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Abstract 

Gruijter, J.J. de (1977). Numerical classification of soils and its application in survey. Agric. Res. 
Rep. (Versl. landbouwk. Onderz.) 855, ISBN 90 220 0608 5, (ix) + 117 p., 18 tables, 23 figs, 176 refs, 
Eng. and Dutch summaries. 
Also: Doctoral thesis. Wageningen; Soil Survey Papers 12. 

Numerical classification of soils was studied with emphasis on methodology and feasibility in sur
vey. A procedure was designed for construction of classes sufficiently homogeneous in terms of rele
vant properties and handlable by the surveyor. In the procedure 'central' depth-profiles are calculated 
separately for each property (e.g. clay content), from a sample of depth-profiles, with a relocation 
method minimizing within-class variances. Any soil profile can thus be identified in the field by allo
cating its constituent depth-profiles to the central depth-profile that is most similar for the respective 
properties. Resulting strings of class labels serve for interim data recording. If too many combinations 
of central depth-profiles arise to map all individually, they are fused into larger classes and within-class 
variances are again minimized. This procedure was applied to survey data from a marine clay area in 
the Netherlands: field estimates for 6 properties in 2212 profiles divided into 20 depth intervals. 
A new method was used to map classes automatically. Tests showed that: samples of several hundred 
profiles were needed; order of profiles and initial solution for relocation had little effect on results; 
only extreme weighting significantly affected homogeneity for different variables. Choice of weights 
and number of classes should be related and supported by sensitivity analysis. 

Keywords: numerical classification, numerical taxonomy, cluster analysis, depth profile, soil classifi
cation, soil survey, marine clay, the Netherlands, line-printer map, automated cartography. 
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1 Introduction 

Right from the early days of soil science in the last century, considerable effort has 
been directed towards classification. Two types of activity may be distinguished: arrang
ing soil individuals (e.g. profiles) in classes ('classification'), and assigning an individual to 
an existing class ('identification'). Both classification and identification may be per
formed by numerical methods. 

The reason for the present study was classification problems arising from surveys done 
by the Netherlands Soil Survey Institute. The classification of Dutch soils, developed at 
this institute (de Bakker & Schelling, 1966), has formed a basis for surveys since the early 
1960s. The principles underlying this classification are partly similar to the new classifica
tion used in the United States (Soil Survey Staff, 1975), but adapted to Dutch circum
stances. It has a pedogenetic background, and the classes are morphometrically defined 
where possible. So far, four levels exist in the Dutch system: order, suborder, group and 
subgroup. The system has been extensively used in soil surveys since its introduction. (It 
is the framework for the legend of the Dutch soil map of scale 1:50 000.) Apart from this 
system, some special classifications have been devised to cope with particular aspects, 
such as the contents of clay and carbonate in relation to depth (see Bodemkaart van 
Nederland, 1:50 000, 1964). However, problems remained and new ones have arisen. 
There is a need to discriminate at levels lower than subgroup, and some of the existing 
divisions proved to be unsatisfactory for some purposes. Also, a pedogenetic approach to 
disturbed soil profiles is not always fruitful. 

Numerical methods commonly involve large and time-consuming calculations. When 
computers became readily accessible, research workers in biology and the social sciences 
began in the 1950s to approach their classification problems by numerical methods. 
Application of these methods to soil data has been reported in the literature since 1960. 

The numerical approach has several attractions. More intensive and consistent use can 
be made of the original soil data. Also, when a computer is used to support classification, 
alternative solutions can be easily generated and tested. The whole process of classifica
tion may then require less time and effort. 

Published studies on numerical soil classification do not tell us everything about which 
data should be used, and which of the numerous methods is likely to be most appropriate 
in a given situation. Above all, little allowance is found in the literature that the usual 
purpose of a soil classification is as a basis for soil survey, and that this may create 
additional requirements and constraints. Thus the present study concentrates on the 
choice of a numerical method, giving special attention to applicability in practical soil 
survey. 

This study considers firstly the main problems in soil classification from the viewpoint 
of a numerical approach. Thus Chapter 2 deals with the purposes of classification, data 
collection and preliminary processing, types of classifications, identification, and assess
ment of classifications. 
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The problem of choice of a numerical method of classification from the vast array of 
possibilities is separately treated in Chapter 3. Three basic approaches are distinguished 
and discussed: the heuristic approach, the approach by imposing mathematical require
ments and by objective functions. In Chapter 4 the rationale is given for a numerical 
procedure, which can be integrated in the normal survey procedures, and which aims at 
homogeneous classes that can be handled in the field. The method is described in detail 
and applied to profile descriptions from a routine soil survey in the Netherlands. In 
addition, experiments are reported on some particular aspects, including sample size, the 
number of classes and weighting of the variables. General conclusions from this study and 
suggestions for further investigations are presented in Chapter 5. 



2 General problems of soil classification 

'This is the most elementary fact about classifica
tion - that we classify for a purpose' (Leeper, 
1963) 

This chapter deals with general questions related to soil classification. They concern 
the purpose of classification, collection and pre-processing of the data, the choice of an 
appropriate type of classification, identification, and assessment of classifications. This 
applies whether conventional or numerical approaches are used. In the former case, the 
decisions are often not explicitly stated, in the latter they must be. 

In the following sections, we shall discuss these problems only where they are relevant 
to a numerical approach. 

2.1 Purposes of soil classification 

Hallsworth (1965) saw soil classification as primarily directed towards 'the mental 
satisfaction that follows the logical organisation of knowledge in a coherent and mutually 
consistent scheme'. How ever gratifying, in general it is not the reason for classifying. 
Reviewing the literature de Bakker (1970) concluded that those who made soil classifica
tions had little to say about their purposes. However a dichotomy according to 'theoreti
cal purposes' and 'purposes of practical importance' seemed obvious. 'Theoretical' con
veys the transmission of comprehension about soils, especially their genesis and mutual 
relations. 'Practical' here relates to communication about soils, prediction of their behav
iour or their survey. This distinction may be useful, though mixtures frequently occur. 
Soil classifications exist that result from genetic considerations only. There are also 
purely pragmatic single-purpose classifications. Then there are intermediate forms. Many 
classifications reflect genetic theory but are intended as frameworks for predicting suit
ability for practical soil uses. 

Intended use may vary, but the handling of soil information is a common central 
element. An essential function of a classification is that it facilitates the description of the 
soil in a given area. This is achieved by substituting a unified description for a class, 
covering many slightly different profile descriptions. The simplification reflects technical 
and psychological desires. A division into classes is indispensable for the simultaneous 
graphic display of the spatial variations of several soil properties on one map. Also soil 
information is better memorized and, consequently, its transfer to, for instance, planners 
of land-use or to students is easier, if it is restricted to a few classes. 

In this study, the construction of a legend for soil survey is considered as the main 
purpose of soil classification. The area to be surveyed, the method of soil survey and the 
aim of the map are all further specifications of that purpose in a particular case. For 



instance, when some form of 'free survey' (sensu Steur, 1961) is to be used, an important 
condition will be that the classification can be satisfactorily employed in the field. 

