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Parameter Estimation and Prediction of a Nonlinear Storage Model:
an algebraic approach

T.G. Doeswijk and K.J. Keesman

Abstract— Generally, parameters that are nonlinear in sys-
tem models are estimated by nonlinear least-squares optimiza-
tion algorithms. In this paper, if a nonlinear discrete-time model
with a polynomial quotient structure in input, output, and
parameters, a method is proposed to re-parameterize the model
such that the model becomes linear in its new parameters.
The new parameters can then be estimated by ordinary least
squares. Finally, the model is rewritten in predictor form.
A model of an agricultural storage facility with real data is
presented to demonstrate the procedure and show the improved
predictive performance. Some technical problems are indicated
and solutions are proposed.

I. INTRODUCTION

In general, the model structure is an approximate repre-
sentation of e.g. a specific physical process. Hence, there
is a need to fit the model to the experimental data by
parameter estimation. More specifically, as many physical
models of real processes are nonlinear in the parameters, the
model is fitted by nonlinear parameter estimation. In many
applications, such as in optimal control studies, predictive
quality is very important. Hence, the model with the esti-
mated parameters should be validated on a different data
set.

In literature various parameter estimation methods have
been proposed. Among them the ordinary least-squares esti-
mator, using matrix calculus, (see e.g. [1] and [2]) is most
frequently used. Various extensions of this method have
been proposed in the past. For instance, for solving nonlin-
ear least-squares problems, different numerical optimization-
based procedures are available, see [3]. The key problems
encountered in nonlinear least-squares estimation, especially
in non-convex optimization problems, are the existence of
local minima and the limited amount of parameters that can
be reasonably estimated. Another extension is recursive least-
squares estimation, where the parameters are updated every
time instant new data becomes available. This procedure can
be extended to the nonlinear parameter case, see e.g. [4], as
well.

The objective of this paper is to show how to estimate
parameters in a nonlinear discrete-time model structure using
ordinary least-squares techniques. Next to this, the predictive
quality of the obtained reparameterized model is shown.
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Therefor, a method, together with the corresponding condi-
tions on the model structure, is presented to reparameterize
models that are nonlinear in their parameters as models linear
in their parameters. The parameters of the reparameterized
model can then be estimated by ordinary least-squares.
Finally, the original model structure is retained but with the
new parameters. The method is tested on data and a model of
a storage facility. Basically, this paper has been inspired by
the work of Ljung and Glad [5] and it is a natural extension
of the paper by Lukasse et al. [6].

In section II the general derivation from a model with
a polynomial quotient structure to a model linear in its
parameters is presented and demonstrated by some examples.
Section III shows three least-squares estimation techniques
to estimate the parameters of a storage model with real data.
Some validation results on the storage model are shown in
section IV. In section V the estimation results as well as
the applicability of the method are discussed. Finally, some
conclusions are drawn in section VI.

II. MODELLING

Physical modelling can generate equations that are not
only nonlinear in their states and inputs but also in their
parameters. If these nonlinear functions can be rearranged
and reparameterized such that a function arises that is linear
in its new parameters, these parameters can be directly and
uniquely estimated using an ordinary least-squares proce-
dure. After rearranging, the reparameterized model can be
put in a predictor form. For a discrete-time model this is
formally given in the following theorem:

Theorem 1: Given the discrete-time nonlinear model

zr = f(Z,p) )

where Z = (Tp_1, " , TprrUp_1, " yUk_r) Kk, 7 EZLT
and 7 < k with 7 the time delay. If f(+) is a finite polynomial
quotient in the elements of Z and p, the predictor

ix = f(Z.0) )

is equivalent to (1). The unique ordinary least-squares esti-
mate 6 is given by

0= (F()TF() " F()TF() 3)

provided (F()TF())f1 exists and where F(-) =
[Fi(xk, Z) ... Fy(xk, Z)] and Fy(-) = Fo(zk, Z).

