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Chapter 1. General introduction

1.1 Introduction to the research project

Logistics systems in different sectors currently face the challenge of improving their sus-

tainability performance induced by the increasing environmental and social concerns such

as population growth, climate change, environmental pollution, resource scarcity and food

safety. The trend towards being more sustainable has caused the fact that companies

have to meet the challenges that sustainability brings to their business. A universally

accepted definition of sustainable logistics or transportation systems, however, does not

exist (Janic, 2006; Mihyeon Jeon and Amekudzi, 2005). The definitions often capture

attributes of logistics system effectiveness and efficiency, and impacts of operations on

the economy, environment, and social quality of life (Mihyeon Jeon and Amekudzi, 2005).

In this context, sustainable logistics is concerned with not only economic issues, but also

with environmental and social ones associated with the movement of goods through a

supply chain.

From the point of food logistics, the increasing world population along with growth of

international food trade necessitates attention to avoidable product waste in Food Supply

Chains (FSCs) (Jedermann et al., 2014). According to the estimation of the Food and

Agriculture Organization of the United Nations, 32% of all food produced in the world was

lost or wasted in 2009 (Lipinski et al., 2013). Another study (Jenny et al., 2011) points out

that the industrialized world wastes more food per-capita than the developing countries.

Their estimations indicate that the per capita food waste by consumers in Europe and

North-America is 95-115 kg/year, whereas it is only 6-11 kg/year in sub-Saharan Africa

and South/Southeast Asia. In order to curb food waste, Tesco in the UK has started

to alter its supply chain logistics by using new packaging options1, and tracking food

loss and waste in its value chains2. Wal-Mart undertook a pilot project to avoid food

waste at its Japanese stores in 2013. In order to achieve this goal, the company strived

to accurately estimate, order and stock the required products, and performed regular

freshness checks to guarantee freshness and reduce throwaway3. As can be seen from

these examples, leading companies in developed economies have already started to search

for opportunities to control food waste in their supply chains.

Addressing food waste reduction also contributes to the improvement of sustainability

(Kaipia et al., 2013; Chabada et al., 2013). Wasted food represents a waste of resources

1http://fruitnet.com/fpj/article/161057/tesco-alters-its-supply-chain-logistics-to-cut-

food-waste,Onlineaccessed:October2014
2http://reports.weforum.org/enabling-trade-from-valuation-to-action/enabling-trade-from-

farm-to-fork/a4-benefits-of-improved-agricultural-supply-chains/,Onlineaccessed:October2014
3http://joc.com/international-logistics/cool-cargoes/wal-mart-turns-attention-reducing-

food-waste_20140804.html,Onlineaccessed:December2014

2

http://fruitnet.com/fpj/article/161057/tesco-alters-its-supply-chain-logistics-to-cut-food-waste, Online accessed: October 2014
http://fruitnet.com/fpj/article/161057/tesco-alters-its-supply-chain-logistics-to-cut-food-waste, Online accessed: October 2014
http://reports.weforum.org/enabling-trade-from-valuation-to-action/enabling-trade-from-farm-to-fork/a4-benefits-of-improved-agricultural-supply-chains/ , Online accessed: October 2014
http://reports.weforum.org/enabling-trade-from-valuation-to-action/enabling-trade-from-farm-to-fork/a4-benefits-of-improved-agricultural-supply-chains/ , Online accessed: October 2014
http://joc.com/international-logistics/cool-cargoes/wal-mart-turns-attention-reducing-food-waste_20140804.html , Online accessed: December 2014
http://joc.com/international-logistics/cool-cargoes/wal-mart-turns-attention-reducing-food-waste_20140804.html , Online accessed: December 2014
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used in production such as land, water, energy or inputs together with the emissions

generated during the course of producing and distributing that food (Jenny et al., 2011;

Garnett, 2011). Studies in logistics literature, therefore, address food waste not only to

improve economic performance but also to reduce the resultant potential environmental

and societal impacts (see Bourlakis et al. (2014); Govindan et al. (2014); Rijpkema et al.

(2014)). Correspondingly, food waste is regarded as one of the influential indicators

of sustainable development and its importance has been acknowledged by society. For

instance, the year 2014 has been designated ”European year against food waste” by the

European Parliament4. Therefore, the need to reduce food waste throughout the FSCs

to improve economic, environmental and social performance is rising on the agenda of all

involved companies.

Logistics activities, especially transportation, are significant sources of air pollution af-

fecting human health and greenhouse gas emissions that are responsible for global warm-

ing (Wang et al., 2011). Emissions result in other environmental threats as well, such

as depletion of the ozone layer, broken biological cycles, and increased acidification of

ground and water (Jonsson, 2008). These issues have increased the awareness of the need

to reduce transportation energy use and emissions, which are naturally treated as the

main Key Performance Indicators (KPIs) to assess sustainability performance in logistics

management literature (see Kolb and Wacker (1995); Léonardi and Baumgartner (2004);

Kamakaté and Schipper (2009); Coley et al. (2009); Kamakaté and Schipper (2009)).

With regard to food logistics, food transport is growing due to increasing global food

consumption and distances between production and consumption, and is therefore an

important source of CO2 emissions (Whitelegg, 2005).

Energy use and emissions from transportation operations are also among the most popu-

lar indicators used to assess the sustainability performance of logistics systems in practice.

The transport sector is responsible for nearly 25% of European Union (EU) greenhouse

gas emissions5. According to the European Environment Agency, CO2 emissions from

transport activities are projected to grow to 25-28% above the 1990 level by 2030 due

to the steady increase in passenger and freight demand (Whitelegg, 2005). The survey

conducted by the Deutsche Post DHL in six key global markets (India, China, the U.S.,

Brazil, the UK, and Germany) with 3600 business and end consumers presents insights

on how the logistics industry would develop in terms of sustainability (DHL, 2010). Some

of the conclusions drawn in this study are that: (1) almost two-thirds of business cus-

tomers believe that transportation will be used by companies as a key lever to reduce

4http://www.europarl.europa.eu/RegData/bibliotheque/briefing/2014/130678/LDM_BRI(2014)

130678_REV1_EN.pdf,Onlineaccessed:December2014
5http://ec.europa.eu/clima/policies/transport/index_en.htm,Onlineaccessed:September2014

3

http://www.europarl.europa.eu/RegData/bibliotheque/briefing/2014/130678/LDM_BRI(2014)130678_REV1_EN.pdf, Online accessed: December 2014
http://www.europarl.europa.eu/RegData/bibliotheque/briefing/2014/130678/LDM_BRI(2014)130678_REV1_EN.pdf, Online accessed: December 2014
http://ec.europa.eu/clima/policies/transport/index_en.htm, Online accessed: September 2014
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their carbon footprint, (2) 51% of the end customers prefer green transport solutions

rather than cheaper solutions, and 57% of business customers will go for being a greener

provider rather than a cheaper one in the coming years, and (3) more than two-thirds of

the respondent companies already have carbon reduction targets or plans, which shows

that transportation energy use and emissions are among the most prominent logistical en-

vironmental issues in practice. For instance, companies such as Deutsche Post DHL and

UPS set long term objectives to increase carbon efficiency and transform the way they

do businesses along the way (DHL, 2010; UPS, 2013). A study (Piecyk and McKinnon,

2010) conducted in the UK on specialists from a broad range of organizations involved

in logistics, e.g., producers, retailers, logistics service providers and trade bodies, can

be given as another example to reflect the logistics sector awareness on global warming

in practice. It is estimated in this study that the global warming concern will exert a

significant influence on freight transport operations over 80% of the businesses by 2020.

To conclude, as shown through these examples, the logistics sector will be shaped by not

only economic forces, but also by environmental and social concerns.

Management of transportation energy efficiency improvement and emission reduction

opportunities have already been put on the agenda of (logistics) companies. Emission

reduction targets set, and policy measures and strategies devised by governments and

the EU to reduce environmental externalities of freight transport force companies to

take measures against environmental degradation. Examples of environmental regula-

tions are: (i) eco-labelling systems to environmentally approve transportation such as

EU flower within the EU, (ii) emission rights trading that ensures to have a system which

rewards companies for having reduced emissions, and (iii) specific regulations for heavy

vehicles to drive in bus lanes in cities, e.g., only heavy vehicles which comply with specific

environmental requirements are allowed to drive in environmental zones, whereas older

vehicles are not allowed to drive into inner-city areas (Jonsson, 2008). These examples

show that authorities have multiple means of control to reduce the energy use and emis-

sions from transportation activities. In response to that companies have to re-evaluate

their operations with respect to externalities.

In summary, reducing the amount of food waste and raising transportation energy effi-

ciency to reduce greenhouse gas emissions are recent challenges confronted by the food

industry (Defra, 2006). These challenges require the development of innovative logistics

systems that are able to balance economic factors with environmental and social concerns.

In response, this research develops models that give decision makers the opportunity to

incorporate additional environmental and social concerns besides cost into the logistics

decision making process. Accordingly, section 1.2 briefly discusses the progress towards

4
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Sustainable Food Logistic Management. Section 1.3 discusses the need for decision sup-

port models. Section 1.4 describes the research design including research objectives and

methodologies employed. Section 1.5 provides the thesis outline. The last section (Section

1.6) presents the included publications.

1.2 Towards Sustainable Food Logistics Management

Logistics Management (LM) provides competitive advantage to companies. According to

the Council of Supply Chain Management Professionals, it is a part of supply chain man-

agement, and plans, implements, and controls the forward and reverse flow and storage

of goods, services, and related information to meet requirements requested by customers6

and imposed by stakeholders such as the government (new rules and regulations such as

the General Food Law) and the retail community (e.g., Global Food Safety Initiative)

(Van der Vorst et al., 2005). For the last two decades food logistics systems have seen the

transition from traditional LM to Food Logistics Management (FLM), and successively,

to Sustainable Food Logistics Management (SFLM). Figure 1.1 illustrates the transition

towards SFLM through these three sequential phases.

As shown in Figure 1.1, LM coordinates and optimizes logistics activities such as trans-

portation, inventory management, storage and warehousing, materials handling, packag-

ing, information processing, demand forecasting, procurement, facility location, produc-

tion planning, customer service, packing and loading, etc. (Chopra and Meindl, 2010;

Jonsson, 2008). These activities require several decisions to be made: determining inven-

tory levels, delivery quantities and schedules, production quantities and schedules, routes

to deliver products, and selecting transport mode and places for unloading-reloading

products. Traditional LM addresses these decisions mainly to achieve cost reduction

and responsiveness improvement, though this is changing due to increasing food related

concerns and sustainability awareness.

FSCs are composed of organizations that produce and distribute vegetable or animal-

based products to consumers (Van der Vorst et al., 2005). An additional challenge of

food logistics compared to most of the other sectors is that products can be discarded

once they are non-compliant with quality standards or are not sold before the “best

before” dates (Lipinski et al., 2013). Specific characteristics of FSCs mainly related to

the high perishability of food products require different management approaches that

result in the development of FLM. The objectives in LM has been broadened through the

inclusion of new key logistics issues, among which improved food quality and reduction

6http://www.cscmp.org,Onlineaccessed:February2014

5
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Figure 1.1: Towards Sustainable Food Logistics Management (Ovals indicate the key logistics
issues that are taken into account.)

of food waste are the main ones (Van der Vorst et al., 2011), as shown in Figure 1.1.

Apart from the transition due to the food related concerns, there is still progress in the

development of logistics systems which are more sustainable or resource efficient.

Supply chain sustainability is the consideration of environmental factors and social as-

pects of operations in Supply Chain Management in addition to the traditional economic

concerns (Brandenburg et al., 2014). Improving supply chain sustainability has become

one of the major topics for researchers and practitioners in the last decade. Pressures

from various stakeholders such as customers and non-governmental organizations, global

competition and economic concerns, and legislation are among the main reasons for the

increased interest in the field (see respective references in Frota Neto et al. (2008); Ashby

et al. (2012); Andiç et al. (2012); Hassini et al. (2012)). Commitment to sustainability

practices might give benefits to organizations such as improved brand reputation, new

products and markets, and enhanced customer satisfaction (Bettley and Burnley, 2008;

Abdallah et al., 2012). The mentioned reasons and drivers have affected almost all sup-

ply chains including FSCs and pushed companies to search for opportunities to mitigate

negative environmental and social impacts, become more transparent and at the same

time retain profitability.

The fast evolution of sustainability leads to the development of a new fast-growing con-

cept called Sustainable Food Logistics Management. SFLM mainly aims to improve the

supply chain sustainability and the ability to track a product through the whole chain

(traceability) along with the previous objectives of LM and FLM phases (see Fig. 1.1).

Accordingly, this transition has given rise to practical necessities of taking additional

KPIs into account while managing FSCs in a sustainable way. Total amount of land use,
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total energy use and emissions generated can be given as examples of indicators for envi-

ronmental performance that reflect the state of the physical environment affected by the

FSC operations. In this context, SFLM enables the organizations in FSCs to fulfil market

demand by getting the right food product, in the right quantity and quality, at the right

time, to the right place, with the right cost while being as sustainable as possible.

Acknowledging the importance of the transition towards being more sustainable, the EU

has launched several research projects to improve the economic, environmental and social

performance of the FSCs. Two of these projects, SALSA and SCALE, have supported

this research:

• SALSA (2010-2013) is a collaborative project funded by the European Commission

under the theme FP7 KBBE (Knowledge-Based Bio-Economy)7. Partners from

industry, research institutes, and universities collaborated in this project to improve

the Latin American and European Union soy bean and beef chains sustainability

by balancing the three aspects of sustainability: Profit, People and Planet. The

SALSA project comprised seven work packages, each of which was characterized

by different tasks (e.g., assessment of sustainability and market performance for

the selected food chains, implementation of eco-innovative tools or development

of a web-based platform supporting the creation of sustainable value added food

chains).

• SCALE (2012-2015) is a collaborative project partly funded by INTERREG IVB

North-West Europe, which is a financial instrument of the European Union’s Cohe-

sion Policy8. The SCALE project has partners from industry and academy to in-

crease economic competitiveness and improve environmental and social sustainabil-

ity of food and drink supply chain logistics across North-West Europe. To achieve

that objective, three interconnecting work packages were defined (i.e., development

of frameworks and tools to measure and then optimize the economic, environmen-

tal and social costs of each unit of food delivered to the consumer, development of

frameworks that can support multi-party collaborative relationships, development

of ICT tools to underpin the activities of the previous two work packages).

7Knowledge-based sustainable value-added food chains: innovative tools for monitoring ethical, environmen-
tal and socio-economical impacts and implementing EU-Latin America shared strategies (FP7/2007-2013) un-
der grant agreement number 265927. For more information: http://www.salsaproject.eu/,Onlineaccessed:

August2014
8Step change in agri-food logistics ecosystems. The SCALE is a collaborative project partly funded by

INTERREG IVB North-West Europe, which is a financial instrument of the European Union’s Cohesion Policy.
For more information: http://www.projectscale.eu/,Onlineaccessed:August2014.
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This research has contributed to the SALSA and SCALE projects by (i) conducting

literature reviews that reflect the state of the art in quantitative models for SFLM, and (ii)

developing logistics decision support tools that were applied in case studies to contribute

to the sustainability performance of the FSCs.

1.3 Decision support models for better logistics performance

The main challenge of SFLM is to determine how to incorporate additional dimensions

(KPIs) into the decision making process, given the fact that trade-offs often exist among

these indicators. The trend towards ensuring sustainability in food logistics requires com-

panies to change the way they manage their supply chains (Abdallah et al., 2012) and

to find innovative ways for improving their operations to gain a competitive advantage.

In particular, cost optimization of logistics operations without showing respect to envi-

ronmental and social externalities does not guarantee long-term success for companies.

Sustainability objectives, thus, have to be considered alongside with other performance

objectives when devising an operations strategy (Bettley and Burnley, 2008). Addition-

ally, the perishability factor that makes decision making more challenging in food logistics

systems needs to be taken into account while the relevant decisions are being made. These

aspects increase the need for advanced decision support models which can capture current

food supply chain dynamics.

Operations Research (OR) models can support decision making in food logistics which

have increased complexity due to the aforementioned progression in FSCs. Especially in

the last decade, researchers’ tendency to address food logistics problems has increased.

Common interest is to improve the performance in food logistics systems by means of

developing advanced models that incorporate the environmental and social KPIs besides

the traditional ones, cost and responsiveness. There exist some recent studies (Meneghetti

and Monti, 2014; Validi et al., 2014; Govindan et al., 2014; Sazvar et al., 2014) on designing

and operating sustainable food distribution networks. The reviewed literature on SFLM

shows that research on the topic is, however, still scarce and the food industry needs

more advanced models for the entire chain to support business decisions and capture

SC dynamics (Akkerman et al., 2010; Dabbene et al., 2008). Even in broad terms, not

specific to food logistics, OR models are mainly interested in economic concerns (e.g.,

profit maximization or cost minimization) and often do not recognize operations impact

to environment or society (Dekker et al., 2012). However, it is an evolving field, and

the interest in how to incorporate environmental and social considerations and practices

into the OR models to improve sustainability of operations has started to appear in
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research papers more than before. This movement is beneficial for society and industry, as

improvement of quantitative decision support models will contribute to the development

of Sustainable Supply Chain Management (Bloemhof, 2005).

As discussed in the previous sections, making food logistics systems more sustainable

through paying more attention to transportation energy use and emissions, and product

waste is one of the current trends. Perusal of the literature shows that researchers propose

various logistics improvement opportunities to better manage the aforementioned KPIs.

Table 1.1 shows the main logistics improvement opportunities for transportation energy

use and emissions, and product waste. The review of literature on the logistics OR models

reveals that not sufficient attention has been given to exploit these improvement opportu-

nities to have more sustainable logistics systems. Therefore, there is potential to improve

logistics OR models by incorporating the indicated logistic improvement opportunities.

This way of improvement will allow decision makers to assess logistics performance not

only based on cost but also on other key sustainability indicators.

Table 1.1: Logistics improvement opportunities for transportation energy use and emissions,
and product waste

KPIs Improvement opportunities Respective references
Use of environmentally friendly vehicles
Better logistics network management
Use of multi-modality and/or intra-modality

Transportation Vehicle utilisation improvement (average payload) WEF (2009); McKinnon and
energy use Better route planning Edwards (2010); Garnett (2011);
and Less exposure to traffic congestion McKinnon (2011); Pieters et al.
emissions Use of alternative distribution systems (2012); Wakeland et al. (2012);

Better vehicle sharing (collaboration) Qu et al. (2014).
Use of bio-fuels
Avoiding empty hauls
Use of comprehensive fuel estimation models

Product waste

Tracking inventory age (shelf life information)
Better inventory planning
More efficient information sharing (VMI system) Parfitt et al. (2010); European-
Better control of product waste and quality loss Commission (2011); Rong et al.
Monitoring temperature history (2011); Kaipia et al. (2013);
Use of specific quality decay models Aung and Chang (2014); Coelho
Enabling food redistribution to redirect edible and Laporte (2014); Jedermann

food that would otherwise be discarded et al. (2014).
Forecasting development to utilize demand data
Improved food labelling

1.4 Research design

The discussion provided so far in this chapter points out two issues. First, reducing

food waste, and transportation energy use and emissions are the recent challenges of the
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food industry. Second, the resultant transition from a focus on traditional LM to FLM,

and successively, to SFLM adds to the complexity of logistics operations and restricts

the usage of traditional OR models in practice. From this point forth, this PhD thesis is

concerned with decision support for SFLM through enhanced models that can account for

energy use and carbon emissions from transportation operations, and/or product waste,

and logistics cost.

Stakeholders in the SALSA and SCALE projects also showed interest in transportation

energy use, emissions and food waste besides logistics cost as key sustainability indicators.

These additional environmental and social indicators are mainly related to the logistics

activities of transportation and inventory management, which have been introduced in

Figure 1.1. Growing food consumption along with increasing distances between produc-

tion and consumption contribute to growth in transportation which consumes energy and

is one of the main sources of emissions in logistics systems. In contrast to most of the

other supply chains, inventory management in FSCs is confronted with the additional

problem of product waste. Therefore, transportation and inventory management in FSCs

require special attention to control transportation energy use and emissions, and product

waste. Accordingly, the focus in this thesis is on transportation and inventory manage-

ment activities in FSCs. These activities comprise the following three key decisions:

• Inventory levels: How much inventory to keep at each actor?

• Delivery quantity and schedule: When to deliver to each actor and how much to

deliver to each actor each time it is served?

• Routes to deliver products: How to combine several customer deliveries into vehicle

routes?

In this research context, the research on our problem necessitates adopting logistics deci-

sion support models to accommodate the transportation energy use and emissions, and

product waste concerns which change FSCs beyond recognition. The enhanced decision

support models can be used by decision makers to improve the performance of the sus-

tainable food logistics systems in terms of logistic cost, transportation energy use and

carbon emissions, and/or product waste. Accordingly, the overall objective of this thesis

was defined as follows:

Overall Objective: To obtain insight in how to improve the sustainability performance of

food logistics systems by developing decision support models that can address the con-

cerns for transportation energy use and consequently carbon emissions, and/or product

waste, while also adhering to competitiveness.
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In line with this overall objective, we have defined five main research objectives which

are introduced in the following subsections.

1.4.1 Research opportunities

The progression to SFLM has changed the key logistical aims and accordingly raised the

interest in better decision support models that are able to address the additional sustain-

ability concerns. Much research, including both quantitative and qualitative approaches,

is devoted to improve performance of food logistics systems. Literature review studies

such as Ahumada and Villalobos (2009a); Akkerman et al. (2010); James et al. (2006);

Seuring and Muller (2008); Beske et al. (2014) aim to reflect the state of the art and

present research opportunities in the fields of FSCs and/or sustainability. Among these

studies, Akkerman et al. (2010) and Beske et al. (2014) address both FSCs and sustain-

ability issues together. These studies, however, do not cover the contributions regarding

the development from LM to FLM towards SFLM, which would be useful to reveal the

research progress on the topic. Moreover, they do not discuss in detail the key logistical

aims, KPIs and logistics system scope issues taken into account in the models. Such

kind of information would enable to better evaluate the practical usability of the models

and to better present the related modelling challenges. This resulted in the first research

objective (RO) of this thesis:

RO1: To identify key logistical aims, analyse available quantitative models and point

out modelling challenges in SFLM.

RO1 is investigated through a conducted literature review on quantitative and qualitative

studies in FLM. As will be described in Chapter 2, the main findings of the literature

review indicate that (i) most studies rely on a completely deterministic environment, (ii)

the food waste challenge in logistics has not received sufficient attention, (iii) traveled

distance is often used as a single indicator to estimate related transportation cost and

emissions, and (iv) most studies propose single objective models for the food logistics

problems. These findings motivated us to work on the following research objectives RO2,

RO3, RO4 and RO5.

Each of these research objectives addresses different logistics problems. The two main

reasons for selecting these logistics problems are: (i) they deal with transportation and/or

inventory management activities, which form the focus of this thesis, and (ii) they com-

prise some of the intrinsic improvement opportunities for the transportation energy use
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and emissions, and product waste introduced in Table 1.1. Note that transportation en-

ergy use and emissions, and product waste are respected as the environmental and social

concerns in this research.

1.4.2 Environmentally friendly network management for perishable products

Increased distances between partners in supply chains due to globalization (Elhedhli and

Merrick, 2012) have boosted the importance of logistics network management. A network

problem generally comprises two main decisions: inventory amounts at the supply chain

partners and product allocation decisions among them. Traditional OR models on the

problem (e.g., Bilgen and Gunther (2010) and Verderame and Floudas (2009)) aim to

ensure better network management and inventory planning to reduce logistics cost. The

common assumption is that there is a centralized system in which chain partners are

collaborating vertically and horizontally. From another point of view, better network

management and inventory planning, and intrinsic vertical and horizontal collaboration

options can also serve as improvement opportunities for the indicators of transportation

energy use and emissions, and product waste as well (see Table 1.1). These inherently

existing improvement opportunities further increase the value of network management.

Several issues need to be addressed to better assist decision makers in solving network

problems. First, network problems in practice usually involve more than one transporta-

tion alternative between chain partners through the development of multi-modal (rail,

road, air, etc.) and multi-vehicle (vehicles different in age, size, type, etc.) transporta-

tion systems. Evaluation of all transportation alternatives between partners while making

network decisions can contribute to both economic and environmental performance of the

whole supply chain, if the environmental externalities of these options are considered along

with economic factors. Second, fuel consumption for road freight transportation depends

not only on distance, as commonly assumed, but also on other factors such as road struc-

ture, vehicle and fuel types, and vehicle loads (see Hsu et al. (2007) and Bektaş and

Laporte (2011)). Ignoring this fact might lead to missing economic and environmental

opportunities. For instance, in a network problem, empty legs can occur before getting

to sites for service and during the return to vehicle rental firms, or road structures (mo-

torway, rural, urban) can be different in each network arc. For these kinds of cases, the

use of comprehensive fuel estimation models which are able to explicitly estimate trans-

portation energy use can be useful to make more sustainable decisions. Third, products

can have limited shelf lives which have potential to affect network decisions. Therefore,

the perishability nature of the products might restrict the usage of the decision support

tools that assume unlimited product shelf lives. Even though many studies have been
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conducted on network planning, the review of previous research showed that none of these

addressed the above mentioned issues simultaneously. Following this, second RO of this

thesis was defined:

RO2: To analyse the relationship between economic (cost) and environmental (trans-

portation carbon emissions) performance in a network problem of a perishable product.

RO2 is investigated in Chapter 3 through a developed deterministic multi-objective linear

programming (MOLP) model of a Network Problem. The developed model was applied

to an international beef logistics chain operating in Brazil and exporting beef to the

European Union.

1.4.3 Environmentally friendly routing with time-dependent speed

To alleviate the environmental (e.g., energy usage and congestion) and social (e.g., traffic-

related air pollution, accidents and noise) consequences of logistics operations, multi-

echelon distribution strategies are becoming popular. For instance, to address issues

in two-echelon distribution systems and to manage freight transportation in urban ar-

eas, several projects (e.g., CIVITAS9 and ELCIDIS10) have been undertaken in recent

years. The two-echelon capacitated vehicle routing problem (2E-CVRP) is a distribution

system in which intermediate capacitated depots are placed between a supplier and fi-

nal customers (Feliu et al., 2007). In such a system, large trucks are used to transport

freight over long-distances from suppliers to intermediate depots where consolidation

takes place. Afterwards, the products are transferred to destination points using small

and environmentally-friendly vehicles.

The basic 2E-CVRP assumes that distribution costs and travel times between nodes are

known in advance and are constant (Feliu et al., 2007; Perboli et al., 2011). As discussed

previously, fuel consumption and therefore distribution cost can change based on vehicle

load, since it is dependent on the visiting order of the customers. Vehicle speed can

change according to the traffic density at a certain time and location as well, which

makes it impossible to know the total travel time in advance (see Figliozzi (2011) and

Jabali et al. (2012)). The 2E-CVRP aims to manage freight transportation in urban

areas, therefore speed changes due to traffic congestion at certain times and locations

might affect the routing decisions. The review of previous research showed that such an

9An initiative which was launched in 2002 to redefine transport measures and policies in order to create
cleaner, better transport in cities. http://www.civitas.eu/index.php?id=79&sel_menu=23&measure_id=620,

Onlineaccessed:August2013
10A project about electric vehicle city distribution system in Rotterdam, Netherlands. http://www.

managenergy.net/resources/779,Onlineaccessed:August2013
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attempt had not been made for the 2E-CVRP with time-dependent travel times. This

was the motivation behind RO3 of this thesis:

RO3: To investigate the performance implications of accommodating explicit trans-

portation energy use and traffic congestion concerns in a 2E-CVRP.

RO3 is addressed in Chapter 4 through a developed deterministic mixed integer linear

programming (MILP) model of a 2E-CVRP. The developed model was applied to a su-

permarket chain operating in the Netherlands.

1.4.4 Environmentally friendly inventory routing for perishable products

with demand uncertainty

Vendor Managed Inventory (VMI), which is an effective strategy to gain competitive

advantage in a supply chain, refers to a collaboration between a vendor and its customers

in which the vendor takes on the responsibility of managing inventories at customers

(Hvattum and Løkketangen, 2009). The vendor has to bear the responsibility that the

customers do not run out of stock in return for having an opportunity to decide on

quantity and time of the shipments to the customers (Andersson et al., 2010). This

integrated problem comprising inventory, distribution and routing decisions fits to the

well-known problem structure in inventory literature called inventory routing problem

(IRP) with one-to-many (single supplier and multiple customers) distribution structure

(Andersson et al., 2010; Coelho et al., 2012b). Studies on the IRP contribute to the

improvement of sustainable logistics systems as well, since they aim to ensure better route

planning, better vehicle sharing through vertical collaboration, better inventory planning,

and more efficient information sharing through a VMI system. Note that these issues

are listed as some of the improvement opportunities for the indicators of transportation

energy use and emissions, and product waste in Table 1.1.

Some traditional assumptions in the IRP literature can be relaxed to better benefit from

the application of the proposed models in current food logistics systems. These assump-

tions are summarized as follows. First, a common assumption of constant and foreknown

distribution costs between nodes ignores the effect of vehicle load on fuel consumption.

Vehicle load is dependent on the visiting order of the customers and can change the fuel

consumption and therefore fuel cost (Kara et al., 2007; Kuo and Wang, 2011). As shown

in the literature (e.g., Bektaş and Laporte (2011) and Franceschetti et al. (2013)), re-

ductions on operational costs and environmental externalities can be obtained through

an explicit consideration of fuel consumption. Second, IRP models often disregard the

potential product waste that can occur during inventory keeping due to the perishability
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nature of some products. Ignoring product perishability might result in undesired stock

outs at customers and therefore is one of the main obstacles for the application of the ba-

sic IRP models in food logistics management. Third, the deterministic customer demand

assumption, which is commonly made in the literature, can be regarded as doubtful from

a practical point of view. These weaknesses of existing attempts motivated us to enhance

the traditional models for the IRP and accordingly RO4 of this thesis was defined:

RO4: To investigate the performance implications of accommodating explicit trans-

portation energy use, product waste and demand uncertainty concerns in an IRP.

RO4 is addressed in Chapter 5 through a developed chance-constrained programming

model of an IRP with one-to-many distribution structure and demand uncertainty. The

developed model was applied to the fresh tomato distribution operations of a supermarket

chain.

1.4.5 Environmentally friendly inventory routing for perishable products

with horizontal collaboration and demand uncertainty

An IRP with many-to-many distribution structure concerns the transportation of prod-

ucts between a number of suppliers and customers (Andersson et al., 2010; Coelho et al.,

2012b). It has thus a horizontal collaboration option among suppliers as distinct from

its previously introduced one-to-many case. Horizontal collaboration, along with vertical

collaboration, contributes to better vehicle sharing, which increases the value of IRP with

many-to-many distribution structure.

Some studies have analysed the potential savings through the application of horizontal

collaboration in different logistics problems such as a routing problem (Krajewska et al.,

2008), a bin-packing problem (Vanovermeire et al., 2013) and a distribution problem (van

Lier et al., 2014). Apart from these quantitative attempts, according to the large-scale

survey of Cruijssen et al. (2007) in LSPs, companies strongly believe that horizontal

collaboration can improve their quality of services and profitability. A review of the liter-

ature showed that researchers did not explicitly address horizontal logistics collaboration

in IRP. The findings in other logistics problems encouraged us to explicitly address the

horizontal logistics collaboration in IRP as well. Following this, RO5 of this thesis was

defined:

RO5: To analyse the benefits of horizontal collaboration in a green IRP for perishable

products with demand uncertainty.

RO5 is addressed in Chapter 6 through a developed chance-constrained programming

model of an IRP with many-to-many distribution structure and demand uncertainty.
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The developed model was applied to the distribution operations of two suppliers, where

the first supplier produces figs and the second supplier produces cherries.

1.5 Thesis outline

The thesis starts with a literature review of quantitative and qualitative studies in FLM

in Chapter 2. In the subsequent chapters, the following four decision support models have

been presented for different logistics problems. Chapter 3 presents a MOLP model on

Network problem with direct shipment. Chapter 4 presents a MILP model on 2E-CVRP.

Chapter 5 presents a chance-constrained programming model on IRP with single supplier

and multiple customers. Chapter 6 presents a chance-constrained programming model

on IRP with multiple suppliers and multiple customers.

Figure 1.2 summarizes the research framework followed in this PhD thesis. It shows that

the studied logistics problems deal with transportation and/or inventory management

activities and comprise several intrinsic improvement opportunities for transportation

energy use and emissions, and product waste. The literature review in Chapter 2 identi-

fies key logistical aims, analyses available quantitative models and points out modelling

challenges in SFLM. The subsequent chapters (Chapters 3, 4, 5 and 6) focus on developing

enhanced decision support models by incorporating logistics improvement opportunities

to make them more useful for decision makers in SFLM and to better manage a set of KPIs

in food logistics. The incorporated logistics improvement opportunities and considered

KPIs are presented in Figure 1.2.

In the last chapter (Chapter 7) the conclusions and main findings following from the

conducted studies are presented. Additionally, limitations of the conducted studies and

recommendations on further research, as well as managerial implications are provided.
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Figure 1.2: Research framework

1.6 Included publications

This thesis is a collection of five papers that all aim at the improvement of sustainable

food logistics systems. The papers are either published, accepted for publication, or under

review for journal publication. The chapters contain the following papers:

Chapter 2: Soysal, M., Bloemhof-Ruwaard, J.M., Meuwissen, M.P., Van der Vorst,

J.G.A.J. (2012). A review on quantitative models for sustainable food logistics man-

agement. International Journal on Food System Dynamics, 3(2), 136-155.

Chapter 3: Soysal, M., Bloemhof-Ruwaard, J.M., Van der Vorst, J.G.A.J. (2014). Mod-

elling food logistics networks with emission considerations: The case of an international

beef supply chain, International Journal of Production Economics, 152, 57-70.

Chapter 4: Soysal, M., Bloemhof-Ruwaard, J.M., Bektaş, T. (2015a). The time-dependent

two-echelon capacitated vehicle routing problem with environmental considerations, In-

ternational Journal of Production Economics, 164, 366-378.

Chapter 5: Soysal, M., Bloemhof-Ruwaard, J.M., Haijema, R., Van der Vorst, J.G.A.J.

(2015b). Modeling an inventory routing problem for perishable products with environ-

mental considerations and demand uncertainty. International Journal of Production Eco-

nomics, 164, 118-133.
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Chapter 6: Soysal, M., Bloemhof-Ruwaard, J.M., Haijema, R., Van der Vorst, J.G.A.J.

Modeling a green inventory routing problem for perishable products with horizontal col-

laboration and demand uncertainty. Submitted to an international journal on Nov 30,

2014. (Under review)
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Chapter 2

A review on quantitative models for

sustainable food logistics

management

This chapter is based on the published journal article:

M. Soysal, J.M. Bloemhof-Ruwaard, M.P.M. Meuwissen, J.G.A.J. van der Vorst (2012) ”A

review on quantitative models for sustainable food logistics management” International

Journal on Food System Dynamics, Vol. 3, No. 2, pp. 136-155.

In this chapter, we investigate RO1:

To identify key logistical aims, analyse available quantitative models and point out mod-

elling challenges in sustainable food logistics management.
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2.1 Introduction

Food Supply Chains (FSCs) are composed of organizations that produce and distribute

vegetable or animal-based products to consumers. Due to food related diseases (e.g.

EHEC, BSE) and globalisation of food production (Nepstad et al., 2006), consumers

have become more aware of the origin and nutritional content of their food. This leads

to a growing interest in traceability, freshness and quality of products. At the same

time, producers expand product assortments to satisfy consumer’s broadening desires.

This results in more complicated lot sizing decisions and increased transportation costs.

An expected continuous increase in world population brings forward another important

concern, food security, regarding the availability of food in different parts of the world.

The aforementioned developments explain why Food Supply Chain Management (FSCM)

has become an important issue in both public and business agendas.

In addition to traditional Supply Chain Management1 (SCM) objectives, such as cost

reduction and responsiveness improvement, FSCM requires a different management ap-

proach that also considers intrinsic characteristics of food products and processes (Van der

Vorst et al., 2011). Over the last few decades, scholars and practitioners have emphasized

FSCM more than ever before. Additionally, FSCs just as other supply chains have re-

cently been confronted with another trend, a request for sustainability, necessitating new

and advanced approaches in FSCM. Sustainability is improving the quality of life not

only for the current generation but also for the future generations (Brundtlandt, 1987).

Sustainable development deals with balancing between ecological, economic and social

impacts at the level of society in the long term (Aiking and Boer, 2004). This means that

it stresses the importance of key issues closely related to human welfare and the natural

environment. Therefore, a product needs to be socially fair and environmentally friendly

in addition to being produced efficiently, competitively and profitably (Euclides Filho,

2004). The fast evolution of sustainable development changes the goals in almost every

supply chain (SC) including FSCs and makes traditional strategies inappropriate. This

has led to the development of a new fast-growing concept: Sustainable Food Supply Chain

Management (SFSCM) (c.f. Seuring and Muller, 2008; Ahumada and Villalobos, 2009a).

The major factors contributing to the increased interest in SFSCM are: raising conscious-

ness of the importance of sustainable system dynamics and, related to that, changing reg-

ulations set by governments that enact strict rules on food safety and sustainability issues.

The main aim of these legislations is to impose firms taking necessary precautions against

any negative social and environmental impacts of their operations. Companies operating

1Further on in the text, the terms Supply Chain Management and Logistics Management will be used inter-
changeably.
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in the agriculture and food sector are confronted with the following: (1) accelerating en-

vironmental and social impact assessment policies and standards such as HACCP, BRC

or ISO22000 enacted by governments; (2) the emerging concept of extended producer re-

sponsibility supporting the shift from ”cradle to grave” to ”cradle to cradle” perspective

(Frota Neto et al., 2009) pushed by either governments or influential private institutions,

and (3) gradually increasing preoccupation in society to live well without compromising

future generation’s rights to prosper.

Unsurprisingly, this progression from traditional SCM to FSCM and now to SFSCM in-

creases the complexity of supply chains and results in more challenging logistics manage-

ment. As defined by the Council of Supply Chain Management Professionals: “Logistics

management is that part of supply chain management that plans, implements, and con-

trols the efficient, effective forward and reverse flow and storage of goods, services, and

related information between the point of origin and the point of consumption in order

to meet customers’ requirements”2. The aforementioned developments have stimulated

companies and researchers to consider multiple Key Performance Indicators (KPIs) such

as cost, perishability and sustainability in food logistics management (FLM) projects.

Companies often have to invest in a redesign of their logistics network to manage those

KPIs simultaneously. As a result, the traditional performance indicator “cost” is replaced

by the emerging triple bottom line concept in which Profit, People and Planet are the

simultaneous drivers towards performance (Van der Vorst et al., 2005). It is apparent

that this change evokes the need for an integrated approach that links food supply chain

(FSC) logistics decisions to the three pillars (economic, environmental and social pillars)

of sustainability (Chaabane et al., 2012) and at the same time manage product quality;

an approach called sustainable food logistics management (SFLM).

Sustainability in itself is not a new research area and much literature is devoted to this

subject (e.g. Klassen and Whybark (1999)). However, FSC systems are complex, com-

prising a wide diversity of products with different characteristics and quality management

requirements, enterprises, dynamic interactions and markets. This makes logistics deci-

sions concerning FSCs such as production, inventory and distribution decisions more

challenging. Quantitative models can support management decision making in these ar-

eas. At present the literature lacks an overview of the state of the art concerning these

models on SFLM (Akkerman et al., 2010).

The main aim of this study is to identify key logistical aims, analyse currently avail-

able quantitative models and point out modelling challenges in SFLM. We conduct an

academic literature review on quantitative studies in FLM that includes journal articles

2http://www.clm1.org/digital/glossary/glossary.asp,Onlineaccessed:August2012
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and books. Primary (e.g. research articles) and Secondary Sources (e.g. literature re-

views) concerning Operations Research and Operations Management disciplines are used.

Quantitative studies published within the past 25 years are covered and also qualitative

studies are consulted to broaden the discussion and to understand key logistical aims more

clearly. Literature search is carried out within well-known databases, Thomson Reuters

(formerly ISI) Web of Knowledge, Google Scholar, EBSCO, and followed by reference and

citation analyses to find related contributions. The following search criteria are employed:

SFLM, FSC production planning, FSC distribution planning, FSC quantitative models,

sustainability in FSCs, food safety/security issues in FSCs, transport management in

FSCs.

Previous literature review studies have also focussed on FSCs and/or sustainability (Ahu-

mada and Villalobos, 2009a; Akkerman et al., 2010; James et al., 2006; Seuring and

Muller, 2008). Among these studies, only Akkerman et al. (2010) consider both FSCs

and sustainability issues together. However, in contrary to this study, we cover the contri-

butions considering the development from SCM to FSCM towards SFSCM. Furthermore,

we present detailed information with respect to key logistical aims and related models to

generate a structured linkage between the practical requirements and the current mod-

elling literature using the KPIs and logistics system scope issues considered in models.

The rest of the paper is organized as follows. Section 2.2 describes the key logistical aims

in SFLM. Section 2.3 discusses the currently available quantitative models in related

literature. Section 2.4 presents the quantitative modelling challenges. Finally, section 2.5

provides the conclusions of this study.

2.2 Key logistical aims

In this section, we cover the key logistical aims in SFLM in three groups: (1) cost reduction

and improved responsiveness (SCM phase), (2) improved food quality and reduction of

food waste (FSCM phase), and (3) improved sustainability and traceability (SFSCM

phase). As it is shown, these groups can also be regarded as sequential phases towards

SFSCM. We also discuss the drivers and enablers of the key logistical aims to provide

the potential research intentions in the different phases (Table 2.1). Additionally, we

present generic logistics system scope issues of each phase that need to be considered in

quantitative models to adequately manage the related key logistical aims. Discussing the

drivers and enablers, and the generic logistics system scope issues, allows us to evaluate

and assess respectively the KPIs and the logistics system scope of the models in the

further sections.
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Table 2.1: Key logistical aims in SFLM
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2.2.1 Cost reduction and improved responsiveness

Cost reduction and responsiveness improvement aims are the two main traditional con-

cerns in SCM. SCM aims for better customer service with less cost while satisfying the

requirements of other stakeholders in the chain (Van der Vorst and Beulens, 2002; Van der

Vorst et al., 2005). Cost refers to the total global network costs from the source of supply

to its final point of consumption3. Cost reduction and control efforts have been already a

central focus in many sectors. However, economic crises and ongoing globalisation have

boosted the importance of achieving lowest cost in almost all supply chains including

FSCs. Unlike the past, food industries are heading towards international markets for

sourcing necessary products for their operations and serving products. The (compulsory)

network extension for facilitating economies of scale increases complexity in FSCs. This

results in problems that are more sophisticated than in the past (Bilgen and Ozkarahan,

2007). Automation resulting in more efficient processes enables companies to some extent

to cope with these problems. Nevertheless, the changing system still leads to the need of

advanced models and tools for planning SC operations (Mula et al., 2010). Additionally,

global coordination and optimization of geographically dispersed facilities is necessary

(Brown et al., 2001) to quickly and accurately determine the distribution options and

costs (Chopra, 2003; Simchi-Levi et al., 2009).

The second major concern, establishing improved SC responsiveness, has two main di-

mensions: the time between placing and receiving an order, and how quickly companies

respond to the dynamics of the global marketplace such as customer’s unique and rapidly

changing needs, new product introductions and new sourcing opportunities (Beamon,

1998; Fisher, 1997). Responsiveness and flexibility are key issues to maintain customer

satisfaction in the food industry (Lambert and Cooper, 2000). Nowadays consumers ask

for more product variety and high frequent deliveries with short lead times that forces fast

production in small batches. Also, demand uncertainty has increased due to increased

product variety and competition. Gunasekaran et al. (2008) state that the key factors

for forming a responsive SC are: timely information sharing, shortening the total cycle

time, coordinating the workflow, implementing good decision support systems, reducing

lead times, integrating information about operations, reducing redundant echelons and

creating flexible capacity. In parallel, new ICT tools that facilitate more advanced infor-

mation exchange (Cachon and Fisher, 2000) and collaboration (Christopher and Juttner,

2000) help companies to improve their responsiveness. Companies are also confronted

with trade-offs between the cost of the SC (efficiency) and its responsiveness, resulting in

discussions on the position of the customer order decoupling point (Van der Vorst et al.,

3http://www.scdigest.com/assets/Reps/SCDigest_Global_Logistics_Excellence.pdf,

Onlineaccessed:August2012
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2005; Van Donk, 2001). On one hand, increased product diversity and competition leads

to a make to order production system with a decrease in inventories to reduce inventory

costs; on the other hand producing to stock and keeping more inventory (buffer/safety)

in the SC guarantees quick customer response. Therefore, FSCs have the challenge to

maintain a reasonable balance between these two issues: reducing cost versus improving

customer service.

The literature review identified a number of generic logistics system scope issues that

need to be considered while managing the aforementioned key logistical aims of the SCM

phase (see Table 2.1). In terms of network design, crucial issues are: the roles and the

types of operations performed in facilities, locations of facilities, capacities allocated to

each facility, markets that facilities will serve and sources that will feed facilities (Chopra

and Meindl, 2010). Additional generic issues identified are (see Table 2.1): (i) distribu-

tion channel choice among several distribution options, (ii) outsourcing possibility, (iii)

operations excellence with respect to time, quantity and invoice, (iv) strategic inventory

positions choice, (v) transportation alternatives and constraints (e.g. time windows, num-

ber of vehicles, capacity of carriers), (vi) production choices (e.g. workforce scheduling,

multiple product handling, batch size consideration), (vii) incorporation of uncertainty

and (viii) use of information technologies (e.g. Geographic Information System or Wire-

less Sensor Network).

2.2.2 Improved food quality and reduction of food waste

Addition of food quality and food waste concerns to the key logistical aims of SCM phase

triggers the transition from SCM to FSCM. Nowadays, consumers ask for safe and high

quality products with a competitive price throughout the year (Apaiah and Hendrix, 2005;

Trienekens and Zuurbier, 2008). Increasing attention on food safety shows that health

consciousness of consumers has been increasing. In FSCs, the quality of the product con-

tinuously changes starting from the time the raw material leaves the grower (or the slaugh-

ter for meat products) to the time the product reaches the consumer (Dabbene et al.,

2008). This quality change (often degradation) necessitates keeping track of and preserv-

ing perishable product quality along the FSC to increase its freshness. These changes

in product value make conventional SC strategies, not taking perishability into account,

inappropriate (Blackburn and Scudder, 2009). Perishable products require management

approaches and models that can cope with additional challenges such as temperature

controls, quality decay or waste reduction methods (Hafliason et al., 2012; Van Donse-

laar et al., 2006). Technological improvements (e.g. temperature controlled facilities and

trucks) enable FSCs to manage food quality throughout the chain. Van der Vorst et al.
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(2011, 2007) propose the innovative concept of Quality Controlled Logistics (QCL) and

claim that the establishment of better FSC designs depends on the availability of real time

product quality information and the use of that information in advanced logistics decision

making along the chain. Apart from this work, also other studies in literature are devoted

to the special planning of perishable food products (Adachi et al., 1999; Lutke Entrup

et al., 2005; Tarantilis and Kiranoudis, 2001). Additionally, consumers have started to

desire more convenient products that require minimal preparation such as ready to eat

or just heating before eating. This tendency also requires special attention in FSCM.

The second major concern, reducing food waste, deals with preventing or reducing food

spoilage in FSCs. Throughout the FSCs among the world, food waste is progressively

increasing because of the mismanagement of perishable food products. Consumers’ desire

for high quality products with long shelf lives also contributes to the increase of food waste.

Due to being close to best before dates, many products are lost in FSCs without reaching

the consumers as consumers are not willing to buy them. For example, the annual loss

in the agro chain from the Netherlands is approximately 2,000 million eand this is 30%

up to even 50% in some sectors. Of this, 10% to 20% is lost in production, 2% to 10% in

industry and trade and 3% to 6% in the retail and out-of-home market4.