The above can be more formally expressed. In a classification, one can store informa
tion about individual soil profiles by allocating the individuals to their proper classes. 
Information will be retrieved in the form of knowledge about the class to which its name 
refers. As indicated in Fig. 1, the knowledge of a class in general entails two types of 
information. Firstly, the definition of a class represents the differentiating characteristics 
(sensu Cline, 1949) of the class members. Hereafter this is called primary information. 
Secondly, one usually knows more about a class then its mere definition. This additional 
knowledge may be either empirical (e.g. observed soil properties: accessory characteris
tics, Cline 1949, reactions to various treatments, geographical distribution) or it may be 
theoretical (e.g. about genesis or relations between classes and the environment). This is 
called secondary information. 
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Naturally, empirical information about a class will increase by further observation on 
already known members or by observation of new members. Advance of pedological 
theory may update specific theories related to classes. Neither of these two processes as 
such will alter or extend the classification, but both could make this desirable. 

For simplicity a non-hierarchical classification is indicated in Fig. 1. In the case of a 
hierarchical system, the scheme should be adapted and would have a tree structure, but 
the principle would remain the same. 

If a classification has been derived from theory, it may conveniently represent the 
essentials of that theory. If mainly empirically derived, the classification need not corre
spond the existing theory, but it may help to generate hypotheses and thus direct the 
development of theory. In short: a classification can be seen as a medium through which 
theory may affect collecting and manipulating empirical data, and vice versa. This gives 
rise to the question which direction of influence should prevail. Biologists have extensive
ly discussed the similar question of choosing between the genetic and the phenetic ap
proach (Johnson, 1970). 

Typically, traditional soil classification rests, at least partly, on genetic theory. How
ever, one does not need to be dogmatic here. Norris (1972) recommended to avoid 'the 
definition of soil types' being 'influenced by hypotheses about the causes of soil differ
ences', because otherwise they 'cannot be used subsequently to justify the hypotheses'. 
This kind of hypotheses need not be the main concern of applied pedological research, 
and the requirement seems excessive. A hypothesis should not be statistically tested on 
the basis of data from which it arose, but directing data collection by preconceptions is 
an accepted practice. Science often proceeds this way. But there are risks. The view on the 
object may gradually become biased. It is therefore said that genetic classification ulti
mately boils down to a circular argument. We consider these risks not sufficient to 
abandon the principle, but rather stress the need for intensive confrontation of data with 
theory, i.e. frequent and effective feed-back. 

On the other hand, one should admit that a theoretic basis might not be appropriate, 
or even available. Firstly, theory may be insufficiently established to generate, reliably, as 
detailed a classification as required. Secondly, a considerable body of established theory 
may exist, which however cannot be translated into terms relevant to the given purpose 
of classification. It is therefore recommended to decide pragmatically on the choice 
between theory and empirical information as the basis for classification. 

2.2 Data collection 

This section deals with the collection of data to be used, possibly after pre-processing, 
for the construction of a soil classification. Emphasis lies on fundamental aspects, rather 
than on the practicalities of data collecting. Although other types of pedological data 
exist, the discussion here is confined to data contained in profile descriptions. 

In the following, any number, code or term used to describe a profile with respect to a 
given property is considered as a basic element of the data. In the discussion, this is 
referred to as a value. 

It is inherent in numerical classification that, at least conceptually, the values are 
arranged in an n x m data matrix X, where n and m are the numbers of rows and columns 
respectively. Each row refers to what is called an entity, individual or object, for instance 



a soil profile. We often will call it an object; in applications no distinction will be made 
between the object itself and the corresponding row of values. Each column consist of 
values regarding the same characteristic or variable. The value recorded for the Zth object 
and the/th variable will thus be denoted by x,-. 

When the objects are soil profiles, divided into genetic horizons or fixed intervals, 
examples of variables are: 
— percentage of clay between 50 and 60 cm depth, estimated by finger test (value, for 
instance, 18), 
— number of mottles in A2 horizon (value, for instance, 'few'), 
— colour of Al horizon in Munsell code, when moist (value, for instance, 10YR 4/3), 
— kind of structure in B horizon (value, for instance, 'prismatic'). 

2.2.1 Choice of variables 

The variables on which a classification is based determine by definition the nature of 
the primary information that can be stored and retrieved by the classification. Indirectly 
these variables also partly determine the secondary information related to the classes. The 
choice of variables is thus of paramount importance; the usefulness of the classification 
heavily depends on it. 

The number of morphological, physical, chemical and biological variables by which 
soil classes can be defined is immense. Application of numerical computer techniques 
enables one to include many variables in an analysis. This has revived interest in the 
taxonomie principles of Adanson (e.g. Sokal & Sneath, 1963), which were hitherto hardly 
practicable. According to these principles, a classification must be based on as many 
variables as possible, chosen without preconceived opinions about their significance. 
Whatever the merits of these principles may be for biological classification, their initial 
identification with the numerical approach of soil classification (e.g. Bidwell & Hole, 
1964b) seems a futile effort towards 'objectivity'. Even if the purpose of the classification 
is only vaguely defined, one could still think of variables being irrelevant. If these are still 
used in classification, they may detrimentally influence the storage and retrieval of rele
vant information. Numerical classification with many variables is technically possible. But 
if classes are defined on many variables, new profiles may be difficult to identify. Thus 
also for practical reasons, a limited number of well-chosen variables is desirable. 

This implies that the variables ought to be chosen in relation to the purpose of the 
classification. Suppose that the purpose of a soil map of a region is to display suitability 
for a given type of agriculture. The way we chose the variables may be described as 
follows. Using existing theory as well as experience, one tries to establish a number of 
conceptual properties that together determine the suitability of the soil for the type of 
agriculture in question. These may be referred to as assessment factors, for instance 
'availability of water', 'availability of oxygen', 'availability of nutrients', and 'penetrabili
ty for roots'. Since these factors are not easily measured, we seek others that may be 
assumed to be good predictors of the assessment factors, for instance 'texture of top-soil', 
'structure of subsoil', 'groundwater regime'. The latter often relate to several assessment 
factors, and also to one another. The search for variables that are technically and econom
ically acceptable results in a restricted set of relevant variables. 

Two aspects that are more specific deserve to be mentioned. Laboratory facilities 



allow for accurate measurements that are more closely related to at least part of the 
relevant conceptual properties than field data. On the other hand, the costs and effort 
involved are usually much higher. But reduction in the number of samples lowers the 
reliability of estimates. A rational strategy is possible only in so far as the predictive 
power with respect to the conceptual characteristics is known for both laboratory and 
field variables. The effect of field and laboratory variables on classification can be conve
niently studied by numerical classification methods. This was done by Sarkar (1965), 
Grigal & Arneman (1969) and Norris (1971). 

