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ABSTRACT 

Invasive plant species can be controlled by introducing one or more of their natural 

enemies (herbivores) from their native range; however such introduction entails the risk that 

the introduced natural enemy will attack indigenous plant species in the area of introduction. 

Here we study the effect of spillover of a natural enemy from a managed ecosystem 

compartment (agriculture) in the area of introduction to a natural compartment (non-

managed) in which an indigenous plant species is attacked by the introduced natural enemy, 

whereas another indigenous plant species, which competes with the first, is not attacked. The 

combination of competition and herbivory may result in extinction of the attacked wild plant 

species. Using a modelling approach, we determine model parameters that characterize the 

risk of extinction. 

Risk factors include: (1) a high attack rate of the introduced enemy on the wild non-

target species; (2) factors favouring large spillover from the managed ecosystem 

compartment to the natural compartment; these include a moderately low attack rate of the 

introduced enemy on the target species, enabling large resident populations of the herbivore 

in the managed compartment and high dispersal; (3) niche overlap expressed as stronger 

competition between the attacked non-target species and its competitor(s). 

These findings point to the importance of spillover and the relative attack rates 

(specificity) of introduced natural enemies with respect to target and non-target plant species. 
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INTRODUCTION 

Invasive plant species pose a great problem to global agriculture and ecosystems, threatening 

valuable indigenous species and productivity in agricultural and natural systems (Callaway 

and Aschehour 2000; Pimentel 2002; Sheppard et al. 2003;). Classical biological control, i.e. 

the introduction of natural enemies from the native range of the invasive species, is widely 

regarded as a safe and suitable form to manage invasive species (Ehler 1998; Thomas and 

Willis 1998; Pemberton 2000;). Classical biological control can be highly costs effective, and 

it avoids the use of herbicides (Charudattan 2001). Chalak-Haghighi et al. (in press) has 

recently shown that an insect herbivore (Apion onopordi) can increase the net present value 

obtained from the pasture by reducing the growth rate of Californian thistle (Cirsium 

arvense).  

An important issue in biological control is the safety of the agents and whether these 

may attack non-target species. Many authors have discussed the environmental risks of the 

introduction of natural enemies for classical biological control (e.g. Thomas and Willis 1998; 

Follett and Duan 1999; Wajnberg et al. 2001). In order to assess this risk we need to 

understand the ecological dynamics of biological control agent in the ecosystems where they 

are introduced, and their interactions with other species. These interactions include both local 

population interactions as well as spatial processes, e.g. spillover of enemies from one 

ecosystem compartment to another.  

Mobility of biological control agents allows them to penetrate to remote native 

habitats (Henneman & Memmott 2001). Many of the biological control agents introduced for 

pest control in agricultural areas can feed on alternative host plants in natural habitats and are 

likely to disperse between agricultural and natural systems (Symondson et al. 2002; Rand et 

al. 2006; Wirth et al. 2007). These natural enemies can produce large negative effects in the 

natural habitats by their spillover or cross-edge invasion effects (Suarez at al. 1998; Cronin 
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and Reeve 2005; Rand et al. 2006). For instance, adult beetles of the corn rootworm 

(Diabrotica ssp), which feed in agricultural land as larvae, largely spill over into tall-grass 

prairie causing damage to native plants (McKone et al. 2001). 

Before introducing a natural enemy to a managed system it therefore is important to 

consider potential spillover effects to the natural environment, resulting in attack on 

endangered or protected species in the natural environment. For instance, a herbivore 

(Rhinocyllus conicus) was introduced to biologically control Platte thistle (Cirsium 

canescens) in the United States. After dispersal it attacked a protected and rare relative, the 

Pitcher’s thistle (Cirsium pitcheri) (Louda et al. 1997; Louda 1999; Louda et al. 2003; Louda 

et al. 2005). 

Because ecological conditions of the managed and natural systems can differ, many 

different plant species interactions (e.g. competition) can prevail in the managed and natural 

systems. Herbivores can disperse fast or slow between the systems, which affects the 

dynamics of species in both systems due to spillover. Currently, the conditions under which 

dispersal of a biological control agent from a managed to a natural system results in a 

spillover effect threatening biodiversity are not systematically analyzed and more work is 

needed to enable comprehensive assessments of risk (Rand et al. 2006).  

In this paper, we use a modelling approach to elucidate risks of introduction of a 

herbivore species for biological control of a weed in agriculture. The model includes key 

processes such as the interaction between a herbivore and its target and non-target plant 

species, dispersal of the enemy from one ecosystem compartment to another, and the 

competitive relationships between a non-target species with other species in a natural 

compartment. The objective of the modelling is to identify those system characteristics that 

enhance or mitigate the risk of extinction of the non-target plant species in the natural 
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compartment, and provide greater insight in the interrelationships between the different 

dynamic processes involved. 

