SARP Research Proceedings

ORYZA_W:
Rice growth model for irrigated and rainfed environments

M.C.S. Wopereis, B.A.M. Bouman, T.P. Tuong, H.F.M. Berge \& M.J.Kropff

DLO-Research Institute for Agrobiology and Soil Fertility, Wageningen WAU-Department of Theoretical Production Ecology, Wageningen International Rice Research Institute, Los Baños
National Agricultural Research Systems of Asian countries

CIP-GEGEVENS KONINKLIJKE BIBLIOTHEEK, DEN HAAG

ORYZA_W

ORYZA_W : rice growth model for irrigated and rainfed environments / M.C.S. Wopereis ... [et al.] - Wageningen :
DLO-Research Institute for Agrobiology and Soil Fertility ; Wageningen : WAU-Department of Theoretical Production Ecology ;
Los Baños : International Rice Research Institute. - Ill. -
(SARP research proceedings)
ISBN 90-73384-39-7
NUGI 835
Trefw.: rijstbouw.

Preface

This volume of the SARP Research Proceedings presents ORYZA_W version 3.0, a simulation model for irrigated and rainfed rice production. The above-ground crop growth part of ORYZA_W is based on ORYZA1, version 1.3, described in another volume of this series.
ORYZA_W provides the user with a choice of three one-dimensional soil-water balance modules: PADDY, SAHEL and LOWBAL. SAHEL and LOWBAL are already familiar to researchers in the SARP network. Use of these two modules is, however, limited to specific environments. SAHEL was developed for freely draining 'upland' rice soils with a deep groundwater table and LOWBAL for 'lowland' rice soils with a hard plow sole (impenetrable for roots) and a deep groundwater table. Because of their frequent use in SARP, SAHEL and LOWBAL are explained in detail in this volume. PADDY was especially developed to provide the user with a universal soil-water balance module. It can handle any soil condition (puddled / non-puddled, free draining / impeded drainage, cracking / non-cracking) in irrigated and rainfed rice growing environments, and can also be used in rice / non-rice rotations. All soil-water balance modules presented here work with time steps of 1 day. We hope that ORYZA_W will prove to be of value for your research.

Los Baños, Wageningen,
February 1996
M.C.S. Wopereis ${ }^{1,2}$
B.A.M. Bouman ${ }^{3}$
T.P. Tuong ${ }^{1}$
H.F.M. ten Berge ${ }^{3}$
M.J. Kropff ${ }^{1,2,3}$

Simulation and Systems Analysis for Rice Production (SARP)

[^0]
Contents

1 Introduction 1
2 Choosing between the soil-water balance modules PADDY, LOWBAL and SAHEL 5
2.1 Using PADDY or SAHEL in the upland rice environment 5
2.2 Using PADDY or LOWBAL in the lowland rice environment 7
3 SAHEL: three layer soil-water balance module for upland rice 15
3.1 Communication with the crop growth model ORYWAT 15
3.2 Model data needs 16
3.3 Model validation 16
4 LOWBAL: one layer soil-water balance module for lowland rice 17
4.1 Percolation and seepage 17
4.2 Effects of shrinkage on redistribution of water 18
4.3 Irrigation 23
4.4 Integration of water balance components 23
4.5 Communication with ORYWAT 24
4.6 Model data needs 24
4.7 Model validation 26
5 PADDY: soil-water balance module for lowland and upland rice and for rice- upland crop rotations 29
5.1 Percolation and seepage 30
5.2 Soil ripening and cracking of a puddled topsoil 31
5.3 Redistribution of water in the soil profile 34
5.4 Groundwater table 42
5.5 Capillary rise 44
5.6 Changes in soil water content 45
5.7 Water balance check 46
5.8 Irrigation 47
5.9 Other subroutines used by PADDY 47
5.10 Important switches 48
5.11 Communication with ORYWAT 48
5.12 Model data needs 49
5.13 Model validation 50
5.14 Rice-upland crop rotations 52
6 Drought stress responses of two lowland rice cultivars to soil-water status 55
6.1 Description of the greenhouse experiments 55
6.2 Results of the greenhouse experiments 57
6.3 Conclusions 62
7 The ORYWAT growth module 65
7.1 Root growth 67
7.2 Root zone water content 68
7.3 Critical soil water contents 68
7.4 Actual transpiration and drought stress factors 69
7.5 Drought stress effects simulated by ORYWAT 70
7.6 Maximum drought stress duration 72
7.7 Model validation 73
8 Evaporation and transpiration 75
8.1 Penman reference evapotranspiration 75
8.2 Potential canopy transpiration and soil evaporation 78
9 Running and editing ORYZA_W 81
9.1 Input and output file control 81
9.2 Editing ORYZA_W 84
References 85
Appendix 1 ORYWAT crop growth module and subroutines ETPOT and DSTRES 91
A1.1 Listing ORYZA_W 92
A1.2 Listing ORYWAT 94
A1.3 Listing ETPOT 101
A1.4 Listing DSTRES 102
A1.5 Listing subroutines used in ORYWAT 104
A1.6 Crop data file 112
A1. 7 List of variables 115
Appendix 2 Soil-water balance module SAHEL 119
A2.1 Listing SAHEL 120
A2.2 Soil data file 123
A2.3 List of variables 125
Appendix 3 Soil-water balance module LOWBAL 127
A3.1 Listing LOWBAL 128
A3.2 Soil data file 132
A3.3 List of variables 133
Appendix 4 Soil-water balance module PADDY 135
A4.1 Listing PADDY 136
A4.2 Listing subroutines used in PADDY 143
A4.3 Soil data file 151
A4.4 List of variables used in PADDY 153
Appendix 5 Other input files 157
A5.1 Control data 157
A5.2 Timer data 157
A5.3 Weather data 158
A5.4 Rerun data 159

1 Introduction

One of the major limitations to rice production in Asia is water supply and availability. A rice crop may need $1000-4000 \mathrm{~mm}$ of water (Tabbal et al., 1992). In both irrigated and rainfed areas there is a need to optimize water use efficiency at the regional level. This can be done through (i) improvement of irrigation facilities, (ii) introduction of water-saving techniques, (iii) optimization of planting time or adapting the cropping system. For any of these approaches, a thorough understanding of the system is needed. Systems analysis and simulation can be used to evaluate the potentials of different solutions for different environments.

Process-based simulation models are increasingly being used to assess attainable yields on a regional scale (van Keulen and Wolf, 1986; van Diepen et al., 1991; Hammer and Muchow, 1991). They allow detailed analysis of experimental data, extrapolation of research findings to other environments and can provide probability distributions of yield that can be used for an economic evaluation of strategies to optimize water use efficiency (Anderson, 1991). Different levels of systems approaches can be chosen to analyze waterlimited environments. The question which approach to use depends on the required output of the study, on data needs and on data availability. If an approach is selected, data needs are defined. If data requirements are not met, data may be measured or estimated from databases or expert knowledge.

This manual introduces the ORYZA_W version 3.0 model, a rice growth simulation model that can simulate growth and development of rice in irrigated and rainfed lowland and upland environments. Definitions of these environments were given by IRRI (1989):
(i) Irrigated rice lands are those areas that have assured irrigation for one or more crops per year, with some areas served only by supplementary irrigation in the wet season
(ii) Rainfed lowland rice is grown in bunded fields where water depth does not exceed 50 cm for more than 10 consecutive days and the fields are inundated for at least part of the season. Such fields have no access to an irrigation system but may have on-farm rain water conservation facilities.
(iii) Upland rice is grown in rainfed unbunded fields with naturally well-drained soils and no surface water accumulation.
In Asia, rainfed and irrigated lowland rice soils are mostly puddled prior to directseeding or transplanting of rice seedlings. Puddling usually comprises one or two plowings, one or two harrowings and a final levelling under water-submerged soil conditions. Puddling reduces percolation rate, hampers weed growth and provides a soft medium for roots. After harvesting of the rice crop, sometimes an upland crop is grown, profiting from residual soil water, late season rainfall and sometimes capillary rise from a groundwater table. In case of water shortage, drying will cause a puddled soil to transfer from a muddy layer to a compact soil, a process that can be called 'soil ripening'. In upland rice ecosystems rice is grown in non-puddled soil.

ORYZA_W 3.0 is programmed under the FORTRAN Simulation Environment (FSE, version 2.0) as developed by van Kraalingen (1991). The FSE system consists of a main
program, weather data and utilities for specific tasks. One of the main features of FSE is the distinction of four main tasks that control the order of the calculations in the crop growth program (above-ground growth module and below-ground water balance modules): ITASK $=1$ for initialization; ITASK $=2$ for rate calculations; ITASK $=3$ for state calculations/updates; and Itask $=4$ to mark the end of the program. For an understanding of the tasks of initialization and rate and state calculations, the reader is referred to text books on crop growth simulation modelling (e.g. Penning de Vries and van Laar, 1982; van Keulen and Wolf, 1986; Leffelaar, 1993). FSE also facilitates in- and output data handling. The WEATHER system (van Kraalingen et al., 1991) is used to read weather data. Utilities from the library TTUTIL (Rappoldt and van Kraalingen, 1990) are extensively used for specific tasks such as reading input data, writing output data, and integration of states.

The crop growth part of ORYZA_W 3.0 (ORYWAT) is based on version 1.3 of the ORYZA1 model (Kropff et al., 1994), a model for irrigated rice production, which is based on the Wageningen / IRRI models MACROS and SUCROS. ORYZA1 was modified to enable the linkage to a soil water balance module and include effects of drought on plant growth and renamed to ORYWAT.

ORYZA_W provides the user with the option to use three different soil-water balance modules: LOWBAL, SAHEL or PADDY. PADDY is a universal multiple layer (up to 10) model that can be used for both puddled and non-puddled conditions, for naturally freedraining soils and for soils with impeded drainage. PADDY also takes into account the effect of soil cracking on the water balance and can be easily adapted for rotation studies, involving fallow periods and upland crops grown after rice, provided a suitable model for the upland crop is available. Use of LOWBAL (a single layer model for lowland soils) and SAHEL (a three-layer model for upland soils) is restricted to specific environments. Details on when LOWBAL and SAHEL can be used are given in Chapter 2. PADDY can be used for any soil condition (puddled / non-puddled, free draining / impeded drainage, cracking / non-cracking) in irrigated and rainfed rice growing environments. The reader is, therefore, encouraged to use PADDY.

The soil-water balance modules explained here are all one-dimensional. Tuong et al. (1994) showed that for rice grown in puddled soil, lateral percolation losses toward and into bunds, and the effect of poorly puddled spots may largely determine the water balance in areas with a relatively permeable subsoil. More complex numerical models that allow for lateral flow into the bunds (e.g. Walker and Rushton, 1984) can be used to simulate these processes in a detailed way. One-dimensional models can still be used, provided a constant percolation rate is assumed, incorporating both vertical and lateral percolation losses (Bouman et al., 1994; Wopereis et al., 1994).

The structure of ORYZA_W 3.0 under the FSE system is schematically indicated in Figure 1.1. The ITASK succession, the reading of weather data, and the handling of input and output files are performed by the FSE system, using the libraries TTUTIL.LIB and WEATHER.LIB. This information is passed on to the subroutine MODELS. This subroutine calls ORYWAT, which is the actual above-ground growth module, and a
number of crop growth subroutines in the library ORYWSUB.LIB. The three soil-water balance modules (LOWBAL for lowland soils, SAHEL for upland soils and PADDY for both lowland and upland soils) are included in the library SOILBAL.LIB.

The switch SWIWLP (set in the TIMER.DAT input file) is used to select the production environment and to combine ORYWAT with either LOWBAL, PADDY or SAHEL: SWIWLP $=0$ for irrigated lowland; SWIWLP $=1$ for rainfed lowland using LOWBAL; SWIWLP $=2$ for rainfed upland using SAHEL and SWIWLP $=3$ for irrigated or rainfed lowland or upland rice or rice-upland crop rotations using PADDY. The modules ORYWAT, LOWBAL, PADDY and SAHEL are the core of the actual growth model ORYZA_W.

In Chapter 2, differences between the three soil-water balance modules are explained. SAHEL, LOWBAL and PADDY are then introduced separately in Chapters 3, 4 and 5 respectively. Three experiments that were conducted at IRRI to investigate drought stress responses of lowland rice for model development are briefly discussed in Chapter 6. The results of these experiments were the basis for the changes made in ORYZA1, version 1.3.

Figure 1.1 Main components of the rice growth model ORYZA_W 3.0.

The resulting rainfed rice growth module, ORYWAT is presented in Chapter 7. In Chapter 8, calculation procedures for potential and actual canopy transpiration and soil evaporation are given. In Chapter 9 editing and running of ORYZA_W is discussed. A complete listing of the model with input and output files is given in Appendices 1-5.

2 Choosing between the soil-water balance modules PADDY, LOWBAL and SAHEL

The ORYZA_W model contains three soil-water balance modules: PADDY, LOWBAL and SAHEL. PADDY is a universal soil-water balance module and can be used in any rice growing environment. Use of LOWBAL is restricted to lowland rice and use of SAHEL to upland rice ecosystems. Moreover, a number of simplifications have been introduced in LOWBAL and SAHEL that may make these models unsuitable under certain growing conditions. This Chapter explains such restrictions and highlights differences between PADDY and SAHEL for upland rice and PADDY and LOWBAL for lowland rice. Detailed descriptions of the three modules follow in Chapters 3, 4 and 5.

2.1 Using PADDY or SAHEL in the upland rice environment

IRRI (1988) defined the upland rice ecosystem as follows: 'Upland rice is grown in rainfed bunded or unbunded fields with naturally well-drained soils and no surface water accumulation'. If no layer is restricting water flow, modeling of water flow becomes relatively simple. An important soil characteristic is the soil water retention curve, relating soil pressure potential h to volumetric water content $\theta\left(\mathrm{m}^{3} \mathrm{~m}^{-3}\right)$. The root zone can be seen as a 'box' which contains water within two predefined critical soil pressure potentials h : field capacity ($h=-10 \mathrm{kPa} ; \mathrm{pF}=\log \left(110^{*} h \mid\right)=2$) and wilting point $(h=-1500 \mathrm{kPa} ; \mathrm{pF}$ $=4.2$). When water is applied to the soil, it is assumed to be rapidly redistributed if the water content is above field capacity. The excess water flows downward. The crop can extract water up to the wilting point; water held at lower pressure heads is unavailable for plants. The soil-water balance module SAHEL is based on these simple principles. PADDY works in a similar way if a switch in the soil data file indicates that the soil profile is freely draining (SWITFD $=1$). Soils in upland rice environments are always nonpuddled. A switch in the soil data input file for PADDY indicates puddled or non-puddled conditions: SWITPD $=0$ (non-puddled) and SWITPD $=1$ (puddled). For upland soils SWITPD is, therefore, always equal to 0 .

Figure 2.1 schematically illustrates the processes of the water balance that need to be considered in freely draining upland environments. Soils are typically of sandy to loamy texture and have a deep ground water table ($>1 \mathrm{~m}$ below the root zone). This type of soil has a high saturated hydraulic conductivity (around $0.1 \mathrm{~m} \mathrm{~d}^{-1}$ or more), permitting fast downward water transport, so that saturation of soil layers does not occur. The water balance processes considered are infiltration, percolation, evaporation, transpiration and downward distribution. Upward water flow (capillary rise) is disregarded. Lateral in- or outflow of water is always fully negligible in these situations. In SAHEL, the soil profile is divided into three layers and each is considered to be homogeneous. Thickness and physical characteristics of each layer are model inputs. The upper layer should be 0.1-0.2 m thick, the second $0.2-0.4 \mathrm{~m}$, and the third $0.4-1.0 \mathrm{~m}$. Their sum should slightly exceed the maximum rooted depth. In PADDY, a maximum of 10 layers may be defined without

Figure 2.1 Vertical soil profile and components of the water balance that are considered in the module SAHEL and the module PADDY for freely draining rainfed upland environments. PADDY can be used for such environments if a switch (SWITFD) is set to 1 in the soil data input file. $\mathrm{D}=$ surface drainage, $\mathrm{E}=$ evaporation, $\mathrm{P}=$ percolation, $\mathrm{R}=$ rainfall, $\mathrm{T}=$ transpiration.
restrictions to their thickness. The (vertical) inflow and outflow of water in each layer is simulated on a daily basis. Inflow into the first layer is from rainfall. Field capacity is the highest water content that a layer can obtain. The amount of water that can not be stored in one layer, drains into the next layer or out of the profile. Water is extracted from the layers by evaporation and water uptake by the roots (transpiration). Soil evaporation loss in SAHEL is divided over the three layers. In PADDY, evaporation losses occur in the top layer only. This may result in slight differences in model outcome if all input parameters for both models are equal.

Use of SAHEL for soils with impeded internal drainage or in the presence of a shallow groundwater table is discouraged. For such conditions PADDY can be used. If the soil profile is not freely draining, the switch SWITFD should be set to 0 in the soil data input file. In doing so, the data needs of PADDY increase: knowledge of the saturated hydraulic conductivity of each layer is now needed. Water is redistributed as follows: incoming rainfall is partitioned by calculating gain and loss terms for all compartments, starting with
the top compartment. Every compartment can be filled up to field capacity. Any excess water is drained at a maximum rate equal to the saturated hydraulic conductivity of the compartment. If this conductivity is too low, excess water will fill up the soil compartment itself, and may even be distributed upward, reaching compartments at shallower depth, creating a 'perched' water table.

In case of a shallow groundwater table, capillary rise to the root zone may be an important water resource for the plant. SAHEL ignores capillary rise. In PADDY, a switch SWITGW indicates if groundwater is present in the profile. If SWITGW $=1$, groundwater depths are specified by the user in the soil data input file. If SWITGW $=2$, they are calculated from downward fluxes and two empirical site-specific coefficients. If swirgw = 0 , groundwater is assumed to be absent in the profile. Capillary rise is calculated using a 'window structure', i.e. flow due to capillary rise between compartments is not simulated. To calculate capillary rise, knowledge of the hydraulic conductivity curve of the soil compartments is needed.

An overview of data needs and restrictions for use of PADDY and SAHEL in rainfed upland environments is given in Table 2.1.

2.2 Using PADDY or LOWBAL in the lowland rice environment

In Asia, contributing 90-95\% of world production (Pathak and Gomez, 1991), rice in lowland environments is mostly grown under flooded conditions. To achieve this, fields are bunded and soils are puddled by plowing, followed by harrowing and levelling at water-saturated conditions. Puddling leads to destruction of soil aggregates and macropore volume and to a large increase in micropore space (Moormann and van Breemen, 1978). The vertical profile of an irrigated puddled rice soil can schematically be described by a layer of ponded water, a muddy layer with little resistance to water flow, a 'plow sole' with large resistance to water flow, and the non-puddled subsoil (Wopereis et al., 1992), as shown in Figure 2.2. The water balance of a puddled rice field is determined by the following components (Figure 2.2): irrigation supply, rainfall, evaporation, transpiration, seepage, percolation and capillary rise. Rainfall in excess of bund height leaves the system as surface runoff. This surface runoff can be an input for a neighbouring field, but in a sequence of fields, neighbouring fields will pass-on the surface runoff until it is lost in a drain, creek or ditch. Transpiration by the rice crop withdraws water from the puddled layer (which is replenished with ponded water) and from the non-puddled subsoil, if rice roots are growing sufficiently deep.

Percolation is the vertical movement of water beyond the root zone to the water table, while seepage is the lateral movement of subsurface water (IRRI, 1965). In practice, the two are often inseparable (Wickham and Singh, 1978). The amount of seepage is determined by piezometer head differences between fields. The difference in piezometer head is large near drains, ditches or creeks and in terraced rice-fields with considerable difference in elevation. Seepage loss from rice terraces in the middle of a toposequence to lower lying fields may be offset by incoming seepage from higher fields. Top-end terraces

Table 2.1. Soil data needs for modeling of the soil-water balance in upland rice growing environments. Switches for PADDY (i.e. SWITPD, SWITFD, SWITGW) are set in the soil data input file. SWITPD $=0$: not puddled; SWITPD $=1$: puddled; SWITFD $=1$: freely draining; SWITFD $=0$: impeded drainage; SWITGW $=0$: groundwater table not in profile; SWITGW $=$ 1: groundwater in profile, depths specified by user; SWITGW $=2$: groundwater in profile, depths calculated.

```
1. Non-puddled, freely draining soils with deep groundwater table
Model(s): \(\quad\) SAHEL or PADDY (SWITPD \(=0\), SWITFD \(=1\), SWITGW \(=0\) )
Data needs: - thickness of the soil layers
    - water retention characteristics (i.e. soil water content as a function of
        soil-water pressure potential \(h\) ) for each layer
    - initial soil-water content per layer
    - fraction runoff
    - maximum rootable depth
2. Non-puddled, freely draining soils with shallow groundwater table
Model(s): PADDY (SWITPD \(=0\), SWITFD \(=1\), SWITGW \(=1\) or SWITGW \(=2\) )
Data needs: As 1, but with:
    - hydraulic conductivity characteristics (i.e. hydraulic conductivity \(k\) as a
        function of soil-water pressure potential \(h\), including saturated hydraulic
        conductivity) for each layer
    - groundwater table depth (if SwITGW = 1)
    - coefficients for calculation groundwater table depth (if SwITGW \(=2\) )
3. Non-puddled soils with impeded drainage and deep groundwater table
Model(s): \(\quad\) PADDY (SWITPD \(=0\), SWITFD \(=0\), SWITGW \(=0\) )
Data needs: As 1, but with:
    - saturated hydraulic conductivity for each layer
4. Non-puddled soils with impeded drainage and shallow groundwater table
Model(s): \(\quad\) PADDY (SWITPD \(=0\), SWITFD \(=0\), SWITGW \(=1\) or SWITGW \(=2\) )
Data needs: As 2
```

will experience net seepage-loss; bottom-end terraces net seepage gain. Another possible water loss is leakage through the bunds: water moving laterally into the bunds and then down to the water table (Tuong et al., 1994). Here, under-bund flow losses are not dealt with separately but are considered part of the seepage component.

The amount of seepage is affected by the soil-physical characteristics of the field and bunds, the state of maintenance, the relative length of the bunds compared with the surface
area of the field, and by the depth of the water table in the field and in the drain, ditch or creek (Wickham and Singh, 1978). The percolation rate of puddled rice fields is affected by a variety of soil factors (Wickham and Singh, 1978): structure, texture, bulk density, mineralogy, organic matter content and concentration of salts in soil solution. In general, a heavy texture, montmorilionitic clay mineralogy, high sodium content of irrigation water, and a high bulk density are favorable for effective puddling and low percolation rates. The percolation rate is further influenced by the water regime in and around the field. Increased depths of ponded water increase percolation due to the larger gradient in hydraulic head imposed (Ferguson, 1970; Sanchez, 1973; Wickham and Singh, 1978). In a field survey in the Philippines, Kampen (1970) found, for the same reason, that percolation rates were larger in fields with a deep water table ($>2 \mathrm{~m}$ depth) than in fields with a shallow water table ($0.5-2 \mathrm{~m}$).

A general representation of a puddled rice field water balance is:
$d W=I+R+C-E-T-S-P-D$
in which (all units in $\mathrm{mm} \mathrm{d}^{-1}$):
$d W=$ change in stored water
$I \quad=$ irrigation supply
$R \quad=$ rainfall
C = capillary rise
$E \quad=$ evaporation
$T=$ transpiration
S = seepage
$P \quad=$ percolation
D = surface drainage (bund overflow)

In LOWBAL, Eqn 2.1 is simplified. Capillary rise is neglected. It is assumed that, in most situations, there is no or little upward flow of water through the plow sole against the water pressure in the puddled layer. The upward flow that might be present is accounted for by using a net, field-average seepage \& percolation rate (see below). Secondly, the percolation rate P is assumed to be independent of water regime (ponded water depth, moisture content, ground water table). Sensitivity analyses using the detailed differential soil water balance model SAWAH (ten Berge et al., 1992) showed that this assumption is valid for most lowland situations except for a poorly puddled topsoil overlying a relatively permeable subsoil (Bouman et al., 1994). The third simplification was to combine seepage S and percolation P in a field-average constant $S P$. Seepage and percolation are difficult to separate in the field, and their combination into one variable is justified by the fact that both are governed by the same hydraulic principles. The constant $S P$ can easily be determined in the field from sloping gauge readings (corrected for R, E and T). Using field-average $S P$ rates, problems with spatial variation in location-specific S and P in the field (such as measured using double ring-infiltrometers) are overcome. P measured near a

Figure 2.2 Vertical profile of puddled soil in lowland environment. $\mathrm{D}=$ surface drainage, $\mathrm{E}=$ evaporation, $\mathrm{I}=$ irrigation, $\mathrm{P}=$ percolation, $\mathrm{R}=$ rainfall, $\mathrm{S}=$ seepage, $\mathrm{T}=$ transpiration, $\mathrm{C}=$ capillary rise from the groundwater table.
bund is often much higher than P measured in the middle of the field, as a result of poorly puddling. Moreover, the $S P$ rate measured with sloping gauges is a net value integrating water losses through vertical and lateral percolation (under bund flow) and lateral seepage to neighbouring fields, and water gains through capillary rise and lateral inflow (seepage) from neighbouring fields. The last simplification was to assume that roots do not penetrate the plow sole, and that there is no water extraction from the non-puddled subsoil.
The simplified model of the water balance used in LOWBAL becomes:
$d W=I+R-E-T-S P-D$
I, R, E and T are input variables, and $d W$ and D are output variables of the module. R is measured at meteorological stations, I is externally controlled, and E and T are calculated from meteorological conditions (in the subroutines ETPOT and DSTRES of ORYZA_W; see Chapters 7 and 8). $S P$ is measured in the field, or estimated from soil texture data, using a suitable 'pedotransfer function' (Bouma et al., 1993; Wopereis et al., 1992).

In irrigated situations, and generally in the beginning of the season under rainfed conditions, a layer of ponded water is present in the field. Direct water loss from this ponded water layer is through evaporation, E. Water losses from the puddled layer by transpiration, T, and seepage \& percolation, $S P$, are replenished using this ponded water.

In fully irrigated situations, irrigation is usually applied if the depth of the ponded
(a)

(b)

Figure 2.3 Vertical profiles of a puddled soil in a rainfed lowland environment. In (a), cracks have not yet extended through the plow sole; in (b) cracks have penetrated into the subsoil. $\mathrm{E}=$ evaporation, $\mathrm{P}=$ percolation, $\mathrm{R}=$ rainfall, $\mathrm{S}=$ seepage, $\mathrm{C}=$ capillary rise and $T=$ transpiration.

Table 2.2. Soil data needs for modeling of the soil-water balance in lowland rice growing environments. Switches for PADDY (i.e. SWITPD, SWITFD, SWITGW) are set in the soil data input file. SWITPD $=0$: not puddled; SWITPD $=1$: puddled; SWITFD $=1$: freely draining; SWITFD $=0$: impeded drainage; SWITGW $=0$: groundwater table not in profile; SWITGW $=1$: groundwater in profile, depths specified by user; SWITGW $=2$: groundwater in profile, depths calculated.

1. Puddled soils with hard plow pan impenetrable for roots and deep groundwater table

Model(s): \quad LOWBAL or PADDY (SWITPD $=1$, SWITFD $=0$, SWITGW $=0$)
Data needs: - bund height

- initial depth of ponded water
- thickness of soil layer(s)
- saturated volumetric water content for both puddled and shrunken soil
- water retention characteristics (i.e. soil water content as a function of soil-water pressure potential h) for each layer of the shrunken soil
- initial soil-water content per layer
- seepage \& percolation rate
- deep drainage rate subsoil (LOWBAL)
- saturated hydraulic conductivity for each layer (PADDY)
- water content or pressure potential at which cracks break through the plow sole
- maximum rootable depth (PADDY)

2. All other puddled soils

Model(s): $\quad \operatorname{PADDY}($ SWITPD $=1$, SWITFD $=0$, SWITGW $=0,1$ or 2$)$
Data needs: \quad As 1 but in case of a shallow groundwater table (SWITGW $=1$ or 2):

- hydraulic conductivity characteristics (i.e. hydraulic conductivity k as a function of soil-water pressure potential h, including saturated hydraulic conductivity) for each layer
- groundwater table depth (if SWITGW = 1)
- coefficients for calculation groundwater table depth (if SWITGW $=2$)
water layer reaches a minimum value (close to 0). The amount of water in the puddled layer remains, therefore, constant throughout the growing season in irrigated systems. Farmers usually add about $5-10 \mathrm{~cm}$ of water during every application.

In rainfed lowland situations, the layer of ponded water disappears if rainfall is not sufficient to meet E, T and $S P$ losses. Without ponded water, there is no hydraulic pressure
to 'force' water through the plow sole and the $S P$ rate is, therefore, zero. Further water loss through E and T, will cause the muddy puddled layer to dry out. The 'suspended' soil particles settle and the puddled layer shrinks. If drying-out of the puddled layer continues, cracks may develop that will broaden and widen in time (Figure 2.3a). Eventually, the cracks may extend through the puddled layer and plow sole into the subsoil (Figure 2.3b). Depending on the drainage capacity of the subsoil, water from rainfall may drain immediately through the cracks in the subsoil without replenishing the (rooted) puddled layer. In heavy clay soils with a low drainage capacity, rainfall water can still get ponded on the surface, but in case of a relatively permeable subsoil, rainfall will drain quickly. The capacity for shrinkage and cracking are soil properties that mainly depend on texture and degree of puddling; the degree of shrinkage and cracking are determined by water content or pressure head in the puddled layer. Shrinking and cracking are irreversible, i.e. the puddled layer will not resume its earlier properties (until renewed puddling in the next season).

The model LOWBAL was developed based on Eqn 2.2. For convenience, all depths of soil layers and amounts of water are expressed in mm , and all rates in $\mathrm{mm} \mathrm{d}^{-1}$. The surface of the puddled layer is the reference level from which the depth of ponded water and the height of the bunds are measured. Another simplification in LOWBAL is the use of only one soil layer. This soil layer comprises both the muddy layer and the plow sole shown in Figures 2.2 and 2.3. The non-puddled subsoil is represented by a drainage rate. If the subsoil is permeable, this value is set to a high value and vice versa. More details on LOWBAL are given in Chapter 4.

In PADDY, the number of layers is not restricted to 1 as in LOWBAL. Instead a maximum of 10 (NL) soil compartments may be defined, and the number of soil compartments within the puddled topsoil (NLPUD, including the plow sole) can be varied. For example, NL and NLPUD can be set to 8 and 3 respectively, i.e. a soil profile with three puddled soil compartments (of which the third represents the plow sole) and 5 compartments in the non-puddled subsoil. Puddled soils are not freely draining. If PADDY is used for puddled soils (SWITPD $=1$), switch SWITPD should be set to 0 . If SWITPD = 1 and SWITFD $=1$, the program will stop and an error message will occur.

Capillary rise can be included in the water balance, but this will require knowledge of the hydraulic conductivity characteristics of each soil compartment. Such hydraulic conductivity characteristics need to be specified in parameterized format, using either van Genuchten parameters (van Genuchten, 1980; van Genuchten et al., 1991) or a simple power function. Van Genuchten's equations can be written as follows:
$S=\left(\theta-\theta_{\mathrm{r}}\right) /\left(\theta_{\mathrm{s}}-\theta_{\mathrm{r}}\right)=\left[1+|\alpha h|^{n}\right]^{-m}$
and

$$
\begin{equation*}
k(S)=k_{\mathrm{s}} S^{I}\left[1-\left(1-S^{1 / m}\right)^{m}\right]^{2} \tag{2.4}
\end{equation*}
$$

The parameter S is the degree of saturation; $\theta_{\mathrm{r}}(-)$ and $\theta_{\mathrm{s}}(-)$ refer to the residual and saturated values of the volumetric water content $\theta(-) ; k_{\mathrm{s}}$ is the saturated hydraulic conductivity $\left(\mathrm{cm} \mathrm{d}^{-1}\right) ; \alpha\left(\mathrm{cm}^{-1}\right), n(-), m(-)$, and $l(-)$ are parameters which determine the shape of the functions and $m=1-1 / n$. Programs for parameterization of soil hydraulic properties using van Genuchten equations can be obtained via van Genuchten et al. (1991) and Wopereis et al. (1994). A power function can be written as:
$k(h)=k_{\mathrm{s}}|h|^{n}$
where k_{s} is the saturated hydraulic conductivity $\left(\mathrm{cm} \mathrm{d}^{-1}\right) ; h$ is the pressure potential (kPa), and n is a soil-specific dimensionless constant. The switch SWITKн, defined in the soil data input file is used to define the parameterization method used, i.e. SWITKH $=1$ for van Genuchten functions and SWITKH $=2$ for power functions.

Wopereis et al. (1992) showed that the percolation rate through a puddled soil is affected by both the characteristics of the non-puddled subsoil, through its hydraulic conductivity curve, and by the physical properties (i.e. hydraulic resistance) of the least permeable layer in the puddled topsoil, i.e. the plow sole. Via the switch switvp, defined in the soil data input file, PADDY provides two options for dealing with percolation rates. A constant percolation and seepage rate can be used (SWITVP $=0$) or percolation rates can be derived using an iterative Newton-Raphson procedure (Wolfram, 1991) from hydraulic conductivity characteristics of the plow sole and the non-puddled subsoil (switve $=1$).

If a puddled soil dries out, its volume shrinks, cracks appear, and a 'soil ripening' process occurs, gradually changing the muddy topsoil into real soil. PADDY provides a subroutine SHRINK to simulate this process. It is assumed that soil shrinkage is irreversible, i.e. the total porosity of a dried, previously puddled soil layer cannot increase in case of rewetting.

3 SAHEL: three layer soil-water balance module for upland rice

The module SAHEL (Soils in semi-Arid Habitats that Easily Leach) is a three layer soilwater balance module, developed for non-puddled freely draining upland rice soils with a deep groundwater table. Capillary rise is ignored. For any other soil conditions PADDY should be used (see Chapter 5). For more details on when to use SAHEL see Chapter 2.

The soil water balance model SAHEL is based on models described by van Keulen (1975), Stroosnijder (1982) and Jansen and Gosseye (1986). The version of SAHEL used in ORYZA_W is described by Penning de Vries et al. (1989; pp. 155-160) and by van Kraalingen and Penning de Vries (1990). A complete listing of the model, list of variable names used and the soil data file needed are included in Appendix 2. Compared to the version of SAHEL as described by Penning de Vries et al. (1989) and by van Kraalingen and Penning de Vries (1990), the initialization of the water content of the soil is changed in the ORYZA_W version of SAHEL. The initial water content wCLI of each layer is not read from input file, but calculated as initial water content fraction FWCLI times the field capacity WCFC (the same way as it was defined from the water content at wilting point, wCwP, in the 'original' version of SAHEL, by van Keulen, 1975).

```
WCLI = FWCLI * WCFC
```

FWCLI is the initial water content expressed as a fraction of the water content at field capacity, and is read from input file.