The second aspect occurs in literature on numerical soil classification as the problem 
of vertical anisotropy. It arises when the same property is measured at various depths in 
the profile. The recorded values may then concern fixed depth-intervals or varying inter
vals such as genetic horizons. In both cases, there is the question which interval of the one 
profile is to be compared with a given interval of the other. Imagine for instance that clay 
contents are estimated at various depths in a number of profiles. Even if these depths are 
the same for all profiles, comparing contents at the same depth is not obvious if one 
thinks of the possibility that some of the profiles have been buried or eroded. 

The problem might be seen as a special case of establishing comparability of data, 
rather than specifically one of numerical classification. Another form is encountered 
when, for instance, chemical data are to be analysed that arise from slightly different 
methods of analysis. A related problem in biology is to establish homologies. 

Just as with the other aspects of defining the variables, the solution of the present 
problem depends on the purpose of the classification. When a genetic system is desired, 
homologies between soil horizons or layers have to be established. Rayner (1966) at
tempted to accomplish this by a numerical procedure, later modified by Grigal & Arne
man (1969). The idea is to consider, order constraints apart, the most similar pairs of 
horizons as homologous. If, however, a classification if primarily meant for planning soil 
use, the approach of Rüssel and Moore (1968) might be better. They divided profiles into 
fixed depth-intervals, and then compared intervals at the same depth. The same line has 
been followed in the experiments of Chapter 4. See also Lamp (1972) for a discussion of 
this matter. 

2.2.2 Choice of profiles 

The choice of variables, discussed in the previous section, embodies the decision on 
how to describe the profiles. This section deals with the question of which profiles are to 
be described where to allocate the observation points in the area. 

This is largely a matter of sampling design.1 With respect to sampling in soil survey, it 
is useful to distinguish between data collection for the construction of classes, and for the 
geographical delineation of existing classes. Although both aims are in practice often 
realized more or less simultaneously, they are different and may in principle require 
different sampling designs. 

1. There is no sampling problem if soil bodies are previously delineated and each one is to be treated 
as an object in subsequent classification. An advantage of this approach is that undue fragmentation of 
the map can be avoided from the beginning. On the other hand, control of hcterogeniety within the 
classes is lost as far as this is due to variation within these delineated soil bodies. Therefore this approach 
is not discussed further. 



As far as delineation of classes is concerned, whether carried out manually or automat
ically, strictly random sampling is not usual nor essential. In fact, as in free survey, the 
surveyor may sample sequentially, and deliberately site each new observation point there 
where he expects most information. It is commonly assumed that such a directed search 
may be more efficient in class delineation than a random search. This efficiency depends 
of course on the true pattern of the classes, the relations between soil properties and 
landscape features, sample density and the experience of the surveyor. A comparative 
study of soil survey methods is being conducted by the Oxford School (e.g. Burrough et 
al. (1971), Bie (1972) and Bie & Beckett (1973). The outcome of such studies are unclear 
at the moment. So in divising a classification procedure, some form of directed search for 
delineation will be assumed in this study and it will be required that surveyors can use the 
classification in the field. 

As distinct from delineation, sampling for classificatory analysis should produce data 
that represent the variations in the area sufficiently well. A random sample sufficient in 
size to represent adequately the multivariate distribution would be best. There are three 
main categories of random sampling: strictly random, stratified random and systematic. 
Each type has its own merits; for sampling theory see, for instance, Raj (1968) and 
Yamane (1967). Classification of modal profile descriptions, originally selected to repre
sent already established classes, and extracted haphazardly from the literature, is a dubi
ous exercise (but see Hole & Hironaka 1960, and Cipra et al. 1970). 

The first numerical soil classifications were with only some tens of objects. This has 
gradually grown to some hundreds, which is certainly more realistic in view of the 
intricate variations usually involved. Sample size is, like number of variables, of computa
tional concern. High numbers of objects may rule out certain methods as requiring too 
much computer time or storage. 

2.3 Data pre-processing 

It may be desirable to pre-process the data in some way before they are used for 
classification. Apart from choosing the data and the method of classification, pre-proces
sing constitutes another main category of decisions that have to be taken, and that 
generally affect the final classification. 

Pre-processing may be undertaken for different reasons. For instance, a data transfor
mation may be necessary to a form required for classification. Pre-processing could also 
be used to obtain a better classification or a more manageable set of data. When its effect 
is to reduce the amount of data, it is henceforth called data reduction. Where the data 
themselves change but not the number of data, it is referred to as data transformation. 

2.3.1 Data transformation 

By transformation, the data matrix X will be changed into a matrix Y, according to a 
more or less intricate procedure. Column-wise defined transformations are, for instance 
- all values 'not', 'half and 'fully' in a given column are replaced by 0,5 and 10, 
respectively, 
— all values in a given column are multiplied by a constant, or replaced by their loga
rithm, 



— reduction of the columns (subtracting the column mean), 
— standardization of the columns: dividing all values in a column by the square root of 
the sum of squares. 
Examples of row-wise transformation are: 
— all values in a row are replaced by their proportion of the corresponding row total, 
— reduction of the rows. 
Various other possibilities exist, for example 
— all values xt in Column 1 and xn in Column 2 are replaced by their sum and differ
ence, respectively, 
— the matrix X is replaced by a lower rank approximation calculated by principal 
components, 
— reduction of the columns followed by reduction of the rows (double centring). 

Because of the implications for the choice of a classification method and for prelimi
nary transformations, first some distinct types of variables are discussed. 

If the set of possible values of a variable is finite, or at least countable, that variable is 
called discrete. An example is type of epipedon as defined in the US soil classification 
system (Soil Survey Staff, 1975). In particular, counting gives rise to discrete variables, 
like number of worm-holes. In the special case where only two values are possible, one 
speaks of binary or dichotomous variables, like presence or absence of hydromorphic 
characteristics. Some classification methods can only be used with dichotomous variables. 

If the concept of a variable is such that all possible values within a certain range 
constitute an (uncountably) infinite set, that variable is conceptually continuous. Exam
ples are C/N ratio or clay content. Due to coarseness of measurement and rounding, each 
variable is discrete in practice. The concept of continuity, in cases where precision of 
measurement may be increased ever further, may facilitate mathematical considerations, 
e.g. for application of linear vector spaces or calculus, but in fact is an approximating 
model of reality. Handling strictly discrete variables requires discrete mathematics, which 
is much more difficult. Classificatory concepts based on strictly discrete variables have 
been developed by van Emden (1971). 

Besides the number of possible values, the kind of relations between the values is also 
important. In this respect, the following subdivision seems useful (Siegel, 1956). 
Nominal variables: the values have no natural order. The only relation between the values 
is that of equivalence: they are equal or unequal to each other. An example is type of 
epipedon, with values 'mollic', 'anthropic', 'umbric', etc. 
Ordinal variables: the values have a natural order, but only equivalence and order rela
tions between them exist. An example is degree of mottling, with values 'no', 'few', 
'moderate', 'many' and 'abundant'. 
Metrical variables:2 assignment of numerical values is at least definite up to a linear 
transformation. Examples are mass fraction of clay and Celsius temperature. 

