## SARP Research Proceedings

## The use of crop growth models in agro-ecological zonation of rice

B.A.M. Bouman, M.C.S. Wopereis \& J.J.M. Riethoven

SARP Research Proceedings - December 1994

DLO-Research Institute for Agrobiology and Soil Fertility, Wageningen WAU-Department of Theoretical Production Ecology, Wageningen International Rice Research Institute, Los Baños

## Use

The use of crop growth models in agro-ecological zonation of rice / [ed. by] B.A.M. Bouman, M.C.S. Wopereis \& J.J.M. Riethoven. - Wageningen : DLO-Research Institute for Agrobiology and Soil Fertility; Wageningen : WAU Department of Theoretical Production Ecology; Los Baños : International Rice Research Institute. - Ill. - (SARP
research proceedings)
ISBN 90-73384-26-5
NUGI 835
Trefw.: landbouwkundig onderzoek / rijstbouw ; Azië.

Cover design: Ernst van Cleef, Wageningen Agricultural University

Printing: Grafisch Service Centrum Van Gils B.V., Wageningen

## Preface

This volume of the SARP Research Proceedings presents a framework for the use of crop growth models in agro-ecological characterisation and zonation of rice, as developed in the research theme 'Agro-ecosystems' of SARP III. The simulation model used in this volume is ORYZA_W (version 2.0) for rice growth and development in irrigated and rainfed lowland and rainfed upland production environments. This version of ORYZA_W is a follow-up of the version (1.0) as presented at the Agro-ecosystems workshop in Hangzhou, China, April 1993. ORYZA_W is not described in this volume and will be presented in a separate SARP Research Proceedings by Wopereis et al. (in prep.). Though the framework for the use of crop growth models in zonation studies is illustrated using ORYZA_W for rice, the principles, and the tools developed, are applicable using other models (e.g. ORYZAl), and for other crops as well.

All models and computer programs presented here are written in FORTRAN77 under the FORTRAN Simulation Environment (FSE) as developed by van Kraalingen (1991a). Complete listings of the models and computer programs including input and output files are given in the Appendices. The models can be run on a 'stand alone' basis or under the SARP-Shell. In this report, it is explained how to run the models 'stand alone'. In a separate manual by Riethoven (1994), it is explained how to operate the models and programs under the SARP-Shell.

## Contents

Preface
Table of contents
1 Introduction ..... 1
2 The ORYZA_W rice growth model ..... 5
2.1 Model validity domain ..... 6
2.2 Running and editing ORYZA_W ..... 8
2.2.1 Input and output file control ..... 8
2.2.2 Editing ORYZA_W ..... 11
3 ORYZA_W in agro-ecological zonation. ..... 13
3.1 Simulation on a regional scale ..... 13
3.2 Data collection ..... 16
3.3 Uncertainty and spatial variation in soil and management parameters ..... 20
3.4 Risk analysis ..... 24
3.5 A practical framework for zonation ..... 26
3.6 Crop and weather data ..... 27
4 The program RIGAUS for Monte Carlo simulation ..... 29
4.1 Statistical distributions ..... 29
4.1.1 Uniform distribution ..... 29
4.1.2 Beta distribution ..... 30
4.1.3 Normal distribution ..... 33
4.1.4 Seed ..... 35
4.2 Measured data ..... 35
4.3 Special provisions for SAHEL ..... 36
4.3.1 Empirical relations ..... 36
4.3.2 Random drawing of WCST, WCFC and WCWP ..... 39
4.3.3 Random drawing of FWCLI ..... 40
4.4 Running RIGAUS ..... 42
4.4.1 Program input ..... 43
4.4.2 Program output ..... 44
4.4.3 Error and warning messages ..... 45
5 Case study: rainfed lowland rice ..... 49
5.1 Sensitivity analysis ..... 50
5.1.1 Management parameters ..... 53
5.1.2 Soil parameters ..... 58
5.2 Uncertainty and variation analysis ..... 62
5.3 Risk analysis ..... 68
5.4 Comments. ..... 71
References ..... 73
Appendix 1. Listing of ORYZA_W with input and output files ..... 79
1.1 ORYZA_W. ..... 79
1.2 Input files ..... 101
1.2a Control data ..... 101
1.2b Crop data ..... 101
1.2c Soil data ..... 103
1.2d Timer data ..... 106
1.2e Weather data ..... 106
1.2 f Rerun data ..... 107
1.3 Output files ..... 108
1.3a End-of-season values ..... 108
1.3b Dynamic values ..... 108
1.4 List of variable names. ..... 109
1.4a ORYZAW ..... 109
1.4b LOWBAL ..... 119
1.4c SAHEL ..... 121
Appendix 2. Listing of RIGAUS with input and output files ..... 123
2.1 RIGAUS ..... 123
2.2 Input file ..... 132
2.3 Output files ..... 134
2.3a RERUNS.DAT ..... 134
2.3b COLUMN.DAT ..... 134

## 1 Introduction

This volume presents a framework for the use of crop growth modelling in agro-ecological characterisation and zonation of rice, as developed in the research theme 'Agro-ecosystems' of the project Simulation and Systems Analysis for Rice Production (SARP). Agroecological zonation generally refers to the stratification of a geographical area into homogeneous land-units. This stratification is usually based on properties that are physicalenvironmental (e.g. climate, landscape, soil) and agronomic (e.g. land use, production system characteristics), but can also include socio-economic factors (e.g. labour, subsistence/cash-cropping). The purposes of agro-ecological zonation vary. Often, it is used to create so-called recommendation domains for the transfer of agro-technological knowledge that has been developed at particular sites such as agricultural research stations. Examples in the SARP network have been reported by Bhuiyan \& Ahmed (1993) and Garcia (1993). Another purpose of zonation is the exploration of water-limited and irrigated crop production levels (e.g. Wan Sulaiman \& Surjit Singh, 1993; Makarim \& Las, 1993; Thiyagarajan et al., 1993). In such zonation studies, a quantitative description of the relationship between the physical environment and potential cropping systems and production levels is of main importance. In this respect, crop growth simulation modelling is a useful tool. Recent results of the use of simulation modelling in agro-ecological zonation of rice in the SARP network have been presented at the 'International Workshop on Agro-Ecological Zonation of Rice', held at the Zhejiang Agricultural University, Hangzhou, P.R. of China, 14-17 April 1993 (Bouman et al., 1993).

For zonation studies, crop growth models need to be adapted to the specific characteristics of the agro-ecological environment under consideration. Two characteristic environments in Asia for rice are lowlands and uplands (IRRI, 1984). In lowland environments, soils are puddled in the beginning of the growing season. Rice is mostly transplanted from seed-bed or, to a lesser extent, direct-seeded. Bunds along the field allow for ponded water. The crop can be either irrigated or fully dependent on rainfall. In upland environments, soils are not puddled, and rice is direct-seeded and completely dependent on natural rainfall. Fields are generally not bunded and part of the rainfall can be lost as run-off. Thus, important differences between lowlands and uplands are soil tillage practices and, as a result, the crop-soil water balance. In the SARP project, a simple soil water balance model was developed for lowlands LOWBAL (LOwland Water BALance; Bouman, 1993a), and the existing model SAHEL (Soils in semi-Arid Habitats that Easily Leach; van Keulen, 1975) was selected for uplands. These water balance modules were combined with the aboveground growth module ORYZAW in the agro-ecological rice-growth model ORYZA_W (2.0) for zonation studies.

The regional scale that is used in zonation affects the level of detail with which crop growth and water balance processes can be described. For instance, a detailed description of the water balance of soils, such as in SAWAH (Simulation Algorithm for Water flow in Aquic Habitats; ten Berge et al., 1992) or PADDY (Wopereis, 1993), requires detailed information on soil physical properties, e.g. soil water retention characteristics (pF curve), conductivity curves, and ground water table depth. Such detailed information is generally not available on a regional scale, and soil-physical information often has to be derived from general descriptions on soil maps and/or from sparse measurements. Therefore, simulation models for zonation need to describe physical processes with a level of detail that matches that of the input data available. In ORYZA_W 2.0, the relatively simple soil water balance models LOWBAL and SAHEL were especially developed and selected for application on regional scales. The price that has to be paid for a more general description of physical processes in a simulation model is twofold. First, the results (simulated output) may be less accurate than when a more detailed model (with correspondingly more detailed input data) is used. Secondly, the validity domain - and thus the application domain - may be more restricted. For example, SAWAH can be used in more various and hydrological complex situations than LOWBAL (Bouman et al., 1994).

Two more aspects related to input data need to be taken into account when crop growth models are used on a regional scale: uncertainty and spatial variation. Usually in zonation, a set of model input parameters is supposed to be representative for each of the (homogeneous) land-units under consideration. Using these sets, the simulation model is run and 'representative' model output (e.g. yield) is obtained. However, this approach ignores the uncertainty that is present in the, generally estimated, input parameter values of the land-units. A method is needed that relates the accuracy or uncertainty in simulated output to the accuracy or uncertainty in input parameter values. Second, input parameter values from a geographically extended land-unit are often characterised by spatial variation. The effect of spatial variation in input parameter values on simulated output also needs to be taken into account. The program RIGAUS (Random Input Generator for the Analysis of Uncertainty in Simulation) was developed to quantify the effects of uncertainty and spatial variation in input parameter values on simulated output. The method is based on Monte Carlo simulation. Monte Carlo simulation is also the basis for a method to 'translate' probabilities of input parameter values into probabilities of model output and to perform risk analysis.

In this volume, a framework is presented for the use of crop growth models in agroecological zonation of rice. The framework is illustrated using the model ORYZA_W, version 2.0, for irrigated and water-limited production situations. However, the framework can also be used using other crop growth models (e.g. ORYZA1 for potential production) and for other crops. In Chapter 2, ORYZA_W 2.0 is briefly introduced. ORYZA_W can simulate the growth and development of rice in irrigated and rainfed lowland and in rainfed upland environments. The above-ground growth module ORYZAW and the water balance module LOWBAL were developed from field experiments at IRRI (International Rice

Research Institute, Philippines). The module SAHEL, originally developed by van Keulen (1975), was taken and adapted from the MACROS series (Modules of an Annual CROp Simulator; Penning de Vries et al., 1989). In Chapter 3, a framework is presented for the application of ORYZA_W on a regional scale in agro-ecological zonation. The geographic unit of simulation is the land-unit as derived by 'conventional' methods of zonation (stratification by physical-environmental and agronomic characteristics). It is shown how ORYZA_W can be used to characterise (single) rice cropping systems by e.g. level and variation of yield, irrigation water needs and crop growth duration. The framework presents a method to relate simulated model output (e.g. yield) to input parameter accuracy, which is useful in designing and optimising sampling strategies, and to deal with uncertainty and spatial variation in model input parameters. The last step of the framework presents a method for risk analysis including variation in weather and probability distributions of soil and management parameters. Chapter 4 describes the program RIGAUS that is used to generate probability distributions of parameter values for Monte Carlo simulation. Chapter 5 illustrates the presented methodology for a case-study on rainfed lowland rice in the Philippines.

The model ORYZA_W and the program RIGAUS are written in FORTRAN77 and can be executed on a 'stand-alone' basis. However, ORYZA_W and RIGAUS may also be accessed using the user-friendly SARP-Shell that allows easy running of ORYZA_W with large input data sets (Riethoven, 1994). The Appendices contain complete listings of ORYZA_W (version 2.0) and RIGAUS (version 1.1) including all input and output files.

## 2 The ORYZA_W (2.0) rice growth model

ORYZA_W (2.0) simulates growth and development of rice in irrigated and rainfed lowland and in rainfed upland environments, and is especially designed for zonation studies. In irrigated lowlands, ORYZA_W simulates timing and total amounts of irrigation water needs as well. Currently, a new version of ORYZA_W, 3.0, is under development, that will also be suitable for other purposes, e.g. field and experiment studies. ORYZA_W is described in detail in a SARP Research Proceeding by Wopereis et al., 1995. In the rest of the text in this volume, ORYZA_W always refers to version 2.0 (as listed in appendix 1). ORYZA_W is programmed under the FORTRAN Simulation Environment (FSE, version 2.0) as developed by van Kraalingen (1991a). A complete listing of the model with input and output files is given in Appendix 1. The FSE system consists of a main program, weather data and utilities for specific tasks. One of the main features of FSE is the distinction of four main tasks that control the order of the calculations in the crop growth program (above-ground growth module and below-ground water balance modules): ITASK $=1$ for initialisation; ITASK $=2$ for rate calculations; ITASK $=3$ for state calculations/updates; and ITASK $=4$ to mark the end of the program. For an understanding of the tasks of initialisation and rate and state calculations, the reader is referred to text books on crop growth simulation modelling (e.g. Penning de Vries \& van Laar, 1982; van Keulen \& Wolf, 1986). FSE also facilitates in- and output data handling. The WEATHER system (van Kraalingen et al., 1990) is used to read weather data. Utilities from the library TTUTIL (Rappoldt \& van Kraalingen, 1990) are extensively used for specific tasks such as reading input data, writing output data, and integration of state variables.

The structure of ORYZA_W under the FSE system is schematically presented in Figure 2.1. The ITASK succession, the reading of weather data, and the handling of input and output files takes place in the subroutine FSE. This information is passed on to the subroutine MODELS. This subroutine calls the subroutine ORYZAW, which is the actual above-ground growth module, and the subroutines LOWBAL for the water balance of lowland soils, and SAHEL for the water balance of upland soils. A switch in the program is used to select the production environment and to combine ORYZAW with either LOWBAL or SAHEL: SWIWLP $=0$ for irrigated lowland (LOWBAL); SWIWLP $=1$ for rainfed lowland (LOWBAL); SWIWLP $=2$ for rainfed upland (SAHEL). The switch SWIWLP is set in an input file (see Paragraph 2.2.1). The modules ORYZAW, LOWBAL and SAHEL are the core of the actual growth model ORYZA_W, and have been described by several authors: van Keulen, 1975, and Penning de Vries et al., 1989 (SAHEL), Kropff et al., 1993 (the ORYZA1 version as basis for ORYZAW), Bouman, 1993a (LOWBAL) and Wopereis et al., 1995 (ORYZA_W, version 3.0). A complete listing of ORYZA_W
with input and output files, and a variable name list is given in Appendix 1 (all referring to version 2.0 as used in this volume).


Figure 2.1. Main components of the rice growth model ORYZA_W under the FORTRAN Simulation Environment.

### 2.1 Model validity domain

The application of ORYZA_W in zonation studies generally means that the model is extrapolated from the environment where it was designed, tested and validated to other agro-ecological environments. Therefore, it is important to know the characteristics of the environment in which the model was developed and to indicate its general validity domain. Here, the validity domain of ORYZA_W, version 2.0 , is briefly described.

For potential production in irrigated lowland situations, the ORYZA1 model (version 1.0), which is the basis of ORYZAW, has been well-tested with field experiments at IRRI, the Philippines: "Yield potential in a given environment (planting date, latitude, radiation, temperature, variety as input) can be simulated based on the leaf N content of the highest yielding experiments. The recent IRRI experiments could be used as starting point. [However], a restriction for photoperiod insensitive varieties holds" From: Kropff et al. (1993). ORYZA1 (1.0) simulates potential rice yield with no sink limitations: effects of low and/or high temperatures on spikelet sterility are not included. [The new version of

ORYZA_W, 3.0, is based on an updated version of ORYZA1, 1.3, that includes the effects of photoperiod sensitivity and sink limitations; Kropff et al., 1994].

The effects of drought stress on crop growth and development were derived from pot experiments, and validated with field experiments at IRRI (Wopereis, 1993). These experiments were held in the dry season, in puddled lowland conditions with ample supply of nutrients. The yield levels were 5-8.4 $\mathrm{t} \mathrm{ha}{ }^{-1}$ (Wopereis, 1993; p.128). The maximum number of continuous drought stress days in these experiments was 25 ; therefore, simulations with ORYZA_W are aborted when more than 25 days of drought stress are recorded. In ORYZAW, the same effects of drought stress are assumed to be applicable for rainfed upland conditions. This hypothesis has not been tested, however, and more research on growth and development of rainfed upland rice is still needed.

ORYZAW simulates potential and water-limited growth and development of rice. It is assumed that the nutrient supply of the crop is optimal and that the crop is free from pests, diseases and weeds.

The model LOWBAL was validated for irrigated lowland conditions on field experiments at IRRI (Bouman, 1993a), and with model simulations using the detailed soil water balance model SAWAH (Bouman et al., 1994). The model performs accurately if a combined seepage \& percolation rate, SPSOIL, has been measured, and does not change in time. Field average SPSOIL rate can easily be measured using sloping gauges placed in the field. Percolation rates may change when the poorly permeable layer at the interface of puddled topsoil and non-puddled subsoil is disturbed (e.g. as occurred in an IRRI field experiment by a large numbers of weeders (Wopereis, 1993; pp. 108-109). Seepage losses may be enhanced if neighbouring fields are drained at the end of the growing season, by inducing water flow through and underneath bunds. Seepage may also change if water levels in neighbouring ditches, creeks or drains vary. Such changes depend on texture, compaction and state of maintenance of the bunds, and on the ratio of bund length over the surface area of the field (Tuong et al., 1994).

In LOWBAL, it is assumed that roots do not penetrate through the poorly permeable layer in the lower zone of the puddled topsoil and, therefore, water extraction from the unpuddled subsoil is not taken into account.

The SAHEL water balance can be used for non-puddled, freely draining, sandy and loamy upland soils with a deep ground water table ( $>1 \mathrm{~m}$ below the root zone) (Penning de Vries et al., 1989). This type of soil has high hydraulic conductivity when wet, permitting fast downward water transport, so that saturation of soil layers does not occur. The model can also be used for clayey soils with deeper ground water tables ( $>2 \mathrm{~m}$ below the root zone), but the simulations are then more crude. SAHEL is not suitable for (heavy) clay soils with impeded drainage.

### 2.2 Running and editing ORYZA_W

### 2.2.1 Input and output file control

Under the SARP-Shell, control over input and output files is facilitated with a menu-system (Riethoven, 1994). If the FORTRAN program ORYZA_W is run without this Shell, the input and output files are controlled in the file CONTROL.DAT (an example is given in Appendix 1.2a). The contents of this file are:

FILEIl = name of file that contains the crop data, e.g. 'RICE_W.DAT'
FILEI2 $=$ name of file that contains the soil data, e.g. 'LOAM.DAT'
FILEIT = name of file that contains timer variables, e.g. 'TIMER.DAT'
FILEIR = name of file that contains data for reruns, 'RERUNS.DAT'
FILEON = name of output file, 'RESULTS.OUT'
FILEOL = name of the log file 'RESULTS.LOG'

## Crop data

Specific crop parameter are needed for the above-ground growth module ORYZAW. An example is given in Appendix 1.2 b for IR72. These data were derived from field experiments at IRRI (Kropff et al., 1993). Crop parameters should preferably be derived for the local rice variety under consideration, from field experiments under potential growth conditions.

## Soil data

Specific soil physical parameters are needed for the soil-water balance modules LOWBAL and SAHEL. If ORYZA_W is used for irrigated or rainfed lowland environments, a file containing soil data for LOWBAL should be supplied for FILEI2; if ORYZA_W is used for rainfed upland conditions, a file containing soil data for SAHEL should be selected. If the wrong file is supplied, ORYZA_W is aborted and gives an error message. Examples of soil files are given in Appendix 1.2c. For the SAHEL water balance module, 18 example files are available that contain soil-physical data derived from measurements on Dutch soils (Wösten et al., 1987).

## Timer data

Timer data control the model environment, the selection of weather data and the start and end of the growing season. An example is given in Appendix 1.2d. Important parameters in this file are:

## - Production environment

SWIWLP $=$ switch to control the production environment: $0=$ irrigated lowland; $1=$ rainfed lowland; $2=$ rainfed upland

## - Weather data

The selection of files containing weather data is controlled by the following parameters:
WTRDIR = directory name where the weather files are stored
CNTR = country name of the weather station, e.g. 'PHIL' for the Philippines
ISTN $=$ station number of weather data, e.g. 1.
If sunshine hours are available in the weather data instead of radiation values, these are automatically converted using the Angstrom parameters:
ANGA = Angstrom parameter A:
dry tropical, $\mathrm{A}=0.25$
humid tropical, $\mathrm{A}=0.29$
cold and temperate $\mathrm{A}=0.18$.
ANGB $\quad=$ Angstrom parameter $B$ :
dry tropical, $B=0.45$
humid tropical, $\mathrm{B}=0.42$
cold and temperate, $\mathrm{B}=0.55$.
Radiation values in the weather file should be given in KJ or MJ; a parameter MULTIP is used to convert these in to $J$ values:
MULTIP $=$ multiplication factor for radiation:
if radiation data are in $\mathrm{KJ}:$ MULTIP $=1$, if radiation data in MJ: MULTIP $=1000$.
Weather data itself are stored in files according to the specifications of the WEATHER system (van Kraalingen et al., 1990). The name of a weather file consists of a countrycode, CNTR, with an extension designating the number of the weather station, ISTN (E.g. PHIL1 for weather station 1 in the Philippines). The weather file should contain daily values of radiation, minimum temperature, maximum temperature, vapour pressure, wind speed and rainfall. The format of the data is very strict. An example of a weather data file in the WEATHER format is given in Appendix 1.2e.

- Time variables

YEAR = year of weather data (= simulation year), e.g. 1991.
STTIME = start day of simulation (sowing day), e.g. 150.
FINTIM = finish time of simulation; a high value should be supplied here to guarantee the continuation of the simulation until the crop has reached maturity, e.g. 1000.
DTRP $\quad=$ days between sowing and transplanting. DTRP $=0$. for direct-seeding.
DELT $\quad=$ time step of integration, 1.

## - Output options

| These par | ers are pre-set and normally do not need changing. |
| :---: | :---: |
| IFLAG | $=$ indicates where weather error and warnings go, e.g. 1100 means errors and warnings go only to a log file, see WEATHER manual, van Kraalingen et al., 1990. |
| COPINF | $=$ switch variable denoting what should be done with input files: <br> ' Y ' = copy input files into output file <br> ' N ' = do not copy input files into output file |
| PRDEL | $=$ time in days between consecutive outputs to file, e.g. 5 . |
| IPFORM | $=$ format of the output tables: $0=$ no output table, $4=$ normal table, $5=$ tab-delimited (for Excel), $6=$ TTPLOT format. |
| DELTMP | $=$ switch variable what should be done with the temporary output file: $0=$ do not delete; $1=$ delete |

## Rerun data

The FSE systems provides a facility for model reruns using changed model parameter and/or initial state variable values (van Kraalingen, 1991a). A 'reruns file' with a name defined in CONTROL.DAT, e.g. RERUNS.DAT, should contain parameter and/or initial state variable names and values for a model rerun. When ORYZA_W is executed, it will automatically search for the presence of a reruns file. If such a file is not found, the model will be executed only once, using the data from the standard data files. If a reruns file is present, the model will automatically be rerun with the (set of) new parameter values. The total number of runs made by the model is always equal to the number of rerun sets plus one (the 'default' run). Names of parameters/variables originating from different data files can be redefined in the same rerun file, e.g. crop, soil and timer parameters. The format of the rerun file is identical to that of the other data files, except that the name of parameters may appear in the file more than once, indicating different rerun sets. Arrays can also be redefined in a rerun file. The order and number of the variables should be the same in each set. A new set starts as soon as the first variable is repeated. An example of a reruns file is given in Appendix 1.2f.

The maximum number of parameter values for reruns with ORYZA_W is 10000. This can be either 10000 values of one single parameter, or, for instance, 1000 values of ten parameters each. When many reruns are made, the time step between consecutive output that is written to file, PRDEL, in the Timer file (see above) should be set a high value, e.g. 1000 , so that only initial and end values of output variables are printed. Otherwise, the output file defined in the file CONTROL.DAT, e.g. RESULTS.OUT, will become extremely large.

## Output files

Two output files are created by ORYZA_W. The file OP.DAT contains 'end-of-season' values of selected variables. E.g. the weight of rough rice, WRR, in OP.DAT is the final weight at the end of the simulation run. Variable names and values are written to OP.DAT in the model via a call to the subroutine OPSTOR of the TTUTIL library: CALL OPSTOR(<variable name>, <variable value>).

The second file name is defined in the file CONTROL.DAT, e.g. RESULTS.OUT. In this file, values of selected variables are written during execution of the model with a 'print time step' as defined by PRDEL in the timer file (see above). Variable names and values are written to RESULTS.OUT by a call to the subroutine OUTDAT of the TTUTIL library: CALL OUTDAT(<variable name>, <variable value>).

Examples of OP.DAT and RESULTS.OUT are given in Appendix 1.3a and 1.3b respectively.

## Log files

Two log files are created. WEATHER.LOG contains the headers of the weather files used, and any error and/or warning messages created by the WEATHER system. The second file name is defined in the file CONTROL.DAT, e.g. RESULTS.LOG, and contains information on the execution of the model and any error and/or warning messages generated by ORYZA W.

### 2.2.2 Editing ORYZA_W

ORYZA_W is written in the programming language FORTRAN-77 on an IBM compatible 486 PC. If the source code of the model is edited, ORYZA_W should be re-compiled and linked before execution. After compilation, the object file ORYZA_W.OBJ should be linked with an object file OPSYS.OBJ (containing some specialised subroutines) and with the libraries TTUTIL and WEATHER (in this sequence).

## 3 ORYZA_W in agro-ecological zonation

### 3.1 Simulation on a regional scale

ORYZA_W can be used in agro-ecological zonation to quantify characteristics of rice cultivation in upland or lowland environments, e.g. potential and water-limited rice yields, irrigation requirements, optimum sowing/transplanting dates and crop durations. Based on soil and climatic maps and data, a regional area under study can be divided into land units that are more or less homogeneous in soil and climatic characteristics (e.g. Aggarwal, 1993; Garcia, 1993; Pannangpetch, 1993; Wopereis et al., 1993). For each land-unit, input data for ORYZA_W have to be derived with respect to crop, soil, weather and management characteristics. Crop data should preferably be obtained from field experiments under optimal conditions, using regional-specific rice varieties. If this is not possible, crop data form other locations and experiments can serve as a starting point (Kropff et al., 1993). Weather data are obtained from meteorological stations in the area that are assigned to the land-units by spatial interpolation (e.g. Beek, 1991a/b). Soil parameters needed for simulation are generally difficult to obtain and costly and timeconsuming to measure (Wopereis et al., 1993). If no measurements can be carried out, as often will be the case in zonation studies, such soil data may be estimated from soil maps using so-called pedotransfer functions (Driessen, 1986a, 1986b; Bouma and van Lanen, 1987; Ritchie and Crum, 1989; van Genuchten et al., 1989; Reinds et al., 1991). For instance, soil moisture characteristics are often estimated from texture descriptions. Management parameters, such as sowing date or bund height, may be derived from expert knowledge or from local field enquiries. Thus, for each identified land unit of the zonation study, a set of crop, weather (preferably a number of years), soil and management parameters is identified that is considered to be representative for the whole land unit. Using these sets, ORYZA_W can compute rice yield (and other variables of interest) for lowland and upland production situations.