The relevant logistics system scope covers the generic issues that need to be considered

while managing the aforementioned key logistical aims of FSCM phase. Generic issues

regarding SCM phase need to be considered beforehand. The additional issues commonly

related with the specific characteristics of FSCM phase (given in Table 2.1) are: (i) batch

homogeneity controls along the chain, (ii) dynamic inventory management that tracks the

quality of products, (iii) dynamic control of goods flow that adopts conditions and logistics

to optimize market fulfilment (e.g. redirecting products to other markets having lower

quality requirements), (iv) cold chain management that considers temperature or enthalpy

controlled carriers, depots, (v) multiple temperature consideration for multiple products,

(vi) product interferences consideration (e.g. bananas produce ethylene that accelerates

the ripening process of other fruits), (vii) monitoring temperature history for accurate

quality predictions, (viii) customer requirements consideration for specific markets, (ix)

use of specific quality decay models, and (x) waste management that considers spoilages.

2.2.3 Improved sustainability and traceability

Addition of sustainability and traceability concerns to the key logistical aims of the FSCM

phase leads to the need for a new approach, SFSCM. The Kyoto Protocol setting binding

4www.minlnv.nl/txmpub/files/?p_file_id=2001236,Onlineaccessed:September2012
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targets for industrialized countries can be given as a recent step of governments towards

achieving sustainable development5. The European Union is also an influential proponent

of sustainability (Linton et al., 2007). Consciousness of consumers towards environmental

and societal issues put pressure on companies to use sustainable practices, since world

population is growing, climates are changing and natural resources are depleting. Also,

nutritional content of products (Helms, 2004), increased child labour and employment

conditions are under discussion as societal issues. Seuring and Muller (2008) summarize

the pressures and incentives for sustainability in supply chains (not only for FSCs) as fol-

lows: legislations, customer demands, response to stakeholders, competitive advantage,

pressure groups and reputation loss. As a consequence, increasing sustainability aware-

ness of stakeholders (Bettley and Burnley, 2008) inevitably affects the (logistics) decision

making process and operations in FSCs. As such, the concept of sustainable SC design

has emerged and aims to incorporate economic, environmental as well as societal deci-

sions into SCs in the design phase (Chaabane et al., 2012; Wang et al., 2011). However, it

is obvious that the environmental and social dimensions of SFSCM must be undertaken

with a clear and explicit recognition of the economic goals of the firm (Carter and Rogers,

2008; Wognum et al., 2011).

The second key logistical aim, improving traceability, has also growing impact on FSCs.

Consumers want to get more insight in production processes as well as what happened to

the product as it moves through the SC (Mogensen et al., 2009). This places emphasis on

especially the people and planet aspects of sustainability. Legislations from governments

or pressures from non-profit organizations aim to stimulate improved SC visibility in

FSCs. A good traceability system can contribute to improved transparency by offering

specific information regarding product and related processes to consumers (Fritz and

Schiefer, 2009; Wognum et al., 2011). Additionally, Fritz and Schiefer (2008) stress the

importance of intensified cooperation and collaboration between the actors of the chain

and improved monitoring of activities to achieve transparency and tracking and tracing

of products and services throughout the value chain. This integration and monitoring can

be enhanced with the use of new ICT tools to redirect the pattern of logistics operations6.

The relevant logistics system scope covers the generic issues that needs to be considered

while managing the aforementioned key logistical aims of SFSCM phase. Generic issues

regarding the SCM and the FSCM phase need to be considered beforehand. The addi-

tional issues commonly related with the specific characteristics of SFSCM phase (given

in Table 2.1) are: (i) use of impact assessment tools (e.g. Life Cycle Assessment Anal-

ysis (LCA) assesses impacts of operations associated with all stages of a product’s life

5http://unfccc.int/kyoto_protocol/items/2830.php,Onlineaccessed:June2012
6http://www.internationaltransportforum.org/pub/pdf/02LogisticsE.pdf,Onlineaccessed:June2012
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starting from-cradle-to-grave), (ii) sustainable food production consideration (e.g. using

efficient machines that can reduce water use consumption or choosing production loca-

tions considering deforestation, land use issues), (iii) sustainable inventory management

consideration (e.g. controlling energy use of cooling stocks in facilities (Akkerman et al.,

2010)), (iv) sustainable food transportation management consideration (e.g. considering

GHG emissions, fuel consumptions of different transportation modes, new energy sources

such as biofuels or noise, air pollution caused by vehicles (Dekker et al., 2012)), and (iv)

traceability possibility of products for improving transparency in FSCs (e.g. use of safety

focused traceability systems).

2.3 Currently available quantitative models on (S)FLM

After identifying key logistical aims and related generic logistics system scope issues, this

section focuses on quantitative models for FLM and SFLM. Following the paper selection

method given in section 2.1, 36 relevant papers were selected that were used for the

analysis. First, we present the main characteristics of the reviewed models (Table 2.2),

followed by an analysis of the KPIs (Table 2.3) and logistics system scope issues (Table

2.4) considered in the models for each of the key logistical aims.

2.3.1 Modelling characteristics

In recent years Operations Management and Operations Research literature has shown

a growing interest in FSCM (Akkerman et al., 2010). Correspondingly, the number

of studies using food logistics models is increasing. In this study, we investigate the

quantitative models with respect to the main characteristics (Table 2.2) summarized

below:

Modelling type: Researchers develop various types of models to facilitate the decision

making process and enable companies’ operations to be carried out in a systematic way.

The distribution of model types used in the batch of 36 papers are as follows: (i) Mixed

Integer Programming (54% of all models), (ii) Analytical (20%), (iii) Simulation (11%),

(iv) Linear Programming (6%), (v) Multi Objective Programming (6%), and (vi) Goal

Programming (3%).

(Non)linearity: Except for a few studies that have non-linear terms in their models, most

researchers use linear models. Investigating extensions of the same approach to nonlinear

cost structures (Ahuja, 2007) or building a different approach for tackling with dynamic

problems (Dabbene et al., 2008) are reasons to include nonlinear terms.
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Solution approaches and tools: Apart from standard software programs (e.g. Cplex,

Lindo), various heuristics have been developed to solve the models. Complexity of the

problem (Eksioglu and Jin, 2006), large problem instances (Ahuja, 2007) or possibility to

generate fast solutions (Rong and Grunow, 2010) lead researchers to consider heuristic

approaches.

Application area: Almost all contributions have case studies. FSCs such as meat, dairy,

and fruit are taken as application areas.

Real vs. Hypothetical: Proposed models are implemented either by considering real or

hypothetical data.

2.3.2 Models for cost reduction and improved responsiveness

The reviewed literature shows that total logistics cost incurred and variance of the total

logistics cost are the main KPIs considered in models aimed at cost reduction (Table 2.3).

All quantitative studies try to redesign logistics operations with the aim of minimizing

SC costs in the food logistics system. Costs can be classified as production, inventory,

distribution and other costs. Other costs represent food-specific costs such as milk col-

lection, biomass drying or by-product credit costs. Additionally, authors (Ahumada and

Villalobos, 2009b; Blackburn and Scudder, 2009; Rong et al., 2011) regard costs of food

quality decay, cooling, wastage and product loss as part of the main cost groups. Apart

from the main cost groups, Rong and Grunow (2010) also incorporate batch dispersion

costs into their model to solve the trade-offs between reducing production costs of prod-

ucts and reducing the concerns for food safety. Distinct from other studies, Azaron et al.

(2008) also adopt the minimization of the variance of the total cost into a multi-objective

model to increase the robustness of the model.

According to the literature review, the following KPIs are considered in models to im-

prove responsiveness: on-time delivery, late delivery, missed sales, order cycle time (lead

time) and transport carriers utilised (Table 2.3). Most models in literature aim to ensure

on-time delivery of customer orders using deterministic assumptions and known demand

without incorporating uncertainty (Table 2.4). Constraints on production time are dis-

cussed by Ahumada and Villalobos (2009b) and Bilgen and Gunther (2010), including

strict deadlines such as a specific production lot that has to be finished up to a particu-

lar day or maximum order cycle time. Moreover, Van der Vorst et al. (2000) emphasise

shortening cycle times (lead times) and increasing the execution frequency of business

processes.
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Researchers use different approaches for managing the late deliveries and missed sales

found in models under stochastic assumptions. Some examples are (1) keeping track

of percentage delivered on agreed time (Jansen et al., 2001), (2) considering losses in

goodwill for violation of delivery time (Chen et al., 2009) and (3) number of missed sales

caused by stock-outs (Van der Vorst et al., 1998). Regarding late deliveries, Blackburn

and Scudder (2009) also introduce the Marginal Value of Time (MVT) rate to measure the

cost of a unit time delay in a SC. This means that researchers want to control backorders

or missed sales that lead to decreased responsiveness. Opposite to this, Dabbene et al.

(2008) consider cost of earliness from early delivering to demand points as this may lead

to stocking problems. In literature time windows constraints are set for managing the

challenges of late or early deliveries (Chen et al., 2009; Osvald and Stirn, 2008).

Another KPI, order cycle time (lead time), refers to the time that elapses from the

moment an order is placed to the moment ordered goods are received (Van der Vorst

et al., 1998). Researchers incorporate lead time into models by considering parameters

such as transportation distances (e.g. Gebresenbet and Ljungberg (2001), Osvald and

Stirn (2008)), required transportation times (e.g. Hsu et al. (2007), Dabbene et al.

(2008)) or required production times (e.g. Wang et al. (2010)).

Utilisation of transport carriers can also improve responsiveness by shortening cycle times

for customer deliveries. Gebresenbet and Ljungberg (2001) consider empty driving, load

capacity utilization level in terms of volume and motor idling times during stoppage.

Moreover, Akkerman et al. (2009), and Gebresenbet and Ljungberg (2001) refer to the

contribution of transport utilization on environmental impact in terms of CO2 emissions.

Researchers put logistics system scope boundaries in accordance with the logistics problem

under consideration and their objectives. Logistics system scope issues considered in

quantitative models for SCM phase are presented in Table 2.4. Our analysis is as follows:

• Production, transportation and inventory, which are the main logistical drivers in

a SC (Chopra and Meindl, 2010), can be regarded as main modelling decisions.

Most studies use an integrated approach of production, transportation and inventory

management with the aim of generating synergy, building an integrated view and

improving the efficiency of all interrelated processes (Eksioglu, 2002; Mula et al.,

2010).

• In quantitative models the main question to be answered in terms of production

is: how much to produce in each production plant? Apart from that, a few studies

incorporate decisions such as workers required in a specific period for cultivating

product (Ahumada and Villalobos, 2009b) or available labour restrictions (Ahumada
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and Villalobos, 2011) as workforce scheduling issues. Additionally, some studies

manage multiple products with the same model (e.g. Brown et al. (2001), You et al.

(2012)). Researchers also consider batch size/setup number decisions to get more

insight in the problem (e.g. Rong et al. (2011), Wang et al. (2010)). Furthermore, a

few studies incorporate production facility location decisions into their models (e.g.

Gelders et al. (1987), Zucchi et al. (2011)).

• The foremost issue in terms of transportation is determining transportation amounts

in each channel. In response to the evaluation of multi-mode transportation net-

works, some studies consider different transportation alternatives such as road, train,

air simultaneously (e.g. Apaiah and Hendrix (2005), Bilgen and Ozkarahan (2007)).

These kinds of models offer decision makers more flexibility and ease of cost min-

imization and on-time delivery opportunities while managing the whole network.

In addition to that, dual sourcing (e.g. Ioannou (2005), Zuo et al. (1991)), tran-

shipment between facilities (e.g. Wouda et al. (2002)) and indirect shipments (e.g.

Higgins et al. (2006), Tarantilis and Kiranoudis (2002)) are also possible.

• A few studies incorporate stochastic elements into their models. Demand (e.g.

Ahuja (2007)), lead time (e.g. Van der Vorst et al. (2000)), supply and costs (e.g.

Azaron et al. (2008)), and SC behaviour (e.g. Dabbene et al. (2008)) are the stochas-

tic elements considered in the studies.

2.3.3 Models for improved food quality and reduction of food waste

The reviewed literature shows that degraded food quality, temperature level changes

and enthalpy level changes are the KPIs considered in models for the key logistical aim

of improved food quality (Table 2.3). The problem of perishability, sometimes even

leading to food waste, affects almost all operations along the FSCs. Lutke Entrup et al.

(2005) give an example to illustrate this challenge. Increasing yoghurt freshness requires

producing as close as possible to the demand date. At best, each product is produced

daily. However, this type of production causes smaller lot sizes and higher costs, since

significant set-up costs occur in yoghurt production. For these kinds of effects, attempts

have been made to incorporate product quality decay in food logistics models (Table 2.3).

The aim of these studies is coping with the quality decay challenge while managing the

logistics operations.

Most studies in literature, such as Zanoni and Zavanella (2007); Eksioglu and Jin (2006),

assume that product quality diminishes linearly and is deemed useless after a specific time

period. This means that as long as products are above the pre-specified minimum levels,
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they are regarded as acceptable. Additionally, the model does not penalize the product

deliveries with a short remaining shelf life. However, either part of the purchased goods

cannot be sold on the market or only with a lower price because of continuous quality

degradation (Osvald and Stirn, 2008). To avoid these problems and to encourage the

freshness of deliveries, a few studies consider the cost of inventory lost while being trans-

ported (Ahumada and Villalobos, 2009b, 2011; Osvald and Stirn, 2008). Additionally,

Van der Vorst et al. (2009) measure the product quality when the product arrives at the

retail store as a KPI by checking the remaining selling time at the retail outlet. Moreover,

rather than assuming simple linear decay, for instance Rong et al. (2011) use a quantita-

tive quality decay model based on the Arrhenius equation, which is a remarkably accurate

formula for the temperature dependence (Chang, 1981), to manage quality changes.

Among the studies that handle the perishability problem in their models, some studies

(e.g. Rong and Grunow (2010) and Van der Vorst et al. (2009)) also include temperature

control of the products to determine optimal temperature settings in a supply network

(Table 2.3). In these studies, product quality decays depend on the temperature levels.

This means that the magnitude of quality change for alternative temperature conditions

is assumed to be known in advance as a parameter. Moreover, Akkerman et al. (2009)

state that enthalpy level control is easier than temperature controls. Therefore, they

include enthalpy level tracking to their models in addition to temperature control.

According to the literature review, the KPI considered in models to improve the key

logistical aim of food waste reduction is food waste occurred (Table 2.3). A few of the

studies in literature refer to the potential food waste problem (Table 2.3). Among those

studies, You et al. (2012) and Rong et al. (2011) explicitly integrate the food waste

calculations into their models. In these aforementioned studies, products that lose their

suitable freshness are discarded and food waste or waste disposal costs are incurred.

Logistics system scope issues considered in quantitative models for the FSCM phase are

presented in Table 2.4. Our analysis is as follows:

• In order to manage continuous quality change in FSCs, quality tracking possibility is

considered and incorporated into the models (e.g. Eksioglu and Jin (2006), Yan et al.

(2011)). This consideration unsurprisingly affects the logistics decisions, because of

shelf life constraints (Ahumada and Villalobos, 2011; Rong et al., 2011).

• Studies that track quality and consider inventory decisions mostly employ dynamic

inventory management. This allows them to manage a real-time inventory system

(Van der Vorst et al., 2000) that tracks the quality levels of inventories in each

period (Ahumada and Villalobos, 2011).

33



Chapter 2. A review on quantitative models for sustainable food logistics management

• Some studies consider temperature or enthalpy controlled carriers or depots (e.g.

Akkerman et al. (2009), Blackburn and Scudder (2009)). This leads them to consider

additional factors such as energy usage rates of those carriers or additional costs.

Additionally, only Bosona and Gebresenbet (2011) attempt to manage multiple

products by considering different temperature levels.

• Different quality decay models are used depending on the specifications of the related

product (e.g. Hsu et al. (2007), Dabbene et al. (2008)), in order to manage perishable

products more efficiently.

• Although handling quality decay, most studies assume that products are delivered

before spoilage. However, a few studies incorporate possibility of quality fall below

the minimum levels that results in food waste (e.g. Van der Vorst et al. (2009)). In

addition to that, one study (You et al., 2012) also considers waste treatment units.

2.3.4 Models for improved sustainability and traceability

For the key logistical aim of improved sustainability, the reviewed literature shows that

GHG emitted, fuel consumed, energy used and water used (as environmental dimen-

sions), and nutritional content of products (health impacts) and number of accrued jobs

(as societal dimensions) are the KPIs considered in the models (Table 2.3). Although

sustainability is not a new concept for both business world and society, research in this

field is regarded as in its infancy period by scholars (Linton et al., 2007). Our literature

review also supports that argument as we found only a small number of quantitative stud-

ies dealing with SFLM (Table 2.3). Studies that consider the new emerging sustainability

goals in FLM attempt to deal with the above mentioned environmental and/or societal

concerns in addition to economic objectives.

All of the studies (see Table 2.3) measure GHG emissions by a single indicator in terms

of either carbon dioxide emissions (CO2/year) (e.g. Akkerman et al. (2009)) or car-

bon dioxide-equivalent (CO2, CH4, and NOx) emissions (CO2-eq/year) (e.g. You et al.

(2012)) (Table 2.4). The common aim of these studies is controlling and reducing the CO2

emitted to the environment from the logistical operations. Vehicles during transportation

(Gebresenbet and Ljungberg, 2001; Van der Vorst et al., 2009) or processes related with

production management such as blending, drying, storing (You et al., 2012) can be given

as examples for those logistical operations that cause CO2 emissions (Table 2.4). For in-

stance, Gebresenbet and Ljungberg (2001) consider transport distance, speed, load, road

conditions with respect to slope and motor idling time. The related environmental impact

is expressed in kg CO2 per mile travelled or per product. You et al. (2012) point to the
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importance of life cycle stages of products to be included in emission rates estimations.

For this reason, they integrate LCA analysis with multi objective optimization.

Energy use in models, usually expressed in MJ per second/per ton km, relates to op-

erations in logistics system. Those models either focus on energy consumption from

maintaining temperature (e.g. Zanoni and Zavanella (2012)) or operations such as heat-

ing, lightening or machine use (e.g. Oglethorpe (2010)) (Table 2.4). The common aim of

the studies is reducing the energy consumption throughout the chain while maintaining

operations (Table 2.3). Additionally, Oglethorpe (2010) links the energy use with emis-

sion calculations by assuming that energy use of processing operations equals a specific

amount of CO2 emission per kg of output. A few studies also include controlling the

consumption of water, an important natural resource, in the chain (Table 2.3) using wa-

ter restriction constraints (Ahumada and Villalobos, 2009b; You et al., 2012). As a final

environmental KPI, only Bilgen and Ozkarahan (2007) consider fuel consumed during

logistics operations. They take fuel consumption as one of the transportation cost input

among others i.e. hire cost of vehicle, government charges.

In literature, only two studies aim to manage nutritional contents of products. Apaiah

and Hendrix (2005) consider protein content and Oglethorpe (2010) consider fat content

of products. In addition, in (Oglethorpe, 2010; You et al., 2012), the number of accrued

jobs, which is expressed as hours and full-time equivalent jobs per year respectively, is

used as a societal objective.

According to the literature review, batches traced is the KPI considered in models to

improve the key logistical aim of improved traceability (Table 2.3). Bilgen and Gunther

(2010) emphasize a need in FSCs to assign demand to daily delivery periods rather than

weeks because of shortened replenishment cycles and quicker replenishment times. For

this reason, they stress that completion of production lots has to be traced on a daily

time scale. They introduce auxiliary binary decision variables, which indicate that the

specific production lot has been finished on a specific line up to a particular day. Rong and

Grunow (2010) work on a different problem and support the idea that traceability systems

have to be complemented with suitable production and distribution planning approaches.

They include a parameter called batch ID to their models, allowing the model to get

information on batch number, product type, production time, and production location

for each product. They aim to determine the number of batches, the batch sizes and

which batches are delivered to which retailers in each period with this information.

Logistics system scope issues considered in quantitative models for SFSCM phase are

presented in Table 2.4. Our analysis is as follows:
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• Except for one study (You et al., 2012), researchers do not use any tool such as LCA

for defining more accurately the related environmental and societal impacts of logis-

tics operations. This results in omitting or mishandling effects of some operations

to the environment and/or society.

• Although fuel consumption rate is one of the most important competitive factors in

logistics management, it is not modelled. Only one study (Bilgen and Ozkarahan,

2007) implicitly mention fuel consumption. Apparently, models consider fuel con-

sumption calculations under the total transport cost, however this leads to losing

the chance to assess explicitly the amount of fuel used which is crucial in terms of

environmental sustainability.

• Societal issues are less addressed than environmental issues in quantitative models.

The main reason for this is the challenge of measurement and quantification of

societal issues.

• Some studies (e.g. Ahuja (2007), Rong et al. (2011)), assume that models can trace

product batches of different quality throughout the logistics network.

2.4 Quantitative modelling challenges

Section 2.2 first identified key logistical aims and related generic logistics system scope

issues in FLM (Table 2.1). Then, section 2.3 analysed currently available quantitative

models with respect to their general characteristics (Table 2.2), KPIs (Table 2.3) and

relevant logistics system scope issues (Table 2.4). In this section, we aim to point out

modelling challenges based on the assessment of the above mentioned models.

Most literature studies rely on a completely deterministic environment (Table 2.4). This

assumption allows decision makers to achieve 100% on-time delivery (Table 2.3). Re-

searchers have not shown yet interest in late deliveries or missed sales, which are crucial

KPIs of logistics management in terms of improving responsiveness (Table 2.3). This

approach is understandable since deterministic models can be developed and solved rel-

atively easy. However, in the real world most SC members in the food industry are con-

fronted with several uncertainties i.e. information availability and data timeliness, supply,

process and demand uncertainties (Van der Vorst et al., 2000) (Table 2.1). Therefore,

deterministic assumptions do not fully capture the complexity of real world problems,

which might hinder their applicability. For instance, a model with deterministic demand

will allow inventory reductions. Assuming no demand variation will result in minimized
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cost solutions by reducing inventory levels. However, SC responsiveness requires adapta-

tion to changes in customer demand or in the marketplace, so attention should be paid

to incorporating variabilities in the model’s relevant logistics system scope issues. In

addition to that, companies need to evaluate trade-offs between cost and responsiveness,

so losses in goodwill or costs of time delays should be carefully studied.

One of the main concerns of FSCs, continuous quality degradation, appears in almost two

third of all reviewed literature with an increasing rate in recent years (Table 2.3, 2.4). The

challenge of including food quality decay shows itself in models. Most models roughly take

product perishability into account by using linear quality decay models, solely depending

on time. However, increasing customer concerns on food safety necessitates more sensitive

and detailed quality decay models that consider the intrinsic product conditions. In

response to that, only a limited number of researchers employ quality decay models

that explicitly include product parameters, time, and environmental factors (Table 2.4).

Integrating those kinds of quality models into the logistics models will enhance the value of

models, since they will provide more reliable results to the decision makers. Furthermore,

almost no researchers show interest in the food waste problem, occurring at almost all

stages of the FSC (Table 2.3). Incorporating the option that product quality falls below

the minimum level will help these models to approach real life problems and issues much

better than before.

So far, research in sustainable logistics has received insufficient attention (Table 2.3, 2.4).

Approximately, only one third of the studies has environmental or societal repercussion

considerations. As expected, the researchers’ tendency to incorporate sustainability into

logistics models has increased in recent years, but this has been insufficient. Only a

few models incorporate sustainability KPIs into their models but ignore other relevant

indicators (Table 2.3) and/or logistics system scope issues (Table 2.4). For instance, in

terms of GHG emission reduction, researchers mostly focus on CO2 emissions (Table 2.4).

However, integrating also other GHGs such as methane (CH4), nitrous oxide (N2O) and

fluorinated gases will improve the applicability of the proposed solutions7. Furthermore,

the use of environmental and societal impact assessment analyses such as LCA has a

huge potential to improve the validity of the sustainable logistics models (Table 2.1).

After determining the key impact categories and relevant logistics system scope issues for

reducing negative repercussions of operations on the environment and society, researchers

can incorporate them into models and search for the improvement opportunities.

Most literature studies propose single objective models for the related logistical problems

in FSCs (Table 2.2). However, real life problems consist of multi objectives, which are

7http://www.epa.gov/climatechange/emissions/index.html#ggo,Onlineaccessed:June2012
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in conflict with each other. For instance, it is common to see attempts, which are either

obligatory or voluntary due to carbon taxes or environmental awareness, for decreasing

GHG emissions from logistics operations. Unsurprisingly, those attempts in either case

come at a cost to companies. The challenge is managing the additional objective of

reducing emission levels together with SC cost. It is also possible to give other examples

incorporating multi-goals such as cost vs. responsiveness, cost vs. quality, quality vs.

sustainability. These examples present the necessity of multi objective perspectives in

logistics models and researchers could use multi objective programming models to deal

with such cases.

Finally, determining the system boundary is a careful job in FLM. If the target of a

model is to improve the sustainability performance of logistics operations, the proposed

solutions should also satisfy economic expectations of stakeholders. This means that the

ideal model for SFLM generally should incorporate all of the key logistical aims that are

explained in detail in the previous sections (Table 2.1). A few attempts to simultaneously

deal with challenges regarding the three phases (SCM, FSCM and SFSCM) have been

found in literature. However, those attempts have not fully captured the relevant KPIs

and logistics system scope issues (Table 2.3, 2.4). Even, we have observed that some

logistics system scope issues (outsourcing possibility, product interferences consideration,

Table 2.1) are not handled by any of the quantitative models. Thereby, performances

of the proposed models can be improved by incorporating more KPIs and more logistics

system scope issues related to the problem.

2.5 Conclusion

FSCM is in general a complex process owing to the intrinsic characteristics of food product

and processes of FSCs and the fast moving and highly competitive food sector. Especially

in last years, in addition to the existing challenges, FSCs have been confronted with the

increased attention for sustainable development. Many drivers such as legislation, cus-

tomers’ awareness and non-profit organizations’ pressure have pushed companies to seek

ways to reduce their environmental and societal impacts. Unsurprisingly, addition of

sustainability concerns into the FSCM decision making process has made it more com-

plicated and challenging than before. Inevitably, food logistics systems are also affected

by the progress starting from traditional SCM to FSCM and now further progressing to

SFSCM.

In this paper, we have reviewed quantitative studies in FLM in a structured way. To the

best of our knowledge, this is the first literature review on SFLM that has covered the
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contributions considering the development from SCM to FSCM towards SFSCM. We can

conclude from this work that the research on SFLM has been developing according to the

needs of the food industry. The number of studies that consider KPIs and logistics system

scope issues regarding recent needs of the food sector has been increasing. However,

are these studies adequate to aid decision making process and capture FSC dynamics?

We highlight that current FLM literature is insufficient to respond to these practical

needs. Generally, the intrinsic characteristics of food products and processes have not

been handled properly in the studies. The majority of the works reviewed have not

contemplated on sustainability problems, apart from a few recent studies. To conclude,

new and advanced models for SFLM are needed that take specific requirements from

practice into consideration to support business decisions and capture FSC dynamics.

Better logistics models can improve food quality and safety, availability of food, and

create sustainable and efficient business networks, which are the main issues faced by

stakeholders in FSCs.
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Chapter 3

Modeling food logistics networks

with emission considerations: the

case of an international beef supply

chain

This chapter is based on the published journal article:

M. Soysal, J.M. Bloemhof-Ruwaard, J.G.A.J. van der Vorst (2014) ”Modeling food lo-

gistics networks with emission considerations: the case of an international beef supply

chain” International Journal of Production Economics, Vol. 152, pp. 57-70.

In this chapter, we investigate RO2:

To analyse the relationship between economic (cost) and environmental (transportation

carbon emissions) performance in a network problem of a perishable product.
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3.1 Introduction

The progressive increase of food consumption due to growing world population and wealth

stimulates higher food production. A recent way for managing the increased production

is globalization of food supply chains (FSCs) with the help of improvements in transport

technologies, cheaper transportation, reductions in tariffs and other barriers to trade.

Globalization has improved the chance of profitability from cross-border operations as

well; however it has led to increased distances between partners in supply chains (Elhedhli

and Merrick, 2012). The increased distances have enhanced the strategic importance

of logistics network decisions such as selection of suppliers, distribution channels and

transportation modes, determining production and inventory amounts at each plant and

allocation of products (Cordeau et al., 2006; Harris et al., 2011). The need for a well

organized logistics network thus has increased in the food sector, which is producing

more than ever on a global scale.

Traditional logistics management considers mainly two key logistical aims, cost reduction

(efficiency) and improved responsiveness while dealing with the logistics network prob-

lem. However, intrinsic characteristics of food products and processes such as product

perishability and food quality, and a growing sustainability trend require extension of the

key logistical aims with quality and environmental considerations. This necessity leads

to the need for decision support tools that can integrate economic considerations with

quality preservation as well as environmental protection in FSCs. Accordingly, literature

review shows that there is a need for models that are able to deal with the key challenges

in managing quality and sustainability (Akkerman et al., 2010; Soysal et al., 2012). The

need in practice and in research forms our main motivation to develop a model that

allows to consider perishability of goods and emissions from transportation operations

along with cost concerns in food logistics network.

We take the beef sector as a representative of a food supply chain that has both food and

environment related challenges. Shelf life for beef that includes several quality factors (e.g.

juiceness, tenderness, nutritive value, appearance and palatability) puts an additional

pressure on logistics decisions, since the product may become undesirable, even it is not

unsafe (Delmore, 2009). Apart from quality concerns, appreciation grows for the idea of a

carbon-constrained economy in the livestock sector with the growing awareness towards

environment conservation (Robinson et al., 2011). Especially, transportation is one of

the main sources of livestock related carbon dioxide (CO2) emissions (Delgado et al.,

1999) and increasing global beef trade results in more fuel consumption for beef related
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transportation. Therefore, it is wise to address product perishability and emissions from

transportation while managing beef logistics chains.

We develop a multi-objective linear programming (MOLP) model for a generic beef logis-

tics network problem. The objectives of the model are (i) minimizing total logistics cost

and (ii) minimizing total amount of greenhouse gas (GHG) emissions from transporta-

tion operations. Duration of inventory keeping is limited due to the perishability nature

of the product. The environmental effect of freight transportation is measured in CO2

emissions. We provide a case study of the international beef logistics chain operating in

Nova Andradina, Mato Grosso do Sul, Brazil and exporting beef to the European Union

(EU) to illustrate the applicability of the proposed model for real logistics systems. The

rationales for the selected beef chain are: (1) Brazil ranks as the largest beef exporter in

the world by holding an approximately 21% share of the global beef trade in 2011 (Abiec,

2012d), (2) Brazil has potential to keep its position in the global market, and (3) Beef

trade relationship exists (47, 693 ton for fresh-chilled beef in 2010) between Brazil and the

EU (Abiec, 2012a,b). In this case study, we put the main focus on road transportation,

which is the only delivery option till the export ports, as rail, inland ship or air need

infrastructure that is not available yet. The logistical challenges in the case of Brazil

are mainly related to usage of old trucks, inefficient road infrastructure or deficiency of

available trucks.

The structure of the remaining of the paper is as follows. Section 3.2 presents a literature

review on logistics models that take product perishability and/or emissions into account.

Section 3.3 presents a formal definition of the generic problem, the methodology used

for emission estimations and the proposed MOLP model for the generic beef logistics

network problem. Section 3.4 presents the case study description, data gathering and the

computational analysis of the model. The last section presents conclusions and directions

for further research.

3.2 Literature review

The logistics network problem that has transportation and inventory decisions under

capacity constraints for a multi-period planning horizon has been widely studied in the

literature (see Ahn et al., 1994; Bilgen and Gunther, 2010; Verderame and Floudas,

2009). However, quality degradation of products puts additional challenges on logistics

decisions in food sector. Literature review studies present the state of the art in product

perishability consideration in FSCs (Ahumada and Villalobos, 2009a; Akkerman et al.,

2010; James et al., 2006; Soysal et al., 2012). As pointed out in these studies, the number
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of proposed decision support tools which are able to control products according to their

quality levels has been increasing in recent years (e.g. Bosona and Gebresenbet, 2011;

Rong et al., 2011; Wang et al., 2010; Ahuja, 2007). Ahuja (2007) controls the quality of

products by constraining the number of periods that a good is stored at a facility. In this

study, we use this approach to account for the perishable nature of beef.

Similar to raising awareness on quality decay, sustainability is an emerging area in FSCs

(Akkerman et al., 2010; Seuring and Muller, 2008). The main reasons for the growing

interest are stakeholder pressure and the need for adopting increasing environmental reg-

ulations. GHG emissions reduction, the most prominent environmental issue in practice,

is one of the most significant sustainability objectives considered in logistics management

literature (Soysal et al., 2012). Researchers have developed quantitative logistics models

that can manage economic issues along with emission controls in response to the need for

practice. Literature search is carried out within Thomson Reuters (formerly ISI) Web of

Knowledge and followed by reference and citation analysis to find related contributions

that have quantitative models with emission consideration for logistics management. We

investigate the models with respect to main characteristics (Table 3.1) summarized below:

• Model type: Mixed Integer Linear Programming and Multi-Objective (Non)Linear

Programming approaches are the most used modeling types.

• Decisions: The main logistical drivers in a supply chain are production/processing,

transportation and inventory management decisions (Chopra and Meindl, 2010).

The reviewed models manage one or more of the aforementioned decisions. All

models aim to reduce emissions from transportation. Additionally, some studies

consider emissions from production/processing and/or inventory holding together

with transportation emissions.

• GHG emissions calculation approaches: The crucial stage during model development

is calculating emissions from predetermined emission sources. Researchers employ

basically two approaches to measure the emissions from transportation operations.

First approach, which is preferred most, is using fixed emission or environmental

impact factors per distance unit and/or per weight unit (e.g. Chaabane et al., 2008;

Wang et al., 2011), per product (e.g. You et al., 2012), per vehicle (e.g. Paksoy

et al., 2011b), which are obtained through other environmental studies. The second

approach is estimating emissions indirectly by calculating total energy consumed

from transportation operations while considering the aforementioned parameters

such as distance, speed or weight (e.g. Bektaş and Laporte, 2011; Bauer et al.,

2010). For production and inventory related emissions, either fixed emission factor
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per unit produced or stocked (e.g. Oglethorpe, 2010) or energy consumption from

production and/or inventory related operations is considered (e.g. Abdallah et al.,

2012).

• GHG consideration: Studies in the literature either take only CO2 gas emissions (e.g.

Bauer et al., 2010) or group emissions of different GHG gases, such as CO2, CH4, and

NOx, together in a single indicator in terms of carbon dioxide equivalent (CO2eq)

emissions (e.g. You et al., 2012).

• Application area: Researchers implement the proposed models on different areas

such as automotive, steel and plastic waste.

We found three quantitative models that manage product perishability while considering

GHG emissions (Akkerman et al., 2009; Van der Vorst et al., 2009; You et al., 2012).

Among these studies only You et al. (2012) propose a MOLP model that can be used to

gain insight in the the trade-off between multiple objectives. In contrast to that study,

we also consider the effects of return hauls on transportation cost and emissions. Further-

more, we adopt a different methodology based on a distance-based formulation, (Defra,

2005), to estimate road transport emissions. Under this methodology, road structure, ve-

hicle and fuel types, weight loads of vehicles and traveled distances are taken into account.

This approach has been also used by Harris et al. (2011), who integrated the approach

into a simulation model without considering perishability and return hauls (see Table

3.1). Therefore, this study breaks away from the literature on logistics network models

by simultaneously considering the aforementioned issues. Consequently, contributions of

the study can be summarized as follows: (1) integrating food transport emissions into a

MOLP model for the generic beef logistics network problem while considering road struc-

ture, vehicle and fuel types, weight loads of vehicles, traveled distances, return hauls and

product perishability, (2) presenting the applicability of the model in an international

beef logistics network based on real data, multiple scenarios, and analysis.

3.3 Modelling a generic beef logistics network

3.3.1 Formal definition of the generic problem

Our modeling approach is based on a generic multi-echelon beef logistics network problem

that consists of a number of third party logistics (3PL) firms, production regions, slaugh-

terhouses, export departure and import arrival points at fixed locations (Fig. 3.1). In the

generic beef logistics chain, production regions are responsible for providing livestock to
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slaughterhouses. Slaughterhouses can be supplied from more than one production region

and after the slaughtering process, beef can be send to more than one export departure

point from the same slaughterhouse. Slaughterhouses can keep limited amount of live-

stock inventory. Different types of rented trucks from 3PL firms are used for livestock

transportation between production regions and slaughterhouses, and for beef transporta-

tion between slaughterhouses and export departure points. Each truck rented from a 3PL

firm turns back again to the same firm (see Fig. 3.1) and trucks do not need to be fully

loaded during service. It is also worth to mention that trucks are empty before getting

to the sites for service and during return stage to the 3PL firms. Transportation capac-

ity restrictions are imposed on export departure points. There are multiple transport

options such as sea, train or air transportation, between export departure and import

arrival points. Import arrival points have also a multi-source option that allows receiving

beef from different export departure points.

Figure 3.1: Representation of the generic beef logistics network

The demand for beef is assumed to be known a priori. CO2 emissions occur due to

the transportation between the actors. Slaughterhouses and export departure points can

keep certain amounts of beef inventory. However, it is not possible to keep long term beef

inventory in those facilities due to quality considerations. Therefore, maximum number of

periods that beef can be stored in facilities needs to be restricted. Additionally, indirect

flows between actors are not allowed. That means each facility sends livestock or beef

directly to its destination location.

The described generic problem allows us to present the integration of emissions generated

from beef and livestock transportation into a mathematical logistics network model. We

acknowledge that different beef logistics networks can be characterized in several ways

in terms of product flows, truck flows and ownership or even number of chain layers.

However, it is possible to employ the same emission estimation methodology, which is de-

scribed in section 3.3.2, and same approach to incorporate emissions into the model, which

is described in section 3.3.4, while adapting the model to different logistics structures.
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The decisions that need to be made are: (i) number of livestock slaughtered per slaughter-

house per period, (ii) amount of livestock and beef inventories, (iii) flows between actors

(allocation decisions), (iv) number of trucks used (rented) from 3PL firms considering

also the possibility of less than fully loaded truck shipments. The planning horizon com-

prises N periods. Transportation lead time between the actors in the chain is assumed

to be zero; however, it can be easily incorporated into the model. The aim of the model

is minimizing total logistics costs comprising inventory and transportation costs together

with the total CO2 emissions from transportation operations.

3.3.2 Emissions estimations

We follow the methodology presented in Figure 3.2 to calculate CO2 emissions from road

transportation, which is based on a distance-based formulation (Defra, 2005, 2011). The

main required parameters for the formulation are liters fuel per km (Lfpk) for empty and

full trips. Vehicle and fuel type, and road structure affect these parameters. The distance-

based formulation assumes that load linearly affects fuel consumption. Therefore, we

calculate Lfpk for trucks by considering their load weights, and Lfpk for empty and full

trips as follows (Defra, 2005, 2011):

Lfpk = Lfpk(empty) +
(
Lfpk(full)− Lfpk(empty)

)
∗ (weight load/load capacity)

Figure 3.2: Emissions estimation methodology for road transportation

Then, multiplication of Lfpk with traveled distances gives us total fuel consumption

amounts. After calculating total fuel consumption amounts, we estimate CO2 emissions

by taking into account amount fuel consumed and fuel conversion factor as follows (Defra,

2005, 2011):

TotalCO2(kg) =Amount of fuel consumed (Total km travelled ∗ Lfpk) ∗ Fuel conversion factor

This approach allows us to consider the effects of empty drives and less than fully

loaded truck shipments on logistics cost and CO2 emissions. We use unit CO2 emissions

(kg/ton-km) to calculate emissions from other transportation modes such as sea, train or

air transportation.
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3.3.3 Notation

For the mathematical description of the model the following notation is introduced:

Indices:

i node index for facilities including production regions, slaughterhouses,

export departure and import arrival points,

k node index for 3PL firms,

i, j index pair referring to an arc from node i to node j,

m vehicle type index,

f transportation mode index,

t time index referring to a period,

Sets:

F set of production regions,

S set of slaughterhouses,

P set of export departure points,

C set of import arrival points,

FS set of production regions and slaughterhouses,

FSa set of arcs between production regions and slaughterhouses,

SP set of slaughterhouses and export departure points,

SPa set of arcs between slaughterhouses and export departure points,

PC set of export departure points and import arrival points,

PCa set of arcs between export departure points and import arrival points,

O set of 3PL firms,

OFa set of arcs between 3PL firms and production regions,

OSa set of arcs between 3PL firms and slaughterhouses,

OPa set of arcs between 3PL firms and export departure points,

Mi,j set of truck types that can be used for arc i, j ∈ FSa ∪ SPa,

TMi,j set of transportation modes that can be used for arc i, j ∈ PCa,

T set of periods and L refers the length of a future planning cycle,

Monetary Parameters:

liveinvcosti cost for storing one livestock unit for one period in facility i ∈ S,

beefinvcosti cost for storing one ton beef (bone free meat) for one period in facility i ∈ SP ,

rentcostk,i,j,m fixed renting cost from 3PL firm k ∈ O, to use in arc (i, j) ∈ FSa ∪ SPa, for truck

type m ∈Mi,j ,

fuelcost fuel cost per liter,

unitcosti,j,f cost per ton for transportation on arc (i, j) ∈ PCa with transportation mode f ∈ TMi,j ,

Technical Parameters:

max maximum number of periods that beef can be stored in facilities, max ≤ L− 1

weight average carcass weight of one livestock, in tons,

yield yield of one livestock, 1 ton carcass weight = 0.7 (yield ratio) ton beef,

emptyfueli,j,m the liter fuel consumption amount (l/km) of empty truck in arc

(i, j) ∈ FSa ∪ SPa ∪OFa ∪OSa ∪OPa with truck type m ∈Mi,j ,

fullfueli,j,m the liter fuel consumption amount (l/km) of full truck in arc
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(i, j) ∈ FSa ∪ SPa ∪OFa ∪OSa ∪OPa, with truck type m ∈Mi,j ,

conversion fuel conversion factor,

capacitym transportation capacity of truck type m ∈Mi,j , in tons / heads,

distancei,j distance between node i ∈ FS ∪ P ∪O and node j ∈ FS ∪ P ∪O, in km,

demandi,t demand from import arrival point i ∈ C, in period t, in tons

livecapi,t number of available livestock in production region i ∈ F , at the beginning of period

t ∈ T , in tons

liveinvcapi total livestock inventory capacity of slaughterhouse i ∈ S for the whole planning

horizon, in tons

slaughtercapi total livestock slaughtering capacity of slaughterhouse i ∈ S for the whole planning

horizon, in tons

beefinvcapi total beef inventory capacity of facility i ∈ SP for the whole planning horizon, in tons

transcapi total beef transportation capacity of export departure point i ∈ P for the whole

planning horizon, in tons

emissionsi,j,f CO2 emissions factor (kg/ton-km) for transportation on arc (i, j) ∈ PCa with

transportation mode f ∈ TMi,j , in kg/ton-km

Main Decision Variables:

Li,j,t,m flow quantities of livestock on arcs (i, j) ∈ FSa, in period t ∈ T , with truck type

m ∈Mi,j , in number of heads,

BTi,j,t,m flow quantities of beef on arcs (i, j) ∈ FSa ∪ SPa, in period t ∈ T , with truck type

m ∈Mi,j , in tons,

BSi,j,t,f flow quantities of beef on arcs (i, j) ∈ PCa, in period t ∈ T , with transportation mode

f ∈ TMi,j , in tons,

Nk,i,j,t,m number of fully loaded trucks rented from 3PL firm k ∈ O, used on arcs

(i, j) ∈ FSa ∪ SPa, in period t, with truck type m ∈Mi,j ,

Ci,t number of livestock slaughtered in slaughterhouse i ∈ S, in period t ∈ T ,

ILi,t inventory level of livestock in slaughterhouse i ∈ S, at the beginning of period t ∈ T ,

in number of heads,

IBi,t inventory level of beef in facility i ∈ SP , at the beginning of period t ∈ T , in tons,

LTk,i,j,t,m amount of load carried with less than fully loaded truck rented from 3PL firm k ∈ O,

on arcs (i, j) ∈ FSa ∪ SPa, in period t ∈ T , with truck type m ∈Mi,j , in number

of heads or tons,

Derived Decision Variables:

Zk,i,j,t,m binary variable that equals 1, if less than full truck load is carried with a truck rented

from 3PL firm k ∈ O, on arc (i, j) ∈ FSa ∪ SPa, in period t, with truck type m ∈Mi,j ,

otherwise 0,

Uk,i,j,t,m utilisation rate (load factor) of less than fully loaded truck rented from 3PL firm k ∈ O,

used on arc (i, j) ∈ FSa ∪ SPa, in period t ∈ T , with truck type m ∈Mi,j ,

LFk,i,j,t,m the liter fuel consumption amount (l/km) of less than fully loaded truck rented from 3PL

firm k ∈ O, used on arc (i, j) ∈ FSa ∪ SPa, in period t ∈ T , with truck type m ∈Mi,j ,
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3.3.4 Multi objective linear programming (MOLP) model for the generic

beef logistics network problem

The generic logistics network problem is formulated mathematically as a MOLP model.

The objectives of the model are: (i) an economic objective to minimize total logistics cost

and (ii) an environmental objective to minimize total CO2 emissions from transporta-

tion operations. The model constraints include the following: inventory and product

flow balance, demand satisfaction, flow structure, truck utilization rate, fuel consump-

tion amount, capacity of transport, inventory and slaughtering, and decision variable

constraints.

Economic Objective (OF1): The economic objective is measured by the total logistics

cost that consists of the sum of four parts:

min OF1 = IC + TC1 + TC2 + TC3. (3.1)

• Inventory costs (IC) for livestock and beef.

IC =

L∑
t=1

∑
i∈S

liveinvcosti ∗ ILi,t +

L∑
t=1

∑
i∈SP

beefinvcosti ∗ IBi,t.

• Transportation costs of fully loaded trucks (TC1) considering also empty arrivals to

sites and returns to 3PL firms.

TC1 =

L∑
t=1

∑
(i,j)∈FSa∪SPa

∑
m∈Mi,j

∑
k∈O

(
Nk,i,j,t,m ∗

(
rentcostk,i,j,m + (distancei,j

∗ fullfueli,j,m ∗ fuelcost+ distancek,i ∗ emptyfuelk,i,m ∗ fuelcost+ distancej,k

∗ emptyfuelj,k,m ∗ fuelcost)
))
.

• Transportation costs of less than fully loaded trucks (TC2) considering also empty

arrivals to sites and returns to 3PL firms.

TC2 =

L∑
t=1

∑
(i,j)∈FSa∪SPa

∑
m∈Mi,j

∑
k∈O

(
(Zk,i,j,t,m ∗ rentcostk,i,j,m) + (distancei,j

∗ LFk,i,j,t,m ∗ fuelcost) + Zk,i,j,t,m ∗ (distancek,i ∗ emptyfuelk,i,m ∗ fuelcost

+ distancej,k ∗ emptyfuelj,k,m ∗ fuelcost)
)
.

• Transportation costs of other transportation modes such as sea, train or air (TC3)

between export departure and import arrival points.

TC3 =

L∑
t=1

∑
(i,j)∈PCa

∑
f∈TMi,j

BSi,j,t,f ∗ unitcosti,j,f .
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Environmental Objective (OF2): The environmental objective is measured by the

total CO2 emissions that consists of the sum of three parts:

min OF2 = TE1 + TE2 + TE3. (3.2)

• Transportation emissions from fully loaded trucks (TE1) considering also empty

arrivals to sites and returns to 3PL firms.

TE1 =

L∑
t=1

∑
(i,j)∈FSa∪SPa

∑
m∈Mi,j

∑
k∈O

(
Nk,i,j,t,m ∗ (distancei,j ∗ fullfueli,j,m ∗ conversion

+ distancek,i ∗ emptyfuelk,i,m ∗ conversion+ distancej,k ∗ emptyfuelj,k,m ∗ conversion)
)
.