2. Includes interval variables, ratio variables and counts. For counts, the only reasonable choice is the 
identity transformation. 



2.3.1.1 Transformation of nominal and ordinal variables 

The purpose of soil classification normally implies that classes be defined such that 
members of the same class in some sense resemble each other more than members of 
different classes. This, in turn, implies the concept of difference or distance between two 
soils, or between a soil and the typical representative of a class. Whether such differences 
are established quantitatively or qualitatively, assumptions must be made about the mag
nitude or significance of the difference between any pair of values, relative to those of 
other pairs. For nominal and ordinal variables this information is by definition absent and 
the use of such variables for classification thus seems paradoxical. 

Suppose a 3-valued nominal variable with values a, b and c has been recorded for a set of objects which 
is required to be partitioned into two classes. Are the a's to be lumped with the è's or the c's? Or 
should the b's go together with the c's? A rational choice does not seem possible unless we know 
something about the differences between the values. The same difficulty exists for an ordinal variable, 
where it is known that, for instance, a > b > c. One of the alternatives (a combined with c) may then 
be discarded as being inferior, but the rating of the other two remains uncertain. 

The paradox does not exist in practice. With non-mathematical classification, the values 
of a nominal variable are generally not used as meaningless arbitrary labels. Rather, 
differences between values are, at least implicitly, weighted against each other according 
to what is known about them. The same holds for ordinal variables. 

In numerical 'classification, the values are often handled as if they were equidistant. 
Burr (1968) suggested, as an alternative, to decompose an m-valued nominal variable into 
m binary variables, each denoting the presence or absence of a particular value, and to 
assign numerical values to these variables by 'reciprocal proportions'. This means that the 
non-zero values of the binary variables are made proportional to the square root of the 
reciprocals of the corresponding relative frequencies. With classification under the least-
squares criterion (to be discussed in 3.4.1.1), this standardization has the effect that a 
variable with many values has greater influence than one with few values. Another ten
dency, at least if the variables are statistically independent, is that fusions of objects with 
rare values receive high priority. It is unlikely that these effects would always lead to a 
useful soil classification. More generally, it seems difficult to devise one rigid scheme for 
value assignment which is useful for all ends. Therefore, as a more pragmatic strategy, it is 
advised that the user deliberately chooses the non-zero values of the binary variables, thus 
controlling their influence on the classification according to what he knows about them. 
In practice, a nominal variable usually refers to a complex of soil properties and could be 
conceived as a previously established classification or typology. If data are available on 
the content of the already established classes, these could be used to evaluate the mutual 
differences (examples in Ch. 4). If not, the differences have to be estimated subjectively. 
Even then, however, the transformation may be in better agreement with the purpose of 
the classification than if the values are assumed equidistant. 

A similar argument applies to ordinal variables, except that this type need not be 
decomposed into binary variables. Suppose, for instance, that the perceived soil reaction 
to 10% HCl has been recorded with the values 'no', 'weak' and 'strong'. These values 
could be replaced by numerical ones, proportional to the estimated contents of carbonate 
with which the reactions on average correspond. The resulting variable is then treated as 
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being metrical. In addition, statistical and mathematical methods for converting ordinal 
into metrical variables exist, called 'scaling methods' (Kruskal, 1964a,b). 

2.3.1.2 Transformation of metrical variables; weighting 

If the original values x are transformed to: 
y = a + b.x (a and b constant for a given variable), the transformation is said to be 

linear. Under such transformations the ratios of differences between values are preserved. 
Any other mode of transformation, like logarithmic, is termed non-linear. 

2.3.1.2.1 Non-linear transformations This type of transformation is sometimes ap
plied to obtain normal frequency-distributions, the latter being considered indispensable 
for a valid application of numerical classification. We see no reason for this requirement. 
It is true that some methods presuppose that the sample which is to be partitioned arises 
from different, normally distributed populations. However, classification methods based 
on the assumption that the union of such populations is also normally distributed have 
not been encountered and would also seem unlikely. 

On the other hand, just as with nominal and ordinal variables, non-linear transforma
tions could be desirable for pragmatic reasons, to produce a more useful classification. If, 
for instance, a certain difference in clay content is judged to be more important in the 
lower end of the scale than in the higher end, that could be accounted for in the 
classification process by using, for instance, the square root or the logarithm of the clay 
content. 

2.3.1.2.2 Linear transformations; weighting of variables If a set of objects is conceived 
of as points in a space of which the co-ordinate axes correspond with the variables, it is 
easy to see that multiplying the values by a factor and adding a constant have quite 
different effects. Addition of a constant shifts the points relative to the origin, without 
affecting the distances between the points. Classification methods, however, are nearly 
always insensitive to such translations. If, on the other hand, the values of one variable 
are multiplied by a constant, the group of points will stretch or shrink in the correspond
ing direction, the distances between the points will change and the resulting classification 
usually too. The general tendency is that the larger the factor, the more 'weight' attached 
to the variable, so the more the classification will be determined by that variable. 

As Williams (1971) pointed out, the concept of weight is rather vague and ambiguous. 
Both the multiplication factor and the influence of a variable on a classification are 
sometimes referred to as weight. Hereafter, the multiplication factor will be termed scale 
factor. The latter concept has been given a more precise meaning by Burr (1968), who 
referred to the average contribution of a variable to all (^) inter-object distances as the 
effective weight of that variable. When, for instance, squared Euclidean distances (3.2.1.) 
are used, the effective weight of a variable equals 2/(w—1) times the overall sum of 
squares. 

Burr's effective weight seems to be a useful measure. It is defined for the unparti-
tioned set of objects, though, and therefore confined to the situation before classifica
tion. It is generally related, but not identical with the degree to which a classification is 
actually determined by a variable. The latter, however, may be of direct interest for the 
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usefulness of a soil classification. For this reason a second concept of weight could be 
defined analogously, as the average contribution of a variable to the distances between 
the objects when replaced by the representative (e.g. centroid) of their respective classes. 
For squared Euclidean distance, this contribution equals 2/(n—l) times the between-class 
sum of squares. 

Now the basic question arises whether the initial weights should be accepted as they 
are in the raw data and, if not, how they are to be changed. From the beginning, these 
questions were among the main issues in numerical classification. 

The choice of measurement units is often partly a matter of convenience. Direct 
processing of raw data could thus lead to arbitrary weights, to classifications arbitrarily 
governed by a minority of variables. 

An obvious remedy, often advocated, is standardization. The variables are then trans
formed to equal range or variance. (Note that transformation to equal overall variance 
results in equality of effective weights if squared Euclidean distance is used! ). One of the 
Adansonian principles (see also 2.2.1) indeed prescribe equal weighting. In my opinion, 
this is not acceptable as a general principle for soil classification. Here too, decisions 
should rather consider the purpose of the classification, the method by which this will be 
established, and the raw data. We may not expect that the quality of a classification will 
go beyond one's ability to specify adequately the required accuracies of the different 
kinds of information to retrieve. The study of Russell & Moore (1968) on effects of 
different depth weightings on numerical soil classification, may be seen in that light. For 
a clear expression of the same viewpoint in an econometric context, see Morrison (1967). 

