
SARP Research Proceedings 

ORYZA_W: 
Rice growth model for irrigated and rainfed 
environments 

M.C.S. Wopereis, B.A.M. Bouman, T.P. Tuong, H.F.M. Berge & MJ.Kropff 

SARP Research Proceedings - February 1996 

DLO-Research Institute for Agrobiology and Soil Fertility, Wageningen 
WAU-Department of Theoretical Production Ecology, Wageningen 
International Rice Research Institute, Los Banos 
National Agricultural Research Systems of Asian countries 



CIP-GEGEVENS KONINKLIJKE BIBLIOTHEEK, DEN HAAG 

ORYZA W 

ORYZA_W : rice growth model for irrigated and rainfed 
environments / M.C.S. Wopereis ... [et al.] - Wageningen : 
DLO-Research Institute for Agrobiology and Soil Fertility ; 
Wageningen : WAU-Department of Theoretical Production Ecology ; 
Los Banos : International Rice Research Institute. - 111. -
(SARP research proceedings) 
ISBN 90-73384-39-7 
NUGI 835 
Trefw.: rijstbouw. 

Cover design: Ernst van Cleef, DUOTONE, Wageningen 

Printing: Grafisch Service Centrum Van Gils B.V., Wageningen 



Preface 

This volume of the SARP Research Proceedings presents ORYZA_W version 3.0, a 
simulation model for irrigated and rainfed rice production. The above-ground crop growth 
part of ORYZA_W is based on ORYZA1, version 1.3, described in another volume of this 
series. 
ORYZA_W provides the user with a choice of three one-dimensional soil-water balance 
modules: PADDY, SAHEL and LOWBAL. SAHEL and LOWBAL are already familiar to 
researchers in the SARP network. Use of these two modules is, however, limited to 
specific environments. SAHEL was developed for freely draining 'upland' rice soils with 
a deep groundwater table and LOWBAL for 'lowland' rice soils with a hard plow sole 
(impenetrable for roots) and a deep groundwater table. Because of their frequent use in 
SARP, SAHEL and LOWBAL are explained in detail in this volume. PADDY was 
especially developed to provide the user with a universal soil-water balance module. It can 
handle any soil condition (puddled / non-puddled, free draining / impeded drainage, 
cracking / non-cracking) in irrigated and rainfed rice growing environments, and can also 
be used in rice / non-rice rotations. All soil-water balance modules presented here work 
with time steps of 1 day. We hope that ORYZA_W will prove to be of value for your 
research. 
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February 1996 B.A.M. Bouman3 
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1 Introduction 

One of the major limitations to rice production in Asia is water supply and availability. A 
rice crop may need 1000 - 4000 mm of water (Tabbal et al., 1992). In both irrigated and 
rainfed areas there is a need to optimize water use efficiency at the regional level. This can 
be done through (i) improvement of irrigation facilities, (ii) introduction of water-saving 
techniques, (Hi) optimization of planting time or adapting the cropping system. For any of 
these approaches, a thorough understanding of the system is needed. Systems analysis and 
simulation can be used to evaluate the potentials of different solutions for different 
environments. 

Process-based simulation models are increasingly being used to assess attainable yields 
on a regional scale (van Keulen and Wolf, 1986; van Diepen et al., 1991; Hammer and 
Muchow, 1991). They allow detailed analysis of experimental data, extrapolation of 
research findings to other environments and can provide probability distributions of yield 
that can be used for an economic evaluation of strategies to optimize water use efficiency 
(Anderson, 1991). Different levels of systems approaches can be chosen to analyze water-
limited environments. The question which approach to use depends on the required output 
of the study, on data needs and on data availability. If an approach is selected, data needs 
are defined. If data requirements are not met, data may be measured or estimated from 
databases or expert knowledge. 

This manual introduces the ORYZA_W version 3.0 model, a rice growth simulation 
model that can simulate growth and development of rice in irrigated and rainfed lowland 
and upland environments. Definitions of these environments were given by IRRI (1989): 
(i) Irrigated rice lands are those areas that have assured irrigation for one or more crops 

per year, with some areas served only by supplementary irrigation in the wet season 
(ii) Rainfed lowland rice is grown in bunded fields where water depth does not exceed 

50 cm for more than 10 consecutive days and the fields are inundated for at least 
part of the season. Such fields have no access to an irrigation system but may have 
on-farm rain water conservation facilities. 

(Hi) Upland rice is grown in rainfed unbunded fields with naturally well-drained soils 
and no surface water accumulation. 

In Asia, rainfed and irrigated lowland rice soils are mostly puddled prior to direct-
seeding or transplanting of rice seedlings. Puddling usually comprises one or two 
plowings, one or two harrowings and a final levelling under water-submerged soil 
conditions. Puddling reduces percolation rate, hampers weed growth and provides a soft 
medium for roots. After harvesting of the rice crop, sometimes an upland crop is grown, 
profiting from residual soil water, late season rainfall and sometimes capillary rise from a 
groundwater table. In case of water shortage, drying will cause a puddled soil to transfer 
from a muddy layer to a compact soil, a process that can be called 'soil ripening'. In upland 
rice ecosystems rice is grown in non-puddled soil. 

ORYZA_W 3.0 is programmed under the FORTRAN Simulation Environment (FSE, 
version 2.0) as developed by van Kraalingen (1991). The FSE system consists of a main 



program, weather data and utilities for specific tasks. One of the main features of FSE is 
the distinction of four main tasks that control the order of the calculations in the crop 
growth program (above-ground growth module and below-ground water balance 
modules): ITASK = l for initialization; ITASK = 2 for rate calculations; ITASK = 3 for 
state calculations/updates; and ITASK = 4 to mark the end of the program. For an 
understanding of the tasks of initialization and rate and state calculations, the reader is 
referred to text books on crop growth simulation modelling (e.g. Penning de Vries and van 
Laar, 1982; van Keulen and Wolf, 1986; Leffelaar, 1993). FSE also facilitates in- and 
output data handling. The WEATHER system (van Kraalingen et al., 1991) is used to read 
weather data. Utilities from the library TTUTIL (Rappoldt and van Kraalingen, 1990) are 
extensively used for specific tasks such as reading input data, writing output data, and 
integration of states. 

The crop growth part of ORYZA_W 3.0 (ORYWAT) is based on version 1.3 of the 
ORYZA1 model (Kropff et al., 1994), a model for irrigated rice production, which is 
based on the Wageningen / IRRI models MACROS and SUCROS. ORYZA1 was 
modified to enable the linkage to a soil water balance module and include effects of 
drought on plant growth and renamed to ORYWAT. 

ORYZA_W provides the user with the option to use three different soil-water balance 
modules: LOWBAL, SAHEL or PADDY. PADDY is a universal multiple layer (up to 10) 
model that can be used for both puddled and non-puddled conditions, for naturally free-
draining soils and for soils with impeded drainage. PADDY also takes into account the 
effect of soil cracking on the water balance and can be easily adapted for rotation studies, 
involving fallow periods and upland crops grown after rice, provided a suitable model for 
the upland crop is available. Use of LOWBAL (a single layer model for lowland soils) and 
SAHEL (a three-layer model for upland soils) is restricted to specific environments. 
Details on when LOWBAL and SAHEL can be used are given in Chapter 2. PADDY can 
be used for any soil condition (puddled / non-puddled, free draining / impeded drainage, 
cracking / non-cracking) in irrigated and rainfed rice growing environments. The reader is, 
therefore, encouraged to use PADDY. 

The soil-water balance modules explained here are all one-dimensional. Tuong et al. 
(1994) showed that for rice grown in puddled soil, lateral percolation losses toward and 
into bunds, and the effect of poorly puddled spots may largely determine the water balance 
in areas with a relatively permeable subsoil. More complex numerical models that allow 
for lateral flow into the bunds (e.g. Walker and Rushton, 1984) can be used to simulate 
these processes in a detailed way. One-dimensional models can still be used, provided a 
constant percolation rate is assumed, incorporating both vertical and lateral percolation 
losses (Bouman et al., 1994; Wopereis et al., 1994). 

The structure of ORYZA_W 3.0 under the FSE system is schematically indicated in 
Figure 1.1. The ITASK succession, the reading of weather data, and the handling of input 
and output files are performed by the FSE system, using the libraries TTUTIL.LIB and 
WEATHER.LIB. This information is passed on to the subroutine MODELS. This 
subroutine calls ORYWAT, which is the actual above-ground growth module, and a 



number of crop growth subroutines in the library ORYWSUB.LIB. The three soil-water 

balance modules (LOWBAL for lowland soils, SAHEL for upland soils and PADDY for 

both lowland and upland soils) are included in the library SOILBAL.LIB. 

The switch SWIWLP (set in the TIMER.DAT input file) is used to select the production 

environment and to combine ORYWAT with either LOWBAL, PADDY or SAHEL: 

SWIWLP = 0 for irrigated lowland; SWIWLP = l for rainfed lowland using LOWBAL; 

SWIWLP = 2 for rainfed upland using SAHEL and SWIWLP = 3 for irrigated or rainfed 

lowland or upland rice or rice-upland crop rotations using PADDY. The modules 

ORYWAT, LOWBAL, PADDY and SAHEL are the core of the actual growth model 

ORYZA_W. 

In Chapter 2, differences between the three soil-water balance modules are explained. 

SAHEL, LOWBAL and PADDY are then introduced separately in Chapters 3, 4 and 5 

respectively. Three experiments that were conducted at IRRI to investigate drought stress 

responses of lowland rice for model development are briefly discussed in Chapter 6. The 

results of these experiments were the basis for the changes made in ORYZA1, version 1.3. 
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Program 
MAIN 

FSE 
ITASK = 1 
ITASK = 2 
ITASK = 3 
ITASK = 4 

ORYZA W 

Models [oRYWAT 

« ^ — 

- « — 

- * — 

" * - - -
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SUBDD,SUBBCD, 
PHENOL, SUBRTS, 
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TOTASP, ASSIMP 

SWIWLP = 1 

SWIWLP = 2 
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SOILBAL.LIB 
Subroutines: 

-LOWBAL 

-SAHEL 

PADDY 

Figure 1.1 Main components of the rice growth model ORYZAJW 3.0. 

The resulting rainfed rice growth module, ORYWAT is presented in Chapter 7. In Chapter 

8, calculation procedures for potential and actual canopy transpiration and soil evaporation 

are given. In Chapter 9 editing and running of ORYZA_W is discussed. A complete 

listing of the model with input and output files is given in Appendices 1-5 . 



2 Choosing between the soil-water balance modules PADDY, 
LOWBAL and SAHEL 

The ORYZA_W model contains three soil-water balance modules: PADDY, LOWBAL 
and SAHEL. PADDY is a universal soil-water balance module and can be used in any rice 
growing environment. Use of LOWBAL is restricted to lowland rice and use of SAHEL to 
upland rice ecosystems. Moreover, a number of simplifications have been introduced in 
LOWBAL and SAHEL that may make these models unsuitable under certain growing 
conditions. This Chapter explains such restrictions and highlights differences between 
PADDY and SAHEL for upland rice and PADDY and LOWBAL for lowland rice. 
Detailed descriptions of the three modules follow in Chapters 3, 4 and 5. 

2.1 Using PADDY or SAHEL in the upland rice environment 

IRRI (1988) defined the upland rice ecosystem as follows: 'Upland rice is grown in 
rainfed bunded or unbunded fields with naturally well-drained soils and no surface water 
accumulation'. If no layer is restricting water flow, modeling of water flow becomes 
relatively simple. An important soil characteristic is the soil water retention curve, relating 
soil pressure potential h to volumetric water content 9 (m3 m~3). The root zone can be 
seen as a 'box' which contains water within two predefined critical soil pressure potentials 
h: field capacity (h = -10 kPa; pF = log(U0*/zl) = 2) and wilting point (h = -1500 kPa; pF 
= 4.2). When water is applied to the soil, it is assumed to be rapidly redistributed if the 
water content is above field capacity. The excess water flows downward. The crop can 
extract water up to the wilting point; water held at lower pressure heads is unavailable for 
plants. The soil-water balance module SAHEL is based on these simple principles. 
PADDY works in a similar way if a switch in the soil data file indicates that the soil 
profile is freely draining (SWITFD = l). Soils in upland rice environments are always non-
puddled. A switch in the soil data input file for PADDY indicates puddled or non-puddled 
conditions: SWITPD = 0 (non-puddled) and SWITPD = l (puddled). For upland soils 
swiTPD is, therefore, always equal to 0. 

Figure 2.1 schematically illustrates the processes of the water balance that need to be 
considered in freely draining upland environments. Soils are typically of sandy to loamy 
texture and have a deep ground water table (> 1 m below the root zone). This type of soil 
has a high saturated hydraulic conductivity (around 0.1 m d_1 or more), permitting fast 
downward water transport, so that saturation of soil layers does not occur. The water 
balance processes considered are infiltration, percolation, evaporation, transpiration and 
downward distribution. Upward water flow (capillary rise) is disregarded. Lateral in- or 
outflow of water is always fully negligible in these situations. In SAHEL, the soil profile 
is divided into three layers and each is considered to be homogeneous. Thickness and 
physical characteristics of each layer are model inputs. The upper layer should be 0.1 - 0.2 
m thick, the second 0.2 - 0.4 m, and the third 0.4 - 1.0 m. Their sum should slightly exceed 
the maximum rooted depth. In PADDY, a maximum of 10 layers may be defined without 
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Figure 2.1 Vertical soil profile and components of the water balance that are considered in 
the module SAHEL and the module PADDY for freely draining rainfed upland 
environments. PADDY can be used for such environments if a switch (SWITFD) is set to 1 
in the soil data input file. D = surface drainage, E = evaporation, P = percolation, R = 
rainfall, T = transpiration. 

restrictions to their thickness. The (vertical) inflow and outflow of water in each layer is 
simulated on a daily basis. Inflow into the first layer is from rainfall. Field capacity is the 
highest water content that a layer can obtain. The amount of water that can not be stored in 
one layer, drains into the next layer or out of the profile. Water is extracted from the layers 
by evaporation and water uptake by the roots (transpiration). Soil evaporation loss in 
SAHEL is divided over the three layers. In PADDY, evaporation losses occur in the top 
layer only. This may result in slight differences in model outcome if all input parameters 
for both models are equal. 

Use of SAHEL for soils with impeded internal drainage or in the presence of a shallow 
groundwater table is discouraged. For such conditions PADDY can be used. If the soil 
profile is not freely draining, the switch SWITFD should be set to 0 in the soil data input 
file. In doing so, the data needs of PADDY increase: knowledge of the saturated hydraulic 
conductivity of each layer is now needed. Water is redistributed as follows: incoming 
rainfall is partitioned by calculating gain and loss terms for all compartments, starting with 



the top compartment. Every compartment can be filled up to field capacity. Any excess 
water is drained at a maximum rate equal to the saturated hydraulic conductivity of the 
compartment. If this conductivity is too low, excess water will fill up the soil 
compartment itself, and may even be distributed upward, reaching compartments at 
shallower depth, creating a 'perched' water table. 

In case of a shallow groundwater table, capillary rise to the root zone may be an 
important water resource for the plant. SAHEL ignores capillary rise. In PADDY, a switch 
swiTGW indicates if groundwater is present in the profile. If SWITGW = 1, groundwater 
depths are specified by the user in the soil data input file. If SWITGW = 2, they are 
calculated from downward fluxes and two empirical site-specific coefficients. If SWITGW = 
o, groundwater is assumed to be absent in the profile. Capillary rise is calculated using a 
'window structure', i.e. flow due to capillary rise between compartments is not simulated. 
To calculate capillary rise, knowledge of the hydraulic conductivity curve of the soil 
compartments is needed. 

An overview of data needs and restrictions for use of PADDY and SAHEL in rainfed 
upland environments is given in Table 2.1. 

2.2 Using PADDY or LOWBAL in the lowland rice environment 

In Asia, contributing 90 - 95% of world production (Pathak and Gomez, 1991), rice in 
lowland environments is mostly grown under flooded conditions. To achieve this, fields 
are bunded and soils are puddled by plowing, followed by harrowing and levelling at 
water-saturated conditions. Puddling leads to destruction of soil aggregates and macropore 
volume and to a large increase in micropore space (Moormann and van Breemen, 1978). 
The vertical profile of an irrigated puddled rice soil can schematically be described by a 
layer of ponded water, a muddy layer with little resistance to water flow, a 'plow sole' 
with large resistance to water flow, and the non-puddled subsoil (Wopereis et al., 1992), 
as shown in Figure 2.2. The water balance of a puddled rice field is determined by the 
following components (Figure 2.2): irrigation supply, rainfall, evaporation, transpiration, 
seepage, percolation and capillary rise. Rainfall in excess of bund height leaves the system 
as surface runoff. This surface runoff can be an input for a neighbouring field, but in a 
sequence of fields, neighbouring fields will pass-on the surface runoff until it is lost in a 
drain, creek or ditch. Transpiration by the rice crop withdraws water from the puddled 
layer (which is replenished with ponded water) and from the non-puddled subsoil, if rice 
roots are growing sufficiently deep. 

Percolation is the vertical movement of water beyond the root zone to the water table, 
while seepage is the lateral movement of subsurface water (IRRI, 1965). In practice, the 
two are often inseparable (Wickham and Singh, 1978). The amount of seepage is 
determined by piezometer head differences between fields. The difference in piezometer 
head is large near drains, ditches or creeks and in terraced rice-fields with considerable 
difference in elevation. Seepage loss from rice terraces in the middle of a toposequence to 
lower lying fields may be offset by incoming seepage from higher fields. Top-end terraces 

7 



Table 2.1. Soil data needs for modeling of the soil-water balance in upland rice growing 

environments. Switches for PADDY (i.e. SWITPD, SWITFD, SWITGW) are set in the soil data 

input file. swiTPD = 0: not puddled; SWITPD = l : puddled; SWITFD = l: freely draining; 

SWITFD = o: impeded drainage; SWITGW = o: groundwater table not in profile; SWITGW = 

l: groundwater in profile, depths specified by user; SWITGW = 2: groundwater in profile, 

depths calculated. 

1. Non-puddled, freely draining soils with deep groundwater table 

Model(s): SAHEL or PADDY (SWITPD = o, SWITFD = l , SWITGW = o) 

Data needs: - thickness of the soil layers 

- water retention characteristics (i.e. soil water content as a function of 

soil-water pressure potential h) for each layer 

- initial soil-water content per layer 

- fraction runoff 

- maximum rootable depth 

2. Non-puddled, freely draining soils with shallow groundwater table 

Model(s): PADDY (SWITPD = o, SWITFD = l , SWITGW = l or SWITGW = 2) 

Data needs: As 1, but with: 

- hydraulic conductivity characteristics (i.e. hydraulic conductivity & as a 

function of soil-water pressure potential h, including saturated hydraulic 

conductivity) for each layer 

- groundwater table depth (if SWITGW = l ) 

- coefficients for calculation groundwater table depth (if SWITGW = 2) 

3. Non-puddled soils with impeded drainage and deep groundwater table 

Model(s): PADDY (SWITPD = o, SWITFD = o, SWITGW = o) 

Data needs: As 1, but with: 

- saturated hydraulic conductivity for each layer 

4. Non-puddled soils with impeded drainage and shallow groundwater table 

Model(s): PADDY (SWITPD = o, SWITFD = o, SWITGW = l or SWITGW = 2) 

Data needs: As 2 

will experience net seepage-loss; bottom-end terraces net seepage gain. Another possible 

water loss is leakage through the bunds: water moving laterally into the bunds and then 

down to the water table (Tuong et al., 1994). Here, under-bund flow losses are not dealt 

with separately but are considered part of the seepage component. 

The amount of seepage is affected by the soil-physical characteristics of the field and 

bunds, the state of maintenance, the relative length of the bunds compared with the surface 



area of the field, and by the depth of the water table in the field and in the drain, ditch or 
creek (Wickham and Singh, 1978). The percolation rate of puddled rice fields is affected 
by a variety of soil factors (Wickham and Singh, 1978): structure, texture, bulk density, 
mineralogy, organic matter content and concentration of salts in soil solution. In general, a 
heavy texture, montmorillonitic clay mineralogy, high sodium content of irrigation water, 
and a high bulk density are favorable for effective puddling and low percolation rates. The 
percolation rate is further influenced by the water regime in and around the field. 
Increased depths of ponded water increase percolation due to the larger gradient in 
hydraulic head imposed (Ferguson, 1970; Sanchez, 1973; Wickham and Singh, 1978). In a 
field survey in the Philippines, Kampen (1970) found, for the same reason, that 
percolation rates were larger in fields with a deep water table (> 2 m depth) than in fields 
with a shallow water table (0.5 - 2 m). 

A general representation of a puddled rice field water balance is: 

dW = I + R + C-E-T-S-P-D (2.1) 

in which (all units in mm d_1): 
dW = change in stored water 
I = irrigation supply 
R = rainfall 
C = capillary rise 
E = evaporation 
T = transpiration 
S = seepage 
P = percolation 
D = surface drainage (bund overflow) 

In LOWB AL, Eqn 2.1 is simplified. Capillary rise is neglected. It is assumed that, in most 
situations, there is no or little upward flow of water through the plow sole against the 
water pressure in the puddled layer. The upward flow that might be present is accounted 
for by using a net, field-average seepage & percolation rate (see below). Secondly, the 
percolation rate P is assumed to be independent of water regime (ponded water depth, 
moisture content, ground water table). Sensitivity analyses using the detailed differential 
soil water balance model S AW AH (ten Berge et al., 1992) showed that this assumption is 
valid for most lowland situations except for a poorly puddled topsoil overlying a relatively 
permeable subsoil (Bouman et al., 1994). The third simplification was to combine seepage 
S and percolation F in a field-average constant SP. Seepage and percolation are difficult to 
separate in the field, and their combination into one variable is justified by the fact that 
both are governed by the same hydraulic principles. The constant SP can easily be 
determined in the field from sloping gauge readings (corrected for R, E and T). Using 
field-average SP rates, problems with spatial variation in location-specific S and P in the 
field (such as measured using double ring-infiltrometers) are overcome. P measured near a 
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Figure 2.2 Vertical profile of puddled soil in lowland environment. D = surface drainage, 
E = evaporation, I = irrigation, P = percolation, R = rainfall, S = seepage, T = transpiration, 
C = capillary rise from the groundwater table. 

bund is often much higher than P measured in the middle of the field, as a result of poorly 
puddling. Moreover, the SP rate measured with sloping gauges is a net value integrating 
water losses through vertical and lateral percolation (under bund flow) and lateral seepage 
to neighbouring fields, and water gains through capillary rise and lateral inflow (seepage) 
from neighbouring fields. The last simplification was to assume that roots do not penetrate 
the plow sole, and that there is no water extraction from the non-puddled subsoil. 
The simplified model of the water balance used in LOWBAL becomes: 

dW = I + R-E- T-SP-D (2.2) 

/, R, E and T are input variables, and dW and D are output variables of the module. R is 
measured at meteorological stations, I is externally controlled, and E and T are calculated 
from meteorological conditions (in the subroutines ETPOT and DSTRES of ORYZA_W; 
see Chapters 7 and 8). SP is measured in the field, or estimated from soil texture data, 
using a suitable 'pedotransfer function' (Bouma et al., 1993; Wopereis et al., 1992). 

In irrigated situations, and generally in the beginning of the season under rainfed 
conditions, a layer of ponded water is present in the field. Direct water loss from this 
ponded water layer is through evaporation, E. Water losses from the puddled layer by 
transpiration, T, and seepage & percolation, SP, are replenished using this ponded water. 

In fully irrigated situations, irrigation is usually applied if the depth of the ponded 

10 
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Figure 2.3 Vertical profiles of a puddled soil in a rainfed lowland environment. In (a), 
cracks have not yet extended through the plow sole; in (b) cracks have penetrated into the 
subsoil. E = evaporation, P = percolation, R = rainfall, S = seepage, C = capillary rise and 
T = transpiration. 
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Table 2.2. Soil data needs for modeling of the soil-water balance in lowland rice growing 

environments. Switches for PADDY (i.e. SWITPD, SWITFD, SWITGW) are set in the soil data 

input file, SWITPD = 0: not puddled; SWITPD = 1: puddled; SWITFD = l : freely draining; 

SWITFD = o: impeded drainage; SWITGW = o: groundwater table not in profile; 

SWITGW = l : groundwater in profile, depths specified by user; SWITGW = 2: groundwater 

in profile, depths calculated. 

I. Puddled soils with hard plow pan impenetrable for roots and deep groundwater table 

Model(s): LOWBAL or PADDY (SWITPD = 1, SWITFD = 0, SWITGW = 0) 

Data needs: - bund height 

- initial depth of ponded water 

- thickness of soil layer(s) 

- saturated volumetric water content for both puddled and shrunken soil 

- water retention characteristics (i.e. soil water content as a function of 

soil-water pressure potential h) for each layer of the shrunken soil 

- initial soil-water content per layer 

- seepage & percolation rate 

- deep drainage rate subsoil (LOWBAL) 

- saturated hydraulic conductivity for each layer (PADDY) 

- water content or pressure potential at which cracks break through the 

plow sole 

- maximum rootable depth (PADDY) 

2. All other puddled soils 

Model(s): PADDY (SWITPD = 1, SWITFD = 0, SWITGW = 0,1 or 2) 

Data needs: As 1 but in case of a shallow groundwater table (SWITGW = 1 or 2): 

- hydraulic conductivity characteristics (i.e. hydraulic conductivity A: as a 

function of soil-water pressure potential h, including saturated 

hydraulic conductivity) for each layer 

- groundwater table depth (if SWITGW = 1) 

- coefficients for calculation groundwater table depth (if SWITGW = 2) 

water layer reaches a minimum value (close to 0). The amount of water in the puddled 

layer remains, therefore, constant throughout the growing season in irrigated systems. 

Farmers usually add about 5-10 cm of water during every application. 

In rainfed lowland situations, the layer of ponded water disappears if rainfall is not 

sufficient to meet E, T and SP losses. Without ponded water, there is no hydraulic pressure 
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to 'force' water through the plow sole and the SP rate is, therefore, zero. Further water loss 
through E and T, will cause the muddy puddled layer to dry out. The 'suspended' soil 
particles settle and the puddled layer shrinks. If drying-out of the puddled layer continues, 
cracks may develop that will broaden and widen in time (Figure 2.3a). Eventually, the 
cracks may extend through the puddled layer and plow sole into the subsoil (Figure 2.3b). 
Depending on the drainage capacity of the subsoil, water from rainfall may drain 
immediately through the cracks in the subsoil without replenishing the (rooted) puddled 
layer. In heavy clay soils with a low drainage capacity, rainfall water can still get ponded 
on the surface, but in case of a relatively permeable subsoil, rainfall will drain quickly. 
The capacity for shrinkage and cracking are soil properties that mainly depend on texture 
and degree of puddling; the degree of shrinkage and cracking are determined by water 
content or pressure head in the puddled layer. Shrinking and cracking are irreversible, i.e. 
the puddled layer will not resume its earlier properties (until renewed puddling in the next 
season). 

The model LOWBAL was developed based on Eqn 2.2. For convenience, all depths of 
soil layers and amounts of water are expressed in mm, and all rates in mm d~'. The surface 
of the puddled layer is the reference level from which the depth of ponded water and the 
height of the bunds are measured. Another simplification in LOWBAL is the use of only 
one soil layer. This soil layer comprises both the muddy layer and the plow sole shown in 
Figures 2.2 and 2.3. The non-puddled subsoil is represented by a drainage rate. If the 
subsoil is permeable, this value is set to a high value and vice versa. More details on 
LOWBAL are given in Chapter 4. 