An example for irrigated lowland rice in the Philippines is given in Figure 3.1. ORYZA_W was used to quantify rough rice yield, irrigation water needs and crop duration as a function of sowing date for 1981-1991. Weather data were taken from the IRRI wetland station. Crop data were derived from field experiments conducted at IRRI using rice variety IR72 (Kropff et al., 1993; Wopereis, 1993). Soil and management data were obtained from expert knowledge and literature (Wickham \& Singh, 1978; Wopereis, 1993). Highest potential yields occurred if sowing was done at the beginning of the dry season, (i.e. days 330-360), and are explained by high levels of radiation and long crop durations. The high potential yields in the dry season were associated with the highest irrigation water needs. The simulated crop duration is an important variable in the planning of crop rotations (e.g. Sattar, 1993; Yang Jingping \& Zhang Xigu, 1993).

The procedure described above is commonly used when crop growth models are applied at a regional scale (Buringh et al., 1979; van Lanen, 1991; van Diepen et al., 1991; Hammer \& Muchow, 1991; Netherlands Scientific Council for Government Policy, 1992). Though this procedure is a valid, practical approach in itself, it does not account for the 'regional' nature of the simulations. A land-unit is considered fully homogeneous with respect to model input parameters and only one set of, mostly estimated, input data values per landunit is used in the simulation. The effect of uncertainty or spatial variation in the input parameter values of a land-unit on simulated output is not accounted for. Also, the relationships between quality, or accuracy, of input data and simulated output are not quantified. Such relationships are important in the phase of input data collection, especially for the design of measurement programs. Moreover, these relationships can indicate relevant management practices to optimize rice cropping, e.g. high yields associated with low water losses.

This Chapter provides a framework to quantify the relationship between model input and output accuracy for input data collection (Paragraph 3.2) and to deal with uncertainty and spatial variation in input data on a regional scale (Paragraph 3.3). Uncertainty and variation in input parameter values are 'translated' in risk analysis (Paragraph 3.4). The focus is on soil and management parameters because these data have to be collected on a regional scale. Some comments on the derivation and handling of crop and weather data are given in Paragraph 3.6. The framework presented here is illustrated in detail for a casestudy on rainfed lowland rice in the Philippines in Chapter 5. Here, it is briefly illustrated with an example for irrigated lowland rice.



Figure 3.1. Simulated potential rough rice yield (a), amount irrigation water needs (b) and crop duration (c) of irrigated lowland rice at Los Baños, the Philippines, 1980-1991.

### 3.2 Data collection

The use of ORYZA_W for zonation studies requires knowledge of management procedures and data on crop characteristics, soil properties and weather variation in the region under study. Crop characteristics are generally derived from literature and wellcontrolled field experiments (Kropff et al., 1993). In principle, these parameter values are only crop (variety) specific and do not change with environment (at least if the environment falls within the validity domain of the model; see Paragraph 2.1). Therefore, once a set of crop parameters has been determined at a certain location, such a set can be used for extrapolation to other land-units of the zonation study. Procedures for the derivation of crop parameters, and the uncertainty and variation therein, fall outside the scope of this volume. Some comments are given in Paragraph 3.6. Weather data are measured at meteorological stations and, as mere data-users, crop modellers can not influence the accuracy of these measurements. The quality of weather data should be thoroughly checked, and preferably quantified, before embarking on model simulations. Some comments on dealing with uncertainty or inaccuracy in weather data are given in Paragraph 3.6. A good overview of techniques for spatial interpolation of weather data from meteorological stations to land-units of interest is given by Beek (1991a/b).

Soil and management data need to be collected for each land unit within the zonation study area. A land unit is defined here as a geographic area with a unique combination of weather, soil and management characteristics. The collection of these data on a regional scale is generally expensive and time-consuming. Therefore, the design of cost-effective measurement and data collection strategies deserves ample attention. In this respect, sensitivity analysis (SA) with the model to be used, i.e. ORYZA_W, is a helpful tool. It reveals the type of data that need to be collected with a relatively high accuracy, and the type of data for which a rough estimate or general inventory will do. SA relates the accuracy with which input parameters need to be quantified to the desired accuracy of the simulated output (e.g. yield or amount of irrigation water). In SA, the value of input parameters are gradually changed and the effect on the simulated output is quantified. If a number of years with weather data are available, it is best to repeat the analyses for a number of 'good', 'bad' and 'average' years. Good, bad and average are defined here in relation to the observed simulated output, e.g. a good year has a relatively high simulated yield and a bad year a relatively low simulated yield. The results of the SA for various years can be compared by standardising the simulated outputs for each year to the output for that year using standard (representative) input parameter values (Bouman, 1994).

Three points have to be considered in setting up a sensitivity analysis:

1. Which parameters need to be included?
2. What is the range in parameter values?
3. What is the correlation between parameters?

Ad 1. When no prior knowledge about the relative importance of the parameters is available, all parameters should be included in SA. If information is available, only the relevant parameters are selected. For ORYZA_W, the following soil and management parameters may be included if simulated yield, irrigation water and crop duration are of interest:

## Irrigated lowland

- Soil parameters: seepage \& percolation rate, SPSOIL.
- Management parameters: Bund height, WLOMXI; critical depth of ponded water, WLOMIN; irrigation requirements for land preparation, RIPUD; development stage at which irrigation is stopped, DVSIE; sowing date, STTIME; duration of the seed-bed, DTRP; number of plants in seed-bed, NPLSB; number of hills, NH; number of plants per hill, NPLH; number of plants direct-seeded, NPLDS (only if direct-seeded).


## Rainfed lowland

- Soil parameters: seepage \& percolation rate, SPSOIL; water content of puddled layer at saturation, WCSTP, at field capacity, WCFCP, and at wilting point, WCWPP (and for cracking soil types: linear shrink factor, SHRINK; water content at which cracks penetrate the compacted layer, WCCRAC; drainage rate of the subsoil, DDR).
- Management parameters: bund height, WLOMXI; thickness puddled layer, TKLPI; sowing date, STTIME; duration of the seed-bed, DTRP; number of plants in seed-bed, NPLSB; number of hills, NH ; number of plants per hill, NPLH ; number of plants directseeded, NPLDS (only if direct-seeded).


## Rainfed upland

- Soil parameters: water content at saturation, WCST, at field capacity, WCFC, and at wilting point, WCWP; fraction initial water content, FWCLI; fraction runoff, FRNOF; rooting depth of soil profile, ZRTMS.
- Management parameters: sowing date, STTIME; number of plants direct-seeded, NPLDS.

Ad 2. The ranges of the parameter values should be taken as broad as possible to make sure that the actual values in the land-unit under study are covered. The boundary values can be taken from initial survey data, from expert knowledge, from literature, or from any reasonable guess, as long as the values are not beyond the validity domain of ORYZA_W.

Ad 3. Input parameter values can not always be varied without considering the values of (some of) the other input parameters (i.e. 'ceteris paribus' condition). Correlation between parameters may exist and should be taken into account. In the water balance module for upland conditions, SAHEL, for instance, the water contents at saturation, WCST, at field capacity, WCFC, and at wilting point, WCWP, are correlated parameters. This means that
when, for instance, the value of WCST is varied between certain ranges, the values of WCFC and WCWP should be adapted too, so that a realistic set of moisture characteristics is obtained. The correlation between soil moisture characteristics for the SAHEL water balance module is taken into account in the program RIGAUS (Paragraph 4.3).

An example of SA is given for the case-study of Figure 3.1. In Figure 3.2, the sensitivity of the simulated irrigation water needs to seepage \& percolation rate (SPSOIL) and to bund height is given. The simulations were carried out for the dry season (sowing date was day 345) for three years. In this environment, bund heights larger than 40 mm hardly affected the amount of irrigation water, whereas the SPSOIL rate was a major irrigationdetermining factor. A first, rough estimate for bund height of 100 mm , from expertknowledge, needs no further refinement by field observations. On the other hand, the actual value of SPSOIL, rates needs relatively accurate measurements. An inaccuracy of $1 \mathrm{~mm} \mathrm{~d}^{-1}$ in the quantification of SPSOIL lead to an inaccuracy in simulated irrigation water of 100 mm (which is about $6 \%$ on an average amount of 1600 mm ). The accuracy with which SPSOIL data actually need to be collected in a zonation study depends on the desired accuracy of needed irrigation water (e.g. for irrigation system design).

The reruns option of the FSE system provides an easy way for SA with ORYZA_W. Parameter values can be changed in the file RERUNS.DAT (Paragraph 2.2.1), which is automatically read and executed by ORYZA_W. A special option for SA is available under the SARP-Shell (Riethoven, 1994).


Figure 3.2. Simulated irrigation water needs in the dry season as a function of bund height (a) and seepage \& percolation rate SPSOIL (b) in 1981, 1987 and 1988.

### 3.3 Uncertainty and spatial variation in soil and management parameters

Soil and management parameter values for individual land-units can be estimated (e.g. from expert knowledge, soil maps) or measured. Especially when data are estimated, there is always a degree of uncertainty. Usually, a representative value for the whole land-unit under consideration is estimated and this value is used in ORYZA_W. In this approach, the effect of uncertainty in input parameter values on the simulated output remains unquantified. If a number of actual measurements has been performed in a land-unit, the parameter value is mostly characterised by spatial variation. Again, ORYZA_W can be run with average values only, but the effect of spatial variation on simulated output can and should be quantified. Similarly, the effect of measurement errors on simulation output should be quantified. In the following, however, measurement errors are not addressed specifically, but assumed to be part of uncertainty.

Monte Carlo (MC) simulation is a useful technique to quantify uncertainty or spatial variation in input parameter values on simulated output (Hazelhof et al., 1990; Kros et al., 1990; Rossing et al., 1993; Bouman, 1994). In applying this technique, a simulation model is run a large number of times using random values for specified input parameters. These random values are drawn from probability distributions or from measurement series (frequency distributions). The resulting distribution of simulated output values represents a probability distribution as a function of input uncertainty (probability), or a frequency distribution as a function of spatial variation of input data (including any measurement errors). A probability distribution for input parameter values can be derived from expert knowledge, literature data and some actual measurements. E.g. the moisture characteristics of a soil can be estimated from the texture description on the legend of a soil map. For a 'loamy soil', we can construct a probability distribution for the water content at field capacity, WCFC, from literature data: uniform distribution between 0.27 and $0.40 \mathrm{~cm}^{3} \mathrm{~cm}^{-}$ 3 (Wösten et al., 1987). For a 'clayey loam', we could narrow the probability distribution down to $0.35-0.40 \mathrm{~cm}^{3} \mathrm{~cm}^{-3}$, and for 'sandy loam' to $027-0.34 \mathrm{~cm}^{3} \mathrm{~cm}^{-3}$. If a large number of measured values of a parameter are available, a frequency distribution can be drawn that represents the actual spatial variation. The sensitivity analysis described in the previous Paragraph can be used to select the soil and management parameters that have a relatively large effect on simulated output for MC analysis. Again, correlation between input parameters has to be taken into account. The program RIGAUS (Random Input Generator for Uncertainty Analysis in Simulation; see Chapter 4) was especially developed to generate an FSE reruns file with random parameter values from probability and/or frequency distributions for MC analysis with ORYZA_W.

A simple example of MC simulation is given for the case-study of Figures 3.1 and 3.2. First, the effect of uncertainty is illustrated in Figure 3.3. From SA, it was concluded that SPSOIL rate had a large effect on simulated irrigation water of irrigated lowland rice in the Philippines (Figure 3.2.b). Three probability distributions for SPSOIL rate were constructed: a uniform distribution when expert-knowledge suggests that any value between certain boundary values is a reasonable guess; a normal-type of distribution, when expert-knowledge suggests that a certain average value has the highest probability of occurrence; and a skewed beta distribution, when expert-knowledge suggests that a lower or upper boundary value has highest probability of occurrence (Figure 3.3.a). Five hundred random values of SPSOIL rate were generated by RIGAUS from each probability distribution and subsequently used to simulate irrigation water needs in the dry season using ORYZA_W. The resulting simulated values of irrigation water needs (Figure 3.3.b) are probability distributions that quantify the effect of uncertainty in, and expert-knowledge on, SPSOIL rate. Here, the probability distribution was only calculated for one year (the 'average' year 1981). The calculations can be repeated for more years ('good', 'bad' and 'average') to study the variation between years.

For the example of spatial variation, SPSOIL data were taken from literature. Wickham \& Singh (1978) presented measured SPSOIL rates for 10 field sites in Nueva Ecija, Bulacan and Laguna Provinces, the Philippines, in the 1969-70 growing season. Table 3.1 lists the SPSOIL rates as measured in the dry season. Using these data, ORYZA_W was used to calculate the amount of irrigation water needed in the dry seasons of 1980-1991. The resulting simulated values are a frequency distribution of amounts of irrigation water as function of spatial variation in SPSOIL rates (Figure 3.4).


Figure 3.3a. Frequency distribution of 500 randomly generated values of SPSOIL from a uniform distribution and from a beta distribution using $A=10$ and $B=10$ ('normal' distribution, N ) and $\mathrm{A}=1$ and $\mathrm{B}=4$ (skewed distribution, Sk ).


Figure 3.3b. Frequency distribution of irrigation water needs in the dry season of 1981, using ORYZA_W with the SPSOIL values from Figure 3.3a as input .

In this simple example, only the effect of uncertainty and spatial variation in one parameter value was illustrated. In practice, a number of parameters will have a relatively large effect on simulated output, and MC analysis has to include all these parameters. A detailed example is given for rainfed lowland rice in Chapter 5.

Table 3.1. Measured values of SPSOIL rate ( $\mathrm{mm} \mathrm{d}^{-1}$ ) in the dry season of 1969-70 for 10 field sites in Nueva Ecija (NE), Bulacan (Bu) and Laguna Provinces (Lag), Philippines. Data taken from: Wickham \& Singh, 1978. Note: negative values mean upwelling water, and can be handled by ORYZA_W.

| Field | NE1 | NE2 | NE3 | NE4 | Bul1 | Bul2 | Bul4 | Lag1 | Lag2 | Lag3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| SPS | 16.5 | 9.0 | 0.2 | 1.3 | -0.2 | 0 | 3.7 | 1.0 | 21.2 | 25.8 |



Figure 3.4. Frequency distribution of simulated irrigation water needs in the dry seasons of 1980-1991, using ORYZA_W with the SPSOIL values from Table 3.1 as input (MC simulation).

### 3.4 Risk analysis

Crop growth models are suitable to quantify and evaluate risk of a certain production system (e.g. irrigated lowland, rainfed lowland) in land-units of a zonation study. A crop growth model can be used to 'translate' the variation, or probability of occurrence, in input parameters into a probability of occurrence of simulated output, such as yield or irrigation water needs, as a function of environmental properties. The technique to do this is again Monte Carlo simulation. First the probability of occurrence of (soil and management) model input parameters has to be determined for the land-units under consideration (Paragraph 3.3). Using RIGAUS, a large number of input sets is generated that combine randomly chosen parameter values from their respective probability distribution functions and/or measured frequency distributions. ORYZA_W is then run using this set of input parameters for all years that weather data are available. To quantify the variation in simulated model output, as caused by variation in weather, preferable some $10-20$ years of weather data should be used. Weather generators are helpful when the number of years with weather data is too small. The resulting set of simulated model outputs is used to compute cumulative frequency distributions that express the probability of exceedance of certain threshold values.

An example of risk analysis for the case of irrigated lowland rice is given in Figures 3.5 and 3.6. Again, the example focuses on the seepage \& percolation rate of the soil, SPSOIL, as the only variable model input parameter. Two soil types (land-units) were considered: a relatively permeable puddled topsoil, and a relatively poorly permeable puddled topsoil. For the poorly permeable soil, a uniform probability distribution was assumed for SPSOIL between $0-5 \mathrm{~mm} \mathrm{~d}^{-1}$, and for the permeable soil, between $5-10 \mathrm{~mm} \mathrm{~d}^{-1}$. ORYZA_W was run to simulate dry season rice yield (sowing on day 345) and total irrigation water requirements using all weather data between 1980-1991. Figure 3.5 gives the exceedance probability of simulated rice yield for both soil types. The (potential) rice yield was fairly stable with about $100 \%$ probability of having very high yields between 10.6 and 12.2 tha 1 , due to favourable temperature and solar radiation input. [Note: with the newer version of ORYZA_W, 3.0, simulated yield levels at Los Baños are about $1 \mathrm{t} \mathrm{ha}^{-1}$ lower, though relative differences within and between years are the same]. The small difference between the two soil types was caused by the difference in the rate of drying of the puddled layer after irrigation was stopped (at DVS $=1.85$ in this example). On the permeable soil type, water drained relatively fast from the puddled layer and some (slight) drought stress occurred at the end of the growing season. On the poorly permeable soil type, the puddled layer dried out relatively slowly and there was no effect of drought stress at the end of the growing season. Simulated yields were therefore a bit higher on the poorly permeable soil type than on the permeable soil type: the probability of yields higher than $11 \mathrm{tha}{ }^{-1}$ was $78 \%$ on the poorly permeable soil type, and $70 \%$ on the permeable soil type.


Figure 3.5. Exceedance probability of simulated rice yield $(\mathrm{t} \mathrm{ha}-1)$ in irrigated lowland on relatively poorly permeable soil (white diamonds) and on permeable soil (black diamonds). The legend gives the SPSOIL rates of the soils in $\mathrm{cm}^{-1}$.


Figure 3.6. Exceedance probability of total irrigation water requirements ( $10^{3} \mathrm{~mm}$ ) in irrigated lowland on relatively poorly permeable soil (white diamonds) and on permeable soil (black diamonds). The legend gives the SPSOIL rates of the soils in $\mathrm{cm} \mathrm{d}^{-1}$.

Figure 3.6 gives the exceedance probabilities of the total irrigation water needs for both soil types. The difference between soil types was relatively large. On the permeable soil type, the probability was $100 \%$ that irrigation water needs exceeded 1400 mm , whereas on the poorly permeable soil type this was only $50 \%$. These probability curves are important information in irrigation system design. The combination of Figure 3.5 and 3.6 learns that the yield level of irrigated rice (in this environment) was stable, but that associated irrigation water requirements were variable and dependent on the seepage \& percolation rate of the puddled layer (land unit characteristic).

In this simple example, only the probability distribution of one parameter, SPSOIL, was illustrated. In practice, the risk analysis has to take into account the probability distribution of all relevant input parameters (as determined from SA). A detailed example is given for rainfed lowland rice in Chapter 5.

### 3.5 A practical framework for zonation

Because SA and MC simulation takes a lot of computing time, the following practical framework is suggested for the use of crop growth modelling in zonation studies.

1 For all land-units distinguished in the study area, representative soil and management input parameter values are derived from expert-knowledge, maps or measurements. Weather data are taken from nearby, representative weather stations, and crop data are derived from field-experiments and taken from literature. The environment for rice growth zonation with ORYZA_W is determined: irrigated or rainfed lowland, or rainfed upland. Next, ORYZA_W is run for all land-units, using all available weather data and the set of representative soil and management input parameter values for each land-unit. Long-term averages and standard deviations of simulated outputs (e.g. yield, amount of irrigation water, growth duration) are calculated. Maps of the longterm averages can be produced manually or using Geographic Information Systems, GIS, (e.g. Garcia, 1993; Pannangpetch, 1993; Wopereis et al., 1993).

For selected land-units that are considered representative for different agro-ecological environments, sensitivity analysis on soil and management parameters is carried out. If the data permit, the sensitivity analysis should be repeated for some 'good', 'average' and 'bad' years. The input parameters that have a relatively large effect on simulated output are determined, and the relationship between parameter input accuracy and model output accuracy is quantified.

For the same selected land units as under point 2, probability distributions are estimated for each parameter that was found to have a relatively large effect on simulated output. Monte Carlo simulation is used to 'translate' the uncertainty in soil and management input parameter values into uncertainty (a probability distribution) of the simulated model output. If the data permit, the MC simulation should be repeated for some 'good', 'average' and 'bad' years. If the resulting accuracy in simulated output is too low to meet the requirements of the study, the sensitivity analysis of point 2 has indicated the accuracy with which input parameter values need to be measured in the field. If a number of actual field measurements are available, Monte Carlo simulation can be used to calculate the frequency distribution of simulated model output as function of spatial variation in input parameter values. If the calculated frequency distribution of the model output for the land-unit under consideration is found to be too broad, the land-unit can be sub-stratified into smaller land-units that are more homogeneous in input parameter values. The collection of new data and/or substratification implies that step 1 should be repeated.

4 For the selected land-units, risk analysis is carried out by Monte Carlo simulation using the probability input data sets from point 3 and 10-20 years of weather data (if need be obtained with a weather generator). Exceedance probabilities are calculated.

### 3.6 Crop and weather data

Most crop parameters needed to run ORYZA_W are taken from measurements reported in literature and from experiments conducted at IRRI (Kropff et al., 1993). Some of these parameters have been measured often and world-wide, e.g. extinction coefficient of leaves, KDF , or $\mathrm{CO}_{2}$ assimilation rate of leaves, whereas others have only been observed or estimated sparsely, e.g. growth rate of roots, GZRT, transplanting shock for leaf area development, TSHCKL, critical soil water contents, LLDL .... ULRT (see Appendix 1.4 for explanation variable names). Only a relatively small number of parameters needs to be determined for a (new) rice variety of interest from well-controlled field experiments: development rate at the vegetative and generative growth stage, DVRV and DVRR respectively, relative growth rate, RGRL, assimilate partitioning tables, FLVTB, FSTTB and FSOTB, and nitrogen content of the leaves, NFLV. All crop parameters, whether taken from literature or derived from field experiments have a certain degree of uncertainty or variation. The determination and quantification of these uncertainties and variations is difficult, involving complicated statistical procedures, and falls beyond the scope of this Chapter. However, two simple approaches are mentioned here to deal with uncertainty and variation in crop parameters.

1. The same approach can be followed as presented for soil and management parameters: SA and MC analysis. SA can be used to find the crop parameters that have a relatively large effect on simulated output in the specific environment under consideration.

This does not mean, however, that all these parameters actually need to be measured in an experiment. For instance, the assimilation rate of leaves, AMAX, may be found to have a large effect on simulated yield, but its value may be derived from literature with sufficient precision. On the other hand, if for a given soil type the growth rate of roots, GZRT, has a large effect on simulated rainfed rice yield, its value will probably not be easily derived from literature for that specific soil type, thus indicating the need for measurements. MC analysis can be used to quantify the effect of uncertainty and variation in crop parameters on simulated output. However, probability distributions for the crop parameters are difficult to estimate or to measure. In the case that parameter values have been directly measured, e.g. AMAX or GZRT, a number of measurements will yield a frequency distribution. When parameter values have been indirectly derived from field experiments using statistical packages, e.g. GENSTAT (1988) or FSEOPT (Stol et al., 1992), errors of estimate can usually be calculated. In both cases, however, the spread in parameter values not only expresses the uncertainty or variation in the model parameter itself, but also includes the effects of error and/or inaccuracy in the measured variables (from which the parameter value was derived), possible errors and/or inaccuracies in the mathematical description of the crop growth processes involved, and, in the case of indirect derivation, errors and/or uncertainties in other model parameter values. Finally, the correlation between model parameters and the interdependence of various process descriptions in the model often complicate a straightforward SA and MC analysis.
2. A more pragmatic approach is to use the calibration result of a field experiment, i.e. the difference between simulated output of the, calibrated, model and the observed values. In a calibration experiment, the conditions for a precise simulation are generally (or should be) as optimal as possible: important crop parameters are directly measured or inferred from observations, soil properties are often known, weather data are taken from a nearby meteorological station and management activities are exactly known. Still, there is mostly some deviation between simulated variables and observed variables (e.g. yield). This difference is the integrated result of any errors, inaccuracies and uncertainties in crop parameters, mathematical process descriptions and measurements, and can be considered as a 'minimum inaccuracy' of the model. If a crop growth model is used for extrapolation, as in zonation, this minimum inaccuracy should be added to the simulated output. A way to do this is to add to the simulated model outputs a randomly drawn inaccuracy value from a uniform or normal distribution with boundaries and $\sigma$ respectively derived from the calibration experiments. Typical minimum inaccuracies for well-calibrated crop growth models are 5-15\%.

Measured weather data also have some degree of inaccuracy and, sometimes, error. If measurement inaccuracies are random, and their magnitude is known, MC analysis can again be used to 'translate' these inaccuracies into probabilities of simulated output. Each time a weather variable is read from data file by ORYZA_W, a random inaccuracy value can be added to that variable. Measurement errors can be treated the same way, provided that they are random. Errors that show a specific trend, e.g. consequently plus or minus a certain value, should preferably be corrected in the weather data files.

## 4 The program RIGAUS for Monte Carlo simulation

The description of RIGAUS (Random Input Generator for the Analysis of Uncertainty in Simulation) in this Chapter is largely taken from Bouman \& Jansen (1993). RIGAUS allows the user to draw random values from uniform, beta and normal statistical distributions, and from measured data sets for a number of variables at the same time. The version of RIGAUS presented here is especially adapted to generate parameter values (rerun sets) for ORYZA_W. With one exception (see below), values for different parameters/variables are drawn independently, i.e. without taking into account correlation between parameters/variables. RIGAUS has special provisions for drawing random input data for the soil water balance module SAHEL for rainfed upland environments. The correlation between the soil moisture characteristics water content at saturation, WCST, at field capacity, WCFC, and at wilting point, WCWP, can optionally be taken into account. Relationships between these variables have been derived from empirical data and are used in RIGAUS to generate values for WCST and WCWP from randomly drawn values of WCFC. The generated values of WCST, WCFC and WCWP are automatically assigned to all three soil layers distinguished in SAHEL. Also, the initial water content, expressed as fraction of WCFC, FWCLI, is automatically assigned to all three soil layers.