 

DESCRIPTION OF THE MODEL SYSTEM 

We distinguish two parts in our model system: 1) a managed compartment where locally a 

herbivore (zm) is introduced to control a pest weed (w), and  2) a natural compartment where 

the same herbivore species (here denoted as zn) can attack a wild plant species (Figure 1). The 

two herbivore populations are linked by dispersal, enabling the natural enemy to spill over 

from one compartment to the other. In the natural compartment herbivores attack a non-target 

host plant species (x) which competes with another plant species or group of species (y). The 

main processes in the model are herbivory, competition and dispersal.  

 
 
Figure 1: Schematic representation of the modelled system. Introduction of a herbivore to the 
managed compartment (e.g. pasture) suppresses the weed population (w). Herbivores disperse 
between the compartments. They feed on a wild plant species (x), which is in competition 
with one ore more other plant species (y). The subpopulations of the herbivore in the 
managed compartment and in the natural compartment are denoted as zm and zn respectively.   
 

Without the insect herbivore, the two compartments (see fig. 1) would be strictly separated: 

the weed in the managed compartment does not influence the coexisting competing plant 

species in the natural compartment. However, when the herbivore is introduced, the systems 
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are linked through dispersal of the herbivore. The link between species w (the weed) and x 

(the non-target wild species) can be characterized as apparent competition; they share a 

common herbivore (Holt, 1977). It is assumed that the initial situation in the natural 

compartment is characterized by stable equilibrium, i.e. the two competing species have less 

competitive effect on the other one than they do amongst themselves; they have sufficient 

niche differentiation to enable coexistence (Begon et al. 1996).  

 The arrival of a herbivore in the natural compartment, where it is assumed to attack 

one of the competing plant species, viz x, can offset the initially stable equilibrium between x 

and y. The  competing species y can profit and increase in density. The non-target host plant, 

x, might go extinct due to the combination of herbivory and competition. The suppressive 

effect of herbivores on the wild non-target plant species could be further aggravated by 

sustained spillover of the herbivore from the managed compartment. 

 The dispersal of the herbivore influences both its own local densities and that of its 

host plant species (x and w) in both compartments. Net dispersal of herbivores is always to 

the compartment with a lower density, and a compartment with higher host plant density 

produces more herbivores. The weed can produce a large population and substantial spillover 

of herbivores to the natural compartment.  

In the full system complex interactions between species exist. A mathematical analysis and 

numerical exploration and sensitivity analysis of our model are used to elucidate these 

interactions.  

 

The dynamics of the weed, w, is modelled with a logistic growth equation: 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

w
w k

wwr
dt
dw 1   (1) 
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where  is the growth rate of the weed, and kwr w  represents the carrying capacity of the weed. 

All model parameters are listed in Table 1. 

The dynamics of the weed after introduction of the herbivore is modelled as: 

 

wzb
k
wwr

dt
dw

mw
w

w −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= 1          (2) 

 

where bw represents the attack rate or the probability per unit of time (yr−1) that one 

individual of species zm successfully encounters one shoot of weed.  

The competitive interaction between plant species x and y in the natural compartment is 

modelled as a standard Lotka-Volterra competition system (e.g. Begon et al. 1996): 

 

1

1

xy
x

x

yx
y

y

x yadx r x
dt k

y xady r y
dt k

⎧ ⎛ ⎞+⎛ ⎞
= −⎪ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎪ ⎝ ⎠⎪

⎨
⎛ ⎞⎛ ⎞+⎪ = −⎜ ⎟⎜ ⎟⎪ ⎜ ⎟⎜ ⎟⎝ ⎠⎪ ⎝ ⎠⎩

 (3a and b) 

 

where x and y are the two competing species. Their carrying capacities are denoted as kx, ky, 

and their intrinsic growth rates as xr  and . The per capita effect of species y on species x is 

a

yr

xy , and ayx denotes the reciprocal effect.  

The following Lotka-Volterra competition model represents the dynamics of species x 

and y after the herbivore has reached the natural compartment  
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 (4a and b) 

where bx represents the attack rate or probability per unit of time (yr−1) that one individual of 

species zn successfully encounters one shoot of species x.  

The dynamics of the herbivore in both the managed and the natural compartment is 

modelled as a Lotka-Volterra equation for predators, including metapopulation dynamics: 

 

( )

( )

n
x n n m n

m
w m m n m

dz fb xz qz d z z
dt
dz fb wz qz d z z
dt

⎧ = − + −⎪⎪
⎨
⎪ = − + −
⎪⎩

 (5a and b) 

 

where zm respectively zn represent the densities of herbivores in the managed and natural 

compartment, d is the dispersal rate of herbivores between the two compartments, f 

(fecundity coefficient) measures the number of herbivores that can be produced by removing 

one shoot of their host plant. The term fbxxzn represents the herbivore’s birth rate and q 

represents the mortality rate of the herbivore.  