If a soil map is intended for predicting the suitability for a particular type of land-use, 
the classification on which the survey is to be based must be constructed such that it is 
correlated as strongly as possible with suitability. The more the suitability depends on a 
given variable, the more important it is that information on this variable is preserved by 
the classification: the more homogeneous the classes should be with respect to that 
variable. Ideally, if adequate data on suitability were available, optimum scale factors 
could be objectively established by multiple regression analysis. If that be impossible, the 
scale factors have to be estimated subjectively. 

Only a general approach to the problem of weighting is outlined in this section. The 
actual procedure depends on the chosen method of classification, and further discussion 
is therefore postponed to Section 3.2.1 and 4.2.3.3. Effects of different weightings on 
within-class variances were investigated (4.3.4). 

Special problems of weighting may arise for 'hierarchical' variables. Hierarchical vari
ables are, for instance, the presence or absence of a certain type of horizon (primary 
variable) and the content of clay in this (secondary variable; only applicable if that 
horizon is present). Without special provision, the differences in secondary variables could 
preponderate over the differences in primary variables. Kendrick (1965), Williams (1969) 
and Go wer (1971) examined this problem. 

Standardization is sometimes applied row-wise instead of column-wise. The values for 
each object are then transformed, for instance, to zero mean and unit variance or total 
value 1 for the values or their squares. Row-wise standardization might be appropriate for 
special purposes, for instance if the average of the values of an object is immaterial for 
comparison with other objects. It is sometimes applied for that reason by biologists and 
psychologists. 
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Soil data are frequently transformed to percentages of an object total, for instance of 
mineral constituents or adsorbed cations. The use of percentages in numerical classifica
tion is dealt with in 3.2.1.8. Standardization of object values has been discussed by, for 
instance, Cronbach & Gleser (1953) and Orloci (1967a, b). 

2.3.2 Data reduction 

2.3.2.1 Reduction of the number of variables 

The simplest reduction is deleting one or more variables of minor importance. The 
choice could be made by inspection of the correlation coefficients, as in the procedure of 
Sarkar et al. (1966). However, this is still subjective. Principal component analysis, some
times preceded by factor analysis in order to find a suitable scale transformation, is a 
better established technique for selection from covariance or correlation matrices. This 
results in a reduced number of new variables, each of which is a linear combination of the 
original variables. These methods indeed are frequently applied before classification. They 
are treated in textbooks on multivariate analysis. The SELFIC/CLAFIC procedure of 
Watanabe (1969a) is designed for classificatory problems. See also Arkley (1971) and 
Lamp (1972) for examples of factor analysis and principal component analysis preceding 
numerical soil classification. 

In many instances, these methods of reducing the number of variables will not save 
computer time. Usually calculation of eigenvectors and eigenvalues from large matrices is 
involved, which is apt to outweight the lower number of variables, especially if the time 
required for a classification procedure is only linearly dependent on that number. As a 
theoretical end, however, factor analysis may provide information alongside that obtained 
by classification methods. This is clearly so when only few dimensions are retained, so 
that visual inspection of scatter diagrams is feasible. Marked clustering of objects could 
already be detected in that stage, if it exists. 

Especially if only one factor is used for subsequent analysis or description, as in 
contour mapping, the loss of information may be serious and caution is needed (e.g. 
Lamp, 1972; Norris, 1972; Webster & Burrough, 1972a). 

If new objects are to be identified it is necessary to express the observations in terms 
of factors on which the classification is based. This transformation renders manual identi
fication difficult. 

When soil profiles have been described by depth interval, for instance by horizon, an 
obvious way to reduce the number of variables is to reduce the number of intervals. The 
values of the new variables are averages over two or more previous intervals. If necessary, 
differences in bulk density and non-linearity of scales (as with pH) must be taken con
sidered in calculating an average. The original units of measurement are preserved by this 
procedure. One matter to be considered is the extent to which the inter-profile similari
ties are distorted by this simplification. In tests of my own, a high correlation coefficient 
(0.99) was found between Euclidean distances based on 5 layers of 40 cm and those 
based on 40 layers of 5 cm. 

Another method of reducing the number of variables is to represent the value of a 
property (y) as a polynomial function of depth below surface (x): 
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The coefficients a, are calculated by least squares approximation of the values y recorded 
at different depths. Each coefficient at is then taken as a new variable. As n increases, the 
approximation improves, but reduction will be less. As n decreases, the danger increases 
that the poly nominal assumption is untrue. 

Approximation by polynomials is treated in textbooks on numerical analysis and 
statistics. Applications in numerical soil classification are found in Campbell et al. (1970) 
and Moore et al. (1972). Although superficially attractive, the method raises problems. 
Firstly, if the degree of the polynomials is chosen too small, a considerable distortion 
may result for irregular profiles. Secondly, if the total depth of the profiles varies, the 
polynomials are difficult to compare. If, for instance, a shallow profile is similar to the 
upper part of a deeper one, the calculated coefficients may differ considerably. Thirdly, it 
is difficult to choose appropriate weights for the new variables. How important is cubic 
trend of, for instance, phosphate concentration for plant growth, compared with quartic 
trend? The unsatisfactory results obtained by Campbell et al. (1970) and Lamp (1972) 
are probably due to these difficulties. 

Finally, a strategy frequently followed in conventional soil classification is to replace 
the values of a subset of the original variables by a reduced number of classes, which form 
a special classification or typology. This classification serves as a new variable for the final 
classification. One example is the definition of diagnostic horizons as a preliminary to the 
US soil taxonomy. This principle is a main element of the numerical classification proce
dure, designed and tested in this study (Ch. 4). 

2.3.2.2 Reduction of the number of objects 

Reduction of the number of objects is of special interest when the classification 
method is such that the computational effort increases proportional to the square of the 
number of objects, or faster. That is so for agglomerative methods (3.2.2.1.1), for in
stance. 

The simplest and usual method of reduction is to use a random sample from the 
original set as classification input. Little attention has yet been given to the question of 
the sample size. As described in 4.3.1,1 attempted to acquire some evidence on this. 

Watanabe (1969a) suggested a procedure (REPREX) for extraction of a subset of 
objects representing the whole set as well as possible. This method is theoretically ad
vanced, but the computational effort required is apt to outweigh the advantage in sub
sequent classification. 

2.4 Major types of classification 

This section is concerned with some general problems of choice involved in classifying 
itself, i.e. starting from a given purpose and a set of possibly pre-processed data. Five 
issues are discussed below. The first two are primarily related to the purpose; the next 
three concern the structure of the resulting classification. 

14 



2.4.1 Intrinsic versus extrinsic 

These terms are used in the sense of Lance (1973); they are synonymous with 'descrip
tive' and 'predictive', respectively, as used by Macnaughton-Smith (1965). 