3.1 Communication with the crop growth model ORYWAT

To pass-on to ORYWAT:

NL	$=$ number of layers $(-)$
TKL	$=$ array of thicknesses of soil layers (m)
TKLT	$=$ depth of soil (m)
ZRTMS	$=$ maximum rooting depth of soil (m)
WCWP	$=$ array of water contents at wilting point $\left(\mathrm{cm}^{3} \mathrm{~cm}^{-3}\right)$
WCFC	$=$ array of water contents at field capacity $\left(\mathrm{cm}^{3} \mathrm{~cm}^{-3}\right)$
WCST	$=$ array of water contents at saturation $\left(\mathrm{cm}^{3} \mathrm{~cm}^{-3}\right)$
WCLQT	$=$ array of actual water contents $\left(\mathrm{cm}^{3} \mathrm{~cm}^{-3}\right)$
WLO	$=$ amount of ponded water (mm)

To get from ORYWAT:

```
EVSC = potential evaporation rate (mm d
TRWL = array of actual transpiration rates per layer (mm d
```


3.2 Model data needs

For SAHEL, the following input parameters are read from the soil data file:

```
TKL(1-3) = thicknesses of the soil layers (m)
wCST(1-3) = volumetric water content at saturation for each layer (-)
wCFC(1-3) = volumetric water content at field capacity ( }\textrm{pF}2.0\mathrm{ ) for each layer (-)
WCWP(1-3) = volumetric water content at wilting point (pF 4.2) for each layer (-)
WCAD(1-3) = volumetric water content at air-dryness (pF 7) for each layer (-)
FWCLI(1-3) = initial volumetric water content as fraction of WCFC for each layer (-)
FRNOF = fraction runoff (-)
ZRTMS = maximum rootable depth (m)
EES = evaporation extinction coefficient (-)
```


3.3 Model validation

The SAHEL model described here was validated with a dataset presented by Wopereis et al. (1993a). The water content of the $0-40 \mathrm{~cm}$ topsoil of a non-puddled dry-seeded rice field was simulated. Good agreement between measured and simulated data were obtained (Figure 3.1). A description of the source code of SAHEL is given in Appendix 2.

Water content in 0-0.4 m soil layer (m)

Figure 3.1 Simulated and observed soil water content in the $0-0.4 \mathrm{~m}$ soil layer of a dryseeded rice field in the Philippines, non-monsoon season 1987-1988. Simulation were conducted with the SAHEL soil water balance module.

4 LOWBAL: one layer soil-water balance module for lowland rice

The module LOWBAL is a one-layer soil-water balance module, developed for puddled lowland rice soils with a plow pan impenetrable for roots and for soils with a deep groundwater table. Capillary rise is ignored. For any other soil conditions PADDY should be used (see Chapter 5). For more details on when to use LOWBAL see Chapter 2. The source code of LOWBAL is explained in detail below.

4.1 Percolation and seepage

Without cracks, the seepage and percolation rate, SP, gets the value of SPSOIL, which is read from the soil data input file. In case the ponded water depth (wLo) is not adequate, SP is set equal to WLO/DELT:

```
*------Uncracked situation
    IF (.NOT. CRACK) THEN
*--------Percolation only when ponded water is present
        IF (WL0 .LE. 0) THEN
                SP = 0.
        ELSE
            IF ((WLO/DELT) .GE. SPSOIL) THEN
                SP = SPSOIL
            ELSE
                SP = WLO/DELT
            END IF
        END IF
    END IF
```

When there is no ponded water, the soil dries out and cracks may develop. In LOWBAL, it is assumed that cracks will penetrate through the plow sole if the water content of the shrunken puddled layer drops below a critical value, WCCRAC. The value of WCCRAC depends on the soil type and is read from an input file. If the soil does not crack (or if cracks do not extend through the plow sole), WCCRAC should be set to 0 in the soil input file (Appendix 3). Cracking only affects the seepage \& percolation rate, sp. If the water content in the shrunken puddled layer, WCLP, drops below WCCRAC, the seepage $\&$ percolation rate of the soil is determined by the drainage rate of the subsoil, DDR. Two situations are distinguished: The amount of ponded water and rainfall on a certain day is smaller than the amount of water that can be drained through the subsoil (DDR) (1), or the amount of ponded water and rainfall on a certain day is larger than DDR (2).

Water loss through seepage \& percolation can never be larger than the combined amounts of ponded water and rainfall. If there is no ponded water and no rain, there is no seepage \& percolation: $S P=0$. If there is no ponded water, but there is rainfall that day,

SP is equal to the amount of rainfall minus the amount of water that is 'intercepted' and evaporated from the surface:

```
*------Cracked situation
    IF (CRACK) THEN
        IF ((RAIN+WL0) .LE. DDR) THEN
                IF (WLO .LE. 0. .AND. RAIN .EQ. 0.) THEN
                SP= 0.
        ELSE IF (WLO.LE.O. .AND. RAIN.GT.O.) THEN
                SP = MAX(RAIN-EVSW, 0.)
```

If there is some ponded water, both the amount of ponded water and rainfall are lost by seepage \& percolation.

```
ELSE
    SP = WLO + RAIN
END IF
```

Seepage \& percolation is limited to the maximum value DDR (the surplus of WLO+RAIN fills-up the shrunken puddled layer and/or results in ponded water).

```
ELSE
    SP = DDR
END IF
```

Note that root growth through the cracks into the subsoil, to 'explore' for water, is not considered in LOWBAL.

4.2 Effects of shrinkage on redistribution of water

At the start of the growing season, a layer of ponded water, wL0, may be present on top of the puddled layer. The amount of water in the puddled layer itself is calculated by comparing the initial thickness of the puddled layer, just after puddling, with its thickness when it is completely dried-out. The initial thickness of the puddled layer is tKLPI. When the puddled layer dries-out, the layer will gradually shrink to a minimum value TKLPM $=$ TKLPI*SHRINK. The factor SHRINK is soil specific and read from an input file (Appendix 3). After complete shrinkage, it is assumed here that the shrunken puddled layer is saturated with water (i.e. its water content is WCSTP). The amount of water WLP in the original puddled layer can thus be calculated as the amount of water that can be stored in the puddled soil after complete shrinkage, i.e. TKLPM*WCST, plus the difference in height between the initial thickness, TKLPI and the final thickness tKLPM:

```
WLP = (TKLPM*WCSTP) + (TKLPI-TKLPM)
```


Figure 4.1 Principles of soil shrinkage modelling in LOWBAL. TKPLI = initial thickness puddled layer; TKPLM = thickness puddled layer after complete shrinkage. The difference in height between TKPLI and тKPLM is referred to as 'muddy suspension layer'.

In fact it is assumed here that a freshly puddled layer is composed of a 'muddy suspension' with thickness TKLPI-TKLPM and a saturated soil layer of thickness TKLPM (Figure 4.1). In reality, soil particles will settle upon drying, and the muddy puddled layer will gradually turn into 'real soil', a process that is called soil ripening (Wopereis, 1993). The water content of the puddled layer, WCLP, is calculated by dividing the amount of water in the puddled layer by its thickness, TKLP:
$W C L P=W L P / T K L P$

LOWBAL keeps track of the amount of water in both the ponded water layer and the puddled layer. Two situations are considered: ponded water is either present or not. The source code of LOWBAL is given in Appendix 3 and is discussed below, using the same numbering as in the source code listing.

Ponded water

Water loss from the ponded water layer is by evaporation, EVSW, transpiration, TRWP, and seepage \& percolation, SP (SP = water flux out of puddled layer). Note that in fact, TRWP and SP are withdrawn from the puddled layer which is immediately replenished from the layer of ponded water. SP is set to the minimum of the (measured) rate allowed by the soil, SPSOIL, and the thickness of the ponded water layer that can percolate that day, wLO/DELT. Water input in the ponded layer is by rainfall, RAIN, and irrigation, RII. The depth of the ponded water layer, wLo, is the integral of the previous depth and the above rates.


```
*------Integration section
```



```
    EL_SE IF (ITASK .EQ. 3) THEN
*_----Surface drainage is standard zero
    RUNOF =0.
*-----1. Situation with ponded water
        IF (WLO .GT. 0) THEN
            WLO = INTGRL(WLO, (RAIN+RII+RIDUM-EVSW-TRWP-SP), DELT)
```

If the new wLO calculated above is larger than the bund height, wLOMX, bund overflow is calculated as surface runoff, RUNOF, and wLO is reset to bund height.

```
*--------1.1 bund overflow
    IF (WLO .GT. WLOMX) THEN
        RUNOF = WLO - WLOMX
        WLO = WLOMX
```

If the new wlo is negative (i.e. there is a shortage of ponded water), a corresponding amount of water is withdrawn from the puddled layer and wLo is reset to 0 . Again, two situations can be distinguished: the puddled layer has not yet shrunk to its minimum thickness (i.e. 1.2: actual thickness, TKLP, is larger than minimum thickness, TKLPM), and the puddled layer has shrunk completely (i.e. 1.3: TKLP $=$ TKLPM).

If the puddled layer has not yet reached its minimum thickness, the water that is withdrawn from this puddled layer causes it to shrink further. Shrinkage can either be partial (1.2.1) or complete (1.2.2).

If the amount of water withdrawn (i.e. wLo, negative value) is not large enough to cause complete shrinkage, TKLP is reduced with the amount of lost water. The reduction of TKLP causes the lowering of the surface of the puddled layer, and hence an increase in bund height (with respect to the surface level). The amount of water in the puddled layer can still be calculated as the sum of water that can be stored in a completely shrunken layer plus the muddy suspension layer on top, with thickness TKLP-TKLPM:

```
*-------1.2 no more ponded water; soil not yet completely shrunk
    ELSE IF (WLO.LT.0 .AND. TKLP.GT.TKLPM) THEN
*---------1.2.1 further shrinkage of puddaled layer
    IF (WLO .GE. (TKLPM-TKLP)) THEN
    WLOMX = WLOMX - WLO
    TKLP = TKLP + WLO
    WLP = (WCSTP*TKLPM) +(TKLP-TKLPM)
    WCLP = WLP/TKLP
    WLO = 0.
```

If the amount of water withdrawn (i.e. wLo, negative value) is large enough to cause complete shrinkage, tKLP shrinks to its minimum value tKLPM and further water loss is taken from the water content of the shrunken soil:

```
*---------1.2.2 complete shrinkage of puddled layer
    ELSE IF (WLO .LT. (TKLPM-TKLP)) THEN
        WLOMX = (WLOMXI +TKLPI) -TKLPM
        TKLP = TKLPM
        WLP = (WCSTP*TKLP) +(WLO-(TKLPM-TKLP))
        WCLP = WLP/TKLP
        WLO = 0.
    END IF
```

When the puddled layer has already shrunk to its minimum value, the amount of water that is drawn from this puddled layer (i.e. wL 0 , negative value) is taken will affect its water content:

```
*--------1.3 no more ponded water; soil already completely shrunken
    ELSE IF (WLO.LT.O. .AND. TKLP.EQ.TKLPM) THEN
    WLP = WLP + WL0
    WCLP = WLP/TKLP
    WLO = 0.
```

 END IF

No ponded water

Water loss from the puddled layer is by evaporation from its surface, EVSW, and by transpiration, TRWP. Seepage \& percolation, SP, is zero. Water input is by rainfall, RAIN, and irrigation, rif. The amount of water in the puddled layer is the integral of the previous amount and the above rates:
*------2. Situation with no ponded water
ELSE IF (WLO .LE. O) THEN
WLP = INTGRL (WLP, (RAIN+RII+RIDUM-EVSW-TRWP-SP), DELT)

Two situations can be considered next: the water storage capacity of the completely shrunken puddled layer is either adequate (2.1) or inadequate (2.2): i.e. WLP is either smaller or larger than (TKLPM*WCSTP).

In the completely shrunken situation, the thickness of the puddled layer is minimal, and bund height has reached its maximum value. Upon further drying, its water content will drop below saturation and is calculated by dividing the amount of water stored by the thickness of the completely shrunken layer.
*--------2. 1 completely shrunken puddled layer

```
IF (WLP .LE. (TKLPM*WCSTP)) THEN
```

```
TKLP = TKLPM
WLOMX = (WLOMXI +TKLPI) -TKLP
WCLP = WLP/TKLP
WLO = 0.
```

The amount of water in the puddled layer consists of the amount of water that could be stored in case of complete shrinkage, TKLPM*WCSTP, plus the muddy suspension layer on top, with thickness TKLP-TKLPM.

If the new amount WLP is larger than the old amount, (TKLPM*WCSTP)+(TKLP-TKLPM), a new layer of ponded water is formed on the puddled layer and wLP is reset to its old value (since the shrinkage of the puddled layer is irreversible, TKLP can not increase). The thickness of the new ponded water layer is equal to the new amount of water minus the old amount, with a maximum determined by the bund height.

```
*--------2.2 more water than maximum in completely shrunken layer
        ELSE IF (WLP .GT. (TKLPM*WCSTP)) THEN
*----------2.2.1 formation of ponded water layer
    IF (WLP .GE. ((TKLPM*WCSTP)+(TKLP-TKLPM))) THEN
        WLOD = WLP - ((TKLPM*WCSTP) +(TKLP-TKLPM))
        IF (WLOD .GT. WLOMX) THEN
            WLO = WLOMX
            RUNOF = WLOD - WLOMX
        ELSE
            WLO = WLOD
        END IF
        WLP = (TKLPM*WCSTP) +(TKLP-TKLPM)
        WCLP = WLP/TKLP
```

If the new amount wLP is smaller than the old amount, (TKLPM*WCSTP) + (TKLP-TKLPM), further shrinkage of the puddled layer will occur. Water is taken from the muddy suspension layer, i.e. TKLP will decrease and bund height wLomx will increase.

```
*----------2.2.2 further shrinkage of puddled layer
    ELSE IF (WLP .LT. ((TKLPM*WCSTP) +(TKLP-TKLPM))) THEN
    TKLP = WLP-(TKLPM*WCSTP) +TKLPM
    WLOMX = (WLOMXI+TKLPI)-TKLP
    WCLP = WLP/TKLP
    WLO = 0.
END IF
```


4.3 Irrigation

In rainfed lowland (switch SWIWLP $=1$), the amount of irrigation is set to zero: RII $=0$. In irrigated lowland ($\mathrm{SWIWLP}=0$), irrigation is simulated as a dynamic variable, i.e. the (timing of) irrigation is simulated as function of the depth of ponded water. In the seedbed, it is assumed that the crop is nearly continuously irrigated: a daily amount of irrigation, RIDUM, is applied that equals the losses by seepage \& percolation and by evaporation and transpiration:

RIDUM $=S P+T R W P+E V S W-R A I N$

On the day of transplanting, the amount of irrigation water so far needed for the main field is initialized as RIPUD: the total amount of water needed for land preparation, puddling and any evaporation of the bare field until transplanting. This amount should be empirically determined and is read from an input file (Appendix 3).

```
RIICU = RIPUD
```

In the main field after transplanting, a fixed amount of irrigation, RIGIFT, is applied to the field when the depth of ponded water drops below a critical, minimum level, wLOMIN. This irrigation is applied until the crop reaches the growth stage, DVSIE, when no more irrigation is given, because of ripening of the crop.

```
IF (WLO .LE. WLOMIN .AND. DVS .LT. DVSIE) THEN
RII = RIGIFT
```

RIGIFT and WLOMIN depend on management practices of farmers and are read from an input file (Appendix 3).

4.4 Integration of water balance components

The following components of the water balance are integrated over the period between transplanting and the end of the season (i.e. for the main field): cumulative irrigation, RIICU, cumulative runoff as bund overflow, RNOFCU, cumulative rain, RAINCU, cumulative seepage \& percolation, SPCU, and cumulative evaporation, EVSWCU:

```
RIICU = INIGRL (RIICU, RII, DELT)
RNOFCU = INTGRL (RNOFCU, RUNOF, DELT)
RAINCU = INTGRL (RAINCU, RAIN, DELT)
SPCU = INTGRL (SPCU, SP, DELT)
EVSWCU = INTGRL (EVSWCU, EVSW, DELT)
```

If the crop is direct-seeded, the above state variables are integrated from sowing onward.

4.5 Communication with ORYWAT

Some variables are introduced in LOWBAL for communication with the above-ground growth module ORYWAT.

To pass-on to ORYWAT:

```
NL = 1 (note: only one soil layer in LOWBAL)
WCWP(1) = WCWPP
WCFC(1) = WCFCP
WCST(1) = WCSTP
WCAD(1) = WCADP
WCLQT(1) = WCLP
TKL(1) = TKLPI/1000. (note: in ORYWAT, layer thickness is in m!)
TKLT = TKLPI/1000.
```

To get from ORYWAT:

```
TRWP = TRWL(1)
```

EvSC

4.6 Model data needs

The following parameters are read from the soil data input file (all units in mm or $\mathrm{mm} \mathrm{d}^{-}$ ${ }^{1}$):
wLOMXI $=$ initial bund height (maximum thickness of 'first' layer)
TKLPI $=$ initial thickness of the puddled layer
SPSOIL $=$ potential seepage \& percolation rate
DDR $\quad=$ deep drainage rate subsoil
WLOI $\quad=$ initial depth of ponded water
WLOMIN $=$ critical depth of ponded water below which irrigation is applied
SHRINK $=$ linear shrinkage factor
WCCRAC $=$ volumetric water content shrunken puddled layer below which cracks extend through the plow sole
WCSTP $=$ volumetric water content at saturation of shrunken puddled layer
WCFCP $=$ volumetric water content at field capacity of shrunken puddled layer (p F 2)
WCWPP $=$ volumetric water content at wilting point of shrunken puddled layer (pF 4.2)
WCADP $=$ volumetric water content at air-dryness of shrunken puddled layer (pF 7)
RIGIFT $=$ irrigation application
RIPUD $=$ amount of water needed for land preparation (puddling) at the start of the growing season, plus water losses from the main field between land preparation and transplanting

DVSIE $=$ development stage of the crop at which no more irrigation is applied.
Values for the above parameters depend on soil type (mainly texture, mineralogy, organic matter content, bulk density), soil preparation (e.g. the manner and effectiveness of puddling), general land preparation (e.g. bunding, plowing), and irrigation management. Some indicative values are:

WLOMXI	100-200 mm, as measured from the top of the puddled soil.
TKLPI	150-200 mm.
SPSOIL	$=$ with well-puddled, clayey soils, generally reported values are about 1-5 $\mathrm{mm} \mathrm{d}^{-1}$ (Wickham and Singh, 1978). In more unfavorable areas, SP rates can increase to $25 \mathrm{~mm} \mathrm{~d}^{-1}$ and more
DDR	$=$ depends on soil type: in heavy, compact clay soils, values may be as low as $1-10 \mathrm{~mm} \mathrm{~d}^{-1}$; in coarse loamy or sandy soils, values may be as high as $100-1000 \mathrm{~mm} \mathrm{~d}^{-1}$ or more. Usually, values of the saturated hydraulic conductivity of the soil will be used for DDR.
WLOI	50 mm
WLOMIN	$=$ if possible, farmers will prevent the drying of the puddled layer to avoid shrinkage and cracking; values may be around $0-10 \mathrm{~mm}$. Note: because of the time step of one day in ORYWAT, a rather high value should be chosen if shrinkage is to be prevented, e.g. 10 mm .
SHRINK	$=$ not many data on the shrinkage characteristics of puddled soils are available. In field observations in Tarlac Province, the Philippines, the following values have been found for the ratio of total porosity of puddled top soil over total porosity of shrunken, ripened top soil, for soils with different texture:

0.65 for sand:silt:clay $=23: 43: 54 \%$
0.70 for sand:silt:clay $=33: 41: 26 \%$
0.73 for sand:silt:clay $=9: 27: 64 \%$
0.74 for sand:silt:clay $=27: 28: 45 \%$
0.78 for sand:silt:clay $=36: 37: 27 \%$
0.79 for sand:silt:clay $=74: 3: 23 \%$
0.81 for sand:silt:clay $=23: 23: 54 \%$
0.93 for sand:silt:clay $=33: 24: 43 \%$

The average ratio is 0.77 . As first approximation, these data can be used for the linear shrinkage factor.
wCcrac $=$ Measurements at the IRRI farm in the Philippines revealed that cracks penetrated the plow sole if the average pressure potential of the puddled topsoil dropped below -0.1 MPa (Wopereis, 1993; p. 121 and Tuong, unpublished data); the corresponding water content can be calculated using the soil's water retention curve. For non-cracking soils, WCCRAC is set to 0 . WCCRAC is very soil specific and information on this soil parameter is scarce. To determine WCCRAC for a specific site, depth of
cracking and soil-water contents in the topsoil should be monitored during a soil drying cycle.
WCST-WCAD $=$ As a first approximation, data of non-puddled soil can be used. In reality, these values will depend on the degree of drying of the puddled soil (Taylor, 1972).
RIGIFT $=$ depends on the irrigation management practice. A typical value is 50 mm.

RIPUD $=$ should be empirically determined for the area under consideration. Typical values are $200-300 \mathrm{~mm}$.
DVIE $\quad=\quad$ in general, irrigation is stopped near the end of the growing season to allow ripening of the crop; development stage 1.8-2.0.

4.7 Model validation

The model LOWBAL was validated for irrigated lowland conditions using data from field experiments conducted at IRRI (Figure 4.2), and with model simulations using the detailed soil water balance model SAWAH (Bouman et al., 1994). The model performs accurately if seepage \& percolation rates, SP, have been measured and do not change in time. Field average $S P$ rates can easily be measured using sloping gauges placed in the field. Percolation rates may change if the plow sole at the bottom of the puddled layer is disturbed, as e.g. occurred in an IRRI field experiment by hand weeders (Wopereis, 1993; pp. 108-109). Seepage may occur where it was originally not present when neighbouring fields are drained at the end of the growing season, thus inducing water flow through and underneath bunds. Seepage may also change if water levels in neighbouring ditches, creeks or drains vary. These changes of seepage rates depend on texture, compaction and state of maintenance of the bunds, and on the ratio of bund length over the surface area of the field (Tuong et al., 1994). In general, the changes in seepage rate as mentioned above will mostly occur at the end of the growing season; for the main part of the growing season, LOWBAL will, therefore, be applicable.

For rainfed lowland situations, LOWBAL has not been tested explicitly. However, the process description of shrinkage and cracking is similar to the one used in PADDY (see Chapter 5). The model PADDY was validated with field experiments at IRRI. In LOWBAL, shrinkage is treated as a linear decrease of soil pores, and hence of puddled soil depth, with loss of water. In reality, shrinkage of puddled soil follows three phases: linear shrinkage, residual shrinkage and zero-shrinkage (Bronswijk, 1988; Ishiguro, 1992). It is expected that this simplification in LOWBAL will not lead to serious errors in estimating the water balance. In LOWBAL, soil cracking is treated in an empirical way: if the soil moisture content of the ripened top soil drops below a critical value, cracks are assumed to break through the plow sole. It is expected that simulations will be more crude for cracking soils than for non-cracking soils. More research is needed on ripening and cracking of puddled soils of different texture. Finally, in LOWBAL it is assumed that roots do not penetrate the plow sole. This simplification is not always warranted: e.g. at
the IRRI farm, it was found that roots penetrated the plow sole and extended up to 0.40 m depth (i.e. 20 cm below the puddled top soil) with drying of the puddled layer. Under such conditions, modelling of the soil water content below the puddled layer, and the extraction of water by the roots becomes important, as can be done with the soil water balance module PADDY explained in Chapter 5.

Figure 4.2 Simulated (black dots) and observed (white dots) depths of ponded water in a field experiment conducted at the IRRI farm, Los Baños, Philippines (Bouman et al., 1994).

5 PADDY: soil-water balance module for lowland and upland rice and for rice-upland crop rotations

The model PADDY was developed to simulate the soil-water balance for all rice growing conditions (with / without water limitations, puddled / non-puddled, free draining / impeded drainage) and for upland crops grown after rice. The program is written in FORTRAN and makes use of the Fortran Simulation Environment (FSE, van Kraalingen, 1991). PADDY is a multi-layer (up to 10) integral soil-water balance model. A complete listing of the source code, an explanation of variable names used and an overview of input files needed is given in Appendix 4.

Switches set in the soil data input file (Appendix 4) define if the soil profile is freely draining (SWITFD $=1$) or not (SWITFD $=0$). In PADDY, this switch is translated into a logical FREEDR for easy reading. If SWITFD $=1$ then FREEDR $=$.TRUE., else FREEDR $=$. FALSE. Another switch in the soil data input file defines if the topsoil is puddled (switpd $=1$) or not (SWITPD $=0$). In PADDY, this switch is translated into a logical puddld. If SWITPD $=1$ then PUDDLD $=$. TRUE., else PUDDLD $=$. FALSE. Combining ($\operatorname{SWITFD}=1$) and (SWITPD $=1$) is not possible, as puddled soils are assumed not to be freely draining.

A typical soil profile of a puddled rice soil consists of a muddy layer with little resistance to water flow, an often compacted layer with large resistance to water flow (plow sole) and the non-puddled subsoil (Figure 2.2). In the soil data input file the number of puddled soil compartments (including the plow sole!) is defined as nLpud. Usually NLPUD will be set to 3 , i.e. the 2 first soil compartments comprise the muddy layer and the third compartment represents the plow sole. If nLpud is set to 4 than the fourth compartment represents the plow sole and so on. Thickness of each soil compartment is defined by the user in the soil data file. Percolation rate through the puddled topsoil (i.e. muddy layer and plow sole) is either calculated using an iteration procedure (see Section 5.1) or assumed to be constant. The maximum number of soil layers is 10 .

Continued drying of a puddled soil results in the formation of soil shrinkage cracks and subsidence of the soil surface. During this process the muddy layer gradually transforms in a soil layer, a process that can be called 'soil ripening'. In PADDY this soil ripening process is modelled using a separate subroutine. A simple subroutine with limited data needs is available (see Section 5.2). In contrast to LOWBAL, subsidence of the soil surface is not simulated. Cracks penetrate through a soil layer if its pressure head h drops below a critical value, which is defined in the soil data input file (Appendix 4). The soil's water balance may change radically if cracks penetrate through the plow sole, breaking its function as a barrier to downward flow.

A third switch in the soil data input file determines if groundwater is present in the soil profile (SWITGW). In PADDY this switch is translated into a logical GRWAT. If SWITGW $=1$ or SWITGW $=2$, then GRWAT $=$. TRUE., else GRWAT $=$. FALSE.. Groundwater table depth is either an input into the model (SWITGW $=1$) or is calculated from downward fluxes (SWITGW = 2). Capillary rise to soil compartments above the groundwater table is calculated using a 'window-structure', i.e. water flow to each soil compartment is
calculated separately. No flow due to capillary rise occurs between boundaries of soil compartments. Time step of integration of PADDY is one day. The source code of PADDY and associated subroutines, a list of variables, explanations and dimensions and the soil data file needed are included in Appendix 4.

5.1 Percolation and seepage

Ponded water drains in the soil profile via percolation or seepage. A switch switvp, defined in the soil data file, determines if a combined percolation and seepage rate (PERCOL) is read from the soil data file (SWITVP $=0$). If seepage losses can be neglected, the user can choose for an option to calculate the percolation rate through the puddled topsoil (SWITVP $=1$). For freely draining non-puddled soils (SWITFD $=1$), ponded water is quickly drained to the subsoil and the value for swITvP is ignored.

The subroutine SATFLX is called if switvp $=1$. It can calculate percolation rates provided the saturated hydraulic conductivity of the plow sole (soil layer nlpud, see above) and the hydraulic conductivity curve of the subsoil directly below the plow sole (soil layer NLPUD +1) are known. Wopereis et al. (1992) showed that the percolation rate through a puddled soil is affected by both the characteristics of the non-puddled subsoil, through its hydraulic conductivity curve, and by the physical properties (i.e. hydraulic resistance) of the least permeable layer in the puddled topsoil, i.e. the plow sole. The switch SWITKH in PADDY, can be used to define hydraulic conductivity characteristics with van Genuchten parameters (SWITKH $=1$) or using a power function (SWITKH $=2$). These functions are given in Chapter 2.

Using an iterative Newton-Raphson procedure (Wolfram, 1991) fluxes through the plow sole and the non-puddled subsoil are calculated in a separate subroutine SATFLX and compared until the difference between both fluxes become negligible. The procedure is illustrated in Figure 5.1. SATFLX starts with taking a random value for the pressure head h in the non-puddled subsoil (1). The difference between the flux through the puddled topsoil $\left(f_{\mathrm{t}}\right)$ and the non-puddled subsoil $\left(f_{\mathrm{s}}\right)$ at that pressure head is then calculated (2). The flux through the puddled topsoil equals (Wopereis et al., 1992):
$\left.f_{\mathrm{t}}=-k_{\mathrm{s}}\left(h_{\mathrm{t}}-h_{\mathrm{b}}+z_{\mathrm{l}}\right) / z_{\mathrm{l}}\right)$
where k_{s} is the hydraulic conductivity of the soil layer ($\mathrm{cm} \mathrm{d}^{-1}$), and h_{t} and h_{b} pressure head (cm) at top and bottom of the plow sole respectively. Assuming gravity flow in the subsoil, the flux in the subsoil can be written as (Wopereis et al., 1992):
$f_{\mathrm{s}}=-k\left(h_{\mathrm{b}}\right)$
If the difference between f_{t} and f_{s} is too large, the intersection of the tangent line with the x -axis is calculated, which yields a new value for h_{b} (3). A new difference between fluxes f_{t} and f_{s} is calculated (4) etc. The calculations continue until the difference between f_{t} and

Figure 5.1 Iterative procedure used in the subroutine SATFLX to calculate percolation rates for a puddled soil by minimizing the difference between the fluxes through the plow sole $\left(f_{t}\right)$ and the non-puddled subsoil $\left(f_{\mathrm{s}}\right)$.
f_{s} becomes close to zero. A listing of the subroutine SATFLX is given in Appendix 4.
The module SATFLX was validated by comparing steady state percolation rates calculated with the one-dimensional dynamic soil-water balance model SAWAH (ten Berge et al., 1992) and PADDY. SAWAH simulates fluxes between compartments using small variable time steps. From Table 5.1 it can be seen that SAWAH and PADDY predictions are close if the plow sole conductivity is small, regardless of groundwater table depth. SWITVP should not be used if the conductivity of the plow sole is known to be larger than $0.1 \mathrm{~cm} \mathrm{~d}{ }^{-1}$ (for more details see Bouman et al., 1994). Under such circumstances percolation rates predicted by PADDY may be too small and a constant percolation and seepage rate should be defined instead.

5.2 Soil ripening and cracking of a puddled topsoil

If a puddled soil dries out, its volume shrinks, cracks appear, and a 'soil ripening' process occurs, gradually changing the muddy topsoil into real soil. PADDY provides one subroutine to simulate this process (subroutine SHRINK). It is assumed that soil shrinkage is irreversible, i.e. the total porosity of a dried, previously puddled soil layer cannot increase in case of rewetting, unless intensive re-puddling is carried out. The approach is similar to the one used in LOWBAL. A shrinkage factor, defined as the ratio of total porosity of puddled and non-puddled soil is used to calculate volume change. It is assumed

Table 5.1. Steady-state percolation rates calculated using PADDY and SAWAH, at a constant ponded water depth of $15 \mathrm{~cm} . k_{s}$ is the saturated hydraulic conductivity of the plow sole. Hydraulic conductivity characteristics of the subsoil taken from Wopereis et al. (1993b).
\(\left.$$
\begin{array}{llll} & \begin{array}{l}\text { SAWAH } \\
\text { (groundwater table at } 1 \mathrm{~m}) \\
\text { infiltration rate } \\
\left(\mathrm{mm} \mathrm{d}^{-1}\right)\end{array} & \begin{array}{l}\text { SAWAH } \\
\text { (groundwater table at } 5 \mathrm{~m})\end{array} & \begin{array}{l}\text { PADDY } \\
\text { infiltration rate } \\
\left(\mathrm{mm} \mathrm{d}_{\mathrm{s}}\right)\end{array} \\
\left(\mathrm{cm} \mathrm{d}^{-1}\right)\end{array}
$$ \begin{array}{l}infiltration rate

\left(\mathrm{mm} \mathrm{d}^{-1}\right)\end{array}\right]\)| | | 1.7 |
| :--- | :--- | :--- |
| 0.03 | 1.4 | 1.4 |
| 0.1 | 4.5 | 4.5 |
| 0.3 | 33.4 | 149.5 |

that the puddled soil remains saturated during shrinkage, i.e. water loss equals volume change, until the total porosity is equal to that of non-puddled soil. From that moment on the soil pressure potential decreases and the rice plant may start to suffer from drought stress. Important differences with LOWBAL are that more than one shrinking soil layer can be defined and that subsidence of the soil surface is neglected. Inputs to the subroutine SHRINK are: volume of water in soil compartment I, WL (I) in mm, thickness TKL (I) in mm , and saturated volumetric water content after puddling and ripening (WCST(I) and WCSTRP (I) respectively, in $\mathrm{m}^{3} \mathrm{~m}^{-3}$). Outputs are volumetric water content WCL (I) in m^{3} m^{-3}, and total porosity, TOTPOR (I) in $\mathrm{m}^{3} \mathrm{~m}^{-3}$, and new thickness of the soil layer after shrinkage, VL (I) in mm .

CALL SHRINK (ITASK,I,WL(I),TKL(I),WCST(I),WCSTRP(I),
\& WCL (I), TOTPOR(I),VL(I))

SHRINK is not used to simulate the depth of soil cracks. This would be possible by dividing the puddled topsoil into a large number of small compartments, and by calculating the water content and volume change of each small compartment. If water loss in the soil profile is determined by evaporation and incoming rainfall only (no crop) this is feasible, as was shown by Bronswijk (1989). If a rice crop is grown, the situation is a lot more complex as the uptake of water by the crop as a function of depth is unknown. In PADDY a more empirical approach is therefore used. Bronswijk (1988) presented the simulation model FLOCR, in which shrinkage characteristics of soils are included as hydraulic parameters that can be specified for each soil layer. In this version of PADDY a simplified approach to shrinkage is followed as it is expected that data on soil shrinkage characteristics of puddled soil material will be rarely available.

The soil's water balance may change radically if cracks penetrate through the plow sole. Field experiments conducted at the International Rice Research Institute (IRRI) showed that cracks penetrated through the plow sole if the pressure potential of the topsoil dropped below -100 kPa (IRRI, 1992). In PADDY, cracks are assumed to have penetrated through a soil compartment if its simulated water content drops below a value, corresponding to a critical pF value. This critical pF value is defined in the soil data file (PFCR), see Appendix 4. A corresponding soil water content WCCR is calculated using the subroutine SUWCMS2 if SWITPF $=1$ or via linear interpolation if SWITPF $=0$. This subroutine is derived from SUWCMS (ten Berge et al., 1992), see Section 5.9.

```
    IF (PUDDLD) THEN
*------- Initialize SHRINK subroutine
*------- Calculate water content when cracks penetrate through a
*_------ soil compartment
    IF (SWITPF.EQ.1) THEN
            CALL SUWCMS2 (NLPUD, 2,WCST (NLPUD) ,WCCR,10**PFCR)
        ELSE
            IF (PFCR.LE.4.2.AND.PFCR.GE.0) THEN
                WCCR = WCWP (NLPUD) + (WCFC (NLPUD) -WCWP (NLPUD) )/2.2)*
    &
                                    (4.2-PFCR)
            ELSEIF (PFCR.GT.4.2.AND.PFCR.LE.7) THEN
                WCCR = WCAD (NLPUD) +((WCWP (NLPUD) -WCAD (NLPUD) )/2.8)*
    &
                                    (7.0-PFCR)
            ELSE
                STOP 'PLEASE CHECK VALUE PFCR IN SOIL DATA FILE'
            END IF
        END IF
```

If cracks break through a soil compartment, its saturated hydraulic conductivity value KSAT is set to an arbitrarily chosen high value ($1000 \mathrm{~cm} \mathrm{~d}^{-1}$). A message is sent to the screen if cracks break through a soil compartment. The actual water content of a soil layer WCL (I) is compared with the value of WCCR.

```
IF (PUDDLD) THEN
    I = 1
    DO WHILE (I.LE.NL. AND. I.LE.NLPUD)
            CALL SHRINK (ITASK,I,WL(I),TKL(I),WCST(I),WCSTRP(I),
                WCL (I),TOTPOR(I),VL(I))
            IF (WCL(I).LT.WCCR) THEN
                KSAT(I) = 1000.
                PRINT *,'CRACKS REACHED BOTTOM COMPARTMENT ',I
                END IF
                IF (WCL (NLPUD).LT.WCCR) CRACKS = .TRUE.
```

The new saturated storage capacity of the soil layer I, WLST(I) (unit: mm) is calculated by multiplying new thickness $\mathrm{VL}(\mathrm{I})$ (unit: mm) by the new total porosity $\operatorname{TOTPOR(I)}$ (unit: -). The storage capacity at field capacity of layer I, WLFC (I) (unit: mm) is assumed to be equal to the saturated storage capacity:

```
    WLST(I) = VL(I)*TOTPOR(I)
    WLFC(I) = WLST(I)
        I = I + I
    END DO
```

END IF

This last assumption is not backed by any data or literature reference but is assumed to be a reasonable estimate for most puddled soils.