Proof: If f(-) is a finite polynomial quotient in Z and
p, equation (1) can be written as

9(Z,p)

T h(Zp) @



with ¢g(-) and h(-) nite polynomials in elements of Z and p.
Then, multiplying both sides with h(-) and rearranging terms
by elementary algebraic operations, as addition, subtraction,
multiplication and division, results in

Fo(xk, Z) = F1($k7Z)91 + ...+ Fn(l‘k, Z)Qn
=[F() F() Fo()] 0

with, for i = 1,...,n: 6; = ¢;(p), a polynomial quotient in
p. A unique least-squares estimate 6, given by (3), exists and
is equal to 0, if F(-) has rank n and thus (F(-)TF(-))""
exists. Since Fy(zy, Z), ..., Fn(xy, Z) are again  nite poly-
nomial quotients, equation (5) can be rearranged such that
ir = f(Z,0) = f(Z,0) with f(-) a nite polynomial quo-
tient. After re-substitution using 8; = ¢;(p) and rearranging
terms: &, = f(Z,0) = f(Z,p)m

Remark 1: Note that the model (1) is noise free. Then the
estimate 6 is optimal, i.e. 0 = #, which does not always hold
for p using nonlinear least squares as will be demonstrated in
example 1. However, if noise is present the estimate is only
unbiased if the noise sequence {e} in Fy(-) = F(-)0 +e, is
uncorrelated with F'(-) and has zero mean [2].

Remark 2: The reparameterized model (4) can also be put
in an output error form by adding the output equation

(&)

Yk = T + ep (6)

The ordinary least squares estimate is then no longer optimal
and the estimate may be biased. However, the estimate could
be optimal in the sense that the predictor has a minimal mean
square error over a validation data-set.

Example 1: Let us consider substrate consumption with
Michaelis-Menten kinetics in a batch reactor. The substrate
concentration is described by the following discrete-time

model g
Sp = Sp_1 -V, -

max 7
Ko + Sk—1 2

By rearranging (7) we get
KTTL
Sk—1(Sk = Sk—1) = [~ (Sk — Sk—1)  — Sk—1] [ v J
(3)

which is of the form Fy(-) = F(-)6 that can be solved by
ordinary least-squares. Note that in this case # = p. The
validity of the procedure can further be veri ed by generating
model outputs with Sy = 30, K, = 1, and Vi = 2. A
least-squares estimation using (8) gives 6 = n 27

In contrast to linear estimation, the outcome of a nonlinear
parameter estimation procedure is not guaranteed as can be
seen in Fig. 1. If no physical insight in terms of bounds
is used and the estimation procedure is treated as a  tting
problem one could easily end up in a local minimum. But
also with knowledge about system or parameter bounds care
must be taken and the solution due to possible singularities
in (7) is not always obvious.l

Corollary 2: TIf, after rearranging (1), in (5): Fy(-) = 0,
then a solution can be obtained from

0 =ker [Fy(-) -+ Fn(-)] 9)
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Fig. 1.

Norm of the prediction error with Ky, = 1, Vipaz = 2.

In general, the non-empty solutions are not unique. The
number of normalized solutions (nullity (F')) can be obtained
from the well-known rank-nullity theorem [7]

rank(F') + nullity (F) =n (10)
|
Example 2: Given the discrete-time system
a
=Yp-1 — ——— 11
Y= Yhot T a1

it can be rearranged as:

0= we—1(yr —ye—1) Yk —wp—lla b 7 (12

and the solution is found by:

@ b " =ker([l wr—1(yr—yr-1) Yr—yr—1]) (13)

Now, with o = 10, u = [0 1 2 3]T and a = 1,b =
2,c=3:y=[10 9.67 9.47 9.33]7 has been generated.
Evaluating (13) gives the normalized solution: [a b ¢]7
[0.27 0.53 0.80]7 ~ 0.27[a b c]7, indicating that the
system is unidentifi able.®

Let us now apply the previous theory to a real-world
application, i.e. storage of agricultural produce in a storage
facility.

A discrete-time nonlinear model describing the tempera-
ture of the produce in a storage facility (see also [8]) is given
by:

D2 D5
Tpr = (p1 + + > Tp k-1
P p3+Ppauk—1  pe +prug—1) "

I Ps + Poug—1 P10 + P11Uk—1 De
P3 + Paug—1 Pe + prug—1

+ <p12 +

Te,kfl + ek—1 (14)

P13 )
D6 + Pruk—1
where T}, is the product temperature, 7, and X. the

external temperature and absolute humidity respectively, u
the controlled input, i.e. product of ventilation and valve



opening, and p; ... p13 are functions of physical and design
parameters. Equation (14) can now be written as

2
Tnk:[uk—lTp,k up_1Ipk Tpr—1
Te,k—l

2
Up—1Te -1 Up_1Ter—1 Xer—1

2
ug—1Tp k-1 Up_1Tp k-1

(15)
uﬁlee,kfl
:|T

Uk—1X e k—1
Ui_l 1} [91 e 014

where 0; = ¢;(p1,--- ,p13), a polynomial quotient. Note
that after reparameterization, Fy(-) # 0 in (5).