In PADDY, the number of layers is not restricted to 1 as in LOWBAL. Instead a 
maximum of 10 (NL) soil compartments may be defined, and the number of soil 
compartments within the puddled topsoil (NLPUD, including the plow sole) can be varied. 
For example, NL and NLPUD can be set to 8 and 3 respectively, i.e. a soil profile with three 
puddled soil compartments (of which the third represents the plow sole) and 5 
compartments in the non-puddled subsoil. Puddled soils are not freely draining. If 
PADDY is used for puddled soils (SWITPD = l), switch SWITFD should be set to 0. If 
swiTPD = l and SWITFD = l, the program will stop and an error message will occur. 

Capillary rise can be included in the water balance, but this will require knowledge of 
the hydraulic conductivity characteristics of each soil compartment. Such hydraulic 
conductivity characteristics need to be specified in parameterized format, using either van 
Genuchten parameters (van Genuchten, 1980; van Genuchten et al., 1991) or a simple 
power function. Van Genuchten's equations can be written as follows: 

S = (0 - 9r) / (9S - 9r) = [1 + \ah\"Ym (2.3) 

and 

k(S) = ksS
l[l - (1 - Sl/m)m]2 (2.4) 
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The parameter S is the degree of saturation; 0r (-) and 0S (-) refer to the residual and 

saturated values of the volumetric water content 0 (-); ks is the saturated hydraulic 

conductivity (cm d_1); a (cm-1), n (-), m (-), and / (-) are parameters which determine the 

shape of the functions and m = 1 - \ln. Programs for parameterization of soil hydraulic 

properties using van Genuchten equations can be obtained via van Genuchten et al. (1991) 

and Wopereis et al. (1994). A power function can be written as: 

k{h) = ks \h\n (2.5) 

where ks is the saturated hydraulic conductivity (cm d_1); h is the pressure potential (kPa), 

and n is a soil-specific dimensionless constant. The switch SWITKH, defined in the soil data 

input file is used to define the parameterization method used, i.e. SWITKH = l for van 

Genuchten functions and SWITKH = 2 for power functions. 

Wopereis et al. (1992) showed that the percolation rate through a puddled soil is 

affected by both the characteristics of the non-puddled subsoil, through its hydraulic 

conductivity curve, and by the physical properties (i.e. hydraulic resistance) of the least 

permeable layer in the puddled topsoil, i.e. the plow sole. Via the switch SWITVP, defined 

in the soil data input file, PADDY provides two options for dealing with percolation rates. 

A constant percolation and seepage rate can be used (SWITVP = o) or percolation rates can 

be derived using an iterative Newton-Raphson procedure (Wolfram, 1991) from hydraulic 

conductivity characteristics of the plow sole and the non-puddled subsoil (SWITVP = i ) . 

If a puddled soil dries out, its volume shrinks, cracks appear, and a 'soil ripening' 

process occurs, gradually changing the muddy topsoil into real soil. PADDY provides a 

subroutine SHRINK to simulate this process. It is assumed that soil shrinkage is 

irreversible, i.e. the total porosity of a dried, previously puddled soil layer cannot increase 

in case of rewetting. 
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3 SAHEL: three layer soil-water balance module for upland rice 

The module SAHEL (Soils in semi-Arid Habitats that Easily Leach) is a three layer soil-
water balance module, developed for non-puddled freely draining upland rice soils with a 
deep groundwater table. Capillary rise is ignored. For any other soil conditions PADDY 
should be used (see Chapter 5). For more details on when to use SAHEL see Chapter 2. 

The soil water balance model SAHEL is based on models described by van Keulen 
(1975), Stroosnijder (1982) and Jansen and Gosseye (1986). The version of SAHEL used 
in ORYZA_W is described by Penning de Vries et al. (1989; pp. 155-160) and by van 
Kraalingen and Penning de Vries (1990). A complete listing of the model, list of variable 
names used and the soil data file needed are included in Appendix 2. Compared to the 
version of SAHEL as described by Penning de Vries et al. (1989) and by van Kraalingen 
and Penning de Vries (1990), the initialization of the water content of the soil is changed 
in the ORYZA_W version of SAHEL. The initial water content WCLI of each layer is not 
read from input file, but calculated as initial water content fraction FWCLI times the field 
capacity WCFC (the same way as it was defined from the water content at wilting point, 
wcwp, in the 'original' version of SAHEL, by van Keulen, 1975). 

WCLI = FWCLI * WCFC 

FWCLI is the initial water content expressed as a fraction of the water content at field 

capacity, and is read from input file. 

3.1 Communicat ion wi th the crop growth model O R Y W A T 

To pass-on to O R Y W A T : 

NL = number of layers (-) 

TKL = array of thicknesses of soil layers (m) 

TKLT = depth of soil (m) 

ZRTMS = max imum rooting depth of soil (m) 

WCWP = array of water contents at wilting point ( cm 3 c m - 3 ) 

WCFC = array of water contents at field capacity ( cm 3 c m - 3 ) 

wcsT = array of water contents at saturation ( cm 3 c m - 3 ) 

WCLQT = array of actual water contents ( cm 3 c m - 3 ) 

WLO = amount of ponded water (mm) 

To get from ORYWAT: 

Evsc = potential evaporation rate (mm d_1) 
TRWL = array of actual t ranspirat ion rates per layer ( m m d _ 1 ) 
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3.2 Model data needs 

For SAHEL, the following input parameters are read from the soil data file: 

TKL ( 1-3 ) = thicknesses of the soil layers (m) 

WCST ( 1-3 ) = volumetric water content at saturation for each layer (-) 

WCFC ( 1-3 ) = volumetric water content at field capacity (pF 2.0) for each layer (-) 

wcwp ( 1 - 3 ) = volumetric water content at wilting point (pF 4.2) for each layer (-) 

WCAD ( 1-3 ) = volumetric water content at air-dryness (pF 7) for each layer (-) 

FWCLi (1 -3 ) = initial volumetric water content as fraction of WCFC for each layer (-) 

FRNOF = fraction runoff (-) 

ZRTMS = maximum rootable depth (m) 

EES = evaporation extinction coefficient (-) 

3.3 Model validation 

The SAHEL model described here was validated with a dataset presented by Wopereis et 
al. (1993a). The water content of the 0 - 40 cm topsoil of a non-puddled dry-seeded rice 
field was simulated. Good agreement between measured and simulated data were obtained 
(Figure 3.1). A description of the source code of SAHEL is given in Appendix 2. 

Water content in 0-0.4 m soil layer (m) 
0.25 

0.20 

0.15 

0.10 

0.05 

-

" 

-

• **v 

1987 
i i 

1988 

• 

•V 

i 

^ ^ ^ • 

• Observed 
— SAHEL 

1 1 1 

• • 
• 

• i 

340 350 360 370 380 390 400 410 420 430 440 450 
Calendar day 

Figure 3.1 Simulated and observed soil water content in the 0-0.4 m soil layer of a dry-
seeded rice field in the Philippines, non-monsoon season 1987-1988. Simulation were 
conducted with the SAHEL soil water balance module. 
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4 LOWBAL: one layer soil-water balance module for lowland rice 

The module LOWBAL is a one-layer soil-water balance module, developed for puddled 

lowland rice soils with a plow pan impenetrable for roots and for soils with a deep 

groundwater table. Capillary rise is ignored. For any other soil conditions PADDY should 

be used (see Chapter 5). For more details on when to use LOWBAL see Chapter 2. The 

source code of LOWBAL is explained in detail below. 

4.1 Percolation and seepage 

Without cracks, the seepage and percolation rate, SP, gets the value of SPSOIL, which is 

read from the soil data input file. In case the ponded water depth (WLO) is not adequate, SP 

is set equal to WLO/DELT: 

* Uncracked situation 

IF (.NOT. CRACK) THEN 

* Percolation only when ponded water is present 

IF (WLO .LE. 0) THEN 

SP = 0. 

ELSE 

IF ((WLO/DELT) -GE. SPSOIL) THEN 

SP = SPSOIL 

ELSE 

SP = WLO/DELT 

END IF 

END IF 

END IF 

When there is no ponded water, the soil dries out and cracks may develop. In LOWBAL, 

it is assumed that cracks will penetrate through the plow sole if the water content of the 

shrunken puddled layer drops below a critical value, WCCRAC. The value of WCCRAC 

depends on the soil type and is read from an input file. If the soil does not crack (or if 

cracks do not extend through the plow sole), WCCRAC should be set to 0 in the soil input 

file (Appendix 3). Cracking only affects the seepage & percolation rate, SP. If the water 

content in the shrunken puddled layer, WCLP, drops below WCCRAC, the seepage & 

percolation rate of the soil is determined by the drainage rate of the subsoil, DDR. Two 

situations are distinguished: The amount of ponded water and rainfall on a certain day is 

smaller than the amount of water that can be drained through the subsoil (DDR) (1), or the 

amount of ponded water and rainfall on a certain day is larger than DDR (2). 

Water loss through seepage & percolation can never be larger than the combined 

amounts of ponded water and rainfall. If there is no ponded water and no rain, there is no 

seepage & percolation: SP = 0. If there is no ponded water, but there is rainfall that day, 
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SP is equal to the amount of rainfall minus the amount of water that is 'intercepted' and 
evaporated from the surface: 

* Cracked situation 

IF (CRACK) THEN 

IF ((RAIN+WLO) .LE. DDR) THEN 

IF (WLO .LE. 0. .AND. RAIN .EQ. 0.) THEN 

SP= 0. 

ELSE IF (WLO.LE.0. .AND. RAIN.GT.0.) THEN 

SP = MAX(RAIN-EVSW, 0.) 

If there is some ponded water, both the amount of ponded water and rainfall are lost by 

seepage & percolation. 

ELSE 

SP = WLO + RAIN 

END IF 

Seepage & percolation is limited to the maximum value DDR (the surplus of WLO+RAIN 

fills-up the shrunken puddled layer and/or results in ponded water). 

ELSE 

SP = DDR 

END I F 

Note that root growth through the cracks into the subsoil, to 'explore' for water, is not 

considered in LOWBAL. 

4.2 Effects of shrinkage on redistribution of water 

At the start of the growing season, a layer of ponded water, WLO, may be present on top of 

the puddled layer. The amount of water in the puddled layer itself is calculated by 

comparing the initial thickness of the puddled layer, just after puddling, with its thickness 

when it is completely dried-out. The initial thickness of the puddled layer is TKLPI. When 

the puddled layer dries-out, the layer will gradually shrink to a minimum value TKLPM = 

TKLPI*SHRINK. The factor SHRINK is soil specific and read from an input file (Appendix 

3). After complete shrinkage, it is assumed here that the shrunken puddled layer is 

saturated with water (i.e. its water content is WCSTP). The amount of water WLP in the 

original puddled layer can thus be calculated as the amount of water that can be stored in 

the puddled soil after complete shrinkage, i.e. TKLPM*WCST, plus the difference in height 

between the initial thickness, TKLPI and the final thickness TKLPM: 

WLP = (TKLPM*WCSTP) + (TKLPI-TKLPM) 
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Figure 4.1 Principles of soil shrinkage modelling in LOWBAL. TKPLI = initial thickness 

puddled layer; TKPLM = thickness puddled layer after complete shrinkage. The difference 

in height between TKPLI and TKPLM is referred to as 'muddy suspension layer'. 

In fact it is assumed here that a freshly puddled layer is composed of a 'muddy 

suspension' with thickness TKLPI-TKLPM and a saturated soil layer of thickness TKLPM 

(Figure 4.1). In reality, soil particles will settle upon drying, and the muddy puddled layer 

will gradually turn into 'real soil', a process that is called soil ripening (Wopereis, 1993). 

The water content of the puddled layer, WCLP, is calculated by dividing the amount of 

water in the puddled layer by its thickness, TKLP: 

WCLP = WLP/TKLP 

LOWBAL keeps track of the amount of water in both the ponded water layer and the 

puddled layer. Two situations are considered: ponded water is either present or not. The 

source code of LOWBAL is given in Appendix 3 and is discussed below, using the same 

numbering as in the source code listing. 

Ponded water 

Water loss from the ponded water layer is by evaporation, EVSW, transpiration, TRWP, and 

seepage & percolation, SP (SP = water flux out of puddled layer). Note that in fact, TRWP 

and SP are withdrawn from the puddled layer which is immediately replenished from the 

layer of ponded water, SP is set to the minimum of the (measured) rate allowed by the soil, 

spsoiL, and the thickness of the ponded water layer that can percolate that day, WLO/DELT. 

Water input in the ponded layer is by rainfall, RAIN, and irrigation, R I I . The depth of the 

ponded water layer, WLO, is the integral of the previous depth and the above rates. 
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* Integration section 

* = = = = = = =: = = = = = = = = = = = = = = = = = = = = = = = = ̂  = = = = = = = = = = = = = = = = = = = = = = = = — = = =* 
ELSE IF (ITASK .EQ. 3) THEN 

* Surface drainage is standard zero 

RUNOF =0. 

* 1. Situation with ponded water 

IF (WLO .GT. 0) THEN 

WLO = INTGRL(WL0, (RAIN+RII+RIDUM-EVSW-TRWP-SP), DELT) 

If the new WLO calculated above is larger than the bund height, WLOMX, bund overflow is 

calculated as surface runoff, RUNOF, and WLO is reset to bund height. 

* 1.1 bund overflow 

IF (WLO .GT. WLOMX) THEN 

RUNOF = WLO - WLOMX 

WLO = WLOMX 

If the new WLO is negative (i.e. there is a shortage of ponded water), a corresponding 

amount of water is withdrawn from the puddled layer and WLO is reset to 0. Again, two 

situations can be distinguished: the puddled layer has not yet shrunk to its minimum 

thickness (i.e. 1 .2 : actual thickness, TKLP, is larger than minimum thickness, TKLPM), and 

the puddled layer has shrunk completely (i.e. 1 . 3 : TKLP = TKLPM). 

If the puddled layer has not yet reached its minimum thickness, the water that is 

withdrawn from this puddled layer causes it to shrink further. Shrinkage can either be 

partial ( 1 . 2 .1 ) or complete ( 1 . 2 . 2 ) . 

If the amount of water withdrawn (i.e. WLO, negative value) is not large enough to cause 

complete shrinkage, TKLP is reduced with the amount of lost water. The reduction of TKLP 

causes the lowering of the surface of the puddled layer, and hence an increase in bund 

height (with respect to the surface level). The amount of water in the puddled layer can 

still be calculated as the sum of water that can be stored in a completely shrunken layer 

plus the muddy suspension layer on top, with thickness TKLP-TKLPM: 

* 1.2 no more ponded water; soil not yet completely shrunk 

ELSE IF (WLO.LT.0 .AND. TKLP.GT.TKLPM) THEN 

* 1.2.1 further shrinkage of puddled layer 

IF (WLO .GE. (TKLPM-TKLP)) THEN 

WLOMX = WLOMX - WLO 

TKLP = TKLP + WLO 

WLP = (WCSTP*TKLPM)+(TKLP-TKLPM) 

WCLP = WLP/TKLP 

WLO = 0. 
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If the amount of water withdrawn (i.e. WLO, negative value) is large enough to cause 
complete shrinkage, TKLP shrinks to its minimum value TKLPM and further water loss is 
taken from the water content of the shrunken soil: 
* 1.2.2 complete shrinkage of puddled layer 

ELSE IF (WLO .LT. (TKLPM-TKLP)) THEN 

WLOMX = (WLOMXI+TKLPI)-TKLPM 

TKLP = TKLPM 

WLP = (WCSTP*TKLP)+(WLO-(TKLPM-TKLP)) 

WCLP = WLP/TKLP 

WLO = 0. 

END IF 

When the puddled layer has already shrunk to its minimum value, the amount of water 
that is drawn from this puddled layer (i.e. WLO, negative value) is taken will affect its water 
content: 
* 1.3 no more ponded water; soil already completely shrunken 

ELSE IF (WLO.LT.0. .AND. TKLP.EQ.TKLPM) THEN 

WLP = WLP + WLO 

WCLP = WLP/TKLP 

WLO = 0. 

END IF 

No ponded water 
Water loss from the puddled layer is by evaporation from its surface, EVSW, and by 
transpiration, TRWP. Seepage & percolation, SP, is zero. Water input is by rainfall, RAIN, 
and irrigation, R I I . The amount of water in the puddled layer is the integral of the 
previous amount and the above rates: 
* 2. Situation with no ponded water 

ELSE IF (WLO .LE. 0) THEN 

WLP = INTGRL (WLP, (RAIN+RII+RIDUM-EVSW-TRWP-SP), DELT) 

Two situations can be considered next: the water storage capacity of the completely 
shrunken puddled layer is either adequate (2 .1) or inadequate (2 .2): i.e. WLP is either 
smaller or larger than (TKLPM*WCSTP). 

In the completely shrunken situation, the thickness of the puddled layer is minimal, and 
bund height has reached its maximum value. Upon further drying, its water content will 
drop below saturation and is calculated by dividing the amount of water stored by the 
thickness of the completely shrunken layer. 
* 2.1 completely shrunken puddled layer 

IF (WLP .LE. (TKLPM*WCSTP)) THEN 
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TKLP = TKLPM 

WLOMX = (WLOMXI+TKLPI)-TKLP 

WCLP = WLP/TKLP 

WLO = O. 

The amount of water in the puddled layer consists of the amount of water that could be 

stored in case of complete shrinkage, TKLPM*WCSTP, plus the muddy suspension layer on 

top, with thickness TKLP-TKLPM. 

If the new amount WLP is larger than the old amount, (TKLPM*WCSTP) + (TKLP-TKLPM), a 

new layer of ponded water is formed on the puddled layer and WLP is reset to its old value 

(since the shrinkage of the puddled layer is irreversible, TKLP can not increase). The 

thickness of the new ponded water layer is equal to the new amount of water minus the old 

amount, with a maximum determined by the bund height. 

* 2.2 more water than maximum in completely shrunken layer 

ELSE IF (WLP .GT. (TKLPM*WCSTP)) THEN 

* 2.2.1 formation of ponded water layer 

IF (WLP .GE. ((TKLPM*WCSTP)+(TKLP-TKLPM))) THEN 

WLOD = WLP - ((TKLPM*WCSTP)+(TKLP-TKLPM)) 

IF (WLOD .GT. WLOMX) THEN 

WLO = WLOMX 

RUNOF = WLOD - WLOMX 

ELSE 

WLO = WLOD 

END IF 

WLP = (TKLPM*WCSTP)+(TKLP-TKLPM) 

WCLP = WLP/TKLP 

If the new amount WLP is smaller than the old amount, (TKLPM*WCSTP) + (TKLP-TKLPM), 

further shrinkage of the puddled layer will occur. Water is taken from the muddy 

suspension layer, i.e. TKLP will decrease and bund height WLOMX will increase. 

* 2.2.2 further shrinkage of puddled layer 

ELSE IF (WLP .LT. ((TKLPM*WCSTP)+(TKLP-TKLPM))) THEN 

TKLP = WLP-(TKLPM*WCSTP)+TKLPM 

WLOMX = (WLOMXI+TKLPI)-TKLP 

WCLP = WLP/TKLP 

WLO = 0. 

END IF 
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4.3 Irrigation 

In rainfed lowland (switch SWIWLP = l ) , the amount of irrigation is set to zero: R I I = o. 

In irrigated lowland (SWIWLP = o), irrigation is simulated as a dynamic variable, i.e. the 

(timing of) irrigation is simulated as function of the depth of ponded water. In the seed­

bed, it is assumed that the crop is nearly continuously irrigated: a daily amount of 

irrigation, RIDUM, is applied that equals the losses by seepage & percolation and by 

evaporation and transpiration: 

RIDUM = SP + TRWP + EVSW - RAIN 

On the day of transplanting, the amount of irrigation water so far needed for the main field 

is initialized as RIPUD: the total amount of water needed for land preparation, puddling and 

any evaporation of the bare field until transplanting. This amount should be empirically 

determined and is read from an input file (Appendix 3). 

RI ICU = RIPUD 

In the main field after transplanting, a fixed amount of irrigation, R IGIFT, is applied to the 

field when the depth of ponded water drops below a critical, minimum level, WLOMIN. This 

irrigation is applied until the crop reaches the growth stage, DVSIE, when no more 

irrigation is given, because of ripening of the crop. 

IF (WLO .LE. WLOMIN .AND. DVS .LT. DVSIE) THEN 

RII = RIGIFT 

RIGIFT and WLOMIN depend on management practices of farmers and are read from an 

input file (Appendix 3). 

4.4 Integration of water balance components 

The following components of the water balance are integrated over the period between 

transplanting and the end of the season (i.e. for the main field): cumulative irrigation, 

RIICU, cumulative runoff as bund overflow, RNOFCU, cumulative rain, RAINCU, 

cumulative seepage & percolation, SPCU, and cumulative evaporation, EVSWCU: 

RIICU = INTGRL (RIICU, R H , DELT) 

RNOFCU = INTGRL (RNOFCU, RUNOF, DELT) 

RAINCU = INTGRL (RAINCU, RAIN, DELT) 

SPCU = INTGRL (SPCU, SP, DELT) 

EVSWCU = INTGRL (EVSWCU, EVSW, DELT) 

If the crop is direct-seeded, the above state variables are integrated from sowing onward. 
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4.5 Communication with O R Y W A T 

Some variables are introduced in LOWBAL for communication with the above-ground 
growth module ORYWAT. 

To pass-on to ORYWAT: 

NL = 1 (note: only one soil layer in LOWBAL) 

WCWP(l) = WCWPP 

WCFC(l) = WCFCP 

WCST(l) = WCSTP 

WCAD(l) = WCADP 

WCLQT(l) = WCLP 

TKL ( l ) = TKLPi / 1 o o o . (note: in ORYWAT, layer thickness is in m!) 

TKLT = T K L P I / 1 0 0 0 . 

To get from ORYWAT: 

TRWP = TRWL(l) 

EVSC 

4.6 Model data needs 

The following 

WLOMXI = 

TKLPI = 

SPSOIL = 

DDR = 

WLOI = 

WLOMIN = 

SHRINK = 

WCCRAC = 

WCSTP = 

WCFCP = 

WCWPP = 

WCADP = 

RIGIFT 

RIPUD 

parameters are read from the soil data input file (all units in mm or mm d~ 

initial bund height (maximum thickness of 'first' layer) 
initial thickness of the puddled layer 
potential seepage & percolation rate 
deep drainage rate subsoil 
initial depth of ponded water 
critical depth of ponded water below which irrigation is applied 
linear shrinkage factor 
volumetric water content shrunken puddled layer below which cracks 
extend through the plow sole 
volumetric water content at saturation of shrunken puddled layer 
volumetric water content at field capacity of shrunken puddled layer 
(pF2) 
volumetric water content at wilting point of shrunken puddled layer 
(pF4.2) 
volumetric water content at air-dryness of shrunken puddled layer 
(pF7) 
irrigation application 
amount of water needed for land preparation (puddling) at the start of the 
growing season, plus water losses from the main field between land 
preparation and transplanting 

24 



WLOI 

WLOMIN 

SHRINK 

DVSiE = development stage of the crop at which no more irrigation is applied. 

Values for the above parameters depend on soil type (mainly texture, mineralogy, organic 

matter content, bulk density), soil preparation (e.g. the manner and effectiveness of 

puddling), general land preparation (e.g. bunding, p lowing), and irrigation management . 

Some indicative values are: 

WLOMXi = 100 - 200 mm, as measured from the top of the puddled soil. 

TKLPi = 1 5 0 - 2 0 0 mm. 

SPSOIL = with well-puddled, clayey soils, generally reported values are about 1-5 

m m d_ 1 (Wickham and Singh, 1978). In more unfavorable areas, SP 

rates can increase to 25 m m d_1 and more 

DDR = depends on soil type: in heavy, compact clay soils, values may be as low 

as 1 - 10 m m d _ 1 ; in coarse loamy or sandy soils, values may be as h igh 

as 100 - 1000 m m d _ 1 o r more . Usual ly , values of the saturated hydraulic 

conduct ivi ty of the soil will b e used for DDR. 

= 50 mm. 

= if possible, farmers will prevent the drying of the puddled layer to avoid 

shrinkage and cracking; values may be around 0 - 1 0 mm. Note: because 

of the time step of one day in ORYWAT, a rather high value should be 

chosen if shrinkage is to be prevented, e.g. 10 mm. 

= not many data on the shrinkage characteristics of puddled soils are 

available. In field observations in Tarlac Province, the Philippines, the 

following values have been found for the ratio of total porosity of 

puddled top soil over total porosity of shrunken, ripened top soil, for 

soils with different texture: 

0.65 for sand:silt:clay = 23:43:54 % 

0.70 for sand:silt:clay = 33:41:26% 

0.73 for sand:silt:clay = 9:27:64% 

0.74 for sand:silt:clay = 27:28:45 % 

0.78 for sand:silt:clay = 36:37:27 % 

0.79 for sand:silt:clay = 74: 3:23 % 

0.81 for sand:silt:clay = 23:23:54 % 

0.93 for sand:silt:clay = 33:24:43 % 

The average ratio is 0.77. As first approximation, these data can be used 

for the linear shrinkage factor. 

wccRAC = Measurements at the IRRI farm in the Philippines revealed that cracks 

penetrated the plow sole if the average pressure potential of the puddled 

topsoil dropped below -0.1 MPa (Wopereis, 1993; p. 121 and Tuong, 

unpublished data); the corresponding water content can be calculated 

using the soil's water retention curve. For non-cracking soils, WCCRAC 

is set to 0. WCCRAC is very soil specific and information on this soil 

parameter is scarce. To determine WCCRAC for a specific site, depth of 
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Cracking and soil-water contents in the topsoil should be monitored 
during a soil drying cycle. 

WCST-WCAD = As a first approximation, data of non-puddled soil can be used. In 
reality, these values will depend on the degree of drying of the puddled 
soil (Taylor, 1972). 

RiGiFT = depends on the irrigation management practice. A typical value is 50 
mm. 

RiPUD = should be empirically determined for the area under consideration. 
Typical values are 200 - 300 mm. 

DViE = in general, irrigation is stopped near the end of the growing season to 
allow ripening of the crop; development stage 1.8 - 2.0. 

4.7 Model validation 

The model LOWBAL was validated for irrigated lowland conditions using data from field 
experiments conducted at IRRI (Figure 4.2), and with model simulations using the 
detailed soil water balance model SAW AH (Bouman et al., 1994). The model performs 
accurately if seepage & percolation rates, SP, have been measured and do not change in 
time. Field average SP rates can easily be measured using sloping gauges placed in the 
field. Percolation rates may change if the plow sole at the bottom of the puddled layer is 
disturbed, as e.g. occurred in an IRRI field experiment by hand weeders (Wopereis, 1993; 
pp. 108-109). Seepage may occur where it was originally not present when neighbouring 
fields are drained at the end of the growing season, thus inducing water flow through and 
underneath bunds. Seepage may also change if water levels in neighbouring ditches, 
creeks or drains vary. These changes of seepage rates depend on texture, compaction and 
state of maintenance of the bunds, and on the ratio of bund length over the surface area of 
the field (Tuong et al., 1994). In general, the changes in seepage rate as mentioned above 
will mostly occur at the end of the growing season; for the main part of the growing 
season, LOWBAL will, therefore, be applicable. 

