity is caused by the decrease of substrate. 

Possible enzymic pathways have been studied and it is now accepted that the reduction process 

in meat is primarily enzymic in nature with NADH as coenzyme (Watts et al., 1966). In table 2.2 

is shown the meat with the highest colour stability has the lowest metmyoglobin reductase 

activity. 

Metmyoglobin reductase was found to be unaffected by the presence or absence of oxygen, hi 

situ in meat the reduction of metmyoglobin is more complex than in vitro with the purified 

enzyme, because several substrates and intermediates are present. Loss of reducing activity in 

meat during storage is due to the combination of factors including fall in tissue pH, depletion of 

required substrates and co-factors and, ultimately, complete loss of structural integrity and 

functional properties of the mitochondria (research showed metmyoglobin reductase activity 

present in bovine muscles was localized in microsomes and mitochondria). 

Other research has asserted that the activity of the reducing system is not the most important 

factor influencing the rate of metmyoglobin formation (Renerre, 1990). 
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2.2.3 Oxygen consumption rate 

In contrast to 0 2 uptake in living muscle, uptake in meat has received only little attention and 

more work is needed. It is clear that mitochondria and/or submitochondrial particles facilitate 

maintenance of myoglobin in the reduced state in vacuum packaged meat. In table 2.2 it is shown 

that muscle with the highest colour stability has the lowest oxygen consumption rate. According 

a study of Renerre the oxygen uptake during 8 days of storage shows a slow decrease in oxygen 

uptake, reflecting the good functioning of mitochondria post mortem. Meat with high ultimate 

pH has a higher oxygen uptake, which leads to a purplish red and dark colour. It is also shown 

that a post mortem decrease in muscle 0 2 favours myoglobin autoxidation. All these factors 

contribute to discolouration of the meat (Renerre, 1990). 

2.3 Factors affecting fresh meat colour 

Many factors affect the colour and colour stability of meat and those of greatest importance are 

discussed in the following sections. The factors that influence the meat colour and stability are 

divided in intrinsic, extrinsic and technological factors. Meat is a complex food and no single 

factor is responsible for the discolouration of the meat, interaction between factors causes the 

discolouration of the meat. 

2.3.1 Technological factors 

• Temperature/ relative humidity 

High temperatures are known to influence the colour stability negatively, to promote the bacterial 

growth and resulting in low oxygen tensions that facilitate autoxidation of myoglobin. High 

storage temperatures will move the brown metmyoglobin intermediate layer between the 

oxymyoglobin and deoxymyoglobin closer to the surface and metmyoglobin becomes visible with 

increasing time. The rate of discolouration with temperature is muscle dependent and at 10°C the 

rate is two- to five-fold higher than at 0°C. Optimal storage temperature for meat is therefore 

-1°C to -1.5°C, because the freezing point of meat is at -2°C. 

High temperatures are also responsible for the loss of globin function of protecting the haem 

when there is deoxygenation of red oxymyoglobin and formation of deoxymyoglobin thus 

leading to an increased tendency for autoxidation. 

Low temperatures promote the penetration of oxygen into the meat surface and oxygen solubility 

in tissue fluids. These maintain myoglobin in the oxymyoglobin form (Renerre, 1990). 

When meat is properly packaged it should not discolour as a result of dehydration. The relative 

humidity does not decrease the colour stability of the meat but enhances other factors (Faustman 
and Cassens, 1990). 
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• Bacterial contamination 

The specific role of bacteria in meat discolouration processes has received little research 

attention. The majority of the studies have focussed on the spoilage bacteria Pseudomonas spp. 

These bacteria are the dominant psychrotrophs found on aerobically packaged meat (Faustman 

and Cassens, 1990). 

The moist atmosphere inside meat packages is ideal for bacterial growth. Growth of bacteria 

results in a drop in the oxygen tension at the surface of the meat resulting in an increase of 

metmyoglobin. Metmyoglobin is especially formed during the logarithmic growth of Pseudomonas, 

Achromobacter and Flavobacterium. Other bacteria can form by-products like hydrogen sulphide 

(H2S) and hydrogen peroxide (H20^). These by-products lead to a green discolouration of the 

meat (Renerre, 1990). 

• Type of packaging 

A meat package has three functions: the major function is to serve as protection from 

environmental variables. These include temperature, moisture or humidity, oxygen, airborne 

particles and light. The second function is to act as protection against biological contamination 

such as that from humans and micro-organisms. The last function is to serve as a marketing tool 

(Kropf, 2004). 

There are three types of packaging possible for meat. These are over wrap with cling foil, vacuum 

and atmospheric packaging. 

In the first type of packaging the meat stays red for a few days, depending on the oxygen 

permeability of the foil. During the first few days after packaging the meat is retained in the 

oxymyoglobin form due to the available oxygen inside the package. The foil gives minimal 

protection to bacterial contamination. The predominant spoilage bacteria in this type of 

packaging are the aerobic bacteria like the strictly aerobic Pseudomonas. After four to eight days 

after packaging the meat will be spoiled, also depending on the temperature of storage and the 

initial contamination level (Kropf, 2004). 

The distribution and the storage of beef in vacuum packaging improves the tenderness by ageing 

without the evaporative weight loss. Vacuum packaging has also advantages in inhibiting aerobic 

bacterial growth and preventing oxidative rancidity. This type of packaging is not suited for retail 

use. Due to the lack of oxygen in the package the oxymyoglobin will change its form to 

deoxymyoglobin which has a purplish-red colour. Low oxygen pressure in the package will cause 

brown metmyoglobin formation because the rate of oxidation is greater than any enzymic 

reduction. Vacuum packaged meat of normal pH can be stored up to ten weeks at cold 

temperatures (Renerre, 1990). 

Meat is pre-packaged in modified atmosphere (MAP) including nitrogen, carbon dioxide, oxygen, 

alone or used in mixtures. In retailing beef meat, the use of inert gases such as nitrogen and/or 

carbon dioxide is of less interest because they do not enhance the red display colour. The 

advantage of oxygen in developing a thick layer of oxjonyoglobin is desired (Renerre, 1990). 
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High-oxygen MAP involves a gas mix of up to 80% oxygen (65-80% is most common) and 15-

30% carbon dioxide; optionally nitrogen may be added at up to 20%. 

The major function of the high levels of oxygen is to maintain the cherry-red meat colour. Due 

to the high usage levels the oxymyoglobin layer gets more deeply into the meat. This extends the 

time until the metmyoglobin layer approaches the surface of the meat. A combination of 80% 

oxygen with 20% carbon dioxide can remain the red colour of the meat for up to 15 days. A 

possible disadvantage of using high levels of oxygen is the possible development of oxidised 

colour and taste. 