• Transportation emissions from less than fully loaded trucks (TE2) considering also

empty arrivals to sites and returns to 3PL firms.

TE2 =

L∑
t=1

∑
(i,j)∈FSa∪SPa

∑
m∈Mi,j

∑
k∈O

(
distancei,j ∗ LFk,i,j,t,m ∗ conversion+ Zk,i,j,t,m

∗ (distancek,i ∗ emptyfuelk,i,m ∗ conversion+ distancej,k ∗ emptyfuelj,k,m ∗ conversion)
)
.

• Transportation emissions from other transportation modes such as sea, train or air

(TE3) between export departure and import arrival points.

TE3 =

L∑
t=1

∑
(i,j)∈PCa

∑
f∈TMi,j

BSi,j,t,f ∗ emissionsi,j,f ∗ distancei,j .

Constraints: The model consists of the following sets of constraints.

• Constraints (3.3) and (3.4) ensure capacity restrictions on livestock transportation

from production regions to slaughterhouses and balanced livestock inventories in

slaughterhouses.

∑
j∈S

∑
m∈Mi,j

Li,j,t,m ≤ livecapi,t, ∀i ∈ F,∀t ∈ T (3.3)

ILi,t +
∑
j∈F

∑
m∈Mi,j

Lj,i,t,m − Ci,t = ILi,t+1, ∀i ∈ S, ∀t ∈ T. (3.4)

• Constraints (3.5) to (3.8) ensure balanced beef inventories in slaughterhouses and

export departure points while adhering to maximum storage time constraint of beef.

IBi,t + (Ci,t ∗ weight ∗ yield)−
∑
j∈P

∑
m∈Mi,j

BTi,j,t,m = IBi,t+1, ∀i ∈ S,∀t ∈ T (3.5)

IBi,t ≤
t+max∑
a=t

∑
j∈P

∑
m∈Mi,j

BTi,j,a,m, ∀i ∈ S,∀t ∈ T (3.6)
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IBi,t +
∑
j∈S

∑
m∈Mi,j

BTj,i,t,m −
∑
j∈C

∑
f∈TMi,j

BSi,j,t,f = IBi,t+1, ∀i ∈ P,∀t ∈ T (3.7)

IBi,t ≤
t+max∑
a=t

∑
j∈C

∑
f∈TMi,j

BSi,j,a,f , ∀i ∈ P,∀t ∈ T. (3.8)

• Constraints (3.9) enforce that the total rate of flow from the export departure points

must be higher than the corresponding market demand of import arrival points.

∑
j∈P

∑
f∈TMi,j

BSj,i,t,f ≥ demandi,t, ∀i ∈ C, ∀t ∈ T. (3.9)

• Constraints (3.10) to (3.13) represent that flows between nodes comprise fully and

less than fully loaded truck trips. However, only one less than fully loaded truck

can be on an arc at the same period and truck load needs to be less than truck

capacity.

Li,j,t,m =
∑
k∈O

Nk,i,j,t,m ∗ capacitym + LTk,i,j,t,m, ∀(i, j) ∈ FSa,∀t ∈ T, ∀m ∈Mi,j (3.10)

BTi,j,t,m =
∑
k∈O

Nk,i,j,t,m ∗ capacitym + LTk,i,j,t,m, ∀(i, j) ∈ SPa,∀t ∈ T, ∀m ∈Mi,j (3.11)

∑
k∈O

∑
m∈Mi,j

Zk,i,j,t,m ≤ 1, ∀(i, j) ∈ FSa ∪ SPa,∀t ∈ T (3.12)

LTk,i,j,t,m < capacitym ∗ Zk,i,j,t,m,∀(i, j) ∈ FSa ∪ SPa,∀t ∈ T, ∀m ∈Mi,j ,∀k ∈ O. (3.13)

• Constraints (3.14) ensure that utilisation rates of less than fully loaded trucks are

calculated based on less than full truck loads and capacities.

Uk,i,j,t,m = LTk,i,j,t,m/capacitym, ∀(i, j) ∈ FSa ∪ SPa,∀t ∈ T, ∀m ∈Mi,j ,∀k ∈ O. (3.14)

• Constraints (3.15) ensure that the liter fuel consumption amount (l/km) of less than

fully loaded trucks are calculated based on the distance based formulation (Defra,

2005, 2011) described in section 3.3.2.

LFk,i,j,t,m =(Zk,i,j,t,m ∗ emptyfueli,j,m) +
(
(fullfueli,j,m − emptyfueli,j,m) ∗ Uk,i,j,t,m

)
,

∀(i, j) ∈ FSa ∪ SPa,∀t ∈ T, ∀m ∈Mi,j ,∀k ∈ O. (3.15)

• Constraints (3.16) to (3.19) ensure capacity restrictions on livestock slaughtering,

livestock and beef stocking, and beef transportation to ports.

L∑
t=1

Ci,t ≤ slaughtercapi, ∀i ∈ S (3.16)

L∑
t=1

ILi,t ≤ liveinvcapi, ∀i ∈ S (3.17)

55



Chapter 3. Modeling food logistics networks with emission considerations: the case of an
international beef supply chain

L∑
t=1

IBi,t ≤ beefinvcapi, ∀i ∈ SP (3.18)

L∑
t=1

∑
j∈S

∑
m∈Mi,j

BTj,i,t,m ≤ transcapi, ∀i ∈ P. (3.19)

• Constraints (3.20) to (3.26) represent the nonnegativity, integrality and binary re-

strictions imposed upon the decision variables.

Li,j,t,m ≥ 0, ∀(i, j) ∈ FSa,∀t ∈ T, ∀m ∈Mi,j (3.20)

BTi,j,t,m ≥ 0, ∀(i, j) ∈ SPa,∀t ∈ T, ∀m ∈Mi,j (3.21)

BSi,j,t,f ≥ 0, ∀(i, j) ∈ PCa,∀t ∈ T, ∀f ∈ TMi,j (3.22)

Ci,t, ILi,t ≥ 0, ∀i ∈ S,∀t ∈ T (3.23)

IBi,t ≥ 0, ∀i ∈ SP, ∀t ∈ T (3.24)

LTk,i,j,t,m, Uk,i,j,t,m, LFk,i,j,t,m ≥ 0, ∀(i, j) ∈ FSa ∪ SPa,∀t ∈ T, ∀m ∈Mi,j ,∀k ∈ O (3.25)

Nk,i,j,t,m ∈ Z+, Zk,i,j,t,m ∈ {0, 1}, ∀(i, j) ∈ FSa ∪ SPa,∀t ∈ T∀m ∈Mi,j ,∀k ∈ O. (3.26)

3.4 Case study

3.4.1 Description and data gathering

This section presents an implementation of the proposed model in a real-life fresh-chilled

beef logistics network operating in Nova Andradina, Mato Grosso do Sul, Brazil and

exporting beef to the EU. The overview of the whole network and the zoomed view of

the area that covers production regions, 3PL firms, slaughterhouses and export ports

are presented in Figure 3.3. Mato Grosso do Sul ranks third out of 26 states in terms

of contribution (11.74%) to total area used for cattle in hectares in Brazil (Nzte, 2010).

Mato Grosso do Sul has 11 micro-regions. The reasons for selecting Nova Andradina

among other micro-regions are: (1) It has three slaughterhouses that have certification to

export cattle meat to EU out of 11 in Mato Grosso do Sul and (2) It has a high density

of cattle production. Nova Andradina has five cities (Table 3.C). We consider each city

as a production region, since there are hundreds of small and medium sized farms in the

region. We have a planning horizon of six months and use the first six months of 2010‘s

trade data between Brazil and EU in our analysis (Abiec, 2012a,b; Nzte, 2010).

Fleet age is one of the major issues for logistics management, since age of the vehicles

apparently has an important effect on fuel consumptions because of new technologies.

The average fleet age used in logistics activities is more than eight years in Brazil (World-

Bank, 2012). Due to this fact, rather than considering different types of vehicles used, we
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Figure 3.3: The analysed beef logistics network between Nova Andradina and the EU

prefer to consider the issue of fleet ages that can be also handled with our model. The

difference in the model is that Mi,j, set of truck types, is interpreted as set of truck age

categories and m, vehicle type indices, are interpreted as vehicle age category indices. The

fleet in Brazil includes tractor-trailers, fixed bed, bulk goods, and special goods vehicles

such as tankers (World-Bank, 2012). We assume that livestock and beef are carried to

the slaughterhouses and export ports with standard trucks (Tractor semi-trailers) that

have two age categories (old and new) and rented from one of the three 3PL firms in Nova

Andradina. Transportation capacities of trucks are: 20 ton beef and 20 cattle (Cederberg

et al., 2009).

We calculate cost of operations of trucks by considering fixed renting costs (e/truck)

from the 3PL firms and variable costs (e/km) over distances. We estimate fixed renting

costs for trucks considering related capital investment of 3PL firms depending on the age

of the truck. So, it is a reasonable assumption to take fixed renting costs for the new

truck higher than the old truck. Basically, two stages exist in the beef logistics network:

1st Stage consisting all routes that start from a 3PL firm, visit a production region and a

slaughterhouse and turn back to the same 3PL firm; 2nd Stage consisting all routes that

start from a 3PL firm, visit a slaughterhouse and an export port and turn back to the

same 3PL firm. Therefore, fixed costs cover the period that starts when a truck departs

from a 3PL firm and ends when the empty truck returns to the 3PL firm after finalizing

the service. Fixed renting costs (240 e/old truck, 420 e/new truck) for the routes in 2nd
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Stage are higher than the costs (40 e/old truck, 70 e/new truck) for the routes in 1st

Stage because of the distance differences (see Fig. 3.3).

Unfortunately, no data is available on Brazilian fuel consumption amounts of trucks for

different road types. Therefore, we use the data given by Hoen et al. (2010) for the

trucks in Europe’s conditions. The data is presented in Table 3.2 as a base case. We

assume that the data of Hoen et al. (2010) relate to refrigerated trucks and an old truck

consumes 10% higher and a new truck consumes 10% lower than the base case amounts

(Table 3.2). It is assumed that road structures of 3PL-production regions, production

regions-slaughterhouses and slaughterhouses-3PL are the same: 40% motorway, 50% rural

and 10% urban. Road structures of slaughterhouses-export ports, and export ports-3PL

are also the same: 70% motorway, 10% rural and 20% urban. Related fuel consumption

amounts between actors based on the aforementioned road structures are presented in

Table 3.2. We use 2.63 kg/l for fuel conversion factor (Defra, 2007) and e1 for fuel cost

in Brazil1 to calculate emissions and operational cost.

Table 3.2: Fully loaded and unloaded (empty) fuel consumption amounts (l/km) calculation

Road Type Motorway Rural Urban 3PL-PR / PR-S/ S-EP / EP-3PL
S-3PL

Load Factor (%) 0 100 0 100 0 100 0 100 0 100
Base case 0.226 0.360 0.230 0.396 0.288 0.504 - - - -
Old vehicle (+10 %) 0.249 0.396 0.253 0.436 0.317 0.554 0.258 0.432 0.263 0.432
New vehicle (-10 %) 0.203 0.324 0.207 0.356 0.259 0.454 0.211 0.353 0.215 0.353
3PL: Third party logistics firms, PR: Production regions, S: Slaughterhouses, EP: Export Ports
Source: Based upon the study of Hoen et al. (2010).

Inventory holding costs for livestock (22.05e/head-month) and beef (105e/ton-month)

are expressed as a percentage (3%) of the approximate market values of the items and

same for all facilities. We take the market price for one ton bone-free beef as e35002,

average carcass weight of one livestock as 300 kg and use the factor 0.7; i.e. from 1 kg

carcass weight (meat with bone), 0.7 kg bone-free beef is produced (Cederberg et al.,

2009). Correspondingly, inventory costs are calculated as follows: (i) Livestock inventory

cost per head: Market price * Carcass weight * Yield ratio * Percentage (3%) and (ii)

Beef inventory cost per ton: Market price * Percentage (3%).

The Nova Andradina region uses Porto de Paranagua and Santos Ports for beef export

to EU ports which are in Rotterdam and Hamburg. Unit ton cost for transporting

between ports with ship (PS-type container vessel: 11,000 TEU) is taken as 0.12 e/kg3.

Related CO2 emissions factor is 0.007 kg/ton-km (Dekker et al., 2012). EU share in

1http://data.worldbank.org/indicator/EP.PMP.SGAS.CD,Onlineaccessed:August2013
2http://swineweb.com/brazilian-exports-for-3-main-meat-sectors-take-major-fall-in-june/

,Onlineaccessed:August2013
3http://www.globalshippingcosts.com,Onlineaccessed:August2013
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Brazil exports is 5% for fresh-chilled beef (Abiec, 2012b). State of Mato Grosso do Sul’s

participation is taken as 11.74% (Nzte, 2010). Finally, Nova Andradina’s contribution

to total export is estimated as 27% (# of export slaughterhouses in Nova Andradina/#

of export slaughterhouses in Mato Grosso do Sul). Monthly European demand satisfied

from Nova Andradina for fresh-chilled beef in the first six month of 2010 is presented in

Table 3.A and it is assumed that demand of EU is satisfied equally from the two import

ports, Rotterdam and Hamburg.

Distances between actors (Table 3.B) are calculated via web based distance measure-

ment tools4. Locations of production regions are defined as approximately center of each

city. Available livestock numbers in production regions are estimated considering their

contributions to cattle production in 2010 (Table 3.C) and the demand satisfied from

the region (Table 3.A). Slaughtering capacities (300 ton) are taken as the same for all

slaughterhouses and estimated considering the demand satisfied from the region. Another

assumption is that slaughterhouses can keep livestock (300 head) and beef (200 ton) in-

ventory, whereas export ports can keep only beef (100 ton) inventory. Maximum storage

time, k is restricted to two months because of perishability nature of the beef. Export

ports’ transportation capacities used by Nova Andradina region are estimated (Porto de

Paranagua, 124 tons, Santos Port, 676 tons) considering the amounts of Brazilian beef

exports by sea ports in 2010 (Abiec, 2012c). Summary for all the values and estimations

of the input parameters along with the relevant data sources are presented in Table 3.D.

3.4.2 Model solution

We solved the MOLP model with the ε - constraint method (Andersson, 2000). This

method has been also employed in other recent studies which have multiple objective

models (Chaabane et al., 2011; Nikbakhsh et al., 2013; Zhang et al., 2010). Under the

ε - constraint method, one objective is selected for optimization, whereas the others are

reformulated as constraints. In our solution methodology, OF1 was selected for optimiza-

tion and OF2 was formulated as an additional constraint. The right hand side value of

the additional constraint is ε, which represents the limit on CO2 emissions. We derived

a Pareto frontier to observe the dependency between the two objectives. While deriving

the Pareto frontier, initially, the model that has OF1 was solved without the additional

constraint and the total amount of generated emissions in that instance was set as a high-

est value of the ε. Afterwards, the additional constraint was activated and the right hand

side value of the ε was progressively reduced in each instance starting from its highest

value. Therefore, a set of models that differ with respect to the right hand side value of

the additional constraints is required. Consequently, progressively changing the ε value

4http://maps.google.nl/ and http://www.searates.com/,Onlineaccessed:July2013
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allowed us to obtain different points on the Pareto frontier.

min OF1

s.t.

Constraints (3.3) to (3.26),

OF2 ≤ ε, (additional constraint)

We used the ILOG-OPL development studio and Cplex 12.2 optimization solver to solve

the MOLP model. The model has 2637 continuous, 756 binary and 756 integer variables,

and 2806 constraints. We could not find optimal solutions within a time limit of 1000

seconds because of the size of the problem. However, we calculated lower bounds for each

model through a relaxation technique, where all binary variables related with less than

fully loaded truck usage were replaced by continuous variables, constrained in the [0, 1]

interval. Our computational tests showed that the average difference between our feasible

solutions and the lower bounds is less than approximately 2%. Therefore, we used the

feasible solutions in our analysis that are sufficiently close to the optimal solutions and

obtained within reasonable times.

3.4.3 Analysis and discussion

3.4.3.1 Solutions of base cases

We defined two base cases: Lowest Cost (LC) and Lowest emission (LE). Summary results

for these base cases are presented in Table 3.3. The effect of reducing emissions can be

seen from the total cost difference between LC and LE base cases. Inventory and road

transportation cost items increase in LE base case. The reasons for the cost change in

LE base case are: (i) decreasing the number of less than fully loaded trucks that result

an increase in inventories, and (ii) using new trucks rather than old ones that result an

increase in transportation costs.

Emission differences in different parts of the logistics network in both cases are due to road

conditions, distances and vehicle loads. Ship transportation related cost and emissions

do not change between the base cases, since it is the single alternative for transportation

between export and import ports and age of the vehicles for ship transportation is not

considered in our problem.

Results suggest to keep 55 and 5.2 tons of beef inventory for the whole planning horizon

in the LE and LC cases respectively. Although maximum storage time is restricted to two

months, under the suggested strategy beef would not be held in inventory longer than
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one month (Table 3.3). This indicates that constraints (3.6) and (3.8) are non-binding

constraints as a result of the parameter setting of our case study. However, these two

constraints will restrict the maximum storage time for FSCs where keeping inventory

more than one month is advantageous.

Table 3.3: Summary results for base cases

Case Lowest cost Lowest emission

Logistics cost (e)

Inventory 546 7,004
Road transportation 44,642 51,801
Ship transportation 93,720 93,720
Total 138,908 152,525
Third party logistics firms - Production regions 4,000 3,100
Production regions - Slaughterhouses 7,196 5,554

Transportation
Slaughterhouses - Third party logistics firms 5,160 4,264

emissions (kg)
Slaughterhouses - Export ports 34,514 27,856
Export ports - Third party logistics firms 20,672 16,485
Export ports - Import ports 56,374 56,374
Total 127,917 113,633

General

Less than fully loaded trucks 12% 6%
Old truck usage 100% 0%
New truck usage 0% 100%
Total livestock inventory (heads) 0 56
Total beef inventory (ton) 5.2 55
Maximum time beef held in inventory (month) 1 1

The structure of the analysed logistics network and the aggregated values (sum of all

planning horizon) of the decision variables for the LC case are visualized in Figure 3.4. In

order to not complicate the figure, the returns from slaughterhouses and export ports to

3PL firms, and the number of less than fully loaded trucks in each route are not shown.

However, regarding the returns, it is already known that each truck rented from a 3PL

firm turns back again to the same firm (see Fig. 3.1) due to the given assumption. The

total beef inventory for the whole planning horizon (5.2 tons), which is also not presented

in the figure, is kept in the Santos Port.

3.4.3.2 Trade-offs between multiple objectives

In our problem due to different features of trucks in terms of fixed renting cost and fuel

consumption rates, trade-offs occur between logistics cost and amount of CO2 emissions

from transportation. This means that decreasing emissions from transportation comes

at a cost. In addition to the aforementioned two base cases, we generated 10 additional

instances by lowering ε value (limit on CO2 emissions) 1% from the highest emission

level at each instance. The derived Pareto frontier represents the trade-off relationships

between cost and emissions (Fig. 3.5a).
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Figure 3.4: Logistics network structure and related decision variables for the LC case

(a) Trade-offs between total cost and CO2 emissions (b) Old and new truck usage ratios in all instances

Figure 3.5: Results obtained from the trade-offs analysis

As it is observed from Figure 3.5a, the slope of the Pareto frontier is clearly decreasing

after a point where emissions level is around 92%. The dotted horizontal line in Figure

3.5a shows approximately the point where slope decrease starts. This slope change in-

dicates that cost of achieving the same percentage of emissions reduction is increasing.

This is because of the logistics network structure. In Nova-Andradina, the distances (av-

erage: 190 km) for the routes (3PL firms-production regions-slaughterhouses-3PL firms)

in 1st stage are less than the distances (average: 1497 km) for the routes (3PL firms-

slaughterhouses-export ports-3PL firms) in 2nd stage (see Fig. 3.3). Results show that

new trucks are firstly rented for longer distances, in our case for the routes in 2nd stage, to

reduce emissions. This is reasonable, since the total emissions effect of using a new truck

will be higher for long distances compared to short distances. Model results suggest that
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emissions can be reduced by renting new trucks for the 1st stage after the trucks in the

2nd stage have been completely renewed. However, more new trucks need to be rented in

the 1st stage to achieve the same emissions reduction, because of the distance differences

between the 1st stage and the 2nd stage (see Fig. 3.3). This necessity results in higher

cost increase for the same percentage of emissions decrease. Figure 3.5b presents the

truck usage rates in all instances. This figure also confirms that the ratio of new trucks

is increasing more while achieving the same percentage of emissions decrease in further

instances.

The trade-off analysis provides managerial insights on improving sustainability of the

analysed logistics network. The cost of being sustainable from the point of reducing

transportation emissions was determined by means of the Pareto frontier (see Fig. 3.5a)

obtained through the trade-off analysis. This information is especially useful when setting

sustainability targets that need an evaluation of economic and environmental factors. The

Pareto frontier can be used for such an evaluation, since it ensures to find a compromise

solution between costs and emissions. For instance, after evaluations of cost and emissions

in line with economic and environmental objectives, one of the presented solutions in

Figure 3.5a can be selected for the analysed logistics network. One of the prominent

sustainable suggestion would be selecting the breaking point located around the emissions

level of 92% on the Pareto frontier (see Fig. 3.5a). This would ensure in approximate

numbers an emission reduction of 8% in return of a cost increase of 3% that necessitates

to use 16% new truck for the routes in 2nd stage (see Fig. 3.5a,b). As a result, these kinds

of insights can support managerial decisions and improve sustainability performance of

the selected chain.

3.4.3.3 Road transport emissions ratios of different parts of the supply chain

Considering all instances including the two base cases, average contributions of each

supply chain part to total road transport emissions is presented in Figure 3.6. More or

less same amount of emissions are generated from ship transportation between export and

import ports, which could raise the discussion of using local food. We know that trucks

are either fully or less than fully loaded between production regions and slaughterhouses,

and slaughterhouses and export ports, and empty while coming from 3PL firms and

turning back to them again in road transportation. Unsurprisingly, loaded trips (58.2%)

contribute more than empty trips (41.8%) to total road transportation emissions and

in loaded trips the share of slaughterhouses to export ports (47.3%) is higher than the

share of production regions to slaughterhouses (10.9%) mainly due to the aforementioned

distance differences. However, the remarkable thing is that empty trips constitute nearly
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two-fifths of emissions from road transportation. Among those empty trips especially

the share of export ports to 3PL firms (28.2%) due to long distances is quite striking.

Therefore, cost and emissions effect of decreasing empty legs (return hauls) between

export ports and 3PL firms is significant to consider and will definitely improve the

added value in logistics chain.

Figure 3.6: Road transport emissions ratios in different parts of the supply chain

Addressing the more responsible parts for the road transport emissions in the whole

chain helped us to point out some potential sustainable action plans. In our case, total

emission contribution of the two parts, which are between slaughterhouses and export

ports, and export ports and 3PL firms, is 75.5% due to the long distances (approximately

700 km) between these facilities. Managerial actions for dealing with such long distance

operations in road transport might be as follows: (1) increasing the capacity of the

vehicles, (2) using fuel efficient vehicles, (3) using alternative ports, (4) using backloading

opportunities to reduce empty returns, and (5) shifting market from export to domestic

market. Consequently, the managerial implication is that evaluating the road transport

emission sources as a whole enables to present the importance of distances between actors

in terms of environmental impact.

3.4.3.4 Sensitivity analysis

In order to get more insight, sensitivity analysis was conducted on five different param-

eters: export port capacities, fuel efficiency levels, inventory holding costs, truck supply

capacities and fixed renting cost of new trucks. Practical necessities and challenges learnt

from the related literature and Brazilian partners in an EU funded project, SALSA5,

which has an objective of increasing social, environmental and economic sustainability of

the Latin American and EU food chains, motivated us to focus on the aforementioned

5Knowledge-based sustainable value-added food chains: innovative tools for monitoring ethical, environmental
and socio-economical impacts and implementing Eu-Latin America shared strategies (FP7/2007-2013) under grant
agreement number 265927
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issues. Each of these analyses enables to explore the effects of possible changes in the

current logistics system on cost and emissions. Therefore, the sensitivity analysis serves a

supportive role in evaluating and better understanding the analysed beef logistics network

in Brazil.

• Effect of removing capacity restrictions on export ports: The Porto de Paranagua is more

closer (Average: 660km) to slaughterhouses and 3PL firms, than Santos Port (Average:

780km) in Nova Andradina region. However, capacity of the Porto de Paranagua allows

for only 15.5% of export from Nova Andradina region to EU (Abiec, 2012c). We knew from

the previous analysis that the total emissions share of slaughterhouses to export ports and

export ports to 3PL firms constitutes 40.4% of emissions as well. These reasons led us

to analyse the potential impact of removing capacity restrictions on the aforementioned

export ports. As it is expected, removing capacity restrictions on export ports results in

transportation of all European demand from the closer port, Porto de Paranagua. In this

case, results show that a cost reduction of 2.0% in LC case, and 4.0% in LE case, and

an emissions reduction of 4.2% in LC case, and 4.8% in LE case could be obtained. The

satisfaction of all demand from Porto de Paranagua necessitates approximately a 6-fold

capacity increase and because of financial issues it might not be possible within the short

term. However, it is certain that improvements in port capacity of Porto de Paranagua

would have major impacts on reducing cost and emissions in Brazil.

• Effect of investing in better roads: Transportation infrastructure has important impli-

cations on truck speeds and consequently on fuel efficiency (World-Bank, 2012). Brazil

has the third largest road network in the world, at approximately 1.6 million km, but

only 196, 000 km (around 12%) of it is paved (World-Bank, 2010). This fact shows the

inadequacy of road structure, or in general term transportation infrastructure, in Brazil.

Correspondingly, actors in Brazil beef logistics chain pay taxes for the improvement of

roads. However, we used the fuel consumption data for the trucks in Europe’s condi-

tions. This motivated us to analyse the impact of different fuel efficiency levels on both

cost and emissions. We considered two fuel efficiency levels in which fuel consumptions

were increased by 5% and 10% (Fig. 3.7). Results show that decreasing fuel efficiency

due to bad infrastructure shifts the Pareto frontier to the right. This means that the

trade-off relationship between the multiple objectives, costs and CO2 emissions, is not

affected, but both of them increase because of the increased fuel consumption. From the

other perspective, results confirm that improvement by paying money for better roads has

two potential awards: decreasing logistics cost and decreasing emissions. This sensitivity

analysis also enables to evaluate the scenarios in which more energy is needed in Brazil for

refrigeration, since the reason for the fuel increase might be not only bad infrastructure,

but also excess energy usage of truck refrigerators in Brazil as well.
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Figure 3.7: Effect of increase in fuel consumption

• Effect of changing inventory holding cost: Results on LC and LE cases (Table 3.3) show

that beef is not held in inventory longer than one month, although maximum storage

time is restricted to two months. However, handling of beef products that are one month

old might be different for the wholesaler/retailer in terms of distribution and marketing

processes required in comparison to that for fresh beef. This fact motivated us to analyse

the effects of changes in inventory holding cost. In our previous analysis inventory holding

cost for beef was expressed as a percentage, 3%, of the approximate market value of the

product. Additionally, we considered 1% and 5% (Table 3.4). The lower inventory cost,

1%, ensures to analyse a scenario in which freshness of the product becomes less important

and the higher inventory cost, 5%, ensures to analyse a scenario in which freshness of

the product becomes more important. Results for the LC case show that increase in

inventory holding cost leads to decrease in inventories and increase in road transportation

cost. The reason for that is using less than fully loaded trucks and sending goods before

aging become more advantageous rather than keeping items in inventory to increase load

size in the next period. This can be observed from the percentages of less than fully

loaded trucks for different inventory levels (Table 3.4). Moreover, due to more use of less

than fully loaded trucks, total emissions increase as increasing inventory holding cost.

In summary, this sensitivity analysis enables to show the effect of changing inventory

holding cost depending on the importance given on freshness of the beef.

• Effect of restricting truck supply: We assumed that whenever needed, trucks can be

rented from the 3PL firms without any problem. However, the agricultural community

in Brazil is concerned about truck shortages due to increased agricultural production and

new regulations that restrict the number of hours a truck driver may work. Therefore,

we analysed a scenario in which one of the three 3PL firms, 3PL2, is confronted with a
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Table 3.4: Effect of changing inventory holding cost for the LC case

Percentage of the market price 1% 3% 5%
Inventory cost (e) 789 546 37
Road transportation cost (e) 43,965 44,642 45,389
Total cost (e) 138,474 138,908 139,145
Total emissions (kg) 126,872 127,917 128,002
Less than fully loaded trucks 8% 12% 13%
Old truck usage 100% 100% 100%
Total livestock inventory (heads) 0 0 0
Total beef inventory (ton) 22.5 5.2 0.2
Maximum time beef held in inventory (month) 1 1 1

truck shortage and can not provide trucks during the whole planning horizon. Under this

circumstance, facilities that rent trucks from 3PL2 necessarily go for the other two 3PL

firms, 3PL1 and 3PL3, located comparably far. This supply change leads to increasing

travelling distance that results in a cost increase of 1.1% in LC case, and 1.5% in LE

case, and an emissions increase of 3.0% in LC case, and 2.7% in LE case. However, if the

remaining two 3PL firms did not have enough truck capacity to compensate the supply

decrease, trucks would be rented from 3PL firms located in more far away regions to

satisfy the livestock and beef demand on time. The effect of that scenario on cost and

emissions would be worse. Therefore, this sensitivity analysis on truck supply shows that

capacity problems in 3PL firms have negative effects on cost and emissions.

• Effect of changing fixed renting cost of new trucks: We took fixed renting costs for the

new truck higher than the old one considering related capital investment of 3PL firms

depending on the age of the truck. One of the current discussions in logistics management

is providing green tax incentives to encourage the purchase of cleaner vehicles consuming

less fuel by means of new technologies (McKinnon et al., 2012). These kinds of legislations

can reduce the related capital investment cost for the 3PL firms and the indirectly renting

prices of new trucks. Therefore, we analysed the effects of reductions on fixed renting cost

of new trucks (Table 3.5). According to the results for the LC case, 10% decrease does

not affect on cost and emissions, since the model still suggests to use only old trucks in

all routes as in the solution of LC base case (see Table 3.3). However, different amounts

of reductions on cost and emissions are obtained for the instances where related costs are

decreased by 20% and 30%. The reason for the emission decreases is starting to use new

trucks. At first sight, cost increase would be expected for the last two instances, 20% and

30%, due to the usage of new trucks, which have still higher fixed renting costs compared

to the costs for the old ones. However, less fuel consumption feature of new trucks makes

use of them economically advantageous for the long routes even paying more for their

rents. As a result, this sensitivity analysis on fixed renting cost of new trucks shows that
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green tax incentives can economically and environmentally improve the performance of

the logistics systems.

Table 3.5: Effect of changing fixed renting cost of new trucks for the LC case

Percentage of Compared to LC case New truck
decrease in rent Cost reduction Emission reduction usage

10% 0% 0% 0%
20% 0.1% 3.5% 9%
30% 1% 7.5% 18%

3.5 Conclusions

In this study, we present a MOLP model for the generic beef logistics network problem.

It has two competing goals: minimizing total logistics cost and minimizing total CO2

emissions from transportation operations. Road structure, vehicle and fuel types, weight

loads of vehicles, traveled distances, return hauls and product perishability are considered

while integrating transportation emissions into the MOLP model. The model is thus

important for decision makers who are concerned with logistical network problems of

perishable products under emissions consideration. Implementation of the model on the

beef export chain between a region of Brazil and the EU shows its applicability to real

life logistics networks. The model can easily be further adapted to other emerging value-

added food chains as well. The results presented in this study are obtained by means of

a ε - constraint method used for solving MOLP models.

Different analyses are conducted to support decision making in the selected chain. The

question of how much cost to bear to reduce emissions to different levels in the logistics

system is answered by the presented Pareto frontier that shows the trade-off relationships

between logistics costs and emissions. The next question is where to focus to (re)design a

logistics network that is more environmentally-friendly in terms of transportation emis-

sions. Regarding that issue, road transport emission shares of the chain parts are observed

by the pie chart. The pie chart results indicate the importance of distances between actors

in terms of environmental impact. Moreover, sensitivity analysis on practically important

parameters show the potential impacts of several changes to logistics cost and emissions.

Some of the most interesting results from the sensitivity analysis can be given as follows:

(1) removing capacity constraints on export ports shows that capacities put pressure on

the logistics system while selecting the related port for transportation, (2) decreasing

fuel efficiency of trucks due to the inefficient infrastructure results in shifts of the Pareto

frontier with both increase in logistics cost and emissions, and (3) decreasing fixed renting
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cost of new trucks due to the obtained advantage of 3PL firms from green tax incentives

result in economic and environmental improvement. In summary, all the analyses show

that the proposed model serves as a decision support tool while further improving the

environmental position of the selected food logistics chain.

It is possible to extend the proposed model in several ways, which can be suggested as

future research areas. First, reverse product flows from the destination nodes and indirect

flows between facilities can also be considered. Second, other sources of emissions (e.g.

emissions from livestock or refrigeration in more detail) and other sustainability key

performance indicators (e.g. energy usage or water consumption) can also be evaluated.

Third, quality or age of the products can be tracked through the supply chain in a more

detailed way instead of just restricting the maximum number of periods that beef can be

stored in facilities.
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APPENDIX

In this section, we present the remaining data used for the MOLP model.

Table 3.A: Estimation of monthly European demand satisfied from Nova Andradina for fresh-
chilled beef in the first six months of 2010, in tons

Total Beef Export EU Share Mato Grosso do Sul’s Nova Andradina’s
Participation Participation (Demand)

January 67,092 3,355 394 107
February 74,311 3,716 436 119
March 80,720 4,036 474 129
April 79,010 3,951 464 126
May 90,692 4,535 532 145
June 96,856 4,843 569 155

Total 953,869 47,693 5,599 781

Source: (Abiec, 2012a,b; Nzte, 2010)
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Table 3.B: Distances between nodes in the beef logistics chain, in km

BG A BP T NA S1 S2 S3 P S 3PL1 3PL2 3PL3

Bataguassu (BG) 0
Anaurilandia (A) -* 0
Bataypora (BP) - - 0
Taquarussu (T) - - - 0
Nova Andradina (NA) - - - - 0
S1 42 39 66 99 45 0
S2 93 57 12 33 54 - 0
S3 93 66 39 54 30 - - 0
Porto de Paranagu (P) - - - - - 639 640 702 0
Santos Port (S) - - - - - 740 772 825 - 0
3PL1 15 45 96 129 93 51 99 102 602 710 0
3PL2 66 48 15 45 45 57 15 24 644 774 - 0
3PL3 111 90 69 75 30 75 63 33 723 850 - - 0

Si: Slaughterhouse i, 3PLi: Third party logistics firm i
* Distances which are not necessary for the model are not presented.

Table 3.C: Available livestock numbers in cities for each month, in heads

Jan. Feb. March Apr. May June Contribution* (%)

Bataguassu 88 97 107 105 122 130 16
Anaurilandia 132 145 161 158 183 196 24.1
Bataypora 85 94 104 102 118 127 15.6
Taquarussu 41 45 50 49 56 60 7.4
Nova Andradina 201 222 246 240 279 299 36.8
Total 547 603 668 654 758 812 100

*Contributions of cities in Nova Andradina to cattle production, in 2010 (Ibge, 2012)

Table 3.D: Summary for all the values and estimations of the problem’s input parameters
along with the relevant data sources

Parameters Values/Estimations Sources

liveinvcost 22.05e/head-month http://swineweb.com, Cederberg et al. (2009)
beefinvcost 105e/ton-month http://swineweb.com, Cederberg et al. (2009)
rentcost 1st Stage: 40 e/old truck, 70 e/new truck Assumption

2nd Stage: 240 e/old truck, 420 e/new truck
fuelcost e1 http://data.worldbank.org

unitcost 0.12 e/kg http://globalshippingcosts.com

max 2 months Assumption
weight 300 kg Cederberg et al. (2009)
yield 0.7 Cederberg et al. (2009)
emptyfuel Table 3.2 Hoen et al. (2010)
fullfuel Table 3.2 Hoen et al. (2010)
conversion 2.63 kg/l Defra (2007)
capacity 20 ton beef and 20 cattle Cederberg et al. (2009)
distance Table 3.B http://maps.google.nl/ , http://searates.com/
demand Table 3.A Abiec (2012b), Nzte (2010),
livecap Table 3.C Ibge (2012)
liveinvcap 300 head Assumption
slaughtercap 300 ton Assumption
beefinvcap Slaughterhouses: 200 ton, Export ports: 100 ton Assumption
transcap Porto de Paranagua: 124 tons, Santos Port: 676 tons Abiec (2012c)
emissions 0.007 kg/ton-km Dekker et al. (2012)
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Chapter 4

The time-dependent two-echelon

capacitated vehicle routing problem

with environmental considerations

This chapter is based on the published journal article:

M. Soysal, J.M. Bloemhof-Ruwaard, Tolga Bektaş (2014) ”The time-dependent two-

echelon capacitated vehicle routing problem with environmental considerations” Inter-

national Journal of Production Economics, 164, 366-378.

In this chapter, we investigate RO3:

To investigate the performance implications of accommodating explicit transportation

energy use and traffic congestion concerns in a two-echelon capacitated vehicle routing

problem.
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4.1 Introduction

The significant growth in freight traffic and increase in traffic congestion in urban areas

necessitate introducing legal restrictions on the use of large-size vehicles with heavy loads.

For instance, in some cities of Australia (e.g., Sydney and Melbourne1) oversize vehicles

are not allowed to travel on designated routes during peak hours (RTA, 2007). The desired

objective of keeping large vehicles away from congested areas aims not only to reduce the

environmental externalities of freight distribution (e.g., energy usage and congestion),

but also to improve the social consequences of such activities (e.g., traffic-related air

pollution, accidents and noise). One way of achieving this objective is to use multi-

echelon distribution strategies in which freight is delivered to customers via intermediate

depots rather than direct shipments from the origin (Crainic et al., 2004; Perboli et al.,

2011). In two-echelon distribution systems, large trucks are used to transport freight over

long-distances to intermediate depots where consolidation takes place. The products are

transferred to destination points using small and environmentally-friendly vehicles. This

approach also finds applications in e.g., multi-modal freight transportation, grocery and

hypermarket product’s distribution, and e-commerce and home delivery services (Feliu

et al., 2007). Several projects (e.g., CIVITAS2 and ELCIDIS3) have been undertaken

in recent years to address issues in two-echelon logistics systems and to manage freight

transportation in urban areas.

The two-echelon capacitated vehicle routing problem (2E-CVRP) is a distribution system

where intermediate capacitated depots, called satellites, are placed between a supplier and

final customers (Feliu et al., 2007). Direct shipments from suppliers to customers as in

Vehicle Routing Problems (VRPs), e.g., Jabali et al., 2012; Kritikos and Ioannou, 2013,

are not allowed in this setting. Freight must first be sent from the depot to a satellite and

thence to the destination. The 2E-CVRP has two types of vehicle routes: (i) first-echelon

routes that start and end at the depot and visiting the satellites, and (ii) second-echelon

routes that start and end at the same satellite and visiting the customers (see Fig. 4.1).

Satellites usually have limited capacities and are allowed to be serviced by more than one

first-echelon route. In the second-echelon, however, each customer is visited exactly once

by a route. A homogeneous vehicle fleet is used at each echelon. Second-echelon vehicles

are smaller in capacity than the first-echelon vehicles. A handling cost proportional to

1http://www.vicroads.vic.gov.au/NR/rdonlyres/3B9992E3-D9B7-4F5E-B0A6-9AA6ED4E3DE2/0/

VRPIN00966.pdf,Onlineaccessed:September2013
2An initiative which was launched in 2002 to redefine transport measures and policies in order to create

cleaner, better transport in cities. http://www.civitas.eu/index.php?id=79&sel_menu=23&measure_id=620,

Onlineaccessed:August2013
3A project about electric vehicle city distribution system in Rotterdam, Netherlands. http://www.

managenergy.net/resources/779,Onlineaccessed:August2013

72

http://www.vicroads.vic.gov.au/NR/rdonlyres/3B9992E3-D9B7-4F5E-B0A6-9AA6ED4E3DE2/0/VRPIN00966.pdf, Online accessed: September 2013
http://www.vicroads.vic.gov.au/NR/rdonlyres/3B9992E3-D9B7-4F5E-B0A6-9AA6ED4E3DE2/0/VRPIN00966.pdf, Online accessed: September 2013
http://www.civitas.eu/index.php?id=79&sel_menu=23&measure_id=620, Online accessed: August 2013
http://www.civitas.eu/index.php?id=79&sel_menu=23&measure_id=620, Online accessed: August 2013
http://www.managenergy.net/resources/779, Online accessed: August 2013
http://www.managenergy.net/resources/779, Online accessed: August 2013


Chapter 4. The time-dependent two-echelon capacitated vehicle routing problem with
environmental considerations

the quantity loaded or unloaded is incurred for the satellites due to the unloading of first-

echelon vehicles and loading of second-echelon vehicles. Satellites do not perform any

other activity, e.g., significant physical installations and warehousing are not required.

The objective of the basic 2E-CVRP is to determine two sets of first and second echelon

routes that minimize total routing and handling cost.

Figure 4.1: A solution to the 2E-CVRP (Source: Baldacci et al. (2013))

The basic 2E-CVRP assumes that distribution costs and travel times between nodes are

known in advance and are constant (Feliu et al., 2007; Perboli et al., 2011). However,

fuel consumption and therefore cost can change based on vehicle speed and load. In

particular, vehicle speed can change according to the traffic density at a certain time and

location, and load is dependent on the visiting order of the customers. Real-world vehicle

routing applications require calculation of distribution costs more accurately, which will

also help to reduce relevant operational or environmental related costs. This has been

shown in the relevant literature for a number of VRPs considering fuel consumption or

emissions (e.g., Bektaş and Laporte, 2011; Franceschetti et al., 2013). Such an attempt

has not yet been made for the 2E-CVRP with time-dependent travel times. This is the

motivation behind this paper. In particular, we incorporate detailed fuel consumption

estimations based on factors such as vehicle type, traveled distance, vehicle speed and

vehicle load into the 2E-CVRP.

Our study adds to the literature on VRPs that have fuel consumption or emissions con-

siderations by (1) developing a comprehensive MILP formulation for a time-dependent

2E-CVRP that accounts for vehicle type, traveled distance, vehicle speed, load, emissions

and multiple time zones that may occur during the planning horizon, (2) presenting the

applicability of the model in a supermarket chain operating in the Netherlands based on

mostly real data, multiple scenarios, and analysis.

The rest of the paper is structured as follows. The next section presents a review of the

relevant literature on the 2E-CVRP and VRPs with environmental considerations. In
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the subsequent section, we present a mathematical formulation of the problem, followed

by computational results on a real-life distribution problem. The last section presents

conclusions and future research directions.

4.2 Literature review

The 2E-CVRP has recently attracted attention largely because of the growing need for

research to manage distribution systems for congested urban areas (Crainic et al., 2004).

The 2E-CVRP is an NP-Hard problem due to the fact that it is a special case of the

VRP. Feliu et al. (2007) present a commodity-flow formulation for the 2E-CVRP, using

which solutions were obtained for different scenarios with a branch & cut algorithm.

Perboli et al. (2010, 2011) use valid inequalities to further improve the algorithm of

Feliu et al. (2007) and obtain relatively good solutions with limited computational effort.

Jepsen et al. (2013) show that the model presented by Perboli et al. (2011) may not

provide feasible solutions when there are more than two satellites in the solution. They

describe an adjusted formulation and a new mathematical model for a relaxation of the

2E-CVRP but provides optimal solutions for the given problem sizes of 50 customers

and five satellites using a specialized branching scheme. Heuristic algorithms for the 2E-

CVRP are presented in Crainic et al. (2008), Crainic et al. (2011), Perboli et al. (2011)

and Hemmelmayr et al. (2012). Santos et al. (2013) and Baldacci et al. (2013) describe

exact algorithms for solving the 2E-CVRP. The algorithm of Santos et al. (2013) is a

hybrid branch-and-bound and column-generation, and the one by Baldacci et al. (2013)

is based on decomposing the problem into a limited set of multi-depot capacitated VRPs

with side constraints. Crainic and Sgalambro (2014) and Crainic et al. (2009) study the

2E-CVRP with various assumptions concerning different operational issues such as the

management of the vehicle fleet, the flexibility associated with the delivery of goods and

the size of the controlled fleets.

One of the common points of all the studies above is the assumption of constant cost or

travel times between the nodes. This is a strong assumption for the 2E-CVRP, since the

problem includes second-echelon routes often traveled over congested urban areas with

different traffic density levels for different times of a day. Additionally, this assumption

is restrictive in that it does not allow for an explicit calculation of the fuel consumed

in logistics operations, which is crucial in terms of reducing environmental externalities

(Soysal et al., 2012). To the best of our knowledge, the only study that considers fuel

consumption in this context is by Crainic et al. (2012), who employ a generalized travel

cost function comprising fixed costs for the arcs, operational costs, and environmental
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costs. They assess the effect of traffic congestion on travel cost by conducting analyses on

different scenarios which vary according to the day-period (time zone) in which vehicles

travel. They assume that each day-period has different arc travel costs and all delivery

operations are carried out within the same day-period. Therefore, the travel cost of an arc

changes in different scenarios, but remains same within each scenario. This approach of

changing travel costs according to the day-period in each scenario obviously cannot handle

problems with multiple time zones. For instance, there might be an initial congestion

period followed by a non-congestion period during the planning horizon. This requires a

consideration of the transition period between periods of congested and free-flow traffic.

Such changes in arc travel cost within the same planning horizon or transition period

between different time zones were not addressed by Crainic et al. (2012).

There exist other studies on the more standard versions of the VRP with an explicit con-

sideration of environmental issues, such as fuel consumption or emissions. The standard

VRP and its variants have been extensively studied in the literature, but only relatively

few papers have looked at fuel consumption or emissions in the routing decisions. The

interested reader is referred to the reviews by Demir et al. (2014b) and Lin et al. (2014)

on the topic. We present a short comparison of such studies given in Table 4.1, dif-

ferentiated with respect to the following factors taken into account in estimating fuel

consumption or emissions: (i) distance traveled, (ii) vehicle load, (iii) vehicle speed and

(iv) time-dependent speed profiles.

Table 4.1: Studies on VRPs that have fuel consumption or emissions considerations

Studies Distance trav. Vehicle load Vehicle speed Time-dep. speed
Hsu et al. (2007) X X X X
Kara et al. (2007) X X - -
Apaydin and Gonullu (2008) X - - -
Tavares et al. (2008) X X - -
Tavares et al. (2009) X X X -
Kuo (2010) X X X X
Figliozzi (2010) X - X X
Maden et al. (2010) X - X X
Bektaş and Laporte (2011) X X X -
Figliozzi (2011) X - X X
Kuo and Wang (2011) X X X -
Suzuki (2011) X X X -
Ubeda et al. (2011) X X - -
Crainic et al. (2012) X - X -
Demir et al. (2012) X X X -
Erdogan and Miller-Hooks (2012) X - - -
Jabali et al. (2012) X - X X
Jemai et al. (2012) X - - -
Xiao et al. (2012) X X - -
Eguia et al. (2013) X X X -
Franceschetti et al. (2013) X X X X
Gajanand and Narendran (2013) X X X -
Kwon et al. (2013) X - - -
Pradenas et al. (2013) X X X -
Ramos et al. (2014) X X X -
Demir et al. (2014a) X X X -
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According to Table 4.1, all studies take traveled distance into account in estimating the

fuel consumption or emissions. However, although, vehicle load and speed are regarded as

significant factors affecting fuel consumption and emissions4 (Demir et al., 2011; Ligterink

et al., 2012), not all studies presented in Table 4.1 have taken these factors into account.

Some of the studies that employed vehicle speed have considered non-constant travel

times between the nodes as well. In these studies, travel speed between the same two

nodes can change due to the time of travel (e.g., rush hour or not) and locations of nodes

(e.g., urban or rural area).