For rainfed lowland situations, LOWBAL has not been tested explicitly. However, the 
process description of shrinkage and cracking is similar to the one used in PADDY (see 
Chapter 5). The model PADDY was validated with field experiments at IRRI. In 
LOWBAL, shrinkage is treated as a linear decrease of soil pores, and hence of puddled 
soil depth, with loss of water. In reality, shrinkage of puddled soil follows three phases: 
linear shrinkage, residual shrinkage and zero-shrinkage (Bronswijk, 1988; Ishiguro, 1992). 
It is expected that this simplification in LOWBAL will not lead to serious errors in 
estimating the water balance. In LOWBAL, soil cracking is treated in an empirical way: if 
the soil moisture content of the ripened top soil drops below a critical value, cracks are 
assumed to break through the plow sole. It is expected that simulations will be more crude 
for cracking soils than for non-cracking soils. More research is needed on ripening and 
cracking of puddled soils of different texture. Finally, in LOWBAL it is assumed that 
roots do not penetrate the plow sole. This simplification is not always warranted: e.g. at 
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the IRRI farm, it was found that roots penetrated the plow sole and extended up to 0.40 m 
depth (i.e. 20 cm below the puddled top soil) with drying of the puddled layer. Under such 
conditions, modelling of the soil water content below the puddled layer, and the extraction 
of water by the roots becomes important, as can be done with the soil water balance 
module PADDY explained in Chapter 5. 

Ponded water (mm 

120 

78 

Calendar day 

Figure 4.2 Simulated (black dots) and observed (white dots) depths of ponded water in a 
field experiment conducted at the IRRI farm, Los Banos, Philippines (Bouman et al., 
1994). 
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5 PADDY: soil-water balance module for lowland and upland rice 
and for rice-upland crop rotations 

The model PADDY was developed to simulate the soil-water balance for all rice growing 

conditions (with / without water limitations, puddled / non-puddled, free draining / 

impeded drainage) and for upland crops grown after rice. The program is written in 

FORTRAN and makes use of the Fortran Simulation Environment (FSE, van Kraalingen, 

1991). PADDY is a multi-layer (up to 10) integral soil-water balance model. A complete 

listing of the source code, an explanation of variable names used and an overview of input 

files needed is given in Appendix 4. 

Switches set in the soil data input file (Appendix 4) define if the soil profile is freely 

draining (SWITFD = l ) or not (SWITFD = o). In PADDY, this switch is translated into a 

logical FREEDR for easy reading. If SWITFD = l then FREEDR = . TRUE ., else FREEDR = 

. FALSE . Another switch in the soil data input file defines if the topsoil is puddled (SWITPD 

= l ) or not (SWITPD = o). In PADDY, this switch is translated into a logical PUDDLD. If 

SWITPD = i then PUDDLD = .TRUE. , else PUDDLD = .FALSE. Combining (SWITFD = l ) 

and (SWITPD = l ) is not possible, as puddled soils are assumed not to be freely draining. 

A typical soil profile of a puddled rice soil consists of a muddy layer with little 

resistance to water flow, an often compacted layer with large resistance to water flow 

(plow sole) and the non-puddled subsoil (Figure 2.2). In the soil data input file the number 

of puddled soil compartments (including the plow sole!) is defined as NLPUD. Usually 

NLPUD will be set to 3, i.e. the 2 first soil compartments comprise the muddy layer and the 

third compartment represents the plow sole. If NLPUD is set to 4 than the fourth 

compartment represents the plow sole and so on. Thickness of each soil compartment is 

defined by the user in the soil data file. Percolation rate through the puddled topsoil (i.e. 

muddy layer and plow sole) is either calculated using an iteration procedure (see Section 

5.1) or assumed to be constant. The maximum number of soil layers is 10. 

Continued drying of a puddled soil results in the formation of soil shrinkage cracks and 

subsidence of the soil surface. During this process the muddy layer gradually transforms 

in a soil layer, a process that can be called 'soil ripening'. In PADDY this soil ripening 

process is modelled using a separate subroutine. A simple subroutine with limited data 

needs is available (see Section 5.2). In contrast to LOWBAL, subsidence of the soil 

surface is not simulated. Cracks penetrate through a soil layer if its pressure head h drops 

below a critical value, which is defined in the soil data input file (Appendix 4). The soil's 

water balance may change radically if cracks penetrate through the plow sole, breaking its 

function as a barrier to downward flow. 

A third switch in the soil data input file determines if groundwater is present in the soil 

profile (SWITGW). In PADDY this switch is translated into a logical GRWAT. If SWITGW = I 

orswiTGW = 2, then GRWAT = .TRUE ., else GRWAT = . FALSE . . Groundwater table depth 

is either an input into the model (SWITGW = l ) or is calculated from downward fluxes 

(SWITGW = 2). Capillary rise to soil compartments above the groundwater table is 

calculated using a 'window-structure', i.e. water flow to each soil compartment is 
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calculated separately. No flow due to capillary rise occurs between boundaries of soil 

compartments. Time step of integration of PADDY is one day. The source code of 

PADDY and associated subroutines, a list of variables, explanations and dimensions and 

the soil data file needed are included in Appendix 4. 

5.1 Percolation and seepage 

Ponded water drains in the soil profile via percolation or seepage. A switch SWITVP, 

defined in the soil data file, determines if a combined percolation and seepage rate 

(PERCOL) is read from the soil data file (SWITVP = o). If seepage losses can be neglected, 

the user can choose for an option to calculate the percolation rate through the puddled 

topsoil (SWITVP = 1). For freely draining non-puddled soils (SWITFD = l ) , ponded water 

is quickly drained to the subsoil and the value for SWITVP is ignored. 

The subroutine SATFLX is called if SWITVP = 1. It can calculate percolation rates 

provided the saturated hydraulic conductivity of the plow sole (soil layer NLPUD, see 

above) and the hydraulic conductivity curve of the subsoil directly below the plow sole 

(soil layer NLPUD + l ) are known. Wopereis et al. (1992) showed that the percolation rate 

through a puddled soil is affected by both the characteristics of the non-puddled subsoil, 

through its hydraulic conductivity curve, and by the physical properties (i.e. hydraulic 

resistance) of the least permeable layer in the puddled topsoil, i.e. the plow sole. The 

switch swiTKH in PADDY, can be used to define hydraulic conductivity characteristics 

with van Genuchten parameters (SWITKH = l ) or using a power function (SWITKH = 2). 

These functions are given in Chapter 2. 

Using an iterative Newton-Raphson procedure (Wolfram, 1991) fluxes through the 

plow sole and the non-puddled subsoil are calculated in a separate subroutine SATFLX 

and compared until the difference between both fluxes become negligible. The procedure 

is illustrated in Figure 5.1. SATFLX starts with taking a random value for the pressure 

head h in the non-puddled subsoil (1). The difference between the flux through the 

puddled topsoil (ƒ,) and the non-puddled subsoil (fs) at that pressure head is then calculated 

(2). The flux through the puddled topsoil equals (Wopereis et al., 1992): 

ƒ, = -ks(ht-hb + zù I zù (5.1) 

where ks is the hydraulic conductivity of the soil layer (cm d_1), and ht and hb pressure 

head (cm) at top and bottom of the plow sole respectively. Assuming gravity flow in the 

subsoil, the flux in the subsoil can be written as (Wopereis et a l , 1992): 

Â = -k(hb) (5.2) 

If the difference between ƒ, and/ s is too large, the intersection of the tangent line with the 

x-axis is calculated, which yields a new value for hb (3). A new difference between fluxes 

ƒ, and/ s is calculated (4) etc. The calculations continue until the difference between ƒ, and 
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ft" fs 

Figure 5.1 Iterative procedure used in the subroutine SATFLX to calculate percolation 
rates for a puddled soil by minimizing the difference between the fluxes through the plow 
sole (/",) and the non-puddled subsoil (fs). 

fs becomes close to zero. A listing of the subroutine SATFLX is given in Appendix 4. 
The module SATFLX was validated by comparing steady state percolation rates 

calculated with the one-dimensional dynamic soil-water balance model SAW AH (ten 
Berge et al., 1992) and PADDY. SAW AH simulates fluxes between compartments using 
small variable time steps. From Table 5.1 it can be seen that SAW AH and PADDY 
predictions are close if the plow sole conductivity is small, regardless of groundwater 
table depth, SWITVP should not be used if the conductivity of the plow sole is known to be 
larger than 0.1 cm d_1 (for more details see Bouman et al., 1994). Under such 
circumstances percolation rates predicted by PADDY may be too small and a constant 
percolation and seepage rate should be defined instead. 

5.2 Soil ripening and cracking of a puddled topsoil 

If a puddled soil dries out, its volume shrinks, cracks appear, and a 'soil ripening' process 
occurs, gradually changing the muddy topsoil into real soil. PADDY provides one sub­
routine to simulate this process (subroutine SHRINK). It is assumed that soil shrinkage is 
irreversible, i.e. the total porosity of a dried, previously puddled soil layer cannot increase 
in case of rewetting, unless intensive re-puddling is carried out. The approach is similar to 
the one used in LOWBAL. A shrinkage factor, defined as the ratio of total porosity of 
puddled and non-puddled soil is used to calculate volume change. It is assumed 
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Table 5.1. Steady-state percolation rates calculated using PADDY and SAW AH, at a 
constant ponded water depth of 15 cm. ks is the saturated hydraulic conductivity of the 
plow sole. Hydraulic conductivity characteristics of the subsoil taken from Wopereis et al. 
(1993b). 

*s 

(cm d"1) 

0.03 
0.1 
0.3 

SAWAH 
(groundwater table at 1 
infiltration rate 
(mmd4) 

1.4 
4.5 
33.4 

m) 
SAWAH 
(groundwater table 
infiltration rate 
(mmd-1) 

1.4 
4.5 
149.5 

at 5 m) 
PADDY 

infiltration rate 
(mm d-1) 

1.7 
5.2 
14.9 

that the puddled soil remains saturated during shrinkage, i.e. water loss equals volume 
change, until the total porosity is equal to that of non-puddled soil. From that moment on 
the soil pressure potential decreases and the rice plant may start to suffer from drought 
stress. Important differences with LOWBAL are that more than one shrinking soil layer 
can be defined and that subsidence of the soil surface is neglected. Inputs to the subroutine 
SHRINK are: volume of water in soil compartment i, WL(I) in mm, thickness TKL(I) in 
mm, and saturated volumetric water content after puddling and ripening (WCST(I) and 
wcsTRP ( i ) respectively, in m3 m~3). Outputs are volumetric water content WCL ( I ) in m3 

irr3, and total porosity, TOTPOR ( I ) in m3 m-3, and new thickness of the soil layer after 
shrinkage, VL ( i ) in mm. 

CALL SHRINK (ITASK,I,WL(I),TKL(I),WCST(I),WCSTRP(I), 

& WCL(I),TOTPOR(I),VL(I)) 

SHRINK is not used to simulate the depth of soil cracks. This would be possible by 
dividing the puddled topsoil into a large number of small compartments, and by 
calculating the water content and volume change of each small compartment. If water loss 
in the soil profile is determined by evaporation and incoming rainfall only (no crop) this is 
feasible, as was shown by Bronswijk (1989). If a rice crop is grown, the situation is a lot 
more complex as the uptake of water by the crop as a function of depth is unknown. In 
PADDY a more empirical approach is therefore used. Bronswijk (1988) presented the 
simulation model FLOCR, in which shrinkage characteristics of soils are included as 
hydraulic parameters that can be specified for each soil layer. In this version of PADDY a 
simplified approach to shrinkage is followed as it is expected that data on soil shrinkage 
characteristics of puddled soil material will be rarely available. 
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The soil's water balance may change radically if cracks penetrate through the plow 
sole. Field experiments conducted at the International Rice Research Institute (IRRI) 
showed that cracks penetrated through the plow sole if the pressure potential of the topsoil 
dropped below -100 kPa (IRRI, 1992). In PADDY, cracks are assumed to have penetrated 
through a soil compartment if its simulated water content drops below a value, 
corresponding to a critical pF value. This critical pF value is defined in the soil data file 
(PFCR), see Appendix 4. A corresponding soil water content WCCR is calculated using the 
subroutine SUWCMS2 if SWITPF = l or via linear interpolation if SWITPF = o. This 
subroutine is derived from SUWCMS (ten Berge et al., 1992), see Section 5.9. 

IF (PUDDLD) THEN 

* Initialize SHRINK subroutine 

* Calculate water content when cracks penetrate through a 

* soil compartment 

IF (SWITPF.EQ.1) THEN 

CALL SUWCMS2(NLPUD,2,WCST(NLPUD),WCCR,10**PFCR) 

ELSE 

IF (PFCR.LE.4.2.AND.PFCR.GE.0) THEN 

WCCR = WCWP(NLPUD)+((WCFC(NLPUD)-WCWP(NLPUD))/2.2)* 

& (4.2-PFCR) 

ELSEIF (PFCR.GT.4.2.AND.PFCR.LE.7) THEN 

WCCR = WCAD(NLPUD)+((WCWP(NLPUD)-WCAD(NLPUD))/2.8)* 

& (7.0-PFCR) 

ELSE 

STOP 'PLEASE CHECK VALUE PFCR IN SOIL DATA FILE' 

END IF 

END IF 

If cracks break through a soil compartment, its saturated hydraulic conductivity value 
KSAT is set to an arbitrarily chosen high value (1000 cm d-1)- A message is sent to the 
screen if cracks break through a soil compartment. The actual water content of a soil layer 
WCL ( I ) is compared with the value of WCCR. 

IF (PUDDLD) THEN 

1 = 1 

DO WHILE (I.LE.NL. AND. I.LE.NLPUD) 

CALL SHRINK (ITASK,I,WL(I),TKL(I),WCST(I),WCSTRP(I), 

& WCL(I),TOTPOR(I),VL(I)) 

IF (WCL(I).LT.WCCR) THEN 

KSAT(I) = 1000. 

PRINT *,'CRACKS REACHED BOTTOM COMPARTMENT ',I 

END IF 

IF (WCL(NLPUD).LT.WCCR) CRACKS = .TRUE. 
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The new saturated storage capacity of the soil layer i , WLST(I) (unit: mm) is calculated 

by multiplying new thickness VL ( i ) (unit: mm) by the new total porosity TOTPOR ( i ) 

(unit: -). The storage capacity at field capacity of layer i , WLFC (i) (unit: mm) is assumed 

to be equal to the saturated storage capacity : 

WLST(I) = VL(I)»TOTPOR(I) 

WLFC(I) = WLST(I) 

1 = 1 + 1 

END DO 

END IF 

This last assumption is not backed by any data or literature reference but is assumed to be 

a reasonable estimate for most puddled soils. 

5.3 Redistribution of water in the soil profile 

If the soil profile is freely draining (SWITFD = 1), redistribution of soil-water is modeled 

in PADDY in a similar way as in SAHEL (see Chapters 2 and 3). It is assumed that the 

hydraulic conductivity of each soil layer, when wet, is very high, and that water between 

saturation and field capacity is drained within the time step of 1 day used in the model. 

Data on hydraulic conductivity are not an input for PADDY if SWITFD = l . Instead, in 

PADDY the saturated hydraulic conductivity of each soil layer is automatically set to an 

arbitrarily chosen high value (1000 cm d-1)- If the soil profile is not freely draining 

(SWITFD = o), the saturated hydraulic conductivity of each soil layer needs to be 

specified. The maximum flux through a soil layer is then equal to this saturated hydraulic 

conductivity. If the soil profile is puddled (SWITPD = l ) , one of the soil layers in the 

topsoil (the plow sole) will usually have a low saturated hydraulic conductivity. The 

combination of SWITPD = l and SWITFD = l cannot be used in PADDY as it is assumed 

that puddled soils are not freely draining. If groundwater is present in the profile (SWITGW 

= l ) , capillary rise to soil layers above the one containing the groundwater table is 

considered, if their soil water content is below field capacity. The water contents of the 

soil layer that contains the groundwater table and those at greater depth are reset to 

saturation. The initial moisture content of the soil profile is defined by the user: 

CALL RDAREA ('WCLI',WCLI,10,NL) 

The drying sequence in a rainfed rice system can be divided into two stages: 

1. Ponded water 

2. No ponded water 
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Phase 1 will never occur for freely draining soils. For puddled systems, phase 2 can be 

subdivided into: 

2.1 No ponded water and shallow soil cracks 

2.2 No ponded water and deep soil cracks 

'Shallow' soil cracks (phase 2.1) are cracks that have not yet penetrated through the plow 

sole (Figure 2.3a). 'Deep' soil cracks (phase 2.2) have (Figure 2.3b), which, depending on 

the subsoil's permeability, may lead to a radical change in the soil's water balance. If there 

is ponded water (phase 1), the ponded water level will change according to: 

dWp = I + R+C-E-P-T-D (5.1) 

where (all dimensions in mm d_1): 

dWp = change in ponded water depth 
/ = irrigation supply 
R = rainfall 
C = capillary rise 
E = evaporation 
T = transpiration 
P = percolation 
D = bund overflow / surface runoff 

1. Ponded water 

In PADDY, the amount of ponded water is the starting point of calculations at the 

beginning of each day. If there is ponded water, three situations can be considered: ponded 

water can sustain both evaporation and transpiration demands ( 1 . 1 ) ; ponded water can 

sustain evaporation but only partly transpiration demand ( 1 . 2 ) and ponded water can 

sustain only part of the evaporation demand ( 1 . 3 ) . 

1.1 Ponded water can sustain both evaporation and transpiration demands 

The ponded water level in the field, WLO, possibly augmented with rainfall RAIN and/or 

irrigation IR, is sufficient to sustain both evaporation (EVSC) and transpiration (TRW) 

demands, EVSC and TRW are calculated in the subroutine ETPOT (Chapter 8) and are an 

input to PADDY. A change in ponded water level WLOCH is calculated comparing gains 

(RAIN+IR) and losses of water (EVSC+TRW). Note that WLO is a state variable (unit: mm); 

WLO/DELT and WLOCH are rate variables (unit: mm d_1). 

A counter DSPW resets the number of days without ponded water back to 1. This counter 

is used for calculation of evaporation from the soil, as will be explained later. 

* 1. Ponded water on field 

IF (WLO.GE.TINY) THEN 
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* reset number of days after ponded water 

DSPW = 1 

* 1.1 Ponded water can sustain evaporation and transpiration 

IF (WLO/DELT+RAIN+IR.GE.EVSC+TRW) THEN 

* calculate change in ponded water depth (mm/d) 

WLOCH = RAIN+IR-EVSC-TRW 

The total transpiration requirement TRW is calculated in the subroutine ETPOT and is 

divided equally over the various soil compartments within the root zone (array TRWL ( I ), 

where i is the soil compartment number). Both TRW and TRWL ( I ) are input variables for 

PADDY. In this case, however, transpiration loss TRW can be covered completely from 

ponded water present on the soil surface. No water is, therefore, taken from the soil and 

transpiration losses per soil compartment are reset to zero. 

* reset transpiration losses per soil compartment to zero 

* as transpiration is taken from ponded water 

1 = 1 

DO WHILE (I.LE.NL) 

TRWL(I) = 0 

1 = 1 + 1 

END DO 

* for water balance check 

EVSW = EVSC 

EVSWS = 0. 

If the soil is not freely draining (SWITFD = o) and if, in case of a puddled soil, cracks have 

not yet reached the plow sole, downward water flow is determined by a percolation rate. 

IF ((.NOT.FREEDR).AND.(.NOT.CRACKS)) THEN 

* calculate percolation rate (mm/d) 

The switch SWITVP determines if the percolation rate, PERC, is calculated using the 

subroutine SATFLX (SWITVP=I) or read from an input file (PERC = PERCOL if SWITVP=O). 

PERC can never be larger than the amount of ponded water left on the soil surface, after 

subtraction of transpiration and evaporation losses (WLO/DELT+WLOCH). The in's and out's 

of SATFLX are explained in Section 5.1. For non-puddled soils SWITVP must be 0. If this 

is not the case, the program is stopped and a warning is sent to the screen. 

IF (SWITVP .EQ. 0) THEN 

IF (WLO/DELT+WLOCH.GE.PERCOL) THEN 

PERC = PERCOL 

ELSE 

PERC = WLO/DELT+WLOCH 
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END IF 

ELSE 

IF (.NOT.PUDDLD) 

& STOP 'SWITVP MUST BE 0 FOR NON-PUDDLED SOIL' 

IF (NLPUD.LT.NL) THEN 

CALL SATFLX (TKL,NLPUD,WLO,PERC) 

ELSE 

STOP 'SWITVP MUST BE 0 IF NL = NLPUD' 

END IF 

IF (WLO/DELT+WLOCH.LE.PERC) 

$ PERC = WLO/DELT + WLOCH 

END IF 

After assessment of the percolation rate, the change in ponded water depth is recalculated. 
* recalculate change in ponded water depth (mm/d) 

WLOCH = WLOCH - PERC 

The amount of water in excess of bund height, WLOMX, is lost from the soil profile as 
runoff, RUNOF. 
* calculate runoff (mm/d) if ponded water depth 

* exceeds bund height 

IF (WLO+WLOCH*DELT.GE.WLOMX) THEN 

RUNOF = (WL0+WL0CH*DELT-WL0MX)/DELT 

WLOCH = WLOCH-RUNOF 

END IF 

In total, NL+i flow rates are used in PADDY, where NL = number of soil compartments. 
WLFL ( l ) is the flow rate at the ponded water - soil surface interface; WLFL ( 2 ) is the flow 
rate at the soil layer (1) - soil layer (2) boundary etc. In this case all flow rates are assumed 
to be equal to the percolation rate. 

i = l 

DO WHILE (I.LE.NL+1) 

WLFL(I) = PERC 

1 = 1 + 1 

END DO 

For non-puddled soils and for puddled soils with cracks deeper than the plow sole, the 
ponded water on the soil surface will flow downward with a rate that depends on the 
hydraulic characteristics of the subsoil. In this case the concept of percolation rate cannot 
be used. Instead, two subroutines determine the fate of water flow: DOWNFL and 
BACKFL. 
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ELSE 

* calculate flow through boundaries of soil compartments 

WLFL(l) = RAIN + IR - EVSC - TRW 

1 = 1 

DO WHILE (I.LE.NL) 

CALL DOWNFL(I,KSAT(I),WLFL(I),TRWL(I),EVSWS,WL(I), 

& WLFC(I),DELT,WLFL(I+1)) 

1 = 1 + 1 

END DO 

IF (.NOT. FREEDR) THEN 

I = NL 

DO WHILE (I.GE.1) 

CALL BACKFL(I,WL(I),WLFL(I),WLFL(1+1),EVSWS, 

& TRWL(I),WLST(I),DELT,FLNEW,REST) 

WLFL(I) = FLNEW 

1 = 1 - 1 

END DO 

Using the subroutine DOWNFL, incoming rainfall is redistributed by calculating for all 
compartments gain and loss terms, starting with the top compartment. All water in excess 
of field capacity is drained from the compartment, with a maximum rate equal to the 
saturated hydraulic conductivity of the compartment, KSAT ( I ). If the rate is low, the water 
content of the compartment may reach saturation, i.e. a perched water table may develop. 
Note that KSAT ( i ) is multiplied by a factor 10 to convert from cm d_1 tommd -1. 

SUBROUTINE DOWNFL ( I, KSAT, FLIN, TRWL, EVSWS , WL, WLFC, DELT, FLOUT ) 

IMPLICIT REAL (A-H.J-Z) 

IF (I.EQ.1) THEN 

FLOUT = MIN(10*KSAT,MAX(0.,FLIN-EVSWS-TRWL+(WL-WLFC)/DELT)) 

ELSE 

FLOUT = MIN(10*KSAT,MAX(0.,FLIN-TRWL+(WL-WLFC)/DELT)) 

END IF 

RETURN 

END 

If the soil profile is not freely draining, one or more soil layers in the profile restrict water 
flow. Using the subroutine BACKFL and starting with the last compartment, in- and 
outflow fluxes are then compared. If the outflow flux for a given compartment is too low 
(i.e. the resulting water content of the compartment would be higher than its saturated 
water content), the excess water is redistributed upward. This means that, although the 
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cracked topsoil is freely draining, water may still start ponding on the soil surface because 

of a layer with a low saturated hydraulic conductivity deeper in the soil profile. Ponding of 

water will occur if the REST term (HLP in subroutine BACKFL) for i = l is larger than 

the water holding capacity of the first soil compartment (WLST ( l ) ). 

SUBROUTINE BACKFL ( I, WL, FLIN, FLOUT, EVSWS , TRWL, WLST, DELT, 

& FLNEW,HLP) 

IMPLICIT REAL (A-H,J-Z) 

HLP = 0. 

IF (I.EQ.1) THEN 

HLP = WL+(FLIN-FLOUT-EVSWS-TRWL)*DELT 

ELSE 

HLP = WL+(FLIN-FLOUT-TRWL)*DELT 

END IF 

IF (HLP.GT.WLST) THEN 

FLNEW = FLIN - (HLP-WLST)/DELT 

ELSE 

FLNEW = FLIN 

END IF 

RETURN 

END 

Water in excess of bund height is lost from the soil profile through runoff: 

WLOCH = MAX(0.,(REST-WLST(l))/DELT ) 

IF (WL0+WL0CH*DELT.GE.WL0MX) THEN 

RUNOF = (WLO + WL0CH*DELT-WL0MX)/DELT 

WLOCH = WLOCH - RUNOF 

END IF 

END IF 

END IF 

1.2 Ponded water depth can sustain evaporation but only part of transpiration 

If the ponded water level and the incoming amount of water via rain and irrigation 

(WLO/DELT+RAIN+IR) are not sufficient to meet transpiration and evaporation demands 

(EVSC+TRW), all ponded water will be consumed (WLOCH = -WLO/DELT). 

* 1.2 Ponded water depth can sustain evaporation but 

* only part of transpiration 

ELSE IF ((WLO/DELT+RAIN+IR.GE.EVSC).AND. 

$ (WLO/DELT+RAIN+IR.LT.EVSC+TRW)) THEN 
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* calculate change in ponded water depth (mm/d) 

WLOCH = -WLO/DELT 

Percolation rate PERC is assumed to be zero in this case, as no ponded water is left. This 

also holds for the flow from the rest of the soil compartments (WLFL ( I ) ). 

* percolation is zero because no ponded water left 

PERC = 0. 

1=1 

DO WHILE (I.LE.NL+1) 

WLFL(I) = PERC 

1 = 1 + 1 

END DO 

The part of transpiration not yet accounted for (TRW+EVSC-RAIN-IR-WLO/DELT) is covered 

by water taken from the soil profile. These losses are divided equally over the root zone 

soil compartments i . The transpiration loss per soil compartment, TRWL(I ) , an input to 

PADDY, is corrected with the factor ( (TRW+EVSC-RAIN-IR-WLO/DELT) / TRW): 

* correct transpiration losses per soil compartment as 

* transpiration losses are partly covered by ponded water 

1 = 1 

DO WHILE (I.LE.NL) 

TRWL(I) = ((TRW+EVSC-RAIN-IR-WLO/DELT)/TRW) 

$ *TRWL(I)*DELT 

1 = 1 + 1 

END DO 

* for water balance check 

EVSW = EVSC 

EVSWS = 0. 

1.3 Ponded water can only sustain part of evaporation demand 

As all ponded water is used to cover the evaporation demand, percolation rate is assumed 

to be zero. The flux at the soil surface WLFL ( l ) is equal to incoming rainfall and irrigation, 

RAIN + IR. Transpiration losses are covered completely by water taken from the soil 

profile. These losses (TRWL ( I ) ) are an input to PADDY. 

* 1.3 Ponded water can sustain part of evaporation only 

ELSE IF (WLO/DELT+RAIN+IR.LT.EVSC) THEN 

* calculate change in ponded water depth (mm/d) 

WLOCH = -WLO/DELT 

PERC = 0. 