The function of carbon dioxide is to slow down the growth of commonly occurring Pseudomonas 

spp. as well as competing species, thus extending the time until spoilage. Increasingly effective 

microbial control can be reached up to 25% carbon dioxide. Carbon dioxide is more effective 

with low levels of initial contamination and also at low temperatures. A possible negative effect is 

that it promotes the growth of psychotropic lactic acid bacteria. Carbon dioxide is very soluble in 

meat, therefore enough carbon dioxide has to be added to the gas mix to account for absorption 

into the meat to maintain effective microbial control. 

Nitrogen is an inert gas and is used as a filler gas; it has no direct function in microbial control. 

A new and increasing component of the gas mixture is the usage of carbon monoxide (CO). The 

use of carbon monoxide results in a stable bright-red colour. Carbon monoxide is used in 

packages with a combination of 60% carbon dioxide and up to 40% nitrogen. The usage of 

carbon monoxide is allowed up to 0.4%. The main features of this gas mixture are the 

enhancement of the bright-red colour and a long microbial shelf life due to the high amount of 

carbon dioxide and the absence of oxygen (Kropf, 2004). 

• Light 

In general, greater pigment oxidation occurs in meat stored under light versus dark storage 

conditions (Faustman and Cassens, 1990). White fluorescent lights do not generally cause 

discolouration, however several studies have shown some detrimental effect. Several studies 

concluded discolouration under fluorescent light as an indirect effect. The temperature inside the 

meat package can rise, resulting in growth of spoilage bacteria. Also, a photochemical effect can 

be the cause of the discolouration. In contrast to white fluorescent light, UV light has an effect 

on the colour of fresh meat. The myoglobin is oxidised and the meat turns brown after a short 

exposure. This might be achieved through denaturation of globin. Occasionally a "rainbow-like" 

discolouration can be found on fresh meat. This is caused by the "prism effect" due to the 

fibrous character of the meat surface (Renerre 1990). 
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• Housing 

Vestergaard et al. (2000) compared extensively fed young bulls and intensively fed young bulls. It 

was shown the skeletal muscle characteristics of the extensively reared young bulls changed 

towards slow contraction, better vascularization and more oxidative metabolism compared to 

intensively fed tie-stall young bulls. Due to these changes bulls from the extensively system were 

probably more resistant to muscle fatigue. The pigmentation of the extensively fed bulls was 

higher but it did not result in more red meat, it did however result in more dark meat (no DFD 

meat). 

2.3.2 Intrinsic factors 

• Between species 

Colour pigment differ among species; poultry and pork contain about 1 to 3 mg myoglobin per 

gram wet tissue. Lamb has a brick red colour and contains 4 to 8 mg myoglobin per gram wet 

tissue and beef, at the age of human consumption, contains around 4 to 10 mg myoglobin per 

gram wet tissue (Anonymous 1). 

According to Atkinson and Follett, beef has the best colour stability and lamb the worst. The 

colour stability of pork is between that of beef and lamb (Atkinson and Follett, 1973). 

• Between animals 

Among the intrinsic factors affecting muscle constitution, between animal variability is the least 

understood. Parallel to chronological age, the concentration of myoglobin in muscle increases 

and muscles used for locomotion appear darker in colour. Over the period of birth to 24 months 

of age, a three-phase increment in myoglobin level has been found depending on breed and 

muscle examined. In meat from older animals the cherry-red layer of oxymyoglobin is thinner 

and consequently meat colour stability weaker (Renerre, 1990). 

Veal contains 1 to 3 mg of myoglobin per gram wet tissue, young beef 4 to 10 mg myoglobin per 

gram wet tissue and mature beef contains 16 to 20 mg myoglobin per gram wet tissue 

(Anonymous 1). 

• Between muscles 

The inter-muscle variation is often directly related to the metabolic and contractile properties. 

There are three major fibre types: slow-twitch oxidative fibres (SO), fast-twitch glycolytic (FG) 

and fast-twitch oxidative-glycolytic (FOG). SO fibres are rich in myoglobin, contain a large 

number of mitochondria, present in high enzymic activity and are present at higher 

concentrations in "red" muscles. Although relationships between metabolic type and pigment 

level are well established, except in some heterogenous muscles, this is not the case for colour 

stability and this point calls for further investigations. For instance, beef M. longissimus dorsi and 
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M. gluteus médius have similar myoglobin contents and are moderately anaerobic, they differ 

significantly in post-mortem colour stability and oxygen uptake. 

According to Renerre, M. longissimus dorsi, obliquus externus and tensor fasciae latae are the 

most stable and M. gluteus médius, supra-spinatus, psoas major and diaphragma medialis are the 

most unstable muscles (Renerre, 1990). 

• Ultimate pH and pH rate 

The effect of pH on meat colour stability is important from the standpoint of both ultimate pH 

in post-rigor muscle and the rate of pH decline in the pre-rigor, post-mortem condition. The 

ultimate pH of normal beef is approximately 5.4 to 5.8. (Faustman and Cassens, 1990). Low pH 

reduces the stability constant for the haem-globin linkages and myoglobin dénaturâtes at pH 

values below 5.0. Maintaining a high final pH of the meat by minimising pre-slaughter stress 

glycolysis, could limit oxidation of the pigments (Renerre, 1990). 

^ ^ ^ ^ ^ ^ ^ 60 6.3 6.5 6.9 7.0 
Meat pH 

Figure 2.4: Colour change of meat depending on pH (Anonymous 1). 

The rate of post-mortem pH decline in the main meat species follows the order poultry > pork > 

lamb > beef. 

Pale, soft, exudative (PSE) meat is formed when the ultimate pH is lower than 5.6. PSE meat is 

often found in pigs and poultry and sometimes also in beef. Because of the low pH the proteins 

in the meat will partially denaturate and more light will be scattered, consequently the meat will 

appear whiter in colour. 
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If the ultimate pH of the meat is higher than normal abnormal meat called dark, firm, dry (DFD) 

meat is formed. In high-pH meat, light scattering is reduced and muscle is more translucent at 

the cut surface and the colour appears darker. Moreover, tissue respiratory activity stays high 

(mitochondria use the available oxygen) and less oxygen is available for oxymyoglobin formation. 

The layer of oxymyoglobin is very thin and the purplish-red colour of deoxymyoglobin 

dominates. The high pH of the meat also results in an earlier spoilage of the meat because of the 

growth stimulation of bacteria (Monin, 2004). 

2.3.3 Extrinsic factors 

• Electrical stimulation, hot-boning and chilling rate. 

All these factors influence the discolouration indirectly. 

Electrical stimulation (ES) of beef carcasses increases the rate of pH drop. Action of ES on meat 

colour stability during shelf life is still uncertain (Renerre, 1990). 

When hot-boning (HB) is used, the meat is removed from the carcass when still warm. After 

packaging the boneless meat will be cooled. Hot-boning results in a more even colour across 

large muscles. This might originate from the more homogeneous chilling conditions throughout 

the whole muscle. A combination of ES and HB is not more efficient than HB alone (Taylor et 

al., 1980-1981). 