The system dynamics are thus completely described with five equations (2, 4a, 4b, 5a  

and 5b), containing 13 parameters: and  (Table 1). qfaarrrkkkbb yxxyyxwyxwxw ,,,,,,,,,,, d

 

 

MATHEMATICAL ANALYSIS 

We analysed the 5-dimensional system comprising of the 2 equations from (4), the two 

herbivore equations (5) and the weed equation (2), because we would like to have all its 

equilibrium solutions explicitly with their stability. Its non-dimensionalization (see appendix) 
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reduces the number of parameters from 13 (Table 1) to nine. Moreover, the combinations of 

original parameters into the new parameters help us to see which changes in original 

parameter values have the same effect on equilibrium values and/or stability. 

 We found at least 14 biologically relevant equilibria for the non-dimensionalized system, 

and these are listed in Table 2. In the second part of the appendix we derived the conditions 

to get equilibria, and the combinations of these conditions are also given in Table 2. 

Equilibrium i, where all state variables are zero, is trivial. There are three equilibria with a 

single non-zero state variable (ii, iii and iv), three equilibria with two non-zero state variables 

(equilibria v, vi and vii), three equilibria with three non-zero state variables (viii, ix, and xi), 

and three equilibria with four non-zero state variables (x, xii, and xiii). There is a single 

equilibrium (xiv) in which all five species can coexist. It should be noted, however, that the 

combination leading to xiv also can give not biologically relevant (i.e. negative) equilibrium 

solutions. 

We are interested in stable equilibrium solutions of the system. For a locally stable 

equilibrium (attractor) all eigenvalues of the Jacobian matrix in that equilibrium should be 

negative. When an equilibrium is unstable, a small movement away from the equilibrium 

increases in the course of time. This can eventually lead to the extinction of one or more 

species. Note that the stability in a lower dimensional system (e.g. only 2 species) does not 

imply stability of the 5-dimensional system with only the two aforementioned species 

present. For instance Begon et al. (1995) suggest that interaction of only two competing plant 

species (e.g. x and y),  can result in a stable equilibrium if β and δ <1. But equilibria vii and 

viii are unstable for a large set of  parameter values for our system (system 6) even when β  

and δ  <1. Because a small introduction of herbivores ( ) or weed can attract the 

existing equilibrium to a new equilibrium where z

and/or mz nz

m, zn  or the weed get a positive value. For 

all equilibria except (i-vi) the derivation of the sign of all eigenvalues  is not possible, even 
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though we simplified the model by non-dimensionalization. Thus, we were not able to get 

explicit expressions for all equilibria and their stability. In the remainder of this paper, we 

therefore, use a numerical analysis to explore the characteristics of the equilibria.  

 

NUMERICAL ANALYSIS 

 

 The numerical analysis shows that most equilibria are unstable for a wide range of parameter 

values. From the application point of view, the first 6 equilibria (equilibria i-vi in Table 2) 

with no herbivores are irrelevant, because we have introduced herbivores and assumed that 

they have established. Only two equilibria are of particular interest: 1) an equilibrium in 

which all species coexist (a positive solution for xiv), and 2) an equilibrium in which species 

x goes extinct because of the herbivores attack (equilibrium x). A trajectory that starts close 

to the positive equilibrium xiv and connects to equilibrium x is of special interest because it 

allows us to investigate which parameters are forcing plant species x to extinction. In the 

model, species x can reach a stable steady state where it gets a zero or negative growth after 

introduction of herbivores, because x is suppressed by two forces : 1) competition with y, and 

2) herbivory by zn.  

Below we explore the parameter space and determine which of these two equilibria can 

occur, and give figures in which the dependency of equilibrium solution on parameter values 

are shown. In these figures only stable equilibria are represented. The results of the 

sensitivity analysis are only given for a selection of parameters that we consider most 

relevant. We exclude presentation of other results from our sensitivity analysis because they 

can be easily understood from the presented results and the relationship between parameters 

driven from non-dimensionalized system (see appendix). Note that cases where no stable 
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coexistence of species x and y is possible before introduction of the herbivore are not 

included.  