Once the least-squares estimate 6 has become available
the product temperature can be predicted by

Uk—1

7 7f(Tp,k—laTe,k—laXe,k—hUk—lve)
p,k — A

§(Uk—1,9)

(16)

with
F() =Ty 103 + Oqu—r + O5ui_y)
+ Te,kq(éﬁ + Orup_y + Ogul_,)
+ Xe 1009 + Groug_1 + 01103 _,)
+ broug—1 + é13U%_1 + 614
g(-) =1~ éluk—l + ézui_l
ITI. ESTIMATION

In this section, different least-squares techniques are used
to estimate parameters of the storage model (14).

A. Nonlinear least-squares

Depending on the type of problem an appropriate algo-
rithm must be chosen to solve a nonlinear least squares
problem [2], [3]. All methods have in common that the so-
lution is iteratively found. Existence of local minima can be
a serious issue (e.g. Fig. 1) if initial estimates are inaccurate.
Hence, in practice, in particular in non-convex problems,
most often the number of parameters to be estimated should
be limited. It is therefor necessary to fi nd the most sensitive
parameters. A (local) sensitivity analysis can be used to gain
insight in the parameter sensitivity. Now, with knowledge of
the sensitivities of the parameters, a set of parameters to be
estimated is chosen. When physical and design parameters
are to be estimated, usually these parameters may not vary
unlimited. The least-squares problem then becomes con-
strained. However, this may lead to a non-optimal estimation
in least-squares sense. Let us now demonstrate this to the
storage model (14).

The parameter vector p of the discrete-time storage model
(14) consists of several design and physical parameters. The
results of a sensitivity analysis are presented in Fig. 2. The
parameters c,,, V, and p, have the same sensitivity. They
always appear product-wise and could be replaced by a
combined parameter. Hence, only one of these parameters
has to be estimated. Given the sensitivity in Fig. 2 and
some indication of the uncertainty of the physical and design
parameters the following parameters have been selected for
estimation: 6 = [Presp, ®mazs Cpps Qeas h)T, respectively the
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Fig. 2. Sensitivity of some design and physical parameters of a storage

model.

TABLE I
NOMINAL AND ESTIMATED PARAMETER VALUES.

60 6
Presp 542 5.17
Gmaz  0.0972  0.0744
Cop 3600 4277
Oeq 0347  0.347
h 3.5 3

respiration heat of the stored product, maximum ventilation
flow, the heat capacity of the stored product, heat transfer
from environment to air in bulk and the height of the bulk.
Subsequently, a constrained nonlinear least-squares estima-
tion is performed. The nominal values (6°) and the estimates
(0) are given in Table I. Only the parameter estimate of h is
at its lower bound; the other parameter estimates are within
the associated bounds.

B. Truncated least-squares

Given a model that is linear in its parameters, i.e.

y=Ch+e (17)
with y € RY, C € RV*™ and § € R™. An ordinary least-
squares estimate is given by
6= (cTc)" Ty (18)
However, when the problem is ill-conditioned the estimates
are very sensitive to the data. To overcome this problem,
the truncated least-squares method can be used. Given the
singular value decomposition of C, i.e.
c=uxvT (19)
with U € RV*XN_ 3 ¢ RNX" gnd V' € R" ™, one can
determine from the singular values (diagonal elements of 3J)
whether the problem is ill-conditioned. Premultiplying (17)



with UT [2, p.77] gives:
y*=UTy=U"Co+U"e
=UTuxvTe+UTe
= X0 +¢e*

(20)

where 0* = V10 and e* = UTe. The parameters 6} that
correspond to singular values that are very small compared
to the largest singular value, defi ned by the numerical rank
determinator R, are set to 0. Now, the modified linear
regression model (20) can be solved. The sum of squares
(y* — 20")T (y* — £6*) is minimized when 07 = y/o;
where ¢ are the singular values and ¢ = 1,...,r withr < n
the numerical rank. The parameter estimates can now be
obtained from 6 = V6*.

Let us now analyze the storage model (15) and add the
equation error ej. Observations from a 50 days period with
a sampling interval of 900 seconds are used to estimate
the parameter vector #. Using the singular value decompo-
sition (19) we obtain the matrices U,V and X related to
the regression matrix of (15). By choosing an appropriate
numerical rank determinator e.g. R = /1000, with & the
largest singular value, the following results are obtained:

[ 617.5027 [ —0.7604
225.9039 —0.3290
206.0795 —0.5414
27.7489 —0.0237
15.7058 —0.0196
8.1518 0.1382
g_ | 20180 |, | 0.0052
1.6773 —0.0041
0.2375 0
0.1451 0
0.0270 0
0.0246 0
0.0019 0
| 0.0003 | 0
6 =|—0.0038 —0.0007 0.9998 — 0.0038
0.0007 0.0001 —0.0003 0.0043
—6.0-107°> —-29-107% 1.6-107% —0.0009

T
—4.6-107° 0.0024

From the right singular vectors (not shown here) it appears
that the first singular value is predominantly related to 63
and 6 and the lowest singular value is related to 8¢ and
911.