WLFL(l) = RAIN + IR 
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1 = 2 

DO WHILE (I.LE.NL+1) 

WLFL(I) = PERC 

1 = 1 + 1 

END DO 

The evaporation demand not yet accounted for, EVSC+WLOCH is taken from incoming 
rainfall and irrigation (RAIN+IR) and, from water available in the topsoil compartment i.e. 
actual water content, WL ( l ), minus water content when air dry, WLAD ( l ). Because EVSC, 

WLOCH, RAIN and IR are all rate variables, these water contents need to be divided by the 
time step DELT. The sum of the amount of water available in the topsoil compartment plus 
rainfall and irrigation sets a limit to the value of EVSW. 

* calculate contribution of first soil compartment to 

* evaporation 

EVSW = MIN(EVSC+WL0CH,WL(1)/DELT-

$ WLAD(l)/DELT+RAIN+IR) 

EVSWS = EVSW 

* for water balance check 

EVSW = WLO/DELT+EVSWS 

END IF 

2. No ponded water 
If there is no ponded water, the evaporative demand is met by taking water from the first 
soil layer. Actual soil evaporation is calculated by assuming that the cumulative 
evaporation is proportional to the square root of time. The rate of evaporation on the first 
day without ponded water is assumed to be 60% of the potential soil evaporation. A 
counter DSPW keeps track of the number of days that have passed without ponded water. A 
similar approach was used by Penning de Vries et al. (1989). 

ELSE 

* 2. No ponded water on surface 

* calculate evaporation rate from soil surface (mm/d) 

EVSH = MIN(EVSC,MAX(0.,(WL(1)-WLAD(l))/DELT+RAIN+IR)) 

EVSD = MIN(EVSC,0.6*EVSC*(SQRT(DSPW)-SQRT(DSPW-1.)(+RAIN+IR) 

EVSW = INSW(DSPW-1.1,EVSH,EVSD) 

EVSW = MIN(EVSW,MAX(0.,RAIN+IR+(WL(1)-WLAD(l))/DELT)) 

EVSWS = EVSW 

DSPW = DSPW + 1 

The subroutines DOWNFL and BACKFL are again used to redistribute water in the soil 
profile. The subroutine BACKFL is only called if the profile is not freely draining 
(SWITFD = 0). 

1 = 1 

DO WHILE (I.LE.NL) 

CALL DOWNFL ( I, KSAT ( I ) , WLFL ( I ) , TRWL ( I ) , EVSWS, WL ( I ) , 
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& WLFC(I),DELT,WLFL(I+1)) 

1 = 1 + 1 

END DO 

IF (.NOT.FREEDR) THEN 

I = NL 

DO WHILE (I.GE.1) 

CALL BACKFL(I,WL(I),WLFL(I),WLFL(1+1),EVSWS, 

& TRWL(I),WLST(I),DELT,FLNEW,REST) 

WLFL(I) = FLNEW 

1 = 1 - 1 

END DO 

Water in excess of bund height is lost from the soil profile through runoff: 

WLOCH = MAX(0.,(REST-WLST(l))/DELT ) 

IF (WLO+WLOCH*DELT.GE.WLOMX) THEN 

RUNOF = (WLO + WLOCH*DELT-WLOMX)/DELT 

WLOCH = WLOCH - RUNOF 

END IF 

END IF 

END IF 

5.4 Groundwater table 

The switch SWITGW, defined in the soil data file (Appendix 4) determines if groundwater is 

present in the soil profile. This switch is translated into a logical GRWAT in PADDY: 

GRWAT = .TRUE, if SWITGW = 1 or SWITGW = 2, else GRWAT = . FALSE. . The new 

groundwater table depth is read from a table (SWITGW = 1) or calculated (SWITGW = 2). In 

both cases the subroutine GWTAB is used. 

IF (GRWAT) THEN 

* new groundwater table depth 

ZWPREV = ZW 

CALL GWTAB(ITASK,SWITGW,NL,DOY,DELT,WLFL,TKL,ZWPREV, 

& IGW,ZW) 

END IF 

Input to subroutine GWTAB are: ITASK (1: initialization; 3: integration), SWITGW (if 

SWITGW = 1: input from table, if SWITGW = 2, groundwater table is calculated), NL 

(number of soil layers), DOY (day of year), DELT (time step of integration, usually 1 day), 

WLFL (array containing fluxes at soil layer boundaries), TKL (array of thickness soil layers) 

and ZWPREV (previous groundwater table depth). Output are IGW (shallowest soil 

compartment in groundwater) and zw (new groundwater table depth). If SWITGW = 1, 

groundwater table depth is read from the table ZWTB. If SWITGW = 2, it is assumed that the 

42 



groundwater table depth is receding with a constant speed, ZWA. The flux at the bottom of 
the soil layer IGW, WLFL(IGW), multiplied with a sensitivity factor ZWB brings the water 
table closer to the soil surface (following lines taken from subroutine GWTAB): 

IF (SWITGW.EQ.1) THEN 

ZW = LINT(ZWTB,IZWTB,DOY) 

ELSE 

ZW = ZW + ZWA - ZWB*10*WLFL(IGW)*DELT 

IF (ZW.LT.MINGW) ZW = MINGW 

IF (ZW.GT.MAXGW) ZW = MAXGW 

END IF 

In PADDY, it is assumed that soil layers I in the subsoil, that are saturated with water 
because of the presence of a groundwater table, drain to their field capacity water content, 
WLFC(I) within the time step DELT (one day). The flux from each soil compartment i, 
WLFL(I+1) is calculated taking into account drainage to field capacity, DRAIN, losses due 
to transpiration (TRWL ( I ) ), and the flux into this soil compartment, WLFL ( I ). The 
shallowest soil compartment containing groundwater is known via calls to the subroutine 
GWTAB (stores this compartment number in the variable IGP, see above). 

IF (GRWAT) THEN 

* drain compartments in groundwater 

I = IGW 

DO WHILE (I.LE.NL) 

IF (WL(I).GE.WLFC(I)) THEN 

DRAIN = (WL(I)-WLFC(I))/DELT 

WLFL(I+1) = DRAIN+MAX(0.,WLFL(I)-TRWL(I)) 

ELSE 

WLFL(I+1) = MAX(0.,WLFL(I)-TRWL(I)+ 

$ (WL(I)-WLFC(I))/DELT) 

END IF 

1 = 1 + 1 

END DO 

After resetting the soil water contents to field capacity, the current groundwater table 
depth zw obtained from a call to the subroutine GWTAB (see above) is used to fill soil 
compartments up to saturation: 

I = NL 

GWTOT = 0. 

DO WHILE (I.GE.1) 

GWFILL(I) = 0. 

* check if groundwater in soil compartment 

GWCHK = MAX(0.,ZW-ZL(I)-0.5*TKL(I)/10.) 

IF (GWCHK.EQ.0) THEN 
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PRINT *,'Groundwater in compartment ',i 

IF (I.EQ.1) THEN 

GWFILL(I) = MAX(0,(WLST (I)-WL (I ))/DELT+TRWL(I)+ 

$ WLFL(I+1)+EVSWS-WLFL(I)) 

ELSE 

GWFILL(I) = MAX(0,(WLST(I)-WL(I))/DELT+TRWL(I)+ 

$ WLFL(I+1)-WLFL(I)) 

END IF 

GWTOT = GWTOT + GWFILL(I) 

END IF 

5.5 Capillary rise 

Capillary rise to soil compartments above the groundwater table is calculated using a 
"window-structure", i.e. water flow to each soil compartment is calculated separately. No 
flow due to capillary rise occurs between boundaries of soil compartments. Capillary rise 
from the groundwater table to a soil compartment is assumed to occur only if the soil 
moisture content of this compartment is below field capacity. The soil pressure head, MS 
(in mbar or cm H20), prevailing in the soil compartment is calculated with the subroutine 
SUWCMS2, derived from SUWCMS (ten Berge et al., 1992). Field capacity water 
content is assumed to occur if MS = ïoo mbar (pF = 2). 
* only capillary rise if compartment is below field 

* capacity (MS > 100 mbar) 

MS = 0. 

FLOW = 0. 

IF (WL(I).GT.WLAD(I).AND.WL(I).LT.WLFC(I).AND. 

$ ZW.GT.ZL(I)+TKL(I)/10.) THEN 

IF (SWITKH.NE.0) THEN 

CALL SUWCMS2(I,1,WCST(I),WCL(I),MS) 

IF (MS.GT.100.) THEN 

Capillary rise is calculated using the WOFOST routine SUBSOL (van Diepen et al., 
1988), which is slightly changed to allow for the use of Van Genuchten parameters. The 
routine is, to avoid confusion, renamed to SUBSL2. Input to SUBSL2 is the soil pressure 
head MS calculated with the subroutine SUWCMS2: 

CALL SUBSL2(LOG10(MS),ZW-ZL(I)+ 

& 0.5*TKL(I)/10.,I,WCST(I),FLOW) 

END IF 

c if flow negative (percolation) then reset to zero 

IF (FLOW.LT.0) FLOW = 0. 

IF (I.EQ.1) THEN 

CAPRI(I) = MIN(FLOW,(WLST(I)-WL(I))/DELT+ 
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& EVSWS+TRWL(I)+WLFL(I+1)-WLFL(I)) 

ELSE 

CAPRI(I) = MIN(FLOW,(WLST(I)-WL(I))/DELT+ 

& TRWL(I)+WLFL(I+1)-WLFL(I)) 

END IF 

END IF 

END IF 

Capillary rise can only decrease with increasing distance from the groundwater table. If 
the calculated capillary rise of a compartment higher in the profile is larger than the 
compartment below, the capillary rise is reset to the value of the compartment closer to the 
groundwater table: 

IF (I.LT.NL) THEN 

IF (CAPRI(I).GT.CAPRI(1+1).AND.CAPRI(1+1).GT.0) 

& CAPRI(I) = CAPRI(1+1) 

END IF 

CAPTOT = CAPTOT + CAPRI(I) 

1 = 1 - 1 

END DO 

5.6 Changes in soil water content 

At the end of the dynamic section of the module, changes in water content of the soil 
compartments (WLCH ( I ) ) are calculated. 

1 = 1 

DO WHILE (I.LE.NL) 

IF ( I. EQ. 1 ) THEN 

WLCH(I) = WLFL(I)-WLFL(I+1)-TRWL(I)-

$ EVSWS+CAPRKI) 

ELSE 

WLCH(I) = WLFL(I)-WLFL(I+1)-TRWL(I)+CAPRI(I) 

END IF 

WCUMCH = WCUMCH + WLCH(I) 

1 = 1 + 1 

END DO 

During the integration phase of the module, changes in state variables are integrated using 
a time step of one day. 
* integration of state variables 

WLO = INTGRL(WLO,WLOCH,DELT) 

1 = 1 

DO WHILE (I.LE.NL) 
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WL(I) = INTGRL(WL( I ) ,WLCH( I ) ,DELT) 

WCL(I) = W L ( I ) / T K L ( I ) 

1 = 1 + 1 

END DO 

For puddled soils WCL ( I ) is recalculated using the subroutine SHRINK as explained in 
Section 5.2. 

5.7 Water balance check 

At the end of the integration section, a water balance check is carried out. First cumulative 
amounts of water balance components are calculated: 
* cumulative amounts 

DRAICU = DRAICU - WLFL(NL+1)*DELT 

UPRICU = UPRICU + CAPTOT*DELT 

EVSWCU = EVSWCU - EVSW*DELT 

RAINCU = RAINCU + (RAIN+IR)*DELT 

RNOFCU = RNOFCU - RUNOF*DELT 

TRWCU = TRWCU - TRW*DELT 

Changes in soil water content and ponded water depth are compared with inflow and 
outflow at the boundaries of the soil profile, using the module SUWCHK (ten Berge et al., 
1992). SUWCHK compares the total change in system water content CKWIN with the total 
of external contributions to system water content, CKWFL. 

* water balance check 

WCUM = WCUM + WCUMCH*DELT 

* contribution of profile to water balance, since start 

PROREL = WCUMCH 

WCUMCO = WCUMCO + PROREL*DELT 

* contribution of surface water to water balance, since start 

SURREL = WLOCH 

WLOCO = WL0CO+SURREL*DELT 

* total change in system water content 

CKWIN = WCUMCO + WLOCO 

* total of external contributions to system water content 

CKWFL = RAINCU + RNOFCU + EVSWCU + TRWCU + UPRICU + DRAICU 

* check this 

CALL SUWCHK (CKWFL,CKWIN,TIME) 
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5.8 Irrigation 

A switch swiTiR, set in the soil data file, determines if the soil is irrigated if the ponded 
water depth on the soil profile WLO drops below a minimum value WLOMIN (SWITIR = 2). 
Irrigation can also be read from a table defined in the soil data file (Appendix 4), RIRRIT, 

if SWITIR = 1. 

* if irrigated, supply constant irrigation (mm/d) if ponded water 

* level is below minimum 

IF (SWITIR.EQ.1) IR = LINT(RIRRIT, IRIRR, DOY) 

IF (WLO .LE. WLOMIN.AND.SWITIR.EQ.2) THEN 

IR = IRRI 

END IF 

If an irrigation table is used it is important to realize that IR for a specific day is calculated 
via linear interpolation. Each irrigation day should be preceded by a day without irrigation 
and should be followed by a day without irrigation. If for example irrigation is applied on 
calendar days 10, 50 and 100 (50 mm) than a correct RIRRIT table would be: 
RIRRIT = 1 . , 0 . , 9 . , 0 . , 1 0 . , 5 0 . , 1 1 . , 0 - , 4 9 . , 0 . , 5 0 . , 5 0 . , 5 1 . , 0 . , 

9 9 . , 0 . , 1 0 0 - , 5 0 . , 1 0 1 . , 0 . , 4 0 0 . , 0 . 

and not simply: 
RIRRIT = 1 0 . , 5 0 . , 5 0 . , 5 0 . , 1 0 0 . , 5 0 . 

as this would result in irrigation on calendar days between 10 and 50 and 50 and 100 as 
well. It is assumed that the seedbed is continuously irrigated. Water losses due to 
percolation (PERC), evaporation (EVSC) and transpiration (TRW) are covered by an irrigation 
application IR: 

IF (ITIM .LT. ITRT) THEN 

IR = PERC + EVSC + TRW 

END IF 

5.9 Other subroutines used by PADDY 

Besides the subroutines SATFLX, SHRINK and SUBSL2 explained above, PADDY uses 
the following subroutines from SAW AH (ten Berge et al., 1992): SUERR, SUWCHK, 
SUMS KM and SUWCMS. SUERR checks if a value of a variable is within a specified 
domain. SUWCHK checks the soil-water balance by comparing time-integrated boundary 
fluxes versus changes in the total amount of water contained in the system. SUMSKM 
calculates the hydraulic conductivity at given suction for compartment I on the basis of a 
chosen option. SUWCMS calculates volumetric soil-water content from soil-water suction 
and vice versa. Both SUMSKM and SUWCMS were adapted slightly and renamed to 
SUMSK2 and SUWCMS2 respectively. SUWCMS2 works with Van Genuchten 
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parameters only (see Chapter 2). SUMSK2 works with Van Genuchten parameters and 
power functions (see Chapter 2). 

5.10 Important switches 

Switch Meaning 

SWITFD 

SWITPD 

SWITPF 

SWITKH 

SWITGW 

SWITVP 

SWITIR 

profile is freely draining (1); layers are impeding water flow (0) 

topsoil is puddled (1); soil is not puddled (0) 

water retention data given at saturation, field capacity, wilt ing point and 

when air dry (0); water retention data parameterized v ia Van Genuchten 

function (1) 

no hydraulic conductivity characteristics available (0); hydraulic 

conductivity data parameterized via van Genuchten function (1); hydraulic 

conductivity data parameterized v ia power function (2) 

groundwater not present in profile (0); g roundwater depth read from input 

file (1); g roundwater depth calculated (2) 

percolation rate read from input file (0); percolation rate calculated (1) 

no irrigation (0); irrigation read from table (1); irrigation if ponded water 

depth drops be low m in imum value (2) 

5.11 Communicat ion with O R Y W A T 

Some variables are introduced in P A D D Y for communicat ion with the above-ground 

module O R Y W A T . 

To pass-on to O R Y W A T : 

NL = number of soil compar tments 

TKLP ( i ) = array with thicknesses of soil compar tments 

TKLT = total depth soil profile 

ZRTMS = max imum rooting depth soil 

WCL ( i ) = array with actual soil water contents per soil layer i 

WL0 = ponded water depth 

wcwp ( i ) = array with volumetric soil moisture contents at wilting point 

WCFC ( i ) = array with soil moisture contents at field capacity 

wcsT ( i ) = array with soil moisture contents at saturation 

To get from O R Y W A T : 

TRWL ( i ) = array wi th actual t ranspiration rates per soil layer i 

Evsc = potential evaporation rate 

m 
m 
m 

c m 3 c m - 3 

mm 
cm 3 c m - 3 

cm 3 c m - 3 

c m 3 c m - 3 

mmd-1 

mmd-1 
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5.12 Model data needs 

Data needs for PADDY are (depending on soil condition, i.e. free draining, impeded 

drainage, puddled, non-puddled): 

NL number of soil compartments 

TKL array of thicknesses of soil compartments m 

wcLi initial volumetric water content of soil compartment m 3 m - 3 

RiRRiT irrigation table m m d_1 

iRRi irrigation applied if ponded water depth lower than min imum value m m d - 1 

swiTiR irrigation switch 

swiTPD puddled / non-puddled switch 

swiTPF water retention switch 

swiTKH hydraulic conductivity switch 

swiTFD free drainage / impeded drainage switch 

swiTGW groundwater switch 

If swiTPD = l (soil is puddled): 

swiTVP percolation rate switch 

NLPUD number of puddled soil compartments 

wcsTRP saturated volumetric water content of r ipened soil m 3 m~3 

PFCR critical pF value where cracks break through compartment 

If swiTPF = o (water retention data from table): 

WCST saturated volumetric soil water content m 3 m~3 

WCFC volumetr ic water content at 'field capaci ty ' m 3 m~3 

wcwp volumetr ic water content at 'wi l t ing po in t ' m 3 m - 3 

WCAD volumetric water content when 'air-dry' m3 m~3 

If SWITPF = 1 (water retention curve is parameterized using Van Genuchten function): 

VGA Van Genuchten a lpha parameter c m - 1 

VGL Van Genuchten l ambda parameter 

VGN Van Genuch ten n pa ramete r 

VGR Van Genuchten residual water content 

WCST saturated volumetr ic soil water content of puddled topsoil m 3 m~3 

If SWITKH = l (conductivity curve is parameterized using Van Genuchten function): 

KST saturated hydraulic conductivity c m d_ 1 

VGA Van Genuchten a lpha parameter c m - 1 

VGL Van Genuchten l ambda parameter 

VGN Van Genuchten n parameter 

VGR Van Genuchten residual water content 

49 



If swiTKH = 2 (conductivity curve is parameter ized using power function): 

KST saturated hydraulic conductivity 

PN parameter n in power function for hydraulic conductivity 
cm d_ I 

If swiTFD = o (profile is not freely draining): 

- Percolation rates and saturated hydraulic conductivity: 

PERCOL percolation rate from soil data input file 

KST saturated hydraulic conductivity 

-Bund heights and ponded water depths: 

WL o i amount of initial ponded water 

WLOMiN m in imum amount of ponded water before start of irrigation 

WLOMX maximum amount of ponded water (= bund height) 

mm d_1 

cmd~' 

mm 
mm 
mm 

If swiTGW = l or swiTGW = 2 (groundwater table is present in profile): 

- If groundwater table depth is read from table (SWITGW = l): 

zwi initial depth of groundwater table below soil surface 

ZWTB table with groundwater table data 
cm 

- If groundwater table depth is calculated (SWITGW = 2): 

MAXGw max imum groundwater table depth 

MiNGW min imum groundwater table depth 

ZWA depth groundwater table is receding in case of no recharge 

ZWB sensitivity factor of recharge 

zwTBi initial depth of groundwater table below soil surface 

cm 

cm 

cm 

Methods to measure soil hydraulic properties were described in details by Wopereis et al. 
(1994). 

5.13 Model validation 

For non-puddled soil conditions, PADDY was tested using data from a drought 

experiment conducted by Hasegawa and Yoshida (1982) at IRRI. Average soil hydraulic 

characteristics at various depths were taken from Wopereis et al. (1993b). Potential 

transpiration rates, calculated by the subroutine ETPOT were multiplied by a factor 1.3 to 

allow for the high évapotranspiration rate measured in the experimental field caused by its 

isolated location (Hasegawa and Yoshida, 1978). LAI was simulated. All other crop 

parameters were taken from Kropff et al. (1994). Observed and simulated water contents 

were in excellent agreement (Figure 5.2). 

For flooded puddled soil conditions, PADDY was tested using data from a field 

experiment (field experiment 1) conducted at IRRI in the dry season of 1991 (cv. IR72) 

and described in detail by Wopereis et al. (1994) and Bouman et al. (1994). Input 

variables were rainfall, irrigation, évapotranspiration rates from daily weighing of pots 
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installed in the field and groundwater table depths measured using piezometers. Average 
and upper and lower extreme values for measured hydraulic conductivity of the plow sole 
(ks) and the non-puddled subsoil were used. Simulated and observed changes in ponded 
water depth were compared. For non-flooded soil conditions, the ORYZA_W model was 
tested using data from a second experiment (field experiment 2), conducted in the dry 
season of 1992 on a 2000m2 field (cv IR72). For details see Wopereis (1993). 

PADDY accurately predicted the changes in ponded water depth for field experiment 1 
if average hydraulic conductivity data were used (ks = 0.082 cm d_), see Figure 5.3). 
Discrepancies after calendar day 80 were due to disturbance of the plow sole by hand 
weeders. Wopereis et al. (1992) tested the differential SAW AH soil water balance module 
(ten Berge et al., 1992) with the same field data. Results from this study showed that the 
iteration procedure using in PADDY to calculate the flux through the soil profile under 
flooded soil conditions was as effective as the small time step calculations used in 
SAW AH. Observed and simulated root zone water content (Figure 5.4) were compared. 
The results indicated that the model could satisfactorily explain differences in soil water 
content across drought treatments. 

Hasegawa and Yoshida data 1978 

0.1 0.2 0.3 0.4 0.5 0.6 

simulated water content (cm3 water / cm3 soil) 

• 

D 

• 

O 

A 

A 
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o 

X 

0-5 cm 

5-10 cm 

10-15 cm 

15-20 cm 

20-25 cm 

25-30 cm 

30-40 cm 

40-60 cm 

60-80 cm 

- 1:1 line 

regr. line 

Figure 5.2 Simulated and observed soil water contents at various depths in the soil profile 
using the soil-water balance module PADDY and data from Hasegawa and Yoshida 
(1978). 
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-*— obs 

— sim (ks=0.082 cm/d) 

Figure 5.3 Simulated and observed changes in ponded water depth in field experiment 1 
using soil water balance module PADDY. 

5.14 Rice-upland crop rotations 

Puddling of soil, often practised in lowland rice cultivation destroys soil structure and 
creates a muddy toplayer, impeding water flow and hampering growth of weeds. Often an 
upland crop, like wheat or a legume is grown after rice profiting from residual moisture. 
PADDY was developed to simulate the dynamics of soil water content in the root zone of 
rice and takes into account the changes that occur in volume and porosity of a drying, 
previously puddled soil layer. The current version of PADDY can be used for crop 
rotations if a suitable model for the upland crop is available. A variable WBINIT can be 
added to the timer file, indicating if the soil-water balance model PADDY will be 
initialized or not. If WBINIT = o, the model is not initialized, and ITASK = l in PADDY 
is skipped. This option can be used for example if an upland crop is grown after rice. 
Fallow periods can be simulated by introducing a logical FALLOW. If FALLOW = . TRUE . 
the crop model is not called. If a rice crop is grown again after the upland crop, 
initialization is needed and WBINIT should again be 1. Introducing WBINIT in a RERUNS 
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file allows running of ORYZA_W for an unlimited number of cropping seasons. The 
necessary adjustments needed in ORYZA_W are already incorporated, but currently 
'commented out' by an asterix * in the first column of the FSE program. A search for the 
text string *For crop rotations* can be used to find these lines in the source code. 

0.75 
Volumetric water content 

50 60 70 80 90 100 110 120 130 140 150 160 
Day of year 

Figure 5.4 Simulated (lines) and observed (symbols) soil water content (m3 m-3) for cv. 
IR72 in field experiment 2 for drought at transplanting (0-5 cm, late recovery, closed 
circles), drought at mid-tillering (0-10 cm, late recovery, squares), drought at panicle 
initiation (0-10 cm, late recovery, triangles), and drought at flowering (0-10 cm, no 
recovery, open circles). 
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6 Drought stress responses of two lowland rice cultivars to soil-water 
status 

Quantification of physiological and morphological responses of rice to drought stress is 
essential to predict the impact of soil and weather conditions on rice production using 
process based crop simulation models. Drought may delay the phenological development 
of the rice plant (Turner et al, 1986; Puckridge and O'Toole, 1981; Inthapan and Fukai, 
1988), and affects physiological processes like transpiration, photosynthesis, respiration 
and translocation of assimilates to the grains (e.g. Fukai et al., 1985; Turner, 1986). 
Drought strongly affects the morphology of the rice plant. Leaf area development may be 
hampered due to reduced leaf expansion, leaf rolling and early senescence, and tillering 
and panicle development may be reduced (e.g. O'Toole and Cruz, 1980; O'Toole and 
Baldia, 1982). On the other hand, drought may induce more rapid root growth (e.g. 
O'Toole and Chang, 1979; O'Toole and Moya, 1981). 

For lowland rice, grown in puddled soil, hardly any information on the relation between 
root zone soil-water status and physiological and morphological responses to drought is 
available. Because of the lack of such data, rainfed rice simulation models often use 
standard relationships that have been derived for other crops (Penning de Vries et al., 
1989). 

6.1 Description of the greenhouse experiments 

At IRRI, three greenhouse experiments were conducted to study the physiological and 
morphological responses of two semi-dwarf lowland rice varieties (IR20 and IR72), grown 
in puddled clay soil and non-puddled sandy soil, to temporary drought at different growth 
stages. Responses during the drought period itself and after re-irrigation were investigated. 
The experiments aimed at finding relationships between root zone soil-water status and 
drought stress responses of the plant, for incorporation in rainfed rice simulation models. 
Drought was initiated at different growth stages and morphological and physiological 
responses were monitored. Results of these experiments are briefly reported here because 
they formed the basis of the modifications made to the crop growth module ORYZA1 for 
use in rainfed environments, explained in Chapter 7. 

The experiments were conducted in greenhouses at the International Rice Research 
Institute (IRRI) in Los Banos, Philippines (14°30' N, 121°15' E). The climate at the study 
area is characterized by two pronounced seasons: a dry season (DS) from December to 
May and a wet season (WS) from June to November, which mainly differ in the levels of 
radiation and rainfall. Temperatures are similar. Experiment 1 was conducted from 30 
January to 6 June 1992 (DS1992); Experiment 2 from 26 September 1992 to 26 January 
1993 (WS 1992) and Experiment 3 from 13 April 1994 to 29 July 1994 (DS1994). Two 
cultivars of rice (Oryza sativa L.), IR20 and IR72 were grown in pvc pots (20 cm diameter 
and 25 cm height). Three seedlings (DS1992: 21-day old; WS1992: 22-day old; DS1994: 
21-day old) were planted in the center of each pot. In 1992, all pots were filled with 
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saturated puddled Maahas clay soil (saturated volumetric water content: 0.73 cm3 water 
cm-3 soil) taken from a submerged field at the IRRI farm that was plowed and harrowed 5 
days before. The soil material comprised 13% sand, 39% silt and 48% clay. In 1994, pots 
were filled with non-puddled sandy soil material, comprising 70% sand, 17% silt and 13% 
clay (saturated volumetric water content: 0.42 cm3 water cm-3 soil). High fertilizer inputs 
were imposed to ensure that reduced growth of stressed plants was caused by drought 
only. During the experiments, occasional spraying of insecticides against whorl maggot 
and green leaf hopper was needed to avoid pest damage. 