For the lowland water balance module LOWBAL, the correlation between the soil moisture characteristics of the shrunken puddled layer (WCSTP, WCFCP and WCWPP) is not taken into account by RIGAUS. Lack of data prohibited the derivation of these correlations.

### 4.1 Statistical distributions

In RIGAUS, values can be generated randomly from uniform, beta or normal statistical distributions. In the current version, a maximum of 25 variables for a uniform distribution, 25 for a beta distribution and for a 25 normal distribution can be selected simultaneously (hence in total 75 variables/parameters). In principle there is no limit to the number of draws that can be made for each variable. However, there is a limit to the number of reruns that can be made with ORYZA_W in the FSE system. Therefore, the maximum number of draws for reruns is set to 999 (see also Paragraph 4.4)

### 4.1.1 Uniform distribution

Random values for a uniform distribution are generated using the function RUNI. The algorithm in RUNI originates from L'Ecuyer (1986) as implemented in Bratley et al. (1983) and Press et al. (1992). The values generated by RUNI are restricted between 0 and 1 , but
are rescaled in RIGAUS between upper and lower boundaries as specified by the user. An example of the frequency distribution of randomly generated values from a uniform distribution is given in Figure 4.1.


Figure 4.1. Relative frequency distribution (fraction) of randomly drawn values from a uniform distribution between 0 and 1 , using RIGAUS. $\mathrm{N}=2000$.

The input that has to be supplied by the user for drawing from a uniform distribution is (per parameter/variable):

- Name of variable(s) for which random values have to be chosen (VUNI)
- Upper limit (UNIUP)
- Lower limit (UNILO)


### 4.1.2 Beta distribution

Random values for a beta distribution are generated using the function RBET. This random generator is fully based on the function BETACH (Bratley et al., 1983). A beta distribution is characterised by two 'shape' parameters, A and B , that define the shape of
the distribution, e.g. 'bell' shaped, 'triangular' or 'skewed'. The examples given in Figure 4.2 are distributions of randomly generated values using RIGAUS with different A and B values. The mean of the distribution is $A /(A+B)$ and the variance is $A B /[(A+B+1)(A+B)(A+B)]$, as illustrated in Table 4.1. As with the uniform distribution, the values generated by RBET are restricted between 0 and 1, but are rescaled in RIGAUS between upper and lower boundaries as specified by the user.

Table 4.1. Mean $\mu$ (upper number, bold) and variance $\sigma^{2}$ (lower number) of the beta distribution between 0-1 as function of the shape parameters $A$ and $B$.

| A \B | $\mathbf{1}$ | 2 | 4 | 6 | 8 | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | $\mathbf{0 . 5 0 0}$ | $\mathbf{0 . 3 3 3}$ | $\mathbf{0 . 2 0 0}$ | $\mathbf{0 . 1 4 3}$ | $\mathbf{0 . 1 1 1}$ | $\mathbf{0 . 0 9 1}$ |
|  | 0.083 | 0.056 | 0.027 | 0.015 | 0.010 | 0.007 |
| 2 | $\mathbf{0 . 6 6 7}$ | $\mathbf{0 . 5 0 0}$ | $\mathbf{0 . 3 3 3}$ | $\mathbf{0 . 2 5 0}$ | $\mathbf{0 . 2 0 0}$ | $\mathbf{0 . 1 6 7}$ |
|  | 0.056 | 0.050 | 0.032 | 0.021 | 0.015 | 0.011 |
| 4 | $\mathbf{0 . 8 0 0}$ | $\mathbf{0 . 6 6 7}$ | $\mathbf{0 . 5 0 0}$ | $\mathbf{0 . 4 0 0}$ | $\mathbf{0 . 3 3 3}$ | $\mathbf{0 . 2 8 6}$ |
|  | 0.027 | 0.032 | 0.028 | 0.022 | 0.017 | 0.014 |
| 6 | $\mathbf{0 . 8 5 7}$ | $\mathbf{0 . 7 5 0}$ | $\mathbf{0 . 6 0 0}$ | $\mathbf{0 . 5 0 0}$ | $\mathbf{0 . 4 2 9}$ | $\mathbf{0 . 3 7 5}$ |
|  | 0.015 | 0.021 | 0.022 | 0.019 | 0.016 | 0.014 |
| $\mathbf{8}$ | $\mathbf{0 . 8 8 9}$ | $\mathbf{0 . 8 0 0}$ | $\mathbf{0 . 6 6 7}$ | $\mathbf{0 . 5 7 1}$ | $\mathbf{0 . 5 0 0}$ | $\mathbf{0 . 4 4 4}$ |
|  | 0.010 | 0.015 | 0.017 | 0.016 | 0.015 | 0.013 |
| 10 | $\mathbf{0 . 9 0 9}$ | $\mathbf{0 . 8 3 3}$ | $\mathbf{0 . 7 1 4}$ | $\mathbf{0 . 6 2 5}$ | $\mathbf{0 . 5 5 6}$ | $\mathbf{0 . 5 0 0}$ |
|  | 0.007 | 0.011 | 0.014 | 0.014 | 0.013 | $\mathbf{0 . 0 1 2}$ |

The input that has to be supplied by the user for drawing from a beta distribution is (per parameter/variable):

- Name of variable(s) for which random values have to be chosen (VBETA)
- Shape parameter A (ABETA)
- Shape parameter B (BBETA)
- Upper limit (BETAUP)
- Lower limit (BETALO)




Figure 4.2. Relative frequency distribution (fraction) of randomly drawn values from a beta distribution between 0 and 1 , using RIGAUS. $\mathrm{N}=2000$. Different combinations of the $A$ and $B$ parameters are used in Figs. 4.2a, 4.2b and 4.2c, see legends.

### 4.1.3 Normal distribution

Random values for a normal distribution are generated using the function RGAU. This random generator is based on the Box-Muller method (Box \& Muller, 1958). The normal distribution generated by RGAU has a mean of 0 and a variance of 1 , but in RIGAUS, the mean and variance of the distribution can be set by the user. Examples of normal distributions with different means $\mu$ and variances $\sigma^{2}$, as generated by RIGAUS, are given in Figure 4.3. Note, that on average, $95 \%$ of the values of a normal distribution lie between $\mu-2 \sigma^{2}$ and $\mu+2 \sigma^{2}$.

Warning: a normal distribution is not bound by pre-set minimum and maximum values. If values from a normal-type distribution have to be contained between fixed boundaries (as is often the case for model parameter values), a beta distribution with equal $A$ and $B$ values can be used (see Paragraph 4.1.2).


Figure 4.3. Relative frequency distribution (fraction) of randomly drawn values from a normal distribution, using RIGAUS. $\mathrm{N}=2000$. In Fig. 4.3a, the variance (VARU) of the distribution was 1, in Figure 4.3b, it was 100. The mean of the distribution (MEANU) was 0 .

The input that has to be supplied by the user for drawing from a normal distribution is (per parameter/variable):

- Name of variable(s) for which random values have to be chosen (VNORM)
- Mean $\mu$ of the distribution (MEANU)
- Variance $\sigma^{2}$ of the distribution (VARU)


### 4.1.4 Seed

The seed of a random generator controls the starting point of the generator and determines the reproducibility of the generated values. In RIGAUS, the seed is called ISEED and is used by the function RUNI for uniform distributions. Because RUNI is also called by the functions RGAU and RBET, the same ISEED 'controls' the generation of normal and beta distributions respectively.

The value for ISEED is read from the input file RIGAUS.IN (see Paragraph 4.4.1). When the supplied ISEED is 0 , an integer function TSEED is called in RUNI to generate a seed value. TSEED produces a seed in the range 1-86412 based on the system (computer) time in seconds from midnight. This generated seed value is written to the output file RERUNS.DAT (see Paragraph 4.4.2). Each time RIGAUS is run with ISEED $=0$ in the input file, a new seed is generated and subsequent runs of RIGAUS produce different output. If the results of RIGAUS should be reproducible, any value not equal to 0 can be given for ISEED in the input file RIGAUS.IN. Each run with RIGAUS that uses the same ISEED value produces the same results.

### 4.2 Measured data

Random variables are uniformly drawn from a series of measured data using the RUNI function. Random values can be drawn simultaneously and independently from five measurement series (five parameters/variables). Measured values can be randomly drawn simultaneously and independently with draws from the statistical distributions.

The input that has to be supplied by the user for drawing from measured data is (per parameter/variable):

- Name of measured variable(s) for which random values have to be chosen (NMVAR)
- Measured data

The total number of measured values for each parameter/variable may not be greater than 500 (see Paragraph 4.4.1)

### 4.3 Special provisions for SAHEL

RIGAUS has the following three special provisions for the water balance module SAHEL for rainfed uplands:

1. Important input data for this model are three characteristic points on the water retention curve: water contents at saturation, WCST, at field capacity, WCFC, and at wilting point, WCWP. In sensitivity and MC analyses, these three parameter values may be varied to study the effect on crop growth. However, these three parameter are correlated, and these correlations should be taken into account when drawing random values. In RIGAUS, empirical relations between WCST-WCFC-WCWP are included and can optionally be used.
2. The soil water content at the start of simulation (WCLI in SAHEL) also depends on the soil moisture characteristic of the soil. With variable values for e.g. WCFC, WCLI can not be a fixed value as is currently done in SAHEL. Therefore, it is suggested to calculate WCLI in SAHEL as a fraction FWCLI of WCFC (the same way as it was defined from WCWP in the 'original' version of SAHEL, van Keulen, 1975)

WCLI = FWCLI * WCFC
This way, values for WCST, WCFC and WCWP can be varied without running into problems with a fixed value for WCLI. The variable name FWCLI is automatically recognised in RIGAUS (optionally).
3. Three soil layers are distinguished in SAHEL, and for each layer the variable names WCST, WCFC, WCWP and WCLI have a suffix to identify the layer number (from top to bottom), i.e. WCST1, WCFC1, WCWP1, WCLI1, WCST2,... WCLI3. In RIGAUS, random values for these variables can optionally be assigned to all three layers. The generated random values are, per variable, the same for all three layers.

The above three options can be implemented when drawing random variable values for SAHEL by setting the control switch ISWI in the input file: ISWI $=1$ : implement empirical relations; $I S W I=0$ : ignore empirical relations.

### 4.3.1 Empirical relations

Measured values of WCST, WCFC and WCWP were used to investigate the correlations among these parameters (Figure 4.4). The measurements refer to Dutch soils ranging from coarse sands to heavy clays and peat (Wösten et al., 1987). There was a close relationship between WCWP and WCFC, and between WCST and WCFC, regardless of soil type
(except for peat in the WCWP-WCFC relationship). The following quadratic expressions were fitted through the data set:

$$
\begin{aligned}
& \text { WCWP }=0.050-0.535^{*} W C F C+2.027^{*} W C C^{2}\left(\mathrm{~cm}^{3} \mathrm{~cm}^{-3}\right)[4.1] \\
& \text { (with WCWP minimum }=0.015 \text {; see Figure } 4.4 a \text { ) }
\end{aligned}
$$

$$
\begin{equation*}
\text { WCST }=0.347-0.164^{*} \text { WCFC }+1.217^{*} \mathrm{WCFC}^{2}\left(\mathrm{~cm}^{3} \mathrm{~cm}^{-3}\right) \tag{4.2}
\end{equation*}
$$

Some statistical information on the regression lines is given in Table 4.2.

A validation set of various soils in the tropics supported the above relationships, except for deeply weathered oxisols (Figure 4.4). For all soil types, the water content at air-dryness, pF 7 (WCAD), was close to 0 and no relationship with the other water contents could be established. Currently, soil data are being collected in the SARP network to further validate the derived regressions for South-east Asian soils. If users have own soil data on water retention characteristics, they should check whether the above regressions are applicable.

The derived regression equations are only valid between the limits of 0.05 and 0.60 for WCFC. When the user specifies boundaries of WCFC outside these limits, RIGAUS is terminated and produces an error message (Paragraph 4.4.3).

(4.4a)

(4.4b)

Figure 4.4. Measured values of WCWP versus WCFC (4.4a) and of WCST versus WCFC (4.4b). The black diamonds are data from Dutch soils, the white diamonds are data from tropical soils. The drawn lines are the fitted regressions.

Table 4.2. Statistical information on the regression lines (equations 4.1 and 4.2) derived between WCWP and WCFC and between WCST and WCFC (in $\mathrm{cm}^{3} \mathrm{~cm}^{-3}$ ).

1. $\mathrm{WCWP}=\mathrm{A}+\mathrm{B}^{*} \mathrm{WCFC}+\mathrm{C}^{*} \mathrm{WCFC}^{2}$

|  | A | B |  |
| :--- | :--- | :--- | :--- | :--- |
| Value | 0.050 | -0.535 | $\mathbf{C}$ |
| Sigma | 0.027 |  |  |
| T-value | 0.0286 | 0.1910 | 0.2930 |
|  | 1.87 | -2.80 | 6.91 |

Number of data ( N ) $=30$ (without data peat soils)
Variance accounted for $=93 \%$
Mean square residual $\mathrm{s}^{2}=0.000993$
Validity limits: $0.05<$ WCFC $<0.60\left(\mathrm{~cm}^{3} \mathrm{~cm}^{-3}\right)$
2. $\mathrm{WCST}=\mathrm{A}+\mathrm{B}^{*} \mathrm{WCFC}+\mathrm{C}^{*} \mathrm{WCFC}^{2}$

|  | A | B |  |
| :--- | :--- | :--- | :--- | :--- |
| Value | 0.347 | $\mathbf{C}$ |  |
| Sigma | 0.0182 | -0.164 | 1.217 |
| T-value | 19.07 | 0.0982 | 0.1210 |
|  | -1.66 | 10.04 |  |

Number of data ( N ) $=34$
Variance accounted for $=97 \%$
Mean square residual $\mathrm{s}^{2}=0.000647$
Validity limits: $0.05<$ WCFC $<0.60\left(\mathrm{~cm}^{3} \mathrm{~cm}^{-3}\right)$

### 4.3.2 Random drawing of WCST, WCFC and WCWP

If the switch ISWI is set to 0 , the above relations are ignored in RIGAUS and random values for WCST, WCFC and WCWP can independently be drawn from any of the statistical distributions or from measured data series. Because three soil layers are distinguished in SAHEL, values have to be generated for each of the three layers separately, i.e. WCST1, WCST2, WCST3, WCFC1, WCFC2,...., WCWP3.

If the switch ISWI is set to 1 , the WCST-WCFC and WCWP-WCFC relations are included. The user has to specify a statistical distribution for the parameter WCFC, either uniform, beta or normal (Warning: random drawing from measured data is not possible in this situation). RIGAUS automatically recognises the variable name WCFC and uses equations 4.1 and 4.2 to calculate a corresponding value for WCST and WCWP from each randomly drawn value for WCFC. Variation around these regression lines (Figure 4.4) is accounted for by adding a randomly drawn value from a normal distribution with the root
mean square residual of the regression lines as standard deviation: in equation 4.1, $\sigma=$ 0.032 , in equation $4.2, \sigma=0.025$. An example of 500 generated values of WCST, WCFC and WCWP is given in Figure 4.5 where WCFC was drawn from a uniform distribution between 0.05 and $0.60 \mathrm{~cm}^{3} \mathrm{~cm}^{-3}$. The random data accurately reproduced the variation around the regression lines.

The random values generated for WCST, WCFC and WCWP are assigned to all three soil layers distinguished in SAHEL: WCST1 = WCST2 $=$ WCST3, WCFC1 $=$ WCFC2 $=$ WCFC3 and WCWP1 = WCWP2 = WCWP3. In the output file RERUNS.DAT, the generated random values are defined with the above suffixes; in the output file COLUMN.DAT, suffixes are omitted (see Paragraph 4.4.2).

### 4.3.3 Random drawing of FWCLI

With the switch ISWI set to 0 , FWCLI is not recognised by RIGAUS as a special variable and is treated as any other variable. Values can be generated from any of the three statistical distributions or from measured values. Because three soil layers are distinguished in SAHEL, values have to be generated for each of the three layers separately, i.e. FWCLII, FWCLI2 and FWCLI3.

With the switch ISWI set to 1, FWCLI is automatically recognised by RIGAUS, and randomly generated values from any of the three statistical distribution types are assigned to all three soil layers: FWCLI1 = FWCLI2 = FWCLI3. In the output file RERUNS.DAT, the generated random values are defined with the above suffixes; in the output file COLUMN.DAT, they are omitted (i.e. FWCLI) (see Paragraph 4.4.2).


Figure 4.5. 500 randomly drawn variables for WCFC (uniform distribution) and WCWP (4.5a) and WCST (4.5b), using RIGAUS. The drawn lines are the regression lines, i.e. equations 4.1 and 4.2 .

### 4.4 Running RIGAUS

Under the SARP-Shell, the running of RIGAUS is facilitated with a menu-system (Riethoven, 1994). If RIGAUS is run without this Shell, or if RIGAUS is to be adapted, this Paragraph provides some useful information. RIGAUS (developed on an 486 IBM compatible PC ) is written in the programming language FORTRAN77. A full listing of the source code is given in Appendix 2.1. Subroutines and functions are called from the CABO/TPE library TTUTIL (Rappoldt \& van Kraalingen, 1990), which should be linked when the user changes the source code. The function TSEED uses compiler-specific subroutines; the current RIGAUS program uses a Microsoft compiler subroutine, but a provision for the use of a VAX compiler subroutine is included in the source code.

The maximum number of draws per variable, of total drawn values (draws per variable times number of variables), of variables that can be selected from each statistical distribution type, and of measured data per variable are set in RIGAUS:
NDRAW = maximum number of draws $(-999)$
ILPREP $=$ maximum number of total drawn values ( $=10000$ )
IMNP $\quad=$ maximum number of variables per statistical distribution type $(=25)$
KMNP $=$ maximum number of measured data per variable $(=500)$
The maximum number of total drawn, ILPREP, is determined by the total number of parameter values that can be used in reruns of ORYZA_W. For example: there may be 10000 draws for one single parameter, or 500 draws for 20 parameters each. Note that both the values of NDRAW and ILPREP are determined by ORYZA_W (in fact, by the set of subroutines OPSYS that is to be linked with ORYZA_W).

One input file is needed, RIGAUS.IN, and two output files are generated, RERUNS.DAT and COLUMN.DAT. Examples of these files are given in Appendices 2.2 and 2.3.

### 4.4.1 Program input

The number of random draws, the type of statistical distributions and the measured data series to choose from are specified in the input file RIGAUS.IN. The format of the required input is 'real' (R), i.e. with decimal point, 'integer' (I), i.e. without decimal point, and 'character' (C). The following data have to be supplied.

## General

First the switch defining the mode of the program, i.e. whether to include or ignore the special provisions for the water balance model SAHEL, should be set (Paragraph 4.3).
ISWI $\quad=0$ : special provisions are ignored (I)
ISWI $\quad=1$ : special provisions are included (I)

The number of random draws should be set.
TND = $\qquad$ (I)

The seed should be supplied.
ISEED $\quad=0$ : a seed between $1-86412$ will be generated RIGAUS itself (I)
$=$ 'any integer value': the supplied value is used as seed.
UNIFORM distributions

NDU $\quad=\ldots . . . . .$. Number of variables (maximum $=25$ ) (I)
VUNI $=$ '........', '.........', ........ List of variable names (max. $=25$ ) (C)
UNILO $=\ldots, \ldots ., \ldots$. . Lower boundary of variable values, in the order of the variables specified above (max. $=25$ ) ( R )
UNIUP $=\ldots ., \ldots ., \ldots$. Upper boundary of variable values, in the order of the variables specified above (max. $=25$ ) $(\mathbf{R})$

BETA distributions

NDB $\quad=$.......... Number of variables (maximum $=25$ )(I)
VBETA $=$ '........', '.........', ......... List of variable names (max. $=25$ ) (C)
ABETA $=\ldots, \ldots, \ldots$. A-value for beta distribution, in the order of the variables specified above (max. $=25$ ) $(\mathrm{R})$
BBETA $=\ldots, \ldots, \ldots ., \mathrm{B}$-value for beta distribution, in the order of the variables specified above $(\max .=25)(R)$
BETALO $=\ldots ., \ldots ., \ldots$. , Lower boundary of variable values, in the order of the variables specified above $(\max .=25)(R)$
BETAUP $=\ldots ., \ldots ., \ldots$. , Upper boundary of variable values, in the order of the variables specified above $(\max .=25)(R)$

## NORMAL distributions

| NDN | .. Number of variables (maximum $=25$ ) (1) |
| :---: | :---: |
| VNORM | ......', '........', ........ List of variable names (max. = 25) (C) |
| MEANU | $=\ldots . ., \ldots . .$, ...... Mean of the normal distribution, in the order of the variables specified above $($ max. $=25)(\mathbf{R})$ |
| VARU | ..... , ...... Variance of the normal distribution, in the order of the variables specified above $($ max. $=25)(\mathbf{R})$ |

## MEASURED data

NDN $\quad=\ldots \ldots . . .$. Number of variables (maximum =5)(1)
VNORM $=$ '........', '.........', ......... List of variable names (max. = 5) (C)
MDATA1-5 = $\qquad$ . Measured data first to fifth variable $(\max .=500)(\mathrm{R})$

### 4.4.2 Program output

Two output files are generated by RIGAUS: RERUNS.DAT and COLUMN.DAT. A third file, ERROR.LOG, is only created when a fatal error has occurred and contains messages on the nature of the error (see Paragraph 4.4.3).

## RERUNS.DAT

This file has the right format to serve as a reruns file in the FSE system. Appendix 2.3a illustrates the output generated using the input file RIGAUS.IN given in Appendix 2.2. If the special provisions for the soil water balance model SAHEL are included in the random drawing (ISWI =1), values for WCST, WCFC, WCWP and FWCLI are generated for all three soil layers (as distinguished in SAHEL) each time the variable names 'WCFC' and 'FWCLI' are encountered in RIGAUS.IN. All variable values drawn simultaneously, that should serve as one rerun set for the model are separated with the comment line '* This is rerun set $x^{\prime}$. The seed value, ISEED, is given in the first line of the file for reproducibility of the generated distributions.

All output data (random values) are declared REAL, and formatted in exponential notation E10.3.

## COLUMN.DAT

In this file, the randomly drawn values are listed in columns per parameter/variable, as illustrated in Appendix 2.3b that was generated using the input file RIGAUS.IN given in Appendix 2.2. This file can be used in programs such as GENSTAT or EXCEL for checking and evaluating the data, e.g. to check the generated distributions or the boundary values. If RIGAUS is operated under the SARP-Shell, a plotting facility is available to check the generated distributions. If the special provisions for the soil water balance SAHEL have been included in the random drawing (ISWI = 1), values for WCST, WCFC, WCWP and FWCLI are given without suffixes each time the variable names 'WCFC' and 'FWCLI' are encountered in RIGAUS.IN to avoid redundancy (COLUMN.DAT only serves to check and evaluate the generated results).

All output data (random values) are declared REAL, and formatted in exponential notation E10.3.

### 4.4.3 Error and warning messages

A number of consistency checks on the input data are incorporated in RIGAUS. If inconsistencies are detected, either fatal error messages are given and the program is aborted, or warning messages are given. In the latter case, the program is still completed successfully. All error and warning messages are sent to the screen during program execution, whereas fatal error messages are also sent to a special output file, ERROR.LOG. If no fatal error messages occurred, ERROR.LOG will not be created (and previous ERROR.LOG files will be deleted).

## What does RIGAUS check automatically?

Input data are checked on the maximum numbers allowed and on consistency. RIGAUS is aborted and fatal error messages are given if:

- The number of drawings TND exceeds 999 (NDRAW)
- The number of total drawn values, TND * (NDU+NDB+NDN+NMV) exceeds 10000 (ILPREP)
- The number of variables for uniform (NDU), beta (NDB) or normal (NDN) distributions exceeds 25
- The number of data for the statistical distributions is inconsistent (e.g. the number of UNIUP values is not the same as that of UNILO values)
- The number of data or the number of variable names for the statistical distributions exceeds 25 (e.g. the number of UNIUP values or VUNI names exceeds 25)
- The number of data or the number of variable names for the statistical distributions is smaller than the number of variables given for random drawing (e.g. the number of UNIUP values is smaller than NDU)
- Supplied values of upper boundaries are lower than supplied values of lower boundaries (e.g. UNIUP < UNILO)
- The number of measured variables (NMV) exceeds 5
- The number of variable names for drawing from measured data is smaller than the given number of measured variables (NMV)
- The number of measured data exceeds 500

Error and warning messages can also be generated by the TTUTLL subroutines that are used in RIGAUS (Rappoldt \& van Kraalingen, 1990). E.g. the program is aborted and an error message is given by the 'read' routines if:

- Format of supplied input does not match the defined format (e.g. 'integer' is given when 'real' should be given, or vice versa).

Informative warnings are also given if some inconsistencies are detected but when RIGAUS can still be successfully completed:

- The number of data or the number of variable names for the statistical distributions exceeds the number of variables given for random drawing (e.g. the number of UNIUP values exceeds NDU)

If the special provisions for the soil water balance SAHEL are included in the random drawing (ISWI $=1$ ), checks are carried out on the boundary values of WCST, WCFC, WCWP and FWCLI, and on consistencies among the generated values for these variables. RIGAUS is aborted and fatal error messages are given if:

- Boundary values supplied for WCFC are outside the validity range of the derived relationships with WCST and WCWP, i.e. smaller than 0.05 or larger than 0.60 in all statistical distributions (e.g. UNIUP $>0.60$ )
- Randomly generated values of WCFC are outside the validity range of the derived relationships with WCST and WCWP, i.e. WCFC smaller than 0.05 or larger than 0.60 , in the normal distribution.
- Randomly generated values of FWCLI are smaller than 0 or larger than 1 in the normal distribution.
In RIGAUS, all randomly drawn values for WCST, WCFC and FWCLI are restricted between 0.001 and 0.999 .

If the special provisions for the soil water balance SAHEL are ignored (ISWI $=0$ ), no consistency checks on the values of WCST, WCFC, WCWP and FWCLI are carried out. Also, no consistency checks are carried out for variables randomly drawn from measured values.