5.3 Redistribution of water in the soil profile

If the soil profile is freely draining (SWITFD $=1$), redistribution of soil-water is modeled in PADDY in a similar way as in SAHEL (see Chapters 2 and 3). It is assumed that the hydraulic conductivity of each soil layer, when wet, is very high, and that water between saturation and field capacity is drained within the time step of 1 day used in the model. Data on hydraulic conductivity are not an input for PADDY if SWITFD $=1$. Instead, in PADDY the saturated hydraulic conductivity of each soil layer is automatically set to an arbitrarily chosen high value ($1000 \mathrm{~cm} \mathrm{~d}^{-1}$). If the soil profile is not freely draining (SWITFD $=0$), the saturated hydraulic conductivity of each soil layer needs to be specified. The maximum flux through a soil layer is then equal to this saturated hydraulic conductivity. If the soil profile is puddled (SWITPD $=1$), one of the soil layers in the topsoil (the plow sole) will usually have a low saturated hydraulic conductivity. The combination of SWITPD $=1$ and SWITFD $=1$ cannot be used in PADDY as it is assumed that puddled soils are not freely draining. If groundwater is present in the profile (SWITGW $=1$), capillary rise to soil layers above the one containing the groundwater table is considered, if their soil water content is below field capacity. The water contents of the soil layer that contains the groundwater table and those at greater depth are reset to saturation. The initial moisture content of the soil profile is defined by the user:

```
CALL RDAREA ('WCLI',WCLI,10,NL)
```

The drying sequence in a rainfed rice system can be divided into two stages:

1. Ponded water

2. No ponded water

Phase 1 will never occur for freely draining soils. For puddled systems, phase 2 can be subdivided into:

2.1 No ponded water and shallow soil cracks

2.2 No ponded water and deep soil cracks
'Shallow' soil cracks (phase 2.1) are cracks that have not yet penetrated through the plow sole (Figure 2.3a). 'Deep' soil cracks (phase 2.2) have (Figure 2.3b), which, depending on the subsoil's permeability, may lead to a radical change in the soil's water balance. If there is ponded water (phase 1), the ponded water level will change according to:
$\mathrm{d} W_{\mathrm{p}}=I+R+C-E-P-T-D$
where (all dimensions in $\mathrm{mm} \mathrm{d}^{-1}$):
$\mathrm{d} W_{\mathrm{p}}=$ change in ponded water depth
$I \quad$ irrigation supply
$R \quad=$ rainfall
C = capillary rise
E = evaporation
$T=$ transpiration
$P \quad=$ percolation
D = bund overflow / surface runoff

1. Ponded water

In PADDY, the amount of ponded water is the starting point of calculations at the beginning of each day. If there is ponded water, three situations can be considered: ponded water can sustain both evaporation and transpiration demands (1.1); ponded water can sustain evaporation but only partly transpiration demand (1.2) and ponded water can sustain only part of the evaporation demand (1.3).

1.1 Ponded water can sustain both evaporation and transpiration demands

The ponded water level in the field, wLo, possibly augmented with rainfall Rain and/or irrigation IR, is sufficient to sustain both evaporation (EVSC) and transpiration (TRW) demands. EVSC and TRW are calculated in the subroutine ETPOT (Chapter 8) and are an input to PADDY. A change in ponded water level wLOCH is calculated comparing gains (RAIN+IR) and losses of water (EVSC+TRw). Note that wLo is a state variable (unit: mm); WLO/DELT and WLOCH are rate variables (unit: $\mathrm{mm} \mathrm{d}^{-1}$).

A counter DSPW resets the number of days without ponded water back to 1 . This counter is used for calculation of evaporation from the soil, as will be explained later.

```
*------- 1. Ponded water on field
    IF (WL0.GE.TINY) THEN
```

```
*---------- reset number of days after ponded water
    DSPW = 1
*---------- 1.1 Ponded water can sustain evaporation and transpiration
    IF (WLO/DELT+RAIN+IR.GE.EVSC+TRW) THEN
*------------- calculate change in ponded water depth (mm/d)
    WLOCH = RAIN+IR-EVSC-TRW
```

The total transpiration requirement TRW is calculated in the subroutine ETPOT and is divided equally over the various soil compartments within the root zone (array TRWL (I), where I is the soil compartment number). Both TRW and TRWL (I) are input variables for PADDY. In this case, however, transpiration loss trw can be covered completely from ponded water present on the soil surface. No water is, therefore, taken from the soil and transpiration losses per soil compartment are reset to zero.

```
*------------ reset transpiration losses per soil compartment to zero
*------------- as transpiration is taken from ponded water
    I = 1
    DO WHILE (I.LE.NL)
    TRWL(I) = 0
    I = I + I
    END DO
*------------- for water balance check
    EVSW = EVSC
    EVSWS = 0.
```

If the soil is not freely draining (SWITFD $=0$) and if, in case of a puddled soil, cracks have not yet reached the plow sole, downward water flow is determined by a percolation rate.

```
IF ((.NOT.FREEDR).AND. (.NOT.CRACKS)) THEN
```

*------------- calculate percolation rate (mon/d)

The switch swirvp determines if the percolation rate, PERC, is calculated using the subroutine SATFLX (SWITVP=1) or read from an input file (PERC = PERCOL if SWITVP=0). PERC can never be larger than the amount of ponded water left on the soil surface, after subtraction of transpiration and evaporation losses (WLO/DELT+WLOCH). The in's and out's of SATFLX are explained in Section 5.1. For non-puddled soils switvp must be 0. If this is not the case, the program is stopped and a warning is sent to the screen.

```
IF (SWITVP .EQ. 0) THEN
IF (WLO/DELT+WLOCH.GE.PERCOL) THEN
                                    PERC = PERCOL
ELSE
        PERC = WLO/DELT+WLOCH
```

```
                    END IF
        ELSE
            IF (.NOT.PUDDLD)
&
                STOP 'SWITVP MUST BE O FOR NON-PUDDLED SOIL'
            IF (NLPUD.LT.NL) THEN
                CALL SATFLX (TKL,NLPUD,WLO,PERC)
            ELSE
                STOP 'SWITVP MUST BE 0 IF NL = NLPUD'
            END IF
            IF (WL0/DELT+WLOCH.LE.PERC)
$
                PERC = WLO/DELTT + WLOCH
            END IF
```

After assessment of the percolation rate, the change in ponded water depth is recalculated.

```
*------------ recalculate change in ponded water depth ( \(\mathrm{mm} / \mathrm{d}\) )
    WLOCH \(=\) WLOCH - PERC
```

The amount of water in excess of bund height, wlomx, is lost from the soil profile as runoff, RUNOF.

```
*----------- calculate runoff (mm/d) if ponded water depth
*------------- exceeds bund height
    IF (WLO+WLOCH*DELT.GE.WLOMX) THEN
    RUNOF = (WLO +WLOCH*DELT-WLOMX)/DELT
    WLOCH = WLOCH-RUNOF
```

END IF

In total, NL+1 flow rates are used in PADDY, where NL = number of soil compartments. WLFL (1) is the flow rate at the ponded water - soil surface interface; WLFL (2) is the flow rate at the soil layer (1) - soil layer (2) boundary etc. In this case all flow rates are assumed to be equal to the percolation rate.

```
I = 1
DO WHILE (I.LE.NL+1)
    WLFL(I) = PERC
    I = I + 1
```

END DO

For non-puddled soils and for puddled soils with cracks deeper than the plow sole, the ponded water on the soil surface will flow downward with a rate that depends on the hydraulic characteristics of the subsoil. In this case the concept of percolation rate cannot be used. Instead, two subroutines determine the fate of water flow: DOWNFL and BACKFL.

```
*---------- calculate flow through boundaries of soil compartments
```

 WLFL (1) = RAIN + IR - EVSC - TRW
 \(\mathrm{I}=1\)
 DO WHILE (I.LE.NL)
 CALL DOWNFL(I, KSAT (I), WLFL(I), TRWL(I), EVSWS, WL (I),
 $\&$
WLFC(I), DELT, WLFL(I+1))
$I=I+1$
END DO
IF (.NOT. FREEDR) THEN
$\mathrm{I}=\mathrm{NL}$
DO WHILE (I.GE.1)
CALL BACKFL(I,WL(I),WLFL(I),WLFL(I+1),EVSWS,
${ }_{\infty}^{\circ}$
TRWL (I) , WLST (I) , DELT, FLNEW, REST)
WLFL(I) = FLNEW
$I=I-1$
END DO

Using the subroutine DOWNFL, incoming rainfall is redistributed by calculating for all compartments gain and loss terms, starting with the top compartment. All water in excess of field capacity is drained from the compartment, with a maximum rate equal to the saturated hydraulic conductivity of the compartment, $\operatorname{KSAT}(\mathrm{I})$. If the rate is low, the water content of the compartment may reach saturation, i.e. a perched water table may develop. Note that KSAT (I) is multiplied by a factor 10 to convert from $\mathrm{cm} \mathrm{d}^{-1}$ to $\mathrm{mm} \mathrm{d}^{-1}$.

SUBROUTINE DOWNFL(I, KSAT, FLIN,'TRWL, EVSWS, WL, WLFC, DELT, FLOUT)

IMPLICIT REAL (A-H, J-Z)

IF (I.EQ.1) THEN
FLOUT $=\operatorname{MIN}(10 * K S A T, \operatorname{MAX}(0 ., F L I N-E V S W S-T R W L+(W L-W L F C) / D E L T))$
ELSE
FLOUT $=$ MIN(10*KSAT, MAX (0.,FLIN-TRWL+(WL-WLFC)/DELT))
END IF
RETURN
END
If the soil profile is not freely draining, one or more soil layers in the profile restrict water flow. Using the subroutine BACKFL and starting with the last compartment, in- and outflow fluxes are then compared. If the outflow flux for a given compartment is too low (i.e. the resulting water content of the compartment would be higher than its saturated water content), the excess water is redistributed upward. This means that, although the
cracked topsoil is freely draining, water may still start ponding on the soil surface because of a layer with a low saturated hydraulic conductivity deeper in the soil profile. Ponding of water will occur if the REST term (HLP in subroutine BACKFL) for $I=1$ is larger than the water holding capacity of the first soil compartment (WLST (1)).

```
SUBROUTINE BACKFL(I,WL,FLIN,FLOUT,EVSWS,TRWL,WLST,DELT,
&
FLNEW, HLP)
IMPLICIT REAL (A-H,J-Z)
HLP = 0.
IF (I.EQ.1) THEN
    HLP = WL+(FLIN-FLOUT-EVSWS-TRWL)*DELT
ELSE
    HLP = WL+(FLIN-FLOUT-TRWL)*DELT
END IF
IF (HLP.GT.WLST) THEN
    FLNEW = FLIN - (HLP-WLST)/DELT
ELSE
    FLNEW = FLIN
END IF
RETURN
END
```

Water in excess of bund height is lost from the soil profile through runoff:

```
        WLOCH = MAX(0.,(REST-WLST(1))/DELT )
        IF (WLO+WLOCH*DELT.GE.WLOMX) THEN
                        RUNOF = (WLO + WLOCH*DELT-WLOMX)/DELT
                        WLOCH = WLOCH - RUNOF
            END IF
                END IF
                END IF
```


1.2 Ponded water depth can sustain evaporation but only part of transpiration

 If the ponded water level and the incoming amount of water via rain and irrigation (WLO/DELT+RAIN+IR) are not sufficient to meet transpiration and evaporation demands (EVSC+TRW), all ponded water will be consumed (WLOCH $=-$ WLO/DELT).*---------- 1.2 Ponded water depth can sustain evaporation but
*---------- only part of transpiration

```
        ELSE IF ((WLO/DELT+RAIN+IR.GE.EVSC).AND.
```

(WL0/DELT+RAIN+IR.LT.EVSC+TRW)) THEN

```
*------------ calculate change in ponded water depth (mm/d)
WLOCH = -WLO/DELT
```

Percolation rate PERC is assumed to be zero in this case, as no ponded water is left. This also holds for the flow from the rest of the soil compartments (WLFL (I)).

```
*------------- percolation is zero because no ponded water left
    PERC = 0.
    I=1
    DO WHILE (I.LE.NL+1)
        WLFL(I) = PERC
    I = I + 1
END DO
```

The part of transpiration not yet accounted for (TRW+EVSC-RAIN-IR-WLO/DELT) is covered by water taken from the soil profile. These losses are divided equally over the root zone soil compartments I. The transpiration loss per soil compartment, TRWL (I), an input to PADDY, is corrected with the factor ((TRW+EVSC-RAIN-IR-WLO/DELT)/ TRW):

```
*------------- correct transpiration losses per soil compartment as
*------------ transpiration losses are partly covered by ponded water
```

 \(I=1\)
 DO WHILE (I.LE.NL)
 TRWL \((I)=((T R W+E V S C-R A I N-I R-W L 0 / D E L T) / T R W)\)
 \$
 *TRWL (I) *DELT
 \(I=I+1\)
 END DO
 *------------- for water balance check
EVSW = EVSC
EVSWS $=0$.

1.3 Ponded water can only sustain part of evaporation demand

As all ponded water is used to cover the evaporation demand, percolation rate is assumed to be zero. The flux at the soil surface wLFL(1) is equal to incoming rainfall and irrigation, RAIN + IR. Transpiration losses are covered completely by water taken from the soil profile. These losses (TRWL (I)) are an input to PADDY.

```
*_--------- 1.3 Ponded water can sustain part of evaporation only
    ELSE IF (WLO/DELT+RAIN+IR.LT.EVSC) THEN
*---------- calculate change in ponded water depth (mm/d)
    WLOCH = -WLO/DELT
    PERC = 0.
    WLFL(1) = RAIN + IR
```

```
I = 2
DO WHILE (I.LE.NL+1)
    WLFL(I) = PERC
    I = I + 1
```

END DO

The evaporation demand not yet accounted for, EVSC+WLOCH is taken from incoming rainfall and irrigation (RAIN $+I R$) and, from water available in the topsoil compartment i.e. actual water content, wL (1), minus water content when air dry, WLAD(1). Because EvSC, WLOCH, RAIN and IR are all rate variables, these water contents need to be divided by the time step delt. The sum of the amount of water available in the topsoil compartment plus rainfall and irrigation sets a limit to the value of EvSw.

```
*---------- calculate contribution of first soil compartment to
*---------- evaporation
EVSW = MIN(EVSC+WLOCH,WL (1)/DELT-
    $
                                    WLAD(1)/DELT+RAIN+IR)
        EVSWS = EVSW
*------------- for water balance check
    EVSW = WLO/DELT+EVSWS
    END IF
```


2. No ponded water

If there is no ponded water, the evaporative demand is met by taking water from the first soil layer. Actual soil evaporation is calculated by assuming that the cumulative evaporation is proportional to the square root of time. The rate of evaporation on the first day without ponded water is assumed to be 60% of the potential soil evaporation. A counter DSPW keeps track of the number of days that have passed without ponded water. A similar approach was used by Penning de Vries et al. (1989).

ELSE

```
*------- 2. No ponded water on surface
*------- calculate evaporation rate from soil surface (mm/d)
    EVSH = MIN(EVSC,MAX(0.,(WL(1)-WLAD(1))/DELT+RAIN+IR))
    EVSD = MIN(EVSC,0.6*EVSC*(SQRT (DSPW)-SQRT(DSPW-1.)) +RAIN+IR)
    EVSW = INSW(DSPW-1.1,EVSH,EVSD)
    EVSW = MIN{EVSW,MAX (0.,RAIN+IR+(WL(1)-WLAD (1))/DELT))
    EVSWS = EVSW
    DSPW = DSPW + 1
```

The subroutines DOWNFL and BACKFL are again used to redistribute water in the soil profile. The subroutine BACKFL is only called if the profile is not freely draining (SWITFD = 0).

$$
I=1
$$

DO WHILE (I.LE.NL)
CALL DOWNFL (I, KSAT (I) , WLFL(I), TRWL (I), EVSWS,WL (I),
$\&$
$I=I+1$
END DO

IF (.NOT.FREEDR) THEN $\mathrm{I}=\mathrm{NL}$ DO WHILE (I.GE.1) CALL BACKFL(I,WL (I), WLFL(I),WLFL\{I+1),EVSWS, TRWL (I), WLST (I), DELT, FLNEW, REST) WLFL $(I)=$ FLNEW $I=\mathbf{I}-1$ END DO

Water in excess of bund height is lost from the soil profile through runoff:

```
        WLOCH = MAX(0.,(REST-WLST(1))/DELT )
        IF (WLO+WLOCH*DELT.GE.WLOMX) THEN
            RUNOF = (WLO + WLOCH*DELT-WLOMX)/DELT
            WLOCH = WLOCH - RUNOF
        END IF
    END IF
```

END IF

5.4 Groundwater table

The switch switgw, defined in the soil data file (Appendix 4) determines if groundwater is present in the soil profile. This switch is translated into a logical gRWat in PADDY: GRWAT $=$.TRUE. if SWITGW $=1$ or SWITGW $=2$, else GRWAT $=$.FALSE. The new groundwater table depth is read from a table (SWITGW = 1) or calculated (SWITGW = 2). In both cases the subroutine GWTAB is used.

IF (GRWAT) THEN
*------- new groundwater table depth
ZWPREV = ZW
CALL GWTAB(ITASK, SWITGW, NL, DOY, DELT, WLFL, TKL, ZWPREV,
$\&$ IGW, ZW)
END IF
Input to subroutine GWTAB are: ITASK (1: initialization; 3: integration), SWITGW (if SWITGW = 1: input from table, if SWITGW $=2$, groundwater table is calculated), NL (number of soil layers), DOY (day of year), DELT (time step of integration, usually 1 day), WLFL (array containing fluxes at soil layer boundaries), TKL (array of thickness soil layers) and zWPrev (previous groundwater table depth). Output are IGW (shallowest soil compartment in groundwater) and zW (new groundwater table depth). If $\operatorname{switgw}=1$, groundwater table depth is read from the table zwTB. If SWITGW $=2$, it is assumed that the
groundwater table depth is receding with a constant speed, zWA. The flux at the bottom of the soil layer IGW, WLFL (IGW), multiplied with a sensitivity factor zWB brings the water table closer to the soil surface (following lines taken from subroutine GWTAB):

```
IF (SWITGW.EQ.1) THEN
    ZW = LINT(ZWTB,IZWTB,DOY)
ELSE
    ZW = ZW + ZWA - ZWB*10*WLFL(IGW)*DELT
    IF (ZW.LT.MINGW) ZW = MINGW
    IF (ZW.GT.MAXGW) ZW = MAXGW
END IF
```

In PADDY, it is assumed that soil layers I in the subsoil, that are saturated with water because of the presence of a groundwater table, drain to their field capacity water content, WLFC (I) within the time step delt (one day). The flux from each soil compartment I, WLFL ($\mathrm{I}+1$) is calculated taking into account drainage to field capacity, DRAIN, losses due to transpiration (TRWL(I)), and the flux into this soil compartment, WLFL(I). The shallowest soil compartment containing groundwater is known via calls to the subroutine GWTAB (stores this compartment number in the variable IGP, see above).

```
IF (GRWAT) THEN
*------- drain compartments in groundwater
    I = IGW
    DO WHILE (I.LE.NL)
            IF (WL(I).GE.WLFC(I)) THEN
                DRAIN = (WL (I)-WLFC(I))/DELT
                WLFL(I+1) = DRAIN+MAX(0.,WLFL(I)-TRWL(I))
            ELSE
                WLFL(I+1) = MAX(0..WLFL(I) -TRWL(I) +
                                    (WL(I)-WLFC(I) ) /DELT)
            END IF
            I = I + 1
    END DO
```

After resetting the soil water contents to field capacity, the current groundwater table depth zw obtained from a call to the subroutine GWTAB (see above) is used to fill soil compartments up to saturation:

```
    I = NL
    GWTOT = 0.
    DO WHILE (I.GE.1)
        GWFILL(I) = 0.
        check if groundwater in soil compartment
        GWCHK = MAX(0.,ZW-ZL(I)-0.5*TKL(I)/10.)
        IF (GWCHK.EQ.0) THEN
```

```
                        PRINT *,'Groundwater in compartment ',i
            IF (I.EQ.1) THEN
            GWFILLL(I) = MAX(0.(WLST(I) -WL(I))/DELT+TRWL(I) +
$
$
                                    WLFL(I+1) +EVSWS-WLFL(I))
        ELSE
            GWFILL(I) = MAX(0,(WLST(I) -WL(I))/DELT+TRWL(I) +
                        WLFL(I+1)-WLFL(I))
        END IF
        GWTOT = GWTOT + GWFILL(I)
END IF
```


5.5 Capillary rise

Capillary rise to soil compartments above the groundwater table is calculated using a "window-structure", i.e. water flow to each soil compartment is calculated separately. No flow due to capillary rise occurs between boundaries of soil compartments. Capillary rise from the groundwater table to a soil compartment is assumed to occur only if the soil moisture content of this compartment is below field capacity. The soil pressure head, MS (in mbar or $\mathrm{cm}_{2} \mathrm{O}$), prevailing in the soil compartment is calculated with the subroutine SUWCMS2, derived from SUWCMS (ten Berge et al., 1992). Field capacity water content is assumed to occur if $\mathrm{MS}=100 \mathrm{mbar}(\mathrm{pF}=2)$.

```
*---------- only capillary rise if compartment is below field
*_-------- capacity (MS > 100 mbar)
    MS = 0.
    FLOW = 0.
    IF (WL (I).GT.WLAD(I).AND.WL(I).LT,WLFC(I).AND.
    $
    ZW.GT.ZL(I) +TKL (I)/10.) THEN
        IF (SWITKH.NE.0) THEN
                            CALL. SUWCMS2 (I, 1,WCST (I) ,WCL (I) , MS)
                            IF (MS.GT.100.) THEN
```

Capillary rise is calculated using the WOFOST routine SUBSOL (van Diepen et al., 1988), which is slightly changed to allow for the use of Van Genuchten parameters. The routine is, to avoid confusion, renamed to SUBSL2. Input to SUBSL2 is the soil pressure head MS calculated with the subroutine SUWCMS2:

CALL SUBSL2 (LOG10(MS), ZW-ZL (I) +
$0.5 * T K L(I) / 10, I, W C S T(I), F L O W)$
END IF
c if flow negative (percolation) then reset to zero
IF (FLOW.LT.0) FLOW $=0$.
IF (I.EQ.1) THEN
$\operatorname{CAPRI}(I)=\operatorname{MIN}(F L O W,(W L S T(I)-W L(I)) / D E L T+$
$\&$
ELSE
CAPRI (I) $=$ MIN(FLOW, (WLST (I) - WL (I))/DELT+
$\&$ TRWL (I) +WLFL (I +1) -WLFL (I))
END IF
END IF
END IF

Capillary rise can only decrease with increasing distance from the groundwater table. If the calculated capillary rise of a compartment higher in the profile is larger than the compartment below, the capillary rise is reset to the value of the compartment closer to the groundwater table:

IF (I.LT.NL) THEN
IF (CAPRI (I).GT.CAPRI (I+1).AND.CAPRI (I+1).GT.0)
$\&$
END IF
CAPTOT $=$ CAPTOT + CAPRI (I)
$\mathbf{I}=\mathbf{I}-1$
END DO

5.6 Changes in soil water content

At the end of the dynamic section of the module, changes in water content of the soil compartments (WLCH (I)) are calculated.

```
I = 1
DO WHILE (I.LE.NL)
        IF (I.EQ.1) THEN
        WLCH(I) = WLFL(I)-WLFL(I+1)-TRWL(I)-
                                    EVSWS+CAPRI (I)
    ELSE
        WLCH(I) = WLFL(I)-WLFL(I+1)-TRWL(I) +CAPRI (I)
        END IF
        WCUMCH = WCUMCH + WLCH(I)
        I = I + 1
END DO
```

During the integration phase of the module, changes in state variables are integrated using a time step of one day.

```
*---- integration of state variables
    WLO = INTGRL(WLO,WLOCH,DELT)
    I = 1
    DO WHILE {I.LE.NL)
```

```
    WL(I) = INTGRL(WL(I),WLCH(I),DELT)
    WCL(I) = WL(I)/TKL(I)
    I = I + 1
END DO
```

For puddled soils WCL (I) is recalculated using the subroutine SHRINK as explained in Section 5.2.

5.7 Water balance check

At the end of the integration section, a water balance check is carried out. First cumulative amounts of water balance components are calculated:

```
*---- cumulative amounts
    DRAICU = DRAICU * WLFL(NL+1)*DELT
    UPRICU = UPRICU + CAPTOT*DELT
    EVSWCU = EVSWCU - EVSW*DELT
    RAINCU = RAINCU + (RAIN+IR)*DELT
    RNOFCU = RNOFCU - RUNOF*DELT
    TRWCU = TRWCU - TRW*DELT
```

Changes in soil water content and ponded water depth are compared with inflow and outflow at the boundaries of the soil profile, using the module SUWCHK (ten Berge et al., 1992). SUWCHK compares the total change in system water content CKWIN with the total of external contributions to system water content, cKWFL.

```
*----- water balance check
    WCUM = WCUM + WCUMCH*DELT
*----- contribution of profile to water balance, since start
    PROREL = WCUMCH
    WCUMCO = WCUMCO + PROREL*DELT
*_---- contribution of surface water to water balance, since start
    SURREL = WLOCH
    WLOCO = WLOCO+SURREL *DELT
*.-.-- total change in system water content
    CKWIN = WCUMCO + WLOCO
*_.--- total of external contributions to system water content
    CKWFL = RAINCU + RNOFCU + EVSWCU + TRWCU + UPRICU + DRAICU
*----- check this
    CALL SUWCHK (CKWFL,CKWIN,TIME)
```


5.8 Irrigation

A switch SWITIR, set in the soil data file, determines if the soil is irrigated if the ponded water depth on the soil profile wLO drops below a minimum value WLOMIN (SWITIR $=2$). Irrigation can also be read from a table defined in the soil data file (Appendix 4), RIRRIT, if SWITIR $=1$.
*------- if irrigated, supply constant irrigation (mm/d) if ponded water

```
*------- leve1 is below minimum
```

 IF (SWITIR.EQ.1) IR = LINT (RIRRIT, IRIRR, DOY)
 IF (WLO .LE. WLOMIN.AND.SWITIR.EQ.2) THEN
 \(I R=I R R I\)
 END IF
 If an irrigation table is used it is important to realize that I_{R} for a specific day is calculated via linear interpolation. Each irrigation day should be preceded by a day without irrigation and should be followed by a day without irrigation. If for example irrigation is applied on calendar days 10,50 and $100(50 \mathrm{~mm})$ than a correct RIRRIt table would be:

```
RIRRIT = 1., 0., 9., 0., 10., 50., 11., 0., 49., 0., 50., 50., 51., 0.,
99., 0., 100., 50., 101., 0., 400., 0.
```

and not simply:
RIRRIT $=10 ., 50 ., 50 ., 50 ., 100 ., 50$.
as this would result in irrigation on calendar days between 10 and 50 and 50 and 100 as well. It is assumed that the seedbed is continuously irrigated. Water losses due to percolation (PERC), evaporation (EVSC) and transpiration (TRW) are covered by an irrigation application IR:

```
IF (ITIM .LT. ITRT) THEN
    IR = PERC + EVSC + TRW
```

END IF

5.9 Other subroutines used by PADDY

Besides the subroutines SATFLX, SHRINK and SUBSL2 explained above, PADDY uses the following subroutines from SAWAH (ten Berge et al., 1992): SUERR, SUWCHK, SUMSKM and SUWCMS. SUERR checks if a value of a variable is within a specified domain. SUWCHK checks the soil-water balance by comparing time-integrated boundary fluxes versus changes in the total amount of water contained in the system. SUMSKM calculates the hydraulic conductivity at given suction for compartment I on the basis of a chosen option. SUWCMS calculates volumetric soil-water content from soil-water suction and vice versa. Both SUMSKM and SUWCMS were adapted slightly and renamed to SUMSK2 and SUWCMS2 respectively. SUWCMS2 works with Van Genuchten
parameters only (see Chapter 2). SUMSK2 works with Van Genuchten parameters and power functions (see Chapter 2).

5.10 Important switches

Switch Meaning
SWITFD profile is freely draining (1); layers are impeding water flow (0)
SWITPD topsoil is puddled (1); soil is not puddled (0)
SWITPF - water retention data given at saturation, field capacity, wilting point and when air dry (0); water retention data parameterized via Van Genuchten function (1)
SWITKH no hydraulic conductivity characteristics available (0); hydraulic conductivity data parameterized via van Genuchten function (1); hydraulic conductivity data parameterized via power function (2)
SWITGW groundwater not present in profile (0); groundwater depth read from input file (1); groundwater depth calculated (2)
SWITVP percolation rate read from input file (0); percolation rate calculated (1)
SWITIR no irrigation (0); irrigation read from table (1); irrigation if ponded water depth drops below minimum value (2)

5.11 Communication with ORYWAT

Some variables are introduced in PADDY for communication with the above-ground module ORYWAT.

To pass-on to ORYWAT:
NL $\quad=$ number of soil compartments
TKLP (I) = array with thicknesses of soil compartments m
TKLT $=$ total depth soil profile m
ZRTMS = maximum rooting depth soil m
WCL $(I)=$ array with actual soil water contents per soil layer $I \quad \mathrm{~cm}^{3} \mathrm{~cm}^{-3}$
wLO = ponded water depth mm
WCWP(I) = array with volumetric soil moisture contents at wilting point $\mathrm{cm}^{3} \mathrm{~cm}^{-3}$
$W C F C(I)=$ array with soil moisture contents at field capacity $\mathrm{cm}^{3} \mathrm{~cm}^{-3}$
WCST $(I)=$ array with soil moisture contents at saturation $\mathrm{cm}^{3} \mathrm{~cm}^{-3}$

To get from ORYWAT:
$\operatorname{TRWL}(\mathrm{I})=$ array with actual transpiration rates per soil layer $\mathrm{I} \quad \mathrm{mm} \mathrm{d}^{-1}$
EVSC $=$ potential evaporation rate $\mathrm{mm} \mathrm{d}^{-1}$

5.12 Model data needs

Data needs for PADDY are (depending on soil condition, i.e. free draining, impeded drainage, puddled, non-puddled):

NL number of soil compartments
TKL array of thicknesses of soil compartments m
WCLI initial volumetric water content of soil compartment $\mathrm{m}^{3} \mathrm{~m}^{-3}$
RIRRIT irrigation table $\mathrm{mm} \mathrm{d}^{-1}$
IRRI irrigation applied if ponded water depth lower than minimum value $\mathrm{mm} \mathrm{d}^{-1}$
SWITIR irrigation switch
SWITPD puddled/non-puddled switch
SWITPF water retention switch
SWITKH hydraulic conductivity switch
SWITFD free drainage / impeded drainage switch
SWITGW groundwater switch

If SWITPD $=1$ (soil is puddled):
SWITVP percolation rate switch
NLPUD number of puddled soil compartments -
WCSTRP saturated volumetric water content of ripened soil $\quad \mathrm{m}^{3} \mathrm{~m}^{-3}$
PFCR critical pF value where cracks break through compartment -
If SWITPF $=0$ (water retention data from table):
wCST saturated volumetric soil water content $\mathrm{m}^{3} \mathrm{~m}^{-3}$
wCFC volumetric water content at 'field capacity' $\mathrm{m}^{3} \mathrm{~m}^{-3}$
WCWP volumetric water content at 'wilting point' $\mathrm{m}^{3} \mathrm{~m}^{-3}$
WCAD volumetric water content when 'air-dry' $\mathrm{m}^{3} \mathrm{~m}^{-3}$

If SWITPF = 1 (water retention curve is parameterized using Van Genuchten function):
VGA Van Genuchten alpha parameter cm^{-1}

VGL Van Genuchten lambda parameter -
VGN Van Genuchten n parameter -
VGR Van Genuchten residual water content -
WCST saturated volumetric soil water content of puddled topsoil $\mathrm{m}^{\mathbf{3}} \mathrm{m}^{-3}$

If SWITKH = 1 (conductivity curve is parameterized using Van Genuchten function):
KST saturated hydraulic conductivity $\mathrm{cm} \mathrm{d}^{-1}$
VGA Van Genuchten alpha parameter cm^{-1}
VGL Van Genuchten lambda parameter -
vGN Van Genuchten n parameter -
VGR Van Genuchten residual water content -

If SWITKH $=2$ (conductivity curve is parameterized using power function):

KST	saturated hydraulic conductivity	$\mathrm{cm} \mathrm{d}^{-1}$
PN	parameter n in power function for hydraulic conductivity	-

If SWITFD $=0$ (profile is not freely draining):

- Percolation rates and saturated hydraulic conductivity:

PERCOL percolation rate from soil data input file $\mathrm{mm} \mathrm{d}^{-1}$
KST saturated hydraulic conductivity $\mathrm{cm} \mathrm{d}^{-1}$
-Bund heights and ponded water depths:
WLOI amount of initial ponded water mm
WLOMIN minimum amount of ponded water before start of irrigation mm
WLOMX maximum amount of ponded water ($=$ bund height) mm

If $\operatorname{SWITGW}=1$ or SWITGW $=2$ (groundwater table is present in profile):

- If groundwater table depth is read from table (SWITGW = 1):

ZWI initial depth of groundwater table below soil surface cm
2WTB table with groundwater table data

- If groundwater table depth is calculated (SWITGW $=2$):
MAXGW maximum groundwater table depth cm

MINGW minimum groundwater table depth cm
ZWA depth groundwater table is receding in case of no recharge cm
ZWB sensitivity factor of recharge
2WTBI initial depth of groundwater table below soil surface cm

Methods to measure soil hydraulic properties were described in details by Wopereis et al. (1994).

5.13 Model validation

For non-puddled soil conditions, PADDY was tested using data from a drought experiment conducted by Hasegawa and Yoshida (1982) at IRRI. Average soil hydraulic characteristics at various depths were taken from Wopereis et al. (1993b). Potential transpiration rates, calculated by the subroutine ETPOT were multiplied by a factor 1.3 to allow for the high evapotranspiration rate measured in the experimental field caused by its isolated location (Hasegawa and Yoshida, 1978). LAI was simulated. All other crop parameters were taken from Kropff et al. (1994). Observed and simulated water contents were in excellent agreement (Figure 5.2).

For flooded puddled soil conditions, PADDY was tested using data from a field experiment (field experiment 1) conducted at IRRI in the dry season of 1991 (cv. IR72) and described in detail by Wopereis et al. (1994) and Bouman et al. (1994). Input variables were rainfall, irrigation, evapotranspiration rates from daily weighing of pots
installed in the field and groundwater table depths measured using piezometers. Average and upper and lower extreme values for measured hydraulic conductivity of the plow sole $\left(k_{\mathrm{s}}\right)$ and the non-puddled subsoil were used. Simulated and observed changes in ponded water depth were compared. For non-flooded soil conditions, the ORYZA_W model was tested using data from a second experiment (field experiment 2), conducted in the dry season of 1992 on a $2000 \mathrm{~m}^{2}$ field (cv IR72). For details see Wopereis (1993).

PADDY accurately predicted the changes in ponded water depth for field experiment 1 if average hydraulic conductivity data were used ($k_{\mathrm{s}}=0.082 \mathrm{~cm} \mathrm{~d}^{-1}$, see Figure 5.3). Discrepancies after calendar day 80 were due to disturbance of the plow sole by hand weeders. Wopereis et al. (1992) tested the differential SAWAH soil water balance module (ten Berge et al., 1992) with the same field data. Results from this study showed that the iteration procedure using in PADDY to calculate the flux through the soil profile under flooded soil conditions was as effective as the small time step calculations used in SAWAH. Observed and simulated root zone water content (Figure 5.4) were compared. The results indicated that the model could satisfactorily explain differences in soil water content across drought treatments.