Variation in post-slaughter chilling produces detectable differences by eye. The darker overall 

appearance of rapidly chilled meat could be due to both a higher oxygen consumption rate and 

an inhibition of the formation of cherry-red oxymyoglobin (Renerre, 1990). 
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2.4 Measuring the colour of meat 
In order to measure the pigment composition of meat, a sample of the meat has to be analysed. 

This takes some time and to minimise the time necessary it would be useful if this could be 

automated. A useful method is image processing. The advantages of image processing are 

evident It is non-invasive, needing no contact between equipment and the meat. It can be used 

on film packaged meat without opening the package. Being applied to the whole meat joint, it can 

ensure that no visible defect is forgotten. There are several methods of image processing which 

wül be discussed in this paragraph. 

2.4.1 Background information on colour 

Physical properties of colour require a source of light, an illuminated sample and a detector. The 

light source is described by its spectral energy distribution curve, the sample by its spectral 

reflectance curve and the detector by its spectral response curve. The combination of these 

factors provide the stimulus that the brain converts into our perception of colour. 

Colour has three quantitatively definable dimensions. "Hue" is the name of the colour and is that 

quality by which the colour families (e.g. red, green etc.) are distinguished. "Value" is the 

lightness of colour and is the quality at which lighter and darker colours are distinguished. 

"Ch " is the strength of a colour and is the quality by which strong and weak colours are 

distinguished, also known as the colour intensity or the degree of colour saturation. 

Three quantities (colour co-ordinates) must be specified to describe colour. Instrumental colour 

measurement techniques can be classified by the way in which the light is treated in the 

measurement process. The three classifications are unaltered light, three or four coloured lights 

and monochromatic light (light of only one colour). Instruments using three (or four) coloured 

lights are called colourimeters, whereas instruments using monochromatic light are called 

spectrophotometers and are capable of measuring the spectral reflectance (or transmittance) 

curve of a sample. 
Colourimeters readings should never be considered to have any absolute significance, but should 
rath h sed for detecting and measuring small colour differences between samples that are 

nearly alike in colour. 
Spectrophotometric reflectance techniques are especially suitable for following either muscle 

colour changes, or for estimation of myoglobin forms. The samples are not destroyed and the 

package environment is maintained, so samples can be measured over time. The same location 

on the cut surface may be measured repeatedly. In contrast to colourimeters, spectrophotometers 

can be used to obtain absolute values of the colour co-ordinates for a single sample as well as for 

measuring colour differences between samples. Spectrophotometric reflectance techniques are 

not commonly used in the food industry but mostly in research (AMSA, 1991). 
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2.4.2 Instrumental colour evaluations systems 

• Munsell colour solid 

A.H. Munsell was one of the first (1905) to describe colour in terms of 3-D colour solid. 

WHITE 

BLuel 

GRE.EN 

S X i ^ I I"""" YELLOW 

.. V4JÊ-

BLACK 

Figure 2.5: The Munsell colour solid (AMSA, 1991). 

Colour is described in terms of three attributes; hue = H, value = V and chroma = C. There are 

five principal hues (red, yellow, green, blue and purple) equally spaced around the circle at the 

base of the colour solid. The value notation in the vertical axis indicates the degree of lightness or 

darkness of a colour. Zero is absolute black and 10 is absolute white. 

Disc colourimetry was one of the first instrumental methods to quantitate colour of an unknown 

sample. Colour may be expressed in Munsell notation or converted to CIE (Commission 

Internationale de l'Eclairage, also International Commission on Light) tristimulus values. Due to 

the unavailability of instruments that directly read out tristimulus values, disc colourimetry has 

not been used widely in recent studies (AMSA, 1991). 
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• CI E colour solid 

Most colours can be made by the appropriate mixture of the light-primary colours green, red and 

blue. Not all colours can be made in this way and some colours only can be made when red light 

is subtracted from the blue/green mix. This leads to negative values for red light. This can cause 

problems when calculations are done. To avoid these problems with negative values, the CIE 

developed the XYZ primary system to describe colour in numerical terms without the use of 

negative numbers. XYZ can be calculated from the experimental red, green and blue primaries. 

7<!lYI lunîlMTCC 

Figure 2.6: The complete XYZ triangle of the CIE system (AMSA, 1991). 

In figure 2.6 the relation between the XYZ triangle and the red, green and blue values is shown. 

The shaded area represents the negative R-values. In Tristimulus colourimetry X, Y and Z filters 

are used. The filters are designed, so the energy output of the light source, modified by the filter, 

creates the same response in the photo detector as in the human eye (ASMA, 1991). 
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Hunter colour solid 

Figure 2.7: Hunter L a b colour solid (AMSA, 1991). 

The lightness axis in the centre of the solid has a scale from 0 to 100, where 100 is absolute 

white. Positive a-values are red and negative a-values are green. Positive b-values are yellow and 

negative b-values are blue. Hunter L a b colour solid is preferred above the CIE X, Y, Z system 

and widely used because of its uniformity and easy to use Hunter colourimeters (AMSA, 1991). 

2.4.3 Method of colour analysis used in this study 

Spectrophotometers and tristimulus colourimetry are used for samples with uniform surfaces and 

colours. The measured colour is a single value in XYZ or L a b colour scale. For foods with 

different colours or non-uniform surfaces such as meat, a single value is not a good 

representation of the actual colours. Samples can be chopped or blended to get an average colour 

but the original colour and appearance of the sample is usually lost. 

In this research, computer vision is used. Computers are getting more used in the production 

environment. In computer vision, an image of the sample is digitised into pixels, containing levels 

of the three primary colours (red, green and blue = RGB colour system). R-, G- and B- values are 

expressed as a value varying between 0 and 255. By using image processing techniques one can 

identify and classify an object based on colour and appearance. One can also provide a 

quantitative description of all the colours of the sample. With this procedure samples with 

varying colours, different shapes, sizes and surface textures can be analysed (Luzuriaga and 

Balaban, 2002). 
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3 Materials and Methods 

3.1 Meat samples 
In this research rib eye was used. Rib eye is normally cut out of the small ribs (5th till 7th rib 

counted from the head) and the large ribs (8th till 11th rib). These parts of the beef consist out of 

different muscles. The most important are Musculus (M.) serratus, M. Latissimus dorsi, M. 

longissimus dorsi, M. spinales et semispinales, M. dorsi et cervicis and M. multifudus. 

(Bergström, 1974). The meat was kindly provided by ProMessa located in Deventer (NL). The 

nutritional value and the information belonging to the meat can be found in appendix 2. 

Figure 3.1 : Serratus ventralis - thoracic (Anonymous 2). 
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3.2 Experiment design 

3.2.1 Myoglobin content and related pigments 

Determination of the total myoglobin content and of the proportions of oxymyoglobin, 

deoxymyoglobin and metmyoglobin in meat, is based on the different absorbance spectra of 

these molecules when in solution. The method used in this research is according to Cariez et al. 

(1995). Absorbance measurements are conducted after pigment extraction from meat samples. 