Our brief review shows that most studies presented in Table 4.1 have not taken all four

aforementioned factors into account simultaneously with the exception of Hsu et al.

(2007), Kuo (2010) and Franceschetti et al. (2013). These studies, however, consider

a single-echelon VRP. Other differences between this study and others are as follows.

Hsu et al. (2007) assume that some links in the network have traffic congestion with

known probabilities, and do not deal with multiple time zones and use expected travel

times. Kuo (2010) proposes a heuristic algorithm for finding the vehicle routes, and the

approach therefore does not guarantee optimality. Moreover, fuel consumption amounts

are only estimated linearly. In particular, while incorporating load of the vehicles into

the fuel consumption estimations, they assume that an extra load in the vehicle would

increase fuel consumption by a predetermined percentage. Finally, a recent study by

Franceschetti et al. (2013) propose an integer linear programming model for a VRP by

considering two time zones starting with an initial congestion period and followed by a

free-flow period.

4.3 Problem description

The problem studied here is defined on a complete graph G = {V,A ∪ A′}, where the

set of nodes V = {V0 ∪ VS ∪ VC} consists of three subsets: a depot (V0 = {0}), a set

of satellites (VS) and a set of customers (VC). The set of arcs consists of two subsets:

those in the first-echelon A = A(V0 ∪ VS) and in the second-echelon A
′

= A(VS ∪ VC)

where A(S), S ⊂ V is the set of all arcs with both endpoints in S. Time-dependent

travel times are considered to account for traffic congestion effects when traveling on

arcs (i, j) ∈ A
′
c ⊆ A

′
. The index set of first-echelon vehicles located at the depot is

K = {1, 2..., k}, each vehicle with capacity c. Freight is delivered to satellites from the

depot through these vehicles. Each satellite can be served by more than one first-echelon

4http://www.goodyear.com/truck/pdf/commercialtiresystems/FuelEcon.pdf,Onlineaccessed:

February2013

76

http://www.goodyear.com/truck/pdf/commercialtiresystems/FuelEcon.pdf, Online accessed: February 2013
http://www.goodyear.com/truck/pdf/commercialtiresystems/FuelEcon.pdf, Online accessed: February 2013


Chapter 4. The time-dependent two-echelon capacitated vehicle routing problem with
environmental considerations

vehicle, so the total freight assigned to each satellite can be split into two or more vehicles.

A fleet of k
′
s identical vehicles of capacity c

′
< c are available at each satellite s ∈ VS for

serving the customers, where each customer has a known nonnegative demand qi to be

delivered. The total number of second-echelon vehicles is k
′

=
∑

s∈VS k
′
s. The demand

of each customer cannot be split among different vehicles and each customer is visited

exactly once by a second-echelon route. Additionally, each customer has a service time

shown by hi. As in the standard VRP, waiting at customers is not allowed after service

has been completed. The distance between two nodes (i, j) ∈ A ∪ A′ is denoted by dij.

The unit handling cost of freight in satellite s ∈ VS is given as bs.

The aim of the problem in this study is to determine the first and second echelon routes

for all vehicles by respecting the assumptions stated above so as to minimize the total

cost of travel and handling. Travel cost includes that of driver and fuel consumption,

calculated for each arc in the network. Let w denote the wage for the drivers and p

denote the fuel price per liter. The driver of each vehicle is paid from the beginning

of the time horizon until the time they return to the starting point. Fuel consumption

is mainly dependent on speed, load and distance. The following sections explain the

calculation of time-dependent travel times and fuel consumption in greater detail.

4.3.1 Time dependency

The travel time of a vehicle depends on distance, where speed changes according to the

departure time and the arc being traversed. Vehicles travel at a free-flow speed f in the

first-echelon. The vehicle traversing a congested arc (i, j) ∈ A′c has different travel speeds

sl, l ∈ T = {1, 2, 3..., Te} according to the time zone T in which it travels. Figure 4.2a

shows an example of speed profiles for four-time zones. The rest of the arcs, (i, j) ∈ A′\A′c,
are defined as non-congested, for which speed is constant and denoted f

′
(Figure 4.2b).

(a) For arcs (i, j) ∈ A
′
c (second-echelon) (b) For arcs (i, j) ∈ A

′\A′c (second-echelon)

Figure 4.2: An example of speed profiles for four-time zones
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4.3.2 Fuel consumption and emissions

We employ the same approach as in Bektaş and Laporte (2011), Demir et al. (2012) and

Franceschetti et al. (2013) for estimating fuel consumption and emissions that is based on

the comprehensive emissions model of Barth et al. (2005). According to this model, the

total amount of fuel used Fuel (liters) for traversing a distance distance (m) at constant

speed speed (m/s) with load load (kg) is calculated as follows:

Fuel = λ

(
kNeV

distance

speed
+ γβdistance(speed)2 + γα(µ+ load)distance

)

where λ = ξ
κψ

, γ = 1
1000ε$

, β = 0.5CdAρ, and α = g sinφ + gCr cosφ. Furthermore, k is

the engine friction factor (kJ/rev/liter), Ne is the engine speed (rev/s), V is the engine

displacement (liter), µ is the vehicle curb weight (kg), g is the gravitational constant (9.81

m/s2), φ is the road angle, Cd and Cr are the coefficient of aerodynamic drag and rolling

resistance, A is the frontal surface area (m2), ρ is the air density (kg/m3), ε is vehicle

drive train efficiency and $ is an efficiency parameter for diesel engines, ξ is fuel-to-air

mass ratio, κ is the heating value of a typical diesel fuel (kJ/g), ψ is a conversion factor

from grams to liters from (g/s) to (liter/s). For further details on these parameters, the

reader is referred to Demir et al. (2011).

4.3.3 A mixed integer linear programming formulation

This section presents a comprehensive mixed integer linear programming formulation for

the studied problem. This formulation is based on the model proposed by Jepsen et al.

(2013) for the 2E-CVRP, but extends it to account for the time-dependent speeds and

the amount of fuel consumed. The full notation that is needed for the model is presented

in Table 4.2.

We now present the formulation, starting with the objective function.

Minimize
∑

(i,j)∈A

∑
k∈K

(
λ1
(
ω1(dij/f)Xijk + υ1dijf

2Xijk + %1(µ1Xijk + Iijk)dij
))
p (4.i)

+
∑

(i,j)∈A

∑
k∈K

(dij/f)Xijkw (4.ii)

+
∑
s∈VS

Tsbs (4.iii)

+
∑

(i,j)∈A′\A′c

∑
s∈VS

(
λ2
(
ω2Gijs + υ2Gijsf

′3 + %2(µ2Zijs + Fijs)dij
))
p (4.iv)

+
∑

(i,j)∈A′c

∑
s∈VS

∑
m∈T

(
λ2
(
ω2((dij/sm)Nmm

ijs ) + υ2((dij/sm)Nmm
ijs )s3m + %2(µ2N

mm
ijs + Emmijs )dij

))
p (4.v)

78



Chapter 4. The time-dependent two-echelon capacitated vehicle routing problem with
environmental considerations

Table 4.2: Parameters and decision variables

Symbol Meaning

δ−(s) entering first-echelon arcs of satellite s ∈ VS ,
δ+(s) leaving first-echelon arcs of satellite s ∈ VS ,

δ
′−(i) entering second-echelon arcs of node i ∈ VS ∪ VC ,

δ
′+(i) leaving second-echelon arcs of node i ∈ VS ∪ VC ,
Mi sufficiently large numbers, i ∈ {1, 2}
c capacity of vehicles in first-echelon,

c
′

capacity of vehicles in second-echelon,

k
′
s vehicle limit in satellite s ∈ VS ,

k
′

total size of the second-echelon vehicles, is equal to
∑

s∈VS
k
′
s ,

qi demand of customer i ∈ VC ,
dij distance between two nodes i 6= j ∈ V ,
bs unit handling cost of freight in satellite s ∈ VS ,
hi service time in customer i ∈ VC ,
tl ending time of zone l ∈ T\{Te},
sl travel speed in time zone l ∈ T ,
f free-flow speed in first-echelon,

f
′

free-flow speed in second-echelon,
zl max distance that can be traveled in time zone l ∈ T\{1, Te}, zl = (tl − tl−1)sl ∀l ∈ T\{1, Te},
el is calculated as follows, el = (tl − tl−1)s3l ∀l ∈ T\{1, Te},
ωj technical parameter, kjN

j
eVj , for vehicle in echelon j ∈ {1, 2},

υj technical parameter, γjβj , for vehicle in echelon j ∈ {1, 2},
%j technical parameter, γjαj , for vehicle in echelon j ∈ {1, 2},
λj technical parameter, ξj/κjψj , for vehicle in echelon j ∈ {1, 2},
µj curb-weight of vehicle in echelon j ∈ {1, 2},
p fuel price per liter,
w wage rate for the drivers of the vehicles,

Xijk binary variable equal to 1 if first-echelon vehicle k ∈ K goes from i ∈ V0 ∪ VS to j ∈ V0 ∪ VS ,
and 0 otherwise,

Wsk the amount of freight delivered to satellite s ∈ VS by vehicle k ∈ K,
Ts total demand delivered from satellite s ∈ VS ,
Zijs binary variable equal to 1 if second-echelon vehicle from satellite s ∈ VS goes from i ∈ VS ∪ VC

to j ∈ VS ∪ VC ,and 0 otherwise,
Fijs the load on a vehicle from satellite s ∈ VS when leaving node i ∈ VS ∪ VC ,
Emn

ijs the load on a vehicle from satellite s ∈ VS when leaving node i ∈ VS ∪ VC , and departure and arrival
times are in zones m,n ∈ {T |n ≥ m} respectively,

Iijk the load on a vehicle k ∈ K when leaving node i ∈ V0 ∪ VS ,
Dijs departure time from node i ∈ VS ∪ VC when departure node is j ∈ VS ∪ VC , and vehicle origin

is s ∈ VS ,
Hmn

ijs departure time from node i ∈ VS ∪ VC when departure node is j ∈ VS ∪ VC , and vehicle origin is
s ∈ VS , and departure and arrival times are in zones m,n ∈ {T |n ≥ m} respectively,

Gijs travel time between node i ∈ VS ∪ VC and j ∈ VS ∪ VC for the vehicle that has an origin s ∈ VS ,
Ri time at which service starts at node i ∈ VC ,
Sis total time spent on a route that has node i ∈ VC as last visited before returning to a satellite s ∈ VS ,
Pm
ijs binary variable equal to 1 if departure time of a vehicle that has an origin s ∈ VS to traverse arc

(i, j) ∈ A
′
c is higher than the tm,m ∈ T\{Te}, and 0 otherwise,

Lm
ijs binary variable equal to 1 if time zone during departure for a vehicle that has an origin s ∈ VS

to traverse arc (i, j) ∈ A
′
c is m ∈ T ∪ {0}, and 0 otherwise,

Y mn
ijs binary variable equal to 1 if departure time for a vehicle that has an origin s ∈ VS is earlier than

tm,m ∈ T\{Te} and arrival time is later than tn, n ∈ {T\{Te}|n ≥ m} while traversing the arc

(i, j) ∈ A
′
c, and 0 otherwise,

Bmn
ijs max distance that can be traversed on arc (i, j) ∈ A

′
c before tn, n ∈ {T\{Te}|n ≥ m} while departure

time is earlier than tm,m ∈ {T\{Te}}, for a vehicle that has an origin s ∈ VS ,
Nmn

ijs binary variable equal to 1 if departure and arrival times for a vehicle that has an origin s ∈ VS are in

zones m,n ∈ {T |n ≥ m} respectively, while traversing the arc (i, j) ∈ A
′
c, and 0 otherwise,

Amn
ijs travel time of a vehicle that has an origin s ∈ VS for the arc (i, j) ∈ A

′
c when departure and arrival

times are in zones m,n ∈ {T |n ≥ m} respectively,
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+
∑

(i,j)∈A′c

∑
s∈VS

∑
m∈T\{Te}

∑
n∈T,n>m

(
λ2
(
ω2A

mn
ijs + υ2((tmN

mn
ijs −Hmn

ijs )s3m

+

p<n∑
p=m+1

epN
mn
ijs + (Hmn

ijs +Amnijs − tn−1Nmn
ijs )s3n) + %2(µ2N

mn
ijs + Emnijs )dij

))
p (4.vi)

+
∑
i∈VC

∑
s∈VS

Sisw. (4.vii)

(4.1)

The objective function (4.1) comprises seven parts: (4.i) fuel cost for the first-echelon,

(4.ii) driver cost for the first-echelon, (4.iii) handling fee in the satellites, (4.iv) fuel cost

for the non-congested arcs in the second-echelon, (4.v) fuel cost for the congested arcs in

the second-echelon if departure and arrival times are in the same time zone, (4.vi) fuel

cost for the congested arcs in the second-echelon, if departure and arrival times are in

different time zones, (4.vii) driver cost for the second-echelon.

∑
(i,j)∈δ+(s)

Xijk =
∑

(i,j)∈δ−(s)

Xijk, ∀s ∈ VS , k ∈ K (4.2)

∑
(i,j)∈δ+(s)

Xijk ≤ 1, ∀s ∈ V0 ∪ VS , k ∈ K (4.3)

∑
(i,j)∈δ+(s)

Iijk =
∑

(i,j)∈δ−(s)

Iijk −Wi,k, ∀s ∈ VS , k ∈ K (4.4)

Iijk ≤ cXijk, ∀(i, j) ∈ A, k ∈ K (4.5)∑
(i,j)∈δ−(s)

Iijk ≤ 0, ∀s ∈ V0, k ∈ K. (4.6)

Constraints (4.2) to (4.6) relate to the first-echelon. In particular, constraints (4.2)

ensure flow conservation for each vehicle at each satellite, constraints (4.3) ensure that

a vehicle visits a satellite at most once, and constraints (4.4) to (4.6) model the flow on

each arc and ensure that vehicle capacities are respected.

∑
k∈K

Wsk = Ts, ∀s ∈ Vs. (4.7)

Constraints (4.7) link the delivery from all first-echelon vehicles with the total demand

delivered from each satellite.

∑
s∈VS

∑
(a,b)∈δ′+(i)

Zabs = 1, ∀i ∈ VC (4.8)

∑
(a,b)∈δ′−(i)

Zabs =
∑

(a,b)∈δ′+(i)

Zabs, ∀i ∈ VC , s ∈ VS (4.9)

∑
s′∈VS\{s}

(
∑

(a,b)∈δ′+(s)

Zabs′ +
∑

(a,b)∈δ′−(s)

Zabs′ ) = 0, ∀s ∈ VS (4.10)

∑
(a,b)∈δ′+(s)

Zabs ≤ k
′

s, ∀s ∈ VS (4.11)
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∑
s∈VS

∑
(a,b)∈δ′+(s)

Zabs ≤ k
′
, (4.12)

∑
s∈VS

∑
(a,b)∈δ′+(i)

Fabs =
∑
s∈VS

∑
(a,b)∈δ′−(i)

Fabs − qi, ∀i ∈ VC (4.13)

Fabs ≤ c
′
Zabs, ∀s ∈ VS , (a, b) ∈ A

′
(4.14)

Ts =
∑

(a,b)∈δ′+(i)

Fabs, ∀s ∈ VS (4.15)

∑
s∈VS

Ts =
∑
i∈VC

qi, (4.16)

∑
(i,j)∈δ′+(s)

Dijs = 0, ∀s ∈ VS (4.17)

∑
(i,j)∈δ′−(i)

∑
s∈VS

(Dijs +Gijs) = Ri, ∀i ∈ VC (4.18)

∑
(i,j)∈δ′+(i)

∑
s∈VS

Dijs = Ri + hi, ∀i ∈ VC (4.19)

Diss +Giss ≤ Sis, ∀i ∈ VC , s ∈ VS (4.20)

Dijs ≤M2Zijs, ∀(i, j) ∈ A
′
, s ∈ VS . (4.21)

Constraints (4.8) to (4.21) relate to the second-echelon. Constraints (4.8) ensure that

each customer is visited exactly once. Constraints (4.9) ensure conservation of the ve-

hicle origin at each customer. Constraints (4.10) eliminate traffic between the satellites.

Constraints (4.11) and (4.12) ensure that the number of vehicles used is not more than

the available vehicles. Constraints (4.13) and (4.14) model the flow on each arc and en-

sure that vehicle capacities are respected. Constraints (4.15) ensure flow balance at each

satellite. Constraints (4.16) ensure that total demand is equal to total amount delivered

from all satellites. Constraints (4.17) initialize the departure time from the satellites as

0. Constraints (4.18) and (4.19) are used to model the relationship between departure

and arrival times at each customer. Constraints (4.20) compute the time at which the

vehicle returns to the satellite. Constraints (4.21) are used to set departure times to zero

for arcs that do not exist in the route.

Gijs = (dij/f
′
)Zijs, ∀(i, j) ∈ A

′
\A
′

c, s ∈ VS . (4.22)

Constraints (4.22) measure the travel time for the non-congested second-echelon arcs

(i, j) ∈ A′\A′c that exist in the route.

M2(1− Pmijs) +Dijs ≥ tm, ∀(i, j) ∈ A
′

c, s ∈ VS ,m ∈ T\{Te} (4.23)

Dijs < tm + PmijsM2, ∀(i, j) ∈ A
′

c, s ∈ VS ,m ∈ T\{Te} (4.24)∑
m∈T\{Te}

Pmijs + Zijs =
∑
m∈T

mLmijs, ∀(i, j) ∈ A
′

c, s ∈ VS (4.25)

∑
m∈T∪{0}

Lmijs = 1, ∀(i, j) ∈ A
′

c, s ∈ VS . (4.26)

Constraints (4.23) to (4.26) compute the time zone when the vehicles depart from node
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i ∈ VS ∪ VC to node j ∈ VS ∪ VC , where (i, j) ∈ A′c, by considering the departure time

from node i ∈ VS ∪ VC and ending times of zones m ∈ T\{Te}.

Bmnijs =

(
(tmL

m
ijs −Dijs)sm +

p≤n∑
p=m+1

zpL
m
ijs

)
+M1(1− Lmijs),∀(i, j) ∈ A

′

c, s ∈ VS ,m, n ∈ {T\{Te}|n ≥ m}.

(4.27)

Constraints (4.27) are used to compute bounds, which are necessary to calculate the

time zone when the vehicles arrive at node j ∈ VS ∪ VC from node i ∈ VS ∪ VC , where

(i, j) ∈ A′c. These bounds show the maximum distance that can be traversed before the

end of each zone by considering the departure time from node i ∈ VS ∪ VC and ending

times of zones m ∈ T\{Te}.

M1(1− Y mnijs ) + dij ≥ Bmnijs , ∀(i, j) ∈ A
′

c, s ∈ VS ,m, n ∈ {T\{Te}|n ≥ m} (4.28)

dij < Bmnijs + Y mnijs M1, ∀(i, j) ∈ A
′

c, s ∈ VS ,m, n ∈ {T\{Te}|n ≥ m} (4.29)∑
n∈T\{Te},n≥m

Y mnijs + Lmijsm =
∑

n∈T,n≥m

nNmn
ijs , ∀(i, j) ∈ A

′

c, s ∈ VS ,m ∈ T\{Te} (4.30)

∑
n∈T∪{Te+1},n≥m

Nmn
ijs = 1, ∀(i, j) ∈ A

′

c, s ∈ VS ,m ∈ T\{Te}. (4.31)

Constraints (4.28) to (4.31) compute the time zone when the vehicles arrive at node

j ∈ VS ∪ VC from node i ∈ VS ∪ VC , where (i, j) ∈ A′c, by considering the departure time

from node i ∈ VS ∪ VC and ending times of zones m,n ∈ T\{Te}.

Emnijs ≤ Nmn
ijs c

′
, ∀(i, j) ∈ A

′

c, s ∈ VS ,m, n ∈ {T |n ≥ m} (4.32)∑
m∈T

∑
n∈{T |n≥m}

Emnijs = Fijs, ∀(i, j) ∈ A
′

c, s ∈ VS (4.33)

Hmn
ijs ≤ Nmn

ijs M2, ∀(i, j) ∈ A
′

c, s ∈ VS ,m, n ∈ {T |n ≥ m} (4.34)∑
m∈T

∑
n∈{T |n≥m}

Hmn
ijs = Dijs, ∀(i, j) ∈ A

′

c, s ∈ VS . (4.35)

Constraints (4.32) to (4.35) compute the dependent decision variables Emn
ijs and Hmn

ijs ,

which are used to calculate travel time and fuel consumption amounts.

NTeTe
ijs = LTe

ijs, ∀(i, j) ∈ A
′

c, s ∈ VS (4.36)

Amnijs = (tn−1N
mn
ijs −Hmn

ijs ) +
(
dijN

mn
ijs − ((tmN

mn
ijs −Hmn

ijs )sm +

p<n∑
p=m+1

zpN
mn
ijs )

)
/sn,

∀(i, j) ∈ A
′

c, s ∈ VS ,m ∈ T\{Te}, n ∈ {T |n > m} (4.37)∑
m∈T\{Te}

∑
n∈T,n>m

Amnijs +
∑
m∈T

(dij/sm)Nmm
ijs = Gijs, ∀(i, j) ∈ A

′

c, s ∈ VS . (4.38)
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Constraints (4.36) to (4.38) compute the travel time for the congested second-echelon

arcs (i, j) ∈ A′c by considering time zones during departure and arrival.

Xijk ∈ {0, 1}, ∀(i, j) ∈ A, k ∈ K (4.39)

Zijs ∈ {0, 1}, ∀(i, j) ∈ A
′
, s ∈ VS (4.40)

Pmijs ∈ {0, 1}, ∀(i, j) ∈ A
′
, s ∈ VS ,m ∈ T\{Te} (4.41)

Lmijs ∈ {0, 1}, ∀(i, j) ∈ A
′
, s ∈ VS ,m ∈ T ∪ {0} (4.42)

Y mnijs ∈ {0, 1}, ∀(i, j) ∈ A
′
, s ∈ VS ,m, n ∈ {T\{Te}|n ≥ m} (4.43)

Nmn
ijs ∈ {0, 1}, ∀(i, j) ∈ A

′
, s ∈ VS ,m, n ∈ {T |n ≥ m} (4.44)

Wsk ≥ 0, ∀s ∈ VS , k ∈ K (4.45)

Ts ≥ 0, ∀s ∈ VS (4.46)

Fijs, Dijs, Gijs ≥ 0, ∀(i, j) ∈ A
′
, s ∈ VS (4.47)

Ri ≥ 0, ∀i ∈ VC (4.48)

Sis ≥ 0, ∀i ∈ VC , s ∈ VS (4.49)

Iijk ≥ 0, ∀(i, j) ∈ A, k ∈ K (4.50)

Emnijs , H
mn
ijs , A

mn
ijs ≥ 0, ∀(i, j) ∈ A

′
, s ∈ VS ,m, n ∈ {T |n ≥ m} (4.51)

Bmnijs ≥ 0, ∀(i, j) ∈ A
′
, s ∈ VS ,m, n ∈ {T\{Te}|n ≥ m}. (4.52)

Constraints (4.39) to (4.52) represent the binary and nonnegativity restrictions imposed

on the decision variables.

4.3.4 Strengthening the MILP model

This section presents three groups of valid inequalities to tighten the formulation and

accelerate the convergence to an optimal solution. The first set of simple valid inequalities

is on the binary variables and is as follows:

Zijs ≥ Pmijs, ∀(i, j) ∈ A
′

c, s ∈ VS ,m ∈ T\{Te} (4.53)

Zijs ≥ Lmijs, ∀(i, j) ∈ A
′

c, s ∈ VS ,m ∈ T\{Te} (4.54)

Zijs ≥ Y mnijs , ∀(i, j) ∈ A
′

c, s ∈ VS ,m, n ∈ {T\{Te}|n ≥ m} (4.55)

Zijs ≥ Nmn
ijs , ∀(i, j) ∈ A

′

c, s ∈ VS ,m, n ∈ {T\{Te}|n ≥ m}. (4.56)

Constraints (4.53) to (4.56) represent the relationships between the given binary vari-

ables, specifically, if a second-echelon vehicle from satellite s ∈ VS does not use the route

from i ∈ VS∪VC to j ∈ VS∪VC , the binary variables (Pm
ijs, L

m
ijs, Y

mn
ijs , and Nmn

ijs ), which are

used to calculate related travel time and fuel consumption in the congested second-echelon

arcs (i, j) ∈ A′c, take the value of 0.
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The second set of valid inequalities are on the routing variables, and are presented as

follows:

Xijk +Xjik ≤ 1, ∀(i, j) ∈ {A|i, j ∈ VS}, k ∈ K (4.57)

Zijs + Zjis ≤ 1, ∀(i, j) ∈ {A
′
|i, j ∈ VC}, s ∈ VS . (4.58)

Constraints (4.57) and (4.58) represent both way flow restrictions on arcs (i, j) ∈ {A|i, j ∈
VS} and (i, j) ∈ {A′|i, j ∈ VC}.

The last set of valid inequalities is related to network flows, and is presented as follows:

qjZijs ≤ Fijs, ∀(i, j) ∈ A
′
, s ∈ VS (4.59)

Fijs ≤ (c
′
− qi)Zijs, ∀(i, j) ∈ A

′
, s ∈ VS (4.60)

Fijs −
∑

l∈VC∪VS ,l 6=i

Fjls ≤ qjZijs, ∀i ∈ VC ∪ VS , j ∈ VC , s ∈ VS . (4.61)

Constraints (4.59) and (4.60) are restrictions on the total load a vehicle carries by its

capacity (Bektaş and Laporte, 2011). Constraints (4.61) model the relationship between

each incoming flow and outgoing flows at nodes i ∈ VS ∪ VC (Perboli et al., 2010). Our

preliminary experimentation has shown that significant reductions in computational time

can be obtained from the use of these additional constraints (4.53)–(4.61), as will be

shown in the next section.

4.4 Case study

This section presents an implementation of the proposed model on the distribution op-

erations of a supermarket chain operating in the Netherlands. We first describe the data

used, then present the results.

4.4.1 Description and data

The underlying transportation network includes one depot, two satellites and 16 super-

market branches (customers) as presented in Figure 4.3. The depot is located in Zaandam.

The customers are located in the city center of Utrecht, and satellites are located at the

boundary of the city.

There exist two types of vehicles. Large vehicles are used for the deliveries between the

depot and the satellites, each with a capacity of 20 tonnes. Small vehicles are used for

the deliveries between the satellites and the customers, each with a capacity of 10 tonnes.

The parameters used to calculate the total fuel consumption cost are taken from Demir
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Figure 4.3: Representation of the logistics network

et al. (2012) and are given in Table 4.3. It is assumed that small vehicles differ from

the large ones in terms of the frontal surface area and curb-weight. For small vehicles,

the frontal surface area is 2.5m2 and the curb weight is 4000kg. For large vehicles, these

values are 3.912m2 and 6350kg, respectively.

Table 4.3: Setting of vehicle and emission parameters

Notation Description Value
ξ fuel-to-air mass ratio 1
κ heating value of a typical diesel fuel (kJ/g) 44
ψ conversion factor (g/liter) 737
k engine friction factor (kJ/rev/liter) 0.2
Ne engine speed (rev/s) 33
V engine displacement (liter) 5
ρ air density (kg/m3) 1.2041
A frontal surface area (m2) 3.912
µ curb-weight (kg) 6350
g gravitational constant (m/s2) 9.81
φ road angle 0
Cd coefficient of aerodynamic drag 0.7
Cr coefficient of rolling resistance 0.01
ε vehicle drive train efficiency 0.4
$ efficiency parameter for diesel engines 0.9
p fuel price per liter (e) 1.7
w driver wage (e/s) 0.003

Vehicles travel at a fixed speed of 80 km/h between the depot and the satellites. Delivery

starts at the same time from a peak-morning period in both satellites. A set of arcs shown

in Table 4.4 is assumed to be congested based on the traffic data provided by the Google

Maps5. The rest of the arcs in the second-echelon are defined to be non-congested and

vehicles travel at a free-flow speed in these arcs. We assume that there is an initial period

5http://maps.google.nl/,Onlineaccessed:August2013
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of congestion in the congested arcs lasting for an hour6, followed by a period of free-flow.

In the peak period vehicles travel at an average speed of 20 km/h, whereas in the period

that follows vehicles travel at an average free-flow speed of 40 km/h.

Table 4.4: Congested arcs in the second echelon

Arcs
From To From To
C1 S1 C11 C9
C2 C4 C12 C8
C2 C3 C12 C9
C3 C4 C12 S2
C3 C7 C13 C14
C3 C2 C14 C15
C4 C2 C14 C13
C4 C3 C14 C10
C5 S1 C14 S2
C7 C3 C15 C14
C8 C12 S1 C1
C9 C11 S2 C12
C9 C12 S2 C14
C10 C14

Demand is generated randomly for purposes of sensitivity analysis as will be shown in the

following section. For the base case, demand (kg) is (2000, 4500, 1500, 3500, 1500, 2500,

1000, 3000, 1500, 3000, 4000, 1000, 500, 1000, 500, 2000) for customers C1–C16, respectively.

Distances between nodes (see Table 4.A in the appendix) are calculated using Google

Maps5. Handling cost at satellites one and two are three and two e/tonne respectively.

Service times at customer nodes are assumed to be 10 minutes, regardless of the amount

of delivery.

4.4.2 Analysis and discussion

The ILOG-OPL development studio and CPLEX 12.2 optimization package has been used

to develop and solve formulation (4.1)–(4.52) for the case study. The resulting model has

2327 continuous and 1106 binary variables, and 3022 constraints. Optimal solutions were

obtained on a computer of Pentium(R) i5 2.4GHz CPU with 3GB memory. We focused

on four KPIs: (i) total distance, (ii) total time, (iii) total fuel consumption, and (iv) total

cost. The proposed model was minimized over each KPI. Each model uses the same set of

constraints as shown by (4.2)–(4.52), but has a different objective function as discussed

below.

6http://www.forbes.com/sites/jimgorzelany/2013/04/25/the-worlds-most-traffic-congested-

cities/,Onlineaccessed:September2014
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4.4.2.1 Comparison of different objectives

To obtain a distance-minimizing solution, the following function has been used,

Minimize
∑

(i,j)∈A

∑
k∈K

dijXijk +
∑

(i,j)∈A′

∑
s∈VS

dijZijs. (4.62)

which minimizes the combined distances traveled in the first and second echelons.

To obtain a time-minimizing solution, the following function has been used,

Minimize
∑

(i,j)∈A

∑
k∈K

(dij/f)Xijk +
∑
s∈VS

∑
i∈VC

Sis. (4.63)

which minimizes the total travel time in the first and second echelons.

To obtain a fuel-minimizing solution, we use the function below.

Minimize
∑

(i,j)∈A

∑
k∈K

(
λ1
(
ω1(dij/f)Xijk + υ1dijf

2Xijk + %1(µ1Xijk + Iijk)dij
))

+
∑

(i,j)∈A′\A′c

∑
s∈VS

(
λ2
(
ω2Gijs + υ2Gijsf

′3 + %2(µ2Zijs + Fijs)dij
))

+
∑

(i,j)∈A′c

∑
s∈VS

∑
m∈T

(
λ2
(
ω2((dij/sm)Nmm

ijs ) + υ2((dij/sm)Nmm
ijs )s3m + %2(µ2N

mm
ijs + Emmijs )dij

))

+
∑

(i,j)∈A′c

∑
s∈VS

∑
m∈T\{Te}

∑
n∈T,n>m

(
λ2
(
ω2A

mn
ijs + υ2((tmN

mn
ijs −Hmn

ijs )s3m

+

p<n∑
p=m+1

epN
mn
ijs + (Hmn

ijs +Amnijs − tn−1Nmn
ijs )s3n) + %2(µ2N

mn
ijs + Emnijs )dij

))
. (4.64)

The objective function (4.64) is based on the fuel consumption model presented earlier

and minimizes the fuel consumption for both the first and second echelon travels.

To obtain a cost-minimizing solution, we use the original objective function (4.1). In

summary, we show the differences between the above presented model variations in Table

4.5.

Table 4.5: Differences between the model variations

Model Traveled Vehicle speed or Vehicle Vehicle Fuel price and Handling
variations distance Traffic congestion load type Wage rate (drivers) fee
Distance-minimization X
Time-minimization X X
Fuel-minimization X X X X
Cost-minimization X X X X X X

We present the resulting routes and comparison results for the four objectives in Table

4.6. In this table, we explicitly present the resulting routes both in the first and the second
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echelons, yielded by the four formulations. For each solution, we also report the total

distance (m), time (s), fuel (liter) and cost (e), both in absolute units and normalized with

respect to the smallest value for each performance indicator (in brackets). A graphical

visualization of the normalized data is presented in Figure 4.5 as well.

Table 4.6: Distance, time, fuel and cost-minimizing solutions

Routes and KPIs Distance-minimizing Time-minimizing Fuel-minimizing Cost-minimizing
First echelon D-S1-D D-S1-D D-S1-D D-S2-D
routes D-S1-D D-S2-D D-S1-D D-S2-D

S1-13-14-12-15-16-10-S1 S1-13-5-1-3-2-S1 S1-10-12-15-16-14-13-S1 S2-15-16-8-3-7-12-S2
Second echelon S1-7-8-11-9-S1 S1-10-6-S1 S1-7-8-11-9-S1 S2-11-S2
routes S1-4-3-2-S1 S2-9-4-7-8-14-S2 S1-6-4-3-1-S1 S2-10-4-6-14-S2

S1-1-5-6-S1 S2-11-12-15-16-S2 S1-5-2-S1 S2-9-2-1-5-13-S2

Total distance (m) 288600 (1) 293700 (1.02) 291400 (1.01) 302300 (1.05)
Total time (s) 27795 (1.06) 26211 (1) 26984 (1.03) 26358 (1.01)
Total fuel (liter) 64.23 (1.01) 64.92 (1.02) 63.42 (1) 67.33 (1.06)
Total cost (e) 291.57 (1.12) 270.49 (1.04) 287.76 (1.11) 259.53 (1)

The comparison results shown in Table 4.6 indicate that although distance-minimizing

solution performs slightly worse in terms of fuel consumption, it yields significantly higher

travel times and cost. The resulting routes pass through congested arcs at times of traffic

congestion, which results in increased travel time and fuel consumption. The reason for

the poor performance with respect to total cost is also due to the higher handling cost in

satellite one, which in this solution is used for all deliveries.

In contrast to the distance-minimizing objective, the time-minimizing objective takes

vehicle speed, and consequently the traffic congestion, into account (see Table 4.5). The

comparison results shown in Table 4.6 indicate that reducing travel time and using the

two satellites allow for a better cost performance compared to the distance-minimizing

solution.

The fuel-minimizing objective yielded an average of 2.5% reduction in fuel compared to

the other objectives. It considers traveled distance, vehicle speed and load (see Table 4.5).

Similar to the distance-minimizing solution, the solution proposes to use only satellite

one. In comparison with the time-minimizing solution, although it performs better in

terms of fuel consumption, it has a higher cost because of longer travel times and higher

handling cost. Aiming for less fuel consumption means at the same time minimizing

environmental damage in terms of transportation emissions and energy usage, since the

amount of emissions and energy usage of a vehicle are directly proportional to the amount

of fuel consumed. From this perspective, the solution obtained from the fuel-minimizing

objective can be regarded as the most environmentally-friendly one. For the case study,

being sustainable (fuel-efficient) comes at a cost increase of 10.8% compared to the most

economic solution.
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In contrast to the other objectives, the cost-minimizing objective takes travel time due

to driver wage, fuel consumption and handling cost into account (see Table 4.5) and

achieves, on average, a reduction of 6.9% in cost. The comparison results shown in Table

4.6 indicate that, among other types the cost-minimizing solution has the worst perfor-

mance with respect to fuel consumption. However, the cost-minimizing solution uses only

satellite two for the deliveries that allows to reduce the total handling cost. Additionally,

it yields a slightly higher total travel time as compared to the time-minimizing solution,

and consequently reduces total driver costs.

4.4.2.2 Effect of valid inequalities on solution time

To evaluate the effect of proposed valid inequalities (4.53)–(4.61), an analysis has been

carried out. Table 4.7 presents the results on the computational times required to solve

each variation of the model to optimality, with different combinations of the valid in-

equalities. The results show the efficiency of the valid inequalities.

Table 4.7: The effect of the valid inequalities on the computational time (in seconds) to obtain
optimal solutions

Types Distance-minimizing Time-minimizing Fuel-minimizing Cost-minimizing
Model 76 3325 497 3738
Model+(4.53)–(4.58) 230 3293 562 2170
Model+(4.59)–(4.61) 51 1455 342 469
Model+(4.53)–(4.61) 61 1410 210 568

4.4.2.3 Sensitivity analyses

This section presents sensitivity analyses for the model with respect to changes in the

handling cost, demand and satellite capacities.

• Effect of change in the handling cost: It is clear that changes in the handling cost cannot

affect the routing decisions for the distance, time and fuel-minimizing solutions, since this

is not considered in the objective function of these variations of the model. However, a

change in handling cost in the satellites may affect the resulting cost for all variations of

the model. Additionally, handling cost may have an effect on routing decisions for the

cost-minimizing solution. This has motivated us to analyze two scenarios that differ with

respect to the handling cost structure: (i) Scenario H1: handling cost at satellites one

and two are taken as two and three e/tonne respectively, (ii) Scenario H2: handling costs

are equal and are set as two e/tonne for both satellites.
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The cost-minimizing solution yields same vehicle routes in both scenarios, namely D-S1-D

and D-S1-D (first-echelon) and S1-10-6-S1, S1-7-11-12-15-16-14-13-S1, S1-5-1-2-S1, and

S1-4-3-8-9-S1 (second-echelon). However this solution is different from that of the base

case, which was presented in Table 4.6. In particular, the new solution uses satellite one for

product delivery as opposed to using only satellite two as in our base case. Comparisons

of the cost-minimizing solutions under different scenarios are presented in Table 4.8. In

the new scenarios, the fuel consumption is reduced from 67.33 liters to 63.44 liters due

to the usage of satellite one. This reduction also contributes to the decrease in the total

cost. One other finding is that although the new scenarios have a shorter total distance,

they perform worse in terms of total time compared to the base case. The reason behind

this result is the difference in the total distance traveled in and out of the city center.

In particular, the total distance traveled out of the city center in the base case is 30600

m shorter than in the new scenarios, whereas, the total distance traveled into the city

center is 19900 m longer than that of the new scenarios.

Table 4.8: Comparisons of the cost-minimizing solutions under the base case, and scenarios
H1 and H2

Scenarios Total distance (m) Total time (s) Total fuel (liter) Total cost (e)
Base Case 302300 26358 67.33 259.53
Scenario H1 291600 26854 63.44 254.42
Scenario H2 291600 26854 63.44 254.42

The resulting costs of the distance, time and fuel-minimizing solutions change under

the new scenarios. The % difference between the results of the distance, time and fuel-

minimizing models over the cost-minimizing versions is shown in Table 4.9. For instance,

the % difference in total cost between distance-minimizing and cost-minimizing solutions

is 12.3% in the base case. However, this reduces to 1.6% in the new scenarios, since

handling cost disadvantage of using only satellite one in the distance-minimizing solution

disappears. The same holds for the fuel-minimizing solution in which the relative differ-

ence reduces from 10.8% to 0.1% due to the change in the handling cost. These results

also reveal that the additional cost of being more environmentally-friendly reduces in the

new scenarios compared to the base case. The relative difference increases between the

time-minimizing and the cost-minimizing solutions in the scenario H1 can be explained

in a similar way. The time-minimizing solution proposes to use satellite two as well as

it is shown in Table 4.6, however the increased handling cost of the satellite two causes

an increase in the total cost. When the handling costs in the satellites are equal, the

total cost resulting from the time-minimizing and the cost-minimizing solutions becomes

similar.
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Table 4.9: Cost performances of distance, time, fuel and cost-minimizing solutions under the
base case, and scenarios H1 and H2

Model variations Base Case Scenario H1 Scenario H2
Distance-minimizing 291.58 +12.3% 258.58 +1.6% 258.58 +1.6%
Time-minimizing 270.49 +4.2% 272.49 +7.1% 254.99 +0.2%
Fuel-minimizing 287,76 +10.8% 254.76 +0.1% 254.76 +0.1%
Cost-minimizing 259.53 - 254.42 - 254.42 -

• Effect of change in demand: The hypothetical demand generated in the base case has

a coefficient of variation (CV) equal to 0.6, which represents the ratio of the standard de-

viation to the mean. In order to test the effect of the variation in the demands, two more

demand sets with different CVs have been generated: (i) Scenario D1 with CV=0, where

each node has demand equal to 2000 kg, (ii) Scenario D2 with CV=1.32, where demand

(kg) is (200, 6000, 100, 250, 5500, 200, 6000, 500, 100, 1500, 100, 7000, 4500, 300, 100, 100) for

customers C1–C16, respectively. The results on the performance of distance, time, fuel

and cost-minimizing solutions under different scenarios are shown in Figure 4.4.

Figure 4.4: Comparison of distance, time, fuel and cost-minimizing solutions under the base
case, and scenarios D1 and D2

The performances of the distance, time, fuel and cost-minimizing objectives on the KPIs

are not the same in each scenario. For instance, the distance-minimizing objective results

in a lower fuel consumption than the time-minimizing objective in the base case. However,

the time-minimizing objective performs better than the distance-minimizing objective

with respect to fuel consumption in scenarios D1 and D2. For each scenario, the amount

of potential fuel consumption reduction and its contribution to the total cost can be seen

in Figure 4.4. The same figure also shows the potential reduction in total cost.
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• Effect of adding capacity restrictions on the satellites: With the exception of the time-

minimizing solution, all other solutions use a single satellite. These solutions do not

impose any limitations on satellite capacity, which implies that all deliveries can be made

from a single satellite. To investigate the effect of capacity limitations on satellites, we

now analyze Scenario C, which, unlike the base case, assumes that the capacity of a

satellite s ∈ VS has a finite capacity cs. This restriction is modeled through the following

constraints.

Ts ≤ cs, ∀s ∈ VS . (4.65)

In Scenario C, we assume that each satellite has two small vehicles to deliver the products

to the customers, which makes for a delivery capacity of 20 tonnes. For Scenario C, we

present the resulting routes and comparison results for the four objectives in Table 4.10.

Table 4.10: Distance, time, fuel and cost-minimizing solutions under the scenario C

Routes and KPIs Distance-minimizing Time-minimizing Fuel-minimizing Cost-minimizing
First echelon D-S1-D D-S1-D D-S1-D D-S1-D
routes D-S2-D D-S2-D D-S2-D D-S2-D

S1-13-4-3-2-S1 S1-13-5-1-3-2-S1 S1-10-4-3-1-S1 S1-13-5-1-3-2-S1
Second echelon S1-1-5-6-10-S1 S1-10-6-S1 S1-5-2-6-13-S1 S1-10-S1
routes S2-14-12-15-16-S2 S2-9-4-7-8-14-S2 S2-9-7-8-14-S2 S2-15-16-12-11-6-S2

S2-9-7-8-11-S2 S2-11-12-15-16-S2 S2-11-12-15-16-S2 S2-9-4-7-8-14-S2

Total distance (m) 289700 (1) 293700 (1.014) 294100 (1.015) 295100 (1.019)
Total time (s) 27179(1.037) 26211 (1) 26394 (1.007) 26337(1.005)
Total fuel (liter) 65.38 (1.012) 64.92 (1.005) 64.61 (1) 65.45 (1.013)
Total cost (e) 277.69 (1.031) 270.49 (1.005) 274.02 (1.018) 269.27 (1)

According to the results shown in Table 4.10, the routes for the time-minimizing solu-

tion remain the same as before, whereas solutions for the other objectives change. The

addition of capacity constraints on satellites has now led to the use of both satellites in

all model variations. This change has three main effects on the resulting solutions. First,

compared to the base case (see Table 4.6), the total cost performances have improved

for the distance- and fuel-minimizing solutions, and worsened for the cost-minimizing

solution mainly due to changes in the handling cost. Note that the handling cost at the

satellite one is higher than that at the satellite two. Second, the total distance in the

distance-minimizing solution, the total fuel consumption in the fuel-minimizing solution

and the total cost in the cost-minimizing solution have all increased. Third, the similar-

ity between the four solutions resulting from the four model variations have increased,

as shown in Figure 4.5 that shows the graphical visualizations of the normalized data for

the base case and scenario C.
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Figure 4.5: Comparison of distance, time, fuel and cost-minimizing solutions under the base
case and scenario C

4.4.2.4 Comparison of the single-echelon and two-echelon distribution systems

In this section, we analyze the case study assuming a single-echelon distribution system,

in order to observe the effect of the type of the distribution system on the selected KPIs.

To be able to use the same formulation, the two satellites were removed from the network

and a new one was located in the original depot’s location. This change has enabled

us to omit the first-echelon in the problem and to use the single satellite as a depot.

Distances between the satellite (depot) and customers in this case are as presented in

Table 4.B. Note that the customer locations and related demands stay as in the base

case. Congested arcs presented in Table 4.4 were adapted to the single-echelon case as

follows. Congested arcs from/to the second satellite were removed, since that satellite

no longer exists. Congested arcs from/to the first satellite were removed, since in the

new setting an average of 80% of the total travel between the satellite and customers

occurs outside the boundaries of the city. It was assumed that vehicles travel at a speed

of 70 km/h between the satellite (depot) and customers. Congested (20 km/h) and free-

flow (40 km/h) speeds in the city center were preserved. The length of the rush hour

was also kept as one hour. However, the effect of peak-time travel on the KPIs is now

diminished, since congestion dissipates by the time vehicles arrive at their first customers

from the satellite (depot). Finally, in the single echelon case handling costs were removed

as satellite serves as a depot. Figure 4.6 presents the performance of the single-echelon

case compared to the base (two-echelon) case.

The results show that the two-echelon system outperforms the single-echelon system

in terms of total travel distance, total travel time and total fuel consumption. The

main reason for the poor performance of the single-echelon system is the use of small
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Figure 4.6: The performance of the single-echelon case compared to the base (two-echelon)
case

vehicles for the long distances, rather than large ones as in the two-echelon system. In

particular, four small vehicles were used in the former between the depot (satellite) and

the customers, whereas in the latter this was managed through two large vehicles. This

load consolidation allowed for reduction in total travel distance, total travel time and

total fuel consumption in the two-echelon system. Although the single-echelon system

had higher time (increased wage cost) and fuel (increased fuel cost) requirements, the

non-existence of handling costs provided comparative advantage over the two-echelon case

that led to a better total cost performance. To conclude, for this case study, the two-

echelon distribution system enabled to obtain the most environmentally-friendly solution,

whereas the least-cost solution was obtained by means of the single-echelon distribution

system. However, we note that the single-echelon system will contribute relatively more

to congestion due to the need for more vehicles to deliver the same amount of load.

Moreover, this system will have worse performance on vehicle and driver utilisation that

will reduce the efficiency of the logistics chain.

4.5 Conclusions

In this paper, we have modeled and analyzed the 2E-CVRP to explicitly account for

time-dependent speeds in the second-echelon routes and fuel consumption. To the best

of our knowledge, this is the first attempt to develop a mathematical model for the time-

dependent 2E-CVRP with an explicit consideration of fuel consumption through the use

of a comprehensive emission function.
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The results of the computational experiments show that the resulting routes and the

performances of the solutions with respect to the KPIs change according to the variation

of the model. The traditional objectives of distance and time minimization do not ensure

minimization of fuel consumption or cost. The comprehensive cost-minimizing objective,

which breaks away from the traditional objective functions used in the 2E-CVRP by

a detailed estimation of fuel consumption, can achieve average savings in total cost by

6.9%. However, it does not guarantee the best solution in terms of emissions. The use

of fuel-minimizing objective can ensure the most environmentally-friendly solution by

reducing total fuel consumption on average 2.5% in return for a cost increase of 10.8%.