Parameter values for numerical illustration of the behaviour of the system are based on expert 

estimation by the authors and literature data; they represent loosely a system of thistle species 

with a weevil species as herbivore (Table 1). All three species (x, y, and w) have in our 

specification a relative growth rate of 0.3 yr−1 and a carrying capacity of 80 shoots m−2 

(Chalak-Haghighi in press; Schwinning and Parsons 1999). The attack coefficients of the 

herbivore species on the weed and the wild species are 0.01 (shoot/m2)−1 yr−1. Competitive 

coefficients of both species are taken to be 0.8, representing a situation in which the species 

have rather similar resource requirements and niche overlap. The fecundity coefficient of the 

herbivore is 10 herbivores per shoot, and its death rate is 4 yr−1. Finally, the dispersal 

coefficient is 0.5 yr−1. 

To illustrate the response of the system to parameter changes, and to identify factors that are 

related to extinction risk of the desired wild plant species, x, we first look at single parameter 

changes, notably in the coefficients for inter-plant competition, the attack coefficients, and 

the dispersal coefficient. Next, some of the combined effects of changes in parameters are 

illustrated.  

The effect of the competition coefficient of y on wild plant species x, axy, is illustrated first. 

As axy increases, the equilibrium density of x goes down, while that of y goes up (Fig. 2A). 

When the competition coefficient becomes larger than 1, x is outcompeted by y, which 

conforms to results from the Lotka-Volterra competition model. These changes in the 

densities also affect the density of the herbivore in both system compartment. 
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Figure 2: The relationship between the equilibrium densities of wild host plant (x), its competitor (y), 
herbivores in the managed and natural compartment (  and ), weed (w) and (A) the plant 
competition coefficient a

mz nz
xy that expresses the influence of species y on species x and (B) the plant 

competition coefficient ayx that expresses the influence of species x on species y. The vertical lines 
shows the default value for axy and ayx, all other parameter are at their default values.  

 

When axy increases, the density of the enemy goes down in the natural compartment, 

due to the decrease in host plant density, x, but it is hardly affected in the managed 

compartment, because here, the density of the natural enemy is maintained by its feeding on 

the weed. Due to spillover of enemies from the managed compartment to the natural 

compartment, however, an increase in axy causes a slight decrease in the density of the enemy 

in the managed compartment. This slight decrease in zm then causes a small increase in weed 

density. Mutatis mutandis, an increase in ayx has very similar effects (Fig. 2B). The example 

clearly demonstrates spillover and apparent competition effects (between x and w), and it 

shows that the risk of extinction, expectedly, increases when the desired wild species has a 
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strong competitor, i.e. axy is large. All the densities represented in the figures represent long 

term steady states that reflect stable equilibria for the pertinent parameter values. For 

instance, the transition from a system with x to a system without x for axy>1 in Fig. 2A 

corresponds to a change from equilibrium (xiv) to equilibrium (x) (Table 2). 

The effects of kx and ky can be deduced from the illustrated effects of ayx and axy. As 

shown in the appendix (non dimensionalization), the ratio ky/kx has the same fundamental 

influence on system dynamics as axy, while the ratio kx/ky has the same fundamental influence 

on system dynamics as ayx.  

The effect of the attack coefficient bx is straightforward. As this coefficient increases, 

x goes down and y, released from competition by x, goes up (Fig. 3A). Enemy density shows 

an optimum response to the attack coefficient, a behaviour well-known from Lotka-Volterra 

predator-prey models (Fig. 3A). At low bx, the enemy is not finding many host plants, and 

thus has little effect on the host population, and maintains only a very small population itself. 

As the attack coefficient goes up, the enemy population increases, while the host plant 

population decreases, up to a point where the decrease in the host population backfires and 

the enemy population decreases again. In the chosen two-compartment system, the slight 

peak in the enemy population at intermediate bx results in a reduction of the spillover from 

the managed to the natural compartment, thus increasing herbivory pressure on the weed in 

the managed compartment and reducing, slightly, its density.  
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Figure 3: The relationship between herbivore attack coefficients of herbivores on plant species (bx 
and bw) and the equilibrium. Densities of wild host plant (x), its competitor (y), herbivores in the 
managed compartment ( ), herbivores in the natural compartment ( ), weed (w) and (A) herbivore 
attack coefficient b

mz nz
x on species x and (B) herbivore attack coefficient bw on species w. Vertical lines 

present the default values for bx and bw, other parameter are set at their default values.  
 

Changes in the attack coefficient bw on the weed in the managed compartment have 

somewhat more complicated consequences. For low values of bw, there is no discernible 

effect on the weed. Equilibrium densities of zm and zn are low when bw is low at the chosen 

parameter values, due to insufficient encounter with host plant. When bw increases, natural 

enemy densities increase, similarly as seen with an increase in bx, up to a point where the host 

is overexploited, and natural enemy densities go down again. As bw is becoming large enough 

to enable significant population of zm, the density of the weed decreases, and due to spillover 

of the enemy from the managed to the natural compartment, the desired wild species, x, is 

also reduced in density, which then releases y from competition by x, and increases its 

density.  