If physical interpretation of the estimates is desired, it is
possible to retain the original physical parameters from the
estimated parameters using:

0; = @i(p) (21

where 6 € R™ is the estimated parameter vector and p € RY
the physical and/or design parameter vector to be estimated.
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Fig. 3. Parameter evolution of the recursive parameter estimates 61, 62
and 04 ...014
If ¢ = n direct inversion could be used, while in other

cases one should use e.g. a minimum length or least-squares
approximation. However, and this should be stressed again,
for prediction (16) can be directly applied.

C. Recursive estimation

A Kalman fi Iter approach can be used to estimate param-
eters recursively [1]. The linear regression model of (17)
should then be written in a form like

0k + 1) = 0(k) + w(k)
y(k) = C(k)0(k) + v(k)

(22)
(23)

Under the assumption that the parameters are constant the
covariance matrix E(w(k)w(k)T) = 0. In addition to this,
an assumption about the observation noise properties must
be made and the initial estimate #(0) and initial covariance
matrix P(0) must be specifi ed. The parameters of (15) are
now estimated recursively.

Given a sampling time much smaller than the system time-
constant of (15) the initial parameter estimate of #3 = 1 and
all other initial parameter estimates are zero, i.e. the model
reduces to T, = T, x—1. The initial covariance matrix
P(0) = 0.1x1, i.e. all parameters are considered to be inde-
pendent and identically distributed with the knowledge that
the actual parameter values are around the initial estimates.
The covariance matrix, R = E(v(k)v(k)T), represents the
variance of the observations, i.e. the product temperature,
and determines the parameter update rate of the fi lter. In this
example it is taken as 1°C2. With given y and C from section
III-B the parameter trajectories of 61,6s and 6y ... 604 are
given in Fig. 3. Not shown is f3 which remains close to one.
From Fig. 3 it can be seen that it takes until day 8 before the
parameters start to change. This is due to the fact that this is
the fi rst ventilation period of the data-set. Furthermore, it can
be seen that the parameters converge in time. The recursive
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Fig. 4. Measured and predicted product temperatures in the calibration
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TABLE II
MEAN SQUARED ERRORS OF CALIBRATION AND VALIDATION PERIOD

physical model  truncated  recursive
calibration 0.027 0.020 0.021
validation 0.113 0.032 0.040

parameters estimates at the fi nal time are given by:

6= [— 4.5-107° 0.0040 0.9998 —0.0079

—0.0023 0.0001 0.0007 0.0033

39-107° 4.0-107% 4.4-107% —0.0003

T
—0.0003 0.0021

This final parameter vector at day 52 is used in the next
section to test the validity of the recursively estimated model.

IV. VALIDATION

In this section the estimated parameters from section III
are validated by evaluating the model predictions obtained
from an open loop simulation. First, the same period over
which the calibration was performed is considered and then
a validation period is chosen with about the same length.

First, the mean-square error (MSE) and a graphical pre-
sentation of the results of the calibration period are given
in Table II and Fig. 4. It can be seen that the MSE of the
recursive estimate and the truncated least-squares estimate
are within the same range. The physical model performs
slightly worse. Notice furthermore, that the sudden changes
of the recursive estimates of Fig. 3 correspond to the fast
dynamics, i.e. ventilation, of Fig. 4.

A validation step is performed over a different period in
the same storage season. Hence, for the same storage facility
and product, the same parameter vector as is obtained from
calibration could be used. The results of the validation are
given in Table II and Fig. 5. The model predictions with the
truncated least-squares estimate and the recursive estimate

99

9 :
- physical model
- - truncated Isq
8.5+ - - recursive estimate
—— measurements
gk i
7.5F 7

Product temperature (°C)

0 10 20 30 40 50
Storage time (days)
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perform within the same range. The physical model predicts
signifi cantly worse.

V. DISCUSSION

Reparameterizing and rearranging a discrete-time model
with polynomial quotient structure into a model linear in its
parameters is helpful in getting optimal parameter estimates
in least-squares sense if the model is noise free. The physical
interpretation of the variables is lost but the main structure
is conserved. In contrast, black-box modelling on the basis
of neural networks or nonlinear regressions can also be
used. However, in those cases the system order must be
estimated from the data. Usually, no direct information about
the physical system is then taken into account.