In general, the specification of an object as member of a certain class carries primary 
and secondary information (2.1, Fig. 1). The primary information tells something about 
the object in terms of the same variables as used for its identification, and the secondary 
information may predict other variables. They are further called primary and secondary2 

variables respectively. An intrinsic classification is only based on information about pri
mary variables. If, for a subset of the objects, information exists on the secondary 
variables and this has been used for the construction of the classification, the latter is 
called extrinsic. 

Of course also with intrinsic classification one should aim at high predictive value 
through the choice and transformation of data (2.1 and 2.3). The idea of explicit usage of 
selected data for this purpose seems of great potential interest. However, on extrinsic 
classification only the work of Macnaughton-Smith (1963) is known to me; this is re
stricted to presence-absence variables and only one secondary variable. In the following 
we shall therefore confine the discussion to the intrinsic approach. 

2.4.2 Distribution fitting versus homogeneity optimizing 

Many arguments among numerical taxonomists about the suitability of their methods 
seem to be caused by fundamental disagreement as to whether a classification should 
reflect the distribution of objects in multivariate space as well as possible, or should 
consist of classes that are as homogeneous as possible. Beside the vagueness of these 
concepts, it is confusing that they are not mutually exclusive. On the contrary, distribu
tion fitting seems often to imply optimization of homogeneity to a certain extent, and 
vice versa. On the other hand, when the objects form elongated groups of points in 
multivariate space, classes that correspond to these groups may be too heterogeneous. 

The concept of distribution fitting has always had a strong appeal to taxonomists. 
Several classification methods have this explicit aim (see 3.4.1.2). It is related to the idea 
of a 'natural' classification, of which the classes are different populations. Undoubtedly 
there are many situations, for instance in pedogenetic research, in which it is important to 
know whether a given set of objects should be regarded as a mixture of samples out of 
different populations; and if so, to indicate which objects belong to each population, and 
to estimate the population parameters. 

If the area to be surveyed is genetically heterogeneous, then it might be worth-while 
trying first to separate some broad classes with soils having similar histories, by means of 
distribution-fitting classification. If such classes are still too heterogeneous with respect to 
the primary variables, they could be further split by homogeneity optimizing classifica
tion. The classes resulting from such a strategy are perhaps better mappable and more 
homogeneous for secondary variables than by homogeneity optimizing alone. As this 
study is primarily directed to the mapping of genetically fairly homogeneous areas, the 

3. Not to be confused with 'primary' and 'secondary' in relation to hierarchical variables (2.3.1.2). 
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survey of numerical methods (Ch. 3) as well as the experiments (Ch. 4) have however 
been concentrated upon optimizing homogeneity. 

Other discussions of this topic are by Forgy (1965), Cattell and Coulter (1966), 
Wishart (1969c) and Spence and Taylor (1970). 

2.4.3 Fuzzy, overlapping or disjoint classes 

A major choice in classification is whether disjoint or overlapping classes have to be 
constructed. If the latter, an object may be a member of more than one class. If a set is 
divided into disjoint classes one speaks of a partition. Fuzzy classes {sensu Zadeh, 1965) 
are a third alternative. There one can no longer speak of an object being member of a 
class, but only of its degree of membership. In practice, fuzzy classes arise when a series 
of central concepts is defined and no unambiguous rules for identification are given. 

The information that an object is near the boundary between two classes is lost if one 
is working with disjoint classes. Through overlapping or fuzzy classes, it can be preserved, 
by specifying the object's multiple membership or its low degree of membership. Thus 
with overlapping as well as with fuzzy classes, more detailed data about the objects can 
theoretically be passed on to a user than with disjoint classes. 

Even if fuzzy classes are used for soil survey, then each point of the map has still to be 
definitely allocated to a class when drawing the (non-fuzzy) geographical boundaries. It is 
true that, in this case, the definition of the classes can be adapted to the situation in the 
field. However, a disadvantage of this strategy is that the concept of a class is likely to 
shift when going from one part of the area to another. The final classes might then be too 
heterogeneous. 

To avoid excessive fragmentation of the map it is sometimes desirable to have overlap 
between the classes. On the other hand, overlap must be avoided as much as possible 
when homogeneity is to be optimized. Therefore, a soil survey can better start from 
disjoint rather than overlapping classes, overlap being introduced only where, and to the 
degree, it is necessary. 

In summary, variations within classes can be better controlled if disjoint classes are 
taken as a starting point for soil survey, and possible adaptations of the classes are well 
recorded. For this reason the following will be confined to construction of disjoint 
classes. Methods leading to overlapping classes have been discussed by Jones & Jackson 
(1967), Cole & Wishart (1970) and Jardine & Sibson (1971). Bezdek (1974) gives an 
example of fuzzy classes being used in a mathematical model. 

2.4.4 Hierarchic versus non-hierarchic 

When it is decided that the classes should be disjoint, one has the choice between a 
single partition and a series of hierarchically related partitions. Usually these alternatives 
are called respectively non-hierarchical and hierarchical classification. Intuitively, it will 
be clear what is meant by hierarchical classification. A precise definition is as follows. 

Definition 1. Partition A is at least as fine as partition B (denoted by: A^Bj if and 
only if each class of A is a subset of a class ofB. 
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\ÎA>B mdB>A,theriA=B. If A >B and B )>A, then A is finer than B. If so, one 
also says that.4 is at hierarchical lower level than B. Note that if A )> B and B)> C, then 

Aye. 
Definition 2. A hierarchical classification is a set of partitions that can be ordered in 
the sense of Definition 1. 

Sets of partitions which cannot be ordered in the sense of Definition 1 are called reti
culate classifications; they are of theoretical interest only. 

The advantage of hierarchical classifications over non-hierarchical ones is that both 
storage and retrieval of information are easier. Any new object can be identified stepwise, 
allocating it to classes of decreasing levels. In this way many redundant comparisons 
between the object and definitions of classes may be avoided, and the identification may 
proceed more efficiently. Furthermore, the geographical boundaries in an area between 
the classes of a given partition form a subset of those between the classes of any finer 
partition in the same area. So if soil maps at different scales are requested, the classes can 
be more efficiently delineated if a hierarchical classification is used instead of a reticulate 
one. Also, due to the structure of the classes, a hierarchical system is more comprehensi
ble. Without the constraint of a hierarchical structure, the homogeneity within classes 
could in general be further optimized. However, the importance of easy storage and 
retrieval will often override this drawback. Especially if the total variability is large, many 
classes will be needed to achieve sufficient homogeneity and then the advantage of a 
hierarchical structure will be greatest. Examples are the Linnaean system, the Universal 
Decimal Classification system for documents, and various national and international soil 
classifications. If, during a soil survey, the profiles must be easily identifiable, a hierarchi
cal system seems indispensable. 

Special numerical methods exist for constructing hierarchical classifications; these are 
briefly discussed in 3.2.2.1. Other methods lead in principle to a single partition but when 
applied again to the subsets a hierarchical classification will result. Alternatively, one 
could create beforehand two or more partitions independently from each other, based on 
different sets of variables. These partitions could then be combined into one, such that 
every resulting class consists only of objects in the same classes of the respective original 
partitions. This so-called product partition is at a hierarchical lower level than each of the 
original partitions. The latter strategy is often practised conventionally. It has also been 
followed in the numerical experiments described in Chapter 4. 