Figure 5.2 Simulated and observed soil water contents at various depths in the soil profile using the soil-water balance module PADDY and data from Hasegawa and Yoshida (1978).

$\square-$	obs	\cdots
\cdots	$\operatorname{sim}(k s=0.032 \mathrm{~cm} / \mathrm{d})$	
$(k s=0.082 \mathrm{~cm} / \mathrm{d})$	--	$\operatorname{sim}(k s=0.120 \mathrm{~cm} / \mathrm{d})$

Figure 5.3 Simulated and observed changes in ponded water depth in field experiment 1 using soil water balance module PADDY.

5.14 Rice-upland crop rotations

Puddling of soil, often practised in lowland rice cultivation destroys soil structure and creates a muddy toplayer, impeding water flow and hampering growth of weeds. Often an upland crop, like wheat or a legume is grown after rice profiting from residual moisture. PADDY was developed to simulate the dynamics of soil water content in the root zone of rice and takes into account the changes that occur in volume and porosity of a drying, previously puddled soil layer. The current version of PADDY can be used for crop rotations if a suitable model for the upland crop is available. A variable wBINIT can be added to the timer file, indicating if the soil-water balance model PADDY will be initialized or not. If WBINIT $=0$, the model is not initialized, and ITASK $=1$ in PADDY is skipped. This option can be used for example if an upland crop is grown after rice. Fallow periods can be simulated by introducing a logical fallow. If fallow $=$.TRUE. the crop model is not called. If a rice crop is grown again after the upland crop, initialization is needed and wBINIT should again be 1 . Introducing wBinIt in a RERUNS
file allows running of ORYZA_W for an unlimited number of cropping seasons. The necessary adjustments needed in ORYZA_W are already incorporated, but currently 'commented out' by an asterix * in the first column of the FSE program. A search for the text string *For crop rotations* can be used to find these lines in the source code.

Figure 5.4 Simulated (lines) and observed (symbols) soil water content ($\mathrm{m}^{3} \mathrm{~m}^{-3}$) for cv . IR72 in field experiment 2 for drought at transplanting ($0-5 \mathrm{~cm}$, late recovery, closed circles), drought at mid-tillering ($0-10 \mathrm{~cm}$, late recovery, squares), drought at panicle initiation ($0-10 \mathrm{~cm}$, late recovery, triangles), and drought at flowering ($0-10 \mathrm{~cm}$, no recovery, open circles).

6 Drought stress responses of two lowland rice cultivars to soil-water status

Quantification of physiological and morphological responses of rice to drought stress is essential to predict the impact of soil and weather conditions on rice production using process based crop simulation models. Drought may delay the phenological development of the rice plant (Turner et al., 1986; Puckridge and O'Toole, 1981; Inthapan and Fukai, 1988), and affects physiological processes like transpiration, photosynthesis, respiration and translocation of assimilates to the grains (e.g. Fukai et al., 1985; Turner, 1986). Drought strongly affects the morphology of the rice plant. Leaf area development may be hampered due to reduced leaf expansion, leaf rolling and early senescence, and tillering and panicle development may be reduced (e.g. O'Toole and Cruz, 1980; O'Toole and Baldia, 1982). On the other hand, drought may induce more rapid root growth (e.g. O'Toole and Chang, 1979; O'Toole and Moya, 1981).

For lowland rice, grown in puddled soil, hardly any information on the relation between root zone soil-water status and physiological and morphological responses to drought is available. Because of the lack of such data, rainfed rice simulation models often use standard relationships that have been derived for other crops (Penning de Vries et al., 1989).

6.1 Description of the greenhouse experiments

At IRRI, three greenhouse experiments were conducted to study the physiological and morphological responses of two semi-dwarf lowland rice varieties (IR20 and IR72), grown in puddled clay soil and non-puddled sandy soil, to temporary drought at different growth stages. Responses during the drought period itself and after re-irrigation were investigated. The experiments aimed at finding relationships between root zone soil-water status and drought stress responses of the plant, for incorporation in rainfed rice simulation models. Drought was initiated at different growth stages and morphological and physiological responses were monitored. Results of these experiments are briefly reported here because they formed the basis of the modifications made to the crop growth module ORYZA1 for use in rainfed environments, explained in Chapter 7.

The experiments were conducted in greenhouses at the International Rice Research Institute (IRRI) in Los Baños, Philippines ($14030^{\prime} \mathrm{N}, 121^{\circ} 15^{\prime} \mathrm{E}$). The climate at the study area is characterized by two pronounced seasons: a dry season (DS) from December to May and a wet season (WS) from June to November, which mainly differ in the levels of radiation and rainfall. Temperatures are similar. Experiment 1 was conducted from 30 January to 6 June 1992 (DS1992); Experiment 2 from 26 September 1992 to 26 January 1993 (WS1992) and Experiment 3 from 13 April 1994 to 29 July 1994 (DS1994). Two cultivars of rice (Oryza sativa L.), IR20 and IR72 were grown in pve pots (20 cm diameter and 25 cm height). Three seedlings (DS 1992: 21-day old; WS1992: 22-day old; DS1994: 21-day old) were planted in the center of each pot. In 1992, all pots were filled with
saturated puddled Maahas clay soil (saturated volumetric water content: $0.73 \mathrm{~cm}^{3}$ water cm^{-3} soil) taken from a submerged field at the IRRI farm that was plowed and harrowed 5 days before. The soil material comprised 13% sand, 39% silt and 48% clay. In 1994, pots were filled with non-puddled sandy soil material, comprising 70% sand, 17% silt and 13% clay (saturated volumetric water content: $0.42 \mathrm{~cm}^{3}$ water cm^{-3} soil). High fertilizer inputs were imposed to ensure that reduced growth of stressed plants was caused by drought only. During the experiments, occasional spraying of insecticides against whorl maggot and green leaf hopper was needed to avoid pest damage.

In each of the three experiments, drought was imposed at different growth stages by simply withholding water application and by removing any ponded water from the soil surface. In 1992, drought was induced at transplanting (A), two weeks after transplanting (B), mid-tillering (D), panicle initiation (E) and first flowering (F). In 1994, the number of drought treatments was restricted to drought at three weeks after transplanting (C) and first flowering (F). Panicle initiation was defined as the first day when a white feathery cone was present inside the leaf sheath of the rice plant. First flowering was defined as the moment when 90% of the plants subjected to a certain treatment had at least one flowering panicle. For comparison, a number of pots for each variety was kept well-watered (WW). The degree of leaf rolling was monitored as a stress indicator. A 0 to 5 rolling factor was used (O^{\prime} Toole and Cruz, 1980). A leaf rolling factor of 1 indicates a first sign of leaf rolling, whereas score 5 means that the leaf has completely rolled up.

In 1992, the duration of drought was varied as well to investigate the responses and the ability of the rice plant to recover from different drought intensities. In the short duration treatments (or early recovery, ER), stressed plants were recovered when plants reached leaf rolling score 5 . In the long duration treatment (or highly stressed, late recovery: LR) plants were recovered when they were close to dying, i.e. leaf rolling score 5 and roughly 50% dead leaves. Recovery was achieved by re-irrigating the pots to bring the dried soil to saturation. In 1994, only treatment ER was included. After the onset of the recovery period, plants were kept well-watered until maturity. In the 1992 experiments, drought was maintained in a number of pots.

Transpiration measurements

Pots with well-watered and stressed plants were weighed daily (early morning) to estimate transpiration losses, using a balance with a resolution of 1 g . Transpiration rate was calculated as the difference in pot weight between successive days. If drought stress results in a reduction of LAI, the measured potential transpiration of well-watered plants will be higher than the potential transpiration rate of stressed plants. Radiation is the main driving force for differences in transpiration between the well-watered and stressed canopies. The potential transpiration of the stressed plants was, therefore, calculated from the transpiration of the well-watered plants, using the ratio of calculated absorbed fraction of global radiation in stressed and well-watered plants as a weighing factor:

$$
\begin{equation*}
T_{\mathrm{p}}(\mathrm{D})=T_{\mathrm{p}}(\mathrm{WW}) *\left(1-\mathrm{e}^{-0.4 \mathrm{LAI}(\mathrm{D})}\right) /\left(1-\mathrm{e}^{-0.4 \mathrm{LAl}(\mathrm{WW})}\right) \tag{6.1}
\end{equation*}
$$

where:
$T_{\mathrm{p}}(\mathrm{D}) \quad$ is the potential transpiration rate of stressed plants, T_{p} (WW) the potential transpiration rate of well-watered plants, LAI(D) the LAI of stressed plants, and LAI(WW) the LAI of well-watered plants.

The factor 0.4 used in Eqn 6.1 is the extinction coefficient for global radiation in rice plants (Kropff and van Laar, 1993). Relative transpiration (RT) used here is the ratio of the actual transpiration of stressed plants, $T_{a}(\mathrm{D})$, over that of well-watered plants corrected for differences in LAI using Eqn 6.1, i.e. $T_{\mathrm{a}}(\mathrm{D}) / T_{\mathrm{p}}(\mathrm{D})$.

6.2 Results of the greenhouse experiments

For reasons of brevity only the results obtained for IR20 in Experiments 1 and 2 are reported here. Very similar results were, however, obtained for IR72 in Experiments 1, 2 and 3 , regardless of the soil material (puddled / non-puddled) used.

Evaporative demand of the air

The evaporative demand of the air in the various experiments was estimated from the transpiration rates of the well-watered plants between 40 and 80 days after transplanting (closed canopy situation). Average transpiration rate in DS1992 was $16 \mathrm{~mm} \mathrm{~d}^{-1}$ (standard deviation, SD: $3 \mathrm{~mm} \mathrm{~d}^{-1}$), in WS1992: $6 \mathrm{~mm} \mathrm{~d}^{-1}$ (SD: $2 \mathrm{~mm} \mathrm{~d}^{-1}$) and in DS 1994: 11 mm d^{-1} (SD: $3 \mathrm{~mm} \mathrm{~d}^{-1}$).

Impact of drought on physiological processes

Transpiration rates of stressed and well-watered plants were converted into relative transpiration rates (RT) using Eqn 6.1 and expressed as a function of soil-water pressure potential h. Variation of RT below and above 1 at low absolute values of h (moist soil) can be explained by micro-environmental variation in and between experiments and error in estimating daily LAI values for well-watered and stressed plants from a limited number of observations.

For reasons of brevity, only the results obtained for cultivar IR20 in Experiments 1 and 2 are reported here (Figure 6.1). Observations for the A and B treatments start at pressure potentials near -100 kPa only, because the pots were initially left uncovered. Logistic curves fitted the data reasonably well. A similar result was obtained by Sinclair and Ludlow (1986) for four tropical grain legumes, relating fraction of transpirable soil water (FTSW) to RT, defining total transpirable soil water as the difference between initial pot weight and its weight when RT reached 0.1.

Differences between dry and wet season data for similar drought treatments were relatively minor given the contrast in evaporative demand between both seasons. Plant age had a more pronounced effect on the relation between RT and soil-water pressure potential h. Differences in rooting pattern may have had some influence in the early drought

Figure 6.1 Relative transpiration rates of IR20 in Experiments 1 and 2 as a function of soil-water pressure potential, resulting from drought at different growth stages. A: drought at transplanting, B: drought two weeks after transplanting, C : drought three weeks after transplanting, D: drought at mid-tillering, E: drought at panicle initiation; F: drought at first flowering.
treatments (A, B). However, at the moment of recovery, roots extended throughout the (shrunken) soil volume for all treatments, indicating no restrictions on availability of soilwater at greater depths in the pots.

For both varieties and for all treatments, plants transpired roughly at potential rate, corrected for differences in LAI, until the soil-water pressure potential h reached the range -70 to -100 kPa (Figure 6.1). At lower soil pressure potentials, RT declined rapidly, especially if drought was induced at a later growth stage (D, E, F). RT values declined more or less linearly with $\log (h)$. Decline in RT started earlier for the D, E, F treatments than for the A, B treatments. This is probably due to the larger size and higher transpiration demand of the older plants.

Relationships between leaf morphology and soil-water status

Leaf elongation rate of plants stressed in the vegetative phase decreased rapidly after an initial period of normal growth. Tanguilig et al. (1987) also found an abrupt decrease in leaf elongation rate 11 days after initiation of drought stress in IR36. The critical soil-
water pressure potential at which leaf expansion in the vegetative phase stopped completely (zero leaf expansion) was estimated from graphs of plant height. Because plant height measurements were done at weekly intervals, results should be interpreted as rough estimates only. In the dry season of 1992, critical pressure potentials ranged from -50 kPa (IR72, DLR) to -160 kPa (IR72, BER). Critical pressure potentials were lower in the wet season of 1992, ranging from -50 kPa (IR72, ELR) to -260 kPa (IR72, AER), probably due to the lower evaporative demand in the wet season. For younger plants, leaf expansion stopped at lower pressure potentials, which may also be attributed to a lower evaporative demand of a small leaf canopy.

As soil-water status declined further, ($h<-200 \mathrm{kPa}$) leaf rolling started in all treatments and for both varieties (Figure 6.2). Decrease in the leaf rolling factor from 1 (no leaf rolling) to 0 (complete leaf rolling) was observed if pressure potentials dropped further to -1 MPa or lower. As drought progressed, the percentage of dead leaves increased rapidly as well (Figure 6.3). Both leaf rolling and dead leaves factors were linearly related with $\log (h)$.

Figure 6.2 Leaf rolling factors of IR20 in Experiments 1 and 2 as a function of soil-water pressure potential, resulting from drought at different growth stages. A leaf rolling factor of 1 indicates no leaf rolling, a leaf rolling factor of 0 indicates that leaves are completely rolled up. A: drought at transplanting, B: drought two weeks after transplanting, C: drought three weeks after transplanting, D: drought at mid-tillering, E: drought at panicle initiation; F : drought at first flowering.

Figure 6.3 Dead leaves factors of IR20 in Experiments 1 and 2 as a function of soil-water pressure potential, resulting from drought at different growth stages. A dead leaves factor of 1 indicates that no dead leaves are present, a dead leaves factor of 1 indicates that all leaves are dead. A: drought at transplanting, B: drought two weeks after transplanting, C: drought three weeks after transplanting, D: drought at mid-tillering, E: drought at panicle initiation; \mathbf{F} : drought at first flowering.

The younger the plant, the lower the soil-water potential before leaf rolling started. Leaves rolled and dead leaves appeared relatively quickly if drought was initiated at flowering, probably because of the added effect of natural senescence. Summarizing the results of the three experiments, the response of leaf morphology to drought may be separated into three more or less sequential phases:

1. Decline in leaf expansion (vegetative phase only),
2. Leaf rolling and
3. Early leaf senescence.

For most treatments phases 2 and 3 showed some overlap, i.e. dead leaves appeared at leaf rolling scores below 5 . Results obtained for the puddled clay and non-puddled sandy soil were remarkably similar, indicating the potential of the soil-water pressure potential to act as an indicator for drought in different soil types. Most drought responses started if the soil pressure potential dropped below -100 kPa .

Impact of drought on phenology

Early drought postponed the date of 50% flowering as compared to that of well-watered plants by a maximum of 22 days. The delay in flowering was reduced if drought was

Figure 6.4 Comparison between the delay in date of 50% flowering and the number of days between zero leaf expansion and recovery for all drought treatments in Experiments 1,2 and 3.
induced at later growth stages. Postponement was in reasonable agreement with the number of days between the date of zero leaf expansion and the recovery date (Figure 6.4). This may indicate that if the soil is too dry to produce new leaves, the development rate of the crop is brought to a standstill as well.

Impact of drought on yield and yield components

For both varieties, yields obtained in early drought treatments (A and B) did not differ significantly from the well-watered yields. Drought at mid-tillering, panicle initiation and flowering strongly reduced yields to below $200 \mathrm{~g} \mathrm{~m}^{-2}$, mainly caused by large percentages of unfilled grains and a reduction in 1000 grain weight.

Impact for modeling of rainfed rice production

The soil-water - drought response relationships presented above were used to modify ORYZA1 for use in rainfed rice environments. This modified ORYZA1 module was renamed to ORYWAT and is presented in the Chapter 7. Soil-water pressure potentials h, obtained from a soil-water balance module like PADDY may be translated into changes in leaf morphology, and relative transpiration. These responses can be defined as functions of $\log (h)$ as shown in Figures 6.1, 6.2 and 6.3. A similar approach, linking stress factors to soil extractable water, was taken for other crops by Sinclair (1986) and McCree and Fernandez (1989).

Results obtained from this study and from Tanguilig et al. (1987) for IR36 suggest that the decline in leaf elongation rate of semi-dwarf lowland rice varieties, stressed in the
vegetative phase, is relatively abrupt. This could be tentatively modeled as a 'step function' declining from 1 (normal leaf expansion) to 0 (zero leaf expansion) if the soilwater pressure head drops below its critical value for zero leaf expansion.

The reasonable good agreement between delay in flowering and the number of days between the moment of zero leaf expansion and recovery (Figure 6.4) suggests that the development rate stops when the soil becomes too dry for further leaf expansion and resumes if drought stress is released. If the critical soil-water pressure potential for zero leaf expansion is reached, stressed plants will still be able to produce carbohydrates for growth, as transpiration has not yet ceased. This extra C may be used for root development to explore soil-water resources, may be stored in the stem or may result in thickening of leaves during drought stress. In a rainfed rice model, this may be modeled as a temporary storage pool for carbohydrates during drought, as was also done by McCree and Fernandez (1989). In ORYWAT, it is assumed that the extra C is used for root growth.

Plant size and evaporative demand of the air will influence the drought stress responses to some extent, as was also shown in this study. Results reported here are, however, not as distinct as reported by Doorenbos and Kassam (1979) for C_{3} crops, despite the clear difference in evaporative demand of the air in the wet and dry season experiments.

Root distribution in the field is very important. Water uptake rate of rice roots from a top soil layer may decrease with decreasing soil-water potential, but roots at greater depth may make up for this difference by increasing water uptake, even if the soil-water potential at that depth is also decreasing (e.g. Hasegawa and Yoshida, 1982). In this experiment roots were limited to a cylinder of 20 cm height and 20 cm diameter. In reality roots may grow deeper, especially in the absence of a hard plow pan. For modeling purposes it is important to establish extraction rates at different depths in the root zone.

Results reported here are specific for two semi-dwarf lowland varieties. Dryland rice varieties are known to be more 'pessimistic' (Bradford and Hsiao, cited in Dingkuhn et al., 1989) in their drought responses as they show leaf rolling at higher leaf water potentials (e.g. Turner et al., 1986; Dingkuhn et al., 1989). They also tend to have a deeper root system than lowland rice varieties (Yoshida, 1981) and may therefore be more effective in exploring soil-water resources.

The advantage of expressing drought stress responses as a function of soil-water pressure potential is that they can be used for any soil type, even when the soil shrinks, provided a good soil-water balance model and knowledge of the soil's water retention and soil shrinkage curve, linking h to soil-water content θ, is available. If such drought responses are used as an input for a rice growth simulation model ORYZA1, predictions of rice yield under water-limited conditions can be made.

6.3 Conclusions

The results of the three greenhouse experiments can be summarized as follows: Three greenhouse experiments were conducted to investigate drought stress responses of two
lowland rice cultivars, grown in puddled clay and non-puddled sandy soil. Results obtained for both varieties and for both soil materials were quite similar. Plant age had a more distinct effect on drought stress responses than differences in evaporative demand of the air between dry and wet seasons. Roots extended throughout the (shrunken) soil volume for all treatments. Differences in rooting pattern among drought treatments are therefore expected to be minor. Drought in the vegetative phase delayed phenological events but did not result in significant yield losses if drought occurred within 2 weeks after transplanting. Drought in the reproductive phase resulted in substantial yield losses.

Drought affected transpiration rates by closure of stomata and changes in leaf morphology of the rice plant. The first observed response, if drought was initiated in the vegetative phase, was a relatively abrupt decline in leaf expansion. Logistic functions could be used to describe the decline in relative transpiration, corrected for differences in LAI, as a function of $\log (h)$. Leaf rolling and rate of senescence were linearly related to $\log (h)$. These functions were used to modify the rice growth model ORYZA1. The resulting module, ORYWAT is explained in detail in Chapter 7.

7 The ORYWAT growth module

ORYWAT is based on ORYZA1, version 1.3 (Kropff et al., 1994), an ecophysiological model for fully irrigated rice production. ORYWAT simulates rice growth and development under fully irrigated and water limited conditions. Nutrient supply is considered non-limiting and any influence of pests, diseases or weeds is assumed absent. The main additions to ORYZA1, included in ORYWAT, are the calculation of root growth, potential and actual evapotranspiration and the effects of drought stress on growth and development. In this chapter, only these modifications will be described; the reader is referred to Kropff et al. (1994) for a description of the crop growth processes on potential production level.

The drought stress effects in ORYWAT on growth and development were derived from the pot experiments discussed in Chapter 6 and were related to critical pF values of the root zone. An overview of the dependency of drought stress factors on soil-water potential as observed for IR20 is given in Figures 7.1a and 7.1b. These functions are used in ORYWAT. Drought stress responses are defined as a function of the pF of the root zone. pF is defined as the logarithm of soil pressure potential: $\log \mathrm{I} 10^{*} h \mid=\mathrm{pF}$, with h in kPa . E.g. if the soil-water pressure potential is 100 kPa , the corresponding pF value is 3 . For the sake of simplicity this was also done for the decrease in relative transpiration rate, although a logical curve was fitted to the data (Figures 7.1a and 7.1b, see also Chapter 6). For every response, critical pF values can be defined: an upper limit, that indicates the start of stress, and a lower limit, that indicates 100% stress:
ulls: upper limit leaf rolling: start of leaf rolling (-)
LLLS: lower limit leaf rolling: leaves are completely rolled up (-)
uldL: upper limit dying leaves: start of senescence (-)
LLDL: lower limit dying leaves: 100% dead leaves (-)
ULRT: upper limit reduction relative transpiration rate: start of reduction (-)
LLRT: lower limit reduction relative transpiration rate: transpiration rate is zero (-)
For leaf expansion, a step function was assumed in Chapter 6. For this reason only one limit, stlg is defined:

STLG: limit to leaf growth: inhibition of leaf expansion (-)
Drought stress factors apply for the whole crop growth duration, although in reality plant age influences drought stress responses as a function of soil-water pressure potential to some extent (see Chapter 6 and Figures 7.1a and 7.1b).

7.1 Root growth

Rooting depth is an important variable in calculating root zone water content and water uptake for transpiration by the plants. Roots of rice cultivars in lowland soils rarely grow

Figure 7.1 Relationship between soil-water pressure potential and drought stress factors for IR20; (a) shows results for treatments A and B, (b) shows results for treatments D, E and F. For explanation of the treatments see Section 6.1.
deeper than 40 cm ; about 90% of the total root system is usually found in the top 20 cm . Roots of upland rice cultivars in light-textured upland soils may grow as deep as $0.8-1.0 \mathrm{~m}$ (Hasegawa and Yoshida, 1982). In ORYWAT, rooting depth, ZRT, is calculated as integral of ZRT on the previous day with the daily root growth rate, GZRT:

```
ZRT = INTGRL (ZRT, GZRT, DELT)
```

There is a wealth of literature showing root length densities of rice as a function of soil depth. From such data an estimate of GZRT can be made. Usually GZRT is in the range of $0.01-0.02 \mathrm{~m} \mathrm{~d}^{-1}$ depending, among others, on rice variety, soil texture, soil tillage and presence of hard layers.

- In LOWBAL (swiwlp = 1) it is assumed that roots do not penetrate the plow sole, and the maximum rooted depth, ZRTM, is determined by the thickness of the puddled layer, tkLT.
- In SAHEL (SWIWLP = 2) ZRTM is determined by the maximum rooting depth of the rice crop itself, ZRTMC, or by the rootable depth of the soil profile, ZRTMS (e.g. as determined by an impermeable layer).
- In PADDY (SWIWLP = 3) rooting depth only increases beyond ZRTMCW, defined in the crop data file, in case of drought (i.e. soil water content of the root zone drops below the upper limit for inhibition of leaf expansion). In case of drought, the maximum rooting depth is determined by the maximum rooting depth of the rice crop, $Z R T M C D$, or by the rootable depth of the soil profile, zRTMS.

```
IF {SWIWLP .EQ. 3) THEN
    IF ((.NOT. DROUT).AND.(ZRT.LE.ZRTMCW)) THEN
        ZRTM = MIN(ZRTMCW, ZRTMS, TKLT)
    ELSE IF ((.NOT. DROUT) .AND. (ZRT.GT.ZRTMCW)) THEN
        ZRTM = MIN(ZRT, ZRTMS, TKLT)
    ELSE IF (DROUT) THEN
        ZRTM = MIN(ZRTMCD, ZRTMS, TKLT)
    END IF
```

```
* In all other cases, roots grow straight to max. length ZRTMC
```

ELSE
ZRTM $=$ MIN(ZRTMC, ZRTMS, TKLT)
END IF
ZRT = INTGRL (ZRT, GZRT, DELT)
ZRT = MIN (ZRT, ZRTM)

7.2 Root zone water content

Regardless of which soil water balance module is chosen, the total actual water content in the root zone, WCRREL is calculated as the sum of the water content of each individual soil layer in the root zone:

```
DO \(30 \quad \mathbf{I}=1\), NL
    ZRTL \(=\operatorname{MIN}(T K L(I), \operatorname{MAX}((Z R-Z L L), 0.0))\)
    WCRREL \(=\) WCRREL \(+(\mathrm{ZRTL} /(\mathrm{ZR}+1.0 \mathrm{E}-10)) *\) WCLQT \((\mathrm{I})\)
```

in which ZR is the total rooted depth, $\mathrm{TKL}(\mathrm{I})$ is the depth of soil layer I, ZLL is the depth of accumulated soil layers, ZRTL is the depth of the roots in the soil layer under consideration, and $N L$ is the number of soil layers.

7.3 Critical soil water contents

In the subroutine DSTRES, the critical pF values defined in the crop data input file (Appendix 1) are converted into soil water contents per layer. The critical soil water contents per soil layer I, defining each drought stress response, are calculated from the water retention curve (SWITPF $=1$) using subroutine SUWCMS2, or are derived via interpolation (SWITPF $=0$) between volumetric water contents at field capacity (WCFC (I)) and wilting point (WCWP (I)).

```
IF (SWITPF.EQ.1) THEN
    CALL SUWCMS2 (I, 2,WCST (I),STLGW(I),10**STLG)
    CALL SUWCMS2(I, 2,WCST(I),ULLSW(I),10**ULLS)
    CALL SUWCMS2(I, 2,WCST (I),LLLSW(I),10**LLLLS)
    CALL SUWCMS2 (I, 2,WCST (I) ,ULDLW (I) , 10**ULDL)
    CALL SUWCMS2 (I, 2,WCST (I),LLDLW (I), 10**LLDL)
    CALL SUWCMS2(I, 2,WCST(I),ULRTW(I),10**ULRT)
    CALI SUWCMS2(I, 2,WCST(I),LLRTW(I),10**LLRT)
ELSE
    STLGW (I) =WCWP (I) + ((WCFC (I)-WCWP (I))/2.2)* (4.2-STLG)
    ULLSW (I) =WCWP (I) + ((WCFC (I) -WCWP (I))/2.2)* (4.2-ULLS)
    LLLSW (I) =WCWP (I) + ((WCFC (I) -WCWP (I))/2.2)* (4.2-LLLSS)
    ULDLW (I) =WCWP (I) + ((WCFC (I) -WCWP(I))/2.2)* (4.2-ULDL)
    LLDLW (I) =WCWP (I) + ((WCFC (I) -WCWP (I))/2.2) * (4.2-LLDL)
    ULRTW(I) =WCWP(I) + ((WCFC (I) -WCWP (I))/2.2)* (4.2-ULRT)
    LLRTW (I) =WCWP(I) +((WCFC (I) -WCWP (I))/2.2)* (4.2-LLRT)
END IF
```

These individual soil water contents are then summed up over the root zone for leaf growth inhibition and for the appearance of dead leaves due to early senescence:

```
STLGWR = STLGWR + (ZRTL/(ZR+1.0E-10))*STLGW(I)
ULDLWR = ULDLWR + (ZRTL/(ZR+1.0E-10))*ULDLW(I)
LLDLWR = LLDLWR + (ZRTL/(ZR+1.0E-10))*LLDLW(I)
```


7.4 Actual transpiration and drought stress factors

Actual transpiration rate

In DSTRES, per layer I, the actual water content WCLQT(I) is compared with the upper and lower limits for transpiration (ULRTW(I) and LLRTW(I) respectively), via the factor DSETR:

```
DSETR = LIMIT(0.,1.,
$
    (WCLQT(I)-LLRTW(I))/(ULRTW (I)-LLRTW (I)))
```

The amount of water available to the plants is the volume of water between actual water content and the lower limit of dead leaves, if roots can explore the root zone completely:

```
WLA = MAX (0.0, (WCLQT(I)-LLDLW(I))*TKL (I)*1000.)
```

The volume of water taken up by the roots, i.e. the transpiration of the crop needs to be divided over the rooting depth. In DSTRES it is assumed that the maximum uptake $S_{\text {max }}$ is constant over depth. This means that, under optimal water conditions, the transpiration load of the crop is divided equally over all soil layers. The water uptake TRRM at any depth x, is then equal to the potential transpiration rate, TRC , divided by the rooting depth, zRT , i.e. $\operatorname{TRRM}=\operatorname{TRC} / Z R T$. The transpiration rate per layer I, $\operatorname{TRWL}(I)$ and the total transpiration rate TRW are calculated as follows:

```
TRRM = TRC/(ZRT+1.OE-10)
TRWL(I) = MIN(DSETR*ZRTL*TRRM, WLA/DELT)
TRW = TRW+TRWL (I)
```

Another option would be to assume that $S_{\text {max }}$ declines with increasing rooting depth. It can be derived that in that case at depth x, the water uptake TRRM is equal to: TRC* $[2 / \mathrm{zRT}-(2$ * x) /(ZRT$)^{2}$], which can easily be adopted in DSTRES.

Leaf rolling stress factor

In DSTRES, the leaf rolling score of every soil layer is calculated and a total leaf score L.S over the root zone is derived:

```
LS = LS + (ZRTL/ZRT)*LIMIT(0.,1.,
$
    (WCLQT (I) -LLLSW(I))/(ULLSW(I)-LLLSW(I)))
```

The leaf area index simulated in the main crop model is multiplied with the stress factor LSTRS. The maximum reduction of LAI due to leaf rolling is assumed to be 50%. LSTRS therefore varies between 0.5 and 1. LSTRS is derived in DSTRES as follows:

```
LSTRS = 0.5*LS + 0.5
```


Early senescence stress factor

In DSTRES the dead leaves score of every soil layer is calculated and a total dead leaves score DS over the root zone is derived:
$\mathrm{DS}=\mathrm{DS}+(\mathrm{ZRTL} / \mathrm{ZRT}) \star \operatorname{LIMIT}(0.1 .$,
(WCLQT (I)-LLDLW(I))/(ULDLW(I)-LLDLW(I)))

The DSTRS factor used in the main crop growth model is equal to DS and varies between 0 and 1 :

```
DSTRS = DS
```


Reduced development rate

In DSTRES, it is assumed that the development rate of the crop stops if the water content of the root zone drops below stlgwr. A factor dvew is set to 0 in this case. No delay in development is simulated when drought occurs in the reproductive phase. When there is no drought stress, DVEW equals 1 . If there is drought, a counter ICNT is set to 1 . This counter is used in the crop growth module ORYWAT for calculation of LAI (see Section 7.5).

```
IF (WCRREL.LE.STLGWR) THEN
    DROUT = .TRUUE.
    ICNT = 1
    DVEW = 0.
ELSE
    DVEW = 1.
END IF
```

END IF

Reduced CO_{2} assimilation rate
In DSTRES, the reduction factor on daily total gross CO_{2} assimilation of the crop is, PCEW, calculated as the ratio of actual canopy transpiration over potential canopy transpiration:

```
PCEW = TRW/(TRC+1.E-10)
```


7.5 Drought stress effects simulated by ORYWAT

Inhibition of leaf growth

In ORYWAT, the LAI is modelled as exponential function of a relative growth rate, RGRL, when LAI is below 1 and the development stage DVS is below 0.6 . If LAI is larger than 1 or DVS is larger than 0.6 , the specific leaf area, SLA, concept is used and LAI is calculated from simulated leaf weight, wLvG, (see Kropff et al., 1994). However, when there has been drought stress as indicated by the counter ICNT, which is set in the subroutine DSTRES, the LAI at values lower than 1 are also simulated using the specific leaf area, SLA, concept:

```
IF (LAI .LT. 1.0 .AND. DVS .LT. 06 .AND. ICNT .EQ. 0) THEN
    LAI = LAII*NH*NPLH/NPLSB*(EXP(RGRL*(TSLV-TSLVTR-TSHCKL)))
ELSE
    LAI = 0.5*SAI + SLA*(WLVG-WLVEXP) + LAIEXP
```

END IF
The counter ICNT $=0$ indicates that there is no drought stress, and ICNT $=1$ means drought stress. This effect of drought stress on leaf area production is 'permanent', i.e. when there has been drought stress at any time in the growing season, ICNT is set to 1 and will not be reset to 0 when there is no longer drought stress. Thus, during and after a drought spell, LAI will always be calculated from simulated leaf weight using the SLA concept. This approach was chosen because in a field experiment at IRRI it was found that rice that suffered from severe drought at transplanting was not able to grow exponentially up to LAI = 1 after recovery (Wopereis, 1993, page 129-130).