The interplay between bx and bw is further illustrated in Fig. 4, showing relationships between 

the equilibrium density of x and the attack rate of the enemy on x for different values of the 

attack rate of the enemy on the weedy species in the other compartment. When the attack rate 
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on the weed is 0.01, the spillover effect is maximal, resulting in the minimum amount of x. 

For greater and for smaller values of bw the equilibrium values of x are higher. 
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Figure 4: The relationship between attack coefficient of herbivores in the natural 
environment (bx) and the equilibrium density of wild host plant (x) for different herbivores 
attack coefficients in the managed compartment.  
 

Figure 5 summarizes the combined effect of bw and bx on the desired species by indicating 

which parameter combinations enable survival and which ones lead to extinction of x. The 

lowest values of bx at which extinction occurs, are for bw = 0.01, where the spillover effect is 

maximal. For lower bw, the spillover effect rapidly dissipates, and hence much greater attack 

rates bx are needed to drive x to extinction. If bw is set to 0 (i.e. no spillover) extinction occurs 

only at a bx of 3.83 ((shoot/m2) −1 yr−1). Likewise, the spillover effect is reduced when bw 

increases beyond 0.01, and accordingly, higher attack rates bx are required to exterminate x at 

increasing bw.  

The dispersal coefficient mediates the spillover effect that is responsible for the effect 

of the enemy-weed interaction in the managed compartment on the extinction of x in the 

natural compartment. For high dispersal rate (Fig. 5B), the area of extinction of x is much 

larger than for a low dispersal rate (Fig. 5A). The threshold between the area of extinction 

and survival shows transition from equilibrium xiv to x (Table 2).  
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Figure 5: Extinction threshold of wild host plant (x) for herbivores attack coefficient in the managed 
compartment (bw) and in the natural ecosystem (bx) when (A): dispersal coefficient is 0.5; (B): Dispersal 
coefficient is 2.5. Other parameter values are set at their default values. Note when the density of wild host plant 
is lower than 0.1 shoot/m  it is regarded as extinct.  2

 
 

The fundamental effect of the dispersal parameter, d, is to equilibrate the densities of the 

natural enemy in the managed and natural compartments. If d is large, any differences are 

equilibrated very quickly, while, if d is small, some difference may be maintained between 

the enemy densities in the two compartments, due to differences in production and loss rates 

of enemies in the two compartments. There is more herbivore production in the managed 

compartment because the resident population of the weed is bigger than that of the species x 

in the natural compartment, so an increase in d, decreases enemy density in the managed 

compartment and increases density in the natural compartment due to increased spillover. As 

a result of the resulting decrease in x at greater spillover, y is released and its density 

increased (Fig. 6).  
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Figure 6: The relationship between dispersal rate d of  the herbivore and the equilibrium 
densities of wild host plant (x), its competitor (y), herbivores in the managed compartment 
( ), herbivores in the natural compartment ( ), weed (w). Vertical line present the default 
values for d, other parameter values are set at their default.  

mz nz

 

As shown in Figure 7, the results of combined parameter changes are predictable from the 

above reported effects of changes in single parameters. For instance, when the 

competitiveness of the competing species in the natural compartment is enhanced by 

increasing axy from 0.8 to 0.95, then over a wide range of attack coefficients, bx and bw, the 

density of the desired species x is diminished (Fig. 7A). Likewise, enhancing the spillover 

effect by increasing the dispersal coefficient d, diminishes the density of the desired species 

over a wide range of attack rates, bx and bw (Fig. 7B). Increasing the death rate of the enemy 

enhances densities of species x (Fig. 7C). Herbivores with a low death rate can drive the wild 

host plant to extinction, even if their attack rates (bx, bw) are low. 
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Figure 7: The relationship between attack coefficients bw and bx of the herbivore and the 
equilibrium density of species x for different levels of (A) axy (B) dispersal coefficient (C) 
herbivore’s death rate q. Vertical line present the default values for bx and bw, and other 
parameter values are set at their default. 
 

 

  DISCUSSION 

This paper puts forward a theoretical model framework for analysing which factors 

contribute to extinction risk of a wild non-target plant species due to spillover of  a natural 

enemy introduced for biological control in agriculture. Extinction is enhanced by: (1) a large 

resident population of the natural enemy in the agriculture compartment, which is the case at 

intermediate values of the attack rate on the target weed; (2) a high attack rate of the enemy 

on the non-target wild species; (3) a high dispersal rate of the herbivore between the managed 
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(target) compartment and the natural (non-target) compartment; and (4) presence in the 

natural compartment of a competitor species with high degree of niche overlap with the non-

target host. 