The choice between hierarchical and non-hierarchical classifications has been discussed 
by, for instance, Williams & Dale (1965) and Pielou (1969). 

2.4.5 Monothetic versus polythetic 

These terms were introduced by Sneath (1962). They refer to the kind of distinction 
made between classes. 

Definition 3. If a partition is such that for any pair of classes the values of at least 
one variable are mutually exclusive, then the partition is monothetic. 

In geometrical terms, each class boundary can be represented by a plane perpendicular to 
one of the coordinate axes. Otherwise the partition is polythetic. 
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Although this is not inherent in the concept, the construction of a monothetic hierar
chical classification is in practice always a divisive procedure, i.e. successively dividing of 
the complete set into finer partitions. Each new partition requires one variable. 

The advantage of monothetic classification is its simplicity: the construction proce
dure is straightforward, both conventionally and by computer; definitions of the resulting 
classes are simple and clear, often to the extent that they can be used directly as class 
labels. This, of course, enables quick storage and retrieval, especially with a hierarchical 
system, which could directly be used as a key for identification. 

However, just as with hierarchies, the advantage can in general only be achieved at the 
price of optimality of the partition. Without the constraint of perpendicular boundaries, 
more homogeneous classes might generally be possible, while the idea of fitting distribu
tions is hardly compatible with monothetic division. This suboptimality is probably the 
reason for bad experience with monothetic classification. Polythetic methods will there
fore be of major concern in this study. 

The choice between monothetic and polythetic classification is discussed, for instance, 
by Williams (1971). 

2.5 Identification 

The concepts of classification and identification as described in Chapter 1, are not 
always clearly distinguished from each other. Identification is basically the allocation of 
an object to one or more already established classes. Classification must precede identifi
cation. Watanabe (1969b) discussed this issue in detail. 

Much of the confusion is probably because classification methods may be used in 
some stage of the construction of identification devices (e.g. Firschein & Fischler, 1963), 
and conversely, identification techniques may be involved in a classification procedure. 
Various other terms are used in this connection, for instance pattern cognition and 
pattern recognition (Watanabe, 1969b). 

The problem of identification arises when the objects on which a classification is based 
are only part of the total universe considered. In soil sciejice, this is mostly so. We argued 
in 2.2.2 for adapted sample allocation (free survey) for the estimation of the geographical 
distribution of the classes. Though not necessarily in definitive form, such a strategy 
assumes those classes to be established beforehand on the basis of only a limited sample. 
Also the condition arises that identifications should be carried out in the field. This in 
turn implies that identification should not involve more than simple diagram or a short 
calculation, if any. For this reason we will not go into the field of multiple discrimination 
analysis, although this might be of interest for other purposes in soil science, such as 
automated analysis of air and thin-section photographs. See Sebestyen (1962) and Watan
abe (1969c). 

The use of a key could be an interesting alternative. Despite the recent progress in 
automated key generation (e.g. Pankhurst, 1975), the present methods would not serve 
our needs adequately, and this line will not be pursued here. 

A suitable structure of the classification itself could in principle solve the identifica
tion problem most directly. A hierarchical system would therefore be appropriate. As 
indicated already in 2.4.4, this line has actually been followed in the experiments of 
Chapter 4. 
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Special attention to identification of soil profiles was paid by Norris & Loveday 
(1971). 

2.6 Assessment of classifications 

It is evident already from the preceding sections that the construction of soil classifica
tions is not at all straightforward. Several problems of choice exist for non-numerical 
methods of classification; they are clearly stated by Schelling (1970). For a numerical 
approach one must in addition choose the actual classification method; Chapter 3 is 
entirely devoted to that subject. 

The assessment of classifications has only recently received more than superficial 
attention. For numerical classification, the literature shows that method and practice of 
assessment are still in their infancy. The possibilities for such assessment are summarized 
below. 

2.6.1 Direct subjective assessmen t 

As a first approximation the quality of a classification may be subjectively assessed by 
informally forecasting how far it could fulfil its purpose. Various aspects may then be 
relevant: suitability as a basis for soil survey, homogeneity of the classes and interpre-
tability in terms of pedogenetic theory. The flaw of this procedure is clear: only evidently 
bad solutions can be spotted with certainty, the remainder can be rated only roughly and 
with unknown reliability. 

Williams et al. (1966) indicated how a small step could be made towards formalization 
of the above procedure. Starting from the same considerations, a grouping could be 
erected subjectively beforehand as a standard for comparison with numerical solutions. If 
a conventional classification existed already, this could play the same role. In fact, these 
are special cases of a more general one, as discussed below. 

2.6.2 Stability of the result 

Many miscellaneous statements in the literature suggest that as evidence for the good
ness of a classification, one might take its stability against changes in either data or 
procedure. For instance Campbell et al. (1970) took explicitly the latter line: if one starts 
from different points and arrives at similar solutions, then they consider such a classifica
tion more reliable. At least two questions arise. 

Firstly, is the conclusion justified? If similar classifications result from different clas
sification procedures, then probably a clear-cut clustering of the objects exists in the 
multivariate space. However, it depends on the purpose whether such classifications are 
the best ones. Conversely, also if the resulting classifications are different, it is still 
possible that one of them is suitable. 

Secondly, stability will be judged in general on the basis of classifications that differ 
only moderately. Such differences, however, are often assessed in a subjective way. De
mands for objectivity give rise to the quest for an appropriate method of comparing 
classifications; this is a difficult problem in itself. (See Rand (1971) for a quantitative 
approach.) These remarks need not lead to the conclusion that empirical research on 
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Classification is necessarily futile. If this yields further insight into classificatory processes, 
it may indirectly contribute to a better strategy. 

Comparison of a numerical classification may be with either other numerical ones or 
with conventional ones. Many workers have compared with conventional but the inherent 
difficulties seem sometimes to be overlooked. If the reason for searching for numerical 
solutions is suspicion about the optimality of a conventional classification, it is hardly 
right to adopt the suspect as a standard. 

2.6.3 Assessment by mathematical criteria 

Many attempts have been made to assess classifications objectively. For that purpose 
mathematical criteria have been defined by which the goodness of a classification, once 
established, can be measured and possible alternatives rated. Such criteria are surveyed 
briefly in the following. 

2.6.3.1 Criteria for hierarchical classifications 

Numerical methods for hierarchical classification will be treated in 3.2.2.1. The pro
cess of lumping or splitting subsets of objects, is usually displayed with a treelike diagram 
called a dendrogram, dendrograph or phenogram. An example is given in Fig. 2. The 
vertices represent the single objects. The level of each horizontal line may be interpreted 
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Fig. 2. Fictive dendogram for 16 objects. 
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as the similarity between the subsets that it connects. The measure of similarity or 
dissimilarity depends on the actual method. 