With drought stress, photosynthesis no longer leads to leaf production and the 'excess' carbohydrates are allocated to the roots, if the flowering stage has not been reached (DVS <1):

```
IF (WCRREL.LE.STLGWR.AND.DVS.LT.1.) THEN
    FSH = 0.
    FRT = 1.
END IF
```


Reduced development rate

During the vegetative growth period, the development rate of the crop, DVR, is calculated from the vegetative development rate, DVRV, the daily heat units for phenological development, hu, and the stress factor for development rate, DVEw (as calculated in the subroutine DSTRES):

```
DVR = DVRV*HU*DVEW
```


Leaf rolling

Leaf rolling affects the leaf area index LAI. The LAI is first calculated in the subroutine SUBLAI of ORYWAT and is then multiplied with the leaf rolling stress factor calculated by the subroutine DSTRES:

```
LAI = LAI*LSTRS
```


Leaf senescence

The effect of drought on dying of leaves (early senescence) is determined by the stress factor DSTRS, calculated in the subroutine DSTRES. If DSTRS is lower than 1, the variable wLVGIT registers what the current green leaf mass is. This amount cannot increase unless drought is released. The stress factor DSTRS determines the percentage of dead leaves. The variable DLDRT keeps track of the dead leaf mass due to this early senescence process. The rate of leaf death due to drought, DLDR, is calculated as:

DLDR $=0$.

```
*------- 7. Leaf death as caused by drought stress
    IF (DSTRS.EQ.1) THEN
        DLEAF = .FALSE.
        DLDRT = 0.
```

```
END IF
IF ((DSTRS.LT.1.).AND.(.NOT.DLEAF)) THEN
    WLVGIT = WLVG
    DLEAF = .TRUE.
    KEEP = DSTRS
END IF
IF (DLEAF) THEN
    IF (DSTRS.LE.KEEP) THEN
        DLDR = (WLVGIT/DELT)*(1.-DSTRS)-DLDRT/DELT
        KEEP = DSTRS
        DLDRT = DLDR*DELT + DLDRT
    END IF
END IF
```

The weight of green leaves, wLvg, is calculated as the integral of the previous WLVG with the growth rate of leaves, glv, the loss rate of leaves due to 'regular' senescence, LLV, and the death rate of leaves due to drought, DLDr. Similarly, the weight of dead leaves, wLvD, is calculated as the integral of the previous wlvD with the loss rate of leaves due to 'regular' senescence, LLV, and the death rate of leaves due to drought, DLDR.

```
WLVG = INTGRL (WLVG, GLV - LLV - DLDR, DELT)
WLVD = INTGRL (WLVD, LLV + DLDR , DELT)
```


Reduced CO_{2} assimilation rate

The gross daily assimilation rate, DTGA, is reduced by drought stress with the factor PCEW as calculated in the subroutine DSTRES:

```
DTGA = DTGA * PCEW
```


7.6 Maximum drought stress duration

The effects of drought stress on growth and development of rice as implemented in ORYWAT were derived from pot- and field experiments at IRRI (Wopereis, 1993). The maximum duration of drought stress in these experiments was 25 days (Wopereis 1993, p. 125). The number of consecutive days with drought stress, ISTD, is counted in ORYWAT and the simulation is stopped when more than 25 stress days are accumulated. It is assumed that plants recover completely from drought stress when more than 3 consecutive non-drought days, INSD, are recorded. The counter for accumulated drought stress days is then reset to 0 .

```
* If rel. water content greater than STLGWR: no more drought
* Reset stress-day counters to 0 if there are more than 3
* days without drought.
    IF (WCRREL.GT.STLGWR) THEN
                DROUT = .FALSE.
```

```
        INSD = INSD + INT (DELT)
        IF (INSD.GT.3) ISTD = 0
    END IF
```

```
* Count the drought stress days
```

* Count the drought stress days
IF (WCRREL.LE.STLGWR) THEN
IF (WCRREL.LE.STLGWR) THEN
ISTD = ISTD + INT (DELT)
ISTD = ISTD + INT (DELT)
INSD = 0.
INSD = 0.
END IF
END IF
* Stop the simulation when number of stress days exceeds maximum
* value (from greenhouse experiments Wopereis)
IF (ISTD.GE.25) THEN
PRINT *,' DROUGHT TOO LONG => SIMULATION STOPPED'
CALL OUTCOM('MOre than 25 days drought: simulation stopped')
TERMNL = .TRUE.
END IF

```

The simulation is also stopped when the (relative) water content in the root zone drops below the lower limit of dead leaves, Lldlwr:
```

* Check if lower limit dead leaves is reached
IF (WCRREL.LE.LLDLWR) THEN
PRINT *,'Soil dryer than lower limit dead leaves'
PRINT *,'=> Simulation stopped'
CALL OUTCOM('soil dryer than LLDL - simulation stopped')
TERMNL = .TRUE.
END IF

```

\subsection*{7.7 Model validation}

ORYZA_W was validated using data from a field experiment with four drought treatments conducted at IRRI in 1992 (Wopereis, 1993), conducted under optimal fertilizer supply and full control of pests and diseases. The model could satisfactorily explain differences in biomass production, LAI and yield across drought treatments. Yields ranged from 5-8.4 \(\mathrm{tha}{ }^{-1}\).

\section*{8 Evaporation and transpiration}

In the subroutine ETPOT, the Penman reference evaporation and transpiration and the potential soil evaporation and canopy transpiration are calculated. Strictly speaking, transpiration is the loss of water from the plants, and evaporation is the loss of water from the soil or from a free-water surface. Evapotranspiration covers both transpiration and evaporation. The calculation of the Penman reference evapotranspiration, and the following explanatory text are largely based on van Laar et al., 1992.

\subsection*{8.1 Penman reference evapotranspiration}

Penman (1948) calculated potential evaporation and evapotranspiration from free-water surfaces, bare soil and low grass swards (reference crop). Potential means that there are no limitations with respect to the supply of liquid water to the evaporating surface. This potential evapotranspiration is the sum of a radiation term EVR and a drying power term EVD (both in mm day \(^{-1}\) ). These terms are different for soil, open water and for a (reference) crop. In a production system of rice, three situations can be discerned: open water (lowland environment, in the main field before transplanting), a crop with soil background (rainfed upland; rainfed lowland with dried-out soil) and a crop with a water layer underneath (lowland). For these situations, separate values for EVR and EVD are calculated.

\section*{Radiation term EVR}

The radiation term EVR depends on net radiation, NRAD ( \(\mathrm{J} \mathrm{m}^{-2} \mathrm{~d}^{-1}\) ), the latent heat of evaporation, LhVAP (equal to \(2.410^{6} \mathrm{~J} \mathrm{~kg}^{-1}\) at \(30^{\circ} \mathrm{C}\) with only a small temperature dependence) and a weighting factor (SLOPE/(SLOPE + PSYCH)), where SLOPE ( \(m b a r{ }^{\circ} \mathrm{C}^{-1}\) ) is the tangent of the relation between saturated vapour pressure (mbar) and temperature \(\left({ }^{\circ} \mathrm{C}\right)\) and PSYCH ( \(0.67 \mathrm{mbar}^{\circ} \mathrm{C}^{-1}\) at 0 meter elevation) the psychrometer constant (Monteith, 1965):
```

LHVAP = 2.4E6
PSYCH = 0.67
EVR = (1./LHVAP)*(SLOPE/(SLOPE+PSYCH))*NRAD
EVRWL = (1./LHVAP)*(SLOPE/(SLOPE+PSYCH))*NRADWL
EVROW = (1./LHVAP)* (SLOPE/(SLOPE+PSYCH))*NRADOW

```

In which EVR is the radiation term for crop/soil system, EVRWL is the radiation term for crop/water layer system, and evrow is the radiation term for open water. Slope is calculated from daily average temperature, tav:.
```

SVP = 6.11 * EXP(17.4 * TAV / (TAV + 239.))
SLOPE = 4158.6 * SVP / (TAV + 239.)**2

```

Net radiation, NRAD, depends on incoming short-wave radiation (RDT, \(\mathrm{J} \mathrm{m}^{-2} \mathrm{~d}^{-1}\) ), the reflection or albedo value, ALB, ALBWL or albow (unitless), and net outgoing long-wave radiation, RLwN:
```

NRAD = (1.-ALB)*RDT-RLWN
NRADWL = (1.-ALBWL)*RDT-RLWN
NRADOW = (1.-ALBOW)*RDT-RLWN

```

Here, NRAD is the net radiation for crop/soil system (or of bare soil), NRADWL is the net radiation for a crop/water layer system, and NRADOW is the net radiation for a layer of open water. The albedo for soil, open water and crop/soil and crop/water layer systems is calculated as follows:
- The soil's albedo, ALBS, depends on the surface color and the moisture content. Albedo values for dry soil, ALBSD, vary from 0.15 (clay) to 0.40 (dune sand). The dependence on soil moisture is described in relation to the average water content of the top soil layer (ten Berge, 1989).
- The albedo of a layer of water, ALBOW, is about 0.05 .
- The albedo of canopy/soil, alb, is composed of that of the soil, Albs, and that of the canopy, ALBC; the albedo of canopy/water layer, ALBWL, is composed of that of the water layer, albow, and that of the canopy, albc. Here, a value of 0.25 is used for Albc. The relative contributions of both albedos depend on the shading of the soil by the crop and is calculated on the basis of the leaf area index, LAI. An extinction coefficient (for shortwave radiation penetrating the crop) of 0.5 is used here. When LAI is 0 , the albedo for bare soil or an open water layer is obtained.
```

ALBDS = 0.25
ALBOW = 0.05
ALBC = 0.25
ALBS = ALBDS*(1.-0.5*WCUP/WCSTUP)
ALB = ALBS* EXP(-0.5*LAI) +ALBC* (1.-EXP(-0.5*LAI))
ALBWL = ALBOW*EXP(-0.5*LAI) +ALBC* (1.-EXP(-0.5*LAI))

```

Net long-wave radiation, LWN ( \(\mathrm{J} \mathrm{m}^{-2} \mathrm{~d}^{-2}\) ) is approximated by three semi-empirical functions, (Penman, 1956; derived from the original Brunt (1932) formula), accounting for temperature, \(\operatorname{BBRAD}\left(\mathrm{J} \mathrm{m}^{-2} \mathrm{~s}^{\mathbf{- 2}}\right.\) ), vapour pressure in the atmosphere, FVAP (unitless) and sky clearness, FCLEAR (unitless).
```

BOLTZM = 5.668E-8
BBRAD = BOLTZM* (TAV+273.)**4
FVAP = 0.56-0.079*SQRT (VAPOR)
CLEAR = LIMIT (0.. 1., ((RDT/DSO)-ANGA)/ANGB)
FCLEAR = 0.1+0.9*CLEAR

```
```

RLWN = BBRAD*FVAP*FCLEAR*86400.

```

Here, the sky clearness factor, CLEAR (unitless), is calculated using the Ångström formula, in which ANGA and ANGB are empirical constants and DSO is the extra-terrestrial radiation, i.e. the radiation intensity at the top of the atmosphere. The values for ANGA and angb are related to climatic conditions (see Table 8.1), and are read from the weather input file (see Chapter 9). The value of DSO depends on location on earth (latitude) and time of the year, and is calculated in the subroutine ASTRO. The actual vapour pressure, VAPOR (mbar (daily average)) to calculate FVAP is read from the weather input file.

\section*{Drying power term EVD}

The drying power term is calculated from Penman's drying power term, DRYP for a reference crop and DRYpow for an open water layer, and from slope and PSYCH (see above):
```

EVD = DRYP*PSYCH/ (SLOPE+PSYCH)
EVDOW = DRYPOW*PSYCH/ (SLOPE+PSYCH)

```
in which EVD is the drying power term for crop/soil or crop/water layer, and EVDow is the drying power term for open water layer. DRYP and DRYPOW ( \(\mathrm{mm} \mathrm{d}^{-1} \mathrm{mbar}^{\circ} \mathrm{C}^{-1}\) ) are calculated from saturated vapour pressure, sVP (mbar), the actual vapour pressure, VAPOR (mbar), and a wind speed function, WDF for a reference crop and wDFOW for an open water layer ( \(\mathrm{mm} \mathrm{d}^{-1}{ }^{\circ} \mathrm{C}^{-1}\) ):
```

DRYP = (SVP-VAPOR) *WDF
DRYPOW = (SVP-VAPOR)*WDFOW

```

The wind function estimates the conductance for transfer of latent and sensible heat from the surface to the standard height and depends on roughness of the surface and atmospheric stability. In ETPOT, the wind function is calculated from wind speed winD ( \(\mathrm{m} \mathrm{s}^{-1}\) ) which is read from the weather input file:
```

WDF = 0.263* (1.0+0.54*WIND)
WDFOW = 0.263*(0.5+0.54*WIND)

```

Table 8.1. Indicative values for empirical constants in the Ångström formula in relation to general climatic zones used by the FAO (Frère and Popov, 1979).
\begin{tabular}{lll}
\hline & ANGA & ANGB \\
Cold and temperate zones & 0.18 & 0.55 \\
Dry tropical countries & 0.25 & 0.45 \\
Humid tropical zones & 0.29 & 0.42 \\
\hline
\end{tabular}

\subsection*{8.2 Potential canopy transpiration and soil evaporation}

The radiation term EVR and the drying power term EVD of the 'Penman' evapotranspiration, computed above, are used to calculate the potential transpiration of the canopy (with soil background or water layer) and the potential evaporation of the soil and open water layer.

\section*{Potential canopy transpiration}

The potential transpiration of rice with a water layer is
```

TRCWL = EVRWL*(1.-EXP (-0.5*LAI)) +EVD* (MIN (2.5,LAI))

```
and with a soil background
```

TRCS = EVR*(1.-EXP (-0.5*LAI)) +EVD*(MIN(2.5,LAI))

```

Only part of the radiation term, eVR, will be used by the crop, if not all radiation is intercepted by the canopy, which is exponentially related to leaf area. Radiation not used by the canopy will reach the soil or water layer and contribute to potential soil or water evaporation. The average extinction coefficient for visible and near infrared radiation is about 0.5 .

The drying power of the air, EVD, is only effective up to a cumulative leaf area index of 2.5. Lower leaves do not contribute much to transpiration because little light penetrates deep into the canopy, hence their stomatal resistance is higher. Also air humidity is higher and wind speed is reduced. For this upper layer of the crop, the drying power term of the reference crop is used.

\section*{Potential soil and water evaporation}

In lowland environments, rice is generally transplanted from seed-bed into the main field. Before transplanting, the main field is puddled and a layer of ponded water is present. The evaporation from this open water layer, EVSCOW, is:

EVSCOW \(=\) EVROW + EVDOW

Here, both the radiation term and the drying power term of an open water layer are used since there is no crop present. After transplanting, only radiation transmitted through the canopy is available for evaporation from the water layer (radiation term). The canopy also reduces the wind speed (drying power term). Evaporation from this 'shielded' water layer, EvSCWL, becomes:

EVSCWL \(=\operatorname{EXP}(-0.5 * L A I) *(E V R W L+E V D)\)
In upland environments with a non-puddled soil, and in lowland with a dried-out puddled layer at the end of the growing season, the potential evaporation from the soil, EVSCS, is:
\(\operatorname{EVSCS}=\operatorname{EXP}(-0.5 * \mathrm{LAI}) *(\mathrm{EVR}+\mathrm{EVD})\)

When there are no rice plants present (before emergence), LAI \(=0\), and evscs becomes the evaporation of bare soil.

Finally, in ETPOT, the potential values for transpiration, TRC, and evaporation, EVSC, are selected for the relevant production environment. The switch swiwLP controls this selection: \(0=\) irrigated lowland; \(1=\) rainfed lowland; \(2=\) rainfed upland and \(3=\) any rice growing condition (both irrigated and rainfed upland or lowland).

In lowland environments, a layer of ponded water is generally present on the fields. However, under unfavourable weather conditions, this layer can disappear when the crop is not irrigated. The depth of ponded water, wLo, is used to select the appropiate transpiration and evaporation rates. WL0 is calculated in the PADDY and LOWBAL water balance and passed on to ETPOT.
```

IF (WLO .GT. 0) THEN
TRC = TRCWL
EVSC = EVSCWL
ELSE IF (WLO .LT. O) THEN
TRC = TRCS
EVSC = EVSCS
END IF

```

Before transplanting, it is assumed that in both irrigated and rainfed lowland, a layer of ponded water is present in the main field. Evaporation is therefore evaporation from an open water layer:

EVSC \(=\) EVSCOW

In rainfed upland environments, a soil background is always present:
```

TRC = TRCS

```
EVSC \(=\) EVSCS

\section*{9 Running and editing ORYZA_W}

\subsection*{9.1 Input and output file control}

Under the SARP-shell (Riethoven, 1994) the control over the input and output files is facilitated with a menu-system. If the FORTRAN program ORYZA_W is run without this shell, the input and output files are controlled in the file CONTROL.DAT (an example is given in Appendix 5). The content of this file is:

FILEI1 = name of file that contains the crop data, e.g. 'RICE_W.DAT'
FILEI2 = name of file that contains the soil data, e.g. 'LOAM.DAT'
FILEIT \(=\) name of file that contains timer variables, e.g. 'TIMER.DAT'
FILEIR \(=\) name of file that contains data for reruns, 'RERUNS.DAT'
FILEON = name of output file, 'RESULTS.OUT'
FILEOL \(=\) name of the log file 'RESULTS.LOG'

\section*{Crop data}

Crop data are the parameter values needed for the above-ground growth module ORYZAW. An example is given in Appendix 1 for crop data for IR72, derived from field experiments at IRRI (Kropff et al., 1993). Crop data should preferably be derived for the local rice variety under consideration, from field experiments under potential growth conditions.

\section*{Soil data}

Soil data are the parameter values needed for the water balance modules PADDY, LOWBAL or SAHEL. It is important to select the right input file for each soil-water balance module. When the wrong file is supplied, ORYZA_W is aborted and gives an error message. Examples of soil files are given in Appendix 2. For the SAHEL water balance module, 18 example files are supplied that contain soil-physical data derived from measurements on Dutch soils (Wösten et al., 1987).

\section*{Timer data}

Timer data control the model environment, the selection of weather data and the timing of the growing season. An example is given in Appendix 5. Important parameters in this file are:

\section*{Production environment}

SWIWLP \(=\) switch to control the production environment:
\(0=\) irrigated;
1 = rainfed lowland using LOWBAL;
2 = rainfed upland using SAHEL;
3 = irrigated or rainfed lowland or upland using PADDY

\section*{Weather data}

The selection of files containing weather data is controlled by the parameters:
\begin{tabular}{ll} 
WTRDIR & \(=\) directory name where the weather files are stored \\
CNTR & \(=\) country name of the weather station, e.g. 'PHIL' for the Philippines \\
ISTN & \(=\) station number of weather data, e.g. 1
\end{tabular}

Also, the Angstrom parameters have to be given and a multiplication factor to convert radiation data from the weather file from kJ or mJ into J :
```

ANGA = Angstrom parameter A: dry tropical, }\textrm{A}=0.25;\mathrm{ humid tropical, }\textrm{A}=0.29 cold and temperate $\mathrm{A}=0.18$
ANGB $\quad=$ Angstrom parameter B : dry tropical, $\mathrm{B}=0.45$; humid tropical, $\mathrm{B}=0.42$; cold and temperate, $\mathrm{B}=0.55$
MULTIP $=$ multiplication factor for radiation: if radiation data are in kJ : MULTIP $=1$, if radiation data in mJ: MULTIP $=1000$

```

Weather data itself are stored in files according to the specifications of the WEATHER system (van Kraalingen et al., 1990). The name of a weather file consists of a countrycode, CNTR, with an extension designating the number of the weather station, ISTN (E.g. PHIL1 for weather station 1 in the Philippines). The data in a weather file should be daily values of radiation, minimum temperature, maximum temperature, vapour pressure, wind speed and rainfall. The format of the data should adhere to strict rules. An example of a weather data file in the WEATHER format is given in Appendix 5.

\section*{Timer variables}

IYEAR \(\quad=\) year of weather data (= year of simulation), e.g. 1991
STTIME \(\quad=\) start day of simulation (sowing day), e.g. 150
FINTIM \(\quad=\) finish time of simulation; a high value should be supplied here to guarantee the continuation of the simulation until the crop has reached maturity, e.g. 1000
DTRP \(\quad=\) days between sowing and transplanting. \(D T R P=0\) for direct-seeding.
DELT \(\quad=\) time step of integration, 1

\section*{Output options}

These parameters are preset and normally do not need changing.
IFLAG \(\quad=\) indicates where weather error and warnings go, e.g. 1100 means errors and warnings only to \(\log\) file, see WEATHER manual, van Kraalingen et al., 1990
COPINF \(\quad=\) swich variable denoting what to be done with input files:
' Y ' = copy input files into output file
' N ' = do not copy input files into output file
PRDEL \(\quad=\) time in days between consecutive outputs to file, e.g. 5
```

IPFORM $=$ format of the output tables: $0=$ no output table, $4=$ normal table,
$5=$ tab-delimited (for Excel), 6=TTPLOT format
DELTMP $=$ switch variable what should be done with the temporary output file:
$0=$ do not delete; $1=$ delete

```

\section*{Rerun data}

The FSE system provides a facility for reruns with ORYZA_W using changed model parameter and/or initial state variable values (van Kraalingen et al., 1991a). A reruns file with the name RERUNS.DAT contains the names and new values of any parameter and/or initial state variable for a model rerun. When ORYZA_W is executed, it will automatically search for the presence of a file with the name RERUNS.DAT. If such a file is not found, the model will be executed one single time, using the data from the standard data files. If a RERUNS.DAT is present, the parameter values will be read and the model will automatically be rerun with the (set of) new parameter values. The total number of runs made by the model is then always one more then the number of rerun sets. Names of parameters/variables originating from different data files can be redefined in the same rerun file, e.g. crop, soil and timer parameters. The format of the rerun file is identical to that of the other data files, except that the name of parameters may appear in the file more than once. Arrays can also be redefined in a rerun file. The order and number of the variables should be the same in each set. A new set starts when the first variable is repeated. An example of a RERUNS.DAT file is given in Appendix 5.

The maximum number of parameter values for reruns is 10000 . This can be either 10000 values of one single parameter, or, for instance, 1000 values of ten parameters each. When many reruns are made, the time step between consecutive output that is written to file, PRDEL, in the TIMER file (see above) should be set a high value, e.g. 1000. Otherwise, the output file RESULTS. OUT will become extremely large.

\section*{Output file}

ORYZA_W creates one output file: e.g. RESULTS.OUT (exact file name defined in CONTROL.DAT, see above). In this file, values of selected variables are written during execution of the model with a 'print time step' as defined by prdel in the Timer file (see above). Variable names and values are written to RESULTS.OUT by a call to the subroutine OUTDAT of the TTUTIL library: CALL OUTDAT(\{variable name\}, \{variable value\}).

\section*{Log files}

Two \(\log\) files are made. WEATHER.LOG contains the headers of the weather files used and any error and/or warning messages created by the WEATHER system. The second file name is defined in the the file CONTROL.DAT, e.g. RESULTS.LOG, and contains information on the execution of the model and any error and/or warning messages generated by ORYZA_W.

\subsection*{9.2 Editing ORYZA_W}

ORYZA_W is written in the programming language FORTRAN-77 on an IBM compatible 486 PC. When the source code of the model is edited, ORYZA_W should be re-compiled and linked with the libraries included on the diskette before execution (see also Chapter 1).

\section*{References}

Anderson, J.R., 1991. A framework for examining the impacts of climatic variability. In: Climatic Risk in Crop Production: Models and Management for the Semiarid Tropics and Subtropics. Eds R.C. Muchow \& J.A. Bellamy. CAB International, Wallingford, UK, pp. 39-53.
Berge, H.F.M. ten, 1989. Heat and water transfer in bare topsoil and lower atmosphere. Simulation Monographs 33, Pudoc, Wageningen, 200 pp.
Berge, H.F.M. ten, D.M. Jansen, K. Rappoldt \& W. Stol, 1991. The soil water balance module SAWAH: user's guide and outline. CABO-TPE Simulation Report Series, no. 22. CABO, Wageningen, The Netherlands. 78 pages + appendices.

Bouma, J., M.C.S. Wopereis, J.H.M. Wösten \& A. Stein, 1993. Soil data for crop-soil models. In: Systems approaches for agricultural development. Eds F.W.T. Penning de Vries, P.S. Teng and K. Metselaar. Kluwer Academic Publishers, pp. 207-220. ISBN 0-7923-1881-1.
Bouman, B.A.M., M.C.S. Wopereis, M.J. Kropff, H.F.M. ten Berge \& T.P. Tuong, 1994. Water use efficiency of flooded rice fields. II. Percolation and seepage losses. Agricultural Water Management 26: 291-304.
Bronswijk, J.J.B., 1988a. Modelling of water balance, cracking and subsidence of clay soils. J. Hydrol. 97: 199-212.
Bronswijk, J.J.B., 1989. Prediction of actual cracking and subsidence in clay soils. Soil Sci. 148: 87-93.
Brunt, D., 1932. Notes on radiation in the atmosphere. I. Quarterly Journal of the Royal Meteorological Society 58: 349-420.
Diepen, C.A. van, C. Rappoldt, J. Wolf \& H. van Keulen, 1988. Crop growth simulation model WOFOST. Documentation version 4.1. CWFS, Amsterdam - Wageningen. 299 pp.
Diepen, C.A. van, H. van Keulen, J. Wolf \& J.A.A. Berkhout, 1991. Land evaluation: from intuition to quantification. In: Advances in Soil Science 15. Ed. B.A. Stewart. Springer Verlag, New York, pp. 139-204.
Dingkuhn, M., R.T. Cruz, J.C. O'Toole \& K. Dörffling, 1989. Net photosynthesis, water use efficiency, leaf water potential and leaf rolling as affected by water deficit in tropical upland rice. Aust. J. Agric. Res. 40: 1171-1181.
Doorenbos, J. \& A.H. Kassam, 1979. Yield response to water. FAO Irrigation and Drainage Paper 33, FAO, Rome, 193 pp.
Ferguson, J.A., 1970. Effect of flooding depth on rice yield and water balance. Arkansas Farm Research, 19(3):4.
Frère, M. \& G.F. Popov, 1979. Agrometeorological crop monitoring and forecasting. Plant Production and Protection Paper 17, FAO, Rome, 64 pp.
Fukai, S., E. Kuroda \& T. Yamagishi, 1985. Leaf gas exchange of upland and lowland rice cultivars. Photosynthesis Res. 7: 127-135.

Genuchten, M.Th. van, 1980. A closed-form equation for predicting the hydraulic properties of unsaturated soils. Soil Sci. Soc. Am. J. 44: 892-898.
Genuchten, M.Th. van, F.J. Leij \& S.R. Yates, 1991. The RETC code for quantifying the hydraulic functions of unsaturated soils. US-EPA, Ada, Oklahoma 74820, USA, 85 pp .
Hammer, G.L. \& R.C. Muchow, 1991. Quantifying climatic risk to sorghum in Australia's semiarid tropics and subtropics: model development and simulation. In: Climatic risk in Agricultural Production: models and management for the semiarid tropics and subtropics. R.C. Muchow and J.A. Bellamy (Eds), CAB International, Wallingford, Oxon, UK., pp. 205-232.
Hasegawa and Yoshida, 1978. Water uptake by dryland rice root system during soil drying cycle. Soil Science \& Plant Nutrition 28(2): 191-204.
Inthapan, P. \& S. Fukai, 1988. Growth and yield of rice cultivars under sprinkler irrigation in south-eastern Queensland. 2. Comparison with maize and grain sorghum under wet and dry conditions. Aust. J. Exp. Agric. 28: 243-248.
IRRI, 1965, Annual report 1964. International Rice Research Institute, P.O. Box 933, 1099 Manila, Philippines, 335 pp.
IRRI, 1989. IRRI Toward 2000. International Rice Research Institute, P.O. Box 933, 1099 Manila, Philippines, 66 pp .
Ishiguro, 1992. Effects of shrinkage and swelling of soils on water management in paddy fields. In: Soil and Water Engineering for Paddy Field Management. Eds V.V.N. Murty \& K. Koga. Irrigation Engineering and Management Program, Asian Institute of Technology, Bangkok, pp. 258-267.
Jansen, D.M. \& P. Gosseye, 1986. Simulation of growth of millet (Pennisetum americanum) as influenced by water stress. Simulation Report CABO-TT no. 10., CABO, Wageningen, The Netherlands.
Kampen, J., 1970. Water losses and water balance studies in lowland rice irrigation. PhD Thesis, Cornell University, USA, 416 pp .
Keulen, H. van, 1975. Simulation of water use and herbage growth in arid regions. Simulation monographs, Pudoc, Wageningen, The Netherlands, 176 pp .
Keulen, H. van \& J. Wolf (Eds), 1986. Modelling of agricultural production: weather, soils and crops. Simulation Monographs, Pudoc, Wageningen, 479 pp.
Kraalingen, D.W.G. van \& F.W.T. Penning de Vries, 1990. The FORTRAN version of CSMP MACROS (Modules for Annual Crop Simulation). Simulation Report CABO-TT, no 21.
Kraalingen, D.W.G. van, 1991. The FSE system for crop simulation. Simulation Report CABO-TT no. 23, Centre for Agrobiological Research, P.O. Box 14, Wageningen, The Netherlands, 77 pp., Centre for Agrobiological Research, P.O. Box 14, 6700 AA Wageningen, The Netherlands, 145 pp .
Kraalingen, D.W.G. van, W. Stol, P.W.J. Uithol \& M.G.M. Verbeek, 1991. User manual of CABO/TPE Weather System. CABO-TPE Report, June 1991. Centre for Agrobiological Research, P.O. Box 14, 6700 AA Wageningen, The Netherlands, 28 pp .

Kropff, M.J. \& H.H. van Laar, 1993. Modelling crop-weed interactions. CAB International, Wallingford, U.K., 274 pp.
Kropff, M.J., H.H. van Laar \& R.B. Mathews (Eds), 1994. ORYZA1 an ecophysiological model for irrigated rice production. SARP Research Proceedings, ISBN 90-73384-23\(0,110 \mathrm{pp}\).
Laar, H.H. van, J. Goudriaan \& H. van Keulen (Eds), 1992. Simulation of crop growth for potential and water-limited production situations (as applied to spring wheat). Simulation Report CABO-TT no. 27, CABO-DLO, Wageningen The Netherlands, 105 pp .
Leffelaar, P.A. (editor), 1993. On systems analysis and simulation of ecological processes: with examples in CSMP and FORTRAN. Current issues in Production Ecology, Volume 1. Kluwer Academic Publishers, Dordrecht, The Netherlands, 294 pp.
McCree, K.J. \& C.J. Fernandez, 1989. Simulation model for studying physiological water stress responses of whole plants. Crop Sci. 29: 353-360.
Monteith, J.L., 1965. Evaporation and environment. Proc. Symp. Society of Experimental Biology 19: 205-234.
Moorman, F.R \& N. van Breemen, 1978. Rice: soil, water, land. International Rice Research Institute, Los Baños, The Philippines, 185 pp.
O'Toole, J.C. \& E.P. Baldia, 1982. Water deficits and mineral uptake in rice. Science 22: 1144-1150.
O'Toole, J.C. \& T.T. Chang, 1979. Drought resistance in cereals - Rice: a case study. In: Stress physiology in crop plants. Eds H. Mussel \& R. Staples. Wiley-Interscience, New York, pp. 373-405.
O'Toole, J.C. \& R.T. Cruz, 1980. Response of leaf water potential, stomatal resistance and leaf rolling to water stress. Plant Physiol. 65: 428-432.
O'Toole, J.C. \& T.B. Moya, 1981. Water deficits and yield in upland rice. Field Crops Res. 4: 247-259.
Pathak, M.D. \& K.A. Gomez, 1991. Rice production trends in selected Asian countries. IRRI Research papers, 147. International Rice Research Institute, Los Baños, The Philippines.
Penman, H.L., 1948. Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society of London Series A 193, 120-146.
Penman, H.L., 1956. Evaporation: an introductory survey. Netherlands Journal of Agricultural Science 4: 9-29.
Penning de Vries, F.W.T. \& H.H. van Laar (Eds), 1982. Simulation of plant growth and crop production. Simulation Monographs, Pudoc, Wageningen, 308 pp .
Penning de Vries, F.W.T., D.M. Jansen, H.F.M. ten Berge \& A. Bakema, 1989. Simulation of ecophysiological processes of growth in several annual crops. Simulation monographs, PUDOC, Wageningen, The Netherlands, 271 pp .
Puckridge, D.W. \& J.C. O'Toole, 1981. Dry matter and grain production of rice, using a line source sprinkler in drought studies. Field Crops Res. 3: 303-319.

Rappoldt, C. \& D.W.G. van Kraalingen, 1990. Reference manual of the FORTRAN utility library TTUTIL with applications. Simulation report CABO-TT no. 20, CABO, Wageningen, The Netherlands, 122 pp .
Riethoven, J.J.M., 1994. The SARP-Shell, A crop growth simulation environment. Revision 2, SARP-Shell version 1.0. SARP Paper, AB-DLO, Wageningen.
Sanchez, P.A., 1973. Puddling tropical rice soils. 2 effects of water losses. Soil Science, 115(4): 303-308.
Sinclair, T.R., 1986. Water and nitrogen limitations in soybean grain production. I. Model development. Field Crops Res. 15: 125-141.
Sinclair, T.R. \& M.M. Ludlow, 1986. Influence of soil water supply on the plant water balance of four tropical grain legumes. Aust. J. Pl. Physiol. 13: 329-341.
Stroosnijder, L., 1982. Simulation of the soil water balance. In: F.W.T. Penning de Vries \& H.H. van Laar, Simulation of plant growth and crop production. Simulation Monographs, Pudoc, Wageningen, The Netherlands, pp. 175-193.
Tabbal, D.F., R.M. Lampayan \& S.I. Bhuiyan, 1992. Water-efficient irrigation techniques for rice. Paper presented at the International Workshop on Soil and Water Engineering for Paddy Field Management, Asian Institute of Technology, Bangkok, 28-30 January, 1992.

Tanguilig, V.C., E.B. Yambao, J.C. O'Toole \& S.K. De Datta, 1987. Water stress effects on leaf elongation, leaf water potential, transpiration, and nutrient uptake of rice, maize and soybean. Plant and Soil 103: 155-168.
Taylor, H.M., 1972. Effect of drying on water retention of a puddled soil. Soil Sci. Soc. Amer. Proc. 36: 972-973.
Tuong, T.P., M.C.S. Wopereis, J.A. Marques \& M.J. Kropff, 1994. Mechanisms and control of percolation losses in puddled rice fields. Soil Science Society of America Journal 58(6): 1794-1803.
Turner, N.C., 1986. Crop water deficits: a decade of progress. Adv. Agron. 39: 1-51.
Turner, N.C., J.C. O'Toole, R.T. Cruz, O.S. Namuco \& S. Ahmad, 1986. Responses of seven diverse rice cultivars to water deficits. I. Stress development, canopy temperature, leaf rolling and growth. Field Crops Res. 13: 257-271.
Walker, S.H. \& K.R. Rushton, 1984. Verification of lateral percolation losses from irrigated rice fields by a numerical model. J. Hydrol. 71: 335-351.
Wickham, T.H. \& V.P. Singh, 1978. Water movement through wet soils. In: Soils and rice. International Rice Research Institute, Los Baños, The Philippines, pp. 337-357.
Wolfram, S., 1991. Mathematica. A system for doing mathematics by computer. Second edition. Addison-Wesley Publishing Company, Inc., Redwood City, California, 961 pp .
Wopereis, M.C.S., J.H.M. Wösten, J. Bouma \& T. Woodhead, 1992. Hydraulic resistance in puddled rice soils: measurement and effects on water movement. Soil \& Tillage Research 24: 199-209.
Wopereis, M.C.S., 1993. Quantifying the impact of soil and climate variability on rainfed rice production. PhD Thesis Wageningen Agricultural University, ISBN 90-5485-1473, 188 pp .

Wopereis, M.C.S., J.H.M. Wösten, H.F.M. ten Berge, T. Woodhead \& E.M.A. de San Agustin, 1993a. Comparing the performance of a soil-water balance model using measured and calibrated hydraulic conductivity data: a case study for dryland rice. Soil Science 156 (3): 133-140.
Wopereis, M.C.S., M.J. Kropff, J.H.M. Wösten \& J. Bouma, 1993b. Sampling strategies for measurement of soil hydraulic properties to predict rice yield using simulation models. Geoderma 59:1-20.
Wopereis, M.C.S., B.A.M. Bouman, M.J. Kropff, H.F.M. ten Berge \& A.R. Maligaya, 1994. Water use efficiency of flooded rice fields. I. Validation of the soil-water balance model SAWAH. Agricultural Water Management 26: 277-289.
Wopereis, M.C.S., M.J. Kropff, J. Bouma, A.L.M. van Wijk \& T. Woodhead (Eds), 1994. Soil physical properties: measurement and use in rice-based cropping systems. International Rice Research Institute, Los Baños, Philippines, \(104 \mathrm{pp} .+\) appendices. ISBN 971-22-0048-5.
Wösten. J.H.M., M.H. Bannink \& J. Beuving, 1987. Waterretentie- en doorlatendheidskarakteristieken van boven- en ondergronden in Nederland: de Staringreeks. ICW report 18 , ICW, Wageningen, The Netherlands (in Dutch), 75 pp .
Yoshida, S., 1981. Fundamentals of rice crop science. International Rice Research Institute, P.O. Box 933, 1099 Manila, Philippines, 269 pp.

\section*{Appendix 1 ORYWAT crop growth module and subroutines ETPOT and DSTRES}

\section*{A1.1 Listing ORYZA_W}

PROGRAM MAIN
PROGRAM
CALL FSE
END
* SUBROUTINE MODELS
* Authors: Daniel van Kraalingen
* Purpose: This subroutine is the interface routine between the FSE-
driver and the simulation models. This routine is called

ITIM \(=\) NINT(TIME \()\)
*-----To run soil water balance; to get rain of next day
CALL WEATHR (IDOYH, ISTAT2, RDDN, TMMNN, TMMXN, VPN, WNN, RAINN)
Call water balances and crop growth subroutines
CALL SAHEL (ITASK, IUNYTD, IUNITO, IUNITL, FILEEI , OUPPUT, TERMNL, \& TIME, DELT, SWIWLP, RAIN, RAINN, ELSE, WLO
 NL, TKL, TKLT, ZRTMS, WCWP, WCFC, WCST, WCLOT, WLO) ELSE IF (SWIWLP.EQ.3) THEN

CALL ORYWAT(ITASK, IUNITD, IUNITO, IUNITLL, FILEII, FILEIT, SWIWLP,


 INTEGER NL
SAVE

INTEGER NL
CHARACTER FILEIA* (*) ,FILEIS***)
CHARACTER WSTAT*5
CHARACTER WUSED*6
Local variables
INTEGER SWIWLP, SWITPF
INTEGER SWIWLP, SWITPF
INTEGER IDOYH, ISTAT2
TNTEGER IWVAR
Standard local declarations
INTEGER ITIM, ITRT
PARAMETER (INL=10)
END If


SUBROUTINE ORYWAT (ITASK, IUNITD, IUNITO, IUNITL, FILEIN, FILEIT, SWIWLP \(\begin{array}{ll}\kappa \\ k & \text { STTTIME, ITIM, ITRT, FINTIM, DELT, LAT, RDD, TMMN, TMMX, } \\ \& & \text { VP, WN, RAIN, NL, TKL, TKLT, 2RTMS, EVSC, WCWP, WCFC, }\end{array}\)



\section*{Used functions
REAL LINT, INSW, NOTNUL}
Declarations for LOGICAL DLEAF, DROUT

\section*{INTEGER ICNT
INTEGER ITIM,
INTEGER ISTD \\ INTEGER ITIM, ITRT
INTEGER ISTD, INSD, ITMPI}
Save

\section*{* \({ }^{*}\) INITIALIZATION SECTION}
Send title to output file
IF (SWIWLP.EQ.0) THEN
IF (SWIWLP.EQ.0) THEN
CALL OUTCOM('ORYZA_W: Irrigated lowland rice production')
ELSE IF (SWIWLP.EQ.1) THEN CALL OUTCOM('ORYZA_W: Rainfed lowland rice production')
ELSE IF (SWIWLP.EQ.2) THEN ELSE IF (SWIWLP.EQ.3) THEN
CALL OUTCOM('ORYZA_W: Rainfed lowland rice production')
Read Angstrom parameters from the TIMER file Read Angstrom parameters from the
CALL RDINIT(IUNITD, IUNITL, FILEIT)
CALL RDSREA ('ANGA', ANGA), CALL RDSREA ('ANGA', ANGA)
CALL RDSREA('ANGB', ANGB)
CLOSE (IUNITD) Open crop input file
CALL RDINIT (IUNITD,IUNITL, FILEIN)
 PARAMETER (IMPLVT=40) DIMENSTON FLVTB (IMFLVT)
INTEGER IMFRTT, ILFRTT
PARAMETER (IMFRTT \(=40\) )

PARAMETER (IMFRTT=40)
DIMENSION FRTTB (IMFRTT) INTEGER IMFSHT, ILFSHT
PARAMETER (IMFSHT=40) DIMENSION FSHTB (IMFSHT) INTEGER IMFSOT, ILFSOT PARAMETER (
INMENSION FSOTB (IMFSOT)
INTEGER IMFSTT, ILFSTT INTEGER IMFSTTT, ILFSTT
PARAMETER (IMFSTT=40) PARAMETER (IMFT (IMFSTT)
DIMENSION FSTTB
INTEGER IMKDET, ILKDFT INTEGER IMKDET,
PARAMETER (IMKDFT=40)
DIMENSION KDFTB (IMKDFT) INTEGER IMKNFT, ILKNFT
PARAMETER (IMKNFT=40) DIMENSION KNFTB (IMKNET) PNTEGER IMNFLV, ILNAMETER (IMNFLV=40) PARAMETER (IMNFLV (IMNFLV) INTEGER IMREDF, ILREDF
PARAMETER (IMREDF=40) PARAMETER
DIMENSION REDFTT (IMREDF)
INTEGER IMSSGA, ILSSGA
 DIMENSION SSGATB (IMSSGA) INTEGER IMTMCT,ILTMCT

PARAMETER (IMTMCT=40)
DIMENSION TMCTB (IMTMCT
等 PARAMETER (IMXLAI=40) DIMENSION XLAAT, ILXNFL PARAMETER (IMXNFL=40)

定
PARAMETER (IMXWLV=40)
DIMENSION XWLVDT (IMXWLV)
INTEGER IMXWL1, ILXWL1
PARAMETER (IMXWL1=40)
DIMENSION XWLVGT(IMXWLL)
INTEGER IMXWPA, ILXWPA
INTEGER IMXWPA, ILXWPA
PARAMETER (IMXWPA \(=40\) )
DIMRNSION XWPATB (IMXWPA)
INTEGER IMXWST, ILXWST PARAMETER (IMXWST=40)
DIMENSION XWSTTB (IMXWST)

DIMENSION XWSTTP (IMXXWS
INTEGER IMXWTD. ILXWTD
PARAMETER (IMXWTD=40)

\footnotetext{
Read AFGEN functions
CALL RDAREA ('TMCTB ', TMACTB, IMTMCT, ILTMCT)
CALL RDAREA ('NFLV'B', NFLVTB, IMNFLV, ILNPLV) CALL RDAREA ('NFLV'B', NFLVTB, IMNFLV, ILNFLV) CALL RDAREA ('REDFTT, 'REDFTM, MMRED, ILRAREA ('EFFTB ', EFFTB, TMEFFT, ILEFFT)
 FSHTB, IMFSHT, ILFSHT)
 FSTTB, IMFSTT, ILFSTT)
FSOTB, IMFSOT, ILFSOT
DRLVT, IMDRLV, ILDRLV) CALL RDAREA ('SSGATB', SSGATB, IMSSGA, ILSSGA)
CALL RDAREA ('SLATB', SLATB, IMSLAT, ILSLAT) CALL RDAREA ('SSGATB', SSGATB, IMSSGA, ILSSGA
CALL RDAREA ('SLATB', SLATB, IMSLAT, ILSLAT)
}
\begin{tabular}{|c|c|c|}
\hline & & \\
\hline L & RDSREA ('CRGSTR' & ) \\
\hline call & RDSREA('dVRI ' & , DVRI) \\
\hline CALL & RDSREA('DVRJ ' & ', DVRJ) \\
\hline CALL & RDSREA('DVRP ' & ',DVRP) \\
\hline CAL & RDSREA ('DVRR ' & ', DVRR) \\
\hline CALL & RDSREA('FCLV & ', FCLV) \\
\hline CALL & RDSREA ('FCRT & ', FCRT) \\
\hline CAL & RDSREA ('FCSO & ', FCSO) \\
\hline CALL & RDSREA ('FCST & ', ECST) \\
\hline CALL & RDSREA ('FCSTR & ',FCSTR) \\
\hline CALL & RDSREA ('FSTR & ',FSTR) \\
\hline CALL & RDSREA ('LAPE & E) \\
\hline AL & RDSREA ('LRSTR & ',LRSTR) \\
\hline ALL & RDSREA ('MAINL & , MAINLV) \\
\hline CALL & RDSREA \'MAINRT' & ', MAINRT) \\
\hline CALL & RDSREA ('MAINSO' & ', MAINSO) \\
\hline CALL & RDSREA ('MAINST' & , MAINST) \\
\hline CALL & RDSREA ('MOPP & ', \\
\hline CALL & RDSREA ('NH & , NH) \\
\hline CALL & RDSINT ('NPLH & \\
\hline NPLH & \(=\) REAL (ITMP1) & \\
\hline CALL & RDSREA ('NPLSE & ',NPLSB) \\
\hline CALL & RDSREA (•PPSE - & ', PPSE) \\
\hline CA & RDSREA ('Q10 & ',Q10) \\
\hline L & RDSREA ('RGRL & RL) \\
\hline CALL & RDSREA \({ }^{\circ}\) SCP & ', SCP) \\
\hline CALL & RDSREA ('SHCKD & , SHCKD) \\
\hline CALL & RDSREA ('SHCKL & , SHCKL) \\
\hline call & RDSREA ('SPGF & , SPGF) \\
\hline CALL & RDSREA ('TBD & , TBD) \\
\hline Call & RDSREA ( 'TBLV & ',TBLV) \\
\hline CALL & RDSREA ('TCLS' & . TCLSTR) \\
\hline CALL & RDSREA ('TMD & , TMD) \\
\hline CALI & RDSREA ('TOD & , TOD) \\
\hline CALL & RDSREA ('TREF & ',TREF) \\
\hline CALL & RDSREA ('WGRMX & , WGRMX) \\
\hline
\end{tabular}




 IF (MWLVD.EQ.'Y') CALL RDAREA ('XWLVDT', XWLVDT, IMXWLV, ILXWLV)
IF (MWTDM.EQ.'Y') CALL RDAREA ('XWTDMT', XWTDMT', IMXWTD, ILXWTD) Parameters for water-limited production CALL RDSREA ('NPLDS',NPLDS)
CALL RDSREA('ZRTI',ZRTI)

IF (SWIWLP.LT. 3) CALL RDSREA ('ZRTMC', ZRTMC)
IF (SWIWLP.EQ.3) CALL RDSREA('ZRTMCW', ZRTMCW)
ZERO
DAS = ZERO
DAS -

For water limited production; upper limit for start

IF (SWIWLP.EQ. 3) CALL RDSREA ('ZRTMCD', ZRTMCD)

CLOSE (IUNITD)
Set sow date and transplanting date
DOYS \(=\) STTIME
Set sow date and transplanting date
DOYS \(=\) STTIME
DOYTR \(=\) REAL \((\) ITRT \()\)
DOYTR \(=\) REAL (ITRT)
Write captions to
Write captions to the output file
IF (SWILAI.EQ.-1) THEN
CALL OUTCOM(' - Measured LAI used as forcing function')
ELSE IF (SWILAI.EQ.1) THEN
CALL
END IF
IF (SALL OUTCOM('- Nitrogen content as function of dVS used')
CALL OUTCOM('- Nitrogen content as function of DOY used')
END IF IF (SWICOV.EQ.-1) THEN
IF (SWICOV. ZQ.-1) THEN
CALL OUTCOM('-NO
ELSE IF (SWICOV.EQ. 1 )
CALL OUTCM(' - No cover over seed-bed used')
ELSE IF (SWICOV.EQ.1) THEN
CALL OUTCOM(' - Cover over seed-bed used')
END IF
IF (SWITMP.EQ.-1) THEN
ELSE IF
CALL
(SWITCOMP('SQ. GCM end IF
Initialize state variables
PAR \(=\) DVSI
PARCUM \(=\) ZERO
\(\begin{aligned} & \text { PARCUM }=\text { ZERO } \\ & \text { PARCM1 }\end{aligned}=\) ZERO
PARCM \(=\) WLVGI
WVG
WLVD \(=\) ZERO
WLVD \(=\) ZERO
WSTS
WSTS \(=\) WSTI
WSTR \(=\) ZERO
WST \(=\) WSTS
WST \(=\) WSTS + WSTR
WSO \(=\) WSOI
WRT \(=\) WRTI
WRR \(=\) ZERO
WRR \(=\) WR14 \(=\) WRR/0. 86
\(\mathrm{NGR}=\mathrm{ZERO}\)
\(\mathrm{NSP}=\mathrm{ZERO}\)


Effect of drought stress on DTGA
DTGA \(=\) DTGA*PCEW
END ( IF
END IF
IF ((DSTRS.LT. I.). AND. (.NOT. DLEAF)) THEN
WLVGIT \(=\) WLVG
DLEAF \(=\).TRUE.
KEEP \(=\) DSTRS
END IF
IF (DLEAF) THEN
IF (DSTRS. LE. KERP) THEN
DLDR \(=(\) WLVGIT \(/\) DELT)* \((1 .-\) DSTRS \()\)-DLDRT/DELT
KEEP \(=\) DSTRS
DLDRT \(=\) DLDR*DELT+DLDRT
END IF
END IF
eno If
 CKCFL \(=\left(\begin{array}{l}\text { (WRT }- \text { WRTI }) \star \text { FCRT } \\ \text { TNASS* }\end{array}\right.\)
CALL SUBCBC (CKCIN, CKCFL, TIME, CBCHK, TERMNL) *--------9. Output section
IF CALL OUTDAT ( 2,0 , 'DVS \(\quad\), DVS)
CALL OUTLDAT \((2,0,0, \cdot\) PCEW , PCEW \()\)
CALL OUTDAT (2,0,'WCRREL', WCRREL)
CALL OUTDAT ( 2,0, 'ULDLWR', ULDLLWR \()\)
CALL OUTDAT 2,0, 'LLDLWR', LLDLWR \()\)
CALL OUTDAT ( 2,0, 'TRW \(\quad\), TRW \()\)

*


CALL OUTDAT(2,0,'WST
CALL \(\quad\) OUTDAT( 2,0, 'WST)
'WSO
END IF


\footnotetext{
-Cumulative values of transpiration only for main field
TRCT \(=\) INTGRL \(\{\) TRCT, TRC, DELT \()\)
TRWCU
END IF
}
```