In each of the three experiments, drought was imposed at different growth stages by 
simply withholding water application and by removing any ponded water from the soil 
surface. In 1992, drought was induced at transplanting (A), two weeks after transplanting 
(B), mid-tillering (D), panicle initiation (E) and first flowering (F). In 1994, the number of 
drought treatments was restricted to drought at three weeks after transplanting (C) and first 
flowering (F). Panicle initiation was defined as the first day when a white feathery cone 
was present inside the leaf sheath of the rice plant. First flowering was defined as the 
moment when 90% of the plants subjected to a certain treatment had at least one flowering 
panicle. For comparison, a number of pots for each variety was kept well-watered (WW). 
The degree of leaf rolling was monitored as a stress indicator. A 0 to 5 rolling factor was 
used (O'Toole and Cruz, 1980). A leaf rolling factor of 1 indicates a first sign of leaf 
rolling, whereas score 5 means that the leaf has completely rolled up. 

In 1992, the duration of drought was varied as well to investigate the responses and the 
ability of the rice plant to recover from different drought intensities. In the short duration 
treatments (or early recovery, ER), stressed plants were recovered when plants reached 
leaf rolling score 5. In the long duration treatment (or highly stressed, late recovery: LR) 
plants were recovered when they were close to dying, i.e. leaf rolling score 5 and roughly 
50% dead leaves. Recovery was achieved by re-irrigating the pots to bring the dried soil to 
saturation. In 1994, only treatment ER was included. After the onset of the recovery 
period, plants were kept well-watered until maturity. In the 1992 experiments, drought was 
maintained in a number of pots. 

Transpiration measurements 
Pots with well-watered and stressed plants were weighed daily (early morning) to estimate 
transpiration losses, using a balance with a resolution of 1 g. Transpiration rate was 
calculated as the difference in pot weight between successive days. If drought stress results 
in a reduction of LAI, the measured potential transpiration of well-watered plants will be 
higher than the potential transpiration rate of stressed plants. Radiation is the main driving 
force for differences in transpiration between the well-watered and stressed canopies. The 
potential transpiration of the stressed plants was, therefore, calculated from the 
transpiration of the well-watered plants, using the ratio of calculated absorbed fraction of 
global radiation in stressed and well-watered plants as a weighing factor: 

Tp(D) = Tp(WW) * ( 1 - e-°-4LAI(D)) / ( 1 _ e-0.4LAI(WW)) (6. l) 
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where: 
7"p(D) is the potential transpiration rate of stressed plants, 
Ip(WW) the potential transpiration rate of well-watered plants, 
LAI(D) the LAI of stressed plants, and 
LAI(WW) the LAI of well-watered plants. 

The factor 0.4 used in Eqn 6.1 is the extinction coefficient for global radiation in rice 
plants (Kropff and van Laar, 1993). Relative transpiration (RT) used here is the ratio of 
the actual transpiration of stressed plants, T^D), over that of well-watered plants corrected 
for differences in LAI using Eqn 6.1, i.e. TJD) / rp(D). 

6.2 Results of the greenhouse experiments 

For reasons of brevity only the results obtained for IR20 in Experiments 1 and 2 are 
reported here. Very similar results were, however, obtained for IR72 in Experiments 1, 2 
and 3, regardless of the soil material (puddled / non-puddled) used. 

Evaporative demand of the air 
The evaporative demand of the air in the various experiments was estimated from the 
transpiration rates of the well-watered plants between 40 and 80 days after transplanting 
(closed canopy situation). Average transpiration rate in DS1992 was 16 mm d_1 (standard 
deviation, SD: 3 mm d"1), in WS 1992: 6 mm d"1 (SD: 2 mm d"1) and in DS1994: 11 mm 
d"1 (SD: 3 mm d"1). 

Impact of drought on physiological processes 
Transpiration rates of stressed and well-watered plants were converted into relative 
transpiration rates (RT) using Eqn 6.1 and expressed as a function of soil-water pressure 
potential h. Variation of RT below and above 1 at low absolute values of h (moist soil) can 
be explained by micro-environmental variation in and between experiments and error in 
estimating daily LAI values for well-watered and stressed plants from a limited number of 
observations. 

For reasons of brevity, only the results obtained for cultivar IR20 in Experiments 1 and 
2 are reported here (Figure 6.1). Observations for the A and B treatments start at pressure 
potentials near -100 kPa only, because the pots were initially left uncovered. Logistic 
curves fitted the data reasonably well. A similar result was obtained by Sinclair and 
Ludlow (1986) for four tropical grain legumes, relating fraction of transpirable soil water 
(FTSW) to RT, defining total transpirable soil water as the difference between initial pot 
weight and its weight when RT reached 0.1. 

Differences between dry and wet season data for similar drought treatments were 
relatively minor given the contrast in evaporative demand between both seasons. Plant age 
had a more pronounced effect on the relation between RT and soil-water pressure potential 
h. Differences in rooting pattern may have had some influence in the early drought 
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y = 2 / (1 + exp(1.603E-3 * x)) 
r2 = 0.19 

10000 

Figure 6.1 Relative transpiration rates of IR20 in Experiments 1 and 2 as a function of 
soil-water pressure potential, resulting from drought at different growth stages. A: drought 
at transplanting, B: drought two weeks after transplanting, C: drought three weeks after 
transplanting, D: drought at mid-tillering, E: drought at panicle initiation; F: drought at 
first flowering. 

treatments (A, B). However, at the moment of recovery, roots extended throughout the 
(shrunken) soil volume for all treatments, indicating no restrictions on availability of soil-
water at greater depths in the pots. 

For both varieties and for all treatments, plants transpired roughly at potential rate, 
corrected for differences in LAI, until the soil-water pressure potential h reached the range 
-70 to -100 kPa (Figure 6.1). At lower soil pressure potentials, RT declined rapidly, 
especially if drought was induced at a later growth stage (D, E, F). RT values declined 
more or less linearly with log(Ä). Decline in RT started earlier for the D, E, F treatments 
than for the A, B treatments. This is probably due to the larger size and higher 
transpiration demand of the older plants. 

Relationships between leaf morphology and soil-water status 
Leaf elongation rate of plants stressed in the vegetative phase decreased rapidly after an 
initial period of normal growth. Tanguilig et al. (1987) also found an abrupt decrease in 
leaf elongation rate 11 days after initiation of drought stress in IR36. The critical soil-

58 



water pressure potential at which leaf expansion in the vegetative phase stopped 
completely (zero leaf expansion) was estimated from graphs of plant height. Because plant 
height measurements were done at weekly intervals, results should be interpreted as rough 
estimates only. In the dry season of 1992, critical pressure potentials ranged from -50 kPa 
(IR72, DLR) to -160 kPa (IR72, BER). Critical pressure potentials were lower in the wet 
season of 1992, ranging from -50 kPa (IR72, ELR) to -260 kPa (IR72, AER), probably 
due to the lower evaporative demand in the wet season. For younger plants, leaf expansion 
stopped at lower pressure potentials, which may also be attributed to a lower evaporative 
demand of a small leaf canopy. 

As soil-water status declined further, (h < -200 kPa) leaf rolling started in all 
treatments and for both varieties (Figure 6.2). Decrease in the leaf rolling factor from 1 (no 
leaf rolling) to 0 (complete leaf rolling) was observed if pressure potentials dropped 
further to -IMPa or lower. As drought progressed, the percentage of dead leaves increased 
rapidly as well (Figure 6.3). Both leaf rolling and dead leaves factors were linearly related 
with log(/i). 
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Figure 6.2 Leaf rolling factors of IR20 in Experiments 1 and 2 as a function of soil-water 
pressure potential, resulting from drought at different growth stages. A leaf rolling factor 
of 1 indicates no leaf rolling, a leaf rolling factor of 0 indicates that leaves are completely 
rolled up. A: drought at transplanting, B: drought two weeks after transplanting, C: 
drought three weeks after transplanting, D: drought at mid-tillering, E: drought at panicle 
initiation; F: drought at first flowering. 
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Figure 6.3 Dead leaves factors of IR20 in Experiments 1 and 2 as a function of soil-water 
pressure potential, resulting from drought at different growth stages. A dead leaves factor 
of 1 indicates that no dead leaves are present, a dead leaves factor of 1 indicates that all 
leaves are dead. A: drought at transplanting, B: drought two weeks after transplanting, C: 
drought three weeks after transplanting, D: drought at mid-tillering, E: drought at panicle 
initiation; F: drought at first flowering. 

The younger the plant, the lower the soil-water potential before leaf rolling started. 
Leaves rolled and dead leaves appeared relatively quickly if drought was initiated at 
flowering, probably because of the added effect of natural senescence. Summarizing the 
results of the three experiments, the response of leaf morphology to drought may be 
separated into three more or less sequential phases: 
1. Decline in leaf expansion (vegetative phase only), 
2. Leaf rolling and 
3. Early leaf senescence. 

For most treatments phases 2 and 3 showed some overlap, i.e. dead leaves appeared at leaf 
rolling scores below 5. Results obtained for the puddled clay and non-puddled sandy soil 
were remarkably similar, indicating the potential of the soil-water pressure potential to act 
as an indicator for drought in different soil types. Most drought responses started if the soil 
pressure potential dropped below -100 kPa. 

Impact of drought on phenology 
Early drought postponed the date of 50% flowering as compared to that of well-watered 
plants by a maximum of 22 days. The delay in flowering was reduced if drought was 
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Delay in date of 50% flowering of drought treatment compared with well-
watered treatment 

Figure 6.4 Comparison between the delay in date of 50% flowering and the number of 
days between zero leaf expansion and recovery for all drought treatments in Experiments 
1,2 and 3. 

induced at later growth stages. Postponement was in reasonable agreement with the 
number of days between the date of zero leaf expansion and the recovery date (Figure 6.4). 
This may indicate that if the soil is too dry to produce new leaves, the development rate of 
the crop is brought to a standstill as well. 

Impact of drought on yield and yield components 
For both varieties, yields obtained in early drought treatments (A and B) did not differ 
significantly from the well-watered yields. Drought at mid-tillering, panicle initiation and 
flowering strongly reduced yields to below 200 g m-2, mainly caused by large percentages 
of unfilled grains and a reduction in 1000 grain weight. 

Impact for modeling ofrainfed rice production 
The soil-water - drought response relationships presented above were used to modify 
ORYZA1 for use in rainfed rice environments. This modified ORYZA1 module was 
renamed to ORYWAT and is presented in the Chapter 7. Soil-water pressure potentials h, 
obtained from a soil-water balance module like PADDY may be translated into changes in 
leaf morphology, and relative transpiration. These responses can be defined as functions of 
log(/i) as shown in Figures 6.1, 6.2 and 6.3. A similar approach, linking stress factors to 
soil extractable water, was taken for other crops by Sinclair (1986) and McCree and 
Fernandez (1989). 

Results obtained from this study and from Tanguilig et al. (1987) for IR36 suggest that 
the decline in leaf elongation rate of semi-dwarf lowland rice varieties, stressed in the 
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vegetative phase, is relatively abrupt. This could be tentatively modeled as a 'step 
function' declining from 1 (normal leaf expansion) to 0 (zero leaf expansion) if the soil-
water pressure head drops below its critical value for zero leaf expansion. 

The reasonable good agreement between delay in flowering and the number of days 
between the moment of zero leaf expansion and recovery (Figure 6.4) suggests that the 
development rate stops when the soil becomes too dry for further leaf expansion and 
resumes if drought stress is released. If the critical soil-water pressure potential for zero 
leaf expansion is reached, stressed plants will still be able to produce carbohydrates for 
growth, as transpiration has not yet ceased. This extra C may be used for root development 
to explore soil-water resources, may be stored in the stem or may result in thickening of 
leaves during drought stress. In a rainfed rice model, this may be modeled as a temporary 
storage pool for carbohydrates during drought, as was also done by McCree and Fernandez 
(1989). In ORYWAT, it is assumed that the extra C is used for root growth. 

Plant size and evaporative demand of the air will influence the drought stress 
responses to some extent, as was also shown in this study. Results reported here are, 
however, not as distinct as reported by Doorenbos and Kassam (1979) for C3 crops, 
despite the clear difference in evaporative demand of the air in the wet and dry season 
experiments. 

Root distribution in the field is very important. Water uptake rate of rice roots from a 
top soil layer may decrease with decreasing soil-water potential, but roots at greater depth 
may make up for this difference by increasing water uptake, even if the soil-water 
potential at that depth is also decreasing (e.g. Hasegawa and Yoshida, 1982). In this 
experiment roots were limited to a cylinder of 20 cm height and 20 cm diameter. In reality 
roots may grow deeper, especially in the absence of a hard plow pan. For modeling 
purposes it is important to establish extraction rates at different depths in the root zone. 

Results reported here are specific for two semi-dwarf lowland varieties. Dryland rice 
varieties are known to be more 'pessimistic' (Bradford and Hsiao, cited in Dingkuhn et al., 
1989) in their drought responses as they show leaf rolling at higher leaf water potentials 
(e.g. Turner et al., 1986; Dingkuhn et al., 1989). They also tend to have a deeper root 
system than lowland rice varieties (Yoshida, 1981) and may therefore be more effective in 
exploring soil-water resources. 

The advantage of expressing drought stress responses as a function of soil-water 
pressure potential is that they can be used for any soil type, even when the soil shrinks, 
provided a good soil-water balance model and knowledge of the soil's water retention and 
soil shrinkage curve, linking h to soil-water content 9, is available. If such drought 
responses are used as an input for a rice growth simulation model ORYZA1, predictions 
of rice yield under water-limited conditions can be made. 

6.3 Conclusions 

The results of the three greenhouse experiments can be summarized as follows: Three 
greenhouse experiments were conducted to investigate drought stress responses of two 
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lowland rice cultivars, grown in puddled clay and non-puddled sandy soil. Results 
obtained for both varieties and for both soil materials were quite similar. Plant age had a 
more distinct effect on drought stress responses than differences in evaporative demand of 
the air between dry and wet seasons. Roots extended throughout the (shrunken) soil 
volume for all treatments. Differences in rooting pattern among drought treatments are 
therefore expected to be minor. Drought in the vegetative phase delayed phenological 
events but did not result in significant yield losses if drought occurred within 2 weeks after 
transplanting. Drought in the reproductive phase resulted in substantial yield losses. 

Drought affected transpiration rates by closure of stomata and changes in leaf 
morphology of the rice plant. The first observed response, if drought was initiated in the 
vegetative phase, was a relatively abrupt decline in leaf expansion. Logistic functions 
could be used to describe the decline in relative transpiration, corrected for differences in 
LAI, as a function of log(/z). Leaf rolling and rate of senescence were linearly related to 
log(/ï). These functions were used to modify the rice growth model ORYZA1. The 
resulting module, ORYWAT is explained in detail in Chapter 7. 
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7 The ORYWAT growth module 

ORYWAT is based on ORYZA1, version 1.3 (Kropff et al., 1994), an ecophysiological 

model for fully irrigated rice production. ORYWAT simulates rice growth and 

development under fully irrigated and water limited conditions. Nutrient supply is 

considered non-limiting and any influence of pests, diseases or weeds is assumed absent. 

The main additions to ORYZA1, included in ORYWAT, are the calculation of root 

growth, potential and actual évapotranspiration and the effects of drought stress on growth 

and development. In this chapter, only these modifications will be described; the reader is 

referred to Kropff et al. (1994) for a description of the crop growth processes on potential 

production level. 

The drought stress effects in ORYWAT on growth and development were derived from 

the pot experiments discussed in Chapter 6 and were related to critical pF values of the 

root zone. An overview of the dependency of drought stress factors on soil-water potential 

as observed for IR20 is given in Figures 7.1a and 7.1b. These functions are used in 

ORYWAT. Drought stress responses are defined as a function of the pF of the root zone. 

pF is defined as the logarithm of soil pressure potential: log I10*/il = pF, with h in kPa. 

E.g. if the soil-water pressure potential is 100 kPa, the corresponding pF value is 3. For 

the sake of simplicity this was also done for the decrease in relative transpiration rate, 

although a logical curve was fitted to the data (Figures 7.1a and 7.1b, see also Chapter 6). 

For every response, critical pF values can be defined: an upper limit, that indicates the 

start of stress, and a lower limit, that indicates 100% stress: 

ULLS: upper limit leaf rolling: start of leaf rolling (-) 
LLLS: lower limit leaf rolling: leaves are completely rolled up (-) 
ULDL: upper limit dying leaves: start of senescence (-) 
LLDL: lower limit dying leaves: 100% dead leaves (-) 
ULRT: upper limit reduction relative transpiration rate: start of reduction (-) 
LLRT: lower limit reduction relative transpiration rate: transpiration rate is zero (-) 

For leaf expansion, a step function was assumed in Chapter 6. For this reason only one 

limit, STLG is defined: 

STLG: limit to leaf growth: inhibition of leaf expansion (-) 

Drought stress factors apply for the whole crop growth duration, although in reality plant 

age influences drought stress responses as a function of soil-water pressure potential to 

some extent (see Chapter 6 and Figures 7.1a and 7.1b). 

7.1 Root growth 

Rooting depth is an important variable in calculating root zone water content and water 

uptake for transpiration by the plants. Roots of rice cultivars in lowland soils rarely grow 
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Figure 7.1 Relationship between soil-water pressure potential and drought stress factors 
for IR20; (a) shows results for treatments A and B, (b) shows results for treatments D, E 
and F. For explanation of the treatments see Section 6.1. 
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deeper than 40 cm; about 90% of the total root system is usually found in the top 20 cm. 

Roots of upland rice cultivars in light-textured upland soils may grow as deep as 0.8-1.0 m 

(Hasegawa and Yoshida, 1982). In ORYWAT, rooting depth, ZRT, is calculated as integral 

of ZRT on the previous day with the daily root growth rate, GZRT: 

ZRT = INTGRL (ZRT, GZRT, DELT) 

There is a wealth of literature showing root length densities of rice as a function of soil 

depth. From such data an estimate of GZRT can be made. Usually GZRT is in the range of 

0.01 - 0.02 m d_1 depending, among others, on rice variety, soil texture, soil tillage and 

presence of hard layers. 

- In LOWBAL (SWIWLP = l ) it is assumed that roots do not penetrate the plow sole, and 

the maximum rooted depth, ZRTM, is determined by the thickness of the puddled layer, 

TKLT. 

- In SAHEL (SWIWLP = 2) ZRTM is determined by the maximum rooting depth of the rice 

crop itself, ZRTMC, or by the rootable depth of the soil profile, ZRTMS (e.g. as determined by 

an impermeable layer). 

- In PADDY (SWIWLP = 3) rooting depth only increases beyond ZRTMCW, defined in the 

crop data file, in case of drought (i.e. soil water content of the root zone drops below the 

upper limit for inhibition of leaf expansion). In case of drought, the maximum rooting 

depth is determined by the maximum rooting depth of the rice crop, ZRTMCD, or by the 

rootable depth of the soil profile, ZRTMS. 

IF (SWIWLP .EQ. 3) THEN 

IF ((.NOT. DROUT).AND.(ZRT.LE.ZRTMCW)) THEN 

ZRTM = MIN(ZRTMCW, ZRTMS, TKLT) 

ELSE IF ((.NOT. DROUT) .AND. (ZRT.GT.ZRTMCW)) THEN 

ZRTM = MIN(ZRT, ZRTMS, TKLT) 

ELSE IF (DROUT) THEN 

ZRTM = MIN(ZRTMCD, ZRTMS, TKLT) 

END IF 

* In all other cases, roots grow straight to max. length ZRTMC 

ELSE 

ZRTM = MIN(ZRTMC, ZRTMS, TKLT) 

END IF 

ZRT = INTGRL (ZRT, GZRT, DELT) 

ZRT = MIN (ZRT, ZRTM) 
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7.2 Root zone water content 

Regardless of which soil water balance module is chosen, the total actual water content in 

the root zone, WCRREL is calculated as the sum of the water content of each individual soil 

layer in the root zone: 
DO 3 0 1=1,NL 

ZRTL = MIN(TKL(I),MAX((ZR-ZLL),0.0)) 

WCRREL = WCRREL + (ZRTL/(ZR+1.0E-10))*WCLQT(I) 

in which ZR is the total rooted depth , TKL ( i ) is the depth of soil layer i , ZLL is the depth 

of accumulated soil layers, ZRTL is the depth of the roots in the soil layer under 

consideration, and NL is the number of soil layers. 

7.3 Critical soil water contents 

In the subroutine DSTRES, the critical pF values defined in the crop data input file 

(Appendix 1) are converted into soil water contents per layer. The critical soil water 

contents per soil layer i , defining each drought stress response, are calculated from the 

water retention curve (SWITPF = l ) using subroutine SUWCMS2, or are derived via 

interpolation (SWITPF = o) between volumetric water contents at field capacity (WCFC ( I ) ) 

and wilting point (WCWP ( I ) ). 

IF (SWITPF.EQ.1) THEN 

CALL SUWCMS2(I,2,WCST(I),STLGW(I),10**STLG) 

CALL SUWCMS2(I,2,WCST(I),ULLSW(I),10**ULLS) 

CALL SUWCMS2(I,2,WCST(I),LLLSW(I),10**LLLS) 

CALL SUWCMS2(I,2,WCST(I),ULDLW(I),10**ULDL) 

CALL SUWCMS2(I,2,WCST(I),LLDLW(I),10**LLDL) 

CALL SUWCMS2(I,2,WCST(I),ULRTW(I),10**ULRT) 

CALL SUWCMS2(I,2,WCST(I),LLRTW(I),10**LLRT) 

ELSE 

STLGW(I)=WCWP(I) + ( (WCFC (I)-WCWP (I) )/2.2) M4.2-STLG) 

ULLSW(I)=WCWP(I)+((WCFC(I)-WCWP(I))/2.2)*(4.2-ULLS) 

LLLSW(I)=WCWP(I)+((WCFC(I)-WCWP(I))12 .2)*(4.2-LLLS) 

ULDLW(I)=WCWP(I)+((WCFC(I)-WCWP(I))/2.2)*(4.2-ULDL) 

LLDLW(I)=WCWP(I) + ( (WCFC (I)-WCWP (I) ) /2.2) M4.2-LLDL) 

ULRTW(I)=WCWP(I)+((WCFC(I)-WCWP(I))/2.2)*(4.2-ULRT) 

LLRTW(I)=WCWP(I)+((WCFC(I)-WCWP(I))/2.2)*(4.2-LLRT) 

END IF 

These individual soil water contents are then summed up over the root zone for leaf 

growth inhibition and for the appearance of dead leaves due to early senescence: 

STLGWR = STLGWR + (ZRTL/(ZR+1.0E-10))*STLGW(I) 

ULDLWR = ULDLWR + (ZRTL/(ZR+1.0E-10))*ULDLW(I) 

LLDLWR = LLDLWR + (ZRTL/(ZR+1.0E-10))*LLDLW(I) 
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7.4 Actual transpiration and drought stress factors 

Actual transpiration rate 
In DSTRES, per layer i, the actual water content WCLQT(I) is compared with the upper 
and lower limits for transpiration (ULRTW ( i ) and LLRTW ( i ) respectively), via the factor 
DSETR: 

DSETR = LIMIT(0.,1. , 

$ (WCLQT(I)-LLRTW(I))/(ULRTW(I)-LLRTW(I))) 

The amount of water available to the plants is the volume of water between actual water 
content and the lower limit of dead leaves, if roots can explore the root zone completely: 

WLA = MAX ( 0 . 0 , ( W C L Q T ( I ) - L L D L W ( I ) ) * T K L ( I ) * 1 0 0 0 . ) 

The volume of water taken up by the roots, i.e. the transpiration of the crop needs to be 
divided over the rooting depth. In DSTRES it is assumed that the maximum uptake Sm!a is 
constant over depth. This means that, under optimal water conditions, the transpiration 
load of the crop is divided equally over all soil layers. The water uptake TRRM at any depth 
x, is then equal to the potential transpiration rate, TRC, divided by the rooting depth, ZRT, 
i.e. TRRM = TRC/ZRT. The transpiration rate per layer i , TRWL(I) and the total 
transpiration rate TRW are calculated as follows: 

TRRM = TRC/(ZRT+1.0E-10) 

TRWL(I) = MIN(DSETR*ZRTL*TRRM, WLA/DELT) 

TRW = TRW+TRWMD 

Another option would be to assume that Smax declines with increasing rooting depth. It can 
be derived that in that case at depth x, the water uptake TRRM is equal to: TRC* [2 / ZRT - (2 
* x) I (ZRT)2], which can easily be adopted in DSTRES. 

Leaf rolling stress factor 
In DSTRES, the leaf rolling score of every soil layer is calculated and a total leaf score LS 
over the root zone is derived: 

LS = LS + (ZRTL/ZRT)*LIMIT(0.,1., 

$ (WCLQT(I)-LLLSW(I))/(ULLSW{I)-LLLSW(I))) 

The leaf area index simulated in the main crop model is multiplied with the stress factor 
LSTRS. The maximum reduction of LAI due to leaf rolling is assumed to be 50%. LSTRS 

therefore varies between 0.5 and 1. LSTRS is derived in DSTRES as follows: 
LSTRS = 0 . 5 * L S + 0 . 5 

Early senescence stress factor 
In DSTRES the dead leaves score of every soil layer is calculated and a total dead leaves 
score DS over the root zone is derived: 
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DS = DS + (ZRTL/ZRT)*LIMIT(0.,1., 

$ (WCLQT(I)-LLDLW(I))/(ULDLW(I)-LLDLW(I))) 

The DSTRS factor used in the main crop growth model is equal to DS and varies between 

Oand 1: 

DSTRS = DS 

Reduced development rate 

In DSTRES, it is assumed that the development rate of the crop stops if the water content 

of the root zone drops below STLGWR. A factor DVEW is set to 0 in this case. No delay in 

development is simulated when drought occurs in the reproductive phase. When there is 

no drought stress, DVEW equals 1. If there is drought, a counter ICNT is set to 1. This 

counter is used in the crop growth module ORYWAT for calculation of LAI (see Section 

7.5). 

IF (WCRREL.LE.STLGWR) THEN 

END IF 

DROUT 

ICNT 

DVEW 

ELSE 

DVEW 

END IF 

= 
= 
= 

= 

.TRUE 

1 

0. 

1. 