The sensitivity analyses reveal that the performances of the variations of the model on

the selected KPIs change according to the handling fee in the satellites, demand of the

customers and capacities of the satellites. Additionally, for our case study, the most

environmentally-friendly solution is obtained from the use of a two-echelon distribution

system, although a single-echelon distribution system provides a solution with lower total

cost.

One possible extension of the paper is to develop a heuristic algorithm for the studied

problem, which will enable to handle instances that are large in size. The model proposed

in this paper can be used to validate and verify the potential of such heuristic algorithms.
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Chapter 5

Modeling an inventory routing

problem for perishable products

with environmental considerations

and demand uncertainty

This chapter is based on the published journal article:

M. Soysal, J.M. Bloemhof-Ruwaard, R. Haijema, J.G.A.J. van der Vorst (2015) ”Modeling

an inventory routing problem for perishable products with environmental considerations

and demand uncertainty” International Journal of Production Economics, 164, 118-133.

In this chapter, we investigate RO4:

To investigate the performance implications of accommodating explicit transportation

energy use, product waste and demand uncertainty concerns in an inventory routing

problem.
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5.1 Introduction

Ensuring collaborative relationships throughout a supply chain is an effective strategy

to gain competitive advantage. Vendor Managed Inventory (VMI) refers to a collabora-

tion between a vendor and its customers in which the vendor takes on the responsibility

of managing inventories at customers (Hvattum and Løkketangen, 2009). The vendor

decides on quantity and time of the shipments to the customers, but has to bear the

responsibility that the customers do not run out of stock (Andersson et al., 2010). The

VMI policy is often regarded as a win-win arrangement: suppliers can better coordinate

deliveries to customers, since the vehicle routes can be based on the inventory levels ob-

served at the customers rather than the replenishment orders coming from the customers,

and customers do not have to dedicate resources to inventory management (Coelho et al.,

2012a; Campbell et al., 1998; Raa and Aghezzaf, 2009). Due to such benefits, and the

increase in availability of monitoring technologies facilitating the share of accurate and

timely information among the chain partners, the VMI policy has received much attention

in recent years. However, execution of the VMI policy in an effective way is not a simple

task, since under this policy the vendor has to deal with an integrated problem consisting

of its own vehicle routing decisions and inventory decisions of customers (Campbell and

Savelsbergh, 2004; Raa and Aghezzaf, 2009). This integrated problem, especially arising

in VMI systems (Yu et al., 2008), is known in literature as the Inventory Routing Problem

(IRP).

The IRP addresses the coordination of two components of the supply chain: the inventory

management and the vehicle routing (Jemai et al., 2013). A generic representation of the

IRP is illustrated in Figure 5.1. The traditional objective is to minimize total distribution

and inventory costs during the planning horizon without causing stock-outs at any of the

customers (Aghezzaf et al., 2006). The supplier has to make three simultaneous decisions:

(1) when to deliver to each customer, (2) how much to deliver to each customer each time

it is served, and (3) how to combine customers into vehicle routes (Bertazzi et al., 2008;

Coelho et al., 2012b). In the traditional Vehicle Routing Problems (VRPs), the supplier

aims to satisfy the orders given by the customers so as to minimize total distribution cost.

On the contrary, in the IRP, orders are determined by the supplier based on input on

customers usage (demand). Moreover, in the IRP, the supplier aims to manage inventory

of customers such that they do not experience a stock-out, whereas traditional VRPs do

not have such a concern. The presence of the inventory component in the IRP adds a

time dimension to the related routing problem (Bertazzi et al., 2008). The IRP is thus

regarded as a medium-term problem, whereas the VRP is a short term one (Moin and

Salhi, 2007). Applications of the IRP arise in a large variety of industries, including the
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distribution of liquified natural gas, raw material to the paper industry, food distribution

to supermarket chains, automobile components, perishable items, groceries, cement, fuel,

blood, and waste organic oil (see respective references in Coelho and Laporte (2013);

Coelho et al. (2012b)).

Figure 5.1: A generic representation of the Inventory Routing Problem

In the last two decades, food supply chain management has evolved due to various reasons

such as demand for safe and high quality food products, increasing health consciousness

of consumers, growth of world population, climate change, limited natural resources and

escalating sustainability awareness. More specific, food logistics systems have seen the

transition from a focus on traditional supply chain management to food supply chain man-

agement, and successively, to sustainable food supply chain management (Soysal et al.,

2012). This transition has brought new key logistical aims besides the cost minimiza-

tion objective: (i) the ability to control product quality in the supply chain and deliver

high quality food products in various forms to final consumers by incorporating prod-

uct quality information in logistics decision making, (ii) the ability to collaborate in the

supply chain network to reduce food waste and (iii) the ability to reduce environmental

and societal impacts of operations (Soysal et al., 2012). The aforementioned develop-

ments have stimulated companies and researchers to consider multiple Key Performance

Indicators (KPIs) such as cost, food waste and transportation emissions in food logistics

management projects (e.g., Zanoni and Zavanella (2012) and Soysal et al. (2014)).

Some traditional assumptions in the IRP literature restrict the usage of the proposed

models in current food logistics systems. These assumptions, which can be regarded

as doubtful from the practical point of view, are summarized as follows. First, IRP

models often assume that distribution costs between nodes are known in advance and are

constant (e.g., Vidović et al. (2014) and Qin et al. (2014)). However, fuel consumption

and therefore cost can change based on vehicle load which is dependent on the visiting

order of the customers (Kara et al., 2007; Kuo and Wang, 2011). The literature for a
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number of VRPs shows that an explicit consideration of fuel consumption in logistics

operations can help to reduce relevant operational costs and environmental externalities

(e.g., Bektaş and Laporte (2011) and Franceschetti et al. (2013)). Second, a common

assumption of an unlimited product shelf life in the IRP models is restrictive in that

it does not allow for the consideration of quality decay of products. This is one of the

main obstacles for the application of the basic IRP models in food logistics management.

Third, a widespread tendency is to assume that customer usages are known in advance

in the beginning of the planning horizon, which is clearly not the case in reality. These

are the main weaknesses of the basic IRP models to be improved.

From this point of view, our interest in this study is to enhance the traditional models for

the IRP to make them more useful for the decision makers in food logistics management.

In order to achieve that improvement, we do not rely on all common assumptions of the

basic IRP models. Therefore, in our problem setting, distribution costs between nodes

are not known in advance and can change according to the routing schedule employed,

the product is subject to quality decay because of the perishability nature and customer

usage is not known a priori. Moreover, we estimate fuel consumption and emissions

based on a comprehensive emissions model that allows to incorporate transportation cost

and emissions more accurately and explicitly. Consequently, we develop a comprehen-

sive chance-constrained programming model for the multi-period IRP that accounts for

perishability, explicit fuel consumption and demand uncertainty. The proposed model

manages relevant KPIs of total energy use (emissions), total driving time, total routing

cost, total inventory cost, total waste cost, and total cost, simultaneously. To the best of

our knowledge, such an attempt has not yet been made for the IRP.

The rest of the paper is structured as follows. Section 5.2 presents a review of the

relevant literature on the IRP and clarifies the contribution of our work. Section 5.3

defines the problem and presents the optimization model. Section 5.4 presents three

different variations of the proposed model, which are employed to show the benefits of

including perishability and explicit fuel consumption considerations in the model. Section

5.5 presents a simulation for the problem to evaluate the solutions of the optimization

models. Section 5.6 presents computational results on a real life distribution problem.

The last section presents conclusions and future research directions.

5.2 Related literature review

The traditional IRP without perishability and sustainability concerns has been extensively

studied in the literature. The interested reader is referred to the reviews by Moin and Salhi
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(2007), Andersson et al. (2010) and Coelho et al. (2012b) on the topic. Our focus here is

on attempts aimed to incorporate additional KPIs to the IRP. Relatively few studies on

the IRP have bothered to introduce new KPIs to the proposed models. We can subdivide

the related literature in two groups: (i) studies with perishability considerations, (ii)

studies with environmental or societal considerations.

First, we review the studies on IRP with perishability considerations. Federgruen et al.

(1986) study the IRP for a perishable product with a fixed lifetime during which it can

be used and after which it must be discarded, e.g., human blood, food and medical drugs.

They distinguish two age classes, fresh and old, based on the product remaining lifetime

and discard the product that reaches the maximum age in inventory. Le et al. (2013)

and Al Shamsi et al. (2014) study the IRP for a perishable product with a fixed lifetime

as well. Both studies restrict the total amount of time that products can be stored in

facilities and do not allow product wastes. Coelho and Laporte (2014) integrate an age

tracking approach to the IRP of a perishable product with a fixed shelf life. The age track-

ing approach ensures to distinguish products according to their shelf lives and has also

been used in literature for other logistics problems such as inventory problems (Haijema,

2013), and production and distribution problems (Rong et al., 2011; Van Elzakker et al.,

2014). Jia et al. (2014) incorporate quality time windows (shelf life limit) to the IRP of

a perishable product with the same objective as the age tracking approach: controlling

deteriorating item’s quality which has a fixed shelf life. We note that both Coelho and

Laporte (2014) and Jia et al. (2014) allow product wastes in the IRP. A number of studies

on inventory management deal with products which have limited shelf life as well (e.g.,

Minner and Transchel (2010) and Rossi et al. (2010)). However, these studies do not take

routing decisions into account. The reviews of Nahmias (1982), Amorim et al. (2013),

Karaesmen et al. (2011) and Bakker et al. (2012) can be consulted for more information

about research on supply chain management of products that are perishable.

Second, we review the studies on IRP with environmental or societal considerations. Tre-

itl et al. (2014) and Al Shamsi et al. (2014) incorporate emissions to the IRP through

estimating fuel consumption. Both studies employ the same approach as in Bektaş and

Laporte (2011) for estimating fuel consumption and emissions that is based on the com-

prehensive emissions model of Barth et al. (2005) and Barth and Boriboonsomsin (2009).

Mirzapour Al-ehashem and Rekik (2013) and Alkawaleet et al. (2014) incorporate emis-

sions to the IRP as well. However, both studies employ a distance-based emission cal-

culation approach, i.e. emissions produced by vehicle type per unit distance, that does

not consider the other factors such as vehicle load and vehicle speed. There exist other

studies on a similar problem class, VRPs, with an explicit consideration of environmen-

tal issues, such as fuel consumption or emissions (e.g., Bektaş and Laporte (2011) and
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Franceschetti et al. (2013)). Note that these studies have interest in routing schedules

and do not consider inventory decisions. The interested reader is referred to the reviews

by Demir et al. (2014b) and Lin et al. (2014) on this topic.

Table 5.1: Studies on IRPs that have perishability or fuel consumption (emissions) consider-
ations

Perishability Fuel or emissions considerations Demand uncertainty
Shelf life Waste Traveled distance Vehicle load Vehicle speed

Federgruen et al. (1986) X X - - - X
Treitl et al. (2014) - - X X X -
Mirzapour Al-ehashem and Rekik (2013) - - X - - -
Le et al. (2013) X - - - - -
Alkawaleet et al. (2014) - - X - - -
Al Shamsi et al. (2014) X - X X X -
Coelho and Laporte (2014) X X - - - -
Jia et al. (2014) X X - - - -

This study X X X X X X

Our brief review shows that none of the above mentioned studies presented in Table

5.1, except Al Shamsi et al. (2014), has addressed an IRP with both perishability and

sustainability concerns simultaneously. The study of Al Shamsi et al. (2014), however,

does not take potential product wastes and demand uncertainty into account. Note that

product wastes can be inevitable when the demand is not known in advance. The other

given studies, except Federgruen et al. (1986) that take demand uncertainty into account,

rely on a completely deterministic environment as well. This diminishes the chance to

obtain robust solutions for real-world problems where the actual demand is not known

in advance, which is often the case in practice. Some of the studies (e.g., Bertazzi et al.

(2013), Hemmelmayr et al. (2010), Huang and Lin (2010) and Yu et al. (2012)) consider

demand uncertainty on IRP, however these studies stick to traditional approaches that

focus only on a single KPI: cost.

A convenient way to capture the risk associated with uncertain demand is to use a

chance-constrained programming approach. Therefore, we formulate the IRP as a chance-

constrained programming model. It is first introduced by Charnes and Cooper (1959)

and further studied by many authors during the last years, such as Yu et al. (2012) and

Abdul Rahim et al. (2014) on IRP, and Hendrix et al. (2012), Rossi et al. (2008) and

Pauls-Worm et al. (2014) on inventory problems.

To conclude, our study adds to the literature on IRP by: (1) developing a comprehen-

sive chance-constrained programming model with demand uncertainty for a multi-period

generic IRP that accounts for the KPIs of total energy use (emissions), total driving time,

total routing cost, total inventory cost, total waste cost, and total cost, (2) presenting the

applicability of the model on the fresh tomato distribution operations of a supermarket

chain operating in Turkey based on mostly real data.
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5.3 Problem description

The problem in this study is defined on a complete graph G = {V,A}, where V =

{0, ..., |V |} is the set of nodes and A = {(i, j) : i, j ∈ V, i 6= j} is the set of arcs. Node 0

represents the vendor and the remaining nodes V
′
= V \{0} represent customers. The set

of vehicles is given as K = {1, 2..., |K|}, each with capacity c and located at the vendor.

Freight is delivered to customers from the vendor through these vehicles that start and

end at the vendor’s location. Each vehicle can perform at most one route per time period.

Each customer can be served by more than one vehicle, hence the total freight assigned to

each customer can be split into two or more vehicles. It is assumed that the demand di,t

in each period t ∈ T = {1, ..., |T |} is distributed normally with mean µi,t and standard

deviation σi,t, ∀i ∈ V
′
, t ∈ T . For each customer, an inventory holding cost hi,∀i ∈ V

′

occurs at each period. However, the product has a fixed shelf life of m ≥ 2 periods.

Therefore, if a product stays in inventory more than m periods, it becomes spoiled and

cost of waste p occurs. The demand of all customers in each period must be satisfied

with a probability of at least α. The demand that cannot be fulfilled in one period is

backlogged in the next period.

The aim of the problem in this study is to determine the routes and quantity of shipments

in each period such that the total cost comprising routing, inventory and waste costs is

minimized. Routing cost consists of driver and fuel consumption cost for each arc in

the network. Let r denote the wage for the drivers and l denote the fuel price per

liter. The driver of each vehicle is paid from the beginning of the time horizon until

the time he returns to the starting point. Fuel consumption is mainly dependent on

traveled distance, vehicle load and vehicle speed. The following section presents the fuel

consumption calculation in greater detail.

5.3.1 Fuel consumption and emissions

We employ the same approach as in Bektaş and Laporte (2011), Demir et al. (2012)

and Franceschetti et al. (2013) for estimating fuel consumption that is based on the

comprehensive emissions model of Barth et al. (2005). According to this model, the total

amount of fuel used, EC (in liters), for traversing a distance a (m) at constant speed f

(m/s) with load F (kg) is calculated as follows:

EC = λ

(
y(a/f) + γβaf2 + γs(µ+ F )a

)
where λ = ξ/(κψ), y = keNeVe, γ = 1/(1000ε$), β = 0.5CdAeρ, and s = g sinφ +

gCr cosφ. Furthermore, ke is the engine friction factor (kJ/rev/liter), Ne is the engine
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speed (rev/s), Ve is the engine displacement (liter), µ is the vehicle curb weight (kg), g is

the gravitational constant (9.81 m/s2), φ is the road angle, Cd and Cr are the coefficient

of aerodynamic drag and rolling resistance, Ae is the frontal surface area (m2), ρ is the

air density (kg/m3), ε is the vehicle drive train efficiency and $ is an efficiency parameter

for diesel engines, ξ is the fuel-to-air mass ratio, κ is the heating value of a typical diesel

fuel (kJ/g), ψ is a conversion factor from grams to liters from (g/s) to (liter/s). For

further details on these parameters, the reader is referred to Demir et al. (2011). After

estimating fuel consumption amounts, we estimate related emission (CO2) levels by using

a fuel conversion factor u (kg/l) for transport activities.

5.3.2 Chance-constrained programming model with demand uncertainty

This section presents a mathematical formulation for the studied problem. Table 5.2

presents the notation for the model.

We now present the formulation, starting with the objective function.

Minimise
∑
i∈V ′

∑
t∈T

I+i,thi (5.i)

+
∑
i∈V ′

∑
t∈{T |t≥m}

E[Wi,t]p (5.ii)

+
∑

(i,j)∈A

∑
k∈K

∑
t∈T

λ

(
y(aij/f)Xi,j,k,t + γβaijf

2Xi,j,k,t + γs(µXi,j,k,t + Fi,j,k,t)aij

)
l (5.iii)

+
∑

(i,j)∈A

∑
k∈K

∑
t∈T

(aij/f)Xi,j,k,tr. (5.iv)

(5.1)

The objective function (5.1) comprises four parts: (1.i) expected inventory cost, (note

that I+
i,t is derived from E[Ii,t] through constraints (5.3)), (1.ii) expected waste cost, (1.iii)

fuel cost from transportation operations and (1.iv) driver cost.

E[Ii,t] =

t∑
s=1

∑
k∈K

Qi,k,s −
t∑

s=1

(E[di,s] + E[Wi,s]), ∀i ∈ V
′
, t ∈ T (5.2)

I+i,t ≥ E[Ii,t], ∀i ∈ V
′
, t ∈ T (5.3)

E[Wi,t] ≥ E[Ii,t−m+1]−
t∑

a=t−m+2

E[di,a]−
t−1∑

a=t−m+2

E[Wi,a], ∀i ∈ V
′
, t ∈ {T |t ≥ m} (5.4)

E[Wi,t] = 0, ∀i ∈ V
′
, t ∈ {T |t < m} (5.5)

Pr

(
Ii,t ≥ 0

)
≥ α, ∀i ∈ V

′
, t ∈ T. (5.6)

Constraints (5.2) to (5.6) relate to the inventory decisions. In particular, constraints (5.2)

calculate expected inventory levels for each customer per period by taking the amounts
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Table 5.2: Parameters and decision variables

Symbol Meaning

E[.] expectation operator
V set of all nodes including the vendor 0, V = {0, 1, 2..., |V |}
V
′

set of customers, V
′

= V \{0}
A set of all arcs, A = {(i, j) : i, j ∈ V, i 6= j}
T set of time periods, T = {1, 2..., |T |}
K set of vehicle, K = {1, 2..., |K|}
m fixed maximum shelf life, m ≥ 2, in periods,

di,t demand of customer i ∈ V
′

in time period t ∈ T , normal random variable with mean µi,t,
standard deviation σi,t, in kg,

α pre-defined satisfaction level of probabilistic inventory constraint,
c capacity of a vehicle, in kg,
ai,j distance between node i and j, (i, j) ∈ A, in m,
f vehicle speed, (m/s),
λ technical parameter, ξ/κψ, see section 5.3.1,
y technical parameter, keNeVe, see section 5.3.1,
γ technical parameter, 1/(1000ε$), see section 5.3.1,
β technical parameter, 0.5CdAeρ, see section 5.3.1,
s technical parameter, g sinφ+ gCr cosφ, see section 5.3.1,
µ curb-weight of vehicle, in kg,
l fuel price per liter, e/l,
p penalty cost for the wasted product, e/kg,
r wage rate for the drivers of the vehicles, e/s,

hi holding cost per period at customer i ∈ V
′
, e/kg,

Ii,t the amount of inventory at customer i ∈ V
′

at the end of period t ∈ T ∪ {0}, in kg,

where Ii,0 = 0, ∀i ∈ V
′
,

I+i,t derived decision variable to calculate positive inventory levels, in kg,

Qi,k,t the amount of product delivered by vehicle k ∈ K to customer i ∈ V
′

in the beginning of
period t ∈ T , in kg,

Xi,j,k,t binary variable equal to 1 if vehicle k ∈ K goes from i ∈ V to j ∈ V in period t ∈ T ,
and 0 otherwise,

Fi,j,k,t the load on vehicle k ∈ K which goes from i ∈ V to j ∈ V in period t ∈ T , in kg,

Wi,t the amount of waste at customer i ∈ V
′

at the end of period t ∈ T , in kg.

of total product delivered, expected demand and expected waste into account. Hereby,

we assume Ii,0 = 0,∀i ∈ V
′
. Constraints (5.3) define variables which are used for the

calculation of inventory costs in the objective function. Constraints (5.4) and (5.5) calcu-

late expected waste at each customer per period. Constraints (5.6) are the service-level

constraints on the probability of a stock-out at the end of each period.

∑
i∈V,i 6=j

Xi,j,k,t =
∑

i∈V,i6=j

Xj,i,k,t, ∀j ∈ V
′
, k ∈ K, t ∈ T (5.7)

∑
j∈V,i 6=j

Xi,j,k,t ≤ 1, ∀i ∈ V, k ∈ K, t ∈ T (5.8)

∑
j∈V,i 6=j

Fi,j,k,t =
∑

j∈V,i 6=j

Fj,i,k,t −Qi,k,t, ∀i ∈ V
′
, k ∈ K, t ∈ T (5.9)

Fi,j,k,t ≤ cXi,j,k,t, ∀(i, j) ∈ A, k ∈ K, t ∈ T. (5.10)

Constraints (5.7) to (5.10) relate to the routing decisions. In particular, constraints (5.7)

ensure flow conservation for each vehicle at each node in each period. Constraints (5.8)
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ensure that each vehicle can perform at most one route per time period. Constraints (5.9)

and (5.10) model the flow on each arc and ensure that vehicle capacities are respected

in each period. Constraints (5.9) provide also the benefit of eliminating subtours that

do not include the vendor, since the load on each vehicle is monotonically decreasing as

customers are visited (Bard and Nananukul, 2009; Treitl et al., 2014).

Xi,j,k,t ∈ {0, 1}, ∀(i, j) ∈ A, k ∈ K, t ∈ T (5.11)

Fi,j,k,t ≥ 0, ∀(i, j) ∈ A, k ∈ K, t ∈ T (5.12)

−∞ < Ii,t < +∞, ∀i ∈ V
′
, t ∈ T (5.13)

I+i,t,Wi,t ≥ 0, ∀i ∈ V
′
, t ∈ T (5.14)

Qi,k,t ≥ 0, ∀i ∈ V
′
, k ∈ K, t ∈ T. (5.15)

Constraints (5.11) to (5.15) represent the restrictions imposed on the decision variables.

5.3.3 Deterministic approximation of the chance-constrained programming

model with demand uncertainty

Solving the above chance constrained model is complicated as the product have a fixed

expiration date. In line with Pauls-Worm et al. (2014), we therefore consider a determin-

istic approximation. The deterministic constraints for the stochastic chance constraints

(5.6) are rewritten as follows.

Constraints (5.6) ensure the inventory level at the end of every period to be nonnegative

with a probability of service level α. Therefore, starting inventory level of every period

should be higher than the demand of that period, with a probability higher than the

service level. These constraints now can be rewritten as,

Pr

(
Ii,t−1 +

∑
k∈K

Qi,k,t ≥ di,t
)
≥ α, ∀i ∈ V

′
, t ∈ T. (5.16)

Applying constraints (5.2) to constraints (5.16), we have

Pr

( t−1∑
s=1

∑
k∈K

Qi,k,s −
t−1∑
s=1

(di,s + E[Wi,s])︸ ︷︷ ︸
Ii,t−1

+
∑
k∈K

Qi,k,t ≥ di,t
)
≥ α, ∀i ∈ V

′
, t ∈ T. (5.17)

Rearranging the constraints (5.17) yields

Pr

( t∑
s=1

∑
k∈K

Qi,k,s −
t−1∑
s=1

E[Wi,s] ≥
t∑

s=1

di,s

)
≥ α, ∀i ∈ V

′
, t ∈ T. (5.18)
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If Gdi,1+di,2+...+di,t(y) is the cumulative distribution function of Di(t) = di,1+di,2+...+di,t,

then

t∑
s=1

∑
k∈K

Qi,k,s −
t−1∑
s=1

E[Wi,s] ≥ G−1Di(t)
(α), ∀i ∈ V

′
, t ∈ T. (5.19)

Di(t) =
∑t

s=1 di,s, ∀i ∈ V
′

will be normally distributed if the {di,s}, ∀i ∈ V
′
, s ∈ T

with mean µi,s and standard deviation σi,s are each normally distributed, and pairwise

uncorrelated (Bookbinder and Tan, 1988). Therefore,

G−1Di(t)
(α) =

t∑
s=1

µi,s +

√√√√( t∑
s=1

(µi,s)2
)
CZα, ∀i ∈ V

′
, t ∈ T. (5.20)

where C is the coefficient of variation which is assumed to be constant and Zα is a

standard normal random variate with cumulative probability of α. Therefore,

t∑
s=1

∑
k∈K

Qi,k,s −
t−1∑
s=1

E[Wi,s] ≥
t∑

s=1

µi,s +

√√√√( t∑
s=1

(µi,s)2
)
CZα, ∀i ∈ V

′
, t ∈ T. (5.21)

As a result, the model is simplified through transforming the stochastic terms by re-

placing constraints (5.6) with constraints (5.21). Then, the resulting deterministic linear

formulation, which is the approximation of the chance-constrained programming model

with demand uncertainty, is: (5.1)–(5.5), (5.7)–(5.15) and (5.21). This integrated model

that takes perishability, explicit fuel consumption and demand uncertainty into account

is denoted by MPF .

5.4 Variations of the integrated model MPF

In this section, we derive from model MPF , three models (M , MF and MP ) to present

the benefits of including perishability and explicit fuel consumption considerations in the

model. Table 5.3 presents the considered aspects in the model variations.

Table 5.3: Considered aspects in the model variations

Perishability Fuel or emissions considerations Demand uncertainty
Shelf life Waste Traveled distance Vehicle load Vehicle speed Vehicle characteristics

M - - X - - - X
MF - - X X X X X
MP X X X - - - X
MPF X X X X X X X

Model M does not take perishability into account. Fuel consumption is calculated based

on only traveled distance in M , therefore it does not have explicit fuel consumption

concern as well. Model MF also disregards perishability. However, it calculates fuel
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consumption explicitly through taking traveled distance, vehicle load, vehicle speed and

vehicle characteristics into account. Model MP has perishability concern. However, it

considers only traveled distance while calculating fuel consumption, and therefore does

not have explicit fuel consumption concern. The integrated model, MPF , presented in the

previous section has both perishability and explicit fuel consumption concerns. Lastly,

note that all models take demand uncertainty into account. The following subsections

present models M , MF and MP .

5.4.1 Model without perishability and without explicit fuel consumption

concerns (M)

We adapt MPF by making some changes so that the new model, M , ignores perishability

and explicit fuel consumption, as shown in Table 5.3. Initially, the fuel cost component

(5.iii) in the objective function (5.1) is replaced with the following fuel cost calculation

equation based on only traveled distance:

∑
(i,j)∈A

∑
k∈K

∑
t∈T

(aij/1000)Xi,j,k,tbl. (5.22)

where a new introduced parameter, b, refers to fuel consumption per km. The other

components (5.i, 5.ii and 5.iv) in the objective function (5.1) are not changed. Afterwards,

the maximum shelf life parameter, m, needs to be set a number which is larger than the

length of the planning horizon |T |. Model M thus determines an IRP plan as if the

products are non-perishable. In reality the product is perishable with a maximum shelf

life of say m
′
< m. To evaluate within the MILP what the resulting inventory and waste

costs would be if the plan for non-perishables is applied to a perishable product with a

shelf life of m
′

periods, constraints (5.23)–(5.30) are added to the formulation. These

constraints do not influence the solution of M , as the constraints are not used in the

objective function.

E[I
′

i,t] =

t∑
s=1

∑
k∈K

Qi,k,s −
t∑

s=1

(E[di,s] + E[W
′

i,s]), ∀i ∈ V
′
, t ∈ T (5.23)

E[W
′

i,t] = max
(
E[I

′

i,t−m′+1
]−

t∑
a=t−m′+2

E[di,a]−
t−1∑

a=t−m′+2

E[W
′

i,a], 0
)
, ∀i ∈ V

′
, t ∈ {T |t ≥ m

′
}

(5.24)

E[W
′

i,t] = 0, ∀i ∈ V
′
, t ∈ {T |t < m

′
} (5.25)

Waste =
∑
i∈V ′

∑
t∈{T |t≥m′}

E[W
′

i,t]p, (5.26)

Inv =
∑
i∈V ′

∑
t∈T

max
(
I
′

i,t, 0
)
hi, (5.27)

−∞ < I
′

i,t < +∞, ∀i ∈ V
′
, t ∈ T (5.28)

W
′

i,t ≥ 0, ∀i ∈ V
′
, t ∈ T (5.29)
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Waste, Inv ≥ 0. (5.30)

where m
′

refers to the maximum shelf life. Furthermore, Waste and Inv auxiliary

variables refer to the total waste and total inventory costs calculated using the inven-

tory and waste tracking auxiliary variables I
′
i,t and W

′
i,t, ∀i ∈ V

′
, t ∈ T . In particular,

constraints (5.23) calculate expected inventory levels, and constraints (5.26) and (5.27)

calculate expected waste at each customer per period. Constraints (5.26) and (5.27) cal-

culate respectively total waste and inventory costs. Constraints (5.28)–(5.30) represent

the restrictions imposed on the decision variables.

Apart from these constraints, to calculate total fuel cost explicitly for the comparison

purposes with the other types, constraints (5.31)–(5.33) are added to the formulation.

∑
j∈V ′

Fj,0,k,t ≤ 0, ∀k ∈ K, t ∈ T (5.31)

Fuel =
∑

(i,j)∈A

∑
k∈K

∑
t∈T

λ

(
y(aij/f)Xi,j,k,t + γβaijf

2Xi,j,k,t + γs(µXi,j,k,t + Fi,j,k,t)aij

)
l, (5.32)

Fuel ≥ 0. (5.33)

where Fuel auxiliary variable refers to total fuel consumption cost calculated based on the

explicit fuel consumption model that considers traveled distance, vehicle load and vehicle

speed. In particular, constraints (5.31) ensure that vehicles do not carry load which is

more than the total amount delivered to the customers. Note that MPF penalizes carrying

more than enough load through explicit fuel consumption cost component existing in its

objective function (5.1). Constraint (5.32) does not affect solutions and is used to estimate

total fuel consumption cost. Constraint (5.33) represents the restriction imposed on the

decision variable. As a result, the resulting constraints for M are (5.2)–(5.15), (5.21),

and (5.23)–(5.33).

5.4.2 Model with explicit fuel consumption concern (MF )

We adapt MPF by making some changes so that the new model, MF , ignores perishability,

as shown in Table 5.3. Same as we do for M , first, the maximum shelf life parameter,

m, needs to be set a number which is larger than the length of the planning horizon

|T | to ignore the possibility of waste during the whole planning horizon. Afterwards,

constraints (5.23)–(5.30) are employed to calculate total inventory and total waste costs

for the comparison purposes with the other types. Then, the resulting constraints for MF

are (5.2)–(5.15), (5.21), and (5.23)–(5.30). Note that no changes occur in the objective

function (5.1).
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5.4.3 Model with perishability concern (MP )

We adapt MPF by making some changes so that the new model, MP , does not take fuel

consumption explicitly into account, as shown in Table 5.3. Same as we do for M , first,

fuel cost from transportation operations component (5.iii) in the objective function (5.1)

is replaced with the equation (5.22). The other components (5.i, 5.ii and 5.iv) in the

objective function (5.1) are not changed. Apart from that, constraints (5.31)–(5.33) are

employed to calculate total fuel cost for the comparison purposes with the other types.

Then, the resulting constraints for MP are (5.2)–(5.15), (5.21), and (5.31)–(5.33).

So far in this section, we present optimization models that differ in terms of considered as-

pects. In the next section, we present a simulation model which is used for a performance

evaluation of the model solutions.

5.5 Performance evaluation by simulation

As it is already mentioned, the optimization models M,MF ,MP and MPF are the de-

terministic approximations of the related stochastic models. Therefore, solutions of the

formulations can be readily obtained with a commercial MILP solver. In this section, we

have proposed a simulation model to evaluate the solutions of these models in terms of

inventory and waste performances, and to check whether these solutions are feasible.

The simulation model obtains the delivery schedules from the optimization models and

calculates achieved average service level for each customer per period, and average total

inventory and waste costs according to the realized demand and maximum shelf life of the

product. Due to the fact that the delivery schedules are obtained from the optimization

models, we do not calculate emissions, driving time and routing cost amounts by the

simulation model to prevent double calculation. The pseudocode of the simulation model

is presented in Algorithm 1.

112



Chapter 5. Modeling an inventory routing problem for perishable products with environmental
considerations and demand uncertainty

Algorithm 1: Simulation model algorithm

Data: Delivery schedule from the optimization model, Qi,k,t in kg, ∀i ∈ V ′ , k ∈ K, t ∈ T ;
Fixed maximum shelf life parameter, m ≥ 2;

Demand mean µi,t and standard deviation σi,t in kg, ∀i ∈ V ′ , t ∈ T ;
Penalty cost for the wasted product, p (e/kg) and holding cost per period at customers, h (e/kg);
Result: Average total inventory cost, Average total waste cost, Average service level;
Initialization: set all arrays ← 0;
for sim = 1 to S (simulation number) do

for i = 1 to |V ′ | do
for t = 1 to |T | do

Generate random demand, di,t ∼ N(µi,t, σi,t);

Compute inventory-I (waste not included), IBi,t =
∑t
s=1

∑
k∈K Qi,k,s −

∑t
s=1 di,s;

if t < m then
Set inventory-II (waste included), Ii,t ← IBi,t;

else

Compute waste, Wi,t = Ii,t−m+1 −
∑t
a=t−m+2 di,a −

∑t−1
a=t−m+2max(Wi,a, 0);

Compute inventory-II (waste included), Ii,t = IBi,t −
∑t
s=1max(Wi,s, 0);

if Ii,t > 0 then
Keep track of total inventory for computing inventory costs, SI+ = Ii,t;

if Ii,t−1 +
∑
k∈K Qi,k,t < di,t then

Keep track of # of stock outs for computing achieved average service levels, SAi,t + +;

if Wi,t > 0 then
Keep track of total waste for computing waste costs, SW+ = Wi,t;

Compute achieved average service level for customer i in period t, AASi,t = (SAi,t/S);
Compute average total inventory cost, TI = (SI/S)h;
Compute average total waste cost, TW = (SW/S)p.

5.6 Case study

This section presents an implementation of the proposed model, MPF , and its above

described variations, M,MF and MP , on the fresh tomato distribution operations of a

supermarket chain operating in Turkey. We first describe the data used, then present the

results.

5.6.1 Description and data

The underlying transportation network includes one distribution center (DC) and 11

supermarkets (customers) as presented in Figure 5.2. The DC is responsible for providing

fresh tomatoes to the supermarkets. We note that in some places there exist multiple

supermarkets which are relatively close to each other (e.g., Izmir, Kusadasi and Didim).

In these circumstances, we aggregate customers and select one supermarket according to

size and/or location. The planning horizon length is four weeks.
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Figure 5.2: Representation of the logistics network

We assume that homogeneous vehicles are used for the deliveries, each with a capacity

of 10 tonnes. The parameters used to calculate the total fuel consumption cost are taken

from Demir et al. (2012) and are given in Table 5.4. The fuel consumption per km pa-

rameter, b, which is required for M and MP , is calculated as 0.21 l/km with the fuel

consumption calculation model introduced previously based on the assumption that ve-

hicle is assumed as half-loaded. Note that M and MP disregard the effect of vehicle load

on fuel consumption and take only traveled distance into account as a parameter while

estimating related fuel consumption amounts. We use 2.63 kg/l as a fuel conversion factor

to estimate CO2 emissions from transportation operations (Defra, 2007). Distances be-

tween nodes (see Table 5.A in the appendix) are calculated using Google Maps1. Vehicles

travel at a fixed speed of 80 km/h.

Demand means (see Table 5.B) are generated randomly for purposes of sensitivity analysis

as will be shown in the following section. The coefficient of variation for the demand is

assumed to be constant and equal to 0.1 for all supermarkets in each week. The demand

for each supermarket in each week must be satisfied with a probability of at least 95%.

Holding cost at supermarkets is taken as 10% of the average marketplace selling price of

tomatoes2 in that region of Turkey, and is equal to 0.06 e/kg-week. Shelf life of fresh

tomatoes is nearly two weeks (Aguayo et al., 2004). Therefore, if a fresh tomato stays

in inventory more than two weeks, it becomes spoiled and cost of waste occurs. The

cost of waste is estimated as 0.6 e/kg based on the average marketplace selling price of

tomatoes. The aim of the problem is to determine the routes and quantity of shipments

in each week such that the total cost is minimized.

1http://maps.google.nl/,Onlineaccessed:February2014
2http://halfiyatlari.org/izmir.html,Onlineaccessed:February2014
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Table 5.4: Setting of vehicle and emission parameters

Notation* Description Value
ξ Fuel-to-air mass ratio 1
κ Heating value of a typical diesel fuel (kJ/g) 44
ψ Conversion factor (g/liter) 737
ke Engine friction factor (kJ/rev/liter) 0.2
Ne Engine speed (rev/s) 33
Ve Engine displacement (liter) 5
ρ Air density (kg/m3) 1.2041
Ae Frontal surface area (m2) 3.912
µ Curb-weight (kg) 6350
g Gravitational constant (m/s2) 9.81
φ Road angle 0
Cd Coefficient of aerodynamic drag 0.7
Cr Coefficient of rolling resistance 0.01
ε Vehicle drive train efficiency 0.4
$ Efficiency parameter for diesel engines 0.9
l Fuel price per liter (e) 1.7
r Driver wage (e/s) 0.003
Source: Demir et al. (2012)
* See section 5.3.1 for the description of the notation.

5.6.2 Analysis and discussion

The ILOG-OPL development studio and CPLEX 12.6 optimization package has been

used to develop and solve the presented formulations for the case study. The resulting

integrated model, MPF , has 1321 continuous and 1056 binary variables, and 1548 con-

straints. Optimal solutions were obtained on a computer of Pentium(R) i5 2.4GHz CPU

with 3GB memory. Our experimentation shows that it takes on average nearly one and

half hour to get optimal solutions. The simulation model is implemented in Visual C++

programming language. The simulation number (S) is set to 1000000.

We focus on six KPIs: (i) total emissions, (ii) total driving time, (iii) total routing cost

comprised of fuel and wage cost, (iv) total inventory cost, (v) total waste cost, and (vi)

total cost. Optimization models M,MF ,MP and MPF are assessed with respect to these

KPIs.

5.6.2.1 Base case solution

Table 5.5 presents performance of the models with respect to all KPIs. According to the

results, M and MF , which neglect perishability, provide relatively lower total emissions,

driving time and routing cost than MP and MPF . As it is shown in Table 5.7, M and

MF solutions propose different routes for the deliveries, i.e., resulting routes for the first

period are different. However, total quantity of shipments to each supermarket in each

period is the same that leads to the same inventory, waste and service level performances

for the two models (see Table 5.6). In our problem, the demand for each customer in

each week has to be satisfied with a probability of at least 95%. The achieved average
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service levels obtained from the simulation analysis show that M and MF cannot always

meet the desired service level, i.e., service level falls below 95% for supermarkets 1, 3, 9

and 10 in the last period (see Table 5.6). Therefore, optimal solutions obtained from M

and MF do not guarantee feasible solutions for our problem. These two models perform

poor in terms of service level as they plan delivery amounts as if there is no chance of

product wastes at customers. In the simulation analysis, waste occurrences nevertheless

cause to encounter such cases where inventory falls below zero. Both optimization and

simulation results presented in Table 5.5 confirm as well that the perishability ignorance

in M and MF leads to poor waste cost performance compared to the other two models,

MP and MPF , which consider perishability of products. For instance, according to the

simulation results, this ignorance causes more than five-fold increase in waste cost. To

conclude, M and MF outperforms MP and MPF in some KPIs, however, the simulation

analysis show that M and MF fail to generate a feasible plan for our problem.

Table 5.5: Summary results for base case

KPIs M MF MP MPF

Average vehicle load (kg\km) 3506.0 3222.1 3493.3 2618.6
# of vehicles used 7 7 8 8
Total emissions (kg) 1449.0 1436.5 1898.4 1862.5
Total driving time (h) 35.6 35.8 46.7 47.6

Optimization Total fuel cost (e) 936.6 928.6 1227.1 1203.9
Results Total wage cost (e) 385.0 386.7 504.0 514.5

Total routing cost (e) 1321.6 1315.3 1731.1 1718.4
Total inventory cost (e) 904.9 904.9 805.2 792.9
Total waste cost (e) 1208.8 1208.8 61.4 61.4
Total cost (e) 3435.3 3429.0 2597.6 2572.7
Average total inventory cost (e) 895.8 895.8 790.6 774.5

Simulation Average total waste cost (e) 1276.7 1276.7 198.9 198.9
Results Average total cost (e) 3494.1 3487.8 2720.6 2691.8

Achieved average service levels are presented in Table 5.6.

Table 5.7 shows that MP and MPF solutions propose different routes for the deliveries.

However, except for two supermarkets, 8 and 9, total quantity of shipments to the su-

permarkets in each period is the same, as shown in Table 5.6. MP and MPF meet the

service level targets for all supermarkets in each period, since both of them account for

product waste. These two models’ solutions still cannot completely avoid waste occur-

rences due to the service level constraints. The service level constraints require to keep a

certain amount of inventory at customers in all periods according to the demand means

and coefficient of variation to satisfy the desired service level targets. In some circum-

stances, such as at supermarket 4 in period four, the desired service level requirement

causes product wastes as a result of too much inventory. In particular, the vendor, who

is responsible for the inventories at customers in our problem, bears waste risk to satisfy

demand with a probability of at least 95%. It is a crucial task to balance product waste

and out-of-stock in practice as well.

116



Chapter 5. Modeling an inventory routing problem for perishable products with environmental
considerations and demand uncertainty

Table 5.6: Delivery, inventory, waste quantities and achieved average service levels for super-
markets during the whole planning horizon

Delivery (kg) Inventory (kg) Waste (kg) Achieved Service (%)

Cust. Weeks Weeks Weeks Weeks
Models # 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

M&MF

1 1462 - 1689 - 562 - 689 - - 162 - 89 100.0 95.0 100.0 77.1
2 1630 1273 1817 1237 230 303 421 457 - - - - 95.0 95.0 95.3 95.0
3 1116 - 1990 - 616 - 740 - - 116 - 140 100.0 95.0 100.0 84.1
4 1281 2768 912 - 181 449 861 - - - - 461 95.0 95.0 99.9 95.0
5 1223 955 1608 1146 173 227 336 381 - - - - 95.0 95.0 95.0 95.0
6 1397 516 410 1497 197 214 224 321 - - - - 94.9 94.9 94.9 94.9
7 932 743 1035 - 132 175 710 - - - - 210 95.0 95.0 100.0 95.0
8 2213 407 304 1364 313 319 304 368 - 19 - 95.0 95.0 95.0 94.9
9 932 1155 - 1397 132 887 - 97 - - 187 - 95.0 100.0 95.0 76.6

10 1281 2449 - - 181 1030 - -300 - - 630 - 95.0 100.0 99.9 0.0
11 3028 3451 2615 3359 428 678 793 952 - - - - 95.0 95.0 95.0 95.0

MP&MPF

1 1048 414 1069 620 148 162 231 251 - - - - 95.0 95.0 95.0 95.0
2 1630 1273 1809 1245 230 303 413 457 - - - - 95.0 95.0 95.0 95.0
3 582 534 1370 620 82 116 236 256 - - - - 94.9 95.0 95.0 95.0
4 1281 2768 507 405 181 449 457 405 - - - 57 95.0 95.0 95.0 95.0
5 1223 955 1608 1146 173 228 336 381 - - - - 95.0 95.0 95.0 95.0
6 1397 516 410 1497 197 214 224 321 - - - - 94.9 94.9 94.9 94.9
7 932 743 518 517 132 175 193 210 - - - - 95.0 95.0 95.0 95.0

10 1281 1738 407 304 181 319 326 304 - - - 26 95.0 95.0 95.0 95.0
11 3028 3451 2615 3359 428 678 793 952 - - - - 95.0 95.0 95.0 95.0

MP
8 2213 407 323 1364 313 300 323 388 - 19 - - 95.0 95.0 96.0 95.7
9 932 416 944 1193 132 147 391 284 - - - - 95.0 95.1 100.0 95.1

MPF
8 2213 407 304 1384 313 319 304 388 - - 19 - 95.0 95.0 95.0 95.8
9 932 416 740 1397 132 147 187 284 - - - - 95.0 95.1 95.1 95.1

Vehicle load is dependent on the visiting order of the customers. We track the average

vehicle load (kg\km) to investigate the effect of vehicle load size on the defined KPIs. MF

and MPF take explicit fuel consumption concern into account and therefore account for

vehicle load in addition to traveled distance while estimating fuel consumption amounts.

According to the results presented in Table 5.5, M and MF solutions propose to use

seven vehicles for deliveries. Although MF has worse total driving time or distance

performance, it performs better than M in terms of total emissions due to the fact that

MF has less average vehicle load (see Table 5.5). MP and MPF solutions propose to use

eight vehicles for deliveries. Similarly, less total driving time of MP cannot guarantee

less total emissions compared to MPF due to the fact that MP has higher average vehicle

load. Explicit fuel consumption consideration in MF and MPF affects not only total

emissions, but also the other KPIs, and routing and delivery decisions as shown in Tables

5.5, 5.6 and 5.7. In summary, results show that vehicle load affects fuel consumption

and emissions and therefore it needs to be considered while making decisions in logistics.

The effect of vehicle load on fuel consumption has also been shown in, e.g., Bektaş and

Laporte (2011) and Demir et al. (2012), and our results confirm that the previous findings

also hold in our problem.

Both optimization and simulation results reveal that MPF including perishability and

explicit fuel consumption concerns performs better than the other models in terms of

total cost. MF neglecting perishability concern has slightly better total cost performance

than M neglecting perishability and explicit fuel consumption concerns. Resulting total
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Table 5.7: Resulting routes from the models

Weeks
Models Routes 1 2 3 4

M
1st 0-7-6-5-2-3-4-0 0-11-10-9-8-7-6-5-0 0-4-3-2-0 0-11-8-9-6-5-2-0
2nd 0-1-8-9-10-11-0 0-4-2-0 0-1-11-8-7-6-5-0 -

MF
1st 0-11-7-6-5-2-3-4-0 0-11-10-9-8-7-6-5-0 0-4-3-2-0 0-11-8-9-6-5-2-0
2nd 0-1-8-9-10-11-0 0-4-2-0 0-1-11-8-7-6-5-0 -

MP
1st 0-7-6-5-2-3-4-0 0-1-11-10-9-8-7-6-5-0 0-4-3-2-0 0-4-3-2-0
2nd 0-1-8-9-10-11-0 0-4-3-2-0 0-1-11-10-9-8-7-6-5-0 0-1-11-10-9-8-7-6-5-0

MPF *
1st 0-11-7-6-5-2-3-4-0 0-11-10-9-6-5-7-8-1-0 0-4-3-2-0 0-1-8-9-10-0
2nd 0-1-8-9-10-11-0 0-4-3-2-0 0-1-11-10-9-8-7-6-5-0 0-11-7-6-5-2-3-4-0

* Resulting routes from MPF are also visualised in the Figure 5.3.

Figure 5.3: Representation of the resulting routes from MPF for each period

cost of the MPF solution is better than that of M and MF on average 33.4% according

to the optimization results and on average 29.7% according to the simulation results.

Additionally, as it is discussed before, M and MF do not guarantee feasible solution for

our problem. On one hand, MP solutions meet service levels that show the benefit of

perishability incorporation to the model. On the other hand, it performs nearly 1.1%

worse than MPF in terms of total cost in both optimization and simulation analysis that

shows the cost of not incorporating explicit fuel consumption to the model. To conclude,

results present the importance of perishability and explicit fuel consumption issues on

the studied problem.