FATAL ERROR CHECKS: none *

```
SUGROUTINE ETPOT (SWIWLP, ITTM, ITRT, ANGA, ANGB, RDT, DSO, TAV, VP, WN, LAI WCLQT, WCST, WLO, TRC, EVSC)
-mplicit real (A-z)
IMPLICIT REAL (A-Z)
REAL WCLQT(1), WCST (1)
*-․---Conversion from kpa \(\rightarrow\) mbar
VAPOR \(=\) VP* 10.
WIND \(=\) WN
LHVAP \(=2.4 \mathrm{E} 6\)
PSYCH \(=0.6788 \mathrm{E}-8\)
ALBDS \(=0.25\)
ALBOW \(=0.05\)
WCUP \(=\) WCLQT(1)
WCSTUP \(=\) WCST(1)



ELSE IF (ITASK.EQ.4) THEN Terminal calculations Terminal output END IF
RETURN
END

\section*{A1.3 Listing ETPOT}

SUBROUTINE DSTRES


EVR \(=(1 . /\) LHVAP \() *(\) SLOPE \(/(S L O P E+P S Y C H)) *\) NRAD
EVRWL \(=(1 . / L H V A P) *(S L O P E /(S L O P E+P S Y C H)) *\) NRADWL
EVROW \(=(1 . / L H V A P) *(S L O P E /(S L O P E+P S Y C H)) *\) NRADOW
 * \(\#=-\cdots=*\) Calculation of transpiration and evaporation of crop *
-.-.--Crop transpiration with water layer
-Crop transpiration with soil background


\section*{-Open water evaporation
EVSCOW \(=\) EVROW + EVDOW}

*.......-.--In puddled soil before transplanting: evaporation is open IF (ITIM.LE.ITRT) EVSC = EVSCOW
1. Irrigated and rainfed lowland
IF (SWIWLP.EQ.0.OR.SWIWLP.EQ.1.OR.SWIWLP.EQ. 3) THEN
2. rainfed upland situation
ELSE IF (SWIWLP.EQ.2) THEN
TRC = TRCS
EVSC = EVSCS
END IF
RETURN
END

\section*{A1.4 Listing DSTRES}


\(\operatorname{DSETR}=\operatorname{LIMIT}(0 ., 1 .,(\) WCLQT(I) \(-\operatorname{LLRTW}(I)) /(\) ULRTW(I) \()-\operatorname{LLRTW}(I)))\) WLA \(=\operatorname{MAX}(0.0,(\) WCCQT \((I)-\operatorname{LLDLW}(\mathrm{I})) * \operatorname{TKL}(I) * 1000\). TRN \(=\) TRW+TRNL (I)


\[
30 \quad \begin{aligned}
& \text { ZLL } \\
& 30 \quad \mathrm{ZLL}+\mathrm{TKL}(\mathrm{~T})
\end{aligned}
\]

\section*{Calculation of effects of water stress on crop growth
and development}

save
REAL STLGW (INL)
REAL ULLSW (INL), LLLSW (INL)
REAL ULDLW (INL), LLDLW(INL)
REAL ULRTW (INL), LLRTW (INL)
IF (NL.GT.INL) CALL ERROR('DSTRES', 'too many layers')
STLGWR \(=0\).
ULDLWR \(=0\).
ULDLAR \(=0\).
LLDLWR \(=0\).
(NG.GT. \({ }^{(1)}\) )
REAL TRWL (NL), TKL (NL) , WCLQT (NL), WCFC (NL) , WCWP (NL)
REAL WCST (NL)
Local variables
INTEGER I, ICNT, INL
TNTEGER I, ICNT, INL
PARAMETER (INL=10)
+


\footnotetext{
\[
\begin{aligned}
& \text { IF (SWIWLP.EQ.O.OR.SWIWLP.EQ.1) NL }=1 \\
& \text { IF (SWIWLP.EQ.2) NL }=3
\end{aligned}
\]
-Reset transpiration rates in all soil compartments to 0 DO \(\begin{aligned} & I=1, N L \\ & T R W L(I)=0 .\end{aligned}\) END DO \(Z \mathbf{R}=\mathbf{Z R T}\)

\section*{E}
\(T R R M=T R C /(Z R+1.0 \mathrm{E}-10)\) TRW \(=0\).
ZLL \(=0\).
-

\(\mathrm{ZLL}=\)
\(\mathrm{LS}=0\)
DS \(=0\) WCRREL \(=0\).


\[
=1, \mathrm{NL}
\]
\[
\begin{aligned}
& \mathrm{ZRTL}=\operatorname{MIN}(T K L(I), \operatorname{MAX}((Z R-Z L L), 0.0)) \\
& W C R R E L=W C R R E L+(Z R T L /(Z R+1,0 E-10)) * W C L Q T(I)
\end{aligned}
\]
}


\section*{A1.5 Listing subroutines used in ORYWAT}
* SUROUTINE cover
* Purpose : In this subroutine a temperature correction is made
in case a plastic cover is used in the seedbed.
*
SUBROUTINE COVER (SWICOV, DAS, DOYTR, DOYS, TMPCOV)
IMPLICIT REAL (A-Z)
Formal parameters
REAL DAS, DOYTR, DOYS, TMPCOV
Local variables
INTEGER IDAS, ISA
IDAS \(=\) TNT (DAS) (DOYS)
IF (ISA.LT.O) THEN

ISA \(=I S A\)
END
IF (IDAS.LT.ISA.AND.SWICOV.GT.0) THEN TMPCOV
END
\(I F\) \(\underset{\text { END }}{\text { RETURN }}\)

 SUBROUTINE PHENOL (DVS, DAS, DVRJ, DVRI, DVRP, DVRR, HU, DAYL, MOPP, PPSE,
TS, SHCKD, DOYTR, DOYS, DVR, TSHCKD, DVEW) \({ }^{\text {IMPLICIT REAL (A-Z }}\) TS, SHCKD, DOYTR, DOYS, DVR, TSHCKD, DVEW) IMPLICIT REAL (A-2)
INAEGER IDAS, ISA
SAVE
IDAS \(=\) INT(DAS \()\)
ISA \(=\) INT(DOYTR) - INT (DOYS \()\)
IF (ISA.LT. 1 THEN
\(\begin{aligned} & \text { ISA }=\text { ISA }+365 \\ & \text { ELSE } \\ & \text { ISA }=\text { ISA }\end{aligned}\)
IF (DVS.GE.O. AND. DVS.LTT. 0.40 ) DVR \(=\) DVRJ*HU*DVEN
IF (DVS.GE.O.40.AND.DVS.LT. 0.65 ) THEN

DL \(=\) DAYL +0.9


 zhericir man (a-z)
\({ }^{\text {IT }}\)
PLTR \(=1\).
ND \(I F\)
RWLVG1 \(=\left(\right.\) WLVG* \(^{*}(1 .-\) PLTR \(\left.)\right) /\) DELT
 wuws \(=\) out- Liv
 RWSTR \(=\) GSTR-ISTR
RETURN
END



IF ((DVS.GE.1.2).AND. (.NOT.GRAINS)) THEN GRAINS \(=\). TRUE.
SF1 \(=1 .-(4.6+0.054 *\) COLDTT** 1.56\() / 100\). SF1 \(=\operatorname{MTN}(1 ., \operatorname{MAX}(0 ., S F 1))\)

TFERT \(=\operatorname{TFERT/(NTFERT)}\)
SF2 \(=1 . /(1 .+\operatorname{EXP}(0.853 *(\) TFERT -36.6\()))\)
\(\mathrm{SF} 2=1.7(1 .+\operatorname{EXP}(0.8 \mathrm{~S})\)
\(\mathrm{SF} 2=\operatorname{MIN}(1 ., \operatorname{MAX}(0 ., \mathrm{SF} 2))\) SPFERT \(=\) MIN \((S F 1, S F 2)\)
GNGR \(=N S P * S P F E R T\) \(\underset{\text { GNGR }}{\mathrm{ELSE}}=0\).



FILE usage : none 0


\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{```
*-----reflection of horizontal and spherical leaf angle distribution
SQV = SQRT(1,-SCP)
REFH}=(1,-SQV)/(1.+SQV
REFS = REFH*2./(1.+2.*SINB)
```}} \\
\hline & \\
\hline & \\
\hline
\end{tabular}
-----extinction coefficient for direct radiation and total direct flux CLUSTF \(=\mathrm{KDF} /\left(0.8^{}\right.\) SQV
\(\mathrm{KBL}=(0.5 / \text { SINB })^{*}\) CLUSTF KDRT \(=\) KBL*SQV
*-----calculate relative effect of \(C O 2\) level on AMAX
*----selection of depth of canopy, canopy assimilation is set to zero
FGROS \(=0\). PARINT \(=0\).
SSAVOI' \(\tau=I I\) od
*-------calculate leaf nitrogen for each layer,

\(*------\) calculate actual photosynthesis from SLN, CO2 and temperature
calculation of AMAX according to van Keulen \& Seligman (1987): AMAX \(=32.4\) * (SLNI-0.2) * REDFT * CO2AMX
IF (SLNI.GE.0.5) THEN
AMAX \(=9.5+(22 . * S L N I) * R E D F T\)\({ }^{*}\) CO2AMX

*--------absorbe
PARDF \(=\) PAR*FRDF
PARDR \(=\) PAR-PARDF
CALL ASSIMP(SCP, EFF, REDET, KDF, KNF, LAI, SINB, PARDR, PARDF, NFLV,
CO2, AMAX, FGROS, PARINT)
END Do
DTGA \(=\) DTGA*DAYL
*----calculation of daily incident pAR and intercepted PAR (\(\mathrm{MJ} / \mathrm{m} 2 / \mathrm{d}\))
DPARI \(=\) DPARI*DAYL*3600/1.E6
RETURN
END

flux, direct component of direct flux.
VISDF \(=(1 .-R E F H) \star P A R D F * K D F^{*} E X P(-K D F * L A I C)\)
 *-…-absorbed flux (\(\Xi / \mathrm{M} 2\) leaf/s) for shaded leaves and assimilation STSSHD = VISDF+VIST-VISD

> IF (AMAX.GT.0.) THEN \(\quad\) FGRSH \(=\) AMAX \(^{*}(1 .-\operatorname{EXP}(-\) VISSHD*EFF/AMAX)) \(\underset{\text { FGRSH }}{\text { ELSE }}=0\). *------- direct flux absorbed by leaves perpendicular on direct beam and
assimilation of sunlit leaf area assin \(=(1-\) SCP \() *\) PARDR/SINB FGRSUN \(=0\).
IASUN \(=0\).
DO I2 \(=1\), IGAUSS
I2 \(=1\), IGAUSS
VISSUN \(=\) VISSHD+VISPP*XGAUSS (I2)
IF (AMAX.GT.0.) THEN
FLGRS \(=\) AMAX* \((1 .-\) EXP (-VISSUN*EFF/AMAX) \()\)
\(\underset{\text { ELD }}{\text { ELS }}=0\).
FGRSUN \(=\) FGRSUN + FGRS*WGAUSS (I2)
IASUN \(=\) IASUN + VISSUN*WGAUSS(I2)

FGROS \(=\) FGROS + FGL*WGAUSS (II)
PARINT \(=\) PARINT + IABS*WGAUSS (I1)
\(10 \quad\) END DO \(\quad\) FGROS \(=\) FGROS*LAI
calculation of intercepted PAR (PARINT, \(\mathrm{J} / \mathrm{m} 2 / \mathrm{s}\))
PARINT \(=\) PARINT* LAI
RETURN

\section*{A1.6 Crop data file}

```

SLATB = 0., 0.0047, 0.152, 0.0047, 0.336, 0.0033, 0.653,0.0028
0.787.0.0021, 1.011,0.0019, 1.431,0.0017, 2.10, 0.0017

* tables of partitioning factors for leaves (FLVTB), stems (FSTTB),
* and storage organs (FSOTB) as function of development stage.
FLVTB =
0.000, 0.545,
0.080, 0.545.
0.245,0.559
0.490, 0.542,
0.720, 0.422,
0.895, 0.053
1.230,0.000
1.730,0.,
2.1,0.
FSTTB=
0.000. 0.455,
0.080, 0.455,
0.245, 0.441
0.490,0.458
0.720, 0.578,
0.895, 0.517
1.230, 0.000
1.730,0.,
2.1,0.
FSOTB =
0.000, 0.000
0.720, 0.000,
0.895, 0.430
1.230,1.000
1.730, 1.0,
2.1, 1.
* table of initial light use efficiency as function of temperature
EFFTB = 10.,0.54, 40.,0.36
* table of factor accounting for effect of temperature on AMAX
REDFTT = -10.,0., 10.,0., 20., 1., 37.,1., 43.,0.
* table of specific green stem area as function of development stage
SSGATB = 0.,0.0003, 0.9.0.0003, 2.1.0.
* table of nitrogen fraction in the leaves as function of
* development stage
NFLVTB =
0.00, 0.54,
0.16, 0.54,
0.33, 1.53.
0.65, 1.22,
0.79. 1.56,
1.00, 1.29,
1.46. 1.37,
2.04, 0.83,
2.10. 0.83
MAINLV = 0.02 ! maintenance respiration coefficient of leaves
MAINST = 0.015 ! maintenace respiration coefficient of stems
MAINSO = 0.003 ! maintenace respiration coefficient of storage organs
MAINRT = 0.01 ! maintenace respiration coefficient of roots
CRGLV = 1.326 ! carbohydrate requirement for leaf dry matter production
CRGST = 1.326 ! carbohydrate requirement for stem dry matter production
CRGSO = 1.462 i carbohydrate requirement for storage organ " "
CRGRT = 1.326 ! carbohydrate requirement for root
CRGSTR = 1.11 : carbohydrate requirement for stem reserves production
FCSTR = 0.444 ! mass fraction carbon in the stem reserves
FCLV = 0.419 ! mass fraction carbon in the leaves
FCST = 0.431 ! mass fraction carbon in the stems
FCRT = 0.431 ! mass fraction carbon in the roots
FCSO = 0.487 ! mass fraction carbon in the storage organs
LRSTR = 0.947 ! fraction of allocated stem reserves that is
available for growth
TCLSTR = 10. ! time coefficient for loss of stem reserves

```
* table for leaf death coefficient as function of development stage
DRLVT \(=0.0 ., 0.6 .0 ., 1,0.015,1.6,0.025,2.1,0.05\)
* Water-limited production data

ZRTI \(=0.0001\)
ZRTMC \(=0.4 \quad\) ! maximum rooting depth of crop
GZRT \(=0.01\) ! growth rate roots
ZRTMCW \(=0.2\) : For PADDY subroutine, maximum depth roots if ! no drought stress
ZRTMCD \(=0.4\) : For PADDY subroutine, maximum depth roots if drought

STLG \(=2.80\)
ULLS \(=2.87\)
LLLS \(=3.90\)
ULDE \(=3.80\)
LLDL \(=4.20\)
ULRT \(=2.87\)
LLRT \(=4.20\)
* 3. Switch parameters

SWINLV \(=-1\). ! switch to use NFLV as function of DVS or daynumber ! -1: versus DVS; 1: versus DOY
SWITMP \(=-1 . \quad\) : switch to use GCM temperature correction ! -1: do not use; 1: do use
SWILAI \(=1\). ! switch to use measured or simulated LAI (LAI leaves) ! - 1: measured IAI; 1: simulated LAI
SWICOV \(=-1\). ! switch to use plastic cover over seed-bed ! -1: do not use; 1: do use
* 4. Measured data

* Switches that indicate whether variables have been measured
* or not: ' \(Y\) ' means measured and given; ' \(N\) ' means not measured.
* Note: 'Y' and 'N' should be given in capital letters!

MLAI \(=\) ' \(N\) ' ! measured leaf area index LAIL
MNFLV \(=\) ' \(N\) ' i measured \(N\)-content leaves NFLV
\(M W T D M=\) ' \(N\) ' ! measured weigth total dry matter WTDM
MWST \(=\) 'N' ! measured weigth stems WST
MWIVG \(=\) 'N' ! measured weight green leaves WLVG
MWLVD \(=\) 'N' ! measured weigth dead leaves WLVD
MWPA \(=\) ' \(N\) ' ! measured weigth panicle WPA
* Measured data values: No data for zonation