 

We highlight the importance of competition between plant species for the extinction of the 

wild host plant. Wild plant species which have a strong competitor are highly vulnerable to a 

mild attack from herbivores whereas wild plant species that do not have a strong competitor 

are better able to survive under attack from an introduced herbivore. Therefore, before 

introducing a herbivore, land managers have to study competition pressure on potential non-

target host plants of the natural enemy considered for introduction. If a potential non-target 

host plant species is under high competitive pressure form other plants, the introduction of 

the herbivore to the managed compartment should be considered risky.  

We showed that the dispersal quantity of the herbivore species plays an important role 

in the extinction of the favourable wild host plant species. Rand et al. (2006) suggested that 

spillover may negatively affect the natural habitat, but recommends further studies to clarify 

to what extent spillover of a natural enemy can influence the natural habitat. We show that 

spillover cannot only reduce the density of plant species in the natural habitat but also can 

cause extinction of a wild species. We demonstrated that the risk of extinction can be higher 

when the herbivores have a low attack rate on the targeted plant species due to high 

abundance of their host plants. This is in contrast with conclusions so far in the literature. 

Because a higher herbivore attack rate results in a lower density of their host plant species 

(Begon et al. 1996), herbivores with a lower attack rate have been regarded as safer for wild 

plant species. This also means that herbivores with lower attack rate on the target plants are 

not only doing a poor job in reducing the density of targeted plants (e.g. weeds) but also can 

pose a larger risk to wild species in the natural habitat.  
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CONCLUSIONS  

We have analyzed how the introduction of a herbivore as a biological control agent in a 

managed compartment such as an agricultural system can cause biodiversity loss in the 

natural system by its spillover effects.  It is possible that the herbivore establishes itself and 

affects wild plant species in the natural compartment. The risk of reducing biodiversity is 

highest if the dispersal rate of the herbivores between natural and managed compartment is 

high, and if the host plant in the natural compartment is under strong competition with other 

plant species. Therefore, the introduction of the herbivores when the conditions of the site 

allow for a high dispersal of herbivores from the managed compartment can result in 

biodiversity loss in the natural area. It is crucial that before introducing a biological control 

agent, the managers monitor the natural area for wild or protected plant species that can be on 

the menu of the proposed agent. Because if a wild plant species in the natural habitat is 

attacked by herbivores and is already under high competition pressure from other plants, even 

with a low herbivores dispersal, wild plant species can go extinct. We also conclude that the 

spillover of herbivores from a managed to a natural environment can cause extinction of a 

wild plant species, even if some parameter values suggest a low risk. Herbivores with a lower 

attack rate can reach high population densities in the managed compartment. In this case 

herbivores can  highly disperse to the natural habitat and put a wild plant species at the risk of 

extinction. Therefore, our recommendation to land managers is to be very cautious with the 

introduction of herbivores with a low attack rate for the target plant species.  
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Table 1. An overview of default parameter values  

Parameter Unit   Default 
Value 

 Explanation  

 
xr   yr−1  0.3  Intrinsic growth rate of plant species x    

 xk 2
  shoot/m   80  Carrying capacity of plant species x 

 
xya   None  0.8  

 
 Competition coefficient of species y with respect to species 

x  
 

xb

yr

yk 2

yxa

wr

wk 2

wb
1−

  (shoot/m2) −1 yr−1
  0.01  Attack rate of the herbivore z on plant species x 

   yr−1  0.3  Intrinsic growth rate of plant species y    

   shoot/m   80  Carrying capacity of plant species y 

   None  0.8  Competition coefficient of species x with respect to species 
y 

   yr−1  0.3  Intrinsic growth rate of plant species w    

   shoot/m   80  Carrying capacity of plant species w 

   (shoot/m2) −1 yr−1  0.01  Attack rate of the herbivore z on plant species w 

 f  z shoot   10  
 q  yr−1  4  
 d  yr−1  0.5  

Fecundity coefficient of the herbivore 
Relative death rate of the herbivore  
Dispersal coefficient of the herbivore 



Table 2: The steady states ( )WZZYX mn ,,,, of the non-dimensionalized system  
Name ( )WZZYX mn ,,,,  Stability Description/comment 

(i) Trivial equilibrium 
(Combine conditions Ia, IIa, 
Va and no insects present) 

)0,0,0,0,0(  Unstable All species extinct 

(ii) Single species 
equilibrium 1 
Combine conditions Ib, IIa, 
Va and no insects present) 

)0,0,0,0,1(   Unstable x is at its carrying capacity 

(iii) Single species 
equilibrium 2 
(Combine conditions Ia, IIb, 
Va and no insects present) 
 

)0,0,0,1,0(  Unstable y is at its carrying capacity 

(iv) Single species 
equilibrium 3 
(Combine conditions Ia, IIa, 
Vb and no insects present) 