Reduced CO2 assimilation rate 

In DSTRES, the reduction factor on daily total gross C0 2 assimilation of the crop is, 

PCEW, calculated as the ratio of actual canopy transpiration over potential canopy 

transpiration: 

PCEW = T R W / ( T R C + l . E - 1 0 ) 

7.5 Drought stress effects simulated by ORYWAT 

Inhibition of leaf growth 

In ORYWAT, the LAI is modelled as exponential function of a relative growth rate, RGRL, 

when LAI is below 1 and the development stage DVS is below 0.6. If LAI is larger than 1 or 

Dvs is larger than 0.6, the specific leaf area, SLA, concept is used and LAI is calculated 

from simulated leaf weight, WLVG, (see Kropff et al., 1994). However, when there has been 

drought stress as indicated by the counter ICNT, which is set in the subroutine DSTRES, 

the LAI at values lower than 1 are also simulated using the specific leaf area, SLA, concept: 

IF (LAI .LT. 1.0 .AND. DVS .LT. 06 .AND. ICNT .EQ. 0) THEN 

LAI = LAII*NH*NPLH/NPLSB*(EXP(RGRL*(TSLV-TSLVTR-TSHCKL))) 

ELSE 

LAI = 0.5*SAI + SLA*(WLVG-WLVEXP) + LAIEXP 
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END I F 

The counter ICNT = o indicates that there is no drought stress, and ICNT = 1 means 

drought stress. This effect of drought stress on leaf area production is 'permanent', i.e. 

when there has been drought stress at any time in the growing season, ICNT is set to 1 and 

will not be reset to 0 when there is no longer drought stress. Thus, during and after a 

drought spell, LAI will always be calculated from simulated leaf weight using the SLA 

concept. This approach was chosen because in a field experiment at IRRI it was found that 

rice that suffered from severe drought at transplanting was not able to grow exponentially 

up to LAI = 1 after recovery (Wopereis, 1993, page 129-130). 

With drought stress, photosynthesis no longer leads to leaf production and the 'excess' 

carbohydrates are allocated to the roots, if the flowering stage has not been reached (DVS 

<1): 

IF (WCRREL.LE.STLGWR.AND.DVS.LT.1.) THEN 

FSH = 0. 

FRT = 1. 

END IF 

Reduced development rate 

During the vegetative growth period, the development rate of the crop, DVR, is calculated 

from the vegetative development rate, DVRV, the daily heat units for phenological 

development, HU, and the stress factor for development rate, DVEW (as calculated in the 

subroutine DSTRES): 

DVR = DVRV *HU* DVEW 

Leaf rolling 

Leaf rolling affects the leaf area index LAI. The LAI is first calculated in the subroutine 

SUBLAI of ORYWAT and is then multiplied with the leaf rolling stress factor calculated 

by the subroutine DSTRES: 

LAI = LAI*LSTRS 

Leaf senescence 

The effect of drought on dying of leaves (early senescence) is determined by the stress 

factor DSTRS, calculated in the subroutine DSTRES. If DSTRS is lower than 1, the variable 

WLVGIT registers what the current green leaf mass is. This amount cannot increase unless 

drought is released. The stress factor DSTRS determines the percentage of dead leaves. The 

variable DLDRT keeps track of the dead leaf mass due to this early senescence process. The 

rate of leaf death due to drought, DLDR, is calculated as: 

DLDR = 0. 

* 7. Leaf death as caused by drought stress 

IF (DSTRS.EQ.1) THEN 

DLEAF = .FALSE. 

DLDRT = 0. 
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END IF 

IF ((DSTRS.LT.1.).AND.(.NOT.DLEAF)) THEN 

WLVGIT = WLVG 

DLEAF = .TRUE. 

KEEP = DSTRS 

END IF 

IF (DLEAF) THEN 

IF (DSTRS.LE.KEEP) THEN 

DLDR = (WLVGIT/DELT)*(1.-DSTRS)-DLDRT/DELT 

KEEP = DSTRS 

DLDRT = DLDR*DELT + DLDRT 

END IF 

END IF 

The weight of green leaves, WLVG, is calculated as the integral of the previous WLVG with 

the growth rate of leaves, GLV, the loss rate of leaves due to 'regular' senescence, LLV, and 

the death rate of leaves due to drought, DLDR. Similarly, the weight of dead leaves, WLVD, is 

calculated as the integral of the previous WLVD with the loss rate of leaves due to 'regular' 

senescence, LLV, and the death rate of leaves due to drought, DLDR. 

WLVG = INTGRL (WLVG, GLV - LLV - DLDR, DELT) 

WLVD = INTGRL (WLVD, LLV + DLDR , DELT) 

Reduced CO2 assimilation rate 

The gross daily assimilation rate, DTGA, is reduced by drought stress with the factor PCEW 

as calculated in the subroutine DSTRES: 

DTGA = DTGA * PCEW 

7.6 Maximum drought stress duration 

The effects of drought stress on growth and development of rice as implemented in 

ORYWAT were derived from pot- and field experiments at IRRI (Wopereis, 1993). The 

maximum duration of drought stress in these experiments was 25 days (Wopereis 1993, p. 

125). The number of consecutive days with drought stress, ISTD, is counted in ORYWAT 

and the simulation is stopped when more than 25 stress days are accumulated. It is 

assumed that plants recover completely from drought stress when more than 3 consecutive 

non-drought days, INSD, are recorded. The counter for accumulated drought stress days is 

then reset to 0. 

* If rel. water content greater than STLGWR: no more drought 

* Reset stress-day counters to 0 if there are more than 3 

* days without drought. 

IF (WCRREL.GT.STLGWR) THEN 

DROUT = .FALSE. 
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INSD = INSD + INT(DELT) 

IF (INSD.GT.3) ISTD = O 

END IF 

* Count the drought stress days 

IF (WCRREL.LE.STLGWR) THEN 

ISTD = ISTD + INT(DELT) 

INSD = 0 . 

END IF 

* Stop the simulation when number of stress days exceeds maximum 

* value (from greenhouse experiments Wopereis) 

IF (ISTD.GE.25) THEN 

PRINT *,' DROUGHT TOO LONG => SIMULATION STOPPED' 

CALL OUTCOM('More than 25 days drought: simulation stopped') 

TERMNL = .TRUE. 

END IF 

The simulation is also stopped when the (relative) water content in the root zone drops 
below the lower limit of dead leaves, LLDLWR: 

* Check if lower limit dead leaves is reached 

IF (WCRREL.LE.LLDLWR) THEN 

PRINT *,'Soil dryer than lower limit dead leaves' 

PRINT *,'=> Simulation stopped' 

CALL OUTCOMf'soil dryer than LLDL - simulation stopped') 

TERMNL = .TRUE. 

END IF 

7.7 Model validation 

ORYZA_W was validated using data from a field experiment with four drought 
treatments conducted at IRRI in 1992 (Wopereis, 1993), conducted under optimal 
fertilizer supply and full control of pests and diseases. The model could satisfactorily 
explain differences in biomass production, LAI and yield across drought treatments. 
Yields ranged from 5 - 8.4 t ha-1. 
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8 Evaporation and transpiration 

In the subroutine ETPOT, the Penman reference evaporation and transpiration and the 

potential soil evaporation and canopy transpiration are calculated. Strictly speaking, 

transpiration is the loss of water from the plants, and evaporation is the loss of water from 

the soil or from a free-water surface. Evapotranspiration covers both transpiration and 

evaporation. The calculation of the Penman reference évapotranspiration, and the 

following explanatory text are largely based on van Laar et a l , 1992. 

8.1 Penman reference évapotranspiration 

Penman (1948) calculated potential evaporation and évapotranspiration from free-water 

surfaces, bare soil and low grass swards (reference crop). Potential means that there are no 

limitations with respect to the supply of liquid water to the evaporating surface. This 

potential évapotranspiration is the sum of a radiation term EVR and a drying power term 

EVD (both in mm day -1). These terms are different for soil, open water and for a 

(reference) crop. In a production system of rice, three situations can be discerned: open 

water (lowland environment, in the main field before transplanting), a crop with soil 

background (rainfed upland; rainfed lowland with dried-out soil) and a crop with a water 

layer underneath (lowland). For these situations, separate values for EVR and EVD are 

calculated. 

Radiation term EVR 

The radiation term EVR depends on net radiation, NRAD (J i r r2 d_1), the latent heat of 

evaporation, LHVAP (equal to 2.4 106 J kg - 1 at 30°C with only a small temperature 

dependence) and a weighting factor (SLOPE/ (SLOPE+PSYCH)), where SLOPE (mbar °C~') is 

the tangent of the relation between saturated vapour pressure (mbar) and temperature (°C) 

and PSYCH (0.67 mbar °C_1 at 0 meter elevation) the psychrometer constant (Monteith, 

1965): 
LHVAP = 2.4E6 

PSYCH =0.67 

EVR = (1./LHVAP)*(SLOPE/(SLOPE+PSYCH))*NRAD 

EVRWL = (1./LHVAP)*(SLOPE/(SLOPE+PSYCH))*NRADWL 

EVROW = (1./LHVAP)*(SLOPE/(SLOPE+PSYCH))*NRADOW 

In which EVR is the radiation term for crop/soil system, EVRWL is the radiation term for 

crop/water layer system, and EVROW is the radiation term for open water, SLOPE is 

calculated from daily average temperature, TAV:. 

SVP = 6.11 * EXP(17.4 * TAV / (TAV + 239.)) 

SLOPE = 4158.6 * SVP / (TAV + 239.)**2 
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Net radiation, NRAD, depends on incoming short-wave radiation (RDT, J m~2 d_1)> the 

reflection or albedo value, ALB, ALBWL or ALBOW (unitless), and net outgoing long-wave 

radiation, RLWN: 

NRAD = (l.-ALB)*RDT-RLWN 

NRADWL =(1.-ALBWL)*RDT-RLWN 

NRADOW = (1.-ALBOW)*RDT-RLWN 

Here, NRAD is the net radiation for crop/soil system (or of bare soil), NRADWL is the net 

radiation for a crop/water layer system, and NRADOW is the net radiation for a layer of open 

water. The albedo for soil, open water and crop/soil and crop/water layer systems is 

calculated as follows: 

• The soil's albedo, ALBS, depends on the surface color and the moisture content. Albedo 

values for dry soil, ALBSD, vary from 0.15 (clay) to 0.40 (dune sand). The dependence on 

soil moisture is described in relation to the average water content of the top soil layer (ten 

Berge, 1989). 

• The albedo of a layer of water, ALBOW, is about 0.05. 

• The albedo of canopy/soil, ALB, is composed of that of the soil, ALBS, and that of the 

canopy, ALBC; the albedo of canopy/water layer, ALBWL, is composed of that of the water 

layer, ALBOW, and that of the canopy, ALBC. Here, a value of 0.25 is used for ALBC. The 

relative contributions of both albedos depend on the shading of the soil by the crop and is 

calculated on the basis of the leaf area index, LAI. An extinction coefficient (for short­

wave radiation penetrating the crop) of 0.5 is used here. When LAI is 0, the albedo for bare 

soil or an open water layer is obtained. 

ALBDS =0.25 

ALBOW =0.05 

ALBC =0.25 

ALBS = ALBDS*(1.-0.5*WCUP/WCSTUP) 

ALB = ALBS*EXP(-0.5*LAI)+ALBC*(1.-EXP(-0.5*LAI)) 

ALBWL = ALBOW*EXP(-0.5*LAI)+ALBC*(1.-EXP(-0.5*LAI)) 

Net long-wave radiation, LWN (J m~2 d -2) is approximated by three semi-empirical 

functions, (Penman, 1956; derived from the original Brunt (1932) formula), accounting for 

temperature, BBRAD (J m - 2 s -2), vapour pressure in the atmosphere, FVAP (unitless) and sky 

clearness, FCLEAR (unitless). 

BOLTZM = 5.668E-8 

BBRAD = BOLTZM*(TAV+273.)**4 

FVAP = 0.56-0.079*SQRT(VAPOR) 

CLEAR = LIMIT(0., 1., ((RDT/DS0)-ANGA)/ANGB) 

FCLEAR = 0.1+0.9»CLEAR 
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RLWN = BBRAD*FVAP*FCLEAR*86400. 

Here, the sky clearness factor, CLEAR (unitless), is calculated using the Angström formula, 
in which ANGA and ANGB are empirical constants and DSO is the extra-terrestrial radiation, 
i.e. the radiation intensity at the top of the atmosphere. The values for ANGA and ANGB are 
related to climatic conditions (see Table 8.1), and are read from the weather input file (see 
Chapter 9). The value of DSO depends on location on earth (latitude) and time of the year, 
and is calculated in the subroutine ASTRO. The actual vapour pressure, VAPOR (mbar (daily 
average)) to calculate FVAP is read from the weather input file. 

Drying power term EVD 
The drying power term is calculated from Penman's drying power term, DRYP for a 
reference crop and DRYPOW for an open water layer, and from SLOPE and PSYCH (see 
above): 

EVD = DRYP*PSYCH/(SLOPE+PSYCH) 

EVDOW = DRYPOW*PSYCH/(SLOPE+PSYCH) 

in which EVD is the drying power term for crop/soil or crop/water layer, and EVDOW is the 
drying power term for open water layer, DRYP and DRYPOW (mm d_1 mbar °C_1) are 
calculated from saturated vapour pressure, SVP (mbar), the actual vapour pressure, VAPOR 

(mbar), and a wind speed function, WDF for a reference crop and WDFOW for an open water 
layer (mm d"1 oC"1): 

DRYP = (SVP-VAPOR) *WDF 

DRYPOW = (SVP-VAPOR)*WDFOW 

The wind function estimates the conductance for transfer of latent and sensible heat from 
the surface to the standard height and depends on roughness of the surface and 
atmospheric stability. In ETPOT, the wind function is calculated from wind speed WIND 

(m s~') which is read from the weather input file: 
WDF = 0 . 2 6 3 * ( 1 . 0 + 0 . 5 4 * W I N D ) 

WDFOW = 0 . 2 6 3 * ( 0 . 5 + 0 . 5 4 * W I N D ) 

Table 8.1. Indicative values for empirical constants in the Angstrom formula in relation to 
general climatic zones used by the FAO (Frère and Popov, 1979). 

ANGA ANGB 
Cold and temperate zones 0.18 0.55 
Dry tropical countries 0.25 0.45 
Humid tropical zones 0.29 0.42 
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8.2 Potential canopy transpiration and soil evaporation 

The radiation term EVR and the drying power term EVD of the 'Penman' évapotranspiration, 

computed above, are used to calculate the potential transpiration of the canopy (with soil 

background or water layer) and the potential evaporation of the soil and open water layer. 

Potential canopy transpiration 

The potential transpiration of rice with a water layer is 

TRCWL = EVRWL*(l.-EXP(-0.5*LAI))+EVD*(MIN(2.5,LAI)) 

and with a soil background 

TRCS = E V R * ( 1 . - E X P ( - 0 . 5 * L A I ) ) + E V D * ( M I N ( 2 . 5 , L A I ) ) 

Only part of the radiation term, EVR, will be used by the crop, if not all radiation is 

intercepted by the canopy, which is exponentially related to leaf area. Radiation not used 

by the canopy will reach the soil or water layer and contribute to potential soil or water 

evaporation. The average extinction coefficient for visible and near infrared radiation is 

about 0.5. 

The drying power of the air, EVD, is only effective up to a cumulative leaf area index of 

2.5. Lower leaves do not contribute much to transpiration because little light penetrates 

deep into the canopy, hence their stomatal resistance is higher. Also air humidity is higher 

and wind speed is reduced. For this upper layer of the crop, the drying power term of the 

reference crop is used. 

Potential soil and water evaporation 

In lowland environments, rice is generally transplanted from seed-bed into the main field. 

Before transplanting, the main field is puddled and a layer of ponded water is present. The 

evaporation from this open water layer, EVSCOW, is: 

EVSCOW = EVROW + EVDOW 

Here, both the radiation term and the drying power term of an open water layer are used 

since there is no crop present. After transplanting, only radiation transmitted through the 

canopy is available for evaporation from the water layer (radiation term). The canopy also 

reduces the wind speed (drying power term). Evaporation from this 'shielded' water layer, 

EvscwL, becomes: 

EVSCWL = EXP(-0.5*LAI)*(EVRWL+EVD) 

In upland environments with a non-puddled soil, and in lowland with a dried-out puddled 

layer at the end of the growing season, the potential evaporation from the soil, EVSCS, is: 

EVSCS = EXP(-0.5*LAI)*(EVR+EVD) 
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When there are no rice plants present (before emergence), LAI = o, and EVSCS becomes 
the evaporation of bare soil. 

Finally, in ETPOT, the potential values for transpiration, TRC, and evaporation, EVSC, 
are selected for the relevant production environment. The switch SWIWLP controls this 
selection: 0 = irrigated lowland; 1 = rainfed lowland; 2 = rainfed upland and 3 = any rice 
growing condition (both irrigated and rainfed upland or lowland). 

In lowland environments, a layer of ponded water is generally present on the fields. 
However, under unfavourable weather conditions, this layer can disappear when the crop 
is not irrigated. The depth of ponded water, WLO, is used to select the appropiate 
transpiration and evaporation rates, WLO is calculated in the PADDY and LOWBAL water 
balance and passed on to ETPOT. 

IF (WLO .GT. 0) THEN 

TRC = TRCWL 

EVSC = EVSCWL 

ELSE IF (WLO .LT. 0) THEN 

TRC = TRCS 

EVSC = EVSCS 

END I F 

Before transplanting, it is assumed that in both irrigated and rainfed lowland, a layer of 
ponded water is present in the main field. Evaporation is therefore evaporation from an 
open water layer: 

EVSC = EVSCOW 

In rainfed upland environments, a soil background is always present: 
TRC = TRCS 

EVSC = EVSCS 
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9 Running and editing ORYZA_W 

9.1 Input and output Hie control 

Under the SARP-shell (Riethoven, 1994) the control over the input and output files is 
facilitated with a menu-system. If the FORTRAN program ORYZA_W is run without this 
shell, the input and output files are controlled in the file CONTROL.DAT (an example is 
given in Appendix 5). The content of this file is: 

FiLEii = name of file that contains the crop data, e.g. 'RICE_W.DAT' 
FILEI2 = name of file that contains the soil data, e.g. 'LOAM.DAT' 
FiLEiT = name of file that contains timer variables, e.g. 'TIMER.DAT' 
FiLEiR = name of file that contains data for reruns, 'RERUNS.DAT' 
FiLEON = name of output file, 'RESULTS.OUT' 
FiLEOL = name of the log file 'RESULTS.LOG' 

Crop data 
Crop data are the parameter values needed for the above-ground growth module 
ORYZAW. An example is given in Appendix 1 for crop data for IR72, derived from field 
experiments at IRRI (Kropff et al., 1993). Crop data should preferably be derived for the 
local rice variety under consideration, from field experiments under potential growth 
conditions. 

Soil data 
Soil data are the parameter values needed for the water balance modules PADDY, 
LOWBAL or SAHEL. It is important to select the right input file for each soil-water 
balance module. When the wrong file is supplied, ORYZA_W is aborted and gives an 
error message. Examples of soil files are given in Appendix 2. For the SAHEL water 
balance module, 18 example files are supplied that contain soil-physical data derived from 
measurements on Dutch soils (Wösten et al., 1987). 

Timer data 
Timer data control the model environment, the selection of weather data and the timing of 
the growing season. An example is given in Appendix 5. Important parameters in this file 
are: 

Production environment 
swiWLP = switch to control the production environment: 

0 = irrigated; 
1 = rainfed lowland using LOWBAL; 
2 = rainfed upland using SAHEL; 
3 = irrigated or rainfed lowland or upland using PADDY 



Weather data 

The selection of files containing weather data is controlled by the parameters: 

WTRDiR = directory name where the weather files are stored 

CNTR = country name of the weather station, e.g. 'PHIL' for the Philippines 

ISTN = station number of weather data, e.g. 1 

Also, the Angstrom parameters have to be given and a multiplication factor to convert 

radiation data from the weather file from kJ or mJ into J: 

ANGA 

ANGB 

MULTIP 

= Angstrom parameter A: dry tropical, A=0.25; humid tropical, A=0.29; 

cold and temperate A=0.18 

= Angstrom parameter B: dry tropical, B=0.45; humid tropical, B=0.42; 

cold and temperate, B=0.55 

= multiplication factor for radiation: 

if radiation data are in kJ: MULTIP = l , 

if radiation data in mJ: MULTIP = 1000 

Weather data itself are stored in files according to the specifications of the WEATHER 

system (van Kraalingen et al., 1990). The name of a weather file consists of a country-

code, CNTR, with an extension designating the number of the weather station, ISTN (E.g. 

PHIL1 for weather station 1 in the Philippines). The data in a weather file should be daily 

values of radiation, minimum temperature, maximum temperature, vapour pressure, wind 

speed and rainfall. The format of the data should adhere to strict rules. An example of a 

weather data file in the WEATHER format is given in Appendix 5. 

Timer variables 

IYEAR 

STTIME 

FINTIM 

DTRP 

DELT 

= year of weather data (= year of simulation), e.g. 1991 

= start day of simulation (sowing day), e.g. 150 

= finish time of simulation; a high value should be supplied here to 

guarantee the continuation of the simulation until the crop has reached 

maturity, e.g. 1000 

= days between sowing and transplanting, DTRP = o for direct-seeding. 

= time step of integration, 1 

Output options 

These parameters are preset and normally do not need changing. 

I FLAG 

COPINF 

PRDEL 

= indicates where weather error and warnings go, e.g. 1100 means errors 

and warnings only to log file, see WEATHER manual, van Kraalingen et 

al., 1990 

= swich variable denoting what to be done with input files: 

'Y' = copy input files into output file 

'N' = do not copy input files into output file 

= time in days between consecutive outputs to file, e.g. 5 
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IPFORM = format of the output tables: 0 = no output table, 4 = normal table, 

5 = tab-delimited (for Excel), 6=TTPLOT format 

DELTMP = switch variable what should be done with the temporary output file: 

0 = do not delete; 1 = delete 

Rerun data 

The FSE system provides a facility for reruns with ORYZA_W using changed model 

parameter and/or initial state variable values (van Kraalingen et al., 1991a). A reruns file 

with the name RERUNS.DAT contains the names and new values of any parameter and/or 

initial state variable for a model rerun. When ORYZA_W is executed, it will 

automatically search for the presence of a file with the name RERUNS.DAT. If such a file 

is not found, the model will be executed one single t ime, using the data from the standard 

data files. If a RERUNS.DAT is present, the parameter values will be read and the model 

will automatically be rerun with the (set of) new parameter values. The total number of 

runs made by the model is then always one more then the number of rerun sets. Names of 

parameters/variables originating from different data files can be redefined in the same 

rerun file, e.g. crop, soil and timer parameters. The format of the rerun file is identical to 

that of the other data files, except that the name of parameters may appear in the file more 

than once. Arrays can also be redefined in a rerun file. The order and number of the 

variables should be the same in each set. A new set starts when the first variable is 

repeated. An example of a RERUNS.DAT file is given in Appendix 5. 

The maximum number of parameter values for reruns is 10000. This can be either 

10000 values of one single parameter, or, for instance, 1000 values of ten parameters each. 

When many reruns are made, the t ime step between consecutive output that is written to 

file, PRDEL, in the T IMER file (see above) should be set a high value, e.g. 1000. 

Otherwise, the output file RESULTS.OUT will become extremely large. 

Output file 

ORYZA_W creates one output file: e.g. RESULTS.OUT (exact file name defined in 

CONTROL.DAT, see above). In this file, values of selected variables are written during 

execution of the model with a 'print t ime step' as defined by PRDEL in the Timer file (see 

above). Variable names and values are written to RESULTS.OUT by a call to the 

subroutine OUTDAT of the TTUTIL library: CALL OUTDAT( { v a r i a b l e name}, 

{variable va lue}) . 

Log files 

Two log files are made. WEATHER.LOG contains the headers of the weather files used 

and any error and/or warning messages created by the WEATHER system. The second file 

name is defined in the the file CONTROL.DAT, e.g. RESULTS.LOG, and contains 

information on the execution of the model and any error and/or warning messages 

generated by ORYZA_W. 
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9.2 Editing ORYZA_W 

ORYZA_W is written in the programming language FORTRAN-77 on an IBM 
compatible 486 PC. When the source code of the model is edited, ORYZA_W should be 
re-compiled and linked with the libraries included on the diskette before execution (see 
also Chapter 1). 
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Appendix 1 ORYWAT crop growth module and subroutines ETPOT 
and DSTRES 

91 



I H H H H H O H r 

W 01 flj 
d) <D OH — 
0) 0) . * rH 

Öl Öl rH "O 

O O O ' 
c c e ! 