Our analysis on the base case show the consequences of perishability and/or explicit fuel

consumption ignorance. MPF takes these two aspects into account simultaneously. The

models M,MF and MP that account for none of the aspects or only a single aspect provide

optimal plans for our problem that are higher in cost compared to MPF . Moreover, M and

MF that disregard quality decay cannot meet the desired service level. The managerial

implication of these results is that use of the proposed integrated model, MPF , can provide

least cost solutions for the studied problem while satisfying the service level requirements.
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In the coming section, we carry out further analysis to observe the performances of these

models under different scenarios.

5.6.2.2 Sensitivity analysis

This section presents sensitivity analysis for the models with respect to changes in the

demand means, coefficient of variation, maximum shelf life, holding cost, service level, fuel

price and vehicle speed. In particular, 17 scenarios have been formulated for the sensitivity

analysis. In each scenario, different model parameters (demand means, di,t: Demand 1,2,

coefficient of variations: C = 0.05, 0.15, 0.2, fixed shelf lives, weeks,: m = 3, 4, holding

costs per period,e/kg,: h = 0.03, 0.09, 0.12, service levels, %, : α = 90, 92.5, 97.5, fuel

price,e/l,: l = 1.2, 2.2 and vehicle speed, km/h,: f = 40, 120) are employed to observe

the effects of changes in the related parameters on the defined KPIs. Results of the

optimization sensitivity analysis are presented in Table 5.8.

• Comparison among models in terms of total cost:

In all scenarios, MPF performs better than M in terms of total cost. Average total cost

gap between the two model solutions is 24.3% according to the optimization results and

21.7% according to the simulation results. The results do not indicate a systematic total

cost gap change between M and MPF as l or f changes, whereas the total cost gap

between the two model solutions increases as C or α increases. The C or α increase leads

to waste cost increase in both model solutions. However, the waste cost increase in M

solution is more than that in MPF solution. For instance, the waste cost of M solution

is e689 more than that of MPF solution when C = 0.05, whereas this cost difference

increases to e1807 when C = 0.2. Similarly, the waste cost of M solution is e975 more

than that of MPF solution when α = 90%, whereas this cost difference increases to e1253

when α = 97.5%. The differences in waste cost changes thus mainly causes extension of

the total cost gap between these two models as C or α increases.

In a similar, but reverse way, the total cost gap between MPF and M solutions decreases

as m or h increases. The reason is that the waste cost decrease in M solution due to

the m or h increase is more than that in MPF solution. For instance, the waste cost of

M solution is e1147 more than that of MPF solution when m = 2, whereas this cost

difference decreases to e0 when m = 4. Similarly, the waste cost of M solution is e1838

more than that of MPF solution when h = 0.03, whereas this cost difference decreases to

e182 when h = 0.12. The differences in waste cost changes thus mainly causes reduction

of the total cost gap between these two models as m or h increases.
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Table 5.8: Results of optimization sensitivity analysis

Total Total Total Total Total Total Total Total
emissions driving fuel wage routing inventory waste cost

Scenarios Models (kg) time (h) cost (e) cost (e) cost (e) cost (e) cost (e) (e)

Base case

M 1449.0 35.6 936.6 385.0 1321.6 904.9 1208.8 3435.3
MF 1436.5 35.8 928.6 386.7 1315.3 904.9 1208.8 3429.0
MP 1898.4 46.7 1227.1 504.0 1731.1 805.2 61.4 2597.6
MPF 1862.5 47.6 1203.9 514.5 1718.4 792.9 61.4 2572.7

Demand 1*

M 1585.7 39.1 1025.0 421.9 1446.9 769.9 915.2 3132.0
MF 1552.5 39.5 1003.5 426.8 1430.3 769.9 915.2 3115.4
MP 1909.5 46.7 1234.3 503.9 1738.2 767.5 107.5 2613.2
MPF 1856.0 47.5 1199.7 513.1 1712.8 767.5 107.5 2587.8

Demand 2*

M 1653.7 39.6 1069.0 427.9 1496.8 895.5 495.9 2888.3
MF 1685.1 41.4 1089.2 446.7 1535.9 861.4 495.9 2893.3
MP 1914.6 46.7 1237.6 503.9 1741.5 842.5 0.0 2584.0
MPF 1891.6 46.9 1222.7 506.7 1729.4 842.5 0.0 2571.9

C = 0.05

M 1439.6 35.6 930.5 385.0 1315.5 585.4 688.6 2589.5
MF 1422.0 35.8 919.2 386.2 1305.3 585.4 688.6 2579.3
MP 1886.9 46.7 1219.6 504.0 1723.6 399.5 0.0 2123.1
MPF 1846.9 47.3 1193.8 511.2 1705.0 399.5 0.0 2104.5

C = 0.15

M 1458.3 35.6 942.6 385.0 1327.6 1207.8 1813.2 4348.6
MF 1506.0 37.8 973.5 408.8 1382.2 1179.4 1380.0 3941.6
MP 1942.4 47.0 1255.5 507.5 1763.0 1159.4 392.0 3314.5
MPF 1874.5 47.7 1211.7 515.4 1727.1 1159.4 392.0 3278.5

C = 0.2

M 1487.7 36.1 961.6 389.6 1351.2 1469.8 2546.6 5367.6
MF 1559.7 39.2 1008.2 422.9 1431.1 1447.3 1752.1 4630.5
MP 1950.7 47.0 1260.9 507.6 1768.5 1524.2 739.4 4032.0
MPF 1882.2 48.0 1216.6 518.3 1734.9 1524.2 739.4 3998.4

m = 3 weeks

M 1449.0 35.6 936.6 385.0 1321.6 1071.5 197.9 2591.0
MF 1436.5 35.8 928.6 386.7 1315.3 1071.5 197.9 2584.7
MP 1515.2 37.2 979.4 402.0 1381.4 1056.7 0.0 2438.1
MPF 1538.8 39.0 994.7 421.1 1415.8 997.5 15.7 2429.0

m = 4 weeks

M 1449.0 35.6 936.6 385.0 1321.6 1091.3 0.0 2412.9
MF 1436.5 35.8 928.6 386.7 1315.3 1091.3 0.0 2406.6
MP 1449.1 35.6 936.7 385.0 1321.6 1091.3 0.0 2413.0
MPF 1436.5 35.8 928.6 386.7 1315.3 1091.3 0.0 2406.6

h = 0.03 e/kg

M 1264.4 30.5 817.3 329.4 1146.8 538.9 1899.8 3585.4
MF 1304.6 32.2 843.2 347.6 1190.9 518.1 1533.7 3242.7
MP 1898.3 46.7 1227.0 504.0 1731.0 402.6 61.4 2194.9
MPF 1855.6 47.4 1199.4 511.7 1711.1 402.6 61.4 2175.1

h = 0.09 e/kg

M 1746.9 43.2 1129.2 466.6 1595.7 1197.8 410.6 3204.1
MF 1765.7 44.8 1141.3 484.1 1625.4 1181.1 340.8 3147.3
MP 1927.1 47.0 1245.7 507.5 1753.2 1189.4 61.4 3003.9
MPF 1862.4 47.6 1203.9 514.5 1718.3 1189.4 61.4 2969.1

h = 0.12 e/kg

M 1850.6 45.7 1196.2 493.4 1689.6 1583.5 243.6 3516.7
MF 1818.4 46.2 1175.4 498.9 1674.3 1583.5 243.6 3501.4
MP 1927.3 47.0 1245.8 507.5 1753.3 1585.8 61.4 3400.4
MPF 1862.4 47.6 1203.9 514.5 1718.3 1585.8 61.4 3365.5
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TABLE 5.8(continued): Results of optimization sensitivity analysis

Total Total Total Total Total Total Total Total
emissions driving fuel wage routing inventory waste cost

Scenarios Models (kg) time (h) cost (e) cost (e) cost (e) cost (e) cost (e) (e)

α = 90%

M 1444.9 35.6 934.0 385.0 1319.0 766.1 974.6 3059.6
MF 1430.4 35.8 924.6 386.7 1311.3 766.1 974.6 3052.0
MP 1893.2 46.7 1223.7 504.0 1727.7 629.8 0.0 2357.5
MPF 1850.6 47.3 1196.2 511.2 1707.4 629.8 0.0 2337.2

α = 92.5%

M 1446.7 35.6 935.1 385.0 1320.1 826.6 1070.4 3217.1
MF 1433.1 35.8 926.3 386.7 1313.1 826.6 1070.4 3210.1
MP 1895.3 46.7 1225.1 504.0 1729.1 707.9 0.0 2437.0
MPF 1858.0 47.6 1201.0 513.9 1714.9 699.5 0.0 2414.4

α = 97.5%

M 1452.9 35.6 939.1 385.0 1324.1 1024.3 1440.3 3788.7
MF 1501.3 37.8 970.4 408.8 1379.2 1001.8 1046.8 3427.8
MP 1932.1 47.0 1248.9 507.5 1756.4 933.3 188.0 2877.7
MPF 1868.4 47.6 1207.7 514.5 1722.2 933.3 188.0 2843.4

l = 1.2 e/l

M 1560.8 38.6 712.1 416.5 1128.6 868.0 657.8 2654.4
MF 1587.4 40.3 724.3 435.4 1159.7 839.2 573.9 2572.8
MP 1927.1 47.0 879.3 507.5 1386.8 792.9 61.4 2241.1
MPF 1866.4 47.4 851.6 512.2 1363.8 792.9 61.4 2218.1

l = 2.2 e/l

M 1449.0 35.6 1212.1 385.0 1597.1 904.9 1208.8 3710.8
MF 1436.6 35.8 1201.7 386.7 1588.4 904.9 1208.8 3702.1
MP 1898.4 46.7 1588.0 504.0 2092.0 805.2 61.4 2958.5
MPF 1862.4 47.6 1557.9 514.5 2072.4 792.9 61.4 2926.6

f = 40 km/h

M 1401.6 71.3 906.0 770.0 1675.9 904.9 1208.8 3789.6
MF 1388.9 71.6 897.8 773.4 1671.2 904.9 1208.8 3784.9
MP 1836.2 93.3 1186.9 1007.9 2194.8 805.2 61.4 3061.3
MPF 1803.4 94.9 1165.7 1024.4 2190.1 792.9 61.4 3044.4

f = 120 km/h

M 1973.6 23.8 1275.7 256.7 1532.4 904.9 1208.8 3646.0
MF 1963.5 23.9 1269.2 257.8 1527.0 904.9 1208.8 3640.7
MP 2585.0 31.1 1670.9 336.0 2006.9 805.2 61.4 2873.4
MPF 2564.3 31.6 1657.5 341.5 1999.0 792.9 61.4 2853.2

C: Coefficient of variation, m: fixed maximum shelf life, h: holding cost, α: service level.
* Demand mean set is presented in Table 5.B.

MF and MPF provide the same solutions in scenario m = 4 where fixed shelf life is equal

to the planning horizon length. In this scenario, these models have thus the same total

cost performances, whereas MPF has better cost performance than MF in the rest of the

scenarios. Average total cost gap between the two model solutions is 20.5% according to

the optimization results and 18.2% according to the simulation results. The results do

not indicate a systematic total cost gap change between MF and MPF as C, α, l or f

changes. However, similar with the case between M and MPF , the total cost gap between

MF and MPF solutions decreases as m or h increases. This is mainly due to the fact that

the waste cost decrease in MF solution is more than that in MPF solution.

In all scenarios, MPF performs better than MP in terms of total cost. However, the total

cost gaps, on average 0.9% according to the optimization results and 0.8% according to

the simulation results, are relatively smaller than those observed between MPF and M

or MF . The results do not indicate a systematic total cost gap change between MPF and

MP as C, h or f changes. However, the total cost gap between MPF and MP solutions

slightly increases as α or l increases and the gap slightly decreases as m increases without

a systematic waste cost change as it has been observed in the previous analysis.
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The simulation analysis indicate parallel results with the optimization results except a

case in the scenario m = 3. According to the optimization results, MPF performs 0.4%

better than MP in terms of total cost, whereas simulation results indicate that total

cost performance of MP is 1.1% better than MPF . This is mainly due to the difference

in waste cost performances. According to the optimization results, waste cost of MPF

solution is e15.7 more than that of MP solution, whereas the realized difference observed

from the simulation analysis is e55. This waste cost increase causes MPF to perform

worse than MP . Therefore, if only optimization results are considered, a decision maker

may disregard MP solution that shows better performance in the simulation analysis.

This case reveals the benefit of conducting simulation analysis on the delivery schedules

obtained from the optimization models, which are the approximations of the stochastic

problems.

So far in this subsection relative total cost performances of the models are presented. We

now present the effects of changes in the C, m, h, α, l and f to the total costs of models

as follows: (i) Total costs of all model solutions increase as C increases. The main drivers

of the increase in total costs are growths in inventory and waste amounts. (ii) Total costs

of all model solutions decrease as m increases. The main drivers of the decrease in total

costs are reductions in routing and waste costs. (iii) Total costs of MP and MPF solutions

increase as h increases. The main contribution to these growths comes from increasing

inventory costs. However, the results do not indicate a systematic total cost change for

M and MF as h changes. (iv) Total costs of all model solutions except MF increase as α

increases. The main contribution to these growths comes from increasing inventory costs.

(v) Total costs of all model solutions increase as l increases. The main contribution to

these growths comes from increasing routing costs. (vi) The results do not indicate a

systematic total cost change for all models as f changes.

• Comparison among models in terms of other KPIs:

In all except three scenarios (m = 3, 4 and h = 0.12), M and MF cannot meet the service

level requirements for each customer and period, and thus do not guarantee feasible

solutions for the studied problem. Note that the resulting waste costs of M and MF

solutions in the scenarios m = 3, 4 and h = 0.12 are relatively lower than that obtained

in the other scenarios, where these two models do not provide feasible solutions. This

shows that the stock-out risk increases when the product waste increases. On the contrary,

MP and MPF achieve to satisfy the service targets in all scenarios, since these two models

take perishability and therefore waste into account.

In all except one scenario (m = 4), M and MF show relatively better performance with

respect to total emissions, total driving time and total routing cost compared to MP and
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MPF . However, note that except the three scenarios (m = 3, 4 and h = 0.12), M and

MF provide infeasible solutions for the studied problem.

In all except one scenario (m = 3), routing and delivery plans obtained from MPF provide

less emissions compared to that from MP . We note that MPF does guarantee less total

cost but not less total emissions, since it aims to minimize cost.

• A general overview:

The results show that the basic model, M , which does not account for perishability and

explicit fuel consumption, has poor cost performance largely due to the higher waste costs

compared to the other models. Moreover, M often cannot provide feasible solutions for

the problem. Extending M through incorporating explicit fuel consumption has usually

slightly improved the total cost performance, but still cannot ensure to have feasible

solutions. On the contrary, extension of M through incorporating perishability has sig-

nificantly improved the total cost performance in all except one scenario (m = 4), where

perishability is not a crucial issue anymore. Additionally, the new ability of the model

to account for product wastes has enabled to have feasible solutions for the problem in

all scenarios. Finally, the integrated model, MPF , which is the extended version of M

in terms of perishability and explicit fuel consumption, has provided the least cost and

feasible solutions in all scenarios. The main managerial implication of the results is that

perishability and explicit consideration of fuel consumption are important aspects in the

IRP and the proposed integrated model, MPF , which accounts for the both aspects, offers

better support to decision makers.

5.6.2.3 Environmental impact minimization

In our problem, total emissions and total waste are the environmental condition indicators

that reflect the state of the physical environment affected by the logistics operations. MPF

quantifies the total environmental impact in terms of cost through fuel and waste cost

components in the objective function (5.1). In this section, the objective function is

adapted so that the model can provide an optimal solution which has the lowest total

environmental impact cost. In particular, the expected inventory (5.i) and driver (5.iv)

cost components are removed from the objective function (5.1), and the formulation is

minimized over an environmental objective function that comprises only expected waste

(1.ii) and fuel (1.iii) costs. This change ensures to obtain the most environmentally-

friendly solution in terms of total emissions and waste. The new variation of MPF that

has emphasis only on reducing fuel and waste costs is denoted as M
′
PF . Figure 5.4 presents

the performance of M
′
PF compared to MPF .

123



Chapter 5. Modeling an inventory routing problem for perishable products with environmental
considerations and demand uncertainty

Figure 5.4: The performance of M
′

PF compared to the MPF for the base case.

The results show that M
′
PF slightly outperforms MPF in terms of number of vehicles used,

total emissions, total driving time, and total fuel, wage and routing costs. M
′
PF solution

ensures to have nearly 2% reductions in total emissions (39.6kg), total driving time (one

hour), and total fuel (e25.6), wage (e10.6) and routing costs (e36.2) with one less vehicle

in total compared to MPF solution. However, MPF performs 86.2% better in terms of

total inventory cost (e683.6) and 25.2% in terms of total cost (e647.4) compared to M
′
PF .

Both model solutions have the same total waste costs. This means that nearly 2% total

emissions reduction through the use of environmental objective comes at a cost increase

of 25.2%. Therefore, additional cost of having a more environmentally-friendly solution

is significant for the studied problem. In summary, MPF provides the least cost solution,

however, there can be still room to reduce the total environmental impact comprised of

emissions and waste by means of M
′
PF .

5.6.2.4 Modified larger case study

In order to show the performances of the models in a larger problem, we have modified the

network. In the new modified setting, nine artificial customers are added (see Figure 5.5)

and three vehicles (one more compared to the base case) are employed for the deliveries.

Distances between the nodes and customer demands are shown in Tables 5.A and 5.C.

The resulting integrated model, MPF , has 5521 continuous and 5040 binary variables,

and 6092 constraints for the new relatively large case study.

Table 5.9 presents the results obtained from the models with a solver cut-off time of five

hours. The lower bound gap reported in the table shows the percentage gap from the best-

known lower bound provided by the solver. In contrast to the base case, where optimal

solutions for the integrated model MPF are obtained within nearly one and half hour, for
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Figure 5.5: Representation of the modified logistics network

Table 5.9: Summary results for the large case

Total Total Total Total Total Total Total Total Lower
emissions driving fuel wage routing inventory waste cost bound

Models (kg) time (h) cost (e) cost (e) cost (e) cost (e) cost (e) (e) gap (%)
M 2380.0 54.0 1538.4 583.0 2121.4 1319.6 574.9 4015.9 1.34
MF 2362.2 57.5 1526.9 620.6 2147.5 1308.8 549.8 4006.2 4.14
MP 2489.1 57.7 1608.9 623.1 2232.0 1348.9 114.3 3695.2 2.58
MPF 2362.8 59.3 1527.3 640.4 2167.7 1327.2 114.3 3609.3 2.48

the larger problem, either optimal solutions for the models have not been obtained yet

or optimality of the solutions have not been proved yet within five hours. This shows the

increasing complexity of the problem as the case size increases.

Regarding performances of the models in terms of the defined KPIs, similar results are

obtained with the base case. Results for the larger case confirm the benefit of taking

perishability and explicit fuel consumption into account as well. According to the opti-

mization results, integrated model MPF has achieved total cost savings by 11.3% com-

pared to M , 11% compared to MF and 2.4% compared to MP . Additionally, simulation

results show that M and MF cannot meet the desired service levels, whereas MP and

MPF satisfy the service levels.
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5.7 Conclusions

In this paper, we have modeled and analyzed the IRP to account for perishability, explicit

fuel consumption and demand uncertainty. To the best of our knowledge, the model is

unique in using a comprehensive emission function and in modeling waste and service

level constraints as a result of uncertain demand. The proposed model can be used to

aid food logistics decision making process in coordinating inventory and transportation

decisions in VMI systems.

We have shown the added value of the proposed model MPF based on case study data

and a broad set of experiments. To present the benefits of considering perishability and

explicit fuel consumption in the model, the following model variations are employed: (i)M

which ignores the perishability of products and explicit fuel consumption, (ii) MF which

ignores the perishability of products and (iii) MP which ignores explicit fuel consumption.

M and MF cannot meet the desired service levels in all scenarios due to the perishability

ignorance which results in relatively higher product wastes. On the contrary, accounting

for the perishability allows MP and MPF to satisfy the service levels in all scenarios. MPF

outperforms the other variations of the model in terms of total cost. According to the

optimization results, MPF can achieve average savings in total cost by 24.3% compared

to M , 20.5% compared to MF and 0.9% compared to MP . In the experiments, we have

changed the values of the following problem parameters: the demand means, coefficient

of variations, fixed shelf lives, holding costs service levels, fuel price and vehicle speed. It

appears that the added value of MPF compared to the other model variations in terms

of total cost changes according to the parameter values. For instance, the total cost gap

between M and MPF solutions increases as C or α increases and decreases as m or h

increases. Additionally, the use of more environmentally-friendly objective function (in

model M
′
PF ) shows that 2% decrease in total emissions can be obtained in return for a

25.2% significant total cost increase.

The results support the view that the improvement of the IRP model through perishability

and explicit fuel consumption incorporation makes it more useful than a basic model

that disregards both aspects for the decision makers in food logistics management. One

possible extension of the paper is to develop a heuristic algorithm for the studied problem,

which will enable to handle instances that are larger in size. The model proposed in this

paper can be used to validate and verify the potential of such heuristic algorithms. The

other possible extension is to consider a generic logistics network that has many-to-many

(multiple suppliers and customers) distribution structure.
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APPENDIX

In this section, we present the distance and demand data used for the models.

Table 5.A: Distances between nodes, in kms

DC 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
DC - 67 89.2 126 78.1 70.6 106 66.3 64.4 156 151 35.5 139 118 37 49 116 155 52 97 93

1 73.2 - 154 191 143 144 141 101 74.3 166 176 61.5 165 144 110 123 181 221 52 123 119
2 70.8 136 - 65.9 62.9 113 158 118 126 218 212 97.2 201 180 81 66 101 96 51 159 155
3 126 192 69.5 - 98.9 171 233 193 182 274 268 153 259 238 142 129 139 68 119 216 213
4 78.4 144 63.2 99.7 - 123 185 145 134 226 220 105 208 187 91 79 38 95 98 166 162
5 70.9 144 105 163 115 - 50.2 58.4 120 155 220 105 196 114 36 38 106 193 113 167 163
6 106 131 161 222 175 50.9 - 41.6 75.3 105 199 84.4 149 66 87 89 157 264 148 144 135
7 66.5 91.2 121 182 135 58.2 40.1 - 35.3 117 159 44.4 111 78 44 60 169 209 108 104 95
8 67.4 74.9 149 185 137 92.7 74.4 34.5 - 92.1 120 34.8 78 54 78 117 175 215 99 71 62
9 158 166 239 276 228 155 106 116 92.4 - 69.6 126 43 39 160 176 266 306 190 123 89

10 150 176 232 268 220 221 192 152 119 70 - 119 30 109 187 200 258 298 182 95 61
11 35 60.3 116 153 105 106 83.6 43.7 30.6 123 118 - 107 84 72 84 143 182 66 65 61
12 139 165 220 257 209 196 149 110 79 44 30 108 - 83 176 189 247 287 171 84 50
13 120 145 201 238 190 113 66 78 54 40 109 87 83 - 122 133 228 267 151 123 114
14 37 110 84 140 92 36 86 44 77 154 180 71 175 120 - 20 130 170 92 132 129
15 50 127 69 127 79 38 83 60 117 205 198 88 192 171 21 - 117 156 77 150 146
16 115 181 100 137 39 106 222 182 171 258 251 142 245 224 128 116 - 77 135 203 199
17 157 222 95 68 95 201 263 223 212 300 292 183 287 265 170 157 77 - 146 244 240
18 56 52 54 117 99 124 149 109 98 185 178 69 172 151 92 76 137 146 - 130 126
19 96 122 177 214 166 167 143 103 70 123 89 65 83 122 133 146 204 244 128 - 36
20 93 118 174 210 163 163 134 94 61 89 55 61 50 114 129 142 201 240 124 37 -

Table 5.B: Demand means (kg) for the supermarkets in each week in different scenarios

Base case demand set Demand set 1 Demand set 2
Weeks Weeks Weeks

Supermarkets 1 2 3 4 1 2 3 4 1 2 3 4

1 900 400 1000 600 500 1400 1300 300 1500 1000 2600 2000
2 1400 1200 1700 1200 800 1100 1500 1800 2000 500 1200 800
3 500 500 1250 600 1300 600 1000 1900 300 750 900 600
4 1100 2500 500 400 1600 2200 800 600 3000 1150 700 2100
5 1050 900 1500 1100 800 700 900 900 800 550 800 400
6 1200 500 400 1400 2000 800 200 1200 500 3000 1500 1800
7 800 700 500 500 700 300 2500 800 200 1000 400 400
8 1900 400 300 1300 600 1200 1300 1100 1600 600 300 600
9 800 400 700 1300 250 1100 600 600 2200 400 2300 2200
10 1100 1600 400 300 900 300 1100 400 900 900 600 300
11 2600 3200 2500 3200 1800 2200 2500 3400 1400 1100 400 1000

Total 13350 12300 10750 11900 11250 11900 13700 13000 14400 10950 11700 12200
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Table 5.C: Demand means (kg) for the supermarkets in each week for the large case

Weeks
Supermarkets 1 2 3 4

1 900 400 1000 600
2 1400 1200 1700 1200
3 500 500 1250 600
4 1100 2500 500 400
5 1050 900 1500 1100
6 1200 500 400 1400
7 800 700 500 500
8 1900 400 300 1300
9 800 400 700 1300
10 1100 1600 400 300
11 2600 3200 2500 3200
12 700 400 800 600
13 1200 1200 1900 800
14 600 500 1250 600
15 1300 2600 600 400
16 1050 700 1400 900
17 1300 500 400 1400
18 700 800 600 500
19 1500 400 300 1200
20 800 400 1100 600

Total 22500 19800 19100 18900
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Chapter 6

Modeling a green inventory routing

problem for perishable products

with horizontal collaboration and

demand uncertainty

This chapter is based on the article submitted to an international journal.

M. Soysal, J.M. Bloemhof-Ruwaard, R. Haijema, J.G.A.J. van der Vorst (2015) ”Modeling

a green inventory routing problem for perishable products with horizontal collaboration

and demand uncertainty”

In this chapter, we investigate RO5:

To analyse the benefits of horizontal collaboration in a green inventory routing problem

for perishable products with demand uncertainty.
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6.1 Introduction

Vertical and horizontal collaborations are the two main modes of collaboration commonly

applied in logistics. Vertical collaboration involves companies operating at the different

levels of the supply chain, e.g., cooperation between a wholesaler and a retailer; whereas

horizontal collaboration involves companies from the same level of the supply chain, e.g.,

cooperation between two wholesalers (Caputo and Mininno, 1996). Relatively more at-

tention has been given to vertical collaboration in logistics literature and the research

on horizontal logistics collaboration is accordingly in its infancy (Cruijssen et al., 2007;

Leitner et al., 2011; Schulz and Blecken, 2010). The approach of applying only vertical

collaboration to a supply chain has been challenged by new drivers such as increased en-

ergy costs and awareness on environmental impacts of transportation (Ankersmit et al.,

2014). This transition has raised the importance of taking both collaboration opportuni-

ties into account simultaneously while tackling logistics problems. One of the problems in

literature that incorporates both vertical and horizontal collaboration opportunities is a

variant of the Inventory Routing Problem (IRP) where multiple suppliers and customers

exist.

The IRP addresses the coordination of inventory management and vehicle routing in a

supply chain (Jemai et al., 2013). The variant of the IRP tackled here concerns the

transportation of products between a number of suppliers and customers (Andersson

et al., 2010). This problem requires vertical collaboration among suppliers and customers,

and horizontal collaboration among suppliers. The vertical and horizontal collaborations

enable to have a centralized system in which suppliers collectively act as a single entity

in their logistics operations and take on the responsibility of managing inventories at

customers. Suppliers decide on quantity and time of the shipments to the customers, but

have to bear the responsibility that the customers do not run out of stock (Andersson

et al., 2010). Such a system offers potential logistics efficiency gains to suppliers through

jointly using vehicles. Moreover, suppliers can better coordinate deliveries to customers,

since the vehicle routes can be based on the inventory levels observed at the customers

rather than the replenishment orders coming from the customers, and customers do not

have to dedicate resources to inventory management (Coelho et al., 2012a; Campbell

et al., 1998; Raa and Aghezzaf, 2009).

The IRP in this study comprises a 3PL which serves as a rental vehicle company, and

multiple suppliers and customers. Figure 6.1 shows a generic representation of the prob-

lem. Suppliers provide several product types with fixed shelf lives to the customers. The

problem has multiple periods and the customer demand is not known in the beginning
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of the planning horizon. The main decisions involved are: (1) when to deliver to each

customer, (2) how much to deliver to each customer each time it is served, and (3) how

to combine customers into vehicle routes (Bertazzi et al., 2008; Coelho et al., 2012b).

The traditional objective is to minimize total distribution and inventory costs during the

planning horizon without causing stock-outs at any of the customers (Aghezzaf et al.,

2006; Natarajarathinam et al., 2012).

Figure 6.1: A generic representation of the Inventory Routing Problem with multiple suppliers
and customers

Traditional OR models for the IRP focus mainly on the key logistical aim of cost reduc-

tion. However, the need to reduce transportation energy usage, emissions, and product

waste require extension of the key logistical aims (Soysal et al., 2014). The traditional

models are inadequate to manage these additional key logistical aims. Regarding energy

usage, the traditional approaches often rely on distance-based cost calculation, whereas

fuel consumption and therefore cost can change based on e.g. vehicle load, which is de-

pendent on the visiting order of the customers (Kara et al., 2007; Kuo and Wang, 2011),

vehicle speed or vehicle characteristics (Ramos et al., 2014). The ignorance of explicit

fuel consumption may lead to missed opportunities to reduce operational cost and emis-

sions. Regarding perishability, the traditional approaches often assume that products

have unlimited shelf lives, whereas this is not the case for all supply chains, especially

for food supply chains. The perishability ignorance thus restricts the usage of the tradi-

tional approaches in supply chains for perishable products. The need for decision support

tools that can incorporate these additional key logistical aims as well as traditional cost

concerns has accordingly increased. The need in practice and in research forms the first

motivation of this study. That is, to develop a model that allows to consider demand un-

certainty, perishability of goods and explicit energy usage (emissions) from transportation
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operations along with cost concerns in the IRP with multiple suppliers and customers.

The second motivation behind the development of such a model is to use it for analysing

the benefits of horizontal collaboration in the IRP, which have above mentioned non-

traditional concerns. To the best of our knowledge, our model is the first to address these

issues.

The rest of the paper is structured as follows. The next section presents a review of the

relevant literature on the IRP and clarifies the contribution of our work. The subsequent

section presents the formal description of the problem and related optimization model.

This section is followed by computational results on a real life distribution problem. The

last section presents conclusions and future research directions.

6.2 Related literature review

The IRP literature describes mainly three types of distribution networks according to

the number of suppliers and customers involved: (1) one-to-one: one supplier serves one

customer, (2) one-to-many: one supplier serves a set of customers which is the most

common case, (3) many-to-many: several suppliers serve a set of customers (Coelho

et al., 2012b). Our problem is classified as a many-to-many structure, which is the least

studied variant in the literature (Coelho et al., 2012b; Rix et al., 2014). Among the

studies on the IRP with many-to-many structure, there are some (e.g., Ronen (2002)

and Ramkumar et al. (2012)) that manage multiple products, while some (e.g., Bard

et al. (1998) and Savelsbergh and Song (2007)) have concerned with single product (see

Table 6.1). All of the studies on the IRP with many-to-many structure do not have

perishability and explicit energy usage concerns, which means that these attempts regard

only distance while calculating distribution costs and address management of only non-

perishable products. Moreover, none of these studies has discussed the effects of horizontal

logistics collaboration on logistics Key Performance Indicators (KPIs).

Our review on the other variants of the IRP shows that few studies have bothered to

introduce new KPIs to the proposed models (see Table 6.1). These studies therefore

can be regarded as non-traditional approaches. Federgruen et al. (1986), Le et al. (2013),

Coelho and Laporte (2014), Jia et al. (2014) and Al Shamsi et al. (2014) deal with the IRP

of a single perishable product with a fixed shelf life. Among these studies, Federgruen

et al. (1986), Coelho and Laporte (2014) and Jia et al. (2014) allow product wastes,

whereas in Le et al. (2013) and Al Shamsi et al. (2014), products have to be used within

fixed shelf lives before they are spoiled. Treitl et al. (2014), Mirzapour Al-ehashem and

Rekik (2013), Alkawaleet et al. (2014) and Al Shamsi et al. (2014) incorporate emissions
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to the IRP through estimating fuel consumption from transportation operations. Except

the study of Mirzapour Al-ehashem and Rekik (2013) which has a many-to-one structure

(a special case of one-to-many structure) and manages multiple products, all given non-

traditional approaches have one-to-many structure and manage single product. Therefore,

also for the other variants of the IRP, we could not find any attempt, except Al Shamsi

et al. (2014), that have addressed both perishability and explicit energy usage concerns

simultaneously (see Table 6.1). However, the study of Al Shamsi et al. (2014) does not

take potential product wastes and demand uncertainty into account, and note that it

addresses one-to-many distribution structure, unlike to our problem. Additionally, none

of these non-traditional approaches presented in Table 6.1 has elaborated on issues about

horizontal logistics collaboration.

Table 6.1: Overview of the related literature on the IRP

Perishability Fuel or emissions considerations Demand
Product #

Distribution
Shelf life Waste Traveled dist. Load Speed uncertainty structure

Federgruen et al. (1986) X X - - - X Single One-to-many
Bard et al. (1998) - - - - - X Single Many-to-many
Ronen (2002) - - - - - X Multiple Many-to-many
Persson and Gothe-Lundgren (2005) - - - - - - Multiple Many-to-many
Al-Khayyal and Hwang (2007) - - - - - - Multiple Many-to-many
Savelsbergh and Song (2007) - - - - - - Single Many-to-many
Savelsbergh and Song (2008) - - - - - - Multiple Many-to-many
Benoist et al. (2011) - - - - - - Single Many-to-many
Ramkumar et al. (2012) - - - - - - Multiple Many-to-many
Treitl et al. (2014) - - X X X - Single One-to-many
Mirzapour Al-ehashem and Rekik (2013) - - X - - - Multiple Many-to-one
Le et al. (2013) X - - - - - Single One-to-many
Alkawaleet et al. (2014) - - X - - - Single One-to-many
Al Shamsi et al. (2014) X - X X X - Single One-to-many
Coelho and Laporte (2014) X X - - - - Single One-to-many
Jia et al. (2014) X X - - - - Single One-to-many

This study X X X X X X Multiple Many-to-many

Another key aspect of our problem is that the customer usages are not known in advance

in the beginning of the planning horizon, which is usually the case in reality. Some studies

on the IRP with many-to-many structure take demand uncertainty into account (Bard

et al., 1998; Ronen, 2002). These studies, however, do not have interest on the additional

KPIs (see Table 6.1). Among the given non-traditional approaches, except Federgruen

et al. (1986) that take demand uncertainty into account, all studies rely on a completely

deterministic environment. As shown in Table 6.1, the study of Federgruen et al. (1986)

does not have explicit energy usage concern and has a one-to-many distribution structure.

The IRP, except one-to-one structure, inherently involves horizontal logistics collabora-

tion. However, through the review of the studies on the topic, we come to a conclusion

that scholars have not explicitly addressed horizontal logistics collaboration in the IRP.

Our review on the other logistics problems shows that some studies have analysed the

potential savings through the application of horizontal collaboration. For instance, Kra-

jewska et al. (2008) study a routing problem and demonstrate that horizontal cooperation
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among freight carriers can yield significant cost savings. In another study (Vanovermeire

et al., 2013), a distribution problem is formulated as a bin-packing problem to deter-

mine the minimum number of trips necessary to deliver all orders. The results indicate

that horizontal collaboration offers a reduction in environmental impacts by reducing

the number of trucks employed and it can result in more cost reductions than that of

individual companies can achieve. van Lier et al. (2014) address the environmental and

societal benefits of bundling outbound freight flows. As a final example, Juan et al.

(2014) concentrate on estimating the savings in routing and emissions costs that can be

attained by applying backhaul-based horizontal cooperation. Apart from these quanti-

tative attempts, the large-scale survey of Cruijssen et al. (2007) in LSPs operating in

Belgium presents the companies’ reflections on the potential benefits of and challenges

for horizontal cooperation. The survey shows that, in general, LSPs strongly believe that

the horizontal collaboration has potential to increase their profitability or to improve the

quality of their services. As a result, these findings encourage us to explicitly address the

horizontal logistics collaboration in the IRP as well.

This brief survey points out two gaps in the research on this topic: (1) improvement

opportunities exist for quantitative models that can be used to support decision makers

in sustainable food logistics management and (2) the analysis on exploring the benefits

of horizontal logistics collaboration in literature on IRP represents an untouched field

of research. Within our knowledge, we could not find any attempt in literature on IRP

that take product perishability, explicit energy usage and demand uncertainty into ac-

count simultaneously. In particular, we incorporate product perishability, explicit energy

usage and demand uncertainty into the IRP with many-to-many structure and multiple

products. Afterwards, we analyze the potential savings attained through horizontal col-

laboration. As distinct from the traditional distance-based cost calculation approaches,

we employ detailed fuel consumption estimations based on factors such as vehicle type,

traveled distance, vehicle load and vehicle speed. The explicit consideration of fuel con-

sumption ensures to estimate transportation cost and emissions more accurately, and to

reduce distribution cost as shown in VRP literature (e.g., Bektaş and Laporte (2011) and

Franceschetti et al. (2013)).

To conclude, our study adds to the literature on IRP by: (1) developing a comprehensive

chance-constrained programming model with demand uncertainty for a generic IRP with

multiple suppliers and customers that accounts for the KPIs of total energy use (emis-

sions), total driving time, total routing cost, total inventory cost, total waste cost, and

total cost, (2) analysing the benefits of horizontal collaboration in the IRP with respect

to the aforementioned KPIs, and (3) presenting the applicability of the model on the
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distribution operations of two suppliers, where the first supplier produces figs and the

second supplier produces cherries, based on mostly real data.

6.3 Problem description

The problem in this study is defined on a complete graph G = {V,A}, where V is the set

of nodes that consists of a set of customers VC = {1, 2..., |VC |}, a set of suppliers VS =

{1, 2..., |VS|} and a 3PL (rental vehicle company) node 0, and A = {(i, j) : i, j ∈ V, i 6= j}
is the set of arcs. Suppliers provide several product types P = {1, 2..., |P |}, each with

a different fixed shelf life of mp ≥ 2 periods. The amount of product p ∈ P available

at supplier i ∈ VS in period t ∈ T = {1, ..., |T |} is limited with a given amount, qi,p,t.

The set of vehicles is given as K = {1, 2..., |K|}, each with capacity c and located at

the 3PL. Freight is picked up from the suppliers and delivered to the customers through

these vehicles that start and end at the 3PL’s location. Each vehicle can perform at most

one route per time period. Each customer can be served by more than one vehicle, hence

the total freight assigned to each customer can be split into two or more vehicles. It is

assumed that the product demand di,p,t in each period t ∈ T is distributed normally with

mean µi,p,t and standard deviation σi,p,t, ∀i ∈ V
′
, p ∈ P, t ∈ T . For each customer, an

inventory holding cost hi,p,∀i ∈ VC , p ∈ P occurs at each period. However, if product p

stays in inventory more than mp periods, it becomes spoiled and cost of waste rp occurs.

The demand of all customers in each period must be satisfied with a probability of at

least α. The demand that cannot be fulfilled in one period is backlogged in the next

period.

The aim of the problem in this study is to determine the routes and quantity of shipments

in each period such that the total cost comprising routing, inventory and waste costs is

minimized. Routing cost consists of driver and fuel consumption cost for each arc in

the network. Let w denote the wage for the drivers and l denote the fuel price per

liter. The driver of each vehicle is paid from the beginning of the time horizon until

the time he returns to the starting point. Fuel consumption is mainly dependent on

traveled distance, vehicle load and vehicle speed. The following section presents the fuel

consumption calculation in greater detail.

6.3.1 Fuel consumption and emissions

We employ the same approach as in Bektaş and Laporte (2011), Demir et al. (2012)

and Franceschetti et al. (2013) for estimating fuel consumption that is based on the
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comprehensive emissions model of Barth et al. (2005). According to this model, the total

amount of fuel used EC (liters) for traversing a distance a (m) at constant speed f (m/s)

with load F (kg) is calculated as follows:

EC = λ

(
y(a/f) + γβaf2 + γs(µ+ F )a

)
where λ = ξ/(κψ), y = keNeVe, γ = 1/(1000ε$), β = 0.5CdAeρ, and s = g sinφ +

gCr cosφ. Furthermore, ke is the engine friction factor (kJ/rev/liter), Ne is the engine

speed (rev/s), Ve is the engine displacement (liter), µ is the vehicle curb weight (kg), g is

the gravitational constant (9.81 m/s2), φ is the road angle, Cd and Cr are the coefficient

of aerodynamic drag and rolling resistance, Ae is the frontal surface area (m2), ρ is the

air density (kg/m3), ε is the vehicle drive train efficiency and $ is an efficiency parameter

for diesel engines, ξ is the fuel-to-air mass ratio, κ is the heating value of a typical diesel

fuel (kJ/g), ψ is a conversion factor from grams to liters from (g/s) to (liter/s). For

further details on these parameters, the reader is referred to Demir et al. (2011). After

estimating fuel consumption amounts, we estimate related emission (CO2) levels by using

a fuel conversion factor u (kg/l) for transport activities.

6.3.2 Chance-constrained programming model with demand uncertainty

This section presents a mathematical formulation for the studied problem. Table 6.2

presents the notation for the model.

We now present the formulation, starting with the objective function.

Minimise
∑
i∈VC

∑
p∈P

∑
t∈T

I+i,p,thi,p (6.i)

+
∑
i∈VC

∑
p∈P

∑
t∈{T |t≥mp}

E[Wi,p,t]rp (6.ii)

+
∑

(i,j)∈A

∑
k∈K

∑
t∈T

λ

(
y(aij/f)Xi,j,k,t + γβaijf

2Xi,j,k,t + γs(µXi,j,k,t +
∑
p∈P

Fi,j,k,p,t)aij

)
l (6.iii)

+
∑

(i,j)∈A

∑
k∈K

∑
t∈T

(aij/f)Xi,j,k,tw. (6.iv)

(6.1)

The objective function (6.1) comprises four parts: (6.i) expected inventory cost, (note

that I+
i,p,t is derived from E[Ii,p,t] through constraints (6.3)), (6.ii) expected waste cost,

(6.iii) fuel cost from transportation operations and (6.iv) driver cost.

E[Ii,p,t] =

t∑
s=1

∑
k∈K

Qi,k,p,s −
t∑

s=1

(E[di,p,s] + E[Wi,p,s]), ∀i ∈ VC , p ∈ P, t ∈ T (6.2)

I+i,p,t ≥ E[Ii,p,t], ∀i ∈ VC , p ∈ P, t ∈ T (6.3)
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Table 6.2: Parameters and decision variables

Symbol Meaning

E[.] expectation operator
VC set of customers, VC = {1, 2..., |VC |}
VS set of suppliers, VS = {1, 2..., |VS |}
V set of all nodes including the 3PL 0, V = VC ∪ VS ∪ {0}
A set of all arcs, A = {(i, j) : i, j ∈ V, i 6= j}
A(S) S ⊂ V is the set of all arcs with both endpoints in S
T set of time periods, T = {1, 2..., |T |}
P set of products, P = {1, 2..., |P |}
K set of vehicles, K = {1, 2..., |K|}
mp fixed maximum shelf life of product type p, mp ≥ 2, in periods,
di,p,t demand of customer i ∈ VC for product type p ∈ P in time period t ∈ T , normal random

variable with mean µi,p,t, standard deviation σi,p,t, in kg,
α pre-defined satisfaction level of probabilistic inventory constraint,
c capacity of a vehicle, in kg,
ai,j distance between node i and j, (i, j) ∈ A, in m,
f vehicle speed, (m/s),
λ technical parameter, ξ/κψ, see section 6.3.1,
y technical parameter, keNeVe, see section 6.3.1,
γ technical parameter, 1/(1000ε$), see section 6.3.1,
β technical parameter, 0.5CdAeρ, see section 6.3.1,
s technical parameter, g sinφ+ gCr cosφ, see section 6.3.1,
µ curb-weight of vehicle, in kg,
l fuel price per liter, e/l,
rp penalty cost for the wasted product p ∈ P , e/kg,
w wage rate for the drivers of the vehicles, e/s,
qi,p,t the amount of product p ∈ P available at supplier i ∈ VS in period t ∈ T , in kg,
hi,p holding cost of product p ∈ P per period at node i ∈ VC , e/kg,

Ii,p,t the amount of inventory at customer i ∈ VC for product p ∈ P at the end of period t ∈ T ∪ {0},
in kg, where Ii,p,0 = 0, ∀i ∈ VC , p ∈ P ,

I+i,p,t derived decision variable to calculate positive inventory levels, in kg,

Bi,k,p,t the amount of product p ∈ P picked up from supplier i ∈ VS by vehicle k ∈ K in the beginning
of period t ∈ T , in kg,

Qi,k,p,t the amount of product p ∈ P delivered by vehicle k ∈ K to customer i ∈ VC in the beginning of
period t ∈ T , in kg,

Xi,j,k,t binary variable equal to 1 if vehicle k ∈ K goes from i ∈ V to j ∈ V in period t ∈ T ,
and 0 otherwise,

Fi,j,k,p,t the load of product p ∈ P on vehicle k ∈ K which goes from i ∈ V to j ∈ V in period t ∈ T ,in kg,

Wi,p,t the amount of waste from product p ∈ P at customer i ∈ V
′

at the end of period t ∈ T , in kg,
Ui,k,t the position of node i ∈ V \{0} in route k ∈ K in period t ∈ T .

E[Wi,p,t] ≥ E[Ii,p,t−mp+1]−
t∑

a=t−mp+2

E[di,p,a]−
t−1∑

a=t−mp+2

E[Wi,p,a], ∀i ∈ VC , p ∈ P, t ∈ {T |t ≥ mp}

(6.4)

E[Wi,p,t] = 0, ∀i ∈ VC , p ∈ P, t ∈ {T |t < mp} (6.5)

Pr

(
Ii,p,t ≥ 0

)
≥ α, ∀i ∈ VC , p ∈ P, t ∈ T. (6.6)

Constraints (6.2) to (6.6) relate to the inventory decisions. In particular, constraints (6.2)

calculate expected inventory levels of products for each customer per period by taking the

amounts of total product delivered, expected demand and expected waste into account.
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Hereby, we assume Ii,p,0 = 0,∀i ∈ VC , p ∈ P . Constraints (6.3) define variables which are

used for the calculation of inventory costs in the objective function. Constraints (6.4) and

(6.5) calculate expected waste for each product at each customer per period. Constraints

(6.6) are the service-level constraints on the probability of a stock-out at the end of each

period.

∑
i∈V,i6=j

Xi,j,k,t =
∑

i∈V,i6=j

Xj,i,k,t, ∀j ∈ V \{0}, k ∈ K, t ∈ T (6.7)

∑
j∈V,i6=j

Xi,j,k,t ≤ 1, ∀i ∈ V, k ∈ K, t ∈ T (6.8)

Xi,0,k,t = 0, ∀i ∈ VS , k ∈ K, t ∈ T (6.9)

X0,j,k,t = 0, ∀j ∈ VC , k ∈ K, t ∈ T (6.10)

F0,j,k,p,t = 0, ∀j ∈ VS , k ∈ K, p ∈ P, t ∈ T (6.11)∑
j∈V,i6=j

Fi,j,k,p,t =
∑

j∈V,i6=j

Fj,i,k,p,t +Bi,k,p,t, ∀i ∈ VS , k ∈ K, p ∈ P, t ∈ T (6.12)

∑
j∈V,i6=j

Fi,j,k,p,t =
∑

j∈V,i6=j

Fj,i,k,p,t −Qi,k,p,t, ∀i ∈ VC , k ∈ K, p ∈ P, t ∈ T (6.13)

∑
p∈P

Fi,j,k,p,t ≤ cXi,j,k,t, ∀(i, j) ∈ A, k ∈ K, t ∈ T (6.14)

∑
k∈K

Bi,k,p,t ≤ qi,p,t, ∀i ∈ VS , p ∈ P, t ∈ T (6.15)

Ui,k,t + 1 ≤ Uj,k,t + |V |(1−Xi,j,k,t), ∀(i, j) ∈ A(V \{0}), k ∈ K, t ∈ T. (6.16)

Constraints (6.7) to (6.16) relate to the routing decisions. In particular, constraints (6.7)

ensure flow conservation for each vehicle at each node in each period. Constraints (6.8)

ensure that each vehicle can perform at most one route per time period. Constraints

(6.9) and (6.10) restrict direct flows from the suppliers to the 3PL and from the 3PL

to the customers respectively. Constraints (6.11) specify that vehicle is empty while

departing from the 3PL. Constraints (6.12) to (6.14) model the flow on each arc and

ensure that vehicle capacities are respected in each period. Constraints (6.15) ensure that

vehicles cannot pickup a product from a supplier which does not produce that product.