- The format in which the input data are given should match the required format.
- The user has to check carefully the (input) boundary values for drawing from the uniform and beta statistical distributions. The same applies to the measured input data. If random draws are made from a normal distribution, there are in principle no limits to the range of possible values. Therefore, the results (randomly drawn values) have to be carefully checked for unrealistic values.
- It is advisable to check the generated distributions (shape and minimum and maximum values) of the randomly drawn parameter/variable values before actually using these data for Monte Carlo simulation. Checks can simply be made by plotting the generated values (option available under the SARP-Shell; Riethoven, 1994)
- The standard format of the randomly generated parameter/variable values is REAL with exponential notation (E10.3). This format is compatible with almost all variables and input parameters used in ORYZA_W. However, if this format proves not compatible (i.e. INTEGER data are needed), either the output format in RIGAUS may be adapted, or the format in the simulation model should be converted (e.g. INT and NINT functions to convert REAL data into INTEGER data).


## 5 Case study: rainfed Iowland rice

An example of the framework described in the previous Chapters for the use of crop modelling in agro-ecological characterisation and zonation of rice is given for transplanted, rainfed lowland rice in the wet season at IRRI, Philippines. Crop data derived for IR72 were used (Kropff et al., 1993; Appendix 1.2b); weather data were taken from the IRRI lowland weather station ( 11 years of complete data between 1979-1991); soil data were for a (fictive) non-cracking, puddled topsoil overlying a permeable subsoil (topsoil moisture characteristics from measurements in Tarlac, Wopereis, pers. com.); and management parameters were taken from practices at IRRI. Input data for soil and management parameters are given in Table 5.1, and are supposed to be representative for a land-unit of a (fictive) zonation study.

Table 5.1. Soil and management parameters for a case-study of rainfed lowland rice at IRRI.

```
Seepage \& percolation rate, SPSOLL \(=5 \mathrm{~mm} \mathrm{~d}^{-1}\)
Drainage rate subsoil, \(\mathrm{DDR}=2000 \mathrm{~mm} \mathrm{~d}^{-1}\)
Initial depth water layer, WLOI \(=50 \mathrm{~mm}\)
Minimum depth of water layer, WLOMIN \(=0\) (not relevant)
Shrinkage factor, SHRINK \(=0.7\)
Water content at cracking, WCCRAC \(=0 \mathrm{~cm}^{3} \mathrm{~cm}^{-3}\)
Water content saturation, WCSTP \(=0.52 \mathrm{~cm}^{3} \mathrm{~cm}^{-3}\)
Water content wilting point, WCWPP \(=0.01 \mathrm{~cm}^{3} \mathrm{~cm}^{-3}\)
Water content field capacity, WCFCP \(=0.01 \mathrm{~cm}^{3} \mathrm{~cm}^{-3}\) (actually not used in LOWBAL)
Water content air-dry, WCADP \(=0.01 \mathrm{~cm}^{3} \mathrm{~cm}^{-3}\)
Irrigation gift, RIGIFT \(=0\) (not relevant)
Initial amount of irrigation, RIPUD \(=0\) (not relevant)
Development stage to stop irrigation, DVSIE \(=0\) (not relevant)
Bund height, WLOMXI \(=100 \mathrm{~mm}\)
Thickness puddled layer, TKLPI \(=200 \mathrm{~mm}\)
Days in seed-bed, DTRP = 12 days
Number of hills, \(\mathrm{NH}=25\)
Number of plants per hill, NPLH \(=3\)
Number of plants in seed-bed, NPLSB \(=1000\)
Sowing date, STTIME \(=\) June-July
```


### 5.1 Sensitivity analysis

First, rainfed rice yield (WRR, weight of rough rice) was simulated using all weather data with sowing dates between day 165 (half June) and day 212 (end of July). Results are presented in Figure 5.1. Day of sowing had a large effect on simulated rice yield: in all but one year, rice yield declined with later sowing. It may be expected that simulated yields are even higher when sowing is done before day 165 (see Paragraph 5.2). In 9 out of 11 years, yields were below $4 \mathrm{t} \mathrm{ha}^{-1}$, no or hardly any yield was simulated when sowing dates fell before day 185. Low yields were mostly caused by early termination of the model run because the period of drought stress exceeded the validity domain of the model (more than 25 days; see Paragraph 2.1), or because the soil water content dropped below the lower limit for dying of the leaves. It can be concluded that optimum sowing dates for this casestudy are earlier than the range of dates in Figure 5.1 (i.e. before day 165).


Figure 5.1. Simulated rainfed, lowland rough rice yield versus sowing date for 11 years between 1979-1991

In Figure 5.1, some abrupt changes occur in the trend of yield versus sowing date. E.g. in 1986, simulated yields gradually declined from about 3.5 to $1 \mathrm{t} \mathrm{ha}-1$ with sowing dates going from day 165 to 182 , then suddenly jumped to about $6 \mathrm{t} \mathrm{ha}{ }^{-1}$ at sowing date 183, after which they gradually increased to about $8 \mathrm{t} \mathrm{ha}{ }^{-1}$ at sowing date 212. Also in 1986, zero yield was simulated with sowing between days 190-193, whereas yields with earlier or later sowing dates were about $6 \mathrm{t} \mathrm{ha}-$. These abrupt changes in simulated yield are
explained by two factors. First, there are sharp boundaries in the model that govern the simulation of crop death and the termination of the model run. For instance, soil moisture contents just below or above the lower limit for dying of leaves or the number of drought stress days make the difference between acute abortion (e.g. already in the vegetative phase) or the continuation of a simulation run. The timely rainfall on a specific day can determine whether such a boundary condition is passed or not. Under such conditions, only one day difference in sowing can make the difference between 0 or, for instance, $6 \mathbf{t h a}{ }^{-1}$ simulated yield, as in 1986. Secondly, it is implicitly assumed that the crop and soil are fully homogeneous with no variation in properties. In reality, there is always some variation in both crop and soil. This means that whereas at certain spots in a field, the passing of boundary conditions during simulation may results in zero yield, at other spots these boundary conditions may not be passed and some yield may still be obtained. The result in practice is an averaging of yield on a field basis, which is not simulated in ORYZA_W.

An example of abrupt changes in simulated yield is further elaborated for 1986 in Figure 5.2. In Figure 5.2 a , the depth of ponded water, WL0, and the cumulative rainfall are plotted versus time for simulations with sowing day 182 and 183. Gradually declining amounts of rainfall during the first half of crop growth (days 180-250) resulted in decreasing depths of ponded water. Fluctuations in ponded water depth matched rainfall (note: rainfall is only plotted for the main field, i.e. after transplanting!). A long drought spell occurred between days 253-278. With sowing on day 182, this drought stress lasted 25 days, after which the simulation was aborted with about $1 \mathrm{t} \mathrm{ha}{ }^{-1}$ grain weight. With sowing one day later, the soil moisture content was slightly higher, and only 24 days of drought stress were recorded. The rainfall on day 279 relieved the drought stress just in time, and subsequent rainfall secured sufficient amounts of water to attain a yield of about $6 \mathrm{tha}^{-1}$. The dynamics of simulated LAI in time is plotted in Figure 5.2b. Somewhere halfway the drought spell of days 253-278, LAI decreased dramatically with both sowing dates. The slight amount of rainfall on day 271 resulted in a small, temporary, increase in LAI. With sowing on day 183, the rains after day 179 were sufficient to maintain LAI levels of $1-1.5$ until crop maturity.
[The observations made here for simulated rainfed rice yield using ORYZA_W agree with simulation results for rainfed rice using the MACROS modules (Bouman, 1994)].


Figure 5.2. Simulated depth of ponded water (5.2a) and LAI (5.2b) in 1986 with sowing on day 182 (black diamonds) and 183 (white diamonds). The thick line indicates the cumulative amount of rainfall.

Based on the results of Figure 5.1, it was decided to perform further sensitivity analysis (SA) in three years with different yield levels: 1979 with sowing day 195 (yield $=3.1 \mathrm{t}$ ha${ }^{1}$ ), 1980 with sowing day 177 (yield $=1.6 \mathrm{tha} \mathrm{h}^{-1}$ ), and 1986 with sowing day 200 (yield = $6.9 \mathrm{t} \mathrm{ha}^{-1}$ ). All relevant management and soil parameters were included in the SA, Table 5.2.

Table 5.2. Ranges of management and soil parameter values used in sensitivity analysis.

| Parameter | Range |
| :--- | :--- |
| WLOMXI | $100,120, \ldots, 300 \mathrm{~mm}$ |
| TKLPI | $150,170, \ldots, 350 \mathrm{~mm}$ |
| DTRP | $10,12, \ldots, 30$ days |
| NPLSB | $750,800, \ldots, 1250$ plants |
| NH | $15,17, \ldots, 30$ hills |
| NPLH | $1,2, \ldots, 5$ plants hill- -1 |
| SPSOIL | $0,1, \ldots, 20 \mathrm{~mm} \mathrm{~d}^{-1}$ |
| SHRINK | $0.1,0.2, \ldots, 1.0$ |
| WCSTP | $0.30,0.35, \ldots, 0.80 \mathrm{~cm}^{3} \mathrm{~cm}^{-3}$ |
| WCFEP | $0.05,0.10, \ldots, 0.50 \mathrm{~cm}^{3} \mathrm{~cm}^{-3}$ |
| WCWPP | $0.05,0.10, \ldots, 0.50 \mathrm{~cm}^{3} \mathrm{~cm}^{-3}$ |
| WCADP | $0,0.01, \ldots, 0.10 \mathrm{~cm}^{3} \mathrm{~cm}^{-3}$ |
| WCCRAC | $0,0.02, \ldots, 0.20 \mathrm{~cm}^{3} \mathrm{~cm}^{-3}$ |

Note: drainage rate of the subsoil, DDR, was not included in SA because the soil type under consideration was non-cracking.

### 5.1.1 Management parameters

The results of SA analysis on management parameters are graphically illustrated in Figure 5.3. Results are also quantitatively expressed by the mean slope between simulated yield and management parameter value, Table 5.3.

The thickness of the puddled layer, TKLPI, had relatively the largest effect on simulated rice yield. Increasing thickness lead to increasing yield because more water could be stored that was available for crop growth. Bund heights, WLOMXI, larger than 12 cm had no effect on rice yield; there was no benefit from a potentially larger capacity of water storage. Simulated yields only decreased when bunds were lower than 12 cm .

Increasing duration of the seed-bed, DTRP, decreased yield substantially. At the high yield level, year 1986, yields only declined significantly if the seed-bed duration exceeded 18 days.

The parameters that control the crop density, i.e. number of plants in seed-bed, NPLSB, number of hills, NH, and number of plants per hill, NPLH, had no or little effect on simulated yield.

In setting up a management data collection strategy for this case-study, attention should focus on the thickness of the puddled layer and on the duration of the seed-bed (and on sowing date, see above). The values in Table 5.3 can be used as rough indicators of the accuracy (range) with which the management input data need to be determined to arrive at certain accuracies (ranges) in simulated yield.

Also, conclusions can be drawn with respect to optimising crop management to maximum rice yield. Simulations with ORYZA_W indicated that, in this environment, deep puddling and short duration of the seed-bed favour high yields. Bund heights should be around 12 cm or higher. Crop densities in the seed-bed and in the main field had no to little effect on rice yield. These simulation results can be used to focus experimental field research.

Table 5.3. Mean slope between simulated rice yield and management and soil parameters. The slope is expressed in $\mathrm{kg} \mathrm{ha}^{-1}$ rough rice yield per (increase in) unit of the management/soil parameter in 1979, 1980 and 1983. The mean slopes only apply to data ranges of the management/soil parameters with yield $>0$, specifically: SPSOIL $<8 \mathrm{~mm} \mathrm{~d}^{-1}$; WCSTP $>0.40 \mathrm{~cm}^{3} \mathrm{~cm}^{-3}$; WCWPP $<$ $0.15 \mathrm{~cm}^{3} \mathrm{~cm}^{-3}$; WCCRAC $<0.1 \mathrm{~cm}^{3} \mathrm{~cm}^{-3}$. Note: DTRP (1) $=$ DTRP $<20$ days, DTRP (2) $=$ DTRP $>20$ days.

| Parameter | Unit | 1979 | 1980 | 1986 |
| :--- | :--- | :--- | :--- | :--- |
| WLOMXI | 1 cm | 15 | 16 | 1 |
| TKLPI | 1 cm | 108 | 80 | 70 |
| DTRP (1) | 1 day | -127 | -104 | -32 |
| DTRP (2) | 1 day | - | -85 | -377 |
| NH | 1 hill | -4 | -2 | 19 |
| NPLH | 1 plant hill -1 | -45 | -25 | 134 |
| NPLSB | 100 plants | -47 | -2 | -14 |
| SPSOIL | $1 \mathrm{~mm} \mathrm{~d}^{-1}$ | -1184 | -525 | -198 |
| SHRINK | $0.01(-)$ | -26 | -48 | 17 |
| WCSTP | $0.01 \mathrm{~cm}^{\mathbf{3}} \mathrm{cm}^{-3}$ | 17 | -2 | 18 |
| WCFCP | $0.01 \mathrm{~cm}^{\mathbf{3} \mathrm{cm}^{-3}}$ | 0 | 0 | 0 |
| WCWPP | $0.01 \mathrm{~cm}^{\mathbf{3} \mathrm{cm}^{-3}}$ | -8 | 15 | -40 |
| WCADP | $0.01 \mathrm{~cm}^{\mathbf{3} \mathrm{cm}^{-3}}$ | 0 | 0 | 0 |
| WCCRAC | $0.01 \mathrm{~cm}^{3} \mathrm{~cm}^{-3}$ | 0 | 0 | 0 |



5.3b


5.3d


Figure 5.3. Simulated rough rice yield, WRR, versus WL0MXI (5.3a), TKLPI (5.3b), DTRP (5.3c), NPLSB (5.3d), NH (5.3e) and NPLH (5.3f), in 1979, 1980 and 1986

### 5.1.2 Soil parameters

Results of the SA on soil parameters are given in Figure 5.4 and Table 5.3.
Seepage \& percolation rate, SPSOIL, had relatively the largest effect on simulated rice yield; increasing SPSOIL lead to decreasing rice yields. Abrupt changes in the curves of simulated yield versus SPSOLL, e.g. when SPSOLL $>8 \mathrm{~mm} \mathrm{~d}^{-1}$ in 1986, Figure 5.4a, again point to sharp boundaries between process descriptions in the model (see above). In these situations, ORYZA_W should be carefully studied to find out what is actually happening during simulation (c.f. Figure 5.2). With SPSOIL rates $>8 \mathrm{~mm} \mathrm{~d}^{-1}$, simulated yield was 0 in all three years.

The shrinkage factor of the puddled layer, SHRINK, also had a considerable, though non-consistent, effect on simulated yield.

The effects of the soil moisture characteristics of the puddled layer on simulated yield were generally relatively small, though sharp transitions occurred. Decreasing water content at saturation, WCSTP, lead to gently decreasing yields. However, yields suddenly dropped to about 0 when WCSTP decreased below $0.40 \mathrm{~cm}^{3} \mathrm{~cm}^{-3}$. Water content at field capacity, WCFCP, and at air-dryness, WCADP, had no effect on simulated yield. The effect of water content at wilting point, WCWPP, was generally small for values between 0 and $0.15 \mathrm{~cm}^{3} \mathrm{~cm}^{-3}$. Simulated yields dropped to around 0 when WCWPP was larger than $0.15 \mathrm{~cm}^{3} \mathrm{~cm}^{-3}$.

The water content at which cracks penetrate the compacted layer, WCCRAC, did not affect simulated rice yield when its value was below $0.10 \mathrm{~cm}^{3} \mathrm{~cm}^{-3}$. After $0.10 \mathrm{~cm}^{3} \mathrm{~cm}^{-3}$, simulated rice yield declined (except for the high yield level in 1986) until 0 yield was obtained at values of WCCRAC larger than $0.14 \mathrm{~cm}^{3} \mathrm{~cm}^{-3}$.

In soil data acquisition, much attention has first to be paid to seepage \& percolation rate, and secondly to the shrinkage factor of the soil. Soil moisture characteristics can be collected with relatively less detail, provided the values of WCSTP and WCWPP are within certain ranges, $0.40-0.85$ and $0-0.15 \mathrm{~cm}^{3} \mathrm{~cm}^{-3}$ respectively. If the soils are non-cracking, as in this case-study, a margin is allowed for WCCRAC of $0-0.10 \mathrm{~cm}^{3} \mathrm{~cm}^{-3}$ at which there is no effect on simulated yield. When WCCRAC is found to be higher than $0.10 \mathrm{~cm}^{3} \mathrm{~cm}^{-3}$, the soils can no longer be considered as non-cracking, and the SA should be repeated for cracking soil types (including the parameter DDR). The values in Table 5.3 can be used as rough indicators of the accuracy (range) with which the soil input data need to be determined to arrive at certain accuracies (ranges) in simulated yield.








Figure 5.4. Simulated rough rice yield, WRR, versus SPSOIL (5.4a), SHRINK (5.4b), WCSTP (5.4c), WCFCP (5.4d), WCWPP (5.4e), WCADP (5.4f) and WCCRAC ( 5.4 g ), in 1979, 1980 and 1986.

### 5.2 Uncertainty and variation analysis

From the sensitivity analysis, the following parameters were found to have a relatively large effect on simulated yield: sowing date, STTIME, thickness puddled layer, TKLPI, days in seed-bed, DTRP, seepage \& percolation rate, SPSOIL, and shrinkage factor, SHRINK. Ranges of parameter values were estimated for a land-unit of a zonation study where parameter values are typically quite uncertain or variable, Table 5.4 (see also Wopereis et al., 1993). Based on the results of the SA, Figure 5.1, sowing dates earlier than day 165 were included: the range of sowing dates spanned the whole month of June. Two soil types were used, one characterised by SPSOIL rates of $0-5 \mathrm{~mm} \mathrm{~d}^{-1}$, and one by SPSOIL rates of $5-10 \mathrm{~mm} \mathrm{~d}{ }^{-1}$ (other soil parameters were the same). Using the program RIGAUS, 999 random parameter sets were generated from uniform probability distributions for each parameter from Table 5.4. ORYZA_W was run with the 999 parameter sets using weather data for three years, 1979, 1980 and 1983, that characterise different yield levels (a different year was used in comparison with the SA study because the STTIME's were somewhat earlier). Frequency distributions of the simulated rice yields (excluding 0 yields) are given in Figure 5.5, and some statistics of the yield distribution are given in Table 5.5. The yield statistics were only calculated for 'harvestable' yields, that was set arbitrarily to
yields exceeding $100 \mathrm{~kg} \mathrm{ha}^{-1}$. In each year, ORYZA_W was also run using the average value of each parameter from Table 5.4, resulting in the average simulated yield, Table 5.5.

Table 5.4. Ranges of parameter values used in Monte Carlo simulation.

| Parameter | Range |
| :--- | :--- |
| STTIME | $150-180 \mathrm{~d}$ |
| TKLPI | $150-250 \mathrm{~mm}$ |
| DTRP | $10-21 \mathrm{~d}$ |
| SPSOIL | $0-5,5-10 \mathrm{~mm} \mathrm{~d}^{-1}$ |
| SHRINK | $0.65-0.9(-)$ |

Table 5.5. Statistical parameters of yield distribution from the Monte Carlo simulations: \% 0 yield, 1 st and 3 td quartile and mean yield. The quartile values and the mean yield are calculated for yields $>100 \mathrm{~kg} \mathrm{ha}^{-1}$. The average yield results from a single simulation run using average input parameter values (see text). $\mathbf{S D}=$ sowing date (day of year), $\mathrm{SP}=$ seepage \& percolation rate $\left(\mathrm{mm} \mathrm{d}^{-1}\right)$.

| Year | Yield <br> statistic | SD:150-180 |  | SP: 0-5 |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | SP: 0-5 | SP: $5-10$ | SD:150-160 | SD:170-180 |  |
| 1979 | \% 0 yield | 31 | 76 | 35 | 26 |
|  | 1st quartile | 4.98 | 2.68 | 5.17 | 4.54 |
|  | 3td quartile | 7.23 | 4.65 | 7.03 | 7.61 |
|  | mean | 5.84 | 3.47 | 5.64 | 5.90 |
|  | average | 5.87 | 4.24 | 5.74 | 6.76 |
|  |  |  |  |  |  |
|  | \% 0 yield | 1 | 14 | 0 | 4 |
|  | 1st quartile | 2.81 | 1.00 | 5.15 | 1.42 |
|  | 3td quartile | 5.97 | 3.44 | 7.00 | 3.18 |
|  | mean | 4.36 | 2.35 | 6.12 | 2.51 |
|  | average | 4.22 | 2.75 | 5.95 | 2.38 |
|  |  |  |  |  |  |
|  | \% 0 yield | 17 | 48 | 7 | 38 |
|  | 1983 | 1st quartile | 0.48 | 0.28 | 1.69 |
|  | 3td quartile | 3.37 | 1.04 | 4.54 | 0.19 |
|  | mean | 2.02 | 0.86 | 3.26 | 0.55 |
|  | average | 0.94 | 0.17 | 3.83 | 0.27 |



Fraction (-)

5.5b


## 5.5c

Figure 5.5. Frequency distribution of simulated rough rice yield, WRR, in 1979 (5.5a), 1980 (5.5b) and 1983 (5.5c), on soils with SPSOIL (SP in legends) rates of $0-5 \mathrm{~mm} \mathrm{~d}^{-1}$ (black bars) and on soils with SPSOIL rates of $5-10 \mathrm{~mm} \mathrm{~d}^{-1}$ (white bars).

From Figure 5.5 and Table 5.5, the following conclusions were drawn:

- Simulated yields of $0 \mathrm{~kg} \mathrm{ha}^{-1}$ indicate that the simulation was stopped in the vegetative phase either because of crop death or because the duration of the drought stress lasted longer than 25 days (in which case it can be assumed that the crop died too). Zero yield may therefore be seen as indicator for complete crop failure. A high percentage of 0 yield was simulated in 1979 and in 1983, ranging from $76 \%$ on relatively permeable soils (SPSOIL $5-10 \mathrm{~mm} \mathrm{~d}^{-1}$ ) to $17 \%$ on relatively poorly permeable soils (SPSOIL 0-5 $\mathrm{mm} \mathrm{d}^{-1}$ ). On average, $46 \%$ complete crop failure was simulated on permeable soils, and $16 \%$ on poorly permeable soils.
- The relatively broad range in input parameter values resulted in a large variation in simulated yield, though there were differences between the years. The distribution of yields (that are larger than $0 \mathrm{~kg} \mathrm{ha}^{-1}$ ) was broadest in 1980 and least broad in 1983. A good indicator of the broadness, or uncertainty, in simulated yields are the first and third quartile values, i.e. the yield levels that are obtained by $25 \%$ and $75 \%$ of the data. For instance, on relatively poorly permeable soils in $1979,50 \%$ of the simulated yields were between 5 (first quartile) and $7.2 \mathrm{t} \mathrm{ha}{ }^{-1}$ (third quartile). On average, the difference between the first and third quartile values was 2.8 and $1.7 \mathrm{t} \mathrm{ha}-{ }^{-1}$ on relatively poorly permeable and permeable soils respectively. The quartile values are also useful
to translate the results of the MC analysis in terms of risk. E.g. on relatively poorly permeable soils in 1979, there was $75 \%$ probability of obtaining rice yields larger than 5 $t h a^{-1}$, and $25 \%$ probability of obtaining rice yields larger than $7.2 t \mathrm{ha}^{-1}$.
- Beside the broadness of the simulated yield distributions, the shape of the distributions also differed among the years. E.g. in 1979, the percentage of extremely low yields ( $100-500 \mathrm{~kg} \mathrm{ha}^{-1}$ ) was relatively low, whereas it was very high in 1983.
- Despite the large variation in simulated yields, there is a clear trend that simulated yields were larger on relatively poorly permeable soils than on permeable soils. Quartile and mean yields were much higher on soils with $0-5 \mathrm{~mm} \mathrm{~d}^{-1}$ seepage \& percolation rate than on soils with $5-10 \mathrm{~mm} \mathrm{~d}^{-1}$ seepage \& percolation rate.
- In 1979 and 1980, the mean yield of the simulated yield distribution was quite comparable with the simulated yield using the average input parameter values, Table 5.5 (mean and average values respectively). On both soil types, the difference was only $0.34 \mathrm{tha}^{-1}$ on the average. However, in 1983, the average difference was $0.89 \mathrm{t} \mathrm{ha}^{-1}$. In general, whether the mean of the simulated yield distribution will resemble the simulated yield with average input parameter values depends on the shape of the distribution of the input parameter values (in this case: uniform distribution).

The effect of a higher degree of certainty in input parameter data on simulated rice yield is illustrated for sowing date, STTIME. The original 999 parameter sets with a monthlyrange of STTIME were divided into three subsets sets with decade-ranges of STTIME values: days $150-160,160-170$ and 170-180. The distribution of the simulated rice yields using the parameter sets with the first (day 150-160) and the last (day 170-180) decade of June as sowing date, and on the permeable soil type, is summarised in Table 5.5. A frequency distribution is given for 1980 in Figure 5.6.

In 1980 and 1983, there was a clear distinction between the rice yields with sowing dates 150-160 and with sowing dates 170-180. Early sowing in June resulted in higher yields than late sowing in June. In 1979, the differences were relatively small, and late sowing resulted in slightly higher yields than early sowing. Note that with late sowing, days 170-180, in 1979, there was a relatively large difference between the mean of the simulated yield distribution and the simulated yield using average input parameter values, Table 5.5. Overall, decreasing the uncertainty in sowing date from a month-range to a decade-range decreased the broadness in simulated yield distribution: the average difference between the first and the third yield quartile decreased from $2.8 \mathrm{t} \mathrm{ha}^{-1}$ to 2 kg ha ${ }^{-1}$ (on poorly permeable soils).


Figure 5.6. Frequency distribution of simulated rough rice yield, WRR, on relatively poorly permeable soil in 1980. Black bars are simulations with sowing dates 150 160 , white bars with sowing dates between 170-180.

### 5.3 Risk analysis

In the previous Paragraph, the effect of uncertainty and spatial variation in management and soil parameters in a (fictive) land-unit on the uncertainty/variation in simulated rice yield was investigated in selected years. In this Paragraph, the study was extended to risk analysis including the variation in weather data. Two hundred random parameter sets were generated using RIGAUS with the same uniform probability distribution of selected parameters as in Table 5.4. ORYZA_W was run for all 11 years of available weather data using each year the 200 randomly generated parameter sets. Exceedance probability distributions were calculated from the total of 2200 simulated rough rice yields (Figures 5.7-5.9).


Figure 5.7. Exceedance probability of rough rice yield, WRR ( $\mathrm{kg} \mathrm{ha}^{-1}$ ) as average for the whole land-unit (thick line) and separated to soil classes of different seepage \& percolation rates (see legend; in $\mathrm{mm} \mathrm{d}^{-1}$ ).