)1,0,0,0,0(  Unstable w is at its carrying capacity 

(v) Two species equilibrium 
1 
(Combine conditions Ib, IIa, 
Vb and no insects present) 

)1,0,0,0,1(  Unstable both x and w are at their carrying capacity (no 
interaction) 

(vi) Two species equilibrium 
2 
Combine conditions Ia, IIb, 
Vb and no insects present) 
 

)1,0,0,1,0(   Unstable both y and w are at their carrying capacity (no 
interaction) 

(vii) Equilibrium 1 with only 
competition  
(Combine conditions Ib, IIb, 
Va and no insects present) 
 

)0,0,0,
)1(

1,
)1(

1(
βδ
δ

βδ
β

−
−

−
−

 
Unstable for a 
large range of 
parameter values 

no herbivores; x and y in their stable 
competition equilibrium; w extinct  

(viii) Equilibrium 2 with 
only competition 
(Combine conditions Ib, IIb, 

1 1( , ,0,0,1)
(1 ) (1 )

β δ
βδ βδ
− −
− −

 
Unstable for a 
large range of 
parameter values 

no herbivores; x and y in their stable 
competition equilibrium; w at its carrying 
capacity 
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With 
(1 )

(1 )
W ζ ζ ζ

ε ζ
+ +

=
+

; species x extinct and 

y at its carrying capacity (no interaction 
between compartments) 
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Vb and no insects present) 
 
(ix) Managed compartment 
only 
(Combine conditions Ia, IIa, 
Vb and insects present) 
 

)),1(,
)1(
)1(,0,0( WWW

−
+
− μ
ζη

μ
 

Unstable for a 
large range of 
parameter values 

With
(1 )

(1 )
W ζ ζ ζ

ε ζ
+ +

=
+

; species x and y 

extinct  

(x) Managed compartment 
and species y 
(Combine conditions Ia, IIb, 
Vb and insects present) 
 

( ) ( )1
(0,1, , 1 ,

(1 )
)

W
W

W

μ
μ

η ζ
−

−
+  

Depending on the 
parameter values 

(xi) Natural compartment 
only (species y extinct) 
(Combine conditions Ib, IIa, 
Va and insects present) 
 

( , 0 , (1 ),
(1 )

(1 ), 0 )

X X

X

ηαα
ζ

−
+

−

 
Unstable for a 
large range of 
parameter values 

With 
(1 )

(1 )
X ζ ζ ζ

ϑ ζ
+ +

=
+

 species w and y 

extinct (no interaction between compartments) 

(xii) Natural compartment 
only 
(Combine conditions Ib, IIb, 
Va and insects present) ( )

1 (1 ))
( ,1 , ,

1 (1 ))
,0)

(1 )

X X
X

X

β βδ
δ α

ηα β βδ
ζ

− − −⎛ ⎞
− ⎜ ⎟

⎝ ⎠
− − −

+

 

Unstable for a 
large range of 
parameter values 

With 
(1 )

(1 )
X ζ ζ ζ

ϑ ζ
+ +

=
+

 species w extinct (no 

interaction between compartments) 

(xiii) Implicit equation  
(Combine conditions Ib, IIa, 
Vb and insects present) 

),,,0,( 1111 WZZX mn  
Unstable for a 
large range of 
parameter values 

Extinction of species y 

(xiv) Implicit equation 
(Combine conditions Ib, IIb, 
Vb and insects present) 

),,,,( 22222 WZZYX mn   Depending on the 
parameter values 

Possibly positive for all 5 species 

 



Figure Legends 

 
Figure 1: Schematic representation of the modelled system. Introduction of a herbivore to the 
managed compartment (e.g. pasture) suppresses the weed population (w). Herbivores disperse 
between the compartments. They feed on a wild plant species (x), which is in competition with 
one or more other plant species (y). The subpopulations of the herbivore in the managed 
compartment and in the natural compartment are denoted as zm and zn respectively.   
 
 
Figure 2: The relationship between the equilibrium densities of wild host plant (x), its 
competitor (y), herbivores in the managed and natural compartment (  and ), weed (w) and 
(A) the plant competition coefficient a

mz nz
xy that expresses the influence of species y on species x and 

(b) the plant competition coefficient ayx that expresses the influence of species x on species y. 
The vertical lines shows the default value for axy and ayx, all other parameter are at their default 
values.  
 
Figure 3: The relationship between herbivore attack coefficients of herbivores on plant species 
(bx and bw) and the equilibrium. Densities of wild host plant (x), its competitor (y), herbivores in 
the managed compartment ( ), herbivores in the natural compartment ( ), weed (w) and (A) 
herbivore attack coefficient b

mz nz
x on species x and (B) herbivore attack coefficient bw on species w. 