Certain forms of dendrograms are usually considered, largely intuitively, more favour
able than others. Williams et al. (1966) formalized this method of assessment by defining 
the following criteria. 
Chaining. The phenomenon of chaining occurs where single objects (for instance No 7 
and 6 or No 16 and 9 in Fig. 2) must be added repeatedly to an ever growing subset in 
order to obtain partitions of higher level. If chaining is abundant then the dendrogram 
will show unbalanced partitions at the various levels, which is usually considered undesir
able. 

Here we consider only the case if the transition from a partition at level /' to the one at 
level (/' + 1 ) requires the amalgamation of only two classes. The absolute value of the 
difference in number of objects in these two classes is denoted by §,-. Williams et al. 
(1966) defined thus the following coefficient of chaining: 

(n - l ) (« -2) ' 

where n is the total number of objects. C varies between zero for balanced divisions 
throughout the dendrogram and unity for complete chaining. Its value for the example in 
Fig. 2 is 0.43. 
Number of reversals. There are no reversals if the similarity between two subsets to be 
fused in a dendrogram is defined such that it is a monotone function of the partition 
level. If this monotonicity is not satisfied then reversals do occur, as for instance at the 
fusion of object No 4 with No 10 and 12 in Fig. 2. The authors consider reversals un
favourable because they hinder unambiguous interpretation of the dendrogram. 
Stratification. Williams et al. (1966) considered the distribution of the values at fusions 
over the range of the coefficient, and suggested that ideally this is such that a relatively 
large proportion of that range is covered by, say, the last 20% of the fusions. For 
instance, in Fig. 2 that proportion is 0.5. 
Descriptive accuracy. Instead of the form of the dendrogram, another type of criteria 
considers its accuracy. 

A dendogram results usually from the analysis of a triangular matrix S, of all 
\(n— \\n—2) similarities, x,y, between objects i and/, as calculated from the data (3.2.1). 
It is simple because it represents only (n—1) similarities, notably those between the 
subsets which it connects. To establish the accuracy with which S is represented by a 
dendrogram, all inter-object similarities, s*, will be read from that dendrogram as the 
value of the similarity coefficient between the subsets to which the objects belong. For 
instance, from the dendogram of Fig. 2 is read: s^3 15 = l , s j 3 3 = 10,sf3 16 = 20, etc. 
A new matrix, S*, is thus formed. The more similar the matrix S* is to S, the more 
accurate the representation by the dendrogram. 

Various measures have been proposed for the deviation of S* from S. The oldest and 
still most popular one is the product-moment correlation coefficient, r(S,S*), in this 
context introduced by Sokal & Rohlf (1962). They referred to it as cophenetic correla
tion coefficient. Of course, r may also be used as a measure for the difference between 
two dendrograms for the set of objects. Williams & Clifford (1971) decided not to use 
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metric information from a dendrogram and instead proposed an order statistic, analogous 
to r. Hartigan (1967) preferred a weighted sum of squared differences between the s(/- and 

V 
2.6.3.2 Criteria for non-hierarchical classifications 

Many alternative criteria are also possible for assessment of non-hierarchical classifica
tions. The most prominent type of criterion uses the pooled sample-scatter matrix within 
classes, W, and the overall sample-scatter matrix, T. (T equals the matrix (X-XN)' 
(X-XN), where (X-XN) is the data matrix reduced by the column means.) 

Three alternatives, discussed by Demirmen (1969), are mentioned here. They will be 
discussed in more detail in 3.4.1. 
a) tr(H0 
This measure has a simple geometrical interpretation: tr(PV)/« is t n e m e a n squared 
Euclidean distance between each object and the centroid of the class to which it belongs. 
Of the three criteria tr(W) is most frequently applied; it was adopted for the present 
experiments too. 
b) det(RO/det(r) 
This quantity u, sometimes denoted by A, is Wilks's (1932) test statistic for testing 
equality of expected class centroids. Webster (1971) proposed it for assessment of soil 
classifications. As det(T) is constant for a given set of data, minimizing u is equivalent to 
minimizing det(W). 
c) triW-1 B) 
B is defined by the identity T = W + B. This is Hotelling's (1931) criterion, used as an 
alternative test statistic for the same purpose as that of Wilks. 

2.6.4 Discussion 

In the preceding sections it has been shown why an established classification should be 
assessed, that a subjective approach to this is problematic, and how this could be made 
objective. However, also the latter is questionable; as explained below, a definitive solu
tion is not available. 

A numerical classification is the result of collecting and preprocessing data and the 
classification method used. Each of these may in principle be harmful for the result, but 
let us concentrate upon the classification method. Here again, there may be different 
detrimental factors. 

Firstly, the principle of the method may be inappropriate in view of the purpose of 
the classification. One may think here of wrong decisions concerning the major choices 
discussed in 2.4, for instance overlapping versus disjoint classes, optimizing homegeneity 
versus fitting distributions, and also of more detailed issues, like the actual definition of 
homogeneity. 

Secondly, although the principle may be sound, a completely satisfactory numerical 
procedure for application may not be available. Furthermore, when using a computer 
program for classification, the specification of user-parameters may be inappropriate, thus 
adding to the common type of numerical errors. 

The second class of problems seems less difficult to overcome. It is largely open to a 
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systematic, and possibly even partly mathematical treatment. This is not so with the 
choice of the principle itself. That is made through a process of formalization, in which 
general intuitive notions and considerations about the purpose of the classification have 
to be translated into mathematical form. Because the purpose of a soil classification can 
in general only be specified more or less vaguely, any formalization implies inevitably 
uncertainty a priori. This difficulty cannot be evaded by application a posteriori of 
quality criteria because they suffer fundamentally from this same uncertainty. The one 
cannot compensate the other; even if they seem to do so, it would prove nothing, and if 
they fail to do so, it is impossible to spot the culprit. Apart from that, optimization 
should be tried through the method itself. The direct confrontation with any criterion 
might reveal undesirable features, possibly serious enough to discourage further use. This 
will be illustrated by the following examples. 

Farris (1969) devised an agglomerative algorithm for stepwise maximization of the 
cophenetic correlation coefficient. This criterion had been used frequently, although until 
then only after the construction of a classification. Preliminary analysis already showed 
that consequent maximization in general would lead to dendrograms with reversals. Fur
thermore, the procedure entails least-squares clustering, the similarities however not being 
evaluated from the original variables but from the columns of S. Clearly, two objects 
having the same similarities to the other objects may differ greatly with respect to the 
original variables. So if 'compact' clusters are desired, r(S,S*) can lead to inferior solu
tions. Farris thus fell back to the basic question whether the purpose should be descrip
tion of S, or description of the objects. This can only be answered by the users of the 
classification and not by mathematics. 

Another example is found among the scatter criteria. Here again there is no compelling 
reason why one should be preferred a priori above the other. However, once it is inferred 
from the purpose that compact classes are needed, it can be argued that det(R0 is less 
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Fig. 3. Two partitions of the same bivariate uniform distribution. 
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