This method measures the heme pigment content of the total meat sample, in contrast to 

reflectance methods, which indicate the pigment content at the surface of the meat. 

In 2004 Tang et al. (2004) published revised equations how to calculate the proportions of 

oxymyoglobin, deoxymyoglobin and metmyoglobin. These are more reliable than the original 

ones by Krzywicki (Cariez et al, 1995). 

% Deoxymyoglobin = (-0.543 R, + 1.594 R2 + 0.552 R3 - 1.329) * 100 

% Oxymyoglobin = (0.722 R, - 1.432 R2 - 1.659 R3 + 2.599) * 100 

% Metmyoglobin = (-0.159 R, - 0.085 R2 + 1.262 R3 -0.520) * 100 

Total myoglobin (mmol/1) = A525 / MAC 525 

MAC 5 2 D (= 7.6) (Krzywicki, 1982) is the milli molar coefficient of myoglobin at the isobestic 
point (525 nm) of its three forms and R,, R2, R3 are respectively the absorbance ratio A582 / A'23, 
A557 / A525, A5"3 / A525. 
For extraction of the three forms of myoglobin the outer layer of the meat is sliced off to a depth 
of 3 to 4 mm. When light falls on a meat surface it is not only reflected from the uppermost layer 
but penetrates to a tissue depth of 3 to 4 mm (Krzywicki, 1979). 

Protocol: Slice 2 gram out off the surface of the meat to a depth of 3 to 4 mm. Homogenise 
the meat with 20 ml of 0.04 mol/1 Na /K phosphate buffer, pH 6.8, using an 
Ultraturrax (Janke & Kunkel IKA Labortechniek T25) homogenizer at approximately 
10,000 rpm and room temperature for 20 s. After standing for 1 hour in an iced 
bath, the homogenate was centrifuged at 10,000 x g and 10-15 °C for 30 min. The 
supernatant was filtered through a Mackery-Nagel MN 619 % paper and the volume 
is brought up to 25 ml with the same phosphate buffer. Low temperature has to be 
maintained to avoid turbidity. Filter the supernatant on a 0.25 urn Millipore filter 
before spectrophotometry. Absorbance of the clear supernatant has to be measured 
at 503, 525, 557 and 582 nm (Analytik Jena AG Spekol 1300). 
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3.2.2 Colour analysis 
The colour of the meat was analysed by a computerprogram called Peer v l l (personal 

communication 1). The meat packages (without top foil) are put in a closed cabinet with constant 

illumination shielded by fluorescent tubes. A picture of the meat was taken with a Sony 3 CCD 

camera (which is calibrated with Colorchecker® of Gretag Macbeth™, see also appendix 3). In 

Peer v l l a circle with a diameter of 20 mm was drawn over the picture after which the program 

calculates the average red, green and blue (RGB) values and the standard deviation of each. Four 

measurements are taken from each picture taking care fat was left out the measuring circle. The 

RGB values and their standard deviations are the average of 4 measurements. 

Figure 3.2: Cabinet in which the pictures of the meat were taken. 
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3.2.3 Approach 

Pro-Messa provided 80 pieces of rib eye. A small piece was cut out of each piece of meat to 

measure the pH, every rib eye is photographed and the RGB values are measured. The meat 

samples are packaged in 1500 cm3 trays. Meat samples 1 to 40 were packaged in modified 

atmosphere (60% 0 2 , 30% C 0 2 and 10% NJ and covered with coated PET. Meat samples 41 to 

80 were packaged aerobically with polyethylene stretchfoil (Suntec S, permeability C0 2 90,000; 

0 2 23,000 ml/m2 / bar/ day). Samples 1 to 20 and 41 to 60 were stored at 2°C and samples 21 to 

40 and 61 to 80 were stored at 7°C in the cold storage room (see also table 3.1). 

Table 3.1: Design of the meat experiment. 

Meat sample 

1 - 2 0 

2 1 - 4 0 

4 1 - 6 0 

6 1 - 8 0 

Type of atmosphere 

Modified atmosphere 

Modified atmosphere 

Air 

Air 

Storage temperature (°C) 

2 

7 

2 

7 

On each day of sampling a photo was taken when the meat was taken out of storage and the 
RGB value was measured. A small piece of meat was cut off for pH measurement and the 
myoglobin content and the percentage of the three forms of myoglobin was determined as 
described in paragraph 3.2.1. 

pH measurement 
The pH was measured by mixing meat with deionized water in a 1:3 ratio using the Ultraturrax 
for 10 s at 10,000 rpm, after which the pH of the solution is measured. 
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4 Results and discussion 
All the results discussed in this chapter, the original measurement results and all digital photo's 

have been archived and can be reviewed on the CD, which is attached to this report. 

4.1 RGB measurement: point measurement - surface measurement 

In order to reduce the standard deviation of the RGB measurement, the point measurement 

(measuring a precise co-ordinate) was changed to surface measurement. 

When using a point measurement, four precise co-ordinates are measured and averaged. Before 

starting this research it is known the standard deviation of this method is substantial. To lower 

the standard deviation of the RGB measurement it was proposed to measure four times a small 

surface and average the results. A circle with a diameter of 20 mm can be drawn in the picture 

taken form the meat. The computerprogram calculates the average R, G and B value and the 

accompanying standard deviations. When this is done four times on a piece of meat, the standard 

deviations of the four measurements are averaged. The results are shown in the next table. All 

measurements were done at day 0 of the experiment before the meat was packaged to exclude 

effects of package atmosphere. 

Table 4.1: Initial Rr.R measurement values according to point and surface measurement method. 

Sample 

7 10/5 

9 10/5 

22 10/5 

31 10/5 

48 10/5 

56 10/5 

67 10/5 

77 10/5 

Average 

Point measurement 

R 

54 + 9 

50 ±8 

67 ±9 

58 ±20 

49 ±10 

49 ±7 

63 ±11 

55 ±9 

55 ±10 

21 ± 3 

20 ± 3 

26 ± 3 

22 ±10 

18 ±3 

21 ±4 

24 ±6 

20 ± 3 

21 ±4 

B 

17 ± 3 

17 + 6 

24 ± 5 

18 ± 11 

15±4 

19 ±5 

21 ±8 

16 ±5 

18 ±6 

Surface measurement 

R 

56 ±8 

54 ± 8 

66 ± 8 

58 ±8 

49 ±7 

47 ± 5 

65 ±7 

65 ±9 

58 ±8 

G 

19 ±4 

20 ± 4 

24 ± 5 

23 ± 4 

18±3 

18±3 

23 ± 4 

24 ± 5 

21 ± 4 

B 

17±4 

17±5 

21 ±6 

21 ± 5 

16 ±4 

16±4 

20 ± 4 

17 ± 6 

18 ±5 
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From the results in table 4.1 it is clear that the standard deviations of the surface measurement 

method are better than that of the point method. All standard deviations except the one of the 

G-value is lower when the surface measurement method is used. 