Vertical lines present the default values for bx and bw, other parameter values are set at their 
default.  
 

Figure 4: The relationship between dispersal rate d of  the herbivore and the equilibrium 
densities of wild host plant (x), its competitor (y), herbivores in the managed compartment ( ), 
herbivores in the natural compartment ( ), weed (w). Vertical line present the default values for 
d, other parameter values are set at their default.  

mz

nz

 
 
Figure 5: The relationship between attack coefficients bw and bx of the herbivore and the 
equilibrium density of species x for different levels of A) axy B) dispersal coefficient C) 
herbivore’s death rate q. Vertical line present the default values for bx and bw, and other 
parameter values are set at their default. 
 
Figure 6: The relationship between attack coefficient of herbivores in the natural environment 
(bx) and the equilibrium density of wild host plant (x) for: A) different competition effect of y on 
wild host plant, B) for different herbivores attack coefficients in the managed compartment.  
 
Figure 7: Extinction threshold of wild host plant (x) for herbivores attack coefficient in the 
managed compartment (bw) and in the natural ecosystem (bx) when A: dispersal coefficient is 0.5 
B: Dispersal coefficient is 2.5. Other parameter values are set at their default values. Note when 
the density of wild host plant is lower than 0.1 shoot/m  it is regarded as extinct.  2
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Chalak-Haghighi et al. Figure 3 
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Chalak-Haghighi et al. Figure 4 
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Appendix  
Non-dimensionalization 

In order to facilitate mathematical analysis with respect to finding the equilibria and their 

stability by reducing the number of parameters, the system of five model equations is first non-

dimensionalized by setting Wkw
b
dz

b
dzYkyXkx

d
Tt w

w
m

x
nyx ====== ,,,,, . We get: 

(1 )

(1 )

1(

( )

(1 )

n

n
n n m n

m
m m n m

m

dX X X Y Z X
dT
dY Y Y X
dT
dZ XZ Z Z Z
dT
dZ WZ Z Z Z
dT
dW W W WZ
dT

α β

γ δ

ϑ ζ
η

ε ζ η

μ

⎫
= − − − ⎪

⎪
⎪= − − ⎪
⎪
⎪= − + − ⎬
⎪
⎪

= − + − ⎪
⎪
⎪

= − − ⎪⎭

)     (6) 

Where X is the non-dimensionalized density of the non-target species, Y is the non-

dimensionalized density of its wild competitor, W is the non-dimensionalized density of weeds in 

the agriculture compartment, Zm is the non-dimensionalized density of herbivores in the managed 

compartment, and Zn is the non-dimensionalized density of herbivores in the natural 

compartment. The non-dimensional parameters are defined as:  

 ,,,,, ww
y

xyxy

x

yxyx kb
d
f

k
ka

d
r

k
ka

d
r

===== εδγβα
d
r

kb
d
f

b
b

d
q w

xx
x

w ==== μϑηζ ,,, . 

 

Derivation of the equilibria 

From system (7) we get the following conditions that have to be combined for getting the 

equilibria   

)1( )(0 )( YXZX n βα −−=∨= IbIa  
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XYY δ−=∨= 1 )(0 )( IIbIIa  

mnnn ZZXZZ
η

ζϑ 1 )( =+−III    

nmmm ZZWZZ ηζε =+− )(IV     
   

mZWW =−∨= )1( )(0 )( μVbVa   

The combination of conditions (III) and (IV) give either no insects present or the insects present 

in both compartments. No extra equilibria are found for the combinations (Ia, IIa, Va and insects 

present) and  (Ia, IIb, Va and insects present) because of internal inconsistency. A summary of the results 

is given in Table 2. 

 

Stability analysis of steady states 

The general Jacobian Matrix in equilibrium point ),,,,( WZZYX mn is: 

( )

(1 2 ) 0 0
(1 2 ) 0 0 0

10 1 0

0 0 1

0 0 0 (1 2

n

n

m

m

Jac general

X Y Z X X
Y Y X

Z X

W Z

W W

α β αβ
γδ γ δ

ϑ ϑ ζ
η

η ε ζ ε

μ

=

⎛ ⎞− − − − −
⎜ ⎟− − −⎜ ⎟
⎜ ⎟

− −⎜ ⎟
⎜ ⎟
⎜ ⎟− −⎜ ⎟
⎜ ⎟− − −⎝ ⎠

  

) Z

To test the stability of each equilibrium we substitute the equilibrium densities of all 5 

interaction state variables and parameter values in the Jacobian matrix. If all 5 generated 

eigenvalues have negative real parts the equilibrium is (locally) stable. Otherwise the equilibrium 

is unstable. Analytical analysis show that equilibria (I-VI) are unstable (saddle points). For the 

other steady states a numerical analysis has been performed.  
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