\section*{A1.7 List of variables}

This list only contains variables that are not included in ORYZA1 Version 1.3 as documented in the SARP Research Proceedings (Kropff et al., 1994).
\begin{tabular}{|c|c|c|}
\hline Name & Description & Units \\
\hline ALB & Albedo, reflection coefficient for short-wave radiation & - \\
\hline ALBC & Albedo, reflection coefficient for crop & \\
\hline ALBDS & Albedo, reflection coefficient for dry soil syrface & - \\
\hline ALBS & Albedo, reflection coefficient for moist soil surface & - \\
\hline ALBOW & Albedo, reflection coefficient for open water & - \\
\hline ANGA & Parameter in Angstrom formula & - \\
\hline ANGB & Parameter in Angstrom formula & \\
\hline AOB & Intermediate variable & - \\
\hline ASIN & Arcsine function (intrinsic FORTRAN function) & - \\
\hline BBRAD & Black body radiation & \(\mathrm{J} \mathrm{m}^{-2} \mathrm{~s}^{-1}\) \\
\hline BOLTZM & Stefan-Boltzman constant & \(\mathrm{Jm}^{-2} \mathrm{~d}^{-10} \mathrm{~K}^{-4}\) \\
\hline CLEAR & Penman's original clearness factor & \\
\hline CLUSTF & Cluster factor & - \\
\hline DAYL & Daylength & \(\mathrm{h} \mathrm{d}{ }^{-1}\) \\
\hline DEC & Declination of the sun & radians \\
\hline DELT & Time interval of integration & d \\
\hline DLDR & Death rate leaves caused by drought & kg DM ha-1 \(\mathrm{d}^{-1}\) \\
\hline DLDRT & Total death rate leaves caused by drought & kg DM ha-1 \(\mathrm{d}^{-1}\) \\
\hline DLEAF & Control variable for start of leaf senescence by drought & \\
\hline DROUT & Control variable indicating drought/no drought & \\
\hline DS & Stress factor for death of leaves caused by drought & - \\
\hline DERT & Effect of drought stress on water uptake & - \\
\hline DSO & Daily extraterrestrial radiation & \(\mathrm{J}^{-2} \mathrm{~d}^{-1}\) \\
\hline DSTRS & Stress factor for death of leaves caused by drought & - \\
\hline DVEW & Effect of water stress on development rate in vegetative phase & \\
\hline EES & Extinction coefficiemt for evaporation in bare soil & \(\mathrm{m}^{-1}\) \\
\hline EVD & Penman evapotranspiration due to drying power of air for a crop/soil system & \(\mathrm{mm} \mathrm{d}{ }^{-1}\) \\
\hline EVDOW & Same as EVD, for open water layer & mm d \({ }^{-1}\) \\
\hline EVR & Penman evapotransp. due to radiation for a crop/soil system & mm d \({ }^{-1}\) \\
\hline EVROW & Same as EVR, for open water layer & mm d \({ }^{-1}\) \\
\hline EVRWL & Same as EVR, for a crop/water layer system & \(\mathrm{mm} \mathrm{d}{ }^{-1}\) \\
\hline EVSCS & Potential soil evaporation & mm d \({ }^{-1}\) \\
\hline EVSCOW & Potential evaporation from open water layer & mm d \({ }^{-1}\) \\
\hline EVSD & Actual evaporation rate soil on dry days & mm d \({ }^{-1}\) \\
\hline EVSH & Actual evaporation rate soil on humid days & mm d \({ }^{-1}\) \\
\hline FCLEAR & Sky clearness function in calculation of net long-wave radiation & - \\
\hline FVAP & Vapour pressure effect on RLWN (Brunt equation) & - \\
\hline ICNT & Control variable for drought stress & - \\
\hline IDATE & Integer value of day of year & d \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Name & Description & Units \\
\hline IDOYTR & Integer value of day of year at transplanting & d \\
\hline INSD & Counter for non-drought stress days & - \\
\hline ISTD & Counter for consecutive drought stress days & - \\
\hline ITIM & Time of simulation & d \\
\hline ITRT & Time of transplanting & d \\
\hline LHVAP & Latent heat of evaporation of water & \(\mathrm{Jkg}^{-1} \mathrm{H}_{2} \mathrm{O}\) \\
\hline LLDL & Lower limit dead leaves & pF value \\
\hline LLLS & Lower limit leaf rolling & pF value \\
\hline LLRT & Lower limit relative transpiration & pF value \\
\hline LLDLWR & Lower limit dead leaves averaged over root zone & \(\mathrm{m}^{3} \mathrm{~m}^{-3}\) \\
\hline LLLSWR & Lower limit leaf rolling averaged over root zone & \(\mathrm{m}^{3} \mathrm{~m}^{-3}\) \\
\hline LLRTWR & Lower limit relative transpiration averaged over root zone & \(\mathrm{m}^{3} \mathrm{~m}^{-3}\) \\
\hline LS & Stress factor for leaf rolling (varies from 0 to 1) & - \\
\hline LSTRS & Stress factor for leaf rolling (varies from 0.5 to 1) & - \\
\hline NRAD & Net radiation & \(\mathrm{Jm}^{-1} \mathrm{~d}^{-1}\) \\
\hline PAR & Instantaneous flux of photosynthetically active radiation \(\mathrm{J} \mathrm{m}^{\mathbf{- 2}}\) & \(\mathrm{J} \mathrm{m}^{-2}\) ground \(\mathrm{s}^{-1}\) \\
\hline PARDF & Instantaneous diffuse flux of incoming PAR \(\mathrm{J} \mathrm{m}^{-2}\) & \(\mathrm{J} \mathrm{m}^{-2}\) ground \(\mathrm{s}^{-1}\) \\
\hline PARDR & Instantaneous direct flux of incoming PAR \(\mathrm{J} \mathrm{m}^{-2}\) & \(\mathrm{J} \mathrm{m}^{-2}\) ground \(\mathrm{s}^{-1}\) \\
\hline PCEW & Effect of water stress on daily total gross \(\mathrm{CO}_{2}\) assimilation of the crop DTGA & GA \\
\hline PENMAN & Penman reference value for potential evapotranspiration mm & \(\mathrm{d}^{-1}\) \\
\hline PI & Ratio of circumference to diameter of circle & - \\
\hline PSYCH & Psychrometic instrument constant mbar & \({ }^{0} \mathrm{C}^{-1}\) \\
\hline RAD & Factor to convert degrees to radians radian & radians degree \({ }^{-1}\) \\
\hline RAIN & Precipitation rate & \(\mathrm{mm} \mathrm{d}^{-1}\) \\
\hline RAINCU & Cumulative precipitation & mm \\
\hline RAINN & Precipitation rate next day & \(\mathrm{mm} \mathrm{d}^{-1}\) \\
\hline RDT & Daily solar radiation & J m \({ }^{-2} \mathrm{~d}^{-1}\) \\
\hline RLWN & Net long-wave radiation & \(\mathrm{J}^{-1} \mathrm{~d}^{-1}\) \\
\hline SC & Solar constant, corrected for varying distances between sun-earth & \(\mathrm{Jm}^{-2} \mathrm{~s}^{-1}\) \\
\hline SCP & Scattering coefficient of leaves for PAR & - \\
\hline SIN & Sine function (intrinsic FORTRAN function) & - \\
\hline SINB & Sine of solar elevation & - \\
\hline SINLD & Intermediate variable in calculating solar declination & - \\
\hline SLOPE & Tangent of the relation between saturated vapour pressure and temperature & mbar \({ }^{\circ} \mathrm{C}^{-1}\) \\
\hline SQV & Intermediate variable in calculation of reflection coefficient & - \\
\hline STLG & Limit for leaf expansion & pF value \\
\hline STLGWR & Limit for leaf expansion avearged over root zone & \(\mathrm{m}^{3} \mathrm{~m}^{-3}\) \\
\hline SVP & Saturated vapour pressure & mbar \\
\hline SWIWLP & Switch to select irrigated lowland (0), rainfed lowland (1), or rainfed upland (2) & (2) \\
\hline TKL & Array fof thicknesses of soils compartments & In \\
\hline TKLT & Thickness of combined soil compartments & m \\
\hline TRC & Potential transpiration rate canopy/soil system & mmd \({ }^{-1}\) \\
\hline TRCT & Cumulative potential transpiration (after transplanting) & mm \\
\hline TRCWL & Potential transpiration rate canopy/water layer system & mm d \({ }^{-1}\) \\
\hline TRRM & Potential transpiration rate canopy per united rooted length mm & \(\mathrm{mm}^{-1} \mathrm{~m}^{-1}\) \\
\hline TRW & Actual transpiration rate canopy & \(\mathrm{mm} \mathrm{d}^{-1}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Name & Description & Units \\
\hline TRWCU & Cumulative actual transpiration (after transplanting) & mm \\
\hline TRWL & Array of TRW per soil compartment & mm d \({ }^{-1}\) \\
\hline TSLVTR & Temperature sum for leaf area development at tranplanting & \({ }^{\circ} \mathrm{Cd}\) \\
\hline ULDL & Upper limit dead leaves & pF value \\
\hline ULLS & Upper limit leaf rolling score & pF value \\
\hline ULRT & Upper limit relative transpiration rate & pF \\
\hline ULDLWR & Upper limit dead leaves averaged over root zone & \(\mathrm{m}^{3} \mathrm{~m}^{-3}\) \\
\hline ULLSWR & Upper limit leaf rolling averaged over root zone & \(\mathrm{m}^{3} \mathrm{~m}^{-3}\) \\
\hline ULRTWR & Upper limit relative transpiration averaged over root zone & \(\mathrm{m}^{3} \mathrm{~m}^{-3}\) \\
\hline VAPOR & Actual vapour pressure & kpa \\
\hline VISD & Absorbed direct component of direct flux per unit leaf area (at depth LAIC) & \(\mathrm{Jm}^{-2}\) leaf \(\mathrm{s}^{-1}\) \\
\hline VISDF & Absorbed diffuse flux per unit leaf area (at depth LAIC) & \(\mathrm{J} \mathrm{m}^{-2}\) leaf \(\mathrm{s}^{-1}\) \\
\hline VISPP & Absorbed light flux by leaves perpendicular on direct beam & \(\mathrm{Jm}^{-2}\) leaf \(\mathrm{s}^{-1}\) \\
\hline VISSHD & Total absorbed flux for shaded leaves) per unit leaf area (at depth LAIC) & \(\mathrm{J} \mathrm{m}^{-2}\) leaf \(\mathrm{s}^{-1}\) \\
\hline VISSUN & Total absorbed flux for sunlit leaves in one of three Gauss point classes & \(\mathrm{Jm}^{-2}\) leaf \(\mathrm{s}^{-1}\) \\
\hline VIST & Absorbed total direct flux per unit leaf area (at depth LAIC) & \(\mathrm{J} \mathrm{m}^{-2}\) leaf \(\mathrm{s}^{-1}\) \\
\hline WCAD & Array of volumetric water content per soil compartment, air dry & \(\mathrm{m}^{-3} \mathrm{~m}^{-3}\) \\
\hline WCFC & Array of volumetric water content per soil compartment, field capacity & \(\mathrm{m}^{-3} \mathrm{~m}^{-3}\) \\
\hline WCL & Array of actual volumetric water content per soil compartment & \(\mathrm{m}^{-3} \mathrm{~m}^{-3}\) \\
\hline WCLQT & Same as WCL & \(\mathrm{m}^{-3} \mathrm{~m}^{-3}\) \\
\hline WCLREL & Array of relative water contents per soil compartment & \(\mathrm{m}^{-3} \mathrm{~m}^{-3}\) \\
\hline WCR & Total biomass & kg DM ha- \({ }^{-1}\) \\
\hline WCRDR & Critical soil water content for start of leaf death caused by drought & \\
\hline WCREF & Array of refernce water contents at which drought stress occurs, per soil compartment & \(\mathrm{m}^{-3} \mathrm{~m}^{-3}\) \\
\hline WCRREL & Total relative water content in root zone & \(\mathrm{m}^{-3} \mathrm{~m}^{-3}\) \\
\hline WCST & Array of volumetric water content per soil compartment, at saturation & \(\mathrm{m}^{-3} \mathrm{~m}^{-3}\) \\
\hline WCSTUP & Saturated volumetric water content of first soil compartment & \(\mathrm{m}^{-3} \mathrm{~m}^{-3}\) \\
\hline WCUP & Actual volumetric water content first soil compartment & \(\mathrm{m}^{-3} \mathrm{~m}^{-3}\) \\
\hline WCWP & Array of volumetric water content per soil compartment, at wilting point & \(\mathrm{m}^{-3} \mathrm{~m}^{-3}\) \\
\hline WDF & Wind function & \(\mathrm{mm} \mathrm{d}^{-1} \mathrm{mbar}^{-1}\) \\
\hline WGAUSS & Array containing weights to be assigned to Gauss points & \\
\hline WIND & Wind speed & \(\mathrm{ms}^{-1}\) \\
\hline WL & Array of amounts of soil water per soil compartment & \(\mathrm{m}^{3} \mathrm{ha}^{-1}\) \\
\hline WLA & Water available to the crop for uptake & mm \\
\hline WLFL & array of fluxes of water from compartment I to I+1 & \(\mathrm{mm} \mathrm{d}{ }^{-1}\) \\
\hline WLO & Amount of ponded water & mm \\
\hline WLVGIT & Dry weight of green leaves & kg ha-1 \\
\hline ZLL & Depth upper boundary compartment & m \\
\hline ZR & Rooted depth & m \\
\hline ZRT(I) & Rooted depth (initial) & m \\
\hline ZRT & Array of ZRT differentiated per soil compartment & m \\
\hline ZRTL & Rooted depth in specific soil compartment & 1 \\
\hline ZRTM & Maximum for ZRT & m \\
\hline ZRTMC & Maximum rooting depth of crop (LOWBAL, SAHEL) & m \\
\hline
\end{tabular}
\begin{tabular}{llc}
Name & Description & Units \\
\hline ZRTMCD & Maximum rooting depth of crop in case of drought (PADDY) & m \\
ZRTMCW & Maximum rooting depth of crop under well-watered conditions (PADDY) & m \\
ZRTMS & Maximum rooting depth of soil & m
\end{tabular}

Appendix 2 Soil-water balance module SAHEL
\(\begin{aligned} & \text { SUBROUTINES } \\ & \text { from TTUTIL : CHUNCTIONS called: FUWCHK } \\ & \text { INSW, OUTCOM, OUTDAT, OUTPLT, RDINIT, RDSREA, ERROR, * * * }\end{aligned}\)
- Output file with unit IUNITO for output and warnings \({ }^{*}\)
\& TTME, DELT, SWIWLP, RAIN, RAINN, EVSC, TRWL, INL, NL, TKL \& TKLT, ZRTMS, WCWP, WCFC,WCST, WCLQT, WLO)
Formal parameters
INTEGER ITASK, IUNITD, IUNITO, IUNITL, INL, NL, SWIWLP
REAL TRL (INL), WCWP (INL), WCFC (INL), WCST (INL)
REAL TRWL (INL), WCLQT (INL) REAL TRWL (INL), WCLQT (INL)
LOGICAL OUTPUT, TERMNL
Standard local variables
INTEGER ITOLD
*(JJ) - The required soil file type recognition marker
CHARACTER*80 SOILUP The task that the subroutine should do (ITASK) against the task
that was done during the previous call (ITOLD) is checked. Only certain combinations are allowed. These are:
initiallzation calculation callondion integration intion calculation initialization, integration Note: there is one combination that is correct but will not cause
calculations to be done nl. if integration is required immediately after initialization.
CALL CHKTSK ('SAHEL', IUNITO,ITOLD, ITASK) TRWL1 \(=\) TRWL (1) \(\begin{aligned} & \text { TRWL } 3=\text { TRWL } \\ & \text { TRW }\end{aligned}=\) TRWL \(1+\) TRWL \(2+\) TRWL 3
IF (ITASK.EQ.1) THEN

\section*{A2.1 Listing SAHEL}

WCUM \(=(\) WL \(1+\) WL2 + WL 3\() / 10.0\)
WCL1 \(=\) WL1 \(/(\) TKL1*1.E4 \()\)
WCL2 \(=\) WL2 \(/\) (TKL2*1.E4)
WCL3 \(=\) WL3 \(/(T K L 3 * 1 . E 4)\)
WCLQT (1) \(=\) WCL1
WCLQT \((2)=\) WCL2
WCLQT \((3)=\) WCL3
\(\mathrm{NL}=3\) (NT INL) CALL ERROR('SAHEL', 'too many layers')
\(\operatorname{TKL}(1)=T \mathrm{TLL} 1\)
\(\operatorname{TKL}(2)=\operatorname{TKL} 2\)
\(\operatorname{TKL}(3)=T K L 3\)

\(\begin{aligned} \mathrm{WCFC}(1) & =\mathrm{WCFCD} \\ \mathrm{WCFC}(2) & =W \mathrm{WCC2}\end{aligned}\)
WCST(1) \(=\) WCST 1

DSLR \(=1.0\)
\(\begin{array}{ll}\text { DSWFL } & =0.0 \\ & 0.0\end{array}\)
EVSWCU \(=0\).

\section*{rate calculation section}

\section*{ELSE IF (ITASK.EQ.2) THEN}
 Available and total soil water
WLFL1 \(=\) RAIN* \((1.0-\) FRNOF \()\)
WLFL2 \(=\operatorname{MAX}(0.0\), WLFLL \(-(\) WCFC1*TKL \(1 * 1000 .-\) WL1*0.101/DELT \()\)
WLFL3 \(=\operatorname{MAX}(0.0\), WLFLL2- WCFC2*TKL \(2 * 1000 .-\) WL \(2 * 0.10) /\) DELT \()\)
WLFL4 \(=\operatorname{MAX}(0.0\) WLFL \(3-(\) WCFC \(3 * T K L 3 * 1000-\) WL \(3 * 0.10) / D E L T)\)
EVSH \(=\) MIN \((E V S C,(\) WL1*0.0001-WCAD1*TKL1)*1000. \(/\) DELT + WLFL1 \()\) EVSK \(=\) MVSD \(=\operatorname{MIN}(E V S C,(\) WLI \(0.6 * E V S C *(S Q R T(D S L R)-S Q R T(D S L R-1))+.W L F L 1)\)
IF (SWIWLP.EQ.1) CALL OUTCOM(
\& IF (SWIWLP.EQ.1) 'SAHEL, water balance SAHEL for free drainage'
IF (DEET.LT.1.0) CALL ERROR('SAHEL','DELT too small for SAHEL')
CALL RDINIT(IUNITD, IUNITO, FILEI2)
The quick-and-dirty patch to provide the user with a supplied at the start of the simulation
CALL RDSCHA ('SOILUP', SOILUP)
Initialization of states
CALL RDSREA('FRNOF', FRNOF)
CALL RDSREA ('EES',EES)
CALL RDSREA ('WCFC1 , WCFC1)
CALL RDSREA ('WCFC3', WCFC3)
CALL RDSREA ('WCAD1', WCAD1)
CALL RDSREA ('WCAD2', WCAD2)
CALL RDSREA ('WCAD2', WCAD2)
CALL RDSREA ('WCAD3', WCAD3)
RDSEA ('WCWP1', WCWP1)
CALL RDSREA ('WCWP2', WCWP2)
CALI RDSREA ('WCWP3','WCWP3)
CALL RDSREA ('WCWP3','WCWPT1)
CALL RDSREA ('WCST3',WCST3) CALL RDSREA ('FWCLI1', FWCL1 CALL RDSREA ('FWCL12', FWWSREA ('FWCLI3', FWCLI3)
CALL RDSREA ('TKL1', TKL1)
TKLT \(=\) TKL1 + TKL2 + TKL3
WCLI1 \(=\) FWCLI1 \(*\) (WCFC1-WCAD1) + WCAD1 WCLI2 \(=\) FWCLI2* \((\) WCFC2-WCAD2 \()+\) WCAD2
WCLI3 \(=\) FWCLI \(3 *(\) WCFC3-WCAD3 \()+\) WCAD 3
WLII \(=\) WCLII \({ }^{*}\) TKL1*1.0E4 WL2I \(=\) WCLI \(2 *\) TKL2 \({ }^{*} 1.0 \mathrm{E} 4\)
WL3I \(=\) WCLI \(3 * T K L 3 * 1.0 E 4\)

ELSE If (ITASK. EQ.4) then ELSE IF
WCLQT (1)
WCLQT (2)
WCLQT (3) ま": ITOLD \(=\) ITASK RETURN
END
EVSW \(=\) INSW (DSLR-1.1, EVSH, EVSD)

else if (itask.eq. 3) then
WL1 \(=\) INTGRL (WL1, (WLFL1-WLFL2-EVSW1-TRWL1) *10.0. DELT \()\)
 WCUM \(=(\) WL. \(1+\) WL \(2+\) WL 3) \(/ 10.0\)
WCL1 \(=\) WL1/(TKL1*1.E4)
WCL2 \(=\) WL2 \(2(\) TKL2*1.E4
DSLR \(=\) INTGRL (DSLR, INSW (RAINN-0.5,1.0.1.00001-DSLR) \(/\) DELT, DELT) RAINCU \(=\) INTGRL (RAINCU, RAIN, DELT)
EVSWCU \(=\) INTGRL (EvSWCU,EVSW, DELT)

Water balance check
CKWFL \(=\) INTGRL (CKWFL
CKWRD \(=\) FUWCHK (CKWFL, CKWIN, TIME)

\section*{A2.2 Soil data file}

Example of soil data for SAHEL water balance module
* LOAM.DAT; Soil characteristics for a standard loam soil.
```

TKL1 = 0.2; TKL2 = 0.3; TKL3 = 0.5
WCFC1 = 0.355; WCWP1 = 0.108; WCAD1 = 0.007; WCST1 = 0.503
WCFC2 = 0.355; WCWP2 = 0.108; WCAD2 =0.007; WCST2 =0.503
WCFC3 = 0.355; WCWP3 = 0.108; WCAD3 = 0.007; WCST3 = 0.503
FWCLI1 = 1.0; FWCLI2 = 1.0; FWCLI3 = 1.0
FRNOF=0.0
ZRTMS = 0.9
EES = 20.
SOILUP = 'Upland, non-puddled soil type'

```

The following soil files contain average moisture characteristics (water content at saturation, WCST, at field capacity, WCFC, at wilting point, WCWP, and at air-dryness, WCAD) as calculated from the data in Penning de Vries et al., 1989 (p. 151-152) derived from measurements on Dutch soils (Wösten et al., 1987) for the water balance modules SAHEL or PADDY:
\begin{tabular}{ll}
\hline Texture description & File name \\
\hline Coarse sand & CSAND.DAT \\
Medium coarse sand & MCSAND.DAT \\
Medium fine sand & MFSAND.DAT \\
Fine sand & FSAND.DAT \\
Humous loamy medium course sand & HLMCSAND.DAT \\
Loamy medium coarse sand & LLMCSAND.DAT \\
Light loamy medium coarse sand & LMCSAND.DAT \\
Loamy fine sand & LFSAND.DAT \\
Sandy loam & SLOAM.DAT \\
Loess loam & LLOAM.DAT \\
Fine sandy loam & FSLOAM.DAT \\
Silt loam & SILOAM.DAT \\
Loam & LOAM.DAT \\
Sandy clay loam & SCLOAM.DAT \\
Silty clay loam & SICLOAM.DAT \\
Caly loam & CLOAM.DAT \\
Light clay & LCLAY.DAT \\
Silty clay & SICLAY.DAT \\
\hline
\end{tabular}
\begin{tabular}{lllll}
\hline File name & WCST & WCFC & WCWP & WCAD \\
\hline CSAND.DAT & 0.3950 & 0.0647 & 0.0001 & 0.0000 \\
MCSAND.DAT & 0.3650 & 0.1405 & 0.0054 & 0.0000 \\
MFSAND.DAT & 0.3500 & 0.1611 & 0.0113 & 0.0000 \\
FSAND.DAT & 0.3640 & 0.2120 & 0.0334 & 0.0005 \\
HLMCSAND.DAT & 0.4700 & 0.3530 & 0.1326 & 0.0141 \\
LLMCSAND.DAT & 0.3940 & 0.2848 & 0.0939 & 0.0074 \\
LMCSAND.DAT & 0.3010 & 0.1798 & 0.0309 & 0.0005 \\
LFSAND.DAT & 0.4390 & 0.2328 & 0.0266 & 0.0002 \\
SLOAM.DAT & 0.4650 & 0.2731 & 0.0443 & 0.0007 \\
LLOAM.DAT & 0.4550 & 0.3268 & 0.1055 & 0.0079 \\
FSLOAM.DAT & 0.5040 & 0.3397 & 0.0882 & 0.0040 \\
SILOAM.DAT & 0.5090 & 0.3587 & 0.1084 & 0.0070 \\
LOAM.DAT & 0.5030 & 0.3552 & 0.1082 & 0.0071 \\
SCLOAM.DAT & 0.4320 & 0.3487 & 0.1677 & 0.0313 \\
SICLOAM.DAT & 0.4750 & 0.3778 & 0.1726 & 0.0287 \\
CLOAM.DAT & 0.4450 & 0.3994 & 0.2759 & 0.1183 \\
LCLAY.DAT & 0.4530 & 0.3783 & 0.2043 & 0.0498 \\
SICLAY.DAT & 0.5070 & 0.4474 & 0.2917 & 0.1095 \\
\hline
\end{tabular}

\section*{A2.3 List of variables}
\begin{tabular}{|c|c|c|}
\hline Name & Description & Units \\
\hline CKWFL & Sum of integrated water fluxes in/out of soil compartments & mm \\
\hline DSLR & Number of days since last rain & d \\
\hline EES & Evaporation extinction coefficient & \(\mathrm{m}^{-1}\) \\
\hline EVSC & Potential soil evaporation rate for current weather conditions and crop & \(\mathrm{mm} \mathrm{d}^{-1}\) \\
\hline EVSD & Actual evaporation rate soil on dry days & \(\mathrm{mm} \mathrm{d}^{-1}\) \\
\hline EVSH & Actual evaporation rate soil on humid days & mm d \({ }^{-1}\) \\
\hline EVSW & Actual evaporation rate soil (indexed per soil compartment) & \(\mathrm{mm} \mathrm{d}^{-1}\) \\
\hline EVSWCU & Cumulative EVSW since sowing & mm \\
\hline FEVL & Array of fraction of EVSW, per soil compartment & - \\
\hline FEVLT & Total of FEVL over all soil compartments & \\
\hline FRNOF & Fraction runoff & - \\
\hline FWCLI & Initial soil water content as fraction of WCFC, indexed per soil compartment & - \\
\hline NL & Number of soil compartments (\(=1\)) & \\
\hline RAIN & Precipitation rate & \(\mathrm{mm} \mathrm{d}^{-1}\) \\
\hline RAINCU & Cumulative precipitation since sowing & mm \\
\hline RAINN & Precipitation rate next day & \(\mathrm{mm} \mathrm{d}^{-1}\) \\
\hline RIICU & Cumulative irrigation application (= always 0) & mm \\
\hline TKL & Thickness os soil compartment, indexed & mm \\
\hline TKLT & Total thickness of all soil compartments & mm \\
\hline WCAD & Volumetric water content, at air dryness (pF 7), indexed per soil compartment 1-NL & \(\mathrm{m}^{3} \mathrm{~m}^{-3}\) \\
\hline WCFC & Volumetric water content, at field capacity (pF 2), indexed per soil compartment 1-NL & \(\mathrm{m}^{3} \mathrm{~m}^{-3}\) \\
\hline WCL(I) & Actual volumetric water content, indexed per soil compartment 1-NL (initial) & \(\mathrm{m}^{3} \mathrm{~m}^{-3}\) \\
\hline WCLQT & Same as WCL & \(\mathrm{m}^{3} \mathrm{~m}^{-3}\) \\
\hline WCST & Volumetric water content at saturation, indexed per soil compartment 1-NL & \(\mathrm{m}^{3} \mathrm{~m}^{-3}\) \\
\hline WCUM & Cumulative WL over all soil compartments & mm \\
\hline WCWP & Volumetric water content, at wilting point (pF 4.2), indexed per soil compartment 1-NL & \(\mathrm{m}^{3} \mathrm{~m}^{-3}\) \\
\hline WL(I) & Actual amount of water, indexed per soil compartment 1-NL (Note: WL0 is amount of ponded water) & mm \\
\hline WLFL & Fluxes of water in/out soil compartments, indexed per compartment & mm d \({ }^{-1}\) \\
\hline ZRTMS & Maximum rooting depth of soil & m \\
\hline
\end{tabular}

Appendix 3 Soil-water balance module LOWBAL

\section*{A3.1 Listing LOWBAL}

SUBROUTINE LOWBAL (ITASK, IUNITD, IUNITO, IUNITL, FILEI2, OUTPUT, TERMNL, \(\begin{array}{ll}\& & \text { DELT, SWIWLP, ITTM, ITRT, DVS, TRWL, EVSC, RAIN, RAINN, } \\ \& & \text { INL,NL, TKL, TKLT, ZRTMS, WCWP,WCFC, WCST, WCLQT,WLO) }\end{array}\)

ELSE (IF (WLO/DELT).GE.SPSOIL) THEN

END
END IF
\[
\begin{aligned}
& \text { Reduction of EVSC when no more ponded water } \\
& \text { IF (WLO. LE. O) THEN } \\
& \text { EVSH }=\text { MIN (EVSC, (WLP-WCADP*TKLP) /DELT+RAIN+RII) } \\
& \text { EVSD }=\text { MIN(EVSC, } 0.6 * \text { EVSC* (SQRT (DSLR) }- \text { SQRT(DSLR-1,)) } \\
& \\
& \text { EVAIN+RII) } \\
& \text { EVSW }= \\
& \text { INSW(DSLR-1.1,EVSH, EVSD) } \\
& \text { EVSW }=\text { EVSC }
\end{aligned}
\]
\[
\begin{aligned}
& \text { EVSW = EVSC } \\
& \text { END IF }
\end{aligned}
\]
CLOSE (IUNITD)
nitializing state
WLO \(=\) WLOI
WLOMX \(=\) WLOMXI
TLLMP
TKL
TKLPI
TKLPM \(=\) TKLPI*SHRINK
WLP \(=(\) WCSTP*TKLPM \()+(\) TKLPI-TKLPM \()\)
WLP \(=(\) WCSTP*TKLPM \()+(\) TKLPI-TKLPM \()\)
WCLP \(=\) WLP/TKLP
DSLR \(=1\).
RIDUM \(=0\).
RNOFCU \(=0\).
RNOFCU
\(S P=\) SPSOIL
RAINCU \(=0\).
RIICU \(=0\).
EVSWCU \(=0\).
*------For communication with ORYZA subroutine
IF (NL.GT.INL) CALL ERROR('LOWBAL','too many layers') 2RTMS \(=\) TKLPI/1000.
WCWP \((1)=\) WCWPP
WCFC \((1)=\) WCFCP
WCAD (1) = WCADP
TKL \((1)=\) TKLPI \(/ 1000\).
TKLT \(=\) TKLPI/1000
WCLQT \((1)=\) WCLP

ELSE IF (ITASK. EQ.2) THEN

TRWP \(=\) TRWL (1)

\footnotetext{
*...-- Percolation only when ponded water is present
IF (WLO. LE.0) THEN
SP \(=0\).
}
*------Uncracked situation
\[
\begin{aligned}
& \text { *-- Seed-bed, it is assumed that the seed-bed is continuously } \\
& \text { * (daily) irrigated: a dumy gift RIDUM is used to keep } \\
& \text { * } \quad \text { the water level in the seed-bed to WLOT. } \\
& \text { *----Main field: a constant irrigation gift is supplied } \\
& \text { * when the water level drops below WLOMIN, and when the crop } \\
& \text { * } \quad \text { is not yet in ripening phase. } \\
& \text { IF (SWIWLP, EQ. O) THEN }
\end{aligned}
\]
\[
\begin{array}{r}
\text { RII } \\
\text { END II } \\
\text { END IF } \\
\text { ELSE IF }(S W
\end{array}
\]
\[
\begin{aligned}
& \text { WIWLP.EQ.0) THEN } \\
& \text { (ITIM.LT. ITRT) THEN } \\
& \text { RIDUM }=\text { SP+TRWP+EVSW-RAIN } \\
& \text { RII }=0 . \\
& \text { RE IF (ITIM.EQ.ITRT) THEN } \\
& \text { RIDUM }=0 . \\
& \text { RII }=0 . \\
& \text { SE IF (ITIM.GT.ITRT) THEN } \\
& \text { IF (WLO.LE.WLOMIN.AND.DVS.I } \\
& \text { RIDUM }=0 . \\
& \text { RII }=\text { RIGIFT } \\
& \text { ELSE } \\
& \text { RII }=0 . \\
& \text { RIDUM }=0 . \\
& \text { END IF }
\end{aligned}
\]
\[
\begin{aligned}
& \text { RII }=0 . \\
& \text { SE IF (ITIM.GT. ITRT) THEN } \\
& \text { IF (WLO.LE.WLOMIN.AND.DVS.LT.DVSIE) THEN } \\
& \text { RIDUM }=0 . \\
& \text { RII }=\text { RIGIFT } \\
& \text { ELSE } \\
& \text { RII }=0 . \\
& \text { RIDUM }=0 . \\
& \text { END IF } \\
& \text { D IF }
\end{aligned}
\]
\[
\begin{aligned}
& \text { END IF } \\
& \text { ELSE IF (SWIWLP.EQ.I) THEN } \\
& \text { IF (ITIM.LT.ITRT) THEN } \\
& \text { RIDUM = SP+TRWP+EVSW- }
\end{aligned}
\]
\[
\begin{aligned}
& \text { (ITIM. LTT.ITRT) THEN } \\
& \text { RIDUM }=\text { SP+TRWP+EVSW-RAIN } \\
& \text { RII }=0 .
\end{aligned}
\]
\[
\begin{aligned}
& \text { RII }=0 . \\
& \text { ELSE IF (ITIM.GE.ITRT) THEN } \\
& \text { RIDUM }=0 .
\end{aligned}
\]
\[
\begin{aligned}
& \text { ELSE } \\
& \text { RIDUM }=0 . \\
& \text { RII }=0 . \\
& \text { END IF } \\
& \text { END IF }
\end{aligned}
\]
\[
\begin{array}{r}
\text { *------Cracked situation } \\
\text { IF (CRACK) THEN }
\end{array}
\]

IF ((RAIN+WLO).LE.DDR) THEN

WL0 \(=\) WLOMX water; soil not yet completely shrunken *--------1.2.1 firther shrinkage of puddied layer
ELSE IF (ITASK.EQ.3) THEN
*-----Surface drainage is standard zero
RUNOF \(=0\).
*-----1. Situation with ponded water
WLO \(=\) TNTGRL (WLO 0 (RAIN+RII+RIDUM-EVSW-TRWP-SP) , DELT)
*-------1. 1 bund overflow IF (WLO.GT. WLOMX) THEN
RUNOF \(=\) WLO-WLOMX ------1.2 .1 further shrinkage of puddled layer
IF (WLO.GE. (TKLPM-TKLP)) THEN
WLOMX \(=\) WLOMX-WLO
TKLP \(=\) TKLP + WLO 0
TKLP \(=\) TKLP + WLO
WLP \(=(\) WCSTP*TKLPM \()+(T K L P-T K L P M)\)
WCLP \(=\) WLP \(/\) TKLP
WL0 \(=0\).

---------1.2.2 complete shrinkage of puddled layer ELSE
WLOMX
\(=(\) WLOM
\(=T K L P M\)

\footnotetext{
TKLP \(=\) TKLPM
}
ELSE IF (ITIM.EQ.ITRT) THEN
RIICU \(=\) RIPUD
ELSE IF
(SWIWLP.EQ.1) THEN
SE IF
RITCU
(SWIWLP.
\(=0\).
RAD
RNOFCU \(=\) INTGLL (RNOFCU, RUNNF, DELT)
EVSWCU
INTGRL (EVSWCU, EVSW, DELTT)

RNOFCU \(=\) INTGRL (RNOFCU, RUNVF, DELT
EVSWCU \(=\) INTGRL (EVSWCU, EVSW,DELT)
EVSWCU \(=\) INTGRL (EVSWCU, EVSW,
SPCU \(=\) INTGRL (SPCU,SP, DELT)
------For communication with ORYZA subroutine
TKL \((1)=\) TKLP/100.
TKLT \(=\) TKLP/1000.
Fe (WCLP LT WCCR

ELSE IF (ITASK.EQ.4) THEN
ELSE IF
END
IF
ITOLD \(=\) ITASK
RETURN
号

\section*{A3.2 Soil data file}

Example of soil data for LOWBAL water balance module
* PUDS05.DAT; soil parameters for the water balance module
* LOWBAL for puddled, lowland rice soils.
* NON-CRACKING; LOW SP RATE (5 MM/DAY)
** All data in mrn or mma/day
WLOMXI \(=100.00\)
TKLPI \(=200.00\)
SP SOIL \(=5.00\)
DDR \(=2000.00\)
WLOI \(=50.00\)
WLOMIN \(=10.00\)
SHRINK \(=0.7\)
WCCRAC \(=0.00\)
WCSTP \(=0.52\)
WCWPP \(=0.01\)
WCFCP \(=0.01\)
WCADP \(=0.01\)
RIGIFT \(=50.00\)
RIPUD \(=200\).
DVSIE \(=1.85\)
SOILOW = 'Lowland, puddled soil type'

\section*{A3.3 List of variables}
\begin{tabular}{|c|c|c|}
\hline Name & Description & Units \\
\hline WLOMX(I) & Bund height (initial), also maximum level of WL0 & mm \\
\hline DDR & Deep drainage rate of the subsoil & \(\mathrm{mm} \mathrm{s}^{-1}\) \\
\hline DSLR & Number of days since last rain & - \\
\hline DVSIE & Development stage after which no more irrigation is applied & - \\
\hline EVSC & Potential soil evaporation rate for current weather conditions and crop & \(\mathrm{mm} \mathrm{d}^{-1}\) \\
\hline EVSD & Actual evaporation rate soil on dry days & mm d \({ }^{-1}\) \\
\hline EVSH & Actual evaporation rate soil on humid days & mm d-1 \\
\hline EVSW & Actual evaporation rate soil & \(\mathrm{mm} \mathrm{d}^{-1}\) \\
\hline EVSWCU & Cumulative EVSW after transplanting & mm \\
\hline NL & Number of soil compartments (\(=1\)) & - \\
\hline RAIN & Precipitation rate & \(\mathrm{mm} \mathrm{d}^{-1}\) \\
\hline RAINCU & Cumulative precipitation since transplanting & mm \\
\hline RAINN & Precipitation rate next day & \(\mathrm{mm} \mathrm{d}^{-1}\) \\
\hline RIGIFT & Constant inrigation gift & mm \\
\hline RII & Actual irrigation gift (either 0 or RIGIFT) & mm \\
\hline RIICU & Cumulative irrigation gift after transplanting & mm \\
\hline RIICSB & Cumulative irrigation gift in seed-bed & mm \\
\hline RNOFCU & Cumulative RUNOF after transplanting & mm \\
\hline RUNOF & Surface drainage (bund overflow) & mm \\
\hline SHRINK & Linear shrinkage factor for puddled layer & \\
\hline SP & Actual seepage \& percolation rate & \(\mathrm{mm} \mathrm{s}^{-1}\) \\
\hline SPCU & Cumulative SP after transplanting & mm \\
\hline SPSOIL & Potential seepage \& percolation rate & \(\mathrm{mm} \mathrm{s}{ }^{-1}\) \\
\hline TKLP(I) & Thickness puddled layer (initial) & mm \\
\hline TKLPM & Thickness of shrunken soil & mm \\
\hline TRWP & Actual transpiration rate canopy from puddled layer & \(\mathrm{mm} \mathrm{d}^{-1}\) \\
\hline WCAD(1) & Same as WCADP & \(\mathrm{m}^{3} \mathrm{~m}^{-3}\) \\
\hline WCADP & Volumetric water content of shrunken puddled layer, at air dryness (pF 7) & \(\mathrm{m}^{3} \mathrm{~m}^{-3}\) \\
\hline WCCRAC & Water content of shrunken puddled layer at which cracks penetrate the impermeable layer & \(\mathrm{m}^{3} \mathrm{~m}^{-3}\) \\
\hline WCFC(1) & Same as WCFCP & \(\mathrm{m}^{3} \mathrm{~m}^{-3}\) \\
\hline WCFCP & Volumetric water content of shrunkne puddled layer, at field capacity (pF 2) & \(\mathrm{m}^{3} \mathrm{~m}^{-3}\) \\
\hline WCLP & Actual volumetric water content of puddled layer & \(\mathrm{m}^{3} \mathrm{~m}^{-3}\) \\
\hline WCLQT(1) & Same as WCLP & \(\mathrm{m}^{3} \mathrm{~m}^{-3}\) \\
\hline WCST(1) & Same as WCSTP & \(\mathrm{m}^{3} \mathrm{~m}^{-3}\) \\
\hline WCSTP & Volumetric water content of shrunken puddled layer, at saturation & \(\mathrm{m}^{3} \mathrm{~m}^{-3}\) \\
\hline WCWP(1) & Same as WCWPP & \(\mathrm{m}^{3} \mathrm{~m}^{-3}\) \\
\hline WCWPP & Volumetric water content of shrunken puddled layer, at wilting point (pF 4.2) & \(\mathrm{m}^{3} \mathrm{~m}^{-3}\) \\
\hline WLO(I) & Depth of ponded water layer (initial) & mm \\
\hline WLOMIN & Minimum depth of WL0 at which irrigation is supplied & mm \\
\hline WLP & Actual amount of water in puddled layer & mm \\
\hline
\end{tabular}

\section*{Appendix 4 Soil-water balance module PADDY}

\section*{Listing PADDY}

\footnotetext{

\(\begin{array}{ll}\text { SUBROUTINE PADDY (ITASK, IUNITD, IUNITO, IUNITL, FILEI2, OUTPUT, TERMN } \\ \& & \text { WSTAT, WTRTER, DOY, DELT, TIME, ITIM, TRRT, RAIN, EVSC } \\ \& & \text { TRWL, INL,NL, ZRTMS, TKLP,TKLT, WCWP, WCFC, WCST, WCL } \\ \& & \text { TOTPOR, WLO, SWITPF) }\end{array}\)
} *---- \(\begin{aligned} & \text { SAVE } \\ & \text { standard 1ocal variables } \\ & \text { INTEGER ITOLD } \\ & \text { TINY }=1.0 E-5\end{aligned}\) *--- \(\begin{aligned} & \text { SAVE } \\ & \text { standard local variables } \\ & \text { INTEGER ITOLD } \\ & \\ & \text { TINY }=1.0 E-5\end{aligned}\)