Constraints (6.16) eliminate sub-tours (Jepsen et al., 2013).

Xi,j,k,t ∈ {0, 1}, ∀(i, j) ∈ A, k ∈ K, t ∈ T (6.17)

Fi,j,k,p,t ≥ 0, ∀(i, j) ∈ A, k ∈ K, p ∈ P, t ∈ T (6.18)

−∞ < Ii,p,t < +∞, ∀i ∈ VC , p ∈ P, t ∈ T (6.19)

I+i,p,t,Wi,p,t ≥ 0, ∀i ∈ VC , p ∈ P, t ∈ T (6.20)

Ui,k,t ≥, 0, ∀i ∈ V \{0}, k ∈ K, t ∈ T (6.21)

Qi,k,p,t, Bi,k,p,t ≥ 0, ∀i ∈ VC , k ∈ K, p ∈ P, t ∈ T. (6.22)

Constraints (6.17) to (6.22) represent the restrictions imposed on the decision variables.
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6.3.3 Deterministic approximation of the chance-constrained programming

model with demand uncertainty

Solving the above chance constrained model is complicated as products have a fixed

expiration date. Pauls-Worm et al. (2014) also use chance-constrained programming

approach for an inventory problem of perishable products with fixed shelf lives. In line

with their study, we therefore consider a deterministic approximation. The deterministic

constraints for the stochastic chance constraints (6.6) are rewritten as follows.

Constraints (6.6) ensure the inventory level for each product at the end of every period to

be nonnegative with a probability of service level α. Therefore, starting inventory level

of every period should be higher than the demand of that period for each product, with

a probability higher than the service level. These constraints now can be rewritten as,

Pr

(
Ii,p,t−1 +

∑
k∈K

Qi,k,p,t ≥ di,p,t
)
≥ α, ∀i ∈ VC , p ∈ P, t ∈ T. (6.23)

Applying constraints (6.2) to constraints (6.23), we have

Pr

( t−1∑
s=1

∑
k∈K

Qi,k,p,s −
t−1∑
s=1

(di,p,s + E[Wi,p,s])︸ ︷︷ ︸
Ii,p,t−1

+
∑
k∈K

Qi,k,p,t ≥ di,p,t
)
≥ α, ∀i ∈ VC , p ∈ P, t ∈ T.

(6.24)

Rearranging the constraints (6.24) yields

Pr

( t∑
s=1

∑
k∈K

Qi,k,p,s −
t−1∑
s=1

E[Wi,p,s] ≥
t∑

s=1

di,p,s

)
≥ α, ∀i ∈ VC , p ∈ P, t ∈ T. (6.25)

If Gdi,p,1+di,p,2+...+di,p,t(y) is the cumulative distribution function of Di,p(t) = di,p,1 +di,p,2 +

...+ di,p,t, then

t∑
s=1

∑
k∈K

Qi,k,p,s −
t−1∑
s=1

E[Wi,p,s] ≥ G−1Di,p(t)
(α), ∀i ∈ VC , p ∈ P, t ∈ T. (6.26)

Di,p(t) =
∑t

s=1 di,p,s, ∀i ∈ VC , p ∈ P will be normally distributed if the {di,p,s},
∀i ∈ VC , p ∈ P, s ∈ T with mean µi,p,s and standard deviation σi,p,s are each normally

distributed, and pairwise uncorrelated (Bookbinder and Tan, 1988). Therefore,

G−1Di,p(t)
(α) =

t∑
s=1

µi,p,s +

√√√√( t∑
s=1

(µi,p,s)2
)
CpZα, ∀i ∈ VC , p ∈ P, t ∈ T. (6.27)

where Cp is the coefficient of variation which is assumed to be constant for each product

p ∈ P and Zα is a standard normal random variate with cumulative probability of α.
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Therefore,

t∑
s=1

∑
k∈K

Qi,k,p,s −
t−1∑
s=1

E[Wi,p,s] ≥
t∑

s=1

µi,p,s +

√√√√( t∑
s=1

(µi,p,s)2
)
CpZα, ∀i ∈ VC , p ∈ P, t ∈ T. (6.28)

As a result, the model is simplified through transforming the stochastic terms by re-

placing constraints (6.6) with constraints (6.28). Then, the resulting deterministic linear

formulation, which is the approximation of the chance-constrained programming model

with demand uncertainty, is: (6.1)–(6.5), (6.7)–(6.22) and (6.28).

6.3.4 Strengthening the MILP model

This section presents valid inequalities to tighten the formulation and accelerate the

convergence to an optimal solution. The valid inequalities are related to the routing

variables and are as follows:

∑
j∈VS

∑
k∈K

X0,j,k,t ≥
∑
i∈VS

∑
k∈K

∑
p∈P

Bi,k,p,t/c, ∀t ∈ T (6.29)

∑
i∈VC

∑
k∈K

Xi,0,k,t ≥
∑
i∈VS

∑
k∈K

∑
p∈P

Qi,k,p,t/c, ∀t ∈ T. (6.30)

Constraints (6.29) and (6.30) represent relationships between the given routing variables

and decision variables related to pick up and delivery amounts. Our preliminary experi-

mentation has shown that significant reductions in computational time can be obtained

from the use of these additional constraints (6.29)–(6.30), as will be shown in the next

section.

6.4 Computational analysis

This section presents an implementation of the proposed model on the distribution opera-

tions of two suppliers, where supplier S1 produces figs and supplier S2 produces cherries.

The performances of the suppliers were assessed with respect to the following defined

KPIs: (i) total emissions, (ii) total driving time, (iii) total routing cost comprised of fuel

and wage cost, (iv) total inventory cost, (v) total waste cost, and (vi) total cost. Ad-

ditionally, the benefits of horizontal collaboration between the suppliers were analyzed

with respect to the aforementioned KPIs under several scenarios, which are introduced in

the following section. We first describe the case and data used, then present the solution

method. The results are discussed afterwards.
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6.4.1 Description and data

The underlying transportation network includes one 3PL company, two suppliers and

five wholesale market halls (customers) as presented in Figure 6.3. The suppliers S1 and

S2 are responsible for providing figs and cherries to the customers through two vehicles

rented from the 3PL company. These suppliers have the same sizes in terms of total

amount of products sent to the customers, however, sensitivity analysis are conducted

in the following section to investigate the effect of changes in the suppliers’ sizes on the

defined KPIs.

We assume that the vehicles used for the deliveries are homogeneous and have a capacity

of 10 tonnes. The parameters used to calculate the total fuel consumption cost are

taken from Demir et al. (2012) and are given in Table 6.3. We use 2.63 kg/l as a fuel

conversion factor to estimate CO2 emissions from transportation operations (Defra, 2007).

Distances between nodes (see Table 6.A in the appendix) are calculated using Google

Maps1. Vehicles travel at a fixed speed of 80 km/h.

Table 6.3: Setting of vehicle and emission parameters

Notation* Description Value
ξ Fuel-to-air mass ratio 1
κ Heating value of a typical diesel fuel (kJ/g) 44
ψ Conversion factor (g/liter) 737
ke Engine friction factor (kJ/rev/liter) 0.2
Ne Engine speed (rev/s) 33
Ve Engine displacement (liter) 5
ρ Air density (kg/m3) 1.2041
Ae Frontal surface area (m2) 3.912
µ Curb-weight (kg) 6350
g Gravitational constant (m/s2) 9.81
φ Road angle 0
Cd Coefficient of aerodynamic drag 0.7
Cr Coefficient of rolling resistance 0.01
ε Vehicle drive train efficiency 0.4
$ Efficiency parameter for diesel engines 0.9
l Fuel price per liter (e) 1.7
r Driver wage (e/s) 0.003
Source: Demir et al. (2012)
* See section 6.3.1 for the description of the notation.

The planning horizon length is six weeks. Demand means of products (see Table 6.B) for

each week are generated randomly for purposes of sensitivity analysis as will be shown in

the following section. The coefficient of variations for the product demands are assumed

to be constant and equal to 0.1 for all customers in each week. For both products, the

demand for each customer in each week must be satisfied with a probability of at least

95%. Holding costs at customers are taken as 10% of the average marketplace selling

prices of the products2, and are equal to 0.12 e/kg-week for figs and 0.2 e/kg-week for

1http://maps.google.nl/,Onlineaccessed:June2014
2http://halfiyatlari.org/izmir.html,Onlineaccessed:June2014
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cherries. Shelf life of both products is nearly three weeks. Therefore, if a product stays in

inventory more than three weeks, it becomes spoiled and cost of waste occurs. The cost

of waste is estimated as 1.2 e/kg for figs and 2 e/kg for cherries based on the average

marketplace selling prices. Lastly, it is assumed that the suppliers have enough products

to satisfy the related demand during the planning horizon. The aim of the problem is to

determine the routes and quantity of shipments in each week such that the total cost is

minimized.

Table 6.4: Analyzed scenarios

# Scenario Description # Scenario Description
0 IS Initial situation, base cases
1 S-D1 S1 large and S2 small sized 11 S-HR Higher routing cost
2 S-D2 S1 small and S2 large sized 12 S-LVS Lower vehicle speed
3 S-D3 Two common customers 13 S-HVS Higher vehicle speed
4 S-D4 Zero common customer 14 S-LCV Lower coefficient of variation
5 S-MN Modified network 15 S-HCV Higher coefficient of variation
6 S-LH Lower holding cost 16 S-LS Lower service level
7 S-HH Higher holding cost 17 S-HS Higher service level
8 S-LW Lower waste cost 18 S-LMS Lower maximum shelf lives
9 S-HW Higher waste cost 19 S-HMS Higher maximum shelf lives (four weeks)
10 S-LR Lower routing cost 20 S-HMSa Higher maximum shelf lives (six weeks)

We defined two base cases: (i) base case BC in which horizontal collaboration does not

exist between the suppliers, (ii) base case BCHC in which horizontal collaboration exists

between the suppliers. Base cases are represented as Initial situation (IS), as shown

in Table 6.4. We also did sensitivity analysis for the model with respect to changes in

suppliers’ sizes, network structure, number of common customers, cost parameters, vehicle

speed, coefficient of variation, service levels and maximum shelf lives. In particular, 20

scenarios have been formulated for the sensitivity analysis (see Table 6.4). We have

analyzed two cases in each scenario: (i) a case where the suppliers do not collaborate, (ii)

a case where the suppliers collaborate with each other.

In the case where horizontal collaboration exists, vehicles can carry two types of products

at the same time. The contributions of the suppliers to the total emissions, driving time,

and routing cost in each route were calculated based on the following ratios: total amount

of figs carried to total vehicle load for the S1 and total amount of cherries carried to total

vehicle load for the S2. Note that vehicles are empty before getting to the suppliers and

during return stage from the customers to the 3PL firm. In these arcs, if the vehicle has

visited both suppliers, the contributions of the suppliers to the defined KPIs are regarded

as equal. Otherwise, if the vehicle has visited a single supplier, the emissions, driving

time and routing cost are assigned to that supplier.
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6.4.2 Solution method

The ILOG-OPL development studio and CPLEX 12.6 optimization package has been used

to develop and solve the presented formulation for the case study. The resulting model

has 1777 continuous and 672 binary variables, and 1920 constraints. Optimal solutions

were obtained on a computer of Pentium(R) i5 2.4GHz CPU with 3GB memory.

The model can be used to analyze both cases with and without horizontal collaboration.

For the case where horizontal collaboration does not exist, we solved the model separately

for each supplier by allowing one vehicle to be used. Note that there exist two suppliers

producing different products: S1 produces figs and S2 produces cherries. First, we set the

demand for the cherries and supply capacity of the S2 during the whole planning horizon

as zero and solved the model for the S1 that aims to satisfy the customer demand for

the figs. Afterwards, we did the same for the S2. In particular, we set the demand for

the figs and supply capacity of the S1 during the whole planning horizon as zero and

solved the model for the S2 that aims to satisfy the customer demand for the cherries.

This has removed the chance of joint-vehicle usage with other suppliers and ensured us to

investigate the changes in the defined KPIs in the case where suppliers do not collaborate.

6.4.3 Results of base cases (IS)

This section presents first impact of horizontal collaboration in the base cases (IS), then

effect of valid inequalities on solution time.

6.4.3.1 Impact of horizontal collaboration

Summary results for the defined base cases with respect to the selected KPIs are presented

in Table 6.5. According to the aggregated amounts, 17.1% total cost reduction has been

obtained through horizontal collaboration between the suppliers. The total cost difference

between the base cases is due to the total routing and inventory cost reductions in the

base case BCHC .

Table 6.5: Summary results for the base cases

BC BCHC Gain
KPIs S1 S2 Total S1 S2 Total (%)
Total emissions (kg) 2738.6 2888.6 5627.2 1923.0 2057.1 3980.1 29.3
Total driving time (h) 69.5 72.9 142.4 47.5 50.9 98.4 30.9
Total routing cost (e) 2520.4 2654.8 5175.2 1755.9 1879.1 3635.0 29.8
Total inventory cost (e) 1684.2 2606.4 4290.6 1481.7 2556.2 4037.9 5.9
Total waste cost (e) 459.7 538.4 998.1 459.7 538.4 998.1 0.0
Total cost (e) 4664.3 5799.7 10463.9 3697.3 4973.7 8671.0 17.1
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The model solution for the base case BC proposes to use 12 vehicles for the deliveries of

the products, whereas the required fleet size reduces to 10 in the base case BCHC . Table

6.6 presents the resulting routes for each period in both base cases. The joint vehicle

usage of the suppliers in the base case BCHC gives an opportunity to satisfy the demand

of the customers for the two products via single visit which clearly contributes to the

total routing cost reduction (29.8%). In the base case BC, however, there is no chance

to merge deliveries of both suppliers. Moreover, the joint vehicle usage by the help of

horizontal collaboration ensures to have total emissions (29.3%), driving time (30.9%)

and inventory cost (5.9%) reductions in the base case BCHC .

Table 6.6: Resulting routes for the base cases

BC BCHC
Weeks 1st vehicle 2nd vehicle 1st vehicle 2nd vehicle
1st 0-S1-C1-C2-C3-C4-C5-0 0-S2-C5-C4-C3-C2-C1-0 0-S2-S1-C1-C2-0 0-S1-S2-C5-C4-C3-0
2nd 0-S1-C1-C2-C3-C4-C5-0 0-S2-C5-C4-C3-C2-C1-0 0-S2-C5-S1-C1-C2-0 0-S1-S2-C5-C4-C3-0
3rd 0-S1-C1-C2-C3-C4-C5-0 0-S2-C5-C4-C3-C2-C1-0 0-S2-S1-C1-C2-0 0-S1-S2-C5-C4-C3-0
4th 0-S1-C1-C5-C4-C3-0 0-S2-C5-C4-C3-C2-C1-0 0-S2-S1-C1-C2-0 0-S1-S2-C5-C4-C3-0
5th 0-S1-C1-C2-C3-C4-C5-0 0-S2-C3-C5-C1-0 0-S2-S1-C1-C2-C3-C4-C5-0 -
6th 0-S1-C1-C5-C4-0 0-S2-C5-C4-C3-C2-C1-0 0-S2-S1-C1-C2-C3-C4-C5-0 -

The differences in the resulting routes shown in Table 6.6 causes changes in the delivery

and inventory amounts between the base cases. These differences can be observed from

Table 6.7 which shows delivery, inventory and waste quantities for the customers during

the whole planning horizon in both cases.

Table 6.7: Delivery, inventory and waste quantities for the customers during the whole plan-
ning horizon in both base cases, in kg

Delivery Inventory Waste
Cust. Weeks Weeks Weeks

Prod. # 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

BC

Fig

C1 1165 1746 1586 927 1351 975 165 310 397 423 474 499 - - - - - -
C2 815 1428 1828 823 1462 714 115 243 370 393 456 470 - - - - - -
C3 1514 2635 405 3779 201 150 214 449 454 733 734 351 - - - - - 383
C4 3493 507 1132 1235 712 1023 494 500 532 567 579 602 - - - - - -
C5 699 1207 948 1268 2139 923 99 206 254 322 460 483 - - - - - -

Cherry

C1 1747 1159 1587 2788 302 404 247 306 393 581 583 587 - - - - - -
C2 1630 1719 2242 201 292 1238 230 350 492 301 493 531 - - - 192 - -
C3 1397 3104 302 713 1343 1874 197 501 504 517 559 633 - - - - - -
C4 1630 1495 3152 430 151 1338 230 326 500 581 581 619 - - 78 - - -
C5 932 1648 1153 614 1306 1192 131 280 333 347 404 446 - - - - - -

BCHC

Fig

C1 1165 1746 1586 927 1351 975 165 310 397 423 474 499 - - - - - -
C2 815 1428 2650 - 2176 - 115 243 1193 393 1170 470 - - - - - -
C3 1514 2635 405 3779 351 - 214 449 454 733 884 351 - - - - - 383
C4 3943 507 1132 1235 712 1023 494 500 532 567 579 602 - - - - - -
C5 699 1207 948 1268 2138 923 99 206 254 322 460 483 - - - - - -

Cherry

C1 1747 1159 1587 2788 302 404 247 306 393 581 583 587 - - - - - -
C2 1630 1719 2242 301 - 1430 230 350 492 593 301 531 - - - - 192 -
C3 1397 3104 302 713 1343 1874 197 501 504 517 559 633 - - - - - -
C4 1630 1495 3152 503 - 1416 230 326 578 731 503 619 - - - - 78 -
C5 932 1648 1153 614 1306 1192 132 280 333 347 404 446 - - - - - -

It has been observed that the service level target leads to waste occurrences at some

customers in both base cases. In particular, the reason for the related wastes is that the
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customers have to hold at least an amount of product in order to not fall into stock-out.

Afterwards, when these products are not sold, they perish and waste costs occur.

6.4.3.2 Effect of valid inequalities on solution time

To evaluate the effect of proposed valid inequalities (6.29)–(6.30), an analysis has been

carried out. Note that we solved the model separately for each supplier for the base case

BC in which horizontal collaboration does not exist between the suppliers. The optimal

solutions for the BC have been obtained within seconds even without using the valid

inequalities. This is not the case for the BCHC in which horizontal collaboration exists

between the suppliers.

Table 6.8: The effect of the valid inequalities on the computational time (in seconds) to obtain
optimal solutions for the BCHC

Lower bound Optimality
Solution times gap (%) gap (%)

Model 10800 6.04 0.02
Model+(6.29) 835 - -
Model+(6.30) 5873 - -
Model+(6.29)–(6.30) 4449 - -

Table 6.8 presents the results on the computational times required to solve the model

for the BCHC to optimality with different combinations of the valid inequalities. Lower

bound gap in the table shows the relative gap from the best-known lower bound provided

by the software. Optimality gap shows the relative gap from the optimal solution. The

results show the efficiency of the valid inequalities. After three hours time limit, the model

without valid inequalities gives a feasible solution which is 0.02% above the optimal cost

level. However, the gap from the best bound is 6.04%, which shows the fact that it still

needs some time to reach the optimal solution and afterwards to prove the solution’s

optimality.

6.4.4 Sensitivity analysis

This section presents sensitivity analysis for the model with respect to changes in sup-

pliers’ sizes, network structure, number of common customers, cost parameters, vehicle

speed, coefficient of variation, service levels and maximum shelf lives (see Table 6.4). The

results of the sensitivity analysis are shown in Table 6.C. Figure 6.2 shows the gains in

terms of routing, inventory, waste and therefore total costs, and emissions from horizon-

tal collaboration in all scenarios. Data labels in the Figures 6.2a and 6.2b indicate the

percentage gains.
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(a) Cost savings, in eand %

(b) Emissions savings, in kg and %

Figure 6.2: Aggregated gains from horizontal collaboration in all scenarios

6.4.4.1 The effect of changes in the suppliers’ sizes

In the base cases (IS), both suppliers have the same size in terms of total amount of

products sent to the customers. In practice, suppliers could have different sizes as well.

This fact motivated us to investigate the effect of changes in suppliers’ sizes through

two scenarios: (1) S-D1: Total demand for figs produced only by S1 is 70% of the total

demand for both products, and total demand for cherries produced only by S2 is 30% of

the total demand for both products and (2) S-D2: Large sized supplier, S2, provides 70%

of the whole products and the rest, 30%, is provided by the small one, S1.

Table 6.9: Total cost gains of the suppliers from horizontal collaboration in different sizes, in
eand % (brackets)

Scale S1 S2
Small sized 982.9 (28%) 1093.8 (26%)
Medium sized 966.9 (21%) 826.0 (14%)
Large sized 734.2 (15%) 814.3 (13%)
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Table 6.9 presents the total cost gains of the suppliers from horizontal collaboration in

different sizes. According to the results, gains from horizontal collaboration changes based

on the supplier size. In particular, as the supplier size decreases, the total cost benefit

from cooperation with the other larger supplier increases. This is expected, since smaller

firms are tempted to collaborate with larger organizations to improve resource efficiency

in practice (Alvarez and Barney, 2001).

Figure 6.2 shows the aggregated gains for both suppliers from cooperation in scenarios

S-D1 and S-D2. The results show that total cost and emissions gains from horizontal

collaboration change according to the customer demand. The customer demand change

also affects the total cost gain structure. For instance, in contrast to the base cases IS,

cooperation ensures waste cost gain along with inventory and routing cost gains in the

S-D1 and S-D2.

6.4.4.2 The effect of a change in the network structure

The benefits of horizontal collaboration to the suppliers can change based on the logistics

network structure. We analysed an additional scenario (MN) which has a different lo-

gistics network. In the original logistics network, the suppliers are located in the middle

and surrounded by the customers (see Fig. 6.3). In the new modified setting, customers

are to some extent clustered and suppliers are taken out through replacing the locations

of S1 with C3 and S2 with C2, as shown in Figure 6.3.

Figure 6.3: Representation of the original and modified logistics networks

Table 6.10 presents the gains of the suppliers from horizontal collaboration under different

network structures. Note that the original network is the one which has been employed for

the base cases. The results show that the benefits from horizontal collaboration in terms

of the selected KPIs decrease due to the network structure change in the scenario MN.

Especially, in its new location, collaborating with the other supplier does not bring that
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much benefit to the S2. In the new setting, the percentage cost gain from cooperation

reduces to 2.7% from 14.2% for the S2. For the S1 in its new location, it has been observed

that benefits from cooperation have decreased for all the KPIs, and even cooperation leads

2.1% increase in inventory cost. In overall less benefit has been obtained from cooperation

compared to the base cases (see Fig. 6.2), and in terms of aggregated amounts, all cost

benefit comes from routing cost, as shown in Figure 6.2a.

Table 6.10: Gains of the suppliers from horizontal collaboration under base cases IS, and
scenarios S-MN, S-D3 and S-D4, in %

Total Total Total Total
Total driving routing inventory waste Total

emissions time cost cost cost cost
IS: Original S1 29.8 31.6 30.3 12.0 0.0 20.7
network S2 28.8 30.2 29.2 1.9 0.0 14.2
S-MN: Modified S1 21.6 23.9 22.3 -2.1 0.0 11.4
network S2 3.6 7.7 4.9 1.2 0.0 2.7

S-D3: Two common S1 11.1 14.9 12.2 4.4 0.0 7.4
customers S2 18.6 16.4 17.9 0.0 0.0 8.1
S-D4: Zero common S1 13.1 16.4 14.1 0.0 0.0 6.8
customer S2 4.8 1.7 3.9 0.0 0.0 1.8

6.4.4.3 The effect of a change in the number of common customers

In the base cases, all customers have demand for both products, which makes them

common customers for the suppliers, however, there could be also non-common customers.

Here, we analyzed two scenarios: (i) S-D3: It comprises the same customers of which two

of them are common and three of them are non-common and (i) S-D4: It comprises

the same customers, however none of them are common. New demand structures are

presented in Table 6.B.

The results presented in Table 6.10 show that the benefits obtained from working jointly to

provide service to the customers decrease as the number of common customers decreases.

For instance, total cost gain of the S1 has dropped to 6.8% from 20.7% and for the

S2 it has dropped to 1.8% from 14.2% in scenario S-D4 where no common customers

exist. Moreover, sharing less common customers also leads to decreases in the aggregated

routing and inventory cost gains, and emissions gains from cooperation compared to the

base cases IS as shown in Figure 6.2.
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6.4.4.4 The effect of changes in cost parameters

We conduct sensitivity analysis on the cost parameters in the model. In particular, the

following scenarios have been formulated: (1) S-LH: Lower holding cost (0.06 e/kg for

figs and 0.1 e/kg for cherries per period), (2) S-HH: Higher holding cost (0.18 e/kg for

figs and 0.3 e/kg for cherries per period), (3) S-LW: Lower waste cost (0.6 e/kg for figs

and 1 e/kg for cherries per period), (4) S-HW: Higher waste cost (1.8 e/kg for figs and

3 e/kg for cherries per period), (5) S-LR: Lower routing cost (fuel price is 1.2 e/l and

wage rate for the drivers is 0.002 e/s) and (6) S-HR: Higher routing cost (fuel price is

2.2 e/l and wage rate for the drivers is 0.004 e/s).

The results presented in Table 6.C show that the increase and decrease of holding, waste

and routing cost parameters lead to, respectively, increased and decreased aggregated

total costs in both cases, no matter horizontal collaboration exists or not. Due to the

differences in cost changes, the gap representing the benefit of horizontal collaboration

has been also affected from the changes in the related cost parameters as shown in Figure

6.2a. For instance, the changes in holding and inventory cost parameters do not have

same effects on the aggregated total routing and inventory costs in both cases. That is

why cost gain from horizontal collaboration changes in the scenarios S-LH, S-HH, S-LR

and S-HR. However, the decrease or increase of waste costs in the scenarios S-LW and

S-HW has caused the same absolute changes on the aggregated total routing, inventory

and waste costs in both cases, and therefore the cost benefit from horizontal collaboration

has stayed same.

The emissions gain from horizontal collaboration has also changed based on the cost

parameters’ values, as shown in Figure 6.2b. Note that the emission gap in the base

cases IS is 29%. The main reasons of the emission gap differences in the scenarios can be

discussed as follows. (i) Holding more inventory at the customers has ensured to reduce

emissions in cases LH and LHHC , whereas the decrease in the LH is more than that of in

the LHHC . This difference results in a decrease of emission gap to 21% in the scenario

S-LH. (ii) Holding less aggregated inventory leads to an increase in emissions in case HH.

Emissions level, however, does not change in case HHHC , which results in an increase of

emission gap between the HH and HHHC to 32%. (iii) Emissions gaps has stayed same in

the scenarios S-LW and S-HW, since waste cost changes do not affect emissions. (iv) The

higher travel distance and change in the routes lead to an increase in emissions in case

LR. Emissions level, however, does not change in case LRHC , which results in an increase

of emission gap between the LR and LRHC to 32%. (v) The lower travel distance and

change in the routes lead to a decrease in emissions in case HR. Emissions level, however,
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does not change in case HRHC , which results in a decrease of emission gap between the

HR and HRHC to 25%.

6.4.4.5 The effect of changes in other parameters

We also conduct sensitivity analysis on the other parameters in the model. In particular,

the following scenarios have been formulated: (1) S-LVS: Lower vehicle speed (40 km/h),

(2) S-HVS: Higher vehicle speed (120 km/h), (3) S-LCV: Lower coefficient of variation

(0.05), (4) S-HCV: Higher coefficient of variation (0.15), (5) S-LS: Lower service level

(92.5%), (6) S-HS: Higher service level (97.5%), (7) S-LMS: Lower maximum shelf lives

(two weeks), (8) S-HMS: Higher maximum shelf lives (four weeks) and (9) S-HMSa:

Higher maximum shelf lives (six weeks).

The results presented in Table 6.C show that the increase and decrease of vehicle speed

lead to increased aggregated total costs in both cases whether horizontal collaboration

exists or not. Mainly, aggregated routing cost increases are responsible for the aggregated

total cost increases. The aggregated routing costs have increased in the scenario S-LVS

due to the increased driving times and therefore wages. However, fuel consumption and

therefore emissions levels are decreased in the S-LVS. The increase of vehicle speed in

the scenario S-HVS has ensured to reduce driver wages. However, the aggregated routing

costs have still increased due to the increased fuel consumption which causes an increase

in emissions as well.

The increase and decrease of coefficient of variation and service level parameters lead to,

respectively, increased and decreased aggregated total costs and emissions in both cases,

no matter horizontal collaboration exists or not (see Table 6.C). The reason is that less

demand variation or service level requires to send less products from the suppliers to

the customers, which decreases fuel consumption (emissions), inventory and waste costs.

High demand variation or service level, however, requires to send more products, which

increases fuel consumption (emissions), inventory and waste costs.

The increase and decrease of maximum shelf lives lead to, respectively, decreased and

increased aggregated total costs and emissions in both cases whether horizontal collabo-

ration exists or not. The reason is that long shelf lives eliminate waste costs, and allow to

reduce fuel consumption and therefore emissions by keeping more inventory at the cus-

tomers. Less shelf lives, however, increase waste costs, and cause to keep less inventory

which increases fuel consumption and therefore emissions.
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The experiments show that in terms of aggregated total cost and emissions, changes in

vehicle speed, coefficient of variation, service level and maximum shelf lives affect both

cases (horizontal collaboration does not exist and exists) in the same way. However,

sizes of the changes in the cases are different, which affect the benefits from horizontal

collaboration, as shown in Figure 6.2. For instance, the cost gap raises to 24% in the

S-LCV and falls to 12% in the S-HCV. Regarding emissions gap, it increases above 30%

in the S-HVS and S-LMS, and decreases below 27% in the S-LVS and S-HMS.

6.4.4.6 A general overview

The results show that there can be different circumstances in which horizontal collabo-

ration can be more or less effective. In some cases, gains with respect to the aggregated

total cost and emissions decrease (e.g., S-HCV) or increase (e.g., S-HVS) together. How-

ever, the aggregated total cost and emissions gains do not always go hand in hand. For

instance, the decrease of routing cost has decreased cost gap from 17% to 15%, whereas,

increased emissions gap from 29% to 32%. The other way around also happens, such as

the decrease of vehicle speed has increased cost gap to 19%, whereas, decreased emissions

gap to 25%. The reason for the different effects on cost and emissions benefits is that

emissions is dependent only on fuel consumption, however, total cost is calculated based

on not only fuel cost, but also wage, inventory and waste costs.

The main managerial implication of the results is that the proposed model can be used to

aid decision making processes in IRPs with multiple suppliers and customers, especially

confronted in food logistics systems. The model provides routing and delivery plans

by considering not only economic concerns, but also product wastes and emissions. In

addition to the offered support to the logistics decisions, the model can be used to evaluate

the potential economic and environmental benefits of horizontal collaboration, whose

importance has been acknowledged in practice and several collaborative projects (e.g.,

SCALE3 and CO34).

3Step change in agri-food logistics ecosystems. The SCALE is a collaborative project partly funded by
INTERREG IVB North-West Europe, which is a financial instrument of the European Union’s Cohesion Policy.
For more information: http://www.projectscale.eu/,Onlineaccessed:August2014.

4Collaboration concept for commodality. The CO3 is a collaborative project funded by the European Union’s
Seventh Programme for research, technological development and demonstration under grant agreement No 284926.
For more information: http://www.co3-project.eu/,Onlineaccessed:August2014.
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6.5 Conclusions

In this paper, we have modeled and analyzed the IRP with many-to-many distribution

structure to account for perishability, explicit fuel consumption and demand uncertainty.

The developed model has allowed to analyse the benefits of horizontal collaboration in

the IRP with respect to the several KPIs, i.e., total emissions, total driving time, total

routing cost comprised of fuel and wage cost, total inventory cost, total waste cost, and

total cost.

The results based on a case study data and a broad set of experiments illustrate the

potential of horizontal collaboration. Cooperation among suppliers ensures to reduce

aggregated total cost by 17% and aggregated total emissions by 29% in the studied

case. Extensive sensitivity analysis also confirm that horizontal collaboration among the

suppliers contributes to the decrease of aggregated total cost and emissions in the logistics

system, whereas the obtained gains are sensitive to the changes in several parameters.

Results of the experimental analysis yield the following important conclusions. As the

supplier size decreases, the total cost benefit from cooperation with the larger supplier

increases. The logistics network structure change reduces aggregated total cost gap to

6% and emissions gap to 12%. As the number of common customers decreases, the

benefits obtained from working jointly to provide service to the customers decrease, e.g.,

aggregated total cost and emissions gaps fall to 4% and 8% respectively, when there is not

any common customer between the suppliers. All analyses show that the aggregated total

cost gap varies in a range of about 4-24% and the aggregated total emission gap varies in

a range of about 8-33%. As a last remark, it has been observed that the aggregated total

cost and emissions gains do not always go hand in hand in the investigated scenarios such

that while one increases the other decreases.

Several extensions are possible for the current study. One extension would be to develop

a heuristic algorithm to solve the model presented here, which will enable to handle

instances that are larger in size. The other possible extension of the paper is to consider

heterogeneous vehicles for the deliveries. The last extension worth mentioning here is to

tackle uncertainty in supply which can be confronted in practice as well.
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APPENDIX

In this section, we present the distance and demand data used for the models, and results

of sensitivity analysis in detail.

Table 6.A: Distances between nodes, in kms

3PL S1 S2 C1 C2 C3 C4 C5
3PL - 86.1 63.6 126 178.8 172 221.6 150.1
S1 85.8 - 137 42.6 187 245 297 173
S2 64 137 - 179 228 161 179 92.2
C1 126 41.7 177 - 175 287 339 214
C2 179 187 228 173 - 285 385 310
C3 172 245 163 288 282 - 169 166
C4 222 297 178 339 383 170 - 112
C5 150 171 91.5 215 312 170 114 -

Table 6.B: Demand means (kg) for the customers in each week in different scenarios

Fig Cherry

Weeks Weeks
Customers 1 2 3 4 5 6 1 2 3 4 5 6

Base C1 1000 1600 1500 900 1300 950 1500 1100 1500 2600 300 400
case C2 700 1300 1700 800 1400 700 1400 1600 2100 200 100 1200

demand C3 1300 2400 400 3500 200 150 1200 2800 300 700 1300 1800
set C4 3000 500 1100 1200 700 1000 1400 1400 2900 350 150 1300
IS C5 600 1100 900 1200 2000 900 800 1500 1100 600 1250 1150

Total 6600 6900 5600 7600 5600 3700 6300 8400 7900 4450 3100 5850
C1 1500 1400 2500 2900 2300 900 500 900 400 2200 300 400

Demand C2 1200 1100 2200 1800 1750 2400 300 800 1100 200 100 800
set 1 C3 1300 2600 400 2500 200 1250 600 2000 300 700 400 300
S-D1 C4 2800 500 2300 1400 3100 2000 1600 600 2400 350 150 900

C5 800 1300 1200 1400 2000 1400 500 900 700 400 200 600
Total 7600 6900 8600 10000 9350 7950 3500 5200 4900 3850 1150 3000
C1 500 900 400 2200 300 400 1500 1400 2500 2900 2300 900

Demand C2 300 800 1100 200 100 800 1200 1100 2200 1800 1750 2400
set 2 C3 600 2000 300 700 400 300 1300 2600 400 2500 200 1250
S-D2 C4 1600 600 2400 350 150 900 2800 500 2300 1400 3100 2000

C5 500 900 700 400 200 600 800 1300 1200 1400 2000 1400
Total 3500 5200 4900 3850 1150 3000 7600 6900 8600 10000 9350 7950
C1 1700 2900 3200 1700 2700 1650 0 0 0 0 0 0

Demand C2 0 0 0 0 0 0 2900 2700 3600 2800 400 1600
set 3 C3 1300 2400 400 3500 200 150 1200 2800 300 700 1300 1800
S-D3 C4 0 0 0 0 0 0 1400 1400 2900 350 150 1300

C5 3600 1600 2000 2400 2700 1900 800 1500 1100 600 1250 1150
Total 6600 6900 5600 7600 5600 3700 6300 8400 7900 4450 3100 5850
C1 1700 2900 3200 1700 2700 1650 0 0 0 0 0 0

Demand C2 0 0 0 0 0 0 2900 2700 3600 2800 400 1600
set 4 C3 0 0 0 0 0 0 1200 2800 300 700 1300 1800
S-D4 C4 0 0 0 0 0 0 2200 2900 4000 950 1400 2450

C5 4900 4000 2400 5900 2900 2050 0 0 0 0 0 0
Total 6600 6900 5600 7600 5600 3700 6300 8400 7900 4450 3100 5850
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Table 6.C: Results of sensitivity analysis

Total Total Total Total Total Total
emissions driving routing inventory waste cost

Scenarios Cases Suppliers (kg) time (h) cost (e) cost (e) cost (e) (e)

IS

BC
S1 2738.6 69.5 2520.4 1684.2 459.7 4664.3
S2 2888.6 72.9 2654.8 2606.4 538.4 5799.7

Aggr. 5627.2 142.4 5175.2 4290.6 998.1 10463.9

BCHC

S1 1923.0 47.5 1755.9 1481.7 459.7 3697.3
S2 2057.1 50.9 1879.1 2556.2 538.4 4973.7

Aggr. 3980.1 98.4 3635.0 4037.9 998.1 8671.0

S-D1

D1
S1 3139.6 76.5 2855.4 1914.9 0.0 4770.4
S2 2592.4 68.8 2418.3 1820.6 15.9 4254.8

Aggr. 5732.0 145.2 5273.8 3735.5 15.9 9025.2

D1HC

S1 2378.3 60.1 2185.9 1850.2 0.0 4036.1
S2 1593.8 42.6 1490.2 1670.8 0.0 3161.0

Aggr. 3972.1 102.6 3676.1 3521.0 0.0 7197.1

S-D2

D2
S1 2430.4 63.7 2259.3 1132.5 95.3 3487.1
S2 3174.4 76.6 2878.8 3191.5 0.0 6070.3

Aggr. 5604.8 140.3 5138.1 4324.0 95.3 9557.5

D2HC

S1 1611.6 42.6 1501.7 1002.5 0.0 2504.2
S2 2357.4 60.1 2172.4 3083.6 0.0 5256.0

Aggr. 3969.1 102.6 3674.1 4086.1 0.0 7760.2

S-D3

D3
S1 1787.6 46.6 1658.3 1501.6 459.7 3619.6
S2 2493.2 62.5 2286.9 2654.1 155.3 5096.2

Aggr. 4280.8 109.1 3945.2 4155.7 615.0 8715.8

D3HC

S1 1589.5 39.6 1455.4 1435.0 459.7 3350.2
S2 2029.8 52.3 1876.5 2654.1 155.3 4685.9

Aggr. 3619.4 91.9 3332.0 4089.1 615.0 8036.0

S-D4

D4
S1 1423.0 37.0 1318.9 1425.2 0.0 2744.2
S2 2468.8 61.9 2264.5 2608.7 0.0 4873.1

Aggr. 3891.8 98.9 3583.4 4033.9 0.0 7617.3

D4HC

S1 1236.1 30.9 1132.5 1425.2 0.0 2557.7
S2 2351.3 60.8 2176.9 2608.7 0.0 4785.6

Aggr. 3587.4 91.7 3309.4 4033.9 0.0 7343.3

S-MN

MN
S1 2522.5 63.8 2319.2 1481.7 459.7 4260.6
S2 2628.3 66.7 2419.1 2586.4 538.4 5543.9

Aggr. 5150.8 130.5 4738.3 4068.0 998.1 9804.5

MNHC

S1 1976.9 48.5 1801.8 1513.5 459.7 3775.0
S2 2532.8 61.5 2301.6 2556.2 538.4 5396.2

Aggr. 4509.7 110.0 4103.4 4069.8 998.1 9171.3

S-LH

LH
S1 2102.0 51.5 1914.9 1252.1 459.7 3626.7
S2 2784.5 70.2 2558.1 1373.8 538.4 4470.3

Aggr. 4886.5 121.7 4472.9 2625.9 998.1 8096.9

LHHC

S1 1829.6 45.6 1675.4 828.6 459.7 2963.7
S2 2011.4 50.0 1840.0 1288.2 538.4 3666.6

Aggr. 3841.1 95.6 3515.4 2116.7 998.1 6630.2

S-HH

HH
S1 2982.0 75.6 2744.1 2249.6 459.7 5453.5
S2 2888.6 72.9 2654.8 3909.6 538.4 7102.9

Aggr. 5870.6 148.5 5399.0 6159.2 998.1 12556.3

HHHC

S1 1914.5 47.3 1747.8 2222.5 459.7 4430.0
S2 2065.5 51.1 1887.2 3834.4 538.4 6260.0

Aggr. 3980.1 98.4 3635.0 6056.9 998.1 10690.1

S-LW

LW
S1 2738.6 69.5 2520.4 1684.2 229.9 4434.4
S2 2888.6 72.9 2654.8 2606.4 269.2 5530.5

Aggr. 5627.2 142.4 5175.2 4290.6 499.1 9964.9

LWHC

S1 1923.6 47.5 1756.5 1481.7 229.9 3468.1
S2 2056.4 50.9 1878.5 2556.2 269.2 4703.9

Aggr. 3980.1 98.4 3635.0 4037.9 499.1 8172.0

S-HW

HW
S1 2738.6 69.5 2520.4 1684.2 689.6 4894.1
S2 2888.6 72.9 2654.8 2606.4 807.6 6068.9

Aggr. 5627.2 142.4 5175.2 4290.6 1497.2 10963.0

HWHC

S1 1923.0 47.5 1755.9 1481.7 689.6 3927.2
S2 2057.1 50.9 1879.1 2556.2 807.6 5242.9

Aggr. 3980.1 98.4 3635.0 4037.9 1497.2 9170.1
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TABLE 6.C(continued): Results of sensitivity analysis

Total Total Total Total Total Total
emissions driving routing inventory waste cost

Scenarios Cases Suppliers (kg) time (h) cost (e) cost (e) cost (e) (e)

S-LR

LR
S1 2982.0 75.6 1905.0 1499.7 459.7 3864.5
S2 2888.6 72.9 1843.1 2606.4 538.4 4987.9

Aggr. 5870.6 148.5 3748.1 4106.2 998.1 8852.4

LRHC

S1 1914.5 47.3 1213.8 1481.7 459.7 3155.2
S2 2065.5 51.1 1310.5 2556.2 538.4 4405.1

Aggr. 3980.1 98.4 2524.2 4037.9 998.1 7560.3

S-HR

HR
S1 2409.6 59.5 2872.9 2095.6 459.7 5428.2
S2 2888.6 72.9 3466.6 2606.4 538.4 6611.4

Aggr. 5298.2 132.5 6339.5 4702.0 998.1 12039.6

HRHC

S1 1922.4 47.5 2291.8 1481.7 459.7 4233.2
S2 2057.6 50.9 2454.0 2556.2 538.4 5548.6

Aggr. 3980.1 98.4 4745.8 4037.9 998.1 9781.9

S-LVS

LVS
S1 2330.4 119.1 2792.3 2095.6 459.7 5347.6
S2 2791.6 145.9 3379.8 2606.4 538.4 6524.6

Aggr. 5121.9 264.9 6172.1 4702.0 998.1 11872.2

LVSHC

S1 1849.7 94.4 2215.0 1481.7 459.7 4156.4
S2 1999.5 102.4 2397.8 2556.2 538.4 5492.4

Aggr. 3849.2 196.7 4612.8 4037.9 998.1 9648.9

S-HVS

HVS
S1 3760.7 46.3 2931.0 1684.2 459.7 5074.9
S2 3961.9 48.6 3086.0 2606.4 538.4 6230.8

Aggr. 7722.6 94.9 6017.0 4290.6 998.1 11305.7

HVSHC

S1 2609.8 31.5 2027.2 1481.7 459.7 3968.6
S2 2817.7 34.1 2189.4 2556.2 538.4 5284.0

Aggr. 5427.6 65.6 4216.6 4037.9 998.1 9252.6

S-LCV

LCV
S1 2725.5 69.5 2511.9 962.1 19.9 3493.8
S2 2769.9 70.0 2546.8 1415.3 0.0 3962.1

Aggr. 5495.4 139.5 5058.6 2377.4 19.9 7455.9

LCVHC

S1 1912.1 47.5 1748.6 779.6 19.9 2548.1
S2 1984.8 49.3 1815.7 1305.0 0.0 3120.7

Aggr. 3897.0 96.8 3564.3 2084.7 19.9 5668.8

S-HCV

HCV
S1 2751.8 69.5 2528.9 2406.3 899.6 5834.7
S2 2906.8 72.9 2666.6 3770.3 1950.3 8387.3

Aggr. 5658.6 142.4 5195.5 6176.6 2849.9 14222.0

HCVHC

S1 1915.9 47.0 1746.1 2201.5 899.6 4847.2
S2 2150.8 52.9 1962.0 3720.1 1950.3 7632.4

Aggr. 4066.7 99.9 3708.1 5921.6 2849.9 12479.6

S-LS

LS
S1 2735.3 69.5 2518.3 1504.2 350.1 4372.5
S2 2884.1 72.9 2651.9 2307.8 271.9 5231.6

Aggr. 5619.4 142.4 5170.2 3812.0 622.0 9604.1

LSHC

S1 1921.6 47.5 1755.3 1302.3 350.1 3407.7
S2 2052.9 50.8 1876.1 2257.6 271.9 4405.6

Aggr. 3974.5 98.4 3631.4 3559.9 622.0 7813.3

S-HS

HS
S1 2743.7 69.5 2523.6 1960.7 628.2 5112.5
S2 2895.6 72.9 2659.4 3065.3 947.9 6672.5

Aggr. 5639.2 142.4 5183.0 5026.0 1576.0 11785.1

HSHC

S1 1913.7 47.1 1745.8 1757.4 628.2 4131.4
S2 2074.9 51.3 1894.7 3015.1 947.9 5857.7

Aggr. 3988.6 98.4 3640.5 4772.5 1576.0 9989.1

S-LMS

LMS
S1 3024.3 76.5 2780.9 1451.7 759.4 4992.0
S2 3026.8 76.6 2783.4 2349.0 2610.4 7742.8

Aggr. 6051.2 153.1 5564.4 3800.8 3369.7 12734.9

LMSHC

S1 1945.4 48.5 1781.1 1451.8 759.4 3992.3
S2 2083.7 52.8 1917.3 2349.0 2610.4 6876.7

Aggr. 4029.1 101.3 3698.3 3800.8 3369.7 10868.9

S-HMS(a)

HMS
S1 2738.6 69.5 2520.4 1730.2 0.0 4250.5
S2 2698.3 67.8 2476.8 2780.9 0.0 5257.7

Aggr. 5436.9 137.3 4997.1 4511.1 0.0 9508.2

HMSHC

S1 1925.2 47.6 1758.1 1527.7 0.0 3285.8
S2 2053.0 50.8 1875.8 2610.1 0.0 4485.9

Aggr. 3978.2 98.4 3633.9 4137.8 0.0 7771.6
IS: Initial situation, S-D1: S1 large and S2 small sized, S-D2: S1 small and S2 large sized,
S-D3: two common customers, S-D4: zero common customer,
S-MN: Modified network, S-LH: Lower holding cost, S-HH: Higher holding cost,
S-LW: Lower waste cost, S-HW: Higher waste cost,S-LR: Lower routing cost,
S-HR: Higher routing cost, S-LVS: Lower vehicle speed, S-HVS: Higher vehicle speed,
S-LCV: Lower coefficient of variation, S-HCV: Higher coefficient of variation,
S-LS: Lower service level, S-HS: Higher service level,
S-LMS: Lower maximum shelf lives, S-HMS(a): Higher maximum shelf lives 155
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7.1 Conclusions

In this PhD thesis, we concentrated on decision support modelling for Sustainable Food

Logistics Management (SFLM). The overall objective of the research was to obtain insight

in how to improve the sustainability performance of food logistics systems by developing

decision support models that can address the concerns for transportation energy use and

consequently carbon emissions, and/or product waste, while also adhering to competi-

tiveness. The developed models incorporate several logistics improvement opportunities

regarding transportation energy use and emissions, and/or product waste as distinct from

the traditional approaches in the literature. In line with the overall objective, five research

objectives were set as follows:

• RO1: To identify key logistical aims, analyse available quantitative models and point

out modelling challenges in SFLM.