It is assumed red is the most important indicator in this research because changes in the meat 

also result in a different red colour. The standard deviation of the R-value is still quite large when 

the surface measurement method is used, because meat has a biological variation in red colours 

between muscles but also inside muscles. The surface measurement method has a higher R-value 

(58) than the point measurement (55). It is possible a more bright-red piece of meat was included 

in the measuring circle when measuring the RGB. 

The surface measurement has lower standard deviations than the point measurement, but there 

are still some shortcomings. When a piece of meat is used for a shelf life test, the RGB of the 

meat is measured at the beginning and end of the test. To get a reliable result you have to 

measure the RGB both times at the same co-ordinates. This is very difficult, when taking a 

photograph at the end of the test the package containing the meat has to be situated at the same 

place as when the photograph was taken at the beginning of the test. This is very precise because 

a small displacement in the picture gives completely different RGB measurements. Another 

problem are the pieces of fat in the meat, these pieces have a whitening effect on the RGB 

measurement. It is not always possible to exclude fatty parts. There is a possible solution for 

these problems. During this research it appeared it is possible to measure the RGB with a 

computer program designed at Agrotechnology & Food Innovations 

(personal communications 1). It was not yet possible to work with this program because of 

practical reasons. This program measures eight different colours of red, its surface and is able to 

ignore fat. From the red colours and the surface of each colour it is possible to calculate the 

average RGB value of the whole piece of meat. This program might be more accurate because it 

takes a lot of measuring points and not only the four points that are used in this research. 
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4.2 The absorption spectrum of the sodium/potassium phosphate buffer 

While conducting experiments it appeared the results for the isolation of the three confirmations 

of myoglobin where not realistic. It became apparent the buffer had an own absorption 

spectrum, as shown in the figure below. Before the formulas of paragraph 3.2.1 can be used the 

absorption of the buffer has to be subtracted from the absorption of the sample. 

Figure 4.1: Absorption spectrum of sodium/potassium phosphate buffer. 

4.3 Extremes of deoxy-, oxy- and metmyoglobin and their corresponding red, green 

and blue values 
In this experiment 100% deoxymyoglobin, oxymyoglobin and metmyoglobin were artificially 

made to measure the extreme RGB values. The method described in the "Guidelines for meat 

color evaluation" by the American Meat Science Association (AMSA, 1991) were used to prepare 

the meat. The method and pictures of the meat can be found in appendix 4. Two samples from 

each piece of meat were analysed. 

Table 4.2: Analysis results of the extremes of myoglobin. 

% deoxymyoglobin 

»/, o oxymyoglobin 

•/, metmyoglobin 

100% deoxymyoglobin 

Sample 1 

6.9 

77.1 

29.3 

Sample 2 

-6.5 

97.7 

8.5 

100% oxymyoglobin 

Sample 1 

-10.1 

115.2 

-5.8 

Sample 2 

-14.3 

123.7 

-10.4 

100% metmyoglobin 

Sample 1 

-0.04 

0.7 

99.1 

Sample 2 

0.1 

0.3 

99.5 

From table 4.2 it is evident that deoxymyoglobin can not be quantified with the method of 

Krzywicki. During the procedure the deoxymyoglobin is instantaneously oxidized to form 

oxymyoglobin. The results for oxymyoglobin in the rest of this research can be assumed to be the 

total for deoxymyoglobin and oxymyoglobin. 

Table 4.2 shows that the method is suitable for the quantification of oxymyoglobin and 

metmyoglobin. A possible explanation for exceeding 100% as a result in the quantification of 
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oxymyoglobin is that the calculated percentage of oxymyoglobin is the total of deoxymyoglobin 

and oxymyoglobin. 

The method of Krzywicki used in this research is suited for the quantification of metmyoglobin, 

the percentage of metmyoglobin almost reaches 100%. 

R, G and B values 

80.00 -

70.00 

$ 60.00 

• 50.00 
o 
« 40.00 

« 30.00 -

X 20.00 -

10.00 

0.00-

r1- I 
• 100% metmyoglobin 
• 100% oxymyoglobin 

Figure 4.2: R-, G- and B-value of 100% deoxy-, oxy- and metmyoglobin. 

Figure 4.2 shows the R, G and B values of the three extreme forms of myoglobin. Table 4.2 

showed it was not possible to keep the conformation of myoglobin at 100% deoxymyoglobin 

during its isolation. The pictures necessary to measure the RGB values are taken a few seconds 

after opening the package containing the 100% deoxymyoglobin meat to prevent oxidation. The 

R, G and B values of 100% deoxymyoglobin in this figure are therefore reliable. 

100% oxymyoglobin has the highest R-value and, as can be seen in appendix 4, this corresponds 

to the bright red colour of the meat. 100% metmyoglobin has a lower R value, this suggest a 

decrease in the R value results in a more brown colour of the meat as can be seen in the picture 

in appendix 4. It is not possible to make a distinction between 100% metmyoglobin and 100% 

deoxymyoglobin by looking to the R-value, the B value is also not suited but it is possible to 

distinguish the two by looking at the G-value, this is higher for 100% metmyoglobin. 

32 ©Agrotechnology & Food Innovations B.V. Member of Wageningen UR 



4.4 Repeatability of meat's myoglobin content, it related pigments and the recovery of 
myoglobin 

4.4.1 Repeatability of meat's myoglobin content and it's related pigments 

The repeatability of the determination of myoglobin and its related pigments were assessed using 

one piece of meat. From this piece of meat, three core samples and four surface samples were 

analysed. The results are shown in the table below. 

Table 4.3: Myoglobin content and related pigments of one piece of meat. 

% deoxymyoglobin 

% oxymyoglobin 

% metmyoglobin 

Myoglobin content (mg /g ) 

Core 

-1.23 + 1.0 

90.49 1 3.7 

10.39 ± 3.0 

4.06 ± 0.2 

Surface 

-3.8611.1 

86.67 ± 8.4 

16.6818.0 

4.01 10 .1 

As can be seen in table 4.3, the average myoglobin content of the core samples is 4.06 ± 0.2 

mg/g. The surface samples have an average of 4.01 ± 0.1 mg/g myoglobin. The myoglobin 

content and its deviation of the core and surface samples does not show a large difference. The 

deviation between the core and surface can be explained as a fault in the method of analysis, also 

in literature it says myoglobin is not evenly distributed throughout the meat. Swatland (Swadand, 

1989) states myoglobin in pork muscle is more present in the aerobic part of the muscle. Polasek 

and Davis (Polasek and Davis, 2001) looked into the myoglobin content of whale and dolphin 

muscle, they found the interior of the muscle has a higher concentration of myoglobin than the 

outer layer of the muscle. No literature is found to state this about beef meat, but it can be 

assumed it will be the same concerning to beef. 