Some diffi culties may arise in least-squares estimation of
the reparameterized system. Rearranging and reparameter-
izing may lead to correlated columns and interdependent
parameters, which lead to (near) rank deficient problems.
This problem can be solved by using truncated least-squares
(see section III-B). But, the main problem is that due to
the reparameterization there is not only (structural) unknown
uncertainty in the output vector but also in the data matrix
(see equation (5)). This problem can be tackled by a total
least-squares approach [9] and will be subject of another
paper.

In the storage model example the inputs, as external
temperature (7;) and humidity (X.), are measured variables,
which directly leads to an errors-in-variables problem. Con-
sequently, a nonlinear estimation procedure should take this
into account, as well. However, the key problem in this ex-
ample was the numerical rank defi ciency of the data matrix.
This problem not only occurred due to the introduction of
correlated columns, but also due to the experimental setup.
First, the fan is mainly controlled as on/off and it is switched
on for less then 10% of the time. Therefor, the columns of C
that are multiplied by u;_; and u; _; will contain many zeros
and as such will be highly correlated. In addition to this, the



control frequency was quite high, i.e. 15 minutes compared
to the time constant of the system which is approximately
19 hours with maximum ventilation and 20 days with no
ventilation, where the optimal sample time is about 1/10 of
the time constant [1], and thus leading to high correlations.

Truncated least-squares came out quite well in the exam-
ple. However, an appropriate value for the numerical rank
determinator must be chosen. Here it is chosen by tuning.
The nonlinear least-squares estimation performs worse for
both calibration as well as for validation. From Table I it
can be seen that the parameter h is bounded at its lower
bound, which indicates that the estimate is non-optimal.
Furthermore, the solution can be in a local minimum. The
recursive estimate performs well for both calibration and
validation period.

VI. CONCLUDING REMARKS

It has been demonstrated that a discrete-time model with
polynomial quotient structure in input, output, and param-
eters can be rearranged and reparameterized such that a
model arises that is linear in its parameters. Consequently,
the parameters can be uniquely estimated by ordinary least-
squares methods. Furthermore, it has been shown that using
the estimated parameters in the back-transformed model (via
rearranging terms) leads to a predictor with fairly good open
loop predictive performance in the sense of mean-square
error. Further research will focus on a total least-squares
approach to account for the errors-in-variables problem.

ACKNOWLEDGEMENTS

We are indebted to Tolsma for providing the data. This
research is part of the WIC2 project, which is carried out
in co-operation with PRIVA Hortimation, Tolsma, WNI and
Agrotechnology and Food Innovations.

REFERENCES

[11 L. Ljung, System Identification, Theory for the User, ser. Information
and System Sciences. Englewood Cliffs, New Jersey: Prentice Hall,
Inc., 1987.

[2] J. P. Norton, An Introduction to Identification. ~London: Academic
Press, 1986.

[3] J. E. Dennis and R. B. Schnabel, Numerical Methods for Unconstrained
Optimization and Nonlinear Equations, ser. Classics in Applied Math-
ematics. Englewood Cliffs, NJ: Prentice Hall, Inc, 1996, vol. 16.

[4] A. Gelb, Applied Optimal Estimation. Cambridge, Massachusetts: MIT
Press, 1974.

[5] L. Ljung and T. Glad, “On global identifi ability for arbitrary model
parametrizations,” Automatica, vol. 30(2), pp. 265-276, 1994.

[6] L. J. S. Lukasse, K. J. Keesman, and G. van Straten, “Grey-Box
Identifi cation of Dissolved Oxygen Dynamics in an Activated Sludge
Process,” in Proc. 13th IFAC world congress, San Francisco, USA, Vol.
N, 1996, pp. 485-490.

[7]1 T. Kailath, Linear systems, ser. Prentice-Hall Information and System
Sciences Series. Englewood cliffs, New Jersey: Prentice-Hall, 1980.

[8] K.J.Keesman, D. Peters, and L. J. S. Lukasse, “Optimal climate control
of a storage facility using local weather forecasts,” Control Engineering
Practice, vol. 11, no. 5, pp. 505-516, 2003.

[9] G. H. Golub and C. F. Van Loan, “An analysis of the total least squares
problem,” SIAM Journal on Numerical Analysis, vol. 17, no. 6, pp.
883-893, 1980.

100



	Main Menu
	ICCA : Past and Present
	Welcome Message
	Keynote Speeches
	Program at a Glance
	Session Index
	Author Index
	Committee
	Search
	Print



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