J Cd - ï 
fa - H E 

i u o o o o a 

en 

S H 

Cl 

s H 

M 

£ H 

J 

H 

S M 

M 

fa i - l 
H 

fa 

,_! H 
U 
i - t 
H I 
h 

O ) 
H 
Ul 
i - l 
H 

fa 

m 
M 
bl 
i - l 
H 

fa 

T f 
M 

u 
M 

fa 

m 
H 

W 
i - l 
H 
h 

R 
ru 
(H 

O 

•J 

w 
H 

I K H O i H p H P i t f Ä O l K Ä U J i 

U S Pu 
ps s H E-, M 

>< K «( W H f^ EH O > *C E-< 
> H O < w S H È : J H a w H a : i 
O D U I x H f H l i l f l î O J M h l 

(0 a a ai 

cd cd 3 - H 

(U M 

S0; 

O (N 
Q M 
H H 

0) faä J 

§ w M 

< fa 
vn E-< 

e w cd 

fa H CJ 

w ai 

N 

Pu 
O 
en 
,g 
»> 

3 

92 

O 

o 

c 0 
-rH 
U 
M 
eu 

> EH 

« fa . r-H 
O) r H 

J5 01 
• u X ! 

w 
g 1 
O O i 
M OH 

«H < 
W 

'O 
a> a> 
*-» x : 
Q . 4-> 
(0 

"O lH 
m a> 

*a >i d 
rH 3 

m a> 
• r i a 

u 3 
ai 
a VH 
tfl 0 
0) <4H 

q - ~ 
0 • * 

• H m 

m o\ 
U rH 
01 
> rH 

W u 
-H a 
-c < t i — 

(N 

fa 

-* m 
cri 

^ 01 
W XI 

fa 
c o 
VI 

u 
01 

> 

O 

o 
o 

ai 

« Q 

•a 
0) 

<4- l 

d 
- H 

- (d 

(T\ * Ü 

<n d 
rH (0 

•O 
u a> 
O) 4-> 

a <o 
-rH O l 

•a -H 
0) Vi 
a> u 
U - r i 
O 
U u 
On o 

4-1 
Xi 
O r H 
in a> 
<0 T3 
O) 0 
« g 
01 
PU rC 

OH % 
Dû O 
r i ; fc 
W Ol 

C 0) 
• H U 

T3 « 
0) 
4-1 •• 

d s 
a> 
s < 3 N 
U Ï H 

o « Q O 

(0 
4-1 

c a 

o 
rH 
H 

> d 
01 

un 

& 
O 
rH 

S 
0) 
Ol 
rH 
ai 
03 

d 
ai 

g X 

w d 
0 
3 
EH 

OH 

t* 

C 
fd 

O 
m 

5 CD 

U 
-H 
01 
M 
ai 
a o 
S 

w 
O 
a 

CTl 

X 
o 
m 

o 
Oi 

„ 

H 
Pi 

« 
ai 

3 

- H 

[Q 
d 
H 

r d 
U 
u 
rd 
ai 
w 
01 
et, 
0) 
u 

•H 

(0 
0) 
d 

- H 

a 
a - H 

- H 
r d 
OH 

0) 
Pi rd 

<u d 
o 
nj 

^ 
rd 

r H 

d 
rd 

d s 
rH 
ai 

d 
H 

o\ 
en 
o 
r H 

Ol 

S 

< 
—. o 
D o 
< r-
S u> 
[Ö -
OH O 
EH ro 

— ̂  S X 
Oi 0 
o ca 
0 • 
u o M • 

a, 
d 
0 -

• H > , 
4-1 U 
U -H 
3 W 

13 in 
O Ht 
u > 
OH -H 

d 
rH D 
(d 
U f-f 

- H nj 
U M 
0) 3 
VH 4J 
O ,-t 
O) 3 

rd U 
E-- -H w 

rH T ) 
4H 0 ) 

o *t 
4-) d 
C 01 

d 
<d 

r H 
VH 
0) 

ai cnx: 
e c 4J 

0) 

n d z 
rd 01 
a w O) 
ai <d r d 
a S EH 

O r i 
J d 
Q 0) 
1 O) 

CQ rd 
< S 

i?3 
• H O 
r H O 
- H r-
i-1 vo 
M 
01 -
fa • * 

r H 
-H X 
0 o 
W CQ 

•O • 
d o 
rd • 

OH 

& -
O 4-» 

r H G 
O 0) 

• H E 
r Q 4-1 

o u 
U 10 
oi a 
< 0) 

Q 
VH 
O r d 

>4H U 
M 

0) rd 
4-1 01 
3 M 
4-1 01 
- H OJ 

W r H 
d «J 
H VH 

3 
r d J-> 
U rH 
U 3 
rd U 
0) -H 
W U 

w 
T) 
d 

ro 
0) 
_d 

0) 
2 
01 

ai O i r d 
Od < EH 

w 
r H 
0) 
•a 
o g 
Oi 
d 

• H 

S 
o r H 

O 

ai 

a 
0 u 
u 
Ol 
d 

-rH 
rH C 
rH O 
OJ TJ 
TJ d 
o o 
S J 

d CQ 
M < 

u 
f i Cn 
<TI d 

4-1 
rd 

•~t 

i 

CTl 
CO 
cri 

^ rd 

0) 

H Ê H 
0 

- ü s 
• . d 

r-H 4J 
rd U 

o 4-1 fa 
01 

• 01 

b C 
• o 

rd S -r. 

d 
O 

T3 
ai 
w 
rd 
X» 

m 
- H 

0) 
•o 
o g 

m 
- H 
-d 
EH 

4J 
- U 

<*H rd 
HH Vj 

a oi 
O 4-1 

M d 
u; -H 

> i 
r Q 

S 
O 
u oi 

fa g H 

1 

fa {Q 
OJ 

M 

> 0) 
•a 
Ol 
d 

d 
d 
a> OH 

> I 

X) 
Q 
r H 
J 

W 
O 

« u 

1 

u 
0) 

U - S 
o c > 13 0) T l 

01 
01 

d 
- r i 

r d 

3 rH d 
b 3 «J 

0) 
- • U! rH 

as a rd 
es a C -H 

(0 4-1 
m rH > d 

s x: r- oi 
o 
rH 
Ol 

•W 

o 
VI 
ai 
01 

en 
ai 
u 
o 
M 
a 

r H 
rd 
U 

0) 
O 

r H 
O 

- H 
0) 
>1 

XI 
a 
o o 
0) 

a t s • 4J 
flj K O 
h ' a 
O) w ^ 
O O rH 
d d d o 
O rd (0 4H 
S oa m 

-H x: 
d 01 rH 4-1 
O O T3 S 

-H J 3 O 
4J O M 
rd - O Ol 

r-t H 
3 K - a 
e « b o - H M H 
W - o 

TJ d 
• d rd «w 

a • 
o) a 
ai a 
d es 
O r> 

4-> -

(d m 
rH -0 
3 d 
e m 
w n 

0> 
• x: 

01 4-1 
d ai 
O 2 

4-1 01 
«J X ! 
3 H 

-rH -

w d 
01 

d o i 
o d 
4-1 d 
U 0) 
3 Ol 

01 rd > O T3 rd 
a o d • c 
U 01 X o 
O O) • -H 

C ï u 
rH -H «J 
«J d - rH 
3 01 U 3 
d en <d g 
d rd m - H 
id S J w 

>, rQ 

w 
o 

« u E3 
w 

1 

0 S 
u 
a -

w •Ö ÛH 
01 EH 
4-1 1 
•H O 
e co 

• H < 
r H U 

(0 O) 
UH T} 
k O 

O -H 3 m > 

Ü J 
O J Q 
0i < g 
OH ( J U 



P CU 
EH OS 
H EH 

P P 01 
J J O 
< < P 
( J U L ) 

4J 

m 
VH 

c o 
4-1 O 
ff l 
h J II 

•H S 

a M ~ W - H 

(0 J 
M II S 
4-> PS 

M EH 

QJ O 
Ol Q 

O 
P 

W 

W 

a> 
x> «J 
-.-t 
k 
«J > 
a> 
e 
a 

u 
0) 
03 

C CU EH 
PS P 

01 EH + 
- • H Q H 
eu S 
PS 0 - » H 
EH ^ tN EH 
a <D • EH 
— X! O M 

M •• CU S 
Z - O J H 

cd H 
Il H S II 

a M CU 3 — EH 
ÛS cc 
EH G Cu EH 
P H H H 

> i 
(Ö 
t ) 

4-1 
X 
0) 
G 

0 

G 
•H 
Cd 

^ i J 
01 
0) 

0 
J j 

ai 
u 
c 
03 
rö 

.Q 

U 
ai 

• P 

rö 
S 

0 

c 
3 
u 
0 
EH 

i n 
U) 

+ 
;* o 
0 

S3 

| 
M 

s eu 

> 

£ 

s 
2 
P 
P 
PS 

EH 

EH 
03 
H 

ES O 
Q 
H 

PS 
X 

ES 
E 
>H 
O 
Q 
H 

M 
3 
P 
P 

< U 

w 
ai 
c 

3 
0 
U 

-Q 
3 
Cl 

xl 
4 J 

S 
0 

0) 

a 0 
u 
u 

G 
ru 
u 
a> 
u 
c 
m 

ra XI 

M 
ai 

(0 

3 
w 
K 
EH 

| 
M 
EH 

EH" 
P 
eu 
EH 

p 

w EH 

4 i 
p" 

D 3 
O 

I N 
M 
W 
P 

tu 

p" 
EH 
M 

g 
H 

O 
EH 
H 

H 

PS 
EH 

O 
W 

O 
P 
S 

EH" 
> O 
Ed 

H 

S 
a 

3 eu 

s H 

P 

EH" 
03 

g 
O 
tu 
U 
S 

eu 
3 
a Q S S 

EH 

g 
H 

W 
o] 

W 

EH 
P 
ta 
P 

W 

U} 

g 
PS 
N 

EH 
< S P 
EH 

Ol P 
U 

eu 

ë M 

? s 

H 
cd 
u 

03 

"~" tu 
H 

U 
œ 
< w 
p 
p 

<: u 

H 
EH 

US 
EH 

H 
P 
K 
EH 

p" 

1 ta 
EH 

EH" 

a. 
EH 13 
O 

O ) 
H 

ta 
p 

tu 

P 
£H 

g 
O 

a EH 
w 
eu 

g 
s w 
PS 

o 
o 

t - t 

g H 

P 
EH 
H 

M 

US 
O] 

0>< 
ta 

eu 

s H 
S 
03 

tu 

CO 
p 
[d 

EH 
H 

P 

< 
O 
P 

P 
P 

< CJ 

a 
H 

H 

S 
H 

s 
u 

O 

ë 
EH" 
O 
J 
CJ 

w s 
> ta 
p" 

s PS 
EH 

W 

E-" 
03 
CJ 
3 

U 
tu 
O 

> 3 
P 

EH" 
PS 

eu 
3 
O 

EH 3 

S 
EH 
M 

eu 

g 
3 
03 

EH 
P 
ta 
P 

U) 

g PS 
w 
EH 
J 
US 
EH 

j " 
bu" 
EH 

g 

S 
Cd 
X 
EH 

p 

§ 

ca 
EH 

EH" 

EH 
P 
O 

OJ 
H 

ca 
p 
M 
tu 

P" 

3 -
OS PS 
EH O 

- P. 
U EH 
O] O 
> EH 
ta -

- EH 

•z a 
M J Sji 
EH" EH" 
OS Ol 
EH U 
M 3 

s" u" M tu 
EH U 
H 3 

ta" eu 
EH S 3 
M 

g 
H 

O 
EH 
H 

H 

D 
EH 
M 

g 
U! 

a o i 

ta < 
eu 

£ H 
3 
03 

" Pu 

ta 
Ol 
p 
ta 

EH 
H 

>H 
P 
P 

< Cu 

P 
P 

< U 

M a EH 3 

EH" EH" 
P P 
ta us 
P EH 

ï * " p " 
o us 
P EH 

PS 03 

u s ~ 
EH EH t u PS os eu 
EH N EH 
3 - H 

- P 3 
EH 2 O] 

< ' -EH P O 
Ol B P 
3 H 3 

M EH - N 
s P EH -
5 O PS EH 
M - EH P 

- tu M biS 
US CU - E H — 
03 EH S - eu 
< M M P PS 
EH 3 EH US EH 
M 03 M EH P 

i# & i* it 

0> U 
•O C 
U O 
O -H 

U 03 
3 u ai 

• O S H 

m ca 
H EH 
W PS 

+ ta U3 vo 
<* EH * * 
H * EH P 
ta EH < ta 
P D EH 03 
H eu o i p 
tu EH 3 3 

P 
PS O PS PS 
ta p p 
EH P EH E H 
O < U O 

Ï O x x 
U P CJ u 

Cu 
Cu (N 
EH EH 

3 S 
Ol 03 

M - H 
ai cu -

3 Es S < 
- H 3 P £ 
1-1 03 M H 
(d 
> PS PS ûS 

p p ta 
rH o u o 
rö ta ca ca 

u — 

2 M O 

M PS PS EH 
rü Cd M W 

T) O Ü S 
c ca u a 

a ë; 
•u U P 
-H Cu P 
Ë U ? 

• H 3 cw 
M P O M 

<d — * D 3 
S eu 0) PS 

3 - 0 EH 
S-l CJ 01 —- -
o 3 ai p — 

in j m - H 
G S C « — 
O H O O EH 

-H •— -H Cu O 
.U J j J EH P 
cd US rö O U 
M EH U EH 3 
rd <Ü 

r-i tl r-l A A 
U < U < < 
ai cd a» ca ca 
o PS a os PS 

p p 

sä 
(-1 03 

U 
cd 

> M 
01 

Xi 

cd 
01 

s 

os 
< 1 
EH 

< EH 
Ol 
3 

>.ûS 
4-1 O 

i-l M 
-H • 
J3 O 
«J M 

O 
0) P 

X • 

PS 
Ö < 
"•"t £ 

• H US ^ H Cd M 
«j tO O - P P 
> < V4 OS OS DS 
cd EH k < EH EH 

i£ S 
S EH Cu 
M P H 
EH OS 

r H 

PS 
W 
E 
EH 

e 
O 
VJ 

Ol 
Ol 
3 

<-\ cd 

> -O 
rd 
Ol 

P 
EH 
H 

M 

P 

3 
M 

eu 
p 

3 3 
03 

eu 
p 

EH 3 
H 

EH 

S P 
DS 

P 
P 

< CJ 

M 

3 
o i 

Ü 
H 
O ] 
Q 
PS 

p 
p 

< u 

M 
3 
w 
os' 
o 
o 

EH 
P 

eu 

3 
03 

Cu 
M 

Ol 
P 
P 
P 
O 

a 

PS 
O 
OS 
PS 
M 

p 
p 

< U 

93 



* M H O M O I 

O U r-i 

f * i m T 3 

E Ë 
u u g 

^ k( 
0> CD M 
> i > . t u 
i d «J > i 

H H l d 

^ o ^> 
U O) 

G a J-> — 
O 0) «Î 1 

- H 4J V4 — ' 
I J c 
IO o c a 
^ U 0 0 
3 . H — ^ - v 

id m id E i 
en u u •—• o) *a 

(0 -H , c 
4-j s a u -u CM 
c to at i 
a> rH c J-» 4-1 e 
U - H ni m o 
C O U S b 
O M U Û) — 
u »a tn 

r H r - t CÜ (0 T t 
M ta (0 T3 *J <u 
0) 3 3 C M J 
4-> .u j j o -a 
m u o a 4J ai 
5 rd <d c ai 

u-i a> m 
4 4 4-1 4-1 O E 

o o o a c 4-1 O - H 
> , > , > , G r H 
« * id 3 oj m 
u U U 0 > >, 
i4 V4 M e a> m 
< < < < Q D 

a: ps os a; a: os 

EH 
E-t O J CU 
« J S o u j t f 
O O PS J > E-t 
2 S f < g Q Û 

•cf 

II 
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Al.6 Crop data file 

ORYZA_Wz.DAT 
Crop and management data for rice; model ORYZA-W (version 2.1) 
Experimental data: Parameters and Functions from: IRRI/APPA, 1992 
Oryza sativa cv.IR72, IRRI, Dry Season (MIO) at 225 kg N 
plus data from Wopereis drought stress experiments at IRRI. 
This data file is for zonation purposes. 

1. Management parameters 

NPLH 
NH 
NPLSB 
NPLDS 
DTRP 

= 5. 
= 25. 
= 1000 
= 75. 
= 12. 

number of plants per hill 
number of hills 
number of plants in seed-bed 
number of plants/m2 direct-seeded 
days in seed-bed (between sowing-transplanting) 

2. Crop data 

Initial data 
LAPE 
DVSI 
WLVGI 
WSTI 
WRTI 
WSOI 
ZERO 

* Mode: 
SHCKL 

= 0.0001 ! 
= 0. ! 
= 0. ! 
= 0. ! 
= 0. ! 
= 0. ! 
= 0. ! 

parameters 
= 0.25 ! 

RGRL 
FSTR 

SCP 
TBD 
TBLV 
TMD 
TOD 
C02REF 
C02 
TREF 
Q10 

DVRJ 
DVRI 

DVRP 
DVRR 
MOPP 
PPSE 
SPGF 
WGRMX 

= 
= 
= 

= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 

= 
= 
-
= 
= 

0.00800 
0.20 ! 

0.2 ! 
8. ! 
8. ! 
42. ! 
30. ! 
340. ! 
340. ! 
25. ! 
2. ! 

0.000773 
0.000758 

0.000784 
0.001784 
11.30 ! 
0.0 ! 
64900.000 
0.0000249 

initial leaf area per plant at emergence 
initial development stage 
initial leaf weight 
initial stem weight 
initial stem weight 
initial weight storage organs 
zero condition for integrals 

parameter indicating relation between seedling-
age and delay in leaf area development 
parameter indicating relation between seedling-
age and delay in phenological development 

relative growth rate of leaf area 
fraction carbohydrates allocated to stems that 
is stored as reserves 
scattering coefficient of leaves for PAR 
base temperature for development (oC) 
base temperature for juvenile leaf area growth 
maximum temperature for development 
optimum temperature for development 
Reference level of atmospheric C02 
Ambient C02 concentration 
reference temperature 
factor accounting for increase of maintenance 
respiration with a 10 oC rise in temperature 
development rate during juvenile phase 
development rate during photoperiod-
sensitive phase 
development rate during panicle development 
development rate in reproductive phase 

maximum optimum photoperiod 
photoperiod sensitivity 
! spikelet growth factor 
! maximum individual garin weight 

* table for GCM (General Circulation Model) 
TMCTB = 0.,0., 366.,0. 

temperature correction 

* table of extinction coefficient of leaves (KDF) as function of development stage 
KDFTB = 0.,0.4, 0.65,0.4, 1. ,0.6, 2.1,0.6 

* table of extinction coefficeint of nitrogen profile in the canopy (KNF) as 
* function of development stage (DVS) 
KNFTB = 0.,0.4, 2.1,0.4 

* tables of 'fraction of total dry matter allocated to shoot' 
* (FSH) and of 'fraction of total dry matter allocated to roots' 
* (FRT) as function of development stage 
FSHTB - 0.0,0.50, 0.43,0.75, 1.0,1.0 , 2.1,1. 
FRTTB = 0.0,0.50, 0.43,0.25, 1.0,0.0, 2.1, 0. 

* table of specific leaf area as function of development stage 
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O-, 0.0047, 0. 
0.787,0.0021, 

152, 0.0047, 0.336, 0.0033, 0.653,0.0028, 
1.011,0.0019, 1.431,0.0017, 2.10, 0.0017 

* tables of partitioning factors for leaves (FLVTB), stems {FSTTB), 
* and storage organs (FSOTB) as function of development stage. 
FLVTB = 

0 . 0 0 0 , 
0 . 0 8 0 , 
0 . 2 4 5 , 
0 . 4 9 0 , 
0 . 7 2 0 , 
0 . 8 9 5 , 
1 . 2 3 0 , 
1 . 7 3 0 , 
2 . 1 , 0 

FSTTB = 
0 . 0 0 0 , 
0 . 0 8 0 , 
0 . 2 4 5 , 
0 . 4 9 0 , 
0 . 7 2 0 , 
0 . 8 9 5 , 
1 . 2 3 0 , 
1 . 7 3 0 , 
2 . 1 , 0 

FSOTB = 
0 . 0 0 0 , 
0 . 7 2 0 , 
0 . 8 9 5 , 
1 . 2 3 0 , 
1 . 7 3 0 , 
2 . 1 , 1 

0 . 
0 . 
0 . 
0. 
0 
0. 
0. 
0. 

0. 
0 
0. 
0. 
0 
0. 
0. 
0. 

0. 
0. 
0. 
1 . 
1 . 

. 5 4 5 , 

. 5 4 5 , 

. 5 5 9 , 

. 5 4 2 , 

. 4 2 2 , 

. 0 5 3 , 

. 0 0 0 , 

. , 

. 4 5 5 , 

. 4 5 5 , 

. 4 4 1 , 

. 4 5 8 , 

. 5 7 8 , 

. 5 1 7 , 

. 0 0 0 , 

. , 

. 0 0 0 , 

. 0 0 0 , 

. 4 3 0 , 

. 0 0 0 , 
• 0 , 

* table of initial light use efficiency as function of temperature 
EFFTB = 10.,0.54, 40.,0.36 

* table of factor accounting for effect of temperature on AMAX 
REDFTT = -10.,0., 10.,0., 20., 1., 37.,1., 43.,0. 

* table of specific green stem area as function of development stage 
SSGATB - 0.,0.0003, 0.9,0.0003, 2.1,0. 

* table of nitrogen fraction in the leaves as function of 
* deve1opment stage 
NFLVTB = 

0.00, 0.54, 
0.16, 0.54, 
0.33, 1.53, 
0.65, 1.22, 
0.79, 1.56, 
1.00, 1.29, 
1.46, 1.37, 
2.04, 0.83, 
2.10, 0.83 

MAINIiV =0.02 ! maintenance respiration coefficient of leaves 
MAINST - 0.015 ! maintenace respiration coefficient of stems 
MAINSO = 0.003 ! maintenace respiration coefficient of storage organs 
MAINRT =0.01 ! maintenace respiration coefficient of roots 

CRGLV = 1.326 ! carbohydrate requirement for leaf dry matter production 
CRGST = 1.326 ! carbohydrate requirement for stem dry matter production 
CRGSO = 1.462 ! carbohydrate requirement for storage organ " " 
CRGRT = 1.326 ! carbohydrate requirement for root " " 
CRGSTR =1.11 i carbohydrate requirement for stem reserves production 

FCSTR = 0.444 ! mass fraction carbon in the stem reserves 
FCLV - 0.419 ! mass fraction carbon in the leaves 
FCST = 0.431 ! mass fraction carbon in the stems 
FCRT = 0.431 ! mass fraction carbon in the roots 
FCSO = 0.487 ! mass fraction carbon in the storage organs 

LRSTR = 0.947 ! fraction of allocated stem reserves that is 
! available for growth 

TCLSTR =10. ! time coefficient for loss of stem reserves 

* table for leaf death coefficient as function of development stage 
DRLVT =0.,0., 0.6,0., 1.,0.015, 1.6,0.025, 2.1,0.05 
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* Water-limited production data 
ZRTI = 0.0001 
ZRTMC =0.4 ! maximum rooting depth of crop 

growth rate roots GZRT =0.01 

ZRTMCW =0.2 

ZRTMCD =0.4 

For PADDY subroutine, maximum depth roots if 
no drought stress 
For PADDY subroutine, maximum depth roots if 
drought 

STLG =2.80 
ULLS =2.87 
LLLS =3.90 
ULDL =3.80 
LLDL =4.20 
ULRT =2.87 
LLRT =4.20 

3. Switch parameters 

switch to use NFLV as function of DVS or daynumber 
-1 : versus DVS; 1 : versus DOY 

! switch to use GCM temperature correction 
-1: do not use; 1: do use 

! switch to use measured or simulated LAI {LAI leaves) 
-1: measured LAI; 1: simulated LAI 
switch to use plastic cover over seed-bed 

! -1: do not use; 1: do use 

Measured data 

Switches that indicate whether variables have been measured 
or not: 'Y' means measured and given; 'N' means not measured. 
Note: 'Y' and 'N' should be given in capital letters! 

! measured leaf area index LAIL 
! measured N-content leaves NFLV 
! measured weigth total dry matter WTDM 
! measured weigth stems WST 
! measured weight green leaves WLVG 
! measured weigth dead leaves WLVD 
! measured weigth panicle WPA 

MLAI = 
MNFLV = 
MWTDM = 
MWST = 
MWLVG = 
MWLVD = 
MWPA = 

•N' 
'N' 
'N' 
'N' 
'N' 
•N' 
•N' 

* Measured data values : No data for zonation 
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Al.7 List of variables 

This list only contains variables that are not included in ORYZA1 Version 1.3 as 
documented in the SARP Research Proceedings (Kropff et al., 1994). 

Name Description Units 

ALB Albedo, reflection coefficient for short-wave radiation 

ALBC Albedo, reflection coefficient for crop 

ALBDS Albedo, reflection coefficient for dry soil syrface 

ALBS Albedo, reflection coefficient for moist soil surface 

ALBOW Albedo, reflection coefficient for open water 

ANGA Parameter in Angstrom formula 

ANGB Parameter in Angstrom formula 

AOB Intermediate variable 

ASIN Arcsine function (intrinsic FORTRAN function) 

BBRAD Black body radiation 

BOLTZM Stefan-Boltzman constant 

CLEAR Penman's original clearness factor 

CLUSTF Cluster factor 

DAYL Daylength 

DEC Declination of the sun 

DELT Time interval of integration 

DLDR Death rate leaves caused by drought 

DLDRT Total death rate leaves caused by drought 

DLEAF Control variable for start of leaf senescence by drought 

DROUT Control variable indicating drought/no drought 

DS Stress factor for death of leaves caused by drought 

DERT Effect of drought stress on water uptake 

DSO Daily extraterrestrial radiation 

DSTRS Stress factor for death of leaves caused by drought 

DVEW Effect of water stress on development rate in vegetative phase 

EES Extinction coefficiemt for evaporation in bare soil 

EVD Penman évapotranspiration due to drying power of air for a crop/soil 

system 

EVDOW Same as EVD, for open water layer 

EVR Penman evapotransp. due to radiation for a crop/soil system 

EVROW Same as EVR, for open water layer 

EVRWL Same as EVR, for a crop/water layer system 

EVSCS Potential soil evaporation 

EVSCOW Potential evaporation from open water layer 

EVSD Actual evaporation rate soil on dry days 

EVSH Actual evaporation rate soil on humid days 

FCLEAR Sky clearness function in calculation of net long-wave radiation 

FVAP Vapour pressure effect on RLWN (Brunt equation) 

ICNT Control variable for drought stress 

ID ATE Integer value of day of year 

J m"2 s"1 

J m"2 d-'OK"4 

hd"1 

radians 

d 

kg DM ha"1 d"1 

kg DM ha"1 d"1 

J m"2 d-

mm d~' 

mm d-1 

mm d~' 

mm d-1 

mm d~' 

mm d~' 

mm d~' 

mm d~' 

mm d~' 
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Name Description Units 

IDOYTR 

INSD 

ISTD 

ITIM 

ITRT 

LHVAP 

LLDL 

LLLS 

LLRT 

LLDLWR 

LLLSWR 

LLRTWR 

LS 

LSTRS 

NRAD 

PAR 

PARDF 

PARDR 

PCEW 

PENMAN 

PI 

PSYCH 

RAD 

RAIN 

RAINCU 

RAINN 

RDT 

RLWN 

SC 

SCP 

SIN 

SINB 

SINLD 

SLOPE 

SQV 

STLG 

STLGWR 

SVP 

SWIWLP 

TKL 

TKLT 

TRC 

TRCT 

TRCWL 

TRRM 

TRW 

' H 2 0 J kg 

pF value 

pF value 

pF value 

Integer value of day of year at transplanting 

Counter for non-drought stress days 

Counter for consecutive drought stress days 

Time of simulation 

Time of transplanting 

Latent heat of evaporation of water 

Lower limit dead leaves 

Lower limit leaf rolling 

Lower limit relative transpiration 

Lower limit dead leaves averaged over root zone 

Lower limit leaf rolling averaged over root zone 

Lower limit relative transpiration averaged over root zone 

Stress factor for leaf rolling (varies from 0 to 1) 

Stress factor for leaf rolling (varies from 0.5 to 1) 

Net radiation 

Instantaneous flux of photosynthetically active radiation 

Instantaneous diffuse flux of incoming PAR 

Instantaneous direct flux of incoming PAR 

Effect of water stress on daily total gross C0 2 assimilation of the crop DTGA 

Penman reference value for potential évapotranspiration mm d-1 

Ratio of circumference to diameter of circle 

Psychrometic instrument constant mbar °C~' 

Factor to convert degrees to radians radians degree"! 