As stated above the core samples have an average myoglobin content of 4.06 ± 0.2 mg/g and the 

surface samples have an average of 4.01 ± 0.1 mg/g myoglobin. McKenna et al. (2005) analysed 

the amount of myoglobin at the meat surface of beef and found an average of 4.6 mg/g. This is 

close to the measurements of the piece of meat discussed in this paragraph, but also to the 

measurements discussed in paragraph 4.5 and shown in the CD attached to this report. The 

amount found by McKenna has to be used as an indicator, because there are a lot of factors that 

can influence the amount of myoglobin like race and feed. 

The average oxymyoglobin content in the core samples is 90.49 ± 3.7% with a maximum. The 

surface samples have an average oxymyoglobin content of 86.67 ± 8.4%. Theoretically it is not 

possible that oxymyoglobin is present in the core of a piece of meat. Oxygen does not migrate to 

the centre of the meat, therefore the myoglobin stays in the deoxymyoglobin conformation. As 

described in paragraph 4.3, it is not possible to isolate deoxymyoglobin with the method 
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described in the article of Cariez et al. (1995). The measured oxymyoglobin in the core is obtained 

from the deoxymyoglobin that has bound oxygen during mixing with the Ultraturrax. 

The results of the surface samples show a quite large deviation in the amount of oxymyoglobin. 

It is possible the confirmation from oxymyoglobin to metmyoglobin does not take place at the 

same rate at every place in the muscle. 

The average metmyoglobin content of the core samples is 10.39 ± 3.0%. The surface samples 

contain an average metmyoglobin content of 16.68 ± 8.0%. It is possible the change in 

conformation to metmyoglobin does not take place at the same rate throughout the meat. 

4.4.2 Recovery of myoglobin 

The goal of this experiment is to investigate the accuracy of the method described by Cariez (see 

paragraph 3.2.1). McKenna et al. (2005) found a myoglobin content of 4.6 mg/g in bovine 

muscle. In this experiment 5 mg myoglobin (Sigma M0630-lg, >99%) per g meat was dissolved 

in sodium/potassium phosphate buffer (paragraph 3.2.1) and the absorbance was measured at 

503, 525, 557 and 582 nm, after which the amount of myoglobin can be calculated. The 

experiment was performed in duplicate. 

After calculation 3.6 respectively 3.7 mg/g myoglobin was found in the solution. This is a 

recovery rate of 72 and 74%. It was not possible to get a recover}' rate of 100%, because not all 

the myoglobin could be dissolved in the buffer. Therefore it is not possible to give a statement 

about the accuracy but regarding the results it will be likely that if all the myoglobin was 

suspended the 100% recovery rate would be reached. 
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4.5 Meat experiment with different storage conditions 
Meat was packaged either in modified atmosphere or aerobically and stored at 2°C or 7°C. 

During a period of 8 days the meat was photographed every day and samples were taken for 

pigment analysis. The original photos and results can be looked up in the CD which is attached 

to this report This experiment resulted in much data, in this paragraph first the correlation 

coefficient will be shown for all the data after which the different data wiU be discussed. 

At the start of this experiment the RGB of each piece of meat was measured, when the meat was 

analysed the RGB was measured again. The R, G and B in this paragraph are the values of the 

moment of analyses minus the values of day 0. A positive value means the meat has more of a 

particular parameter than at day 0 and a negative value means a decrease in a particular parameter 

than at day 0. 

Table 4.4: n i n ihm^—*™"* " f * e d a t a oht^A ft°m *** " ^ eXPe"ment-
Correlation coefficient 

Time - R 

Time - G 

Time - B 

Myoglobin - red 

Myoglobin - green 

Myoglobin - blue 

% oxymyoglobin - red 

% deoxymyoglobin - red 

% metmyoglobin - red 

% deoxymyoglobin - green 

% oxymyoglobin - green 

% metmyoglobin - green 

% deoxymyoglobin - blue 

'/o oxymyoglobin - blue 

>Q metmyoglobin - blue 

AU R - all % oxymyoglobin 

Time - averag % oxymyoglobin 

Time - avergf™ "/" metmyoglobin 

[average % metmyoglobin - average % oxymy; 

Time - myoglobin 

MAP 

7°C 

0.486 

0.705 

0.740 

0.417 

0.461 

0.513 

0.000 

0.673 

0.591 

Air 

2°C 

0.718 

0.369 

0.000 

0.026 

0.222 

0.152 

0.537 

0.622 

0.014 

0.593 

0.409 

0.039 

0.456 

0.252 

0.353 

0.138 

0.500 

0.584 

0.179 

0.771 

0.432 

0.351 

0.480 

0.012 

0.002 

0.015 

0.500 

0.884 

0.745 

0.834 

0.146 

7°C 

0.729 

0.641 

0.892 

0.000 

0.059 

0.011 

0.671 

0.235 

0.184 

0.181 

0.001 

0.198 

0.418 

0.117 

0.144 

0.500 

0.461 

0.147 

0.157 

0.066 
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4.5.1 Colour changes of the meat in time 
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Figure 4.3: Change in R-, G- and B-value in time (A= MAP 2°C, B= MAP 7°C, C= Air 2°C, D= Air 7°C). 

On each day of analysis two pieces meat of each type of packaging and storage temperature were 

analysed. The R-, G- and B-values of the two pieces of meat were averaged. 

Figure 4.3 shows a decrease in the redness of the meat during time. The meat samples packaged 

in modified atmosphere show an increase in redness in the first few days of the experiment. The 

gas mixture in the modified atmosphere package contains 60% oxygen, this causes the meat to 

bloom. Modified atmosphere packaged meat samples remained red for the duration of the 

experiment. 

Meat samples packaged aerobically show a rapid decrease in redness. The samples stored at 7°C 

did show a more rapid decrease in the R-value. Meat stored at 2°C becomes less red than at day 0 

after approximately 6 days and meat stored at 7°C after approximately 2 days. Lower 

temperatures apparendy slow the process of red-colour loss down. 

The green and blue values of all samples do not show a large change in time. 

The pictures taken from all the meat samples show the meat changes colour to brown in time 

(see attached CD). In time the R-value decreases and the G-value does not show a large variation. 

This corresponds with the theory that when red and green are mixed together in the right 

proportion the colour brown is formed. 
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4.5.2 Myoglobin concentration in relation to the colour of meat 
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F l g ure 4.4: Myoglobin concentration in relation to the colour of the meat (A= M A P 2°C, B = M A P 7°C, C = Air 2°C, 

D = Air 7°C). 

Figure 4.4 clearly shows that there is no relation between the total myoglobin content in the meat 

and the colour of the meat. 
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4,5.3 Three forms of myoglobin and their relation to the Rf G and B of the meat 
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Figure 4.5: Three forms of myoglobin and their relation to the R-, G- and B-value of the meat. 

From figure 4.5 it is apparent that there is a relationship between the percentage of oxy- and 

metmyoglobin pigments and the average R-value of the meat. The R-value rises sharply when the 

oxymyoglobin content is more than 80%. A rise in the percentage of metmyoglobin results in a 

drop of the R-value. The results for deoxymyoglobin are not reliable as explained in paragraph 

4.3. 