Local variables
water balance parameters
INTEGER SWITIR, SWITVP, SWITKH, SWITGW INTEGER SWITIR, SWITVP,

INTEGER NLPUD
PARAMETER (MNL=10)
D (MNL) REAL WLAD (MNL)

REAL FLOW
SHRTN subroutine
REAL VL (MNL)
* End for SHRINK subroutines
* For calculation groundwater level

LOGICAL CRACKS, PUDDLD, FREEDR, GRWAT
INTEGER ILZMAX, I, IGW INTEGER ILZMAX, I, IGW
INTEGER IZWTB, IRIRR

REAL RIRRIT(100)
COMMON /NUCHT / VGN(10), VGA (10), VGR (10), VGL (10)
COMMON /HYDCON/ \(\operatorname{KST}(10)\), \(\operatorname{WCAD}(10), \operatorname{WCSTRP}(10)\) COMMON /POWER / PN(10) COMMON /SWIT / SWITKH
REAL KSAT \((10)\)

EAL ZWTB PARAL
PARTER
(ILZMAX \(=400\)) DIMENSION ZWTE (ILZMAX)
COMMON /GWT / ZWA, ZWB
COMMON /GWT / ZWA, ZWB, MAXGW, MINGW, ZWTBI, ZWTB, IZWTB

DATA ITOLD/4/
The task that the subroutine should do (ITASK) against the task
that was done during the previous call (ITOLD) is checked. Only that was done during the previous call (ITOLD) is checked. only
 \(\underset{\text { END }}{\text { END }}\)

\section*{*---- Initialization}

CRACKS \(=\). FLALSE.
FREEDR \(=\). FALSE.
PERC \(=0\)
*--- read input from soil data file *-.-- read input from soin
CALL RDINIT(IUNITD, IUNITL, FILEI2)
CALL (SWITPD.EQ.1) THEN
PUDDLD = .TRUE.
ELSE IF (SWITPD. EQ.0) THEN
PUDDLD = .FALSE.
F ((SWITPD.NE.0).AND. (SWITPD.NE.1))
-atis wiva tios ni daitms anty yotho astaid dous y *---- free draining / impeded drainage switch

END IF

*--- check groundwater table depth
IF (GRWAT) CALL GWTAB (ITTASK, SWITGW, NL, DOY, DELTT, WLFL, TKL, ZWPREV,
IGW, ZW)
*---- initialization of state variables *---- initialization of state variables initial ponded water depth (mm)
WLO \(=\) WLOI
*--...- initial (total) water content in soil profile (mun) DO WHILE (I.LE.NL)
WCL \((I)=W C D I(I)\)
\(W C U M I=W C U M I+W L(I)\)
\(I=I+1\)
WCUM \(=\) WCUMI
*---- reset days since last ponded water
DSPW \(=1\).
*------- reset cumulative amounts

ELSE IF (ITASK.EQ.2) THEN

*-------- 1.1 Ponded water can sustain evaporation and transpiration
*----------- calculate change in ponded water depth (mm/d)
*---------- reset transpiration losses per soil compartment to zero *----------- as transpiration is taken from ponded water DO WHILE (I.LE.NL)
TRWL (I) \(=0\)
\(I=I+1\)
END DO
IF (.NOT. PUDDLD)
STOP 'SWITVP MUST BE 0 FOR NON-PUDDLED SOIL.
IF (NLPUD.LT.NL) THEN IF (NLPUD.LT.NL) THEN
CALL SATFLX(TKL,NLPUD, WLO , PERC)
ELSE
ELSE \(\quad\) STOF 'SWITVP MUST BE 0 IF NL \(=\) NLPUD'

*---------- recalculate change in ponded water depth (mm/d)
WLOCH \(=\) WLOCH-PERC
*------- calculate runoff (\(\mathrm{mm} / \mathrm{d}\)) if ponded water depth
is bund height
IF (WLO+WLOCH*DELT.GE. WLOMX) THEN
RUNOF \(=\) (WLO +WLOCH*DELT-WLOMX)
IF (WLO + WLOCH*DELT.GE.WLOMX) THEN
RUNOF \(=(\) (WLO WLOCH*DELT-WLOMX) \(/\) DELT
WLOCH \(=\) WLOCH-RUNOF
END IF
\(\mathrm{I}=1\)
DO WHILE (I.LE.NL+1)
WLFL (I) \(=\) PERC
\(I=I+1\)
END DO

ELSE
 \({ }^{\text {* }}\) DELT
END DO
\[
\begin{aligned}
& \text { for water balance check } \\
& \text { EVSW }=\text { EVSC }
\end{aligned}
\]
EVSW \(=\) EVSC
EVSWS \(=0\).
*---------- 1.3 ponded water car sustain part of evaporation only IF (WLO/DELT+RAIN+IR.LT.EVSC) THEN calculate change in
WLOCH \(=\)-WLO/DELT
\(\stackrel{\operatorname{PERC}}{\operatorname{WLFL}(1)}=0 .=\operatorname{RAIN+IR}\)
\(I=2\)
\(D O\)
DO WHILE
WFL(I)
\(I=\mathrm{I}=\mathrm{PERC}\)
\(\mathrm{I}+1\)
END Do

END If
*---------- 2. No ponded water on surface

 EVSWS \(=\) EVSW
DSPW \(=\) DSPW +1.
WLFL \((1)=\) RAIN + IR
I \(=1\)
DO WHILE (I.LE.NL)

*----------------- correct transpiration losses liration losses partly soil compartment as

ZWPREV \(=\) ZW
\[
\begin{aligned}
& I=1 \\
& D O \text { WHILE (I.LE.NL.AND.I.LE.NLPUD) }
\end{aligned}
\] water balance check
WCUM \(=\) WCUM + WCUMCH
ELSE IF (ITASK,EQ.3) THEN
IF (GRWAT) THEN

END DO
IF
(OUTP

END IF
\[
\begin{aligned}
& \text { CALL OUTDAT (2,0,'WLOCO', WLOCO) }
\end{aligned}
\]
\[
\begin{aligned}
& \text { DO WHILE (I.LE.NL) } \\
& \text { WL (I) = INTGRL(WL (I), WLCH (I), DELT) } \\
& I=I+1 \\
& \text { END DO }
\end{aligned}
\]
\[
\begin{aligned}
& \text { DO WHILE (I.LE.NL) } \\
& \text { WCL (I) } \xlongequal{=} \text { WL (I)/TKL (I) }
\end{aligned}
\]
\[
\begin{aligned}
& \text { WCL }(I)=\mathrm{WL}(I) / T K L(I) \\
& I=I+1
\end{aligned}
\]
\[
\begin{aligned}
& I=I+1 \\
& \text { END DO }
\end{aligned}
\]
IF (PUDDLD) THEN

\section*{A4.2 Listing subroutines used in PADDY \\ }

Date : March 1993, Version: 1.0
function of ponded water depth, hydraulic conductivity
compacted layer and hydraulic conductivity subsoil
FORMAL PARAMETERS: (I=input, \(\mathrm{O}=\) output, \(\mathrm{C}=\) control, \(\mathrm{IN}=\) init, \(\mathrm{T}=\) time)
\(\begin{array}{llll}\text { name } & \text { type meaning (unit) } & \text { class } \\ \text { TKL } & \text { R4 } & \text { Array of thicknesses soil layers (m) } & \text { I } \\ \text { NLPUD } & \text { I4 } & \text { Number of puddled soil compartments including plow }\end{array}\)

nLpud wLO
PERC

> SUBROUTINE SATPLX(TKL, NLPUD, WLO, PERC)
IMPLICIT REAL (A-Z)
TNTEGER SWITKH, I, NLPUD
DIMENSION TKL (10) SWITKH
COMMON /NUCHT / VGN(10), VGA(10), VGR(10), VGL (10)
COMMON /POWER / PN(10)
save
TRLTOT \(=0\).
TINY \(=1 . E-5\)
 pressure head top compartments (NLO and wis are in
DO WHILE (I.LE. NLPUD-1)
TKLTOT \(=\) TKLTOTTTKL (I)/10.
\(I=I+1\)
END DO
HT \(=\) WLO/10. + TKLTOT
DZL thickness plow sol
IF (SWITKH.EQ.1) THEN
\(*---\quad\) van genuchten parameters of unsaturated compartment 3 \(\mathrm{N}=\mathrm{VGN}(\mathrm{NLPUD}+1)\)
\(\mathrm{L}=\mathrm{VGL}\) (NLPUD +1
*--..-- assign arbitrary value to \(F\), the difference function

CONTINUE
* NEXT LINE CMANGED
* CONDUC (I3) = EXP (ELOG10*AFGEN (CONTAB, ILCON, PFGAU(I3))) CALL SUMSKM2 (I, EXP(ELOG10*PFGAU(I3)), WCST, KMS)
CONDUC(I3) \(=\) KMS
\(\operatorname{HULP}(I 3)=\operatorname{DEL}(I 1) *\) WGAU(I2 \() * \operatorname{CONDUC}(I 3)\)
\(\operatorname{TF}(I 3 . G T .9)\)
51 \& END DO *ELOG10*EXP(ELOG10*PFGAU(I3))
*15.5 setting upper and lower limit
* NEXT LINE CHANGED (ELOG10*AFGEN (CONTAB, ILCON, PF1))
- Start changes
END CHANGES
IF (MH.LE.D1) \(F U=0\).

*15.6 Iteration loop
IMAX \(=3 *\) IINT

70 END DO
+15.7 output
*15.8 in case of small matric head
* NEXT LINE CHANGED
*START CHANGES
90 KO \(=\) KST \((I)\)
* END CHANGES
\(*\) FLOW IN MM/D
FLOW \(=10 * K 0 *(M H / D-1\).
* NEXT LINE CHANGED
* START CHANGES
90 KO \(=\) KST \((\mathrm{I})\)
* END CHANGES
\(*\) FLOW IN MM \(/ \mathrm{D}\)
FLOW \(=10 * K 0 *(M H / D-1\).
* NEXT LINE CHANGED
* START CHANGES
90 KO \(=\) KST \((\mathrm{I})\)
* END CHANGES
\(*\) FLOW IN MM \(/ \mathrm{D}\)
FLOW \(=10 * K 0 *(M H / D-1\).
* NEXT LINE CHANGED
* START CHANGES
90 KO \(=\) KST \((\mathrm{I})\)
* END CHANGES
\(*\) FLOW IN MM \(/ \mathrm{D}\)
FLOW \(=10 * K 0 *(M H / D-1\).
\(\begin{array}{ll}* 15.7 & \text { output } \\ 80 & \text { FLOW }=10 *(F U / D \\ \text { RLFL })\end{array}\) /2.
FLON \(=10 *\) KO (MHID-1.)

RETURN
END
calculate conductivity

\[
\begin{aligned}
& \mathrm{MS}=0 . \\
& \operatorname{ELSE} \\
& \text { Van Genu }
\end{aligned}
\]
IF (WCL.GT. WCSTRP(I)) THEN
IF (SWITA.EQ.1) THEN
IF (WCL.LT. WCAD(I), OR. WCL.GT.WCST)
Van Genuchten option
HLP1 \(=\) AMAX1 \((\) WCAD \((I)\), WCL \()\)
WREL \(=\) (WCL-VGR(I) \(/(\) WCSTRP(I)-VGR(I) \()\)
\(\operatorname{VGM}=1,-1 / / \operatorname{VGN}(I)\)
\(\operatorname{HLP} 2=1 / \operatorname{VGA}(I)\)
HLP3 \(=-1 . / \mathrm{VGM}\)
HLP4 \(=1 . / \mathrm{VGN}\) (I
MS \(=\) HLP2* \((\) WREL**HLP3-2.)**HLP4
END \(I F\)
water content calculated from suction
IF (MS.LT.-TINY.OR.MS.GT.1.E8) CALL \(\operatorname{SUERR}(4, \mathrm{MS}, 0.11 . E 8\))
van Genuchten option
VGM \(=1 .-1\).
HLP1 \(=(M S * V G A(I)) * * V G N(I)\)
HLP1 \(=(\) MS* VGA \((I) * *(-V G M)\)
WREL \(=(1 .+H L P 1) *\)
WCL \(=\) WREL* \((\) WCSTRP \((I)-\) VGR
WCL
END \(I F\)
RETURN
END
SUBROUTINE SHRINK
Version: 1.0

using a shrinkage factor equal to WCSTRP/WCST

SUBROUTINE SHRINK(ITASK,I,WL,TKL,WCST,WCSTRP, WCL, TOTPOR,VL) IMPLICIT REAL (A-Z) INTEGER I, ITASK
REAL WLLOW (3)
SAVE TKLMIN \(=(\) WCSTRP \(/\) WCST \() * T K L\)
WLST \(=\) WCST \(* T K L\)
IF (ITASK.EQ.1) THEN

WCL \(=\) WL/VL
TOTPOR \(=\) WCL
WCL \(=\) WL/TKLMIN
TOTPOR \(=\) WCSTRP
WCL \(=\) TOTPOR = WCSTRP
VL \(=\) TKLMIN
END IF
F (WL. GE.WCSTRP*TKLMIN) THEN
VL \(=\) MIN (TKL, TKLMIN + (WL -WCSTRP*TKLMIN))

ELSE \({ }_{\text {WCL }}=\) WL/TKLMIN
NIWTKL
d甘LSJM \(=\) YOdLOL
SIWIYL/TM \(=7 J M\)
NIWTML \(=\)
出
WLSE \(=\mathrm{WL} / \mathrm{VL}\)
COMMON /UNITNR/ IUNLOG
variables retain their values between subsequent calls SAVE
FUWCHK \(=2.0 *(\) CKWIN-CKWFL \() /(\) CKWIN + CKWFL +1 .E-10)
XDIE \(=\) ABS (CKWIN-CKWFL)
IF (ABS (FUWCHK).GT - O. O1.AND, XDIF.GT.1.0) THEN
IF (ABS(FUWCHK).GT. O.O1.AND,XDIF.GT. 1.0) THEN
and relative error exceeds 18 .
WRITE (*,10) FUWCHR, CKWIN,CKWFL, TIME
IF (IUNLOG.GT.0) WRITE (IUNLOG,10) FUW
WRITE (IN, 10) FUWCHK, CKWIN, CKWFL, TIME
IF (IUNLOG.GT.0) WRITE (IUNLOG,10) FUWCHK, CKWIN, CKWFL, TIME
END IF

SUBROUTINE GWTAB (ITASK, SWITGW, NL, DOY, DELT, WLFL, TKL, ZWPREV, IGW, ZW) IMPLICIT REAL (A-Z)
Formal parameters REAL WLFL (NL+1). TKL (NL)
Local variables
INTEGER IZWTB, ILZMAX
PAREGER IZWTB,
COMMON /GWT / ZWA, ZWB, MAXGW, MINGW, ZWTBI, ZWTB (ILZMAX), IZWTB
SAVE
SUBROUTINE SUWCHK (CKWFL, CKWIN, TIME) IMPLICIT REAL (A-Z)
 - SUBROUTINE SUWCHK * Purpose: Stwchk checks the soil water balance by comparing time-integrated boundary fluxes versus change in
total amount of water contained in the system. total amount of water contained in the systen.
* Formal parameters: (I=input, O=output, C=control, IN=init,t=time) class
\(\begin{array}{lll}\text { * CKWFL } & \text { R4 } & \text { sum of time-integrated boundary fluxes (min) } \\ \text { * CKWIN } & \text { R4 } & \text { Change in water storage since start (mm) }\end{array}\) * TIME R4 Time of simulation (d) * SURROUTINES called : none
* FILE usage :
* FILE usage :
*
*
------common

SUBROUTINE BACKFL(I, WL, FLIN, FLOUT, EVSWS, TRWL, WLST, DELT, FLNEW, HLP) TMPLICIT REAL (A-2) \(\underset{\text { SAVEGER }}{ }\) IF (I.EQ.1) THEN
HLP \(=\) WL+ \((\) FLIN-FLOUT-EVSWS-TRWL \() *\) DELT
ELSE
HLP \(=W L+(\) FLIN-FLOUT-TRWL \() * D E L T\)
END IF

> IF (HLP.GT. WLST) THEN ELLNEW \(=\) FLIN- (HLP-WLST) /DELT ELSE FLNEW \(=\) FLIN RETVR END
```

A4.3 Soil data file

* EXAMPLE INPUT FILE, CONTAINS MAXIMUM NUMBER OF
* parameTERS NEEded
* Switches:
* Puddling switch: puddled {1}; non-puddled (0)
SWITPD = 1
* Drainage switch; free draining (1); impeded drainage (0)
SWITFD = 0
* Irrigation switch: no irrigation (0); irrigation read from table (1):
* irrigation if ponded water depth drops below minimum value (2)
SWITIR = 0
* Conductivity switch: no data (0); Van Genuchten parameters (1);
* Power function (2)
SWITKH = 0
* Water retention switch: data given for saturation, field capacity,
* wilting point and when air dry (0); via Van Genuchten parameters (1)
SWITPF = 0
* Groundwater switch: not in profile (0); read from this file (1);
* calculated (2)
SWITGW = 1
* Percolation switch: read from this file (0); calculated (1)
* Value for SWITVP can only be 1 if puddled soil
SWITVP = 0
* Number of soil layers (maximum is 10)
NL = 9
* Thickness of soil compartments (m)
TKL = 3*0.05, 3*0.05, 0.10, 0.20, 0.20
* Percolation rate (if sWITVP = 0)
PERCOL = 10.0
* Maximum rooting depth in soil (m)
ZRTMS = 1.0
* Irrigation table, amount of irrigation (y in mm) for a given calendar
* day (x), used if SWITIR = 1
RIRRIT = 23.. 0.,
60., 0., 79., 0., 111.,0.,112..100.,
113.,0.,117.,0.,118.,100.,119.,0.,123.,0.,124.,100.,300.,100.
* Irrigation parameter, used if SWITIR = 2, i.e. amount of irrigation
* if ponded water depth drops below WLOMIN (mm)
IRRI = 50.
* Saturated hydraulic conductivity (needed if SWITFD = 0.
* and if SWITKH is 1 or 2)
KST = 2*127.0, 3.0, 3*35.0, 2*103.0, 42.0
* Van Genuchten parameters (needed if SWITKH = 1 and/or SWITPF = 1)
VGA = 3*0.127, 3*0.047, 2*0.078, 0.032
VGL = 3*-6.2, 3*-0.6, 2*-4.9, -11.1
VGN = 3*1.119, 3*1.095, 2*1.076, 1.073
VGR=9*0.01
* Power function parameter (needed if SWITKH = 2)
PN = 3*-2.5, 3*-2.5, 2*-2.5, -2.5
* Saturated volumetric water content
WCST = 3*0.52, 3*0.55, 2*0.61, 0.64
* Volumetric water content at field capacity (needed if SWITPF = 0)
WCFC = 3*0.48, 3*0.47, 2*0.52, 0.58
* Volumetric water content at wilting point (needed if SWITPF = 0)
WCWP = 9*0.21
* Volumetric water content when air dry (needed if SWITPF = 0)
WCAD = 9*0.01
* Initial volumetric water content
WCLI = 3*0.52, 3*0.47, 2*0.52, 0.58
* Ponded water depth (mm)
WLOMX = 150.
* Minimum ponded water depth (mm)
WLOMIN = 50.
* Initial ponded water depth (mm)

```
\(W L O I=100\).
* Groundwater table depths (y in cm) as a function of calendar day (\(x\))
* needed if SWITGW =

ZWTB \(=1 ., 150 ., 300 \ldots 150\).
* Groundwater parameters, needed if SWITGW \(=2\)
* Initial groundwater depth (cm)
\(Z\) WTBI \(=100\).
* Minimum groundwater depth (cm)

MINGW \(=100\).
* Maximum groundwater depth (cm)

MAXGW \(=100\).
* Sensitivity factor of recharge \((-)\)
\(2 \mathrm{WA}=1.0\)
* Depth groundwater table is receding in case of no recharge (\(\mathrm{cm} / \mathrm{d}\))
\(\mathrm{ZWB}=0.5\)
* FOLLOWING PARAMETERS ONLY NEEDED IF SOIL IS PUDDLED
* i.e. if SWITPD \(=1\)
* Number of puddled compartments, including plow sole (cannot exceed NL) NLPUD \(=3\)
* Volumetric water content of ripened soil (previously puddled)

WCSTRP \(=3 * 0.52,3 * 0.55,2 * 0.61,0.64\)
* pF value of puddled root zone at which cracks reach the non-puddled
* subsoil, i.e. break through the plow sole
\(\mathrm{PFCR}=3.0\)

\section*{A4.4 List of variables used in PADDY}
\begin{tabular}{|c|c|c|}
\hline Name & Description & Units \\
\hline CAPRI & array capillary rise per soil compartment & \(\mathrm{mm} \mathrm{d}^{-1}\) \\
\hline CAPTOT & total capillary rise & \(\mathrm{mm} \mathrm{d}{ }^{-1}\) \\
\hline CKWFL & total of external contribution to system water content & mm \\
\hline CKWIN & total change in system water content & mm \\
\hline CRACKS & logical indicating if cracks penetrate through puddled topsoil & \\
\hline DELT & time step & d \\
\hline DOY & calendar day & d \\
\hline DRAICU & cumulative outflow from deepest soil compartment & mm \\
\hline DRAIN & variable used to drain soil compartment to field capacity & mm d \({ }^{-1}\) \\
\hline DSPW & days passed without ponded water on soil surface & d \\
\hline EVSC & potential evaporation rate & mm d \({ }^{-1}\) \\
\hline EVSD & actual evaporation rate soil if DSPW \(>1\) & \(\mathrm{mm} \mathrm{d}^{-1}\) \\
\hline EVSH & actual evaporation rate soil if DSPW = 1 & \(\mathrm{mm} \mathrm{d}{ }^{-1}\) \\
\hline EVSW & actual evaporation rate & mm d-1 \\
\hline EVSWCU & cumulative actual evaporation rate & mm \\
\hline EVSWS & actual evaporation rate soil compartment 1 & \(\mathrm{md}^{-1}\) \\
\hline FILEI2 & name of soil data input file & - \\
\hline FLNEW & boundary flow between soil compartments recalculated via subroutine & \\
\hline & BACKFL & \(\mathrm{mm} \mathrm{d}{ }^{-1}\) \\
\hline FLOW & capillary rise calculated by subroutine SUBSL2 & \(\mathrm{mm} \mathrm{d}^{-1}\) \\
\hline FREEDR & logical indicating free drainage or impeded drainage & - \\
\hline GWCU & cumulative contribution groundwater table & mm \\
\hline GWFILL & array used to 'fill-up' soil compartment if in groundwater & \(\mathrm{mm} \mathrm{d}^{-1}\) \\
\hline GWTOT & total contribution groundwater table & \(\mathrm{mm} \mathrm{d}^{-1}\) \\
\hline GRWAT & logical indicating if groundwater table is in soil profile & - \\
\hline HYDCON & common block needed to communicate with subr. SUMSKM2 & - \\
\hline I & counter, usually used to indicate soil compartment number & - \\
\hline IGW & number of shallowest soil compartment in groundwater & - \\
\hline ILZMAX & maximum number of groundwater table measurements & - \\
\hline INL & number of soil compartments & - \\
\hline IR & irrigation & \(\mathrm{mm} \mathrm{d}^{-1}\) \\
\hline IRIRR & number of days with additional irrigation & - \\
\hline IRRI & additional irrigation if ponded water declines below minimum & \(\mathrm{mm} \mathrm{d}{ }^{-1}\) \\
\hline ITIM & time of simulation & d \\
\hline ITASK & determines action of PADDY & - \\
\hline ITOLD & previous action of PADDY & - \\
\hline ITRT & time of transplanting & d \\
\hline IUNITD & unit number soil data file & - \\
\hline IUNITL & unit number \(\log\) file & - \\
\hline IUNITO & unit number output file & - \\
\hline IZWTB & number of days with groundwater table measurements & - \\
\hline KSAT & saturated hydraulic conductivity & \(\mathrm{cm} \mathrm{d}{ }^{-1}\) \\
\hline KST & saturated hydraulic conductivity & \(\mathrm{cm} \mathrm{d}^{-1}\) \\
\hline MAXGW & maximum groundwater table depth & cm \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Name & Description & Units \\
\hline MINGW & minimum groundwater table depth & cm \\
\hline MS & moisture suction (pressure head) & cm \\
\hline NL & number of soil compartments & - \\
\hline NLPUD & number of puddled soil compartments including plow sole & - \\
\hline NUCHT & common block with Van Genuchten parameters & - \\
\hline OUTPUT & flag indicating if output to file is required & - \\
\hline PERC & actual percolation rate & mm d \({ }^{-1}\) \\
\hline PERCOL & percolation rate from soil data input file (constant) & \(\mathrm{mm} \mathrm{d}^{-1}\) \\
\hline PFCR & critical pF value where cracks break through soil compartment & - \\
\hline PN & parameter n in power function for hydraulic conductivity & \\
\hline POWER & common block containing PN & - \\
\hline PROREL & contribution of profile storage to water balance & \(m m d^{-1}\) \\
\hline PUDDLD & logical indicating if profile is puddled/non-puddled & \\
\hline RAIN & rainfall & \(\mathrm{mm} \mathrm{d}^{-1}\) \\
\hline RAINCU & cumulative rainfall & mm \\
\hline REST & rest water component in top soil compartment calculated by subroutine & \\
\hline & BACKFL & mm \\
\hline RIRRIT & irrigation table & \\
\hline RNOFCU & cumulative runoff & mm \\
\hline RUNOF & runoff & mmd \({ }^{-1}\) \\
\hline SURREL & contribution of stored surface water to water balance & mm d \({ }^{-1}\) \\
\hline SWITFD & free draining / impeded drainage switch & - \\
\hline SWITGW & groundwater switch & - \\
\hline SWITIR & irrigation switch & - \\
\hline SWITKH & hydraulic conductivity switch & \\
\hline SWITPD & puddled / non-puddled switch & - \\
\hline SWITPF & water retention curve switch & - \\
\hline SWITVP & switch for calculation of percolation rate & \\
\hline TERMNL & flag indicating if simulation should terminate & - \\
\hline TIME & time & d \\
\hline TKL & array thickness of soil compartments & mm \\
\hline TKLP & array thickness of soil compartments & m \\
\hline TKLT & total thickness of soil profile & m \\
\hline TOTPOR & array total porosity of soil compartments & \(\mathrm{cm}^{3} \mathrm{~cm}^{-3}\) \\
\hline TRW & total transpiration rate & \(\mathrm{mm} \mathrm{d}^{-1}\) \\
\hline TRWCU & cumulative transpiration & mm \\
\hline TRWL & array water uptake per soil compartment due to transpiration & \(\mathrm{mm} \mathrm{d}^{-1}\) \\
\hline UPRICU & cumulative capillary rise & mm \\
\hline VGA & van Genuchten alpha parameter & \(\mathrm{cm}^{-1}\) \\
\hline VGL & van Genuchten lambda parameter & - \\
\hline VGN & van Genuchten n parameter & - \\
\hline VGR & van Genuchten residual water content & - \\
\hline VL & array thickness soil compartment after shrinkage & mm \\
\hline WBINIT & flag indicating if water balance needs initialization for crop rotations, not yet in use in this version of PADDY & - \\
\hline WCAD & array volumetric water content per soil compartment when 'air dry' & \(\mathrm{cm}^{3} \mathrm{~cm}^{-3}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Name & Description & Units \\
\hline WCCR & critical volumetric water content where cracks break through soil compartment & \(\mathrm{cm}^{3} \mathrm{~cm}^{-3}\) \\
\hline WCFC & array volumetric water content per soil compartment at 'field capacity' & \(\mathrm{cm}^{3} \mathrm{~cm}^{-3}\) \\
\hline WCL & array actual volumetric water content of soil compartment & \(\mathrm{cm}^{3} \mathrm{~cm}^{-3}\) \\
\hline WCLI & array initial volumetric water content of soil compartment & \(\mathrm{cm}^{3} \mathrm{~cm}^{-3}\) \\
\hline WCST & array saturated volumetric water content per soil compartment & \(\mathrm{cm}^{3} \mathrm{~cm}^{-3}\) \\
\hline WCSTRP & array saturated volumetric water content ripened soil per soil compartment & \(\mathrm{cm}^{3} \mathrm{~cm}^{-3}\) \\
\hline WCUM & amount of stored soil water in soil profile & mm \\
\hline WCUMCH & rate of change in amount of stored soil water & \(\mathrm{mm} \mathrm{d}^{-1}\) \\
\hline WCUMCO & contribution of soil storage term to overall water balance & mm \\
\hline WCUMI & initial amount of stored soil water in soil profile & mm \\
\hline WCWP & array volumetric water content per soil compartment at 'wilting point' & \\
\hline WL & array amount of water in soil compartment & mm \\
\hline WL0 & amount of ponded water & mm \\
\hline WLOCH & rate of change of amount of ponded water & \(m m d^{-1}\) \\
\hline WLOCO & contribution of surface storage term (ponded water) to overall water balance & mm \\
\hline WLOI & amount of initial ponded water & mm \\
\hline WLOMIN & minimum amount of ponded water before start of irrigation & mm \\
\hline WLOMX & maximum amount of ponded water (=bund height) & 1 \\
\hline WLAD & array amount of water per soil compartment when 'air dry' & mm \\
\hline WLCH & array change in amount of water per soil compartment & \(\mathrm{mm} \mathrm{d}^{-1}\) \\
\hline WLFC & array amount of water per soil compartment at 'field capacity' & mm \\
\hline WLFL & array flux at boundaries of soil compartment & mm d \({ }^{-1}\) \\
\hline WLST & array amount of water per soil compartment at saturation & mm \\
\hline WLWP & array amount of water per soil compartment at 'wilting point' & mm \\
\hline WSTAT & flag for weather system & \\
\hline WTRTER & flag for weather system & - \\
\hline ZL & array depth of top of soil compartments & m \\
\hline ZRTMS & maximum rooting depth soil profile & m \\
\hline ZW & depth of groundwater table below soil surface & cm \\
\hline ZWA & depth groundwater table is receding in case of no recharge & \\
\hline ZWB & sensitivity factor of recharge groundwater table & - \\
\hline ZWPREV & groundwater table depth of previous day & cm \\
\hline ZWTB & table with groundwater table data & - \\
\hline ZWTBI & initial depth of groundwater table below soil surface & - \\
\hline
\end{tabular}

\section*{Appendix 5 Other input files}

\section*{A5.1 Control data}
* CONTROL.DAT; to control input and output file names
```

    FILEON = 'RESULTS.OUT' ! Normal output file
    FILEOL = 'MODEL.LOG' ! Log file
    FILEIR = 'RERUNS.DAT' ! Reruns file
    FILEIT = 'TIMER.DAT' ! File with timer data
    FILEII = 'ORYZA_WZ.DAT' ! First input data file (crop)
    FILEI2 = 'SOIL.DAT ' ! Second input data file (soil)
    * FILEI3 = ' ' ! Third input data file (not used)
* FILEI4 = ' ' ! Fourth input data file (not used)
* FILEI5 = ' ' ! Fifth input data file (not used)

```

\section*{A5.2 Timer data}
* Timer file generated by FST translator version 1.15
```

* 

```
* contains:
* - The used DRIVER and TRACE in case of GENERAL translation
* - The TIMER variables used in both translation modes
* - Additional TIMER variables in case of GENERAL translation
* - The WEATHER control variables if weather data are used
* - Miscellaneous FSE variables in case of FSE translation
*
* File: ORYZA1.FST
* Date: 16-05-94
* Time: 14:17:38
* TIMER variables used in GENERAL and FSE translation modes
\begin{tabular}{|c|c|}
\hline STTIME \(=23\). & ! start time \\
\hline FINTIM \(=100\). & ! finish time \\
\hline DELT \(=1\). & ! time step (for Runge-Kutta first guess) \\
\hline PRDEL \(=1\). & ! output time step \\
\hline IPFORM \(=4\) & ! code for output table format: \\
\hline & ! \(4=\) spaces between columns \\
\hline & ! \(5=\) TAB's between columns (spreadsheet output) \\
\hline & ! 6 = two column output \\
\hline
\end{tabular}
```

MULTIP = 1.
ANGA }=0.2
ANGB = 0.42
! The string array PRSEL, contains the output variables for which
! formatted tables have to be made. One or more times there is a
! series of variable names terminated by the word <TABLE>.
! The translator writes the variables in each PRINT statement to

* PRSEL = ! a separate table
COPINF = 'N' ! Switch variable whether to copy the input files
! to the output file ('N' = do not copy,
! 'Y' = copy)
DELTMP = 'N' ! Switch variable what should be done with the
! temporary output file ('N' = do not delete,
! 'Y' = delete)
IFLAG = 1100 ! Indicates where weather error and warnings
! go (1101 means errors and warnings to log
! file, errors to screen, see FSE manual)
*IOBSD = 1991,182 ! List of observation data for which output is
! required. The list should consist of pairs
! <year>,<day> combination

```
* WEATHER control variables
* ------------------------------

WTRDIR \(=\) ' '
\begin{tabular}{lll}
CNTR \(=\) 'PHIL' & & ! Country code \\
ISTN & \(=2\) & \\
IYEAR & \(=1988\) &
\end{tabular}
```

SWIWLP = 3

```

\section*{A5.3 Weather data}
* Station name: IRRI wet station site
* Year: 1980
* Author: Daniel van Kraalingen -99.000: NIL VALUE
* Source: Agroclimate Service Unit of IRRI
* Comments: Original name of data used in IRRI: ORWET
* Longitude: 121 15'. E, latitude: 14 11'" N , altitude: 21 m.
*
* Column Daily value
* 1 station number
* 2 year
* 3 day
* 4 irradiation (\(k J m-2 d-1\)) or (\(m J m-2 d-1\))
* 5 minimum temperature (degrees Celsius)
* 6 maximum temperature (degrees Celsius)
* 7 early morning vapour pressure (kPa)
* 8 mean wind speed (height: 2 m) (m s-1)
* 9 precipitation (mm d-1)
\begin{tabular}{rlllllllll}
121.25 & 14.18 & 21. & 0.00 & 0.00 & & & \\
1 & 1980 & 1 & 14004. & 20.5 & 29.5 & 2.790 & 0.6 & 0.0 \\
1 & 1980 & 2 & 12528. & 21.5 & 29.5 & 2.970 & 0.3 & 0.5 \\
1 & 1980 & 3 & 17136. & 21.0 & 29.7 & 2.630 & 0.6 & 0.0 \\
1 & 1980 & 4 & 18360. & 19.5 & 29.9 & 2.650 & 0.6 & 0.2 \\
1 & 1980 & 5 & 13140. & 20.8 & 28.9 & 2.990 & 1.0 & 0.0
\end{tabular}
\(\begin{array}{llllllll}1 & 1980 & 364 & 7740 . & 21.7 & 26.3 & 2.770 & 1.8 \\ 0.8\end{array}\)
\(\begin{array}{llllllll}1 & 1980 & 365 & 5220\end{array} \quad 22.0 \quad 25.4 \quad 2.810 \quad 1.8 \quad 1.0\)
\(\begin{array}{llllllll}1 & 1980 & 366 & 10656 & 22.6 & 26.8 & 2.650 & 2.8 \\ 0.0\end{array}\)

\section*{A5.4 Rerun data}
* Example of reruns file for PADDY
* Set 1

SWITIR \(=0\)
WLOI \(=50\).
* Set 2

SWITIR = 1
\(\mathrm{WLOI}=20\).
* Set 3

SWITIR \(=2\)
WLOI \(=100\).```

[^0]: ${ }^{1}$ International Rice Research Institute (IRRI)
 ${ }^{2}$ Dept of Theoretical Production Ecology, Wageningen Agricultural University (TPE-WAU)
 ${ }^{3}$ DLO-Research Institute for Agrobiology and Soil Fertility, (AB-DLO)