J m"1 d"1 

J m - 2 ground s~' 

J m~2 ground s -1 

J m - 2 ground s~' 

Precipitation rate 

Cumulative precipitation 

Precipitation rate next day 

Daily solar radiation 

Net long-wave radiation 

Solar constant, corrected for varying distances between sun-earth 

Scattering coefficient of leaves for PAR 

Sine function (intrinsic FORTRAN function) 

Sine of solar elevation 

Intermediate variable in calculating solar declination 

Tangent of the relation between saturated vapour pressure and temperature 

Intermediate variable in calculation of reflection coefficient 

Limit for leaf expansion 

Limit for leaf expansion avearged over root zone 

Saturated vapour pressure 

Switch to select irrigated lowland (0), rainfed lowland (1), or rainfed upland (2) 

Array fof thicknesses of soils compartments 

Thickness of combined soil compartments 

Potential transpiration rate canopy/soil system 

Cumulative potential transpiration (after transplanting) 

Potential transpiration rate canopy/water layer system 

Potential transpiration rate canopy per united rooted length 

Actual transpiration rate canopy 

mmd - 1 

mm 

mmd - 1 

J m"2 d-1 

J m"1 d"1 

J m"2 s"1 

mbar°C- ' 

pF value 

m3 m -3 

mbar 

m 

m 

mmd"' 

mm 

mmd - 1 

mmd - 1 m~' 

mmd"' 
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Name Description Units 

TRWCU Cumulative actual transpiration (after transplanting) 

TRWL Array of TRW per soil compartment 

TSLVTR Temperature sum for leaf area development at tranplanting 

ULDL Upper limit dead leaves 

ULLS Upper limit leaf rolling score 

ULRT Upper limit relative transpiration rate 

ULDLWR Upper limit dead leaves averaged over root zone 

ULLSWR Upper limit leaf rolling averaged over root zone 

ULRTWR Upper limit relative transpiration averaged over root zone 

VAPOR Actual vapour pressure 

VISD Absorbed direct component of direct flux per unit leaf area (at depth 

LAIC) 

VISDF Absorbed diffuse flux per unit leaf area (at depth LAIC) 

VISPP Absorbed light flux by leaves perpendicular on direct beam 

VISSHD Total absorbed flux for shaded leaves) per unit leaf area (at depth LAIC) 

VISSUN Total absorbed flux for sunlit leaves in one of three Gauss point classes 

VIST Absorbed total direct flux per unit leaf area (at depth LAIC) 

WCAD Array of volumetric water content per soil compartment, air dry 

WCFC Array of volumetric water content per soil compartment, field capacity 

WCL Array of actual volumetric water content per soil compartment 

WCLQT Same as WCL 

WCLREL Array of relative water contents per soil compartment 

WCR Total biomass 

WCRDR Critical soil water content for start of leaf death caused by drought 

WCREF Array of refernce water contents at which drought stress occurs, per soil 

compartment 

WCRREL Total relative water content in root zone 

WCST Array of volumetric water content per soil compartment, at saturation 

WCSTUP Saturated volumetric water content of first soil compartment 

WCUP Actual volumetric water content first soil compartment 

WCWP Array of volumetric water content per soil compartment, at wilting point 

WDF Wind function 

WGAUSS Array containing weights to be assigned to Gauss points 

WIND Wind speed 

WL Array of amounts of soil water per soil compartment 

WLA Water available to the crop for uptake 

WLFL array of fluxes of water from compartment I to 1+1 

WLO Amount of ponded water 

WLVGIT Dry weight of green leaves 

ZLL Depth upper boundary compartment 

ZR Rooted depth 

ZRT(I) Rooted depth (initial) 

ZRT Array of ZRT differentiated per soil compartment 

ZRTL Rooted depth in specific soil compartment 

ZRTM Maximum for ZRT 

ZRTMC Maximum rooting depth of crop (LOWBAL, SAHEL) 

mm 

mmd - 1 

°Cd 

pF value 

pF value 

pF 

m3 m - 3 

m3 m - 3 

m3 m - 3 

kpa 

J m"2 leaf s" 

J m-2 leaf s" 

J m"2 leaf s~ 

J n r 2 leaf s" 

J m~2 leaf s" 

J m~2 leafs"1 

m J m 3 

m~3 m~3 

m - 3 m - 3 

m~3 m~3 

m - 3 m - 3 

kg DM ha"1 

m~J m-^ 

m -3 m~3 

m - 3 m - 3 

m - 3 m - 3 

m - 3 m~3 

m - 3 m - 3 

mmd - 1 mbar-1 

m s" 
m3 ha -1 

mm 

mm d~' 

mm 

kg ha" 1 

m 

m 

m 

m 

117 



Name Description Units 

ZRTMCD Maximum rooting depth of crop in case of drought (PADDY) m 

ZRTMCW Maximum rooting depth of crop under well-watered conditions (PADDY) m 

ZRTMS Maximum rooting depth of soil m 
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Appendix 2 Soil-water balance module SAHEL 
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A2.2 Soil data file 

Example of s o i l d a t a f o r SAHEL wa t e r b a l a n c e module 
******************************************************************* 

* LOAM.DAT; Soi l c h a r a c t e r i s t i c s for a s tandard loam s o i l . 
******************************************************************* 

TKL1 

WCFC1 

WCFC2 

WCFC3 

FWCLI1 

FRNOF 

ZRTMS 

EES 

= 0.2; 

= 0.355 

= 0.355 

= 0.355 

= 1.0; 

= 0.0 

= 0.9 

= 20. 

TKL2 

WCWP1 = 0 

WCWP2 = 0 

WCWP3 = 0 

FWCLI2 = 1.0; 

= 0.3; TKL3 

108; WCAD1 = 0 

108; WCAD2 = 0 

108; WCAD3 = 0 

FWCLI3 = 1 . 0 

007 

007 

007 

= 0.5 

WCST1 

WCST2 

WCST3 

= 0 

= 0 

= 0 

503 

503 

503 

SOILUP = 'Upland, non-puddled s o i l t ype ' 

The following soil files contain average moisture characteristics (water content at saturation, 
WCST, at field capacity, WCFC, at wilting point, WCWP, and at air-dryness, WCAD) as 
calculated from the data in Penning de Vries et al., 1989 (p. 151-152) derived from 
measurements on Dutch soils (Wösten et al., 1987) for the water balance modules SAHEL or 
PADDY: 

Texture description File name 
Coarse sand 
Medium coarse sand 
Medium fine sand 
Fine sand 
Humous loamy medium course sand 
Loamy medium coarse sand 
Light loamy medium coarse sand 
Loamy fine sand 
Sandy loam 
Loess loam 
Fine sandy loam 
Silt loam 
Loam 
Sandy clay loam 
Silty clay loam 
Caly loam 
Light clay 
Silty clay 

CSAND.DAT 
MCSAND.DAT 
MFSAND.DAT 
FSAND.DAT 
HLMCSAND.DAT 
LLMCSAND.DAT 
LMCSAND.DAT 
LFSAND.DAT 
SLOAM.DAT 
LLOAM.DAT 
FSLOAM.DAT 
SILOAM.DAT 
LOAM.DAT 
SCLOAM.DAT 
SICLOAM.DAT 
CLOAM.DAT 
LCLAY.DAT 
SICLAY.DAT 
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File name WCST WCFC WCWP WCAD 

CSAND.DAT 

MCSAND.DAT 

MFSAND.DAT 

FSAND.DAT 

HLMCSAND.DAT 

LLMCSAND.DAT 

LMCSAND.DAT 

LFSAND.DAT 

SLOAM.DAT 

LLOAM.DAT 

FSLOAM.DAT 

SILOAM.DAT 

LOAM.DAT 

SCLOAM.DAT 

SICLOAM.DAT 

CLOAM.DAT 

LCLAY.DAT 

SICLAY.DAT 

0.3950 

0.3650 

0.3500 

0.3640 

0.4700 

0.3940 

0.3010 

0.4390 

0.4650 

0.4550 

0.5040 

0.5090 

0.5030 

0.4320 

0.4750 

0.4450 

0.4530 

0.5070 

0.0647 

0.1405 

0.1611 

0.2120 

0.3530 

0.2848 

0.1798 

0.2328 

0.2731 

0.3268 

0.3397 

0.3587 

0.3552 

0.3487 

0.3778 

0.3994 

0.3783 

0.4474 

0.0001 

0.0054 

0.0113 

0.0334 

0.1326 

0.0939 

0.0309 

0.0266 

0.0443 

0.1055 

0.0882 

0.1084 

0.1082 

0.1677 

0.1726 

0.2759 

0.2043 

0.2917 

0.0000 

0.0000 

0.0000 

0.0005 

0.0141 

0.0074 

0.0005 

0.0002 

0.0007 

0.0079 

0.0040 

0.0070 

0.0071 

0.0313 

0.0287 

0.1183 

0.0498 

0.1095 

124 



A2.3 List of variables 

Name Description Units 

CK WFL Sum of integrated water fluxes in/out of soil compartments mm 

DSLR Number of days since last rain d 

EES Evaporation extinction coefficient m" 

EVSC Potential soil evaporation rate for current weather conditions and crop mm d 

EVSD Actual evaporation rate soil on dry days mm d 

EVSH Actual evaporation rate soil on humid days mm d 

EVSW Actual evaporation rate soil (indexed per soil compartment) mm d 

EVSWCU Cumulative EVSW since sowing mm 

FEVL Array of fraction of EVSW, per soil compartment 

FEVLT Total of FEVL over all soil compartments 

FRNOF Fraction runoff 

FWCLI Initial soil water content as fraction of WCFC, indexed per soil compartment 

NL Number of soil compartments (= 1) 

RAIN Precipitation rate 

RAINCU Cumulative precipitation since sowing 

RAINN Precipitation rate next day 

RIICU Cumulative irrigation application (= always 0) 

TKL Thickness os soil compartment, indexed 

TKLT Total thickness of all soil compartments 

WCAD Volumetric water content, at air dryness (pF 7), indexed per soil compartment 

1-NL 

WCFC Volumetric water content, at field capacity (pF 2), indexed per soil 

compartment 1-NL 

WCL(I) Actual volumetric water content, indexed per soil compartment 1-NL (initial) 

WCLQT Same as WCL 

WCST Volumetric water content at saturation, indexed per soil compartment 1-NL 

WCUM Cumulative WL over all soil compartments 

WCWP Volumetric water content, at wilting point (pF 4.2), indexed per soil 

compartment 1-NL m3 m~3 

WL(I) Actual amount of water, indexed per soil compartment 1-NL (Note: WLO is 

amount of ponded water) mm 

WLFL Fluxes of water in/out soil compartments, indexed per compartment mm d~' 

ZRTMS Maximum rooting depth of soil m 

mmd l 

mrr 

m3 

m3 

m3 

m3 

m3 

mm 

d-1 

mm 

mm 

mm 

m"3 

m"3 

m"3 

m"3 

m"3 

mm 
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Appendix 3 Soil-water balance module LOWBAL 
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A3.2 Soil data file 

Example of soil data for LOWBAL water balance module 
****************************************************************** 

* PUDS05.DAT; soil parameters for the water balance module 

* LOWBAL for puddled, lowland rice soils. 

* NON-CRACKING; LOW SP RATE (5 MM/DAY) 

****************************************************************** 

** All data in mm or mm/day 

WLOMXI = 100.00 

TKLPI = 200.00 

SP SOIL =5.00 

DDR = 2000.00 

WL0I = 50.00 

WL0MIN = 10.00 

SHRINK 

WCCRAC 

WCSTP 

WCWPP 

WCFCP 

WCADP 

RIGIFT 

RIPUD 

DVSIE 

= 0. 

= 0. 

= 0. 

= 0. 

= 0. 

= 0. 

= 
= 

= 

.7 

.00 

.52 

.01 

.01 

.01 

50.00 

200. 

1.85 

SOILOW = 'Lowland, puddled soil type' 
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A3.3 List of variables 

Name Description Units 

WLOMX(I) Bund height (initial), also maximum level of WLO 

DDR Deep drainage rate of the subsoil 

DSLR Number of days since last rain 

DVSIE Development stage after which no more irrigation is applied 

EVSC Potential soil evaporation rate for current weather conditions and crop 

EVSD Actual evaporation rate soil on dry days 

EVSH Actual evaporation rate soil on humid days 

EVSW Actual evaporation rate soil 

EVSWCU Cumulative EVSW after transplanting 

NL Number of soil compartments (= 1) 

RAIN Precipitation rate 

RAINCU Cumulative precipitation since transplanting 

RAINN Precipitation rate next day 

RIGIFT Constant irrigation gift 

RII Actual irrigation gift (either 0 or RIGIFT) 

RIICU Cumulative irrigation gift after transplanting 

RIICSB Cumulative irrigation gift in seed-bed 

RNOFCU Cumulative RUNOF after transplanting 

RUNOF Surface drainage (bund overflow) 

SHRINK Linear shrinkage factor for puddled layer 

SP Actual seepage & percolation rate 

SPCU Cumulative SP after transplanting 

SPSOIL Potential seepage & percolation rate 

TKLP(I) Thickness puddled layer (initial ) 

TKLPM Thickness of shrunken soil 

TRWP Actual transpiration rate canopy from puddled layer 

WCAD( 1 ) Same as WCADP 

WCADP Volumetric water content of shrunken puddled layer, at air dryness (pF 7) 

WCCRAC Water content of shrunken puddled layer at which cracks penetrate the 

impermeable layer 

WCFC(l) Same as WCFCP 

WCFCP Volumetric water content of shrunkne puddled layer, at field capacity (pF 2) 

WCLP Actual volumetric water content of puddled layer 

WCLQT( 1 ) Same as WCLP 

WCST( 1 ) Same as WCSTP 

WCSTP Volumetric water content of shrunken puddled layer, at saturation 

WCWP( 1 ) Same as WCWPP 

WCWPP Volumetric water content of shrunken puddled layer, at wilting point (pF 4.2) 

WLO(I) Depth of ponded water layer (initial) 

WLOMIN Minimum depth of WLO at which irrigation is supplied 

WLP Actual amount of water in puddled layer 

mmd-1 

mm d_1 

mm d-' 
mm d~' 

mm 

mm d_1 

mm 
mm d_' 

mm 
mm 
mm 
mm 
mm 
mm 

mm s-1 

mm 
mm s_1 

mm 
mm 

mmd-1 

m3 m-3 

n-> m~3 

mm 

mm 

mm 
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Appendix 4 Soil-water balance module PADDY 
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A4.3 Soil data file 

* EXAMPLE INPUT FILE, CONTAINS MAXIMUM NUMBER OF 
* PARAMETERS NEEDED 

* Switches : 
* Puddling switch: puddled (1); non-puddled (0) 
SWITPD = 1 
* Drainage switch: free draining (1); impeded drainage (0) 
SWITFD = 0 
* Irrigation switch: no irrigation (0); irrigation read from table (1); 
* irrigation if ponded water depth drops below minimum value (2) 
SWITIR = 0 
* Conductivity switch: no data {0); Van Genuchten parameters (1); 
* Power function (2) 
SWITKH = 0 
* Water retention switch: data given for saturation, field capacity, 
* wilting point and when air dry (0); via Van Genuchten parameters (1) 
SWITPF = 0 
* Groundwater switch: not in profile (0); read from this file (1); 
* calculated (2) 
SWITGW = 1 
* Percolation switch: read from this file (0); calculated (1) 
* Value for SWITVP can only be 1 if puddled soil 
SWITVP = 0 

* Number of soil layers (maximum is 10) 
NL = 9 

* Thickness of soil compartments (m) 
TKL = 3*0.05, 3*0.05, 0.10, 0.20, 0.20 

* Percolation rate (if SWITVP = 0) 
PERCOL = 10.0 

* Maximum rooting depth in soil (m) 
ZRTMS =1.0 

* Irrigation table, amount of irrigation (y in mm) for a given calendar 
* day (x), used if SWITIR = 1 
RIRRIT = 23., 0., 
60., 0., 79., 0., 111.,0.,112.,100., 
113.,0.,117.,0.,118.,100.,119.,0.,123.,0.,124.,100.,300.,100. 

* Irrigation parameter, used if SWITIR = 2, i.e. amount of irrigation 
* if ponded water depth drops below WL0MIN (mm) 
IRRI = 50. 

* Saturated hydraulic conductivity (needed if SWITFD = 0, 
* and if SWITKH is 1 or 2) 
KST = 2*127.0, 3.0, 3*35.0, 2*103.0, 42.0 
* Van Genuchten parameters (needed if SWITKH = 1 and/or SWITPF = 1) 
VGA = 3*0.127, 3*0.047, 2*0.078, 0.032 
VGL = 3*-6.2, 3*-0.6, 2*-4.9, -11.1 
VGN = 3*1.119, 3*1.095, 2*1.076, 1.073 
VGR= 9*0.01 
* Power function parameter (needed if SWITKH = 2) 
PN = 3*-2.5, 3*-2.5, 2*-2.5, -2.5 

* Saturated volumetric water content 
WCST = 3*0.52, 3*0.55, 2*0.61, 0.64 
* Volumetric water content at field capacity (needed if SWITPF = 0) 
WCFC = 3*0.48, 3*0.47, 2*0.52, 0.58 
* Volumetric water content at wilting point (needed if SWITPF = 0) 
WCWP = 9*0.21 
* Volumetric water content when air dry (needed if SWITPF = 0) 
WCAD = 9*0.01 
* Initial volumetric water content 
WCLI = 3*0.52, 3*0.47, 2*0.52, 0.58 

* Ponded water depth (mm) 
WL0MX = 150. 
* Minimum ponded water depth (mm) 
WL0MIN = 50. 
* Initial ponded water depth (mm) 
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WLOI = 100. 

* Groundwater table depths (y in cm) as a function of calendar day (x) 
* needed if SWITGW = 1 
ZWTB = 1., 150., 300., 150. 
* Groundwater parameters, needed if SWITGW = 2 
* Initial groundwater depth (cm) 
ZWTBI = 100. 
* Minimum groundwater depth (cm) 
MINGW = 100. 
* Maximum groundwater depth (cm) 
MAXGW = 100. 
* Sensitivity factor of recharge (-) 
ZWA =1.0 
* Depth groundwater table is receding in case of no recharge (cm/d) 
ZWB =0.5 

* FOLLOWING PARAMETERS ONLY NEEDED IF SOIL IS PUDDLED 
* i.e. if SWITPD = 1 
* Number of puddled compartments, including plow sole (cannot exceed NL) 
NLPUD = 3 
* Volumetric water content of ripened soil {previously puddled) 
WCSTRP = 3*0.52, 3*0.55, 2*0.61, 0.64 
* pF value of puddled root zone at which cracks reach the non-puddled 
* subsoil, i.e. break through the plow sole 
PFCR =3.0 
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A4.4 List of variables used in PADDY 

Name Description Units 

CAPRI array capillary rise per soil compartment 

CAPTOT total capillary rise 

CKWFL total of external contribution to system water content 

CKWIN total change in system water content 

CRACKS logical indicating if cracks penetrate through puddled topsoil 

DELT time step 

DOY calendar day 

DRAICU cumulative outflow from deepest soil compartment 

DRAIN variable used to drain soil compartment to field capacity 

DSPW days passed without ponded water on soil surface 

EVSC potential evaporation rate 

EVSD actual evaporation rate soil if DSPW > 1 

EVSH actual evaporation rate soil if DSPW = 1 

EVSW actual evaporation rate 

EVSWCU cumulative actual evaporation rate 

EVSWS actual evaporation rate soil compartment 1 

FILEI2 name of soil data input file 

FLNEW boundary flow between soil compartments recalculated via subroutine 

BACKFL 

FLOW capillary rise calculated by subroutine SUBSL2 

FREEDR logical indicating free drainage or impeded drainage 

GWCU cumulative contribution groundwater table 

GWFILL array used to 'fill-up' soil compartment if in groundwater 

GWTOT total contribution groundwater table 

GRWAT logical indicating if groundwater table is in soil profile 

HYDCON common block needed to communicate with subr. SUMSKM2 

I counter, usually used to indicate soil compartment number 

IGW number of shallowest soil compartment in groundwater 

ILZMAX maximum number of groundwater table measurements 

INL number of soil compartments 

IR irrigation 

IR1RR number of days with additional irrigation 

IRRI additional irrigation if ponded water declines below minimum 

ITIM time of simulation 

ITASK determines action of PADDY 

ITOLD previous action of PADDY 

ITRT time of transplanting 

IUNITD unit number soil data file 

IUNITL unit number log file 

IUNITO unit number output file 

IZWTB number of days with groundwater table measurements 

KSAT saturated hydraulic conductivity 

KST saturated hydraulic conductivity 

MAXGW maximum groundwater table depth 

mm 
mm 

mm 

mm 
mm 
mm 
mm 

m 

mm 
mm 

mm 
mm 
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Name Description Units 

MINGW minimum groundwater table depth 

MS moisture suction (pressure head) 

NL number of soil compartments 

NLPUD number of puddled soil compartments including plow sole 

NUCHT common block with Van Genuchten parameters 

OUTPUT flag indicating if output to file is required 

PERC actual percolation rate 

PERCOL percolation rate from soil data input file (constant) 

PFCR critical pF value where cracks break through soil compartment 

PN parameter n in power function for hydraulic conductivity 

POWER common block containing PN 

PROREL contribution of profile storage to water balance 

PUDDLD logical indicating if profile is puddled / non-puddled 

RAIN rainfall 

RAINCU cumulative rainfall 

REST rest water component in top soil compartment calculated by subroutine 

BACKFL 

RIRRIT irrigation table 

RNOFCU cumulative runoff 

RUNOF runoff 

SURREL contribution of stored surface water to water balance 

SWITFD free draining / impeded drainage switch 

SWITGW groundwater switch 

SWITIR irrigation switch 

SWITKH hydraulic conductivity switch 

SWITPD puddled / non-puddled switch 

SWITPF water retention curve switch 

SWITVP switch for calculation of percolation rate 

TERMNL flag indicating if simulation should terminate 

TIME time 

TKL array thickness of soil compartments 

TKLP array thickness of soil compartments 

TKLT total thickness of soil profile 

TOTPOR array total porosity of soil compartments 

TRW total transpiration rate 

TRWCU cumulative transpiration 

TRWL array water uptake per soil compartment due to transpiration 

UPRICU cumulative capillary rise 

VGA van Genuchten alpha parameter 

VGL van Genuchten lambda parameter 

VGN van Genuchten n parameter 

VGR van Genuchten residual water content 

VL array thickness soil compartment after shrinkage 

WBINIT flag indicating if water balance needs initialization for crop rotations, not 

yet in use in this version of PADDY 

WCAD array volumetric water content per soil compartment when 'air dry' 

cm 

cm 

mmd ' 

mmd - 1 

id"1 

mmd ' 

mm 

mm 

mmd - 1 

mmd - 1 

d 
mm 

m 
m 

m3 cm -3 

mmd - 1 

mm 

mmd - ' 

mm 
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Name Description Units 

WCCR critical volumetric water content where cracks break through soil 

compartment 

WCFC array volumetric water content per soil compartment at 'field capacity' 

WCL array actual volumetric water content of soil compartment 

WCLI array initial volumetric water content of soil compartment 

WCST array saturated volumetric water content per soil compartment 

WCSTRP array saturated volumetric water content ripened soil per soil 

compartment 

WCUM amount of stored soil water in soil profile 

WCUMCH rate of change in amount of stored soil water 

WCUMCO contribution of soil storage term to overall water balance 

WCUMI initial amount of stored soil water in soil profile 

WCWP array volumetric water content per soil compartment at 'wilting point' 

WL array amount of water in soil compartment 

WLO amount of ponded water 

WLOCH rate of change of amount of ponded water 

WLOCO contribution of surface storage term (ponded water) to overall water 

balance 

WLOI amount of initial ponded water 

WLOMIN minimum amount of ponded water before start of irrigation 

WLOMX maximum amount of ponded water (=bund height) 

WLAD array amount of water per soil compartment when 'air dry' 

WLCH array change in amount of water per soil compartment 

WLFC array amount of water per soil compartment at 'field capacity' 

WLFL array flux at boundaries of soil compartment 

WLST array amount of water per soil compartment at saturation 

WLWP array amount of water per soil compartment at 'wilting point' 

WSTAT flag for weather system 

WTRTER flag for weather system 

ZL array depth of top of soil compartments 

ZRTMS maximum rooting depth soil profile 

ZW depth of groundwater table below soil surface 

ZWA depth groundwater table is receding in case of no recharge 

ZWB sensitivity factor of recharge groundwater table 

ZWPREV groundwater table depth of previous day 

ZWTB table with groundwater table data 

ZWTBI initial depth of groundwater table below soil surface 

cm3 cm"3 

cm3 cm"3 

cm3 cm -3 

cm3 cm -3 

mm 

mmd - 1 

mm 

mm 

mm 

mm 

mmd - 1 

mm 

mm 

mm 

mm 

mm 

mmd - 1 

mm 

mmd - ' 

mm 

mm 

cm 
m 

cm 
cm 
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Appendix 5 Other input files 

A5.1 Control data 

t * * * * * * * * * * * * * * * i l I r * * * * * * * * * * * * * * i r * * * * * * * * * * * 

* CONTROL.DAT; to control input and output file names 

********************************************************** 

FILEON = 

FILEOL = 

FILEIR = 

FILEIT = 

FILEI1 = 

FILEI2 = 

* FILEI3 = 

* FILEI4 = 

* FILEI5 = 

RESULTS.OUT' 

MODEL.LOG' 

RERUNS.DAT' 

TIMER.DAT' 

ORYZA_Wz.DAT' 

SOIL.DAT ' 

Normal output file 

Log file 

Reruns file 

File with timer data 

First input data file (crop) 

Second input data file (soil) 

Third input data file (not used) 

Fourth input data file (not used) 

Fifth input data file (not used) 

A5.2 Timer data 

* Timer file generated by FST translator version 1.15 

* 

* contains: 

* - The used DRIVER and TRACE in case of GENERAL translation 

* - The TIMER variables used in both translation modes 

* - Additional TIMER variables in case of GENERAL translation 

* - The WEATHER control variables if weather data are used 

* - Miscellaneous FSE variables in case of FSE translation 

File: 

Date: 

Time: 

0RYZA1.FST 

16-05-94 

14:17:38 

* TIMER variables used in GENERAL and FSE translation modes 

STTIME = 23. 

FINTIM = 100. 

DELT = 1. 

PRDEL = 1. 

IPFORM = 4 

start time 

finish time 

time step (for Runge-Kutta first guess) 

output time step 

code for output table format : 

4 = spaces between columns 

5 = TAB'S between columns (spreadsheet output) 

6 = two column output 
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MULTIP = 1. 

ANGA =0.29 

ANGB =0.42 

The string array PRSEL contains the output variables for which 

formatted tables have to be made. One or more times there is a 

series of variable names terminated by the word <TABLE>. 

The translator writes the variables in each PRINT statement to 

* PRSEL = ! a separate table 

COPINF = 'N' ! Switch variable whether to copy the input files 

to the output file ('N' = do not copy, 

'Y' = copy) 

Switch variable what should be done with the 

temporary output file ('N' = do not delete, 

'Y' = delete) 

Indicates where weather error and warnings 

go (1101 means errors and warnings to log 

file, errors to screen, see FSE manual) 

'IOBSD = 1991,182 ! List of observation data for which output is 

! required. The list should consist of pairs 

! <year>,<day> combination 

* WEATHER control variables 

* 
WTRDIR = ' ' 

CNTR = 'PHIL' ! Country code 

ISTN = 2 ! Station code 

IYEAR = 1988 ! Year 

DELTMP = 'N' 

IFLAG = 1100 

SWIWLP 

A5.3 Weather data 

****************************************************************** 

* Station name: IRRI wet station site 

* Year: 1980 

* Author: Daniel van Kraalingen -99.000: NIL VALUE 

* Source: Agroclimate Service Unit of IRRI 

* Comments : Original name of data used in IRRI: ORWET 

* Longitude: 121 15'' E, latitude: 14 11'' N, altitude: 21 m. 
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* Column Daily value 

* 1 station number 

* 2 year 

* 3 day 

* 4 irradiation 

* 5 minimum temperature 

* 6 maximum temperature 

* 7 early morning vapour pressure (kPa) 

* 8 mean wind speed (height: 2 m) (m s-1) 

* 9 precipitation (mm d-1) 

****************************************************************** 

(kj m-2 d-1) or (mJ m-2 d-1) 

(degrees Celsius) 

(degrees Celsius) 

1, 

1 

1 

1 

1 

1 

.25 14 

1980 

1980 

1980 

1980 

1980 

.18 21. 

1 14004. 

2 12528. 

3 17136. 

4 18360. 

5 13140. 

0.00 

20.5 

21.5 

21.0 

19.5 

20.8 

0.00 

29.5 

29.5 

29.7 

29.9 

28.9 

2. 

2. 

2 

2 

2 

.790 

.970 

.630 

.650 

.990 

0. 

0. 

0. 

0. 

1. 

.6 

.3 

.6 

.6 

.0 

0. 

0. 

0. 

0. 

0 

.0 

.5 

.0 

.2 

.0 

1 1980 364 7740. 

1 1980 365 5220. 

1 1980 366 10656. 

21.7 

22.0 

22.6 

26.3 

25.4 

26.8 

2.770 

2.810 

2.650 

1.8 

1.8 

2.8 

0.8 

1.0 

0.0 

A5.4 Rerun data 

* Example of reruns file for PADDY 

* Set 1 

SWITIR = 0 

WL0I = 50. 

* Set 2 

SWITIR = 1 

WL0I = 20. 

* Set 3 

SWITIR = 2 

WL0I = 100. 
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