The figures 4.5 B and C show there is no relation between the three forms of myoglobin and the 

G- or B-value. In these figures a cloud of measuring points can be seen. 

The figures of G- and B- value for the other samples are not shown here, for those figures I refer 

to the attached CD. The other figures for the R-value are shown on the next page. 
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Figure 4.6: Three forms of myoglobin and their relation to the R-value of the meat (A- MAP 7°C, B= Air 2°C, C= 

Air 7°C). 

The relation described in the previous page between oxy-, metmyoglobin and the Rvalue of the 

meat also applies for the other packages and temperatures. A rise in the Rvalue results in a rise in 

the percentage of oxymyoglobin and a drop in the percentage of metmyoglobin. Although, there 

is a trend the correlation is far from perfect, as can be seen from the correlation coefficients (R2 

0.235 to 0.673). 

The relation between oxymyoglobin and the R-value is clarified in figure 4.7. All the measured 

R- values and percentage oxymyoglobin of the different types of packaging and storage are 

displayed in this figure. 
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Figure 4.7: All measured percentages of oxymyoglobin against the measured Rvalues. 

Figure 4.7 shows a large spread in the results (R2 = 0.5), but a tendency can be seen between the 

percentage oxymyoglobin and the measured R-values. This can be ascribed to the, not very 

accurate, method used in this research to analyze the R-, G- and B-values. Furthermore the 

pigment analysis, using the method of Krzywicki, is not accurate enough and the calculated 

oxymyoglobin percentages are the total of deoxy- and oxymyoglobin. 

In the research described by McKenna (McKenna et al, 2005) instead of RGB, L*a*b* was 

measured, a* - values are an indication of the redness. The measurements of McKenna et al. show 

a distinct relation between the a*-value and the amount of met- and oxymyoglobin (R2 0.9 and 

-0.97). 
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4.5.4 Development ofoxy- and metmyoglobin in time 

Each day of the experiment two packages of each type of packaging and storage are analysed. In 

the figures below the percentages of those two samples are averaged. 
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Figure 4.8: Development ofoxy- and metmyoglobin in time (A= MAP 2°C, B= MAP 7°C, C= Air 2°C, 

D= Air 7°C). 

Figure 4 8 shows the same tendency; a decrease in the percentage of oxymyoglobin results in an 

increase in metmyoglobin. The decrease in the percentage of oxymyoglobin is less sharp in the 

MAP packaged samples than in the aerobically packaged samples. The modified atmosphere 

(containing 60% oxygen) assures that the equilibrium between oxy- and metmyoglobin remains 

towards the oxymyoglobin form. 

Hood (Hood, 1980) stated that the rate of metmyoglobin accumulation increases with increased 

temperature. In the figures 4.8 A and B of the meat packaged in modified atmosphere this is also 

observed. The percentage of metmyoglobin in.meat stored at 7°C rises faster than when the meat 

is stored at 2°C. It is not possible to conclude this about the aerobic packaged samples, because 

the percentage metmyoglobin of the sample stored at 7°C has a peculiar development. This can 

be the result of measuring faults caused by spoilage products of bacteria growth. 
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The relation between the percentage oxymyoglobin and metmyoglobin is also shown in the next 

figure. 
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Figure 4.9: The relation between the percentage met- and oxymyoglobin. 

In figure 4.9 the relation between the percentage metmyoglobin and oxymyoglobin is clearly 

seen. When the percentage of oxymyoglobin drops the percentage of metmyoglobin rises. The 

highest correlation coefficient has the modified atmosphere stored at 2°C (R 0.924), second is 

the aerobic packaged meat stored at 2°C (R2 0.838) and third the modified atmosphere packaged 

meat stored at 7°C (R2 0.771). The aerobic packaged meat stored at 7°C does not show a relation 

(R2 0.157). A possible explanation is the meat is spoiled fast and this influences the measurements 

of oxy- and metmyoglobin. 
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4.5.5 The relation between the amount of myoglobin and time 

Each day of the experiment two packages of each type of packaging and storage are analysed. In 

the figures below the amount of myoglobin of those packages is averaged. 
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Figure 4.10: Relation between the amount of myoglobin and time. 

In this figure very roughly can be seen a decrease in the amount of myoglobin in time of 2 out of 

4 lines (MAP 7°C and Aerobic 7°C). This corresponds to the findings reported by McKenna et al. 

(2005) In this article half of the meat samples showed a decrease in the amount of myoglobin 

with increasing days of retail display. McKenna states it is possible the amount of myoglobin 

decreases in time because of the loss of sarcoplasmic fluid (i.e. purge). Muscles traditionally 

characterized by large losses in purge during retail display showed a large decrease in myoglobin 

content but large standard errors prevented detecting significant differences in myoglobin 

content In this research the purge loss was not measured, but purge was detected visibly. 
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5 Conclusions 

It was not possible to relate beef colour to myoglobin using a digital camera and computer 

software. 

R-, G- and B-values can be used as an indication to estimate the pigment composition of the 

meat. This is only a superficial relation, which also can be done by the eye and subjective scales. 

The surface measurement to determine the averaged R-, G- and B-values of meat tested in this 

research were found to be more accurate than the method of point measurement used before. 

With the pigment analysis method of Krzywicki it was not possible to distinguish between 

deoxymyoglobin and oxymyoglobin. During the extraction of the different forms of myoglobin 

out of the meat, deoxymyoglobin was instantaneously converted to oxymyoglobin. Nevertheless 

the method was suited for the quantification of oxymyoglobin and metmyoglobin. The amount 

of oxymyoglobin in this research is the total of deoxy- and oxymyoglobin. 

The repeatability of the quantification is good. The recovery rate of total myoglobin using the 

method of Krzj^wicki was more than 75%. 

After packaging the modified atmosphere packed meat bloomed, the 60% oxygen in the gas 

mixture caused the pigment equilibrium to shift towards oxymyoglobin. In all experiments the R-

value decreased in time. Meat packaged in modified atmosphere remained red during the 

experiment. The R-value of aerobic samples declined fastest and the R-value became less than at 

day 0 after approximately 2 (7°C) and 6 (2°C) days. A lower storage temperature results in a 

longer colour stability of the meat. In none of the experiments did the G- or B-value change 

considerably much in time. 

In all experiments the percentage oxymyoglobin and metmyoglobin showed a tendency with the 

corresponding R-values. A rise in the percentage of oxymyoglobin results in a rise of the R-value. 

The percentage metmyoglobin showed the opposite relation. No relation could be found 

between the G- or B-value and the percentage of oxy- or metmyoglobin. Against all expectations 

no analytical relation could be made between the R-value and the percentage of oxymyoglobin 

(R = 0.5). This was caused by the large biological variation in meat colour, the inaccuracy of the 

RGB measuring method and the method of Krzywicki. 