Given the uncertainty, or spatial variation, in management and soil parameters of Table 5.4, and the variation in weather data between 1979-1991, simulated rice yields were highly variable, see Figure 5.7 (thick line). Growing rainfed rice without irrigation is, therefore, risky. The probability of 0 yield was about $58 \%$, and the probability of obtaining more than $1 \mathrm{tha}^{-1}$ rough rice yield was only $30 \%$.

The soil property seepage \& percolation rate, SPSOIL, had a large effect on simulated rice yields, Figure 5.7. With only $0-1 \mathrm{~mm} \mathrm{~d}{ }^{-1}$ SPSOIL, the exceedance probabilities were
much higher than the average: the probability of 0 yield was some $42 \%$ and the probability of yield higher than $1 \mathrm{t} \mathrm{ha}^{-1}$ was $41 \%$. With $9-10 \mathrm{~mm} \mathrm{~d}^{-1}$ SPSOIL, the probability of 0 yield was $67 \%$ and the probability of yield higher than $1 \mathrm{t} \mathrm{ha}-1$ was only $18 \%$. Thus, substratification of the area with respect to seepage \& percolation rate will result in higher accuracies of predicted yield level and variation. If a land-unit can not be further stratified into 'mappable' units, e.g. because SPSOIL values are evenly or randomly distributed throughout the land-unit, the thick line of Figure 5.7 represents the average variation in rice yield of the land-unit. Individual farmers that have knowledge of the SPSOIL rate of their own fields can use the separate curves in Figure 5.7 to get a more accurate estimate of yield variation for their particular conditions.

Management parameters also affected simulated yield variation. In Figures $5.8 \mathrm{a} / \mathrm{c}$, the soil type was divided into a relatively poorly permeable soil (SPSOIL $0-5 \mathrm{~mm} \mathrm{~d}^{-1}$ ) and a relatively permeable soil (SPSOIL $5-10 \mathrm{~mm} \mathrm{~d}^{-1}$ ). The date of sowing had relatively the largest effect on yield variation. On both soil types, sowing in the first decade of June (day 150-159) resulted in much higher yields than sowing in the last decade of June (day 170180), Figure 5.8a. Next, thickness of the puddled layer affected simulated rice yields: deep puddling ( $200-250 \mathrm{~mm}$ ) resulted in higher yield levels than shallow puddling $(150-200 \mathrm{~mm})$ on both soil types, Figure 5.8 b . The effect of duration of the seed-bed on simulated rice yields was relatively small: short durations (10-15 days) resulted in slightly higher yields than relatively long durations (16-21 days), Figure 5.8c.

The extreme situations that can be encountered in the land-unit under consideration are illustrated in Figure 5.9. The worst situation in terms of yield levels occurred with late sowing (day 170-180) on a very permeable soil ( $9-10 \mathrm{~mm} \mathrm{~d}^{-1}$ SPSOIL): $71 \%$ probability of 0 yield and only $10 \%$ probability of obtaining more than $1 \mathrm{t} \mathrm{ha}-{ }^{-1}$. The best situation occurred with early sowing (day $150-160$ ) on a very poorly permeable soil ( $0-1 \mathrm{~mm} \mathrm{~d}{ }^{-1}$ SPSOIL): only $32 \%$ probability of 0 yield and $45 \%$ probability of obtaining more than 1 t ha- ${ }^{-1}$.



Figure 5.8. Exceedance probability of rough rice yield, WRR ( $\mathrm{kg} \mathrm{ha}^{-1}$ ) as average for the whole land-unit (thick line) and separated to classes of sowing date, STTIME, ( 5.8 a ), thickness of puddled layer, TKLPI, ( 5.8 b ) and days in seedbed, DTRP, $(5.8 \mathrm{c})$ (see legends), on poorly permeable soil ( A in legend) and permeable soil ( $B$ in legend) (SPSOIL in $\mathrm{mm} \mathrm{d}^{-1}$ ).

### 5.4 Comments

The results of the sensitivity and Monte Carlo analyses found in this Chapter apply to the specific crop and environmental conditions of this case-study. The analyses may give different results in other climates (weather, cropping season), with other soil types (e.g. with cracking soils, the drainage rate of the subsoil, DDR, will affect simulated yield) and with other crop characteristics (e.g. short-long duration cultivars). Therefore, for each case-study, the sensitivity and Monte Carlo analyses should be applied again until sufficient insight is gained in the behaviour of the model in various agro-ecological environments. For the particular case-study presented here, the results agree with those of a zonation study carried out for Tarlac Province, the Philippines, as reported by Wopereis et al., 1993. Using a version of ORYZA_W with another, more detailed soil-water balance, they too found a large variation in simulated rainfed (lowland) rice yields and concluded that growing rice under rainfed conditions is risky.


Figure 5.9. Exceedance probability of rough rice yield, WRR ( $\mathrm{kg} \mathrm{ha}^{-1}$ ) as average for the whole land-unit (thick line) and for the worst (white diamonds) and best (black diamonds) situation (see text). The first class in the legend indicates SPOIL rate ( $\mathrm{mm} \mathrm{d}^{-1}$ ) and the second STTIME (sowing date, d).

## References

Aggarwal, P.K., 1993. Agro-ecological zoning using crop growth simulation models: characterisation of wheat environments in India. In: Systems approaches for agricultural development. F.W.T. Penning de Vries, P. Teng \& K. Metselaar (Eds.). Kluwer Academic Publishers, Dordrecht, The Netherlands. 542 pp .

Beek, E.G., 1991a. Spatial interpolation of daily meteorological data. Theoretic evaluation of available techniques. Report 53.1, The Winand Staring Centre for Integrated Land, Soil and Water Research, Wageningen, The Netherlands. 43 pp .

Beek, E.G., 1991b. Spatial interpolation of daily meteorological data. Using kriging to predict daily rainfall in North-Western Europe. Report 53.2, The Winand Staring Centre for Integrated Land, Soil and Water Research, Wageningen, The Netherlands. 117 pp.

Berge, H.F.M. ten, D.M. Jansen, K. Rappoldt \& W. Stol, 1992. The soil water balance module SAWAH: user's guide and outline. CABO-TPE Simulation Report no 22, CABO-DLO, Wageningen, The Netherlands. $78 \mathrm{pp}+$ appendices.

Bhuiyan, A.M. \& N.U. Ahmed, 1993. Agro-ecological zonation and extrapolation of field level research in Bangladesh: present status and future prospects. In: B.A.M. Bouman, H.H. van Laar \& Wang Zhaoqian (Eds), Agro-ecology of rice-based cropping systems, SARP Research Proceedings, CABO-DLO, Wageningen, The Netherlands. p. 73-83.

Bouma, J. and H.A.J van Lanen, 1987. Transfer functions and threshold values: from soil characteristics to land qualities. In: Quantified land evaluation procedures. ITC Publication 6, Enschede, The Netherlands, pp. 106-110.

Bouman, 1993. ORYZA_W, Rice growth model for irrigated and water-limited conditions. SARP paper, CABO-DLO, Wageningen, 67 pp .

Bouman, B.A.M., 1994. A framework to deal with uncertainty in soil and management parameters in crop yield simulation; a case study for rice. Agricultural Systems, 46, 117.

Bouman, B.A.M., H.H. van Laar \& Wang Zhaoqian (Eds), 1993. Agro-ecology of ricebased cropping systems, SARP Research Proceedings, CABO-DLO, Wageningen, The Netherlands. 201 pp.

Bouman, B.A.M. \& M.J.W. Jansen, 1993. RIGAUS: Random Input Generator for the Analysis of Uncertainty in Simulation. CABO-TPE Simulation Reports no. 34, CABODLO, Wageningen, The Netherlands $26 \mathrm{pp}+$ appendices.

Bouman B.A.M., M.C.S. Wopereis, M.J. Kropff, H.F.M. ten Berge \& T.P. Tuong, 1994. Understanding the water use efficiency of flooded rice fields. II. Percolation and seepage losses. Agricultural Water Management (in press).

Box, G.E.P. \& M.E. Muller, 1958. A note on the generation of random normal deviates. Ann. Math. Stat. 29: 610-611.

Bratley, P., B.L. Fox \& L.E. Schrage, 1993. A guide to simulation. Springer-Verlag, New York. 397 pp .

Buringh, P., H.D.J. van Heemst and G. Staring, 1979. Potential world food production. In: MOIRA, model of international relations in agriculture, Contributions to Economic Annals, Vol. 124 , H. Linnemann (Ed.), North Holland Publishing Company, Amsterdam/New York, pp. 19-74.

Diepen, C.A. van, H. van Keulen, J. Wolf and J.A.A. Berkhout, 1991. Land evaluation: from intuition to quantification. In: Advances of Soil Science, Vol. 15. B.A. Stewart (Ed.), Springer-Verlag, New York Inc. pp. 139-204.

Driessen, P.M, 1986a. The water balance of soil. In: Modelling of agricultural production: weather, soils and crops. H. van Keulen \& J. Wolf (Eds.). Simulation monographs, Pudoc, Wageningen, The Netherlands; pp. 76-116

Driessen, P.M., 1986b. Soil physical data. In: Modelling of agricultural production: weather, soils and crops. H. van Keulen \& J. Wolf (Eds.). Simulation monographs, Pudoc, Wageningen, The Netherlands; pp. 212-223.

Garcia, A.G., 1993. Crop simulation models as an analytical tool for delineation of production zones. In: B.A.M. Bouman, H.H. van Laar \& Wang Zhaoqian (Eds), Agroecology of rice-based cropping systems, SARP Research Proceedings, CABO-DLO, Wageningen, The Netherlands. p. 104-114.

GENSTAT5 Reference Manual, 1988. Oxford Science Publication, England.
Genuchten, M. Th. van, F. Kaveh, W.B. Russel \& S.R. Yates, 1989. Direct and indirect methods for estimating the hydraulic properties of unsaturated soils. In: Land qualities in time and space. J. Bouma and A.K Brecht (Eds.), Pudoc, Wageningen, The Netherlands, pp.61-72.

Hammer, G.L. \& R.C. Muchow, 1991. Quantifying climatic risk to sorghum in Australia's semiarid tropics and subtropics: model development and simulation. In: Climatic risk in Agricultural Production: models and management for the semiarid tropics and subtropics. R.C. Muchow and J.A. Bellamy (Eds.), CAB International, Wallingford, Oxon, UK. pp. 205-232.

Hazelhof, L., A.P.J. de Roo \& G.B. Heuvelink, 1990. The use of Monte Carlo simulations to estimate the effects of spatial variability of infiltration on the output of a distributed runoff and erosion model. In: Harts, J., H.F.L. Ottens \& H.J. Scholten (Eds), EGIS'90: First European Conference on Geographic Information Systems, Amsterdam, The Netherlands, April 10-13. EGIS Foundation, Utrecht (Faculty of Geographical Services). pp. 442-452.

International Rice Research Institute (IRRI), 1984. Terminology for rice growing environments. Los Baños, The Philippines. 35 pp .

Keulen, H. van, 1975. Simulation of water use and herbage growth in arid regions. Simulation Monographs, Pudoc, Wageningen, The Netherlands. 176 pp.

Keulen , H. van \& J. Wolf. 1986. (Eds.). Modelling of agricultural production: weather, soils and crops. Simulation monographs, Pudoc, Wageningen, The Netherlands

Kraalingen, D.W.G. van, W. Stol, P.W.J. Uithol \& M.G.M. Verbeek, 1990. User manual of CABO/TPE Weather System. CABO/TPE Internal communication, CABO, Wageningen, The Netherlands. 27 pp .

Kraalingen, D.W.G. van, 1991a. The FSE system for crop simulation, CABO-TT Simulation report 23, CABO-DLO, Wageningen The Netherlands. 77 pp .

Kropff, M.J., H.H. van Laar \& H.F.M. ten Berge (Eds), 1993. ORYZA1, A basic model for irrigated lowland rice production. IRRI, Los Baños, the Philippines. 88 pp .

Kropff, M.J., H.H. van Laar \& R.B. Matthews (Eds), 1994. ORYZA1, An ecophysiological model for irrigated rice production. SARP Research Proceeding, ABDLO, Wageningen, The Netherlands. 110 pp .

Kros, J., P.H.M. Janssen, W. de Vries \& C.I. Bak, 1990. Het gebruik van onzekerheidsanalyse bij modelberekeningen; een toepassing op het regionale bodemverzuringsmodel RESAM. Rapport 65, Staring Centrum, Wageningen, The Netherlands. 127 pp .

Lanen, H.A.J., 1991. Qualitative and quantitative physical land evaluation: an operational approach. PhD. Thesis Agricultural University Wageningen, The Netherlands.

L'Ecuyer, P., 1986. Efficient and portable combined pseudo-random number generators. Commun. ACM.

Makarim, A.K. \& I. Las, 1993. The use of simulation and systems analysis in rice agroecology in Indonesia. In: B.A.M. Bouman, H.H. van Laar \& Wang Zhaoqian (Eds), Agro-ecology of rice-based cropping systems, SARP Research Proceedings, CABODLO, Wageningen, The Netherlands. p. 94-103.

Netherlands Scientific Council for Government Policy, 1992, Ground for Choices: four perspectives for the rural areas in the European Community, The Hague, The Netherlands. 146 pp .

Pannangpetch, K., 1993. Application of model simulation to evaluate rice production at the district level. In: B.A.M. Bouman, H.H. van Laar \& Wang Zhaoqian (Eds), Agroecology of rice-based cropping systems, SARP Research Proceedings, CABO-DLO, Wageningen, The Netherlands. p. 16-26.

Penning de Vries, F.W.T. \& H.H. van Laar, 1982. Simulation of plant growth and crop production. Simulation Monographs, Pudoc, Wageningen, 308 pp .

Penning de Vries, F.W.T., D.M. Jansen, H.F.M. ten Berge \& A. Bakema, 1989. Simulation of ecophysiological processes of growth of several annual crops. Simulation Monographs, Pudoc, Wageningen, 271 pp.

Press, W.H.B., B.P. Flannery, S.A. Teukolsky \& W.T. Vetterling, 1992. Numerical Recipes, the art of scientific computing. Cambridge University Press.

Rappoldt, C. \& D.W.G. van Kraalingen, 1990. Reference manual of the FORTRAN utility library TTUTIL with applications. Simulation report CABO-TT no. 20, CABO, Wageningen, The Netherlands. 122 pp .

Riethoven, J.J.M., 1994. The SARP-Shell, A crop growth simulation environment. Revision 2, SARP-Shell version 1.0. SARP Paper, AB-DLO, Wageningen.

Ritchie, J.T. \& J. Crum, 1989. Converting soil survey characterization data into IBSNAT crop model input. In: Land qualities in time and space. J. Bouma and A.K Brecht (Eds.). PUDOC, Wageningen, The Netherlands, pp. 155-167.

Reinds, G.J., G.H.F. de Koning \& J.D. Bulens, 1991. Crop production potentials of the rural areas within the Economic Community. V: Soils, climate and administrative regions. Technical Working Document, Dutch Scientific Counsel for Government Policy, The Hague, The Netherlands.

Rossing, W.A.H., R.A. Daamen \& M.J.W. Jansen, 1993. Uncertainty analysis applied to supervised control of aphids and brown rust in winter wheat. 1. Quantification of uncertainty in cost-benefit calculations. Accepted by Agricultural Systems.

Sattar, Sheikh A., 1993. Crop growth modelling as a tool to determine potential irrigated area for rice-wheat cropping in Bangladesh. In: B.A.M. Bouman, H.H. van Laar \& Wang Zhaoqian (Eds), Agro-ecology of rice-based cropping systems, SARP Research Proceedings, CABO-DLO, Wageningen, The Netherlands. pp. 84-94..

Stol, W., D.I. Rouse, D.W.G. van Kraalingen \& O. Klepper, 1992. FSEOPT, a FORTRAN program for calibration and uncertainty analysis of simulation models. Simulation report CABO-TT, no 24, CABO-DLO, Wageningen, The Netherlands. $24 \mathrm{pp} .+$ appendices.

Thiyagarajan, T.M., S. Jeyaraman, M.N. Budhar \& A. Abdul Kareem, 1993. Rice yield potential in different agro-climatic zones of Tamil Nadu - a simulation study. In: B.A.M. Bouman, H.H. van Laar \& Wang Zhaoqian (Eds), Agro-ecology of rice-based cropping systems, SARP Research Proceedings, CABO-DLO, Wageningen, The Netherlands. pp. 181-190.

Tuong, T.P., Wopereis, M.C.S., Marquez, J \& Kropff, M.J., 1994. Mechanisms and control of percolation losses in puddled rice fields. Soil Science Society of America Journal (in press).

Wan Sulaiman \& Surjit Singh, 1993. Potential and rainfed production of corn in the major agro-ecological zones of Peninsular Malaysia. In: B.A.M. Bouman, H.H. van Laar \& Wang Zhaoqian (Eds), Agro-ecology of rice-based cropping systems, SARP Research Proceedings, CABO-DLO, Wageningen, The Netherlands. pp. 47-57.

Wickham, T.H. \& V.P. Singh, 1978. Water movement through wet soils. In: Soils and rice. International Rice Research Institute, Los Baños, the Philippines; pp. 337-357.

Wopereis, M.C.S., M.J. Kropff, J.H.M. Wösten \& J. Bouma, 1993. Sampling strategies for measurement of soil hydraulic properties to predict rice yield using simulation models. Geoderma 59: 1-20.

Wopereis, M.C.S., 1993. Quantifying the impact of soil and climate variability on rainfed rice production. PhD thesis, Wageningen Agricultural University, Wageningen, The Netherlands. 188 pp .

Wopereis, M.C.S., M.J. Kropff, E.D. Hunt, W. Sanidad \& J. Bouma, 1993. Case study on regional application of crop growth simulation models to predict rainfed rice yields: Tarlac Province, Philippines. In: B.A.M. Bouman, H.H. van Laar \& Wang Zhaoqian (Eds), Agro-ecology of rice-based cropping systems, SARP Research Proceedings, CABO-DLO, Wageningen, The Netherlands. pp. 27-46.

Wopereis, M.C.S., B.A.M. Bouman, T.P. Tuong, H.F.M. ten Berge \& M.J. Kropff, 1995. ORYZA_W: Rice growth model for irrigated and rainfed environments. SARP Research Proceeding, AB-DLO, Wageningen, The Netherlands (in press).

Wösten. J.H.M., M.H. Bannink \& J. Beuving, 1987. Waterretentie- en doorlatendheidskarakteristieken van boven- en ondergronden in Nederland: de Staringreeks. ICW report 18, ICW, Wageningnen, The Netherlands (in Dutch). 75 pp.

Yang Jingping \& Zhang Xigu, 1993. Simulation of the effects of sowing and transplanting date on the duration and potential yield of several crops and cropping systems in Danyang County, Jiangsu Province. In: B.A.M. Bouman, H.H. van Laar \& Wang Zhaoqian (Eds), Agro-ecology of rice-based cropping systems, SARP Research Proceedings, CABO-DLO, Wageningen, The Netherlands. pp. 126-134.

 Appendix 1. Listing of ORYZA_W with input and
output files
1.1 ORYZA_W

MAIN PROGRAM
FORTRAN Simulation Environment (FSE 2.0)
July, 1993




WRITE (TUNITO, ' (A) ' '
' The run was termi

PARAMETER (INL=3)
*----Declarations for water 1 imited production
REAL TKL (INL), WCWP(INL), WCEC(INL), WCST (INL) REAL TKL (INL), WCWP TINL (INL)
SAVE
${ }_{6}^{\text {IF (DELT.LT. } 1.0) ~ C A L L ~ E R R O R ~}$
IF (ITASK.EQ.2) THEN
IF (WSTAT2:2).EQ.'4'.OR.
$\& \quad$ WSTAT (3:3).EQ.'4'OR.
$\& \quad$ WSTAT (4:4).EQ.'4'j THEN


| IF (ITASK.EQ.1) THEN |  |
| :---: | :---: |
|  | CALL RDINIT (IUNITD, IUNITL, FILEIT) |
|  | CALL RDSINT ('SWIWLP', SWIWLP) |
|  | CALL RDSREA ('DTRE' , DTRP) |
|  | CALL RDSREA ('STTIME', STTIME) |
|  | CLOSE (IUNTTD) |
|  | STTIME - ANINT (STTIME) |
|  | OTRP $=$ ANINT (DTRP) |
|  | ISTT $=$ NINT ( STTIME) |
|  | IE (SWIWLP .EQ. 0 .OR. SWIWLP .EQ. 1) THEN ITRT $=$ NINT (STTIME + DTRP) |
|  | ELSE IE (SWIWLP.SQ.2) THEN |
|  | ITRT = NINT (STTIME) |
|  | END If |
|  | EvSC $=0$. |
|  | RAINN $=0$. |
|  | DVS - 0 . |
| ```Set transpiration rates in all soil compartments to 0 DO 5 I=1,INL TRNL(I) = 0. CONTINUE``` |  |
|  | END IF |
|  | To run soil water balance; to get rain of next day IDOYH = MIN (IDOY $+1,365$ ) CALL WEATHR (IDOYH, ISTAT2, |




ELSEITE (WSTAT, '(IT)') ISTAT2

 ${ }_{\text {RETU }}^{\text {Ren }}$
END

$$
\begin{aligned}
& =\text { URU4 } \\
& =- \text { TRUE },
\end{aligned}
$$



EN 1 I ${ }_{\text {ELSE }}^{\text {CALL }}$
call oryzaw (itask, iunitd, iunito, tunttl, filett, fileti,



*----- Formal parameters ${ }^{\text {TNTEGER }}$ ITASK







*-------Set refernece water content level at which stress occurs,
according to production environment
 DCREF(I) - WCST(I)



 WLVGIT $=$ WLVG
DLEAF $=$. TRUE.
END IF
DTDR
IF

GCR $=$


$($ (DTGR*30./44.) $-\mathrm{RMCR}+(\mathrm{LSTR} *$ LRSTR*FCSTR*30./12.) )/
CRGCR


* No more drought stress: for leaf growth if DVS has not yet
\& release reserves in pool for
* reached PI, or release reserves for panicle growth if DVS $>0.7$


| IF (DVS.LT. 1.0) THEN GLV = GLV + WLPCOI |  |
| :---: | :---: |
| ELSE |  |
|  | GSO = GSO + WLPOOL GRPOOL $=0$. |
|  | IF |

$\stackrel{\text { GS }}{\text { GR }}$
 CO2STR $=444 . / 12 . *$ (CRGSTR $* 12 . / 30 .-$ FCSTR)
CO2SO $=44.12 . *(C R G S O * 12 . / 30 .-$ ECSO $)$ GMAINT $=(($ DTGA*30./44. $)-$-RMCR $) * 44 . / 30$.