All meat samples showed the same distinct relation in time; when the percentage of 

oxymyoglobin decreased, the percentage of metmyoglobin rises. Meat packaged in modified 

atmosphere and stored at 2°C did display this best (R2= 0.92). Storage of the meat at 7°C did 

show an accelerated increase of the percentage of metmyoglobin and decrease in the percentage 

of oxymyoglobin. 

MAP 7°C and air 7°C did show a decline in the total amount of myoglobin in time. 
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6 Recommendations 

It is recommended to repeat the experiments with meat containing less fat (e.g. lean beef). Then 

deviation in the measurement of R-, G- and B- value will be less, because fat has a whitening 

effect. Also the isolation of the myoglobin will be easier. 

Moreover, the method of Kubelka-Munk (Mancini et ai, 2003 and AMSA, 1991) is 

recommended. Meat is a natural product and each piece of meat is different in composition. The 

research described in this report needs a single piece of meat for each measurement, which 

means the starting point is never the same. When using the method of Kubelka-Munk, it is 

possible to use the same piece of meat for each measurement. The starting point is standardised 

and the deviation in the measurements is possibly less. 

The method of Krzywicki, used in this research, is not suitable to quantify the percentage of 

deoxymyoglobin. The proposed method of Kubelka-Munk does not require a homogenisation 

step. Therefore there is less chance the conformation of deoxymyoglobin changes to 

oxymyoglobin. The method of Kubelka-Munk was not used in this research because of the use of 

hazardous chemicals. 

In this research the RGB value of meat is calculated by averaging four different RGB 

measurements on a piece of meat. During this research it appeared it is possible to measure the 

RGB with a computer program designed at Agrotechnology & Food Innovations (personal 

communications 1). It was not yet possible to work with this program because of practical 

reasons. This program measures eight different colours of red, its surface and is able to ignore 

fat. Form the red colours and the surface of each colour it is possible to calculate the average R-, 

G-, and B-value of the whole piece of meat. This program might be more accurate because it 

takes a lot of measuring points and not only the four points that are used in this research. Besides 

measuring the RGB it is also recommended to measure the L*a*b* values. It is interesting to 

compare these results because McKenna (McKenna et al., 2005) did show a relation between the 

a* value (redness) and the percentage of oxy- and metmyoglobin. 
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Appendices 

Appendix 1: The reactions taking place during the oxidation of oxymyoglobin to 
metmyoglobin. 

(Gorelik and Kanner, 2001) 

Mb-Fe 2 + -0 2 <-> Mb-Fe2 +02 

Mb-Fe2+ + 0 2 -> Mb-Fe3+ + 0 2 " 

0 2 - + O / - + 2H+ -> H 20 2 + 0 2 

i\lb-Fe3+ + H 20 2 - » Mb-Fe 4 +=0 +H 2 0 

Mb-Fe2+ + H 20 2 -> Mb-Fe 4 +=0 + H 2 0 

Mb-Fe2+ + ROOH - • Mb-Fe3+ + RO +HCT 

Mb-Fe2+ + RO' -> Mb-Fe3+ + RO ' 

Mb-Fe 2 + -0 2 + P -Fe 4 +=0 + H+ ->• 2Mb-Fe3+ + HO" + 0 2 

Mb-Fe 2 + -0 2 + Fe3+ -> Mb-Fe3+ + Fe2+ + 0 2 

Mb—Fe2+-02 => oxymyoglobin 

Mb-Fe2+ => deoxymyoglobin 

Mb-Fe3+ => metmyoglobin 

'Mb-Fe 4 +=0 => oxymyoglobin ferryl cation radical 

Mb-Fe 4 +=0 => myoglobin ferryl 
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Appendix 2: Nutritional value and the information belonging to the rib eye used in this 
research. 

Nutritional value of rib eye. 

Rib eye 
Value per 100 g raw meat 

Energy (kj) 

Energy (kCal) 

Protein (gram) 

Fat (gram) 

Saturated fatty acids (gram) 

Unsaturated fatty acids (gram) 

713 

171 

20.8 

9.7 

4.4 
4.1 

63.5 

Vitamin Bl (milligram) 

Vitamin B6 (milligram) 

Vitamin B12 (microgram) 

Vitamin D (microgram) 

Iron (milligram) 

Zinc (milligram) 

Sodium (milligram) Cholesterol (milligram) 

(Anonymous 3) 

Information belonging to the rib eye used in this research. 

Born and bred in Hungary 

Slaughtered in Hungary: HU-351 

Carving in The Netherlands: EEG-29 NL 

Reference number: HU 090505 

Date of slaughter: 06-05-2005 

Date of production: 09-05-2005 

Shelf life (35 days): 10-06-2005 

0.04 

0.09 

2.2 

0.4 

2.5 

4.43 

58 
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Appendix 3: Colorchecker® by Gretag Macbeth™, used for the calibration of the camera. 
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.* ColorChecker 

I 

Using the ColorChecker 
color rendition chart. 

• The ultimate goal of any process of 

photography, electronic publishing, printing, 

or television is to reproduce all colors 

perfectly. However, color rendition is a very 

subjective matter. Different renditions may be 

preferred for different applications, and dif

ferent people may 

have varied color 

preferences. 

• To help make 

meaningful judg

ments about color 

rendition, a totally 

non-subjective standard of comparison 

is needed. That is why the GretagMacbeth 

ColorChecker chart was developed. It 

provides the needed standard with which to 

compare, measure, and analyze differences 

in color reproduction in various processes. 

p The ColorChecker is a checkerboard 

array of 24 scientifically prepared colored 

squares in a wide range of colors. Many of 

these squares represent natural objects of 

special interest, such as human skin, foliage, 

and blue sky. These squares are not only the 

same color as their counterparts, but also 

reflect light the same way in all parts of the 

visible spectrum. Because of this unique fea

ture, the squares will match the colors of nat

ural objects under any illumination and with 

any color reproduction process. 

• The ColorChecker chart provides an 

easy way to recognize and evaluate the many 

factors that can affect color reproduction. To 

evaluate the effect of varying any given fac

tor, simply compare the chart's color image 

as it appears on the photograph, television 

picture, computer monitor, or printed sample 

— with the actual ColorChecker. This com

parison may be made visually or through 

optical density measurements. 
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Appendix 4: Method to convert myoglobin in 100% deoxymyoglobin, oxymyoglobin or 

metmyoglobin. 

(AMSA, 1991) 

100% deoxymyoglobin 

- place the meat in a 10% sodium dithionite solution for 1 minute 

- drain and blot the surface of the meat 

- vacuum package to reduce for 1 to 2 hours at room temperature 

100% oxymyoglobin 

- flush the meat in a closed cell with 100% oxygen for 10 minutes 

100% metmyoglobin 

- place the meat samples in a 1% potassium ferricyanide solution for 1 minute 

- drain and blot the surface of the meat 

- package in oxygen permeable film to oxidise at 2°C for 12 hours 
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100% deoxymyoglobin 

100% oxymyoglobin 

100% metmyoglobin 
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Appendix 5: CD with all the results, original data and digital photo's. 
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