ITOLD $=$ ITASK
RETURN
END



tMPLictit reat (a-z)
Endif

[^0]$000000^{\circ}$

## 

| $030 \mathrm{I}=1$, NL |  |
| :---: | :---: |
|  |  |
| ULLGT(I) | - WCWe (I) $+((\operatorname{HCHC}(\mathrm{I})$-WCWP (I) $/ 2.2) *(4.2-2.76)$ |
| Lligt (I) | $=\operatorname{WCWP}(\mathrm{I})+((\operatorname{WCFC}(\mathrm{I})-\mathrm{WCWP}(I)) / 2.2) *(4.2-2.76)$ |
| ULLST(I) | WCWP(1) $+\binom{$ WCFC }{ (I) }$-\operatorname{WCWP}(1)$ )/2.2)*(4.2-3.71) |
| LLLST(I) | - WCWP(I) + ( $(\mathrm{WCFC}(\mathrm{I})$-WCWP $(I)) / 2.2) *(4.2-4.06)$ |
| ULDLT(I) | $-\mathrm{WCWP}(\mathrm{I})+((\mathrm{WCFC}(\mathrm{I})-\mathrm{WCWP}(I)) / 2.2) *(4.2-3.91)$ |
| Lhdit (I) | WCWP (I) |
| ULRTT(I) | $=\mathrm{WCWP}(\mathrm{I})+((\mathrm{WCFE}(\mathrm{I})-\mathrm{WCWP}(\mathrm{I})$ /2.2)*(4.2-2.95) |
| LLRTT(I) 00. |  |
| UULGTR - UULGTR + (ZRTL/(2R+1.0E-10) ${ }^{\text {a }}$ (ULLGT (I) |  |
| ULLGTR - | ULIGTR + (ZRTL/(2R+1.0E-10) $) \times 2 \mathrm{LLEGT}(\mathrm{I})$ |
| WULSTR $=$ UULSTR $+(\mathrm{ZRTI} /(\mathrm{ZR}+1.0 \mathrm{E}-10))^{\text {U }}$ ULLST $(1)$ |  |
|  |  |
|  |  |
|  |  |
| VURTTR $=$ UURTTR $+(2 R T L /(2 R+1.0 \mathrm{E}-10)$ ) *ULRTT(I) |  |
| ULRTTR $=$ ULRTTR $+(\mathrm{ZRTL} /(\mathrm{ZR}+1.0 \mathrm{E}-10)$ *LLRTT (I)ZLL |  |
|  |  |
|  |  |



 ELSE IF (DVS.
UUGGTF $=0$.
 IF (.NOT. DROUT) THEN
Set stress factors to drought at transplanting
LLLG $=$ LLLGTR
$\begin{aligned} & \text { nnicle initiation } \\ & \text { ULLG }=\text { ULLGTE } \\ & \text { LLLG }=\text { LLLGTF } \\ & \text { ULLS } \text { ULLSTF } \\ & \text { LLLS }=\text { LLLSTE } \\ & \text { ULDL }=\text { ULDLTE } \\ & \text { LLDE }=\text { LLDLTE } \\ & \text { ULRT } \text { ULRTTF } \\ & \text { LLRT }=\text { LLRTTF } \\ & \text { END IF }\end{aligned}$
$* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *$
2. Calculate and set the strass factors for upland
$* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *$
Calculate and set the stress factors with DVS for this day;

* if there is already drought, the stress factors will not
* be changed

[^1]\[

$$
\begin{aligned}
& \text { UULGTR }=0 . \\
& \text { ULLGTR }=0 . \\
& \text { UULSTR }=0 .
\end{aligned}
$$
\]

LOGICAL DROUT


RETD



$2 R=2 R T$ TRRM $=$ TRC $/(2 R+1 \cdot 0 E-10)$
TRW $=0$.
ZLL $=0$.
WCRTZ $=0$.
WCRTZR $=0$.
WCRTZW $=0$. $\infty 30$

*-----Calibrate the rootzone water content for lowland soils IF (SWIWLP EQ. O. OR. SWIWLP, EQ. 1) THEN

$\underset{\text { WCRREL }}{\text { ELSE }}=($ WCRTZ-WCRTZW $) /($ WCRTZR-WCRTZW $)$ ELSE IF (SWIWLP .EQ. 2) THEN WCRREL - WCRTZ
END IF

PCEW $=$ TRW/(TRC+1.E-10)
Set 'drought' TF (WCRREL. IE. ULLE ICNT -1
END
IE

LSTRS $=$ LTMIT ( $0 ., 1 ., \quad($ WCRREL-LLLLS $) /($ ULLS-LLLS $))$
SRS $=0.5 *$ LSTRS +0.5
IF (WCRREL.LE.ULLG .AND. WCLQT(1).LT.0.95*WCREF(1)) THEN
DVEW - LIMIT ( $0 ., 1 .,(D V S-0.25) /(1.0-0.25)$ ) LLSE
DVEW
END -1.
 diffuse light fraction (FRDE) from atmospheric

IF (ATMTR.LE.0.22) THEN



FRDF $=$ AMAX1 ( $\operatorname{FRDF}, 0.15+0.85 *(1,-\operatorname{EXP}\{-0.1 /$ SINB $)\}$
diffuse PAR (PARDE) and direct PAR (PARDR)
PARDF $=$ PAR $\begin{aligned} & \text { FRDE } \\ & \text { PARDR }=P A R-P A R D E ~\end{aligned}$
 integration of assimilation rate to a daily total (DTGA)
DTGA = DTGA + FGROS*WGUSS(II) 10 continue

RETURN
END



[^2]contrinue
*--------fraction sunlit leaf area (FSLLA) and local assimilation


* FILE usage : none

| ```SUBROUTINE ASSIM (SCP, AMAX, EFF, KDF, LAI, SINB, PARDR, PARDF, & FGROS) IMPLICIT REAL (A-Z) REAL XGAUSS(3), WGAUSS(3) INTEGER I1, I2, IGRUSS SAVE``` |
| :---: |
| *-----Gauss weights for three point Gauss DATA IGAUSS /3/ DATA XGAUSS $10.112702,0.500000,0.887298 /$ DATA WGAUSS $/ 0.277778,0.444444,0.277778 /$ |
| reflection of horizontal and spherical leaf angle distribution SQV $=$ SQRT(1.-SCP) <br> REFH $=(1,-S Q V) /(1,+S Q V)$ <br> REFS $=$ REFH*2./(1.+2.*SINB) $\qquad$ |
| $*----e x t i n c t i o n ~ c o e f f i c i e n t ~ f o r ~ d i r e c t ~ r a d i a t i o n ~ a n d ~ t o t a l ~ d i r e c t ~ f l u x ~$  <br> CLUSTF $=\mathrm{KDF} /(0.8 * S Q V)$ <br> KBL $=(0.5 / \mathrm{SINB}) * \mathrm{CLUSTE}$ <br> KDRT $=\mathrm{KBL} * S Q V$ <br> extinction coefficient for direct radiation and total direct flux CLUSTF $=$ KDE $/(0.8 * S Q V)$ <br> K8L $=(0.5 /$ SINB $) *$ CLUSTE <br> KDRT $=$ KBL * SQV |

[^3]*-n-----absorbed fluxes per unit leaf area: diffuse flux, total direct

* $\quad$ flux, direct component of direct flux.
*-------absorbed flux (J/M2 leaf/s) for shaded leaves and assimilation of shaded leaves
VISSHD $=$ VISDF + VIST - VISD IF (AMAX.GT.O.) THEN
FGRSH $=$ AMAX ${ }^{*}(1 .-E X P(-V I S S H D * E F F /$ AMAX $))$
ELSE
EGRSH $=0$.
*--------direct flux absorbed by leaves perpendicular on direct beam and
* assimilation of sundit leaf area VISPR (1,-SCD) * PARDR / SINB
IE (AMAX.GT.O.) THEN $\quad$ FGRS $=$ AMAX * (1.-EXP(-VISSUN*EFF/AMAX)) ELSE -0 FGRS
END IE
FGRSUN $=$ FGRSUN + FGRS * WGAUSS(I2)

| $\begin{aligned} & \text { WCLOT } \\ & \text { WLO } \end{aligned}$ |  | Array of actual water contents Amount of ponded water | $\underset{\operatorname{mn}}{\mathrm{cm} 3 / \mathrm{cm} 3}$ |
| :---: | :---: | :---: | :---: |
| * FATAL ERROR CHECKS (execution terminated, message): <br> * Certain sequences of ITASK, see subroutine CHKTSK <br> * DELT < 1 <br> * Water balance check |  |  |  |
| * SUBROUTINES and FUNCTIONS called: FUWCHK <br> * from tutil : CHKTSK, OUTCOM, OUTDAT, OUTPLT,RDINIT,RDSREA, ERROR, |  |  |  |
| FILE usage : - Soil definition file filetr <br> - Output file with unit IUNITO for output and warnings |  |  |  |
|  |  |  |  |
| Implicit Real ( $\mathrm{A}-2$ ) |  |  |  |
|  | Cal | ```parameters TKL (3), WCWP (3), WCFC{3), WCS ITASK, IUNITD, IUNITO, IUN TRWL (3), WCLQT (3) OUTPUT, TERMNL &R*(*) &ILEI2``` | WIWLP |
| *(JJ) - The required soli file type recognition marker |  |  |  |
| * Standard local variables integer Itold |  |  |  |
| save |  |  |  |
| DATA ITOLD /4/ |  |  |  |
| The task that the subroutine should do (ITASK) against the task <br>  |  |  |  |
| CALL ChKtsk ('SAhEL', IUNITO, ITOLD, itask) |  |  |  |
|  |  |  |  |
| TRWL $3=$ TRSLL (3) <br> $T R W N=T R W L 1+T R W L 2+T R N L 3$ |  |  |  |
|  |  |  |  |
| IF (ITASK.EQ.1) THEN |  |  |  |
| IF (SWIWLP. EQ.1) THEN <br> CALL OUTCOM ('SAHEL, water balance SAHEL for free drainage') END IF |  |  |  |
| Initialization section |  |  |  |

EVSW2 $=E V S W *($ EEVL2 $/$ FEVLT $)$
EVSW $3=E V S W *(F E V L 3 / F E V L T) ~$

| EVSW2 = EVSW* (FEVL2/EEVLT) |
| :---: |
| EVSW3 = EVSW* (FEVL3/FEVLT) |
| END IE |
| IF (OUTPUT) THEN |
| CALL OUTDAT (2, 0, 'RAINCU', RAINCU) |
| CALL OUTDAT (2, 0, 'EVSW', EVSW) |
| CALL OUTDAT (2, 0, 'WCL1', WCL1) |
| CALL OUTDAT (2, 0, 'WCL2', WCL2) |
| CALL OUTDAT (2, 0, 'WCL3', WCL3) |
| END IF |


 WCL1 $=$ WL1 $/($ TKL1 $* 1 . E 4)$
 RAINCU $=$ INTGRL (RAINCU, RAIN, DELT)
EVSWCU $=$ INTGRL (EVSWCU, EVSW, DELT)
Water balance check
CKWFL $=$ INTGRL (CKWEL, (WLFL1-EVSW-TRN-WLFL4) *10.0, DELT)
CKWIN $=$ WLI-WL1I+WL2-WL2I+WL3-WL3I
CKWRD $=$ FUWCHK (CKWFL, CKWIN, TIME) CKWRD $=$ FUWCHK (CKWFL, CKWIN, TIME)

ELSE IF (ITASK.EQ.4) THEN
-Store end-of-year data
CALL OPSTR ('RIICU',RIICU)
CALL OPSTR ('RAINCU', RAINCU)
CALL OPSTOR ('EVSWCU', EVSWCU)
END IF

ITOLD $=$ ITASK

EVOr interface with ORYZA above-ground
WLO $=0.0$

EISE IF (ITASK.EQ.2) THEN
Available and total soil water
WLFL1 = RAIN* $(1,0-E R N O F)$
WLFL2 $=$ MAX $(0.0$, WLFL1- $(W C F C 1 * T K L 1 * 1000 .-$ WL1*0.10)/DELT $)$
WLFL $3=$ MAX $(0.0$, WLFL2-(WCFC $2 * T K L 2 * 1000 .-$ WL $2 * 0.10) / D E L T)$
WLEL4 $=$ MAX $(0.0$, WLFL $3-($ WCFC $3 * T K L 3 * 1000 .-$ WL $3 * 0.10) / D E L T)$
Evaporation
EVSH $=$ MIN $($ EVSC, $($ WL1*0.0001-WCAD1*TKL1)*1000./DELTT+WLFL1)
EVSH $=$ MIN (EVSC, $\quad($ WL1 $1 * 0.0001-$ WCRD1*TKL1) $* 1000 . / D E L T+$ WLFLL $)$
EVSD $=$ MIN $(E V S C, 0.6 * E V S C *(S Q R T(D S L R)-S Q R T(D S L R-1))+$. WLEL1 $)$
EVSW $=$ INSW (DSLR-1.1, EVSH, EVSD) EVSW = INSW (DSLR-1.1, EVSH, EVSD)

EEVL1 $-\operatorname{MAX}($ WL1-WCAD $1 * T K L 1 * 1$. OE4, 0.0$) *$
FEVL3 $=$ MAX (WL, $3-$ WCAD $3 *$ TKL $3 * 1 . O E 4,0.0) *$
EXP $(-E E S *(T K L 1+$ TKL $2+(0.25 * T K L 3)))$
FEVLT $=$ FEVL1 + FEVL2 $2+E E V L 3$
*---- Routine to avoid divisions by 01
IF (FEVLT .EQ. 0.) THEN
EVSW1 $=0$.
EVSW2 $=0$.
EVSW3 $=0$.
EVSW $=0$.
ELSE
EVSW1 $=$ EVSW* (FEVL1 $/$ FEVLT $)$
REAL WCAD(1), WCWP (1), $\operatorname{WCFC}(1), \operatorname{WCST}(1), \operatorname{WCLQT}(1)$
REAL TKL (1), TRWL (1) REAL TKL (1), TRWL (1)




[^4]WLOMX $=$ WLOMXI
KLP $=$ TKIPI
KLPM $=$ TKLPI $*$ SHRTNK
KLP $=($ TKCSTP $*$ TKLRPM $)+(T K L P I-T K L P M)$
SLR $=1$
RNOFCU $=0$.
SP $=$ SPSOIL
RAINCU $=0$.
RANCU $=0$.
RICU
RICSB $=0$.


*-----In irrigated lowland, it is assumed that the seed-bed is

* continuously (daily) irrigated.
*-----If irrigated lowland, supply constant irrigation gift to



### 1.2 Input files

## 1.2a Control data

```
* CONTROL.DAT; to control input and output file names
*)
FILEON = 'RESULTS.OUT'
FILEIR = 'RERUNS.DAT'
FILEIT = 'TIMER.DAT'
FILEI1 = 'C:\USR\ORYZA W\RICE W.DAT'
FILEI2 = 'C:\USR\ORYZA W\PUDSŌ5.DAT'
FILEOL = 'RESULTS.LOG'
```


## 1.2b Crop data

| * RICE_W.DAT $\quad *$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| * R Torres, 1992; LINE; IRRI DS at 225 kg N <br> * Plant data for rice (Oryza) IR72 <br> * Drought stress characteristics by Wopereis |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| NPLH | $=3$. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| NH | $=25$. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| NPLSB | $=1000$. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| NPLDS | $=75$. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| SHCKL | $=0.25$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| SHCKD | $=0.4$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| DVRV | $=0.000625$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| DVRR | $=0.001629$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| RGRL | $=0.0090$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| FSTR | $=0.40$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| FLVTB | $\begin{aligned} = & 0.0,0.55,0.203,0.589,0.478,0.407,0.730,0.388, \\ = & 0.895,0.034,1.274,0.0,1.774,0.0,2.1,0.0 \\ & 0.0,0.45,0.203,0.411,0.478,0.593,0.730,0.612, \\ & 0.895,0.537,1.274,0.0,1.774,0.0,2.1,0.0 \end{aligned}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| FSTTB |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| FSOTB | $\begin{aligned} = & 0.0,0.0,0.183,0.0,0.471,0.0,0.730,0.0,0.895,0.429, \\ & 1.274,1.0,1.774,1.0,2.1,1.0 \end{aligned}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| KDFTB | $=0 ., 0.4,0.2,0.4,0.6,0.6,2.1,0.6,3.0,0.6$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| KDF |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| EFFTB | $=10 ., 0.54,40,0.36$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| SSGATB | $=0 ., 0.0003,0.9,0.0003,2.1,0$. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| SCP | $=0.2$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| REDFTT | $=-10 ., 0 ., 10 ., 0 ., 20 ., 1,47 ., 1 ., 43,00$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| NPROFT | $=0.0,1.0,0.4,1.0,1.0,1.6,1.8,1.5,2 ., 1.2,2.2,1.0$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| TBD | $=8$. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| TBLV | $=8$. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| MAINLV | $=0.02$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| MAINST | $=0.015$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| MAINSO | $=0.003$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |


| MAINRT | $=0.01$ |
| :---: | :---: |
| CRGLV | $=1.326 ;$ CRGST $=1.326$ |
| CRGSO | = 1.462; CRGRT $=1.326$ |
| CRGSTR | $=1.11$ |
| FCSTR | $=0.444 ;$ FCLV $=0.419 ;$ FCST $=0.431$ |
| FCRT | =0.431; FCSO $=0.487$ |
| LRSTR | = 0.947; TCLSTR $=10$. |
| FSHTB | $=0.0,0.50,0.43,0.75,1.0,1.0,2.1,1$. |
| FRTTB | $=0.0,0.50,0.43,0.25,1.0,0.0,2.1,0$. |
| DRLVT | $=0.0 ., 0.6,0 ., 1,0.015,1.6,0.025,2.1,0.05$ |
| LAPO | $=0.0001$ |
| XNFLVT | $\begin{aligned} &=0 ., 0.487, 16 ., 0.487, \\ & 34 ., 1.740, \\ & 79 ., 1.336, 98 ., 1.076, \\ & 114 ., 1.192, \\ & 128 ., 1.460, \\ & 0.773 \end{aligned}$ |
| NFLVTB | $\begin{aligned} = & 0.0 .487,0.127,0.487, .279,1.740, .678,1.460, \\ & 0.781,1.336,1.009,1.076,1.539,1.192,2.1,0.773 \end{aligned}$ |
| SLATB | $\begin{aligned} = & 0 \ldots .0054,16 \ldots .0054,34 \ldots .0030,70 \ldots .0019,79 \ldots .0019, \\ & 98 \ldots .0020,114 \ldots .0016,128.0 .0014 \end{aligned}$ |
| NSLATB | $\begin{aligned} = & 0 ., 0054, .127, .0054, .279, .0030, .678, .0019, \\ & .781, .0019,1.009, .0020,1.539, .0016,2.1,0.0014 \end{aligned}$ |
| ZRTMC | $=0.7$ |
| GZRT | $=0.02$ |
| DRWT | $=0.0,1.0,1 ., 1.0,2 ., 1.0$ |
| WSET | $=-1.0,0.0,0.0,0.0,1.0,1.0,2.0,1.0$ |
| ULLGTR | $=1.1$ |
| LLLGTR | $=1.1$ |
| ULLSTR | $=0.51$ |
| LLLSTR | $=0.26$ |
| ULDLTR | $=0.31$ |
| LLDLTR | $=0.14$ |
| ULRTTR | $=0.63$ |
| LLRTTR | $=0.0$ |
| ULIGTF | $=0.94$ |
| LLLGTF | $=0.94$ |
| ULLSTF | $=0.77$ |
| LLLSTF | $=0.34$ |
| ULDLTF | $=0.43$ |
| LILDLTF | $=0.14$ |
| ULRTTF | $=0.77$ |
| LLRTTF | $=0.14$ |

## 1.2c Soil data

Example of soil data for LOWBAL water balance module


## Example of soil data for SAHEL water balance module

```
********************************************************************
* LOAM.DAT; Soil characteristics for a standard loam soil. *
* The moisture characteristics (water content values) are *
* calculated from the data in Penning de Vries et al., 1989 *
* (p. 151-152) derived from measurements on Dutch soils *
* (Wösten et al., .1987) *
***t******t********t**********************************************
* Thicknesses of the soil compartments (m)
TKL1 = 0.2; TKL2 = 0.3; TKL3 = 0.5
* Water contents at field capacity (WCFC), wilting point (WCWP),
* air-dryness (WCAD) and saturation (WCST) for the three soil
* compartments (cm3/cm3):
WCEC1 = 0.355; WCWP1 = 0.108; WCAD1 = 0.007; WCST1 = 0.503
WCFC2 = 0.355; WCWP2 = 0.108; WCAD2 = 0.007; WCST2 = 0.503
WCFC3 = 0.355; WCWP3 = 0.108; WCAD3 = 0.007; WCST3 = 0.503
* Initial water content as fraction of WCFC, per layer:
FWCLI1 = 1.0; FWCLI2 = 1.0; FWCLI3 = 1.0
```

```
**SUREACE AND OTHER SOIL CHARACTERISTICS
* Fraction runoff:
FRNOF = 0.0
* Maximum rooting depth of soil (m)
ZRTMS = 0.9
* Evaporation extinction coefficient (1/m):
EES = 20.
SOILUP = 'Upland, non-puddled soil type'
```

The following soil files contain average moisture characteristics (water content at saturation, WCST, at field capacity, WCFC, at wilting point, WCWP, and at air-dryness, WCAD) as calculated from the data in Penning de Vries et al., 1989 (p. 151-152) derived from measurements on Dutch soils (Wösten et al., .1987) for the water balance module SAHEL:

| Texture description | File name |
| :--- | :--- |
| Coarse sand | CSAND.DAT |
| Medium coarse sand | MCSAND.DAT |
| Medium fine sand | MFSAND.DAT |
| Fine sand | FSAND.DAT |
| Humous loamy medium course sand | HLMCSAND.DAT |
| Loamy medium coarse sand | LLMCSAND.DAT |
| Light loamy medium coarse sand | LMCSAND.DAT |
| Loamy fine sand | LFSAND.DAT |
| Sandy loam | SLOAM.DAT |
| Loess loam | LLOAM.DAT |
| Fine sandy loam | FSLOAM.DAT |
| Silt loam | SILOAM.DAT |
| Loam | LOAM.DAT |
| Sandy clay loam | SCLOAM.DAT |
| Silty clay loam | SICLOAM.DAT |
| Caly loam | CLOAM.DAT |
| Light clay | LCLAY.DAT |
| Silty clay | SICLAY.DAT |


| File name | WCST | WCFC | WCWP | WCAD |
| :--- | :--- | :--- | :--- | :--- |
| CSAND. DAT | 0.3950 | 0.0647 | 0.0001 | 0.0000 |
| MCSAND. DAT | 0.3650 | 0.1405 | 0.0054 | 0.0000 |
| MFSAND. DAT | 0.3500 | 0.1611 | 0.0113 | 0.0000 |
| FSAND. DAT | 0.3640 | 0.2120 | 0.0334 | 0.0005 |
| HLMCSAND. DAT | 0.4700 | 0.3530 | 0.1326 | 0.0141 |
| LLMCSAND. DAT | 0.3940 | 0.2848 | 0.0939 | 0.0074 |
| LMCSAND. DAT | 0.3010 | 0.1798 | 0.0309 | 0.0005 |
| LFSAND. DAT | 0.4390 | 0.2328 | 0.0266 | 0.0002 |
| SLOAM. DAT | 0.4650 | 0.2731 | 0.0443 | 0.0007 |
| LLOAM. DAT | 0.4550 | 0.3268 | 0.1055 | 0.0079 |
| FSLOAM. DAT | 0.5040 | 0.3397 | 0.0882 | 0.0040 |
| SILOAM. DAT | 0.5090 | 0.3587 | 0.1084 | 0.0070 |
| LOAM.DAT | 0.5030 | 0.3552 | 0.1082 | 0.0071 |
| SCLOAM. DAT | 0.4320 | 0.3487 | 0.1677 | 0.0313 |
| SICLOAM. DAT | 0.4750 | 0.3778 | 0.1726 | 0.0287 |
| CLOAM. DAT | 0.4450 | 0.3994 | 0.2759 | 0.1183 |
| LCLAY.DAT | 0.4530 | 0.3783 | 0.2043 | 0.0498 |
| SICLAY. DAT | 0.5070 | 0.4474 | 0.2917 | 0.1095 |

## 1.2d Timer data

```
*******************************************************************
* TIMER.DAT; Timer and run control parameters for ORYZA W
***********************************************************\overline{\pi}
* Switch for production environment
SWIWLP = 0
* Weather data specification
WTRDIR = 'C:\USR\WEATHER\'
CNTR = 'PHIL'
ISTN = 1
IFILAG = = 1101
MULTIP = 1.
* Time variables
YEAR = 1991.
DELT = 1.
* Output options
COPINF = 'N'
PRDEI = l.
IPFORM = 4
DELTMP = 'N'
* Angstrom parameters
ANGA =0.25
ANGB =}0.4
* Time variables
STTIME = 160.
FINTIM }=1000\mathrm{ .
DTRP = 12.
* Note:in upland situation, IDOYTR is automatically set to STTIME for
* rainfed upland simulation
```


## 1.2e Weather data

| * Author: Daniel van Kraalingen |  |  |  | -99.000: |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| * Source: Agroclimate Service Unit of IRRI |  |  |  |  |  |
| * Comments: Original name of data used in IRRI: ORWET* Longitude: $12115 \prime \mathrm{E}$, latitude: $1411 \% \mathrm{~N}$, altitude |  |  |  |  |  |
| * Columa Daily value |  |  |  |  |  |
| * 1 station |  |  |  |  |  |
| * 2 year |  |  |  |  |  |
| * 3 da |  |  |  |  |  |
| * 4 | irradiation |  |  |  |  |
| * 5 | minimum temperature |  |  | (kJm-2d-1) or (mJm-2 d-1)(degrees Celsius) |  |
| * 6 | maximum temperature |  |  | (degrees Celsius) |  |
| * 7 | early morning vapour pressure |  |  | (kPa) |  |
| * 8 | mean wind speed ( | (height | $2 \mathrm{~m})$ | (m s-1) |  |
| * 9 | precipitation |  |  | (mm d-1) |  |
| ********* | ****************** | ***** | ****** | *** | **** |
| 121.25 | 14.18 21. 0.00 | 0.00 |  |  |  |
| 11980 | 1 14004. 20.5 | 29.5 | 2.790 | 0.6 | 0.0 |
| 11980 | 2 12528. 21.5 | 29.5 | 2.970 | 0.3 | 0.5 |
| 11980 | 317136.21 .0 | 29.7 | 2.630 | 0.6 | 0.0 |
| 11980 | 418360.19 .5 | 29.9 | 2.650 | 0.6 | 0.2 |
| 11980 | 5 13140. 20.8 | 28.9 | 2.990 | 1.0 | 0.0 |
| 11980 |  | 26.3 | 2.770 | 1.8 | 0.8 |

```
1 1980 365 5220. 22.0 25.4 2.810 1.8 1.0
1 1980 366 10656. 22.6 26.8 2.650
```


## 1.2f Rerun data

```
* RERUNS.DAT
```

$\star * * * * * * * * * A T ~ * ~$

* This is rerun set 1
STTIME $=1$.
SPSOIL $=2$.
WLOMXI $=100$.
YEAR $=1980$.
* This is rerun set 2
STTIME $=10$.
SPSOIL $=3$.
$W L O M X I=100$.
YEAR $=1980$.
* This is rerun set 3
STTIME $=1$.
SPSOIL $=2$.
WLOMXI $=150$.
YEAR $=1981$.
* This is rerun set 4
STTIME $=1$.
SPSOIL $=2$.
WLOMXI $=150$.
YEAR $=1982$.
* This is rerun set 5
STTIME $=10$.
SPSOIL $=3$.
WLOMXI $=150$.
$\mathrm{YEAR}=1981$.


### 1.3 Output files

## 1.3a End-of-season values

```
************************************************************************
* OP.DAT
*************************************************************************
RUNNUM RIICU RAINCU TRCCU SPCU GRDUR WAG WRR WLVG
1 750.00 1157.6 205.68 493.60 117.00 13793. 8275.1 924.79
TRWCU
    913.42
```


## 1.3b Dynamic values

```
******************************************************************
* RESULTS.OUT
*********************************************************************
Data file T\PUDS05.DAT with }16\mathrm{ variables parsed by RDINDX
* Output table number : 0 (=first output table)
* Output table format : Table output
* Simulation results
* LOWBAL: water balance irrigated rice
* ORYZA_W: Irrigated lowland rice production
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline TIME & DOY & WLO & TKLP & WCLP & EVSW & RAINCU & RIICU & DVS \\
\hline 160.000 & 160.00 & 50.000 & 200.00 & . 66400 & . 00000 & . 00000 & . 00000 & . 00000 \\
\hline 165.000 & 165.00 & 50.000 & 200.00 & . 66400 & 5.2162 & . 00000 & . 00000 & . 06693 \\
\hline 170.000 & 170.00 & 50.000 & 200.00 & . 66400 & 6.0621 & . 00000 & . 00000 & . 12788 \\
\hline 275.000 & 275.00 & . 81750 & 192.79 & . 65144 & 1.4423 & 1155.1 & 750.00 & 1.9454 \\
\hline 277.000 & 277.00 & . 00000 & 176.18 & . 61857 & 1.5845 & 1157.6 & 750.00 & 2.0090 \\
\hline
\end{tabular}
TIME LAI WAG WLVG WRR WCRREL TRW TRC
160.000 . 10000 .00000 .00000 .00000 1.2824 .54012 . 5401
165.000 . 22479 19.270 10.712 .00000 1.2824 1.0558 1.0558
170.000 . 50532 57.615 32.515 .00000 1.2824 2.5997 2.5997
275.000 2.2403 13512. 1009.9 7960.6 1.2577 7.7493 7.7493
277.000 2.0758 13793. 924.79 8275.1 1.1933 8.1548 8.1548
```


### 1.4 List of variable names

## 1.4a ORYZAW

| Name | Description | Units |
| :---: | :---: | :---: |
| ALB | Albedo, reflection coefficient for short-wave radiation | - |
| ALBC | Albedo, reflection coefficient for crop | - |
| ALBDS | Albedo, reflection coefficient for dry soil syrface | - |
| ALBS | Albedo, reflection coefficient for moist soil surface | - |
| ALBOW | Albedo, reflection coefficient for open water | - |
| AMAX | Actual $\mathrm{CO}_{2}$ assimilation rate at light saturation for individual leaves | $\mathrm{kg} \mathrm{CO}_{2}$ ha $^{-1}$ leaf $\mathrm{h}^{-1}$ |
| ANGA | Parameter in Angstrom formula | - |
| ANGB | Parameter in Angstrom formula | - |
| AOB | Intermediate variable | - |
| ASIN | Arcsine function (intrinsic FORTRAN function) | - |
| ASSIM | Subroutine to calculate FGROS | - |
| ASTRO | Subroutine to compute e.g. daylength | - |
| ATMTR | Atmospheric transmission coefficient | - |
| BBRAD | Black body radiation | $\mathrm{Jm}^{-2} \mathrm{~s}^{-1}$ |
| BOLTZM | Stefan-Boltzman constant | $\mathrm{J} \mathrm{m}^{-2} \mathrm{~d}^{-1} \mathrm{~K}^{-4}$ |
| CBCHK | User defined function to check crop carbon balance | - |
| CKCIN | Carbon in the crop accumulated since simulation started | $\mathrm{kg} \mathrm{C} \mathrm{ha}{ }^{-1}$ |
| CKCFL | Sum of integrated carbon fluxes into and out of the crop | kg C has ${ }^{-1}$ |
| CKCRD | Difference between carbon added to the crop since initialization and the net total of integrated carbon fluxes, relative to their sum | - |
| CKCDIF | Same as CKCRD | - |
| CLEAR | Penman's original clearness factor | - |
| CLUSTF | Cluster factor | - |
| COS | Cosine function (intrinsic FORTRAN function) | - |
| COSLD | Intermediate variable in calculating solar height | - |


| CO2LV | $\mathrm{CO}_{2}$ production factor for growth of leaves | $\mathrm{kg} \mathrm{CO}_{2} \mathrm{~kg}^{-1} \mathrm{DM}$ |
| :---: | :---: | :---: |
| CO2RT | $\mathrm{CO}_{2}$ production factor for growth of roots | $\mathrm{kg} \mathrm{CO}_{2} \mathrm{~kg}^{-1} \mathrm{DM}$ |
| CO2SO | $\mathrm{CO}_{2}$ production factor for growth of storage organs | $\mathrm{kg} \mathrm{CO}_{2} \mathrm{~kg}^{-1} \mathrm{DM}$ |
| CO2ST | $\mathrm{CO}_{2}$ production factor for growth of stems | $\mathrm{kg} \mathrm{CO}_{2} \mathrm{~kg}^{-1} \mathrm{DM}$ |
| CO2STR | $\mathrm{CO}_{2}$ production factor for growth of stem reserves | $\mathrm{kg} \mathrm{CO}_{2} \mathrm{~kg}^{-1} \mathrm{DM}$ |
| CRGCR | Carbohydrate ( $\mathrm{CH}_{2} \mathrm{O}$ ) requirement for dry matter production | $\mathrm{kg} \mathrm{CH}_{2} \mathrm{Okg}^{-1} \mathrm{DM}$ |
| CRGLV | Carbohydrate requirement for leaf dry matter production | $\begin{aligned} & \mathrm{kg} \mathrm{CH}_{2} \mathrm{O} \mathrm{~kg}^{-1} \mathrm{DM} \\ & \text { leaf } \end{aligned}$ |
| CRGRT | Carbohydrate requirement for root dry matter production | $\begin{aligned} & \mathrm{kg} \mathrm{CH}_{2} \mathrm{O} \mathrm{~kg}^{-1} \mathrm{DM} \\ & \text { root } \end{aligned}$ |
| CRGSO | Carbohydrate requirement for stor. organ dry matter production | $\mathrm{kg} \mathrm{CH}_{2} \mathrm{Okg}^{-1} \mathrm{DM}$ <br> stor.organ |
| CRGST | Carbohydrate requirement for stem dry matter production | $\mathrm{kg} \mathrm{CH}_{2} \mathrm{O} \mathrm{~kg}^{-1} \mathrm{DM}$ <br> stem |
| CRGSTR | Carbohydrate requirement for stem reserves production | $\mathrm{kg} \mathrm{CH}_{2} \mathrm{O} \mathrm{kg}^{-1} \mathrm{DM}$ |
| DAYL | Daylength | h d-1 |
| DEC | Declination of the sun | radians |
| DELT | Time interval of integration | d |
| DLDR | Death rate leaves caused by drought | kg DM ha-l $\mathrm{d}^{-1}$ |
| DLDRT | Total death rate leaves caused by drought | kg DM ha ${ }^{-1} \mathrm{~d}^{-1}$ |
| DLEAF | Control variable for start of leaf senescence by drought | - |
| DOY | Day number since 1 January (day of year) | d |
| DOYS | Day of year at seeding | d |
| DRLVT | Table for leaf death coefficient as function of DVS | $\mathrm{d}^{-1}$, - |
| DROUT | Control variable indicating drought/no drought | - |
| DSo | Daily extra-terrestrial radiation | J m-2 $\mathrm{d}^{-1}$ |
| DSERT | Effect of drought stress on water uptake | - |
| DSINB | Integral of SINB over the day | $s d^{-1}$ |
| DSINBE | As DSINB, but with a correction for lower atmospheric transmission at lower solar elevations | $\mathbf{s d}^{-1}$ |
| DSTRS | Stress factor for death of leaves caused by drought | - |
| DTGA | Daily total gross $\mathrm{CO}_{2}$ assimilation of the crop | kg CO ${ }_{2} \mathrm{ha}^{-1} \mathrm{~d}^{-1}$ |
| DTR | Daily solar radiation (RDT) | $\mathrm{J} \mathrm{m}^{\mathbf{- 2}} \mathrm{d}^{-1}$ |
| DTRP | Number of days in seed-bed | d |
| DVEW | Effect of water stress on development rate in vegetative phase | - |
| DVR | Development rate of the crop | $\mathrm{d}^{-1}$ |
| DVRV | DVR in the vegetative phase (pre-anthesis) | $\left({ }^{\circ} \mathrm{C} \mathrm{d}\right)^{-1}$ |


| DVRR | DVR in the reproductive phase (post-anthesis) | $\left({ }^{\circ} \mathrm{Cd}\right)^{-1}$ |
| :---: | :---: | :---: |
| DVS | Development stage of the crop | - |
| EES | Extinction coefficiemt for evaporation in bare soil | $\mathrm{m}^{-1}$ |
| EFF | Initial light use efficiency for individual leaves | $\begin{aligned} & \mathrm{kg} \mathrm{CO}_{2} \mathrm{ha}^{-1} \mathrm{leaf}^{\mathrm{h}^{-1}} \\ & \left(\mathrm{~J} \mathrm{~m}^{-2}\right. \text { leaf s } \end{aligned}$ |
| EFFTB | Table of EFF as a function of temperature | EFF, ${ }^{\circ} \mathrm{C}$ |
| EVD | Penman evapotranspiration due to drying power of air for a crop/soil system | mm d-1 |
| EVDOW | Same as EVD, for open water layer | mm d-l |
| EVR | Penman evapotransp. due to radiation for a crop/soil system | mm d ${ }^{-1}$ |
| EVROW | Same as EVR, for open water layer | $\mathrm{mm} \mathrm{d}{ }^{-1}$ |
| EVRWL | Same as EVR, for a crop/water layer system | mm d ${ }^{-1}$ |
| EVSCS | Potential soil evaporation | mm d${ }^{-1}$ |
| EVSCOW | Potential evaporation from open water layer | mm d-1 |
| EVSD | Actual evaporation rate soil on dry days | $\mathrm{mm} \mathrm{d}{ }^{-1}$ |
| EVSH | Actual evaporation rate soil on humid days | $\mathrm{mm} \mathrm{d}{ }^{-1}$ |
| FCLEAR | Sky clearness function in calculation of net long-wave radiation | - |
| FCLV | Mass fraction carbon in the leaves | kg C kg ${ }^{-1}$ DM |
| FCRT | Mass fraction carbon in the roots | $\mathrm{kg} \mathrm{C} \mathrm{kg}^{-1} \mathrm{DM}$ |
| FCSO | Mass fraction carbon in the storage organs | kg C $\mathrm{kg}^{-1} \mathrm{DM}$ |
| FCST | Mass fraction carbon in the stems | kg C kg-1 DM |
| FCSTR | Mass fraction carbon in the stem reserves | $\mathbf{k g ~ C ~ k g}{ }^{-1} \mathrm{DM}$ |
| FGL | $\mathrm{CO}_{2}$ assimilation rate at a specific depth in the canopy | $\mathrm{kg} \mathrm{CO}_{2}$ ha $^{-1}$ leaf $\mathrm{h}^{-1}$ |
| FGRAIN | Fraction grain in the panicle | - |
| FGROS | Instantaneous canopy $\mathrm{CO}_{2}$ assimilation | $\mathrm{kg} \mathrm{CO} 2 \mathrm{ha}^{-1} \mathrm{~h}^{-1}$ |
| FGRS | Intermediate variable for calculation of assimilation of sunlit leaves | S |
| FGRSH | $\mathrm{CO}_{2}$ assimilation rate at one depth in the canopy for shaded leaves | $\mathrm{kg} \mathrm{CO} 2 \mathrm{ha}^{-1}$ leaf $\mathrm{h}^{-1}$ |
| FGRSUN | $\mathrm{CO}_{2}$ assimilation rate at one depth in the canopy for sunlit leaves | $\mathrm{kg} \mathrm{CO} 2 \mathrm{ha}^{-1} \mathrm{leaf} \mathrm{h}^{-1}$ |
| FINTIM | Period of simulation | d |
| FLV | Fraction of shoot dry matter allocated to leaves | - |
| FLVTB | Table of FLV as function of DVS | $\because$, |
| FRDF | Fraction diffuse in incoming radiation | - |
| FRT | Fraction of total dry matter allocated to roots | - |


| FRTTB | Table of FRT as function of DVS | -, |
| :---: | :---: | :---: |
| FSH | Fraction of total dry matter allocated to shoots | - |
| FSHTB | Table of FSH as function of DVS | -, - |
| FSLLA | Fraction of sunlit leaf area | - |
| FSO | Fraction of shoot dry matter allocated to storage organs | - |
| FSOTB | Table of FSO as function of DVS | -,- |
| FST | Fraction of shoot dry matter allocated to stems | - |
| FSTTB | Table of FST as function of DVS | -, |
| FSTR | Fraction carbohydrates allocated to the stems, that is stored as reserves | - |
| FVAP | Vapour pressure effect on RLWN (Brunt equation) | - |
| GCR | Gross growth rate of crop dry matter, including translocation | kg DM ha ${ }^{-1} \mathrm{~d}^{-1}$ |
| GLV | Dry matter growth rate of leaves | kg DM ha ${ }^{-1} \mathrm{~d}^{-1}$ |
| GRDUR | Growth duration | d |
| GRLAI | Self-defined function to calculate the leaf area index | - |
| GRPOOL | Growth rate of 'excess' carbohydrates | kg DM ha ${ }^{-1} \mathrm{~d}^{-1}$ |
| GRT | Dry matter growth rate of roots | kg DM ha ${ }^{-1} \mathbf{d}^{-1}$ |
| GSO | Dry matter growth rate of storage organs | kg DM ha-l $\mathrm{d}^{-1}$ |
| GST | Dry matter growth rate of stems | kg DM ha ${ }^{-1} \mathrm{~d}^{-1}$ |
| GSTR | Dry matter growth rate of the stem reserves | kg DM ha ${ }^{-1} \mathrm{~d}^{-1}$ |
| GZRT | Growth rate roots | $\mathrm{md}^{-1}$ |
| HOUR | Selected hour during the day | h |
| HU | Daily heat units for phenological development | $\left({ }^{\circ} \mathrm{C} \mathrm{d}\right) \mathrm{d}^{-1}$ |
| HULV | Daily heat units for leaf area development | $\left({ }^{\circ} \mathrm{C} \mathrm{d}\right) \mathrm{d}^{-1}$ |
| I1 | Do-loop counter | - |
| 12 | Do-loop counter | - |
| ICNT | Control variable for drought stress | - |
| IDATE | Integer value of day of year | d |
| IDOYTR | Integer value of day of year at transplanting | d |
| IGAUSS | Do-loop counter | - |
| INSD | Counter for non-drought stress days | - |
| ISTD | Counter for consecutive drought stress days | - |
| KBL | Extinction coefficient for direct component of direct PAR flux. | ha ground ha ${ }^{-1}$ leaf |


| KDF | Extinction coefficient for leaves | ha ground ha ${ }^{-1}$ leaf |
| :---: | :---: | :---: |
| KDFTB | Table of extinction coefficients as function of DVS | ha ground ha ${ }^{-1}$ leaf |
| KDRT | Extinction coefficient for total direct PAR flux | ha ground ha ${ }^{-1}$ leaf |
| LAP0 | Initial leaf area per plant at emergence | $\mathrm{m}^{2}$ plant $^{-1}$ |
| LAPI | Leaf area per plant in seedbed | $\mathrm{m}^{2}$ plant ${ }^{-1}$ |
| LAI | Total area index (leaves + stems) | ha leaf ha ${ }^{-1}$ ground |
| LAIC | Leaf area index above selected height in canopy | ha leaf ha ${ }^{-1}$ ground |
| LAIEXP | Leaf area index at end of exponential leaf area growth phase | ha leaf ha-1 ground |
| LAIEXS | Leaf area index at end of exponential leaf area growth phase in seedbed | ha leaf ha ${ }^{-1}$ ground |
| LAII | Initial leaf area index at tranplanting | ha leaf ha ${ }^{-1}$ ground |
| LAIL | Leaf area index (simulated) | ha leaf ha ${ }^{-1}$ ground |
| LAT | Latitude of the weather station | degrees |
| LHVAP | Latent heat of evaporation of water | $\mathrm{J} \mathrm{kg}^{-1} \mathrm{H}_{2} \mathrm{O}$ |
| LLDL | Lower limit dying leaves | - |
| LLDLTF | Lower limit dying leaves up to transplanting (or DVS 0.5) | - |
| LLDTLR | Lower limit dying leaves after transplanting (or DVS 0.5) | - |
| LLLG | Lower limit leaf growth | - |
| LLLGTF | Lower limit leaf growth after transplanting (or DVS 0.5 ) | - |
| LLLGTR | Lower limit leaf growth up to transplanting (or DVS 0.5) | - |
| LLLS | Lower limit leaf rolling | - |
| LLLSTF | Lower limit leaf rolling up to transplanting (or DVS 0.5) | - |
| LLLSTR | Lower limit leaf rolling after transplanting (or DVS 0.5 ) | - |
| LLRT | Lower limit reduction transpiration rate | - |
| LLRTTF | Lower limit reduction transpiration rate up to trans. (or DVS 0.5) | ) |
| LLRTTR | Lower limit reduction transpiration rate after trans. (or DVS 0.5) | - |
| LLV | Loss of leaves | kg leaf ha ${ }^{-1} \mathrm{~d}^{-1}$ |
| LRSTR | Fraction ( $1-5.3 \%$ ) of allocated stem reserves that is available for growth ( $5.3 \%$ loss due to membrane passages) |  |
| LSTR | Loss rate of stem reserves | kg stem res. ha $^{-1} \mathrm{~d}^{-1}$ |
| LSTRS | Stress factor for leaf rolling | - |
| MAINLV | Maintenance respiration coefficient of leaves | $\begin{aligned} & \mathrm{kg} \mathrm{CH}_{2} \mathrm{O} \mathrm{~kg}^{-1} \mathrm{DM} \\ & \mathrm{~d}^{-1} \end{aligned}$ |
| MAINRT | Maintenance respiration coefficient of roots | $\begin{aligned} & \mathrm{kg} \mathrm{CH}_{2} \mathrm{O}_{\mathrm{kg}} \mathrm{~d}^{-1} \mathrm{DM} \\ & \mathrm{~d}^{-1} \end{aligned}$ |


| MAINSO | Maintenance respiration coefficient of storage organs | $\begin{aligned} & \mathrm{kg} \mathrm{CH}_{2} \mathrm{O} \mathrm{~kg}^{-1} \mathrm{DM} \\ & \mathrm{~d}^{-1} \end{aligned}$ |
| :---: | :---: | :---: |
| MAINST | Maintenance respiration coefficient of stems | $\begin{aligned} & \mathrm{kg} \mathrm{CH}_{2} \mathrm{O}_{\mathrm{kg}}{ }^{-1} \mathrm{DM} \\ & \mathrm{~d}^{-1} \end{aligned}$ |
| MNDVS | Factor accounting for effect of DVS on maintenance respiration | - |
| NFLV | Nitrogen fraction in the leaves | $\mathrm{g} \mathrm{N} \mathrm{m}{ }^{-2}$ leaf |
| NFLVTB | Table of NFLV as function of development stage |  |
| NH | Number of hills | hills $\mathrm{m}^{-2}$ |
| NL | Number of soil compartments (layers) | - |
| NPLH | Number of plants per hill | plants hill-1 |
| NPLDS | Number of plants direct seeded | plants $\mathrm{m}^{-2}$ |
| NPLSB | Number of plants in seedbed | plants $\mathrm{m}^{-2}$ |
| NPROF | Nitrogen profile in the crop | - |
| NPROFT | Table of NPROF as a function of DVS | -, |
| NRAD | Net radiation | $\mathrm{Jm}^{-1} \mathrm{~d}^{-1}$ |
| PAR | Instantaneous flux of photosynthetically active radiation | $\mathrm{Jm}^{-2}$ ground $\mathrm{s}^{-1}$ |
| PARDF | Instantaneous diffuse flux of incoming PAR | $\mathrm{Jm}^{-2}$ ground $\mathrm{s}^{-1}$ |
| PARDR | Instantaneous direct flux of incoming PAR | $\mathrm{Jm}^{-2}$ ground $\mathrm{s}^{-1}$ |
| PCEW | Effect of water stress on daily total gross $\mathrm{CO}_{2}$ assimilation of the crop DTGA | $\bullet$ |
| PENMAN | Penman reference value for potential evapotranspiration mm | $\mathrm{d}^{-1}$ |
| PI | Ratio of circumference to diameter of circle | - |
| PRDEL | Time interval for tabular printed output | d |
| PSYCH | Psychrometic instrument constant mbar | ${ }^{\circ} \mathrm{C}^{-1}$ |
| Q10 | Factor accounting for increase of maintenance respiration with a $10^{\circ} \mathrm{C}$ rise temperature | - |
| RAD | Factor to convert degrees to radians | radians degree ${ }^{-1}$ |
| RAIN | Precipitation rate | $\mathrm{mm} \mathrm{d}^{-1}$ |
| RAINCU | Cumulative precipitation | mm |
| RAINN | Precipitation rate next day | $\mathrm{mm} \mathrm{d}^{-1}$ |
| RDT | Daily solar radiation | $\mathrm{J} \mathrm{m}^{-2} \mathrm{~d}^{-1}$ |
| RDTT | Table of RDT as function of day of the year | $\mathrm{J} \mathrm{m}^{-2} \mathrm{~d}^{-1}, \mathrm{~d}$ |
| REDFT | Factor accounting for effect of temperature on AMAX | - |


| REDFTT | Table of REDFT as function of temperature | -, ${ }^{\circ} \mathrm{C}$ |
| :---: | :---: | :---: |
| REFH | Reflection coefficient for diffuse PAR | - |
| REFS | Reflection coefficient for direct PAR | - |
| RGCR | Growth respiration rate of the crop | $\mathrm{kg} \mathrm{CO} 2 \mathrm{ha}^{-1} \mathrm{~d}^{-1}$ |
| RGRL | Relative growth rate of leaf area during exponential growth | $\left({ }^{\circ} \mathrm{Cd}\right)^{-1}$ |
| RLWN | Net long-wave radiation | $\mathrm{J} \mathrm{m}^{-1} \mathrm{~d}^{-1}$ |
| RMCR | Maintenance respiration rate of the crop | kg CH2 $\mathrm{Oha}^{-1} \mathrm{~d}^{-1}$ |
| SAI | Stem area index | ha ha-1 |
| SC | Solar constant, corrected for varying distances between sun-earth | $\mathrm{J} \mathrm{m}^{-2} \mathrm{~s}^{-1}$ |
| SCP | Scattering coefficient of leaves for PAR | - |
| SIN | Sine function (intrinsic FORTRAN function) | - |
| SINB | Sine of solar elevation | - |
| SINLD | Intermediate variable in calculating solar declination | - |
| SHCKD | Parameter indicating relation between seedling age and delay in phenological development | ${ }^{\circ} \mathrm{Cd}\left({ }^{\circ} \mathrm{Cd}\right)^{-1}$ |
| SHCKL | Parameter indicating relation between seedling age and delay in leaf area development | ${ }^{\circ} \mathrm{Cd}\left({ }^{\circ} \mathrm{Cd}\right)^{-1}$ |
| SLA | Specific leaf area | ha leaf $\mathrm{kg}^{-1}$ leaf |
| SLATB | Table of SLA as function of DVS | - |
| SLOPE | Tangent of the relation between saturated vapour pressure and temperature | mbar ${ }^{0} \mathrm{C}^{-1}$ |
| SQV | Intermediate variable in calculation of reflection coefficient | - |
| SSGA | Specific green stem area | ha $\mathrm{kg}^{-1}$ stem |
| SSGATB | Table of SSGA as function of DVS | -, |
| SVP | Saturated vapour pressure | mbar |
| SWILAI | Switch to use as input measured (0) or simulated (1) LAI | - |
| SWINLV | Switch to use as input NFLV vs DOY (0) or vs DVS (1) | - |
| SWIWLP | Switch to select irrigated lowland (0), rainfed lowland (1), or rainfed upland (2) | - |
| TAV | Daily average temperature | ${ }^{\circ} \mathrm{C}$ |
| TAVD | Daily average daytime temperature | ${ }^{\circ} \mathrm{C}$ |
| TBD | Base temperature for development | ${ }^{\circ} \mathrm{C}$ |
| TBLV | Base temperature for juvenile leaf area growth | ${ }^{\circ} \mathrm{C}$ |
| TCLSTR | Time coefficient for loss of stem reserves | $\mathrm{d}^{-1}$ |


| TEFF | Factor accounting for effect of temperature on maintenance respiration | - |
| :---: | :---: | :---: |
| TIME | Daynumber start simulation | d |
| TKL | Array fof thicknesses of soils compartments | m |
| TKLT | Thickness of combined soil compartments | m |
| TMAXT | Table daily maximum temperature as function of day of the year | ${ }^{\circ} \mathrm{C}, \mathrm{d}$ |
| TMD | Maximum temperature for phenological development | ${ }^{\circ} \mathrm{C}$ |
| TMINT | Table daily minimum temperature as function of day of the year | ${ }^{\circ} \mathrm{C}, \mathrm{d}$ |
| TMLV | Maximum temperature for leaf area development | ${ }^{\circ} \mathrm{C}$ |
| TNASS | Total net $\mathrm{CO}_{2}$ assimilation | $\mathrm{kg} \mathrm{CO} 2 \mathrm{ha}^{-1}$ |
| TOTASS | Subroutine to calculate gross $\mathrm{CO}_{2}$ assimilation of the crop | - |
| TRC | Potential transpiration rate canopy/soil system | $\mathrm{mm} \mathrm{d}^{-1}$ |
| TRCT | Cumulative potential transpiration (after transplanting) | mm |
| TRCWL | Potential transpiration rate canopy/water layer system | $\mathrm{mm} \mathrm{d}^{\mathbf{- 1}}$ |
| TREF | Reference temperature | ${ }^{\circ} \mathrm{C}$ |
| TRRM | Potential transpiration rate canopy per united rooted length | $\mathrm{mm} \mathrm{d}^{-1} \mathrm{~m}^{-1}$ |
| TRW | Actual transpiration rate canopy | $\mathrm{mm} \mathrm{d}^{-1}$ |
| TRWCU | Cumulative actual transpiration (after transplanting) | mm |
| TRWL | Array of TRW per soil compartment | $\mathrm{mm} \mathrm{d}^{-1}$ |
| TS | Temperature sum for phenological development | ${ }^{\circ} \mathrm{C} \mathrm{d}$ |
| TSHCKD | Transplanting shock for phenological development | ${ }^{\circ} \mathrm{Cd}$ |
| TSHCKL | Transplanting shock for leaf area development | ${ }^{\circ} \mathrm{Cd}$ |
| TSLV | Temperature sum for leaf area development | ${ }^{\circ} \mathrm{Cd}$ |
| TSLVTR | Temperature sum for leaf area development at tranplanting | ${ }^{\circ} \mathrm{Cd}$ |
| TSTR | Temperature sum for phenological development at tranplanting | ${ }^{\circ} \mathrm{Cd}$ |
| ULDL | Upper limit dying leaves | - |
| ULDLTF | Upper limit dying leaves up to transplanting (or DVS 0.5) | - |
| ULDTLR | Upper limit dying leaves after transplanting (or DVS 0.5) | - |
| ULLG | Upper limit leaf growth | - |
| ULLGTF | Upper limit leaf growth after transplanting (or DVS 0.5) | - |
| ULLGTR | Upper limit leaf growth up to transplanting (or DVS 0.5) | - |
| ULLS | Upper limit leaf rolling | - |
| ULLSTF | Upper limit leaf rolling up to transplanting (or DVS 0.5) | - |
| ULLSTR | Upper limit leaf rolling after transplanting (or DVS 0.5) | - |
| ULRT | Upper limit reduction transpiration rate | - |
| ULRTTF | Upper limit reduction transpiration rate up to trans. (or DVS 0.5) | - |

ULRTTR Upper limit reduction transpiration rate after trans. (or DVS 0.5) -

| VAPOR | Actual vapour pressure | kpa |
| :---: | :---: | :---: |
| VISD | Absorbed direct component of direct flux per unit leaf area (at depth LAIC) | J m-2 leaf $\mathrm{s}^{-1}$ |
| VISDF | Absorbed diffuse flux per unit leaf area (at depth LAIC) | $\mathrm{J}_{\mathbf{m}}{ }^{-2}$ leaf $\mathrm{s}^{-1}$ |
| VISPP | Absorbed light flux by leaves perpendicular on direct beam | $\mathrm{J} \mathrm{m}^{-2}$ leaf $\mathrm{s}^{\mathbf{- 1}}$ |
| VISSHD | Total absorbed flux for shaded leaves) per unit leaf area (at depth LAIC | $\mathrm{J}_{\mathbf{m}}{ }^{\mathbf{- 2}}$ leaf $\mathrm{s}^{\mathbf{- 1}}$ |
| VISSUN | Total absorbed flux for sunlit leaves in one of three Gauss point classes | $\mathrm{J} \mathrm{m}^{-2}$ leaf $\mathrm{s}^{\mathbf{- 1}}$ |
| VIST | Absorbed total direct flux per unit leaf area (at depth LAIC) | $\mathrm{J} \mathrm{m}^{-2}$ leaf $\mathrm{s}^{\mathbf{- 1}}$ |
| WAG | Total above-ground dry matter | kg DM ha ${ }^{-1}$ |
| WCAD | Array of volumetric water content per soil compartment, air dry | $\mathrm{m}^{-3} \mathrm{~m}^{-3}$ |
| WCFC | Array of volumetric water content per soil compartment, field capacity | $\mathrm{m}^{-3} \mathrm{~m}^{-3}$ |
| WCL | Array of actual volumetric water content per soil compartment | $\mathrm{m}^{-3} \mathrm{~m}^{-3}$ |
| WCLQT | Same as WCL | $\mathrm{m}^{-3} \mathrm{~m}^{-3}$ |
| WCLREL | Array of relative water contents per soil compartment | $\mathrm{m}^{-3} \mathrm{~m}^{-3}$ |
| WCR | Total biomass | kg DM ha ${ }^{-1}$ |
| WCRDR | Critical soil water content for start of leaf death caused by drought | - |
| WCREF | Array of refernce water contents at which drought stress occurs, per soil compartment | $\mathrm{m}^{-3} \mathrm{~m}^{-3}$ |
| WCRREL | Total relative water content in root zone | $\mathrm{m}^{-3} \mathrm{~m}^{-3}$ |
| WCRTZ | Total water content in root zone | $\mathrm{m}^{-3} \mathrm{~m}^{-3}$ |
| WCRTZR | Water content in root zone at which drought stress occurs | m -3 m-3 |
| WCRTZW | Water content in root zone at wilting point ( pF 4.2 ) | $\mathrm{m}-3 \mathrm{~m}-3$ |
| WCST | Array of volumetric water content per soil compartment, at saturation | $\mathrm{m}^{-3} \mathrm{~m}^{-3}$ |
| WCSTUP | Volumetric water content at saturation of upper soil layer | $\mathrm{m}^{-3} \mathrm{~m}^{-3}$ |
| WCUP | Volumetric water content of upper soil layer | $\mathrm{m}^{-3} \mathrm{~m}^{-3}$ |
| WCWP | Array of volumetric water content per soil compartment, at wilting point | $\mathrm{m}^{-3} \mathrm{~m}^{-3}$ |
| WDF | Wind function | $\mathrm{mm} \mathrm{d}^{-1} \mathrm{mbar}^{-1}$ |
| WGAUSS | Array containing weights to be assigned to Gauss points | - |


| WIND | Wind speed | $\mathrm{m} \mathrm{s}^{-1}$ |
| :---: | :---: | :---: |
| WL | Array of amounts of soil water per soil compartment | $\mathrm{m}^{3} \mathrm{ha}^{-1}$ |
| WLA | Water available to the crop for uptake | mm |
| WLFL | array of fluxes of water from compartment I to I+1 | mm d ${ }^{-1}$ |
| WLPOOL | Pool of 'excess' carbohydrates | kg ha-1 |
| WLVD | Dry weight of dead leaves | kg ha-1 |
| WLVEXP | Weight of leaves at end of exponential leaf growth phase | $\mathrm{kg} \mathrm{ha}^{-1}$ |
| WLVEXS | Weight of leaves at end of exp. leaf growth phase in seedbed | kg ha-1 |
| WLVG | Dry weight of green leaves | kg ha-1 |
| WLVGI | Initial dry weight of the leaves | kg ha-1 |
| WLVGIT | Dry weight of green leaves | kg ha-1 |
| WRR | Dry weight rough rice | kg ha-1 |
| WRT | Dry weight of the roots | kg ha-1 |
| WRTI | Initial dry weight of the roots | kg ha-1 |
| WSO | Dry weight of storage organs | kg ha-1 |
| WST | Dry weight of the stems | kg ha ${ }^{-1}$ |
| WSTI | Initial dry weight of the stems | kg ha ${ }^{-1}$ |
| WSTR | Dry weight of stems reserves | kg ha-1 |
| WSTS | Dry weight of structural stems | kg ha ${ }^{-1}$ |
| XGAUSS | Array containing Gauss points | - |
| ZLL | Depth upper boundary compartment | m |
| ZR | Actual rooting depth | m |
| ZRT(I) | Rooting depth (initial) | m |
| ZRT | Array of ZRT differentiated per soil compartment | m |
| ZRTL | Same as ZR | m |
| ZRTM | Maximum for ZRT | m |
| ZRTMC | Maximum rooting depth of crop | m |
| ZRTMS | Maximum rooting depth of soil | m |

## 1.4b LOWBAL

| Name | Description | Units |
| :---: | :---: | :---: |
| WLOMX(I) | Bund height (initial), also maximum level of WL0 | mm |
| DDR | Deep drainage rate of the subsoil | $\mathrm{mm} \mathrm{s}^{-1}$ |
| DSLR | Number of days since last rain | - |
| DVSIE | Development stage after which no more irrigation is applied | - |
| EVSC | Potential soil evaporation rate for current weather conditions and crop | mm d ${ }^{-1}$ |
| EVSD | Actual evaporation rate soil on dry days | mm d ${ }^{-1}$ |
| EVSH | Actual evaporation rate soil on humid days | mm d ${ }^{-1}$ |
| EVSW | Actual evaporation rate soil | $\mathrm{mm} \mathrm{d}^{-1}$ |
| EVSWCU | Cumulative EVSW after transplanting | mm |
| NL | Number of soil compartments ( $=1$ ) | - |
| RAIN | Precipitation rate | mm d ${ }^{-1}$ |
| RAINCU | Cumulative precipitation since transplanting | mm |
| RAINN | Precipitation rate next day | mm d-1 |
| RIGIFT | Constant irrigation gift | mm |
| RII | Actual irrigation gift (either 0 or RIGIFT) | mm |
| RIICU | Cumulative irrigation gift after transplanting | mm |
| RIICSB | Cumulative irrigation gift in seed-bed | mm |
| RNOFCU | Cumulative RUNOF after transplanting | mm |
| RUNOF | Surface drainage (bund overflow) | mm |
| SHRINK | Linear shrinkage factor for puddled layer | - |
| SP | Actual seepage \& percolation rate | $\mathrm{mm} \mathrm{s}^{-1}$ |
| SPCU | Cumulative SP after transplanting | mm |
| SPSOIL | Potential seepage \& percolation rate | mm s-1 |
| TKLP(I) | Thickness puddled layer (initial ) | mm |
| TKLPM | Thickness of shrunken soil | mm |


| TRWP | Actual transpiration rate canopy from puddled layer | $\mathrm{mm} \mathrm{d}^{-1}$ |
| :---: | :---: | :---: |
| WCAD(1) | Same as WCADP | $\mathrm{m}^{-3} \mathrm{~m}^{-3}$ |
| WCADP | Volumetric water content of shrunken puddled layer, at air dryness ( pF 7 ) | $\mathrm{m}^{-3} \mathrm{~m}^{-3}$ |
| WCCRAC | Water content of shrunken puddled layer at which cracks penetrate the impermeable layer | $\mathrm{m}^{-3} \mathrm{~m}^{-3}$ |
| WCFC(1) | Same as WCFCP | $\mathrm{m}^{-3} \mathrm{~m}^{-3}$ |
| WCFCP | Volumetric water content of shrunkne puddied layer, at field capacity ( pF 2 ) | $\mathrm{m}^{-3} \mathrm{~m}^{-3}$ |
| WCLP | Actual volumetric water content of puddled layer | $\mathrm{m}^{-3} \mathrm{~m}^{-3}$ |
| WCLQT(1) | Same as WCLP | $\mathrm{m}^{-3} \mathrm{~m}^{-3}$ |
| WCST(1) | Same as WCSTP | $\mathrm{m}^{-3} \mathrm{~m}^{-3}$ |
| WCSTP | Volumetric water content of shrunken puddled layer, at saturation | $\mathrm{m}^{-3} \mathrm{~m}^{-3}$ |
| WCWP(1) | Same as WCWPP | $\mathrm{m}^{-3} \mathrm{~m}^{-3}$ |
| WCWPP | Volumetric water content of shrunken puddled layer, at wilting point ( pF 4.2) | $\mathrm{m}^{-3} \mathrm{~m}^{-3}$ |
| WLO(I) | Depth of ponded water layer (initial) | mm |
| WLOMIN | Minimum depth of WL0 at which irrigation is supplied | mm |
| WLP | Actual amount of water in puddled layer | mm |

## 1.4c SAHEL

| Name | Description | Units |
| :---: | :---: | :---: |
| CKWFL | Sum of integrated water fluxes in/out of soil compartments | mm |
| DSLR | Number of days since last rain | d |
| EES | Evaporation extinction coefficient | $\mathrm{m}^{-1}$ |
| EVSC | Potential soil evaporation rate for current weather conditions and crop | mm d-1 |
| EVSD | Actual evaporation rate soil on dry days | mm d ${ }^{-1}$ |
| EVSH | Actual evaporation rate soil on humid days | mm d ${ }^{-1}$ |
| EVSW | Actual evaporation rate soil (indexed per soil compartment) | $\mathrm{mm} \mathrm{d}^{-1}$ |
| EVSWCU | Cumulative EVSW since sowing | mm |
| FEVL | Array of fraction of EVSW, per soil compartment | - |
| FEVLT | Total of FEVL over all soil compartments | - |
| FRNOF | Fraction runoff | - |
| FWCLI | Initial soil water content as fraction of WCFC, indexed per soil compartment | - |
| NL | Number of soil compartments ( $=1$ ) | - |
| RAIN | Precipitation rate | mm d ${ }^{-1}$ |
| RAINCU | Cumulative precipitation since sowing | mm |
| RAINN | Precipitation rate next day | mm d-1 |
| RIICU | Cumulative irrigation gift (= always 0) | mm |
| TKL | Thickness os soil compartment, indexed | mm |
| TKLT | Total thickness of all soil compartments | mm |
| WCAD | Volumetric water content, at air dryness ( pF 7 ), indexed per soil compartment 1-NL | $\mathrm{m}^{-3} \mathrm{~m}^{-3}$ |


| WCFC | Volumetric water content, at field capacity ( pF 2 ), indexed per soil compartment 1-NL | $\mathrm{m}^{-3} \mathrm{~m}^{-3}$ |
| :---: | :---: | :---: |
| WCL(I) | Actual volumetric water content, indexed per soil compartment 1-NL (initial) | $\mathrm{m}^{-3} \mathrm{~m}^{-3}$ |
| WCLQT | Same as WCL | $\mathrm{m}^{-3} \mathrm{~m}^{-3}$ |
| WCST | Volumetric water content at saturation, indexed per soil compartment 1-NL | $\mathrm{m}^{-3} \mathrm{~m}^{-3}$ |
| WCUM | Cumulative WL over all soil compartments | mm |
| WCWP | Volumetric water content, at wilting point ( pF 4.2 ), indexed per soil compartment 1-NL | $\mathrm{m}^{-3} \mathrm{~m}^{-3}$ |
| WL(I) | Actual amount of water, indexed per soil compartment 1-NL (Note: WL0 is amount of ponded water) | mm |
| WLFL | Fluxes of water in/out soil compartments, indexed per compartment | $\mathrm{mm} \mathrm{d}^{-1}$ |
| ZRTMS | Maximum rooting depth of soil | m |


 IFLLE $=1$
GO TO
END IE

Check on total number of draws times paraneters,







WRITE $\left(50, '(A 6, A 1, E 10,4)^{\prime}\right) \mathrm{CWCWP},{ }^{\prime}=$ ', WCWP



|  | END IF <br> IE (NMV .GE. 3) THEN |
| :---: | :---: |
| 203 | ICOUNT $=$ INT (RUNI (ISEED) *IDATA3 + 1.) |
|  | IF (ICOUNT .GE. (IDATA3+1) .OR. ICOUNT .EQ. 0) GO TO 203 DDATA (3) $=$ MDATA3 (ICOUNT) |
|  | WRITE (50, '(A6, A1, E10.4)') NMVAR(3), '-', MDATA3\{ICOUNT) |
|  | END IE |
|  | IF (NMV .GE. 4) THEN |
| 204 | ICOUNT $=$ INT (RUNI (ISEED) *IDATA4 +1.1 |
|  | IF (ICOUNT .GE. (IDATA4+1) .OR. ICOUNT .EQ. 0) GO TO 204 DDATA (4) = MDATA4 (ICOUNT) |
|  | WRITE (50, '(A6, A1, E10.4)') $\operatorname{NMVAR(4),~'~}=$ ', MDATA4 (ICOUNT) |
|  | END IF |
|  | IF (NMV .GE. 5) THEN |
| 205 | ICOUNT - INT (RUNI (ISEED)*IDATA5 + 1.) |
|  | IF (ICOUNT .GE. (IDATA5+1) .OR. ICOUNT .EQ. 0) GO TO 205 DDATA (5) = MDATA5 (ICOUNT) |
|  | WRITE (50, '(A6, A1, E10.4)') $\operatorname{NMVAR}(5),{ }^{\prime}=$ ', MDATAS (ICOUNT) |
|  | END IF |
|  | WRITE (50, '( A ) ') |
| *------Writing column names to file Column. DAT |  |
| IF (SWI) THEN |  |
|  |  |
|  |  |
|  | \$ 'WCST', 'WCWP', ( $\operatorname{MMVAR}(J), \mathrm{J}=1, \mathrm{NMV})$ |
| ELSE |  |
| WRITE (51,'(32A10)') (VUNI(J), J=1,NDU), <br> (VBETA(J), J=1,NDB), (VNORM(J), J=1,NDN), |  |
|  |  |
|  | \$ (NMVAR(J), J=1,NMV) |
| END IE |  |
| END IF |  |
| Writing to output file COLUMN. DAT |  |
|  |  |
| IF (SWI) THEN |  |
| (DRAWB(J), J-1,NDB), (DRANN(J), J=1,NDN), |  |
|  |  |
|  | \$ WCST, WCWP, (DDATA (J), J=1, NMV) |
| ELSE |  |
| WRITE $\left.51,{ }^{\prime}(32 \mathrm{E} 10.4)^{\prime}\right)$ (DRAGU (J), $J=1$, NDU), |  |
|  |  |
|  | \$ (DDATA (J), J=1, MMV) |
| END IF |  |
| 50 | CONTINUE |
|  | CLOSE (40) |
|  | CLOSE (50) |
|  | CLOSE (51) |
|  | IF (IFILE .EQ. 0) THEN CLOSE(52, STATUS='DELETE') |
|  | END IF |

$\begin{aligned} & \text { END IF } \\ & \text { WCEC }= \text { LIMIT (00.1, 0.999, DRAWN(J) } \\ & \text { WCSTI }=0.025 * \text { RGAU(ISEED })+(0.347-0.164 * \text { WCFC }+ \\ & 1.217 * \text { WCFC**2) }\end{aligned}$
 WRITE
CONTINUE
SWI $=$.TRUE

SWI $=$ TRUE.
ELSE IF
(VNORM
IJ
LSE IF (VNORM(J).EQ. 'FWCLI') THEN
IF (DRAWN(J),GT.i.0.OR. DRAWN(J).LT.0.0) THEN
WRITE (* **) 'ERRR; randon value FWCLI out of bounds:, WRITE $(*, *)$ ' '-> choose other mean/variance'
WRITE(*,*) $\rightarrow$ choose other probability distribution'
 , DRAWN (J)

WRITE $(52, *)$ ' $->$ choose other mean/variance'
WRITE $52, *)$ '-> choose other probability distribution' IFILE $=1$

END IF
WWCLI $=\operatorname{DRAWN}(\mathrm{J})$
FWCLI $=$ DRAWN $(J)$
DO 701,


INTEGER FUNCTION TSEED()
INTEGER TIM(4)
CALL $\operatorname{GETTIM}(\operatorname{TIM}(1), \operatorname{TIM}(2), \operatorname{TIM}(3), \operatorname{TIM}(4))$


TSEED $=3600^{*}$ TIM $(1)+60 *$ TIM $(2)+$ TIM $(3)$


formeters
** INTEGER ISEED $\quad$ local variables + function called
IF ((ISEED.LE; -2147483563) .OR. (ISEED .GE. 2147483563)) THEN CALL ERROR('RGAU', 'INVALID ISEED')
IF (.NOT.NEWSET) THEN
(.NOT.NEWSET) THEN
generate random radius vector length and angle
U2 $=$ RUNI (ISEED)
$\mathrm{VECTOR}=\operatorname{SQRT}(-2.0 * \operatorname{ALOG}(\mathrm{U} 2))$
INTEGER ISEED
IF (\{A.LE.O) OR. (B. LE.0〉) THEN IF ((ISEED. LEE. -2147483563 ) .OR. (ISEED .GE. 2147483563)) THEN
CALL ERROR('RBET', INVAIID ISEED')
) THEN
(re) intialize
$(\operatorname{CON}(1)=\operatorname{GT} \cdot 1$.$) THEN$
$\operatorname{CON}(1)=\operatorname{SQRT}((A+B-2) /.(2 . * A * B-A-B))$
$\operatorname{CON}(1)=1 \cdot / \operatorname{CON}(1)$
$\operatorname{END} 1 F=A+B$
$\operatorname{CON}(2)=A+1 \cdot / \operatorname{CON}(1)$
END
$\mathrm{U} 1=\mathrm{RUN}=\mathrm{R}$
$\mathrm{U} 2=\mathrm{RUNI}$ (ISEED)
$\mathrm{V}=\operatorname{CON}(1)$ *ALOG ( U1/(1.-U1))
VNI - A* ( $\varepsilon$ )NOD + ( $\mathrm{M}+\mathrm{G}) /(\mathrm{Z}) \mathrm{NOD}) \mathrm{DOTV}$ ( (Z)NOD

IF

.9
$\stackrel{8}{-}$

### 2.2 Input file

```
***********************************************************
* RIGAUS.IN: file contains input data for the program *
* RIGAUS to draw at random variables from statistical *
* and measured distributions (December-1993) *
****************************************************************
* First, choose if the special provisions for the soil water
* balance model SAHEL have to be taken into account:
ISWI = 1 ! 0=do not take into acount; 1=take into acount
TND = 5 ! Number of Draws
ISEED = 27426 : Seed for random drawing
*********** UNIFORM *****************************
NDU = 2 ! Number of variables for drawing from UNIFORM
    ! distribution (MAXIMUM = 10)
* Names of variables for UNIFORM distribution
VUNI = 'WCFC', 'FWCLI', 'RDT', 'SLA'
* Give lower and upper boundary, in sequence of the
* variables specified above.
UNILO = 0.10, 0.0, 5000.0, 0.15
UNIUP = 0.60, 1.0, 25000.0, 0.35
*********** BETA ******************************************
NDB = 0 ! Number of variables for drawing from BETA
    ! distribution (MAXIMUM = 10)
* Names of variables for BETA distribution
VBETA = 'BETA1', 'BETA2', 'BETA3', 'BETA4', 'BETA5',
        'BETA6'
* Give A and B parameters for BETA distribution, in sequence
* of the variables specified above.
ABETA = 1.0, 2.0, 4.0, 6.0, 8.0, 10.0
BBETA = 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
* Give lower and upper boundary, in sequence of the
* variables specified above.
BETALO = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
BETAUP = 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
************ NORMAL *********************************************
NDN = 2 ! Number of variables for drawing from NORMAL
    : distribution (MAXIMUM = 10)
```

* Names of variables for NORMAL distribution
VNORM $=$ 'STTIME', 'DTRP', 'NORM3', 'NORM4', 'NORM5'
* Give mean and variance for the NORMAL distribution,
* in sequence of the variables specified above.

```
MEANU = 150., 12.0, 0.0, 30.0, 60.0
VARU = 10., 2.0, 100.0, 10.0, 10.0
NMV =0 ! Number of measured variables (MAXIMUM = 3)
* Names of measured variables
NMVAR = 'MVAR1', 'MVAR2', 'MVAR3'
* Give measured data of the above variables (MAX = 500)
MDATA1 = 1., 2., 3., 4., 5.
MDATA2 = 6., 7., 8., 9., 10.
MDATA3 = 10., 20., 30., 40., 50.
```


### 2.3 Output files

## 2.3a RERUNS.DAT

```
    * ISEED = 27426
    * This is rerun set
1
WCFC1 = .169E+00
WCST1 = .288E+00
WCWP1 = .825E-02
WCFC2 = .169E+00
WCST2 = .288E+00
WCWP2 = . 825E-02
WCFC3 = .169E+00
WCST3 = .288E+00
WCWP3 = .825E-02
FWCLI1= .880E+00
FWCLI2= .880E+00
FWCLI3= .880E+00
STTIME= .164E+03
DTRP = . 125E+02
    * This is rerun set
2
WCFC1 = .239E+00
WCST1 = .361E+00
WCWP1 = .377E-01
WCFC2 = . 239E+00
WCST2 = .361E+00
WCWP2 = .377E-01
WCFC3 = .239E+00
WCST3 = . 361E+00
WCWP3 = .377E-01
```

| FWCLI1= | . $368 \mathrm{E}-01$ |
| :---: | :---: |
| FWCLI2= | . $368 \mathrm{E}-01$ |
| FWCLI3= | . $368 \mathrm{E}-01$ |
| STTIME= | . $136 \mathrm{E}+03$ |
| DTRP | . $132 \mathrm{E}+02$ |
| * This is rerun set |  |
| 3 |  |
| WCFC1 $=$ | . $484 \mathrm{E}+00$ |
| WCST1 | . $602 \mathrm{E}+00$ |
| WCWP1 | . $282 \mathrm{E}+00$ |
| WCFC2 | . $484 \mathrm{E}+00$ |
| WCST2 | . $602 \mathrm{E}+00$ |
| WCWP2 | . $282 \mathrm{E}+00$ |
| WCFC3 | . $484 \mathrm{E}+00$ |
| WCST3 | . $602 \mathrm{E}+00$ |
| WCWP3 | . $282 \mathrm{E}+00$ |
| FWCLI $1=$ | . $595 \mathrm{E}+00$ |
| FWCLI2= | . $595 \mathrm{E}+00$ |
| FWCLI3= | . $595 \mathrm{E}+00$ |
| STTIME= | . $156 \mathrm{E}+03$ |
| DTRP | . $117 \mathrm{E}+02$ |
| * This is rerun set |  |
| 4 |  |
| WCFC1 $=$ | . $383 \mathrm{E}+00$ |
| WCST1 | . $467 \mathrm{E}+00$ |
| WCWP1 $=$ | . $128 \mathrm{E}+00$ |
| WCFC2 | 383E+00 |

```
WCST2 = .467E+00
WCWP2 = .128E+00
WCFC3 = .383E+00
WCST3 = .467E+00
WCWP3 = . 128E+00
FWCLI1= .461E+00
FWCLI2= .461E+00
FWCLI3= .461E+00
STTIME= .147E+03
DTRP = .114E+02
    * This is rerun set
5
WCFC1 = . 217E+00
WCST1 = . 361E+00
WCWP1 = . 273E-01
WCFC2 = .217E+00
WCST2 = .361E+00
WCWP2 = .273E-01
WCFC3 = .217E+00
WCST3 = .361E+00
WCWP3 = .273E-01
FWCLI1= .694E+00
FWCLI2= .694E+00
FWCLI3= .694E+00
STTIME= .159E+03
DTRP = .714E+01
```


## 2.3b COLUMN.DAT

| WCFC | FWCLI | STTIME | DTRP | WCST | WCWP |
| :---: | :---: | ---: | :---: | ---: | ---: |
| $.169 \mathrm{E}+00$ | $.880 \mathrm{E}+00$ | $.164 \mathrm{E}+03$ | $.125 \mathrm{E}+02$ | $.288 \mathrm{E}+00$ | $.825 \mathrm{E}-02$ |
| $.239 \mathrm{E}+00$ | $.368 \mathrm{E}-01$ | $.136 \mathrm{E}+03$ | $.132 \mathrm{E}+02$ | $.361 \mathrm{E}+00$ | $.377 \mathrm{E}-01$ |
| $.484 \mathrm{E}+00$ | $.595 \mathrm{E}+00$ | $.156 \mathrm{E}+03$ | $.117 \mathrm{E}+02$ | $.602 \mathrm{E}+00$ | $.282 \mathrm{E}+00$ |
| $.383 \mathrm{E}+00$ | $.461 \mathrm{E}+00$ | $.147 \mathrm{E}+03$ | $.114 \mathrm{E}+02$ | $.467 \mathrm{E}+00$ | $.128 \mathrm{E}+00$ |
| $.217 \mathrm{E}+00$ | $.694 \mathrm{E}+00$ | $.159 \mathrm{E}+03$ | $.714 \mathrm{E}+01$ | $.361 \mathrm{E}+00$ | $.273 \mathrm{E}-01$ |


[^0]:    else if (Itask.eq.4) then
    
    
    *-------Store end-of-year data to a special file.
    CALL OPSTOR ('GRDUR', GRDUR)
    CALL OPSTOR
    CALL OPSTOR
    ('WAG', WMG)
    ('WRR',
    End if

[^1]:    * -- Calculate the stress factors for drought before DVS $=0.5$,
    as average over the rooted soil profile
    IF (DVS.LT. 0.5 ) THEN

[^2]:    
    CALL ASTRO (DOY, LAT, SC, DSO, SINLD,COSLD, DAYL, DSINB, DSINBE)
    assimilation set to zero and three different times of the day (HOUR)
    DTGA $=0$.
    DO 10 Il-1, IGRuss
    *--------at the specified HOUR, radiation is computed and used to compute HOUR $=12.0+$ DAYI $* 0.5 *$ XGAUSS (II)
    *--------sine of solar elevation

[^3]:    -selection of depth of canopy, canopy assimilation is set to zero
    FGROS $=0$.
    DO 10 I1-1, IGAUSS
    LAIC $=$ LAI $*$ XGA

[^4]:    