• RO2: To analyse the relationship between economic (cost) and environmental (trans-

portation carbon emissions) performance in a network problem of a perishable product.

• RO3: To investigate the performance implications of accommodating explicit trans-

portation energy use and traffic congestion concerns in a two-echelon capacitated vehicle

routing problem (2E-CVRP).

• RO4: To investigate the performance implications of accommodating explicit trans-

portation energy use, product waste and demand uncertainty concerns in an inventory

routing problem (IRP).

• RO5: To analyse the benefits of horizontal collaboration in a green IRP for perishable

products with demand uncertainty.

The thesis includes a collection of five papers, each of which is devoted to a different

RO and contributes to the overall objective. RO1 was confronted in Chapter 2 present-

ing a literature review on quantitative studies in Food Logistics Management (FLM) to

understand the state of the art and modelling challenges. RO2 was confronted in Chap-

ter 3 introducing a multi-objective linear programming (MOLP) model for a logistics

network problem. RO3 was confronted in Chapter 4 introducing a mixed integer linear

programming (MILP) model for a 2E-CVRP. RO4 was confronted in Chapter 5 intro-

ducing a chance-constrained programming model with demand uncertainty for an IRP

with one-to-many distribution structure. RO5 was confronted in Chapter 6 introduc-

ing a chance-constrained programming model with demand uncertainty for an IRP with

many-to-many distribution structure.
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In the following, we summarize the main findings and conclusions for each chapter in-

cluded in the thesis. Afterwards, the integrated findings, managerial implications, limi-

tations of the study and general future research directions are discussed.

7.1.1 Research opportunities

Chapter 2 concentrated on identifying key logistical aims in the three successive phases,

which are Logistics Management (LM), FLM and SFLM, and analysing available quan-

titative models to point out modelling challenges in SFLM. We conducted a literature

review on quantitative studies in FLM. Qualitative studies were also consulted to un-

derstand the key logistical aims more clearly and to identify relevant logistics system

scope issues. To the best of our knowledge, ours was the first literature review on SFLM

covering the contributions by taking the development from LM to FLM towards SFLM

into account. We presented detailed information with respect to the key logistical aims

and related models to generate a structured linkage between the practical requirements

and the current modelling literature. The key logistical aims in SFLM were covered in

three groups: (1) cost reduction and improved responsiveness (LM phase), (2) improved

food quality and reduction of food waste (FLM phase), and (3) improved sustainability

and traceability (SFLM phase). Additionally, we investigated the quantitative models

with respect to the main characteristics such as modelling type and application area, and

incorporated Key Performance Indicators (KPIs) and logistics system scope issues.

Results show that research on SFLM has been progressively developing according to the

needs of the food industry. However, the intrinsic characteristics of food products and

processes have not yet been handled properly in the identified studies. Some of the main

modelling challenges based on the assessment of the analysed models can be summarized

as follows:

• Most studies in literature rely on a completely deterministic environment; however,

supply chain members in food industry are confronted with several uncertainties. Due

to this fact, we proposed models in Chapters 5 and 6 which are able to capture the risk

associated with uncertain demand.

• Researchers do not show sufficient interest in food waste problem occurring at different

stages of the food supply chains (FSCs). We believe that incorporating the option that

product quality falls below the minimum level will help these models to approach real life

problems and issues much better than before. From this point of view, we incorporated

product waste into the models in Chapters 5 and 6.
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• The majority of the works reviewed have not considered sustainability problems, apart

from a few recent studies. Regarding emissions, most studies calculate fuel consumption

based only on traveled distance. However, this restrictive approach does not allow an

explicit calculation of the fuel consumed in logistics operations, which is crucial in terms

of reducing environmental externalities. This fact motivated us to explicitly estimate fuel

consumption amount in Chapters 3, 4, 5 and 6.

• Most literature studies propose single objective models for the related logistical prob-

lems in FSCs. However, real life problems consist of multiple objectives, which are in

conflict with each other. Therefore, we proposed a multi-objective model in Chapter 3

which ensures to present the trade-offs between logistics cost and transportation carbon

emissions. Moreover, we compared the use of different objectives in Chapter 4 mainly

to present the trade-offs between logistics cost and transportation carbon emissions. To

reveal the trade-offs among transportation carbon emissions, product waste and logistics

cost, different model variations were employed in Chapter 5, and cases with and without

horizontal collaboration were analyzed in Chapter 6.

This chapter concludes that new and advanced quantitative models are needed that take

specific SFLM requirements from practice into consideration to support business decisions

and capture food supply chain dynamics. By this means better logistics decision support

models can create sustainable and efficient business networks.

7.1.2 Environmentally friendly network management for perishable products

Chapter 3 addressed a generic multi-echelon beef logistics network problem that consists

of a number of third party logistics (3PL) firms, production regions, slaughterhouses,

export departure and import arrival points. The main decisions involved are: number

of livestock slaughtered, amount of livestock and beef inventories, allocation decisions,

and number of trucks used, also taken into consideration the possibility of less than fully

loaded truck shipments. The problem aims to minimize the total logistics costs comprising

inventory and transportation costs together with the total CO2 transportation emissions.

A MOLP model was developed for the problem. As distinct from the network models

in the literature, the proposed model incorporates several aspects simultaneously. The

model regards road structure, vehicle and fuel types, weight loads of vehicles and traveled

distances while calculating fuel consumption and CO2 emissions. This approach ensures

the assessment of the effects of empty drives, which occur before getting to the sites for

service and during return hauls, and less than fully loaded truck shipments on logistics

cost and emissions. The beef product is subject to quality decay and duration of inventory
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keeping is therefore limited in the model. We provided a case study of the international

beef logistics chain operating from a region in Brazil to the European Union (EU) to

illustrate the applicability of the proposed model for real logistics systems.

In our case study, the 3PL firms provide trucks that have two age categories (old and

new). The old truck is less efficient in terms of fuel consumption; however, its fixed

renting cost is lower than that of the new one. Due to these different features of trucks,

trade-offs occur between logistics cost and transportation emissions. The trade-off rela-

tionships between logistics costs and transportation emissions were revealed in a Pareto

frontier, which enables us to answer the question of how much it costs to reduce emissions

to different levels in the logistics system. In the following analysis, the road transport

emissions shares of the chain parts indicated the importance of distances between actors

in terms of environmental impact. Moreover, practical necessities, and challenges learnt

from the related literature and Brazilian partners in the EU funded project, SALSA,

motivated us to explore the effects of possible changes in the current logistics system on

cost and emissions. Some of the most interesting results from the sensitivity analysis on

parameters important in practice are as follows: (1) removing capacity constraints on

export ports showed that capacities put pressure on the logistics system while selecting

the port for transportation, (2) decreasing fuel efficiency of trucks due to the inefficient

infrastructure resulted in shifts of the Pareto frontier with increase in both logistics cost

and transportation emissions, and (3) decreasing fixed renting cost of new trucks due

to the obtained advantage of 3PL firms from green tax incentives resulted in economic

and environmental improvement. All the analyses in this chapter show that the pro-

posed model serves as a decision support tool while further improving the environmental

performance of the selected food logistics chain.

The model allows only direct flows between the supply chain actors. Therefore, an im-

portant direction for our next studies in Chapters 4, 5, and 6 was to consider indirect

flows between facilities by tackling routing decisions. Moreover, product waste possibility

is ignored in the study, since the model only restricts the maximum number of periods

that beef can be stored in facilities. Tracking quality or age of the products through the

supply chain in a more detailed way, which will allow control of product waste, was given

as another research direction. Starting from this point of view, we regarded potential of

product wastes in Chapters 5 and 6.
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7.1.3 Environmentally friendly routing with time-dependent speed

Chapter 4 addressed a time-dependent 2E-CVRP that consists of a depot, and a set of

satellites and customers. In two-echelon distribution systems, large trucks are used to

transport freight over long-distances to satellites where consolidation takes place; after-

wards, the products are transferred to destination points using small and environmentally-

friendly vehicles. In our problem, time-dependent travel times are considered to account

for traffic congestion effects when traveling on the defined arcs in the second-echelon. The

objective of the basic 2E-CVRP is to determine two sets of first and second echelon routes

that minimize total routing and satellite handling cost. We developed a comprehensive

MILP formulation for a time-dependent 2E-CVRP that accounts for vehicle type, traveled

distance, vehicle speed, load, emissions and multiple time zones that may occur during

the planning horizon. To the best of our knowledge, this was the first attempt to develop

a mathematical model for the time-dependent 2E-CVRP with an explicit consideration

of fuel consumption through the use of a comprehensive emission function. A case study

was provided to present an implementation of the proposed model on the distribution

operations of a supermarket chain operating in the Netherlands. We focused on four

KPIs: total distance, total time, total fuel consumption, and total cost. The proposed

model was minimized over each Key Performance Indicator.

The results of the computational experiments showed that the resulting routes and the

performances of the solutions with respect to the KPIs change according to the variation

of the model. The traditional objectives of distance and time minimization did not ensure

minimization of fuel consumption or cost. The comprehensive cost-minimizing objective,

which breaks away from the traditional objective functions used in the 2E-CVRP by a

detailed estimation of fuel consumption, could achieve average savings in total cost by

6.9%. However, it did not guarantee the best solution in terms of emissions. The use

of fuel-minimizing objective could ensure the most environmentally-friendly solution by

reducing total fuel consumption on average 2.5% in return for a cost increase of 10.8%.

The sensitivity analyses revealed that the performances of the variations of the model on

the selected KPIs changed according to the handling fee in the satellites and demand of the

customers. Additionally, for our case study, the most environmentally-friendly solution

was obtained by the use of a two-echelon distribution system, although a single-echelon

distribution system provides a solution with lower total cost.

The results presented in this chapter confirmed the benefit of explicitly accounting for

time-dependent speeds and fuel consumption in a routing problem. Inventory decisions

were not incorporated in the problem. However, growing vertical collaboration between

suppliers and customers increases the suppliers’ responsibility to manage inventory at the
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customers besides controlling deliveries. This has resulted in an integrated IRP consisting

of suppliers’ own vehicle routing decisions and inventory decisions of their customers.

Therefore, we focused on IRP in Chapters 5 and 6.

7.1.4 Environmentally friendly inventory routing for perishable products

with demand uncertainty

Chapter 5 addressed a generic IRP that consists of a single supplier (depot) and a number

of customers. Under the Vendor Managed Inventory (VMI) policy, the supplier has to

make three simultaneous decisions: when to deliver to each customer, how much to deliver

to each customer each time it is served, and how to combine delivery to customers into

vehicle routes. The problem is to determine the routes and quantity of shipments in each

period in such a way that the total cost comprising routing, inventory and waste costs

is minimized. We developed a comprehensive chance-constrained programming model

(MPF ) for the multi-period IRP that accounts for perishability, explicit fuel consumption

and demand uncertainty. The proposed model manages relevant KPIs of total energy use

(emissions), total driving time, total routing cost, total inventory cost, total waste cost,

and total cost simultaneously. To the best of our knowledge, the model was unique in using

a comprehensive emission function and in modeling waste and service level constraints as a

result of uncertain demand. To present the benefits of including perishability and explicit

fuel consumption considerations in the model, we derived three additional models from

the proposed model: model without perishability and explicit fuel consumption concerns

(M), model with explicit fuel consumption concern (MF ) and model with perishability

concern (MP ). Additionally, we proposed a simulation model to evaluate the solutions of

these models and to check whether these solutions are feasible. A case study was provided

to present an implementation of the proposed model, and its variations described above,

on the fresh tomato distribution operations of a supermarket chain operating in Turkey.

Our analysis on different scenarios showed the consequences of perishability and/or ex-

plicit fuel consumption ignorance. The models M and MF could not meet the desired

service levels in all scenarios due to the perishability ignorance which resulted in relatively

higher product wastes. On the contrary, accounting for the perishability allowed MP and

MPF to satisfy the service levels in all scenarios. MPF provided the least cost solutions

in all scenarios. According to the optimization results, MPF can achieve average savings

in total cost by 24.3% compared to M , 20.5% compared to MF and 0.9% compared to

MP . In the experiments, we successively changed the values of the following problem

parameters: the demand means, coefficient of variations, fixed shelf lives, holding costs

and service levels. It appeared that the added value of MPF compared to the other model

163



Chapter 7. Conclusions and general discussion

variations in terms of total cost changes according to the parameter values. For instance,

the total cost gap between M and MPF solutions increased as C or α increases and de-

creased as m or h increases. Additionally, the use of a more environmentally-friendly

objective function (in model M
′
PF ) showed that 2% decrease in total emissions can be

obtained in return for a 25.2% significant total cost increase.

The results presented in this chapter supported the view that the improvement of the

IRP model through perishability and explicit fuel consumption incorporation makes it

more useful than a basic model that disregards both aspects for the decision makers

in food logistics management. However, the problem deals with a single supplier (one-

to-many distribution structure) and a single product which restricts the applicability

of the developed model to the distribution networks where more than one supplier and

product exist. This indicated improvement opportunity formed our main motivation to

head towards another variant of the IRP that has a number of suppliers and products

in Chapter 6. Another driver for the aforementioned variant was that dealing with the

multiple supplier case would provide a chance to investigate the effects of horizontal

collaboration besides vertical collaboration.

7.1.5 Environmentally friendly inventory routing for perishable products

with horizontal collaboration and demand uncertainty

Chapter 6 addressed an IRP with many-to-many distribution structure that comprises a

3PL which serves as a rental vehicle company, and multiple suppliers and customers. This

problem requires vertical collaboration among suppliers and customers, and horizontal

collaboration among suppliers. The literature review on the problem pointed out that

there was a need for decision support tools that incorporate perishability, explicit fuel

consumption and demand uncertainty, and horizontal logistics collaboration in the IRP

had not been explicitly addressed by researchers. Accordingly, we developed a compre-

hensive chance-constrained programming model with demand uncertainty for a generic

IRP with multiple suppliers and customers that accounts for the KPIs of total energy

use (emissions), total driving time, total routing cost, total inventory cost, total waste

cost, and total cost. The model provides routing and delivery plans by considering not

only economic concerns, but also product wastes and emissions. Afterwards, the proposed

model was used to analyze the benefits of horizontal collaboration in the IRP with respect

to the aforementioned KPIs. We provided a case study on the distribution operations

of two suppliers, where the first supplier produces figs and the second supplier produces

cherries, to show the applicability of the model.
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The results based on the case study data and a broad set of experiments illustrated the

benefits of horizontal collaboration in terms of economic and environmental concerns.

Horizontal collaboration among suppliers made it possible to reduce aggregated total

cost by 17% and aggregated total emissions by 29% in the studied case. Extensive sen-

sitivity analysis showed that the obtained gains were dependent on several modelling

parameters. The following important conclusions were obtained through the results of

the experimental analysis. The smaller supplier gained more total cost benefit from co-

operation compared to the larger supplier. The logistics network structure has potential

to change the gains obtained by cooperation. For instance, the change of the logistics

network structure reduced the aggregated total cost gap to 6% and emission gap to 12%.

The other factor affecting cooperation benefits is the number of common customers be-

tween suppliers. As the number of common customers decreased, the benefits obtained

from working jointly to provide service to the customers decreased as well. For instance,

the aggregated total cost and emission gaps fell to 4% and 8% respectively, when there

was no common customer between the suppliers. All analyses showed that the aggregated

total cost gap varies in a range of about 4-24% and the aggregated total emission gap

varies in a range of about 8-33%. Lastly, the aggregated total cost and emission gains did

not always go hand in hand in the investigated scenarios in such a way that when one

increases, the other decreases. For instance, the decrease of routing cost reduced the cost

gap from 17% to 15%, whereas it increased the emission gap from 29% to 32%. However,

in another scenario, the decrease of vehicle speed increased the cost gap to 19%, whereas

it reduced the emission gap to 25%.

7.2 Integrated findings

So far in this chapter, findings for each RO are presented separately. This section dis-

cusses the integrated findings in SFLM and decision support modelling using the research

framework introduced in Figure 1.2 in Chapter 1.

7.2.1 Sustainable Food Logistics Management

Integrated findings from Chapters 2, 3, 4, 5 and 6 contribute to the SFLM literature

by (i) reflecting the state of the art on the topic of quantitative logistic models which

have sustainability considerations, (ii) providing decision support models which can be

used by decision makers to improve the performance of the sustainable food logistics

systems in terms of logistics cost, transportation energy use and carbon emissions, and/or
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product waste, and (iii) presenting the applicability of the proposed models in different

case studies based on mainly real data, multiple scenarios, and analysis. In the following,

we first present the main research issues in SFLM. Secondly, the insights provided by

the developed models to SFLM are discussed based on the results of the case study

implementations. Lastly, we present the main benefits of explicit fuel consumption and

perishability considerations in the models.

• Main research issues in SFLM

We presented thorough literature reviews on Operations Research (OR) models to un-

derstand the state of the art and modelling challenges in SFLM. In particular, Chapter

2 was devoted to the literature review of quantitative and qualitative studies in FLM.

Additionally, Chapters 3, 4, 5 and 6 presented related literature reviews on OR models in

the selected logistics problems to point out the gaps and justify the contributions of the

studies. Note that these reviews are not restricted only to FSCs, but also cover studies

on other supply chains.

Transition towards SFLM increased the importance of managing transportation energy

use and emissions, and product waste in food logistics systems. However, the literature

reviews show that traditional logistics decision support models often focus on logistics

cost and disregard the aforementioned environmental and social concerns. The main

drawbacks of the existing models can be summarized as follows. First, traditional logis-

tics models often regard only traveled distance while calculating distribution cost between

nodes in a supply chain. Other factors such as vehicle load, speed and type, however, af-

fect fuel consumption and therefore distribution cost as well. Ignoring these factors while

calculating fuel consumption amounts also leads to a misevaluation of related environ-

mental impacts of transportation. Second, the traditional approach in logistics models is

to assume an unlimited product shelf life, although most of the food products are subject

to quality decay in practice. The non-perishability assumption restricts the usefulness of

the proposed models in current food logistics systems. These two prominent drawbacks,

which concern better management of transportation energy use and emissions, and prod-

uct waste along with logistic cost, should be addressed by researchers to improve existing

decision support models.

The traditional trend, which ignores environmental and social concerns, has been chang-

ing, especially in the last years, towards developing enhanced models that account for

several logistics improvement opportunities regarding transportation energy use and emis-

sions, and food waste. However, we have observed that these non-traditional attempts

are still not sufficient in terms of adequately and also simultaneously addressing the afore-

mentioned concerns. On one hand, some of these non-traditional attempts are regarded as
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inadequate mainly due to the following reasons: (i) they estimate transportation energy

use and emissions roughly without using comprehensive fuel estimation models that take

multiple aspects (e.g., traveled distance, vehicle load and speed, etc.) into account, (ii)

they consider product perishability, but do not allow product waste. On the other hand,

some non-traditional models tackle the aforementioned issues properly, but fail to cover

transportation energy use and emissions, and product waste concerns simultaneously.

Note that all the analyses in Chapter 5 and 6 reveal that ignoring either transportation

energy use (emissions) or product waste may have severe performance implications, and

therefore both of these concerns should be incorporated into the decision making process

in food logistics.

The use of comprehensive fuel estimation models and better control of product waste are

clearly not the only logistics improvement opportunities for transportation energy use

and emissions, and product waste. Therefore, the findings obtained from the literature

reviews in Chapters 2, 3, 4, 5 and 6 lead us to conclude that there is still much room

for further improvement of the existing logistics decision support models by means of

incorporating the improvement opportunities introduced at Table 1.1 in Chapter 1 into

the logistics models. As shown in Chapters 3, 4, 5 and 6, the potentially enhanced models

can afterwards be used to meet the practical needs and to develop more sustainable

logistics systems.

• Insights provided by the developed models to SFLM

We presented mathematical models in Chapters 3, 4, 5 and 6 for different logistics prob-

lems to provide decision support tools for sustainable food logistics systems. Table 7.1

presents the comparison of these models with respect to the elements of the research

framework introduced in Figure 1.2 in Chapter 1. The elements are key decisions in-

volved, perishability, fuel consumption and uncertainty considerations, main KPIs, inher-

ently existing improvement opportunities and incorporated improvement opportunities.

These models can be regarded as non-traditional in the sense that they involve several

logistics improvement opportunities with the common aim to improve performance of

SFLM. Case study implementations in the aforementioned chapters indicated that the

proposed models provide opportunities to decision makers while further improving logis-

tics performance. Examples from different chapters on the topic can be given as follows.

First, the MOLP model proposed in Chapter 3 can be used for logistics network problems

for perishable products that have to be managed by a fleet composed of multiple vehicle

types (see Table 7.1). The ability to manage an inhomogeneous fleet allowed the calcu-

lation of the trade-offs between logistics cost and transportation emissions in our case

study, which involves old and new trucks with different renting costs and fuel efficiency
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Table 7.1: Outline of the chapters including quantitative models

Chapter 3 Chapter 4 Chapter 5 Chapter 6
Network 2E-CVRP IRP IRP
Problem (1-to-m) (m-to-m)

Key Inventory quantity X - X X
decisions Delivery quantity and schedule X - X X
involved Routes to deliver products - X X X

Perishability
Shelf life X - X X
Product waste - - X X

Fuel or Traveled distance X X X X
emissions Vehicle load X X X X
considerations Vehicle speed - X X X

Time-dependent speed - X - -
Uncertainty Demand - - X X

Main KPIs

Total fuel cost X X X X
Total wage cost - X X X
Total inventory cost X - X X
Total waste cost - - X X
Total energy use (emissions) X X X X
Total driving time - X X X

Better network management X - - -
Intrinsic Better route planning - X X X
improvement Better vehicle vertical collaboration X - X X
opportunities sharing through horizontal collaboration X - - X

Use of alternative distribution systems - X - -
Better inventory planning X - X X
More efficient information sharing (VMI) - - X X

Use of fuel efficient fleet and multi-modality X X - -
Incorporated Use of comprehensive fuel estimation models X X X X
improvement Less exposure to traffic congestion - X - -
opportunities Tracking shelf life information X - X X

Controlling product waste - - X X

levels. For instance, results from the case study revealed that in approximate numbers

an emission reduction of 8% comes at a cost increase of 3% and necessitates the use of

16% new trucks in the fleet (see Fig. 3.5a,b in Chapter 3).

Second, as shown in Table 7.1, the MILP model proposed in Chapter 4 takes traffic

congestion (time-dependent speed) into account which becomes especially important for

logistics problems in urban areas. Results from the case study showed that accounting

for time-dependent speeds, rather than assuming that vehicles retain their speeds even

in rush hours, led to significant savings in total cost (see Table 4.6 in Chapter 4).

Third, the chance-constrained programming model proposed in Chapter 5 can be used

for inventory routing problems for perishable products with demand uncertainty and

environmental considerations (see Table 7.1). Analyses of the case study showed that

the model could provide benefits in terms of cost and achieved service levels compared

to its counterparts in the literature. For instance, as shown at Table 5.9 in Chapter 5,

the model (MPF ) achieved total cost savings of 11.3% compared to another model (M)

without perishability and explicit fuel consumption concerns. Additionally, simulation
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results revealed that M could not meet the desired service levels, whereas MPF satisfied

the service level requirements.

Lastly, the chance-constrained programming model proposed in Chapter 6 can be used

to evaluate the potential economic and environmental benefits of horizontal collaboration

in inventory routing problems for perishable products with demand uncertainty and en-

vironmental considerations (see Table 7.1). According to the results of the case study,

horizontal collaboration among the suppliers contributed to the decrease of aggregated

total cost and emissions in the logistics system (see Fig. 6.C in Chapter 6).

In summary, the insights from the case study implementations discussed above support

the view that the models developed in this PhD study give better aid to decision makers

in SFLM compared to the existing attempts in the literature.

• Main benefits of explicit fuel consumption and perishability considerations

In this thesis, we are concerned with transportation energy use and carbon emissions,

and product waste as environmental and social KPIs. These KPIs were measured and

incorporated in the decision making process in logistics problems through the developed

mathematical models. In particular, we employed comprehensive fuel estimation models

to estimate transportation energy use and emissions more explicitly, and took perishabil-

ity into account to control product waste. The results indicated that there is a twofold

benefit from the incorporation of these aspects into the models: (i) opportunity to reduce

relevant operational cost, (ii) opportunity to make logistics plans according to the envi-

ronmental and social objectives. Therefore, the proposed models can be used to reveal

the trade-off relationships among logistics cost, transportation energy use and emissions,

and product waste.

The extension towards explicit fuel consumption helps to reduce cost, since the use of

fuel estimation models based on not only travel distance but also other factors such

as vehicle load, speed and type ensures more accurate calculation of the distribution

costs (see Table 7.1). For instance, in Chapter 4, the comprehensive cost-minimizing

objective comprising a detailed estimation of fuel consumption achieved significant savings

in total cost compared to the traditional approaches based on only distance or time while

estimating distribution cost. As presented at Table 4.6 in Chapter 4, respective saving

is 12% compared to the distance-minimizing objective and 4% compared to the time

minimizing-objective. The other extension towards perishability concern ensures feasible

solutions that meet the desired service levels besides its cost reduction contribution.

For instance, in Chapter 5, the model variations that ignore product perishability failed

to meet the desired service levels, whereas the models with perishability concern were
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successful in meeting those targets (see Table 5.6 in Chapter 5). Moreover, ignoring

perishability in the models resulted in higher product wastes and therefore logistics cost

(see Table 5.5 in Chapter 5).

Apart from these cost related benefits, the models with environmental and social concerns

allow decision makers to bear in mind the state of the physical environment affected by the

operations while making logistics plans. For instance, as presented in Chapter 3, a decision

maker has the chance to select an optimal plan among a set of Pareto-optimal solutions

according to his economic and environmental objectives. The other models also give

users the opportunity to exploit the trade-offs among sustainability KPIs through using

different objectives in Chapter 4, different model variations in Chapter 5 and cases with

and without horizontal collaboration in Chapter 6. The results obtained from Chapters

3, 4, 5 and 6 show that the extension of the models towards explicit fuel consumption and

perishability is important in terms of economic, environmental and social concerns. As a

conclusion, the models provided in this PhD thesis give decision makers the opportunity to

incorporate additional environmental and social concerns besides cost into the logistics

decision making process. Therefore, the proposed models support the transition from

traditional LM to FLM, and successively, to SFLM.

7.2.2 Decision support modelling

Moving towards SFLM requires new decision support models which can address recent

sustainability concerns. In this PhD thesis, the following OR modelling approaches were

employed to develop decision support models for SFLM: MOLP model in Chapter 3,

MILP model in Chapter 4, and chance-constrained programming models in Chapter 5 and

Chapter 6. The developed decision support models exploit several logistics improvement

opportunities regarding transportation energy use and emissions, and/or product waste

to better aid SFLM, as distinct from their counterparts in literature (see Table 7.1). In

the following, we present common approaches used to incorporate transportation energy

use and emissions, and product perishability into OR models. Afterwards, the topics of

increasing modelling complexity and benefits of strengthening the developed models are

discussed.

• Common approaches used to incorporate transportation energy use and emissions, and

product perishability into OR models

Literature reviews conducted in Chapters 2, 3, 4, 5 and 6 enabled us to observe how

transportation energy use and emissions, and product perishability have been tackled in

OR models on the studied logistics problems.
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Existing OR models in literature often estimate transportation emissions based on fuel

consumption amounts by means of a fuel conversion factor (kg emissions per gallon). They

incorporate special fuel consumption models, which are not necessarily developed in the

decision science field, to estimate the fuel consumption amounts. These fuel consumption

models differ from each other in terms of considered aspects such as traveled distance,

vehicle load or type, etc. We incorporated the model of Defra (2005, 2011) into the MOLP

model in Chapter 3, and the comprehensive emissions model of Barth et al. (2005) into

the MILP model in Chapter 4, and chance-constrained programming models in Chapters

5 and 6. The use of aforementioned fuel consumption models provided the opportunity to

estimate fuel consumption and transportation emissions more accurately, which increases

the value of logistics plans proposed by the developed decision support models.

The common assumption in literature regarding product perishability is that products

have fixed shelf lives and deteriorate linearly based on time. The existing models in

literature, which account for perishability, do not always allow product wastes. Some of

the models assume that products have to be used within limited time period and waste

cannot occur. For others, it is not always possible to use products before they are spoilt

and therefore product wastes occur. For instance, the case study results from Chapters 5

(Table 5.5) and 6 (Table 6.5) show that perishable product management without having

waste is not always possible. In this PhD thesis, the MOLP model in Chapter 3 has

constraints that restrict the maximum storage time of the product and therefore does not

allow product waste. However, the chance-constrained programming models in Chapters

5 and 6 also take product waste into account, which is one of the challenges of logistics

management of perishable products.

• Increasing modelling complexity

We provided different case studies in Chapters 3, 4, 5 and 6 to show the applicability

of the proposed models to real-life situations. These experiences provided us with a

better understanding of the increasing complexity, resulting in a considerable amount

of computational times to find optimal solutions for the studied problems. The reason

is that the challenged problems are already known as Non-deterministic Polynomial-

time hard in OR literature and the extension of these problems towards making them

more suitable for the sustainable food logistics adds to their complexity. For instance,

according to the reported results on the computational time at Table 4.7 in Chapter 4,

an optimal solution for the studied problem can be obtained far more quickly from a

traditional distance-minimizing model than from the model that takes explicit energy

consumption and time-dependent speed into account. However, note that the extended

model outperformed the traditional one with a 12% difference in total cost. Therefore,
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the cost performance improvement obtained from the additional logistical improvement

opportunities comes with an increase in computational time.

The chance-constrained programming models in Chapters 5 and 6 take demand uncer-

tainty into account. These models have stochastic constraints (5.6) and (6.6) which ensure

the inventory level at the end of every period to be nonnegative with a probability of ser-

vice level α. The models deal with perishable products which have fixed shelf lives as well.

Therefore, if a product stays in inventory more than a given period, it becomes spoilt

and cost of waste occurs. Solving the above chance-constrained models is complicated as

the products have fixed expiration dates and the actual demand is not known in advance.

In line with literature (e.g., Pauls-Worm et al. (2014) and Hendrix et al. (2012)), we

therefore considered deterministic approximations of the models. The deterministic ap-

proximations of the chance-constrained programming models, however, still try to hedge

the risk associated with uncertain demand to some extent by proposing to hold safety

stock in each period. The amount of safety stock (inventory) changes according to the

desired service level, as shown in the results of the sensitivity analysis presented in Table

5.8 in Chapter 5 and Table 6.C in Chapter 6. Note that as distinct from the deterministic

models, the approximate models allow decision makers to manage demand uncertainty

and are therefore useful to manage logistics problems in which demand is not known a

priori.

• Benefits of strengthening the developed models

The ILOG-OPL development studio and CPLEX 12.2 optimization package has been

used in this thesis to develop and solve the proposed formulations. It has been observed

that it takes a significant computing time for the optimization software to calculate

eventual proofs of optimality for the proposed models. Therefore, we decided to use

valid inequalities to tighten the formulations, and accelerate the proof of optimality and

the convergence to optimal solutions. We managed to reduce optimal solution times

for the problems tackled in Chapter 4 and Chapter 6 by means of the employed valid

inequalities. The results given at Tables 4.7 in Chapter 4 and 6.8 in Chapter 6 show

the efficiency of the valid inequalities. For instance, after a three hours’ time limit, the

model without valid inequalities in Chapter 6 gave a feasible solution which was 0.02%

above the optimal cost level with a 6.04% gap from the best bound. This means that it

still needs some time to reach the optimal solution and afterwards to prove the solution’s

optimality. However, the model with valid cuts was solved to optimality by the solver

within one and half hours, which shows that the valid cuts provided are useful.
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7.3 Managerial insights

In practice, logistics decision makers are confronted with the recent challenges of reducing

the amount of food waste and raising transportation energy efficiency to reduce green-

house gas emissions. In order to have more sustainable logistics systems, the necessity for

decision support models, which can address the aforementioned concerns besides logistics

cost, has increased accordingly. This PhD thesis provided such enhanced decision support

models, which are presented in Chapters 3, 4, 5 and 6. These models have been used in

several case studies to get insight in how to improve the sustainability performance of

food logistics systems.

The findings of the thesis demonstrate that perishability and explicit consideration of

fuel consumption are important aspects in logistics problems. The resulting managerial

insights regarding these additional aspects are that decision makers should not underes-

timate (i) the value of controlling product waste, and (ii) the effects of other parameters

such as vehicle load, vehicle speed or traffic congestion besides traveled distance on fuel

consumption. The results of the experimental analysis in Chapters 3, 4, 5 and 6 supported

the view that decision support models, which account for one or both of these aspects,

offer better support to decision makers who want to improve sustainability performance

of logistics systems than the existing models.

All of the models proposed in this PhD thesis aim to minimize related logistics costs. As

distinct from their counterparts in literature, these models also employ several logistics

improvement opportunities to incorporate transportation energy use and emissions, and

product waste concerns into the management of the addressed logistics problems. These

features enable decision makers to evaluate not only the least cost solutions, but also

the environmental and social externalities of the potential logistics plans. Therefore,

the proposed models appear to be promising decision support tools providing decision

makers in practice with much insight into the three fundamental sustainability dimensions

(economic, environmental and social) of logistics operations.

The case study implementations demonstrate the applicability and the potential of the

proposed models. The main managerial implications of the results obtained from each

case study can be summarized as follows. The MOLP model presented in Chapter 3

provided compromise solutions between economic (cost) and environmental (transporta-

tion carbon emissions) performance for the studied network problem. This information is

especially useful in practice when setting sustainability targets that need an evaluation of

economic and environmental factors. The MILP model presented in Chapter 4 revealed

the economic and environmental benefits of accommodating traffic congestion concern
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in the routing problem. This model can aid decision making on planning routes in city

centers which have traffic congestion that varies depending on the time of the day. The

chance-constrained programming model presented in Chapter 5 allowed to have the least

cost solutions for the studied IRP while satisfying the service level requirements of the

customers. Analyses of the other variations of the model showed that ignoring perisha-

bility and explicit consideration of fuel consumption might lead to higher cost solutions

which do not meet the desired service levels in practice. The chance-constrained program-

ming model presented in Chapter 6 enabled us to evaluate the potential economic and

environmental benefits of horizontal collaboration in the studied IRP. In summary, all of

these analyses of different case studies show that the decision support models provided

can be used in practice by decision makers to further improve sustainability performance

of the food logistics systems.

The models have been developed for generic problems and, except for the one in Chap-

ter 4, account for product perishability. They can be implemented in other cases from

different industries, especially the supply chains where products are subject to quality

decay, e.g., blood, and pharmaceuticals supply chains. The proposed models, therefore,

can contribute to the sustainability performance improvement of not only food but also

of other logistics systems.

7.4 Limitations of the study and future research directions

This PhD thesis demonstrated the potential of accounting for additional sustainability

indicators (transportation energy use and emissions, and product waste) in logistics de-

cision support models by means of the applications of the developed models in different

case studies. Nevertheless, we acknowledge the limitations of the research.

Logistics improvement opportunities for transportation energy use and emissions, and

product waste are presented in Table 1.1 in Chapter 1. Note that we did not test the

performance implications of incorporating each of these improvement opportunities into

the logistics decision support models. Therefore, it would be interesting to investigate

potential benefits of other improvement opportunities such as ”use of bio-fuels”, ”moni-

toring temperature history” or ”enabling food redistribution to redirect edible food that

would otherwise be discarded”. We believe that the research on that topic would provide

useful managerial insight into the development of sustainable logistics systems.

The cases studied in Chapters 3, 4, 5 and 6 can be regarded as small or medium size.

Larger case studies, which are more usual in practice, will require long computational
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times, which might reduce the practical applicability of the proposed models. Solution

approaches, therefore, have to be developed for handling such large case studies. This area

of study has much potential for future research to be able to manage larger problems with

the defined key sustainability concerns. We would like to note that the models proposed

in this PhD thesis can be used to validate and verify the potential of such solution

approaches.

Restricting the analysis to transportation energy use and emissions, and product waste,

which are of most interest to the public and practitioners in food chains, allowed us to

address these issues in a quantitative manner. It is obvious that sustainability of food

logistics comprises other aspects such as traffic accidents, land usage, water consumption,

etc. In future research it would be interesting to address other environmental or social

concerns in quantitative models to satisfy the emerging needs of companies that change

from economically driven to sustainability driven entities.

The models in Chapters 5 and 6 do not rely on a completely deterministic environment

and take demand uncertainty into account. The other parameters such as supply, quality

decay or travel times required in the proposed models can be subject to uncertainties in

practice as well. Therefore, it would be interesting to investigate parameters which are not

always predictable in practice and incorporate the identified uncertainties to the models.

This way of improvement, however, can come at a cost of increased computational times,

which might increase the necessity of using solution approaches.

The models in Chapters 3, 5 and 6 assume that products have fixed shelf lives and deteri-

orate based on time. However, several other factors also exist depending on the product

type that affect product quality degradation in food chains (e.g., such as temperature,

pH, oxygen or ascorbic acid). Therefore, as shown also in Table 1.1 in Chapter 1, there is

ample opportunity for further improving the logistics decision support models developed

by using specific quality decay approaches that consider not only time but also other

factors while estimating product shelf life or quality.

The focus in this thesis is on transportation and inventory management activities. Ac-

cordingly, a network problem, a routing problem and two different inventory routing

problems have been addressed which mainly tackle logistics decisions related with trans-

portation and inventory management activities. However, logistics management also com-

prises other logistics activities such as facility location, production planning etc. These

activities are also crucial for the success of SFLM. Therefore, the last future direction

worth mentioning here is to investigate the potential of accounting for key sustainability

indicators in other logistics problems.
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Summary

For the last two decades, food logistics systems have seen the transition from traditional

Logistics Management (LM) to Food Logistics Management (FLM), and successively, to

Sustainable Food Logistics Management (SFLM). Accordingly, food industry has been

subject to the recent challenges of reducing the amount of food waste and raising energy

efficiency to reduce greenhouse gas emissions. These additional challenges add to the

complexity of logistics operations and require advanced decision support models which

can be used by decision makers to develop more sustainable food logistics systems in

practice. Hence, the overall objective of this thesis was to obtain insight in how to improve

the sustainability performance of food logistics systems by developing decision support

models that can address the concerns for transportation energy use and consequently

carbon emissions, and/or product waste, while also adhering to competitiveness. In line

with this overall objective, we have defined five research objectives.

The first research objective (RO), which is to identify key logistical aims, analyse avail-

able quantitative models and point out modelling challenges in SFLM, is investigated in

Chapter 2. In this chapter, key logistical aims in LM, FLM and SFLM phases are identi-

fied, and available quantitative models are analysed to point out modelling challenges in

SFLM. A literature review on quantitative studies is conducted and also qualitative stud-

ies are consulted to better understand the key logistical aims and to identify the relevant

system scope issues. The main findings of the literature review indicate that (i) most

studies rely on a completely deterministic environment, (ii) the food waste challenge in

logistics has not received sufficient attention, (iii) traveled distance is often used as a sin-

gle indicator to estimate related transportation cost and emissions, and (iv) most studies

propose single objective models for the food logistics problems. This chapter concludes

that new and advanced quantitative models are needed that take specific SFLM require-

ments from practice into consideration to support business decisions and capture food

supply chain dynamics. These findings motivated us to work on the following research

objectives RO2, RO3, RO4 and RO5.

RO2, which is to analyse the relationship between economic (cost) and environmental

(transportation carbon emissions) performance in a network problem of a perishable

product, is investigated in Chapter 3. This chapter presents a multi-objective linear pro-

gramming (MOLP) model for a generic beef logistics network problem. The objectives of

the model are (i) minimizing total logistics cost and (ii) minimizing total amount of green-

house gas emissions from transportation operations. The model is solved using the ε -

constraint method. This study breaks away from the literature on logistics network mod-

els by simultaneously considering transportation emissions (affected by road structure,
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vehicle and fuel types, weight loads of vehicles, traveled distances), return hauls and prod-

uct perishability in a MOLP model. We present computational results and analyses based

on the application of the model to a real-life international beef logistics chain operating in

Nova Andradina, Mato Grosso do Sul, Brazil, and exporting beef to the European Union.

Trade-off relationships between multiple objectives are observed by the derived Pareto

frontier that presents the cost of being sustainable from the point of reducing transporta-

tion emissions. The results indicate the importance of distances between actors in terms

of environmental impact. Moreover, sensitivity analysis on important practical parame-

ters show that export ports’ capacities put pressure on the logistics system; decreasing

fuel efficiency due to the bad infrastructure has negative effects on cost and emissions;

and green tax incentives result in economic and environmental improvement.

RO3, which is to investigate the performance implications of accommodating explicit

transportation energy use and traffic congestion concerns in a two-echelon capacitated

vehicle routing problem (2E-CVRP), is investigated in Chapter 4. The multi-echelon

distribution strategy in which freight is delivered to customers via intermediate depots

rather than using direct shipments is an increasingly popular strategy in urban logistics.

Its popularity is primarily due to the fact that it alleviates the environmental (e.g., energy

usage and congestion) and social (e.g., traffic-related air pollution, accidents and noise)

consequences of logistics operations. This chapter presents a comprehensive mixed integer

linear programming formulation for a time-dependent 2E-CVRP that accounts for vehicle

type, traveled distance, vehicle speed, load, multiple time zones and emissions. A case

study in a supermarket chain operating in the Netherlands shows the applicability of the

model to a real-life problem. Several versions of the model, each differing with respect

to the objective function, are tested to produce a number of selected Key Performance

Indicators (KPIs) relevant to distance, time, fuel consumption and cost. This chapter

offers insight in the economies of environmentally-friendly vehicle routing in two-echelon

distribution systems. The results suggest that an environmentally-friendly solution is

obtained from the use of a two-echelon distribution system, whereas a single-echelon

distribution system provides the least-cost solution.

RO4, which is to investigate the performance implications of accommodating explicit

transportation energy use, product waste and demand uncertainty concerns in an inven-

tory routing problem (IRP), is investigated in Chapter 5. Traditional assumptions of

constant distribution costs between nodes, unlimited product shelf life and determinis-

tic demand used in the IRP literature restrict the usefulness of the proposed models in

current food logistics systems. From this point of view, our interest in this chapter is

to enhance the traditional models for the IRP to make them more useful for decision

makers in food logistics management. Therefore, we present a multi-period IRP model
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that includes truck load dependent (and thus route dependent) distribution costs for a

comprehensive evaluation of CO2 emission and fuel consumption, perishability, and a

service level constraint for meeting uncertain demand. A case study on the fresh tomato

distribution operations of a supermarket chain shows the applicability of the model to

a real-life problem. Several variations of the model, each differing with respect to the

considered aspects, are employed to present the benefits of including perishability and

explicit fuel consumption concerns in the model. The results suggest that the proposed

integrated model can achieve significant savings in total cost while satisfying the service

level requirements, and thus offers better support to decision makers.

RO5, which is to analyse the benefits of horizontal collaboration in a green IRP for

perishable products with demand uncertainty, is investigated in Chapter 6. This chapter

presents a decision support model, which includes a comprehensive evaluation of CO2

emission and fuel consumption, perishability, and a service level constraint for meeting

uncertain demand, for the IRP with multiple suppliers and customers. The model allows

to analyse the benefits of horizontal collaboration in the IRP with respect to several KPIs,

i.e., total emissions, total driving time, total routing cost comprised of fuel and wage cost,

total inventory cost, total waste cost, and total cost. A case study on the distribution

operations of two suppliers, where the first supplier produces figs and the second supplier

produces cherries, shows the applicability of the model to a real-life problem. The results

show that horizontal collaboration among the suppliers contributes to the decrease of

aggregated total cost and emissions in the logistics system, whereas the obtained gains

are sensitive to the changes in parameters such as supplier size or maximum product shelf

life. According to the experiments, the aggregated total cost benefit from cooperation

varies in a range of about 4-24% and the aggregated total emission benefit varies in a

range of about 8-33%.

Integrated findings from Chapters 2, 3, 4, 5 and 6 contribute to the SFLM literature by

(i) reflecting the state of the art on the topic of quantitative logistic models which have

sustainability considerations, (ii) providing decision support models which can be used by

decision makers to improve the performance of the sustainable food logistics systems in

terms of logistics cost, transportation energy use and carbon emissions, and/or product

waste, and (iii) presenting the applicability of the proposed models in different case stud-

ies based on mainly real data, multiple scenarios, and analysis. The developed decision

support models exploit several logistics improvement opportunities regarding transporta-

tion energy use and emissions, and/or product waste to better aid SFLM, as distinct from

their counterparts in literature. To conclude, the case study implementations in this the-

sis demonstrate that (i) perishability and explicit consideration of fuel consumption are

important aspects in logistics problems, and (ii) the provided decision support models
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can be used in practice by decision makers to further improve sustainability performance

of the food logistics systems.
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Samenvatting

In de afgelopen twee decennia heeft logistiek management in voedselketens een ontwikke-

ling doorgemaakt waarbij steeds meer prestatie indicatoren moeten worden meegenomen.

In de traditionele benadering van logistiek management (LM) ligt de nadruk op de afweg-

ing tussen logistieke kosten en service. Specifiek in voedselketens moeten additionele

indicatoren worden meegenomen gerelateerd aan de specifieke eigenschappen van deze

ketens, zoals variabiliteit in productkwaliteit en de bederfelijkheid van producten. In het

Engels spreken we dan over Food Logistics Management, afgekort FLM. Tot slot is er

de laatste jaren veel aandacht gekomen voor duurzaamheid. Zo wordt de voedingsindus-

trie uitgedaagd om voedselverspilling tegen te gaan en de uitstoot van broeikasgassen te

verminderen door efficiënter met energie om te gaan. In het Engels spreken we dan van

Sustainable Food Logistics Management, afgekort SFLM.

Deze ontwikkelingen zorgen voor een toename in de complexiteit van besluitvorming

omtrent het ontwikkelen van duurzamere logistieke systemen voor voedselketens. Om

ondersteuning te geven aan besluitvormers zijn daarom geavanceerde beslissingsonder-

steunende modellen nodig. Daarin zijn energieverbruik en de daaraan gekoppelde uit-

stoot tijdens transport en/of productverlies van belang, mits competitief aantrekkelijke

oplossingen worden gevonden. Het doel van dit onderzoek is inzicht te krijgen in de mo-

gelijkheden om duurzamere logistieke systemen voor voedselketens te ontwikkelen met

behulp van zulke modellen. Voor dit doel zijn vijf onderzoeksdoelstellingen opgesteld.

De eerste onderzoeksdoelstelling (RO1) is het analyseren van beschikbare kwantitatieve

logistieke modellen voor verschillende logistieke doelstellingen en het identificeren van de

uitdagingen bij het modelleren van SFLM. Deze RO wordt uitgewerkt in hoofdstuk 2.

In dit hoofdstuk worden de belangrijkste logistieke doelstellingen in de opeenvolgende

fasen van LM, FLM en SFLM gëıdentificeerd. Geraadpleegde kwalitatieve onderzoeken

worden samen met een literatuurstudie van kwantitatieve studies gebruikt om de be-

langrijkste logistieke doelstellingen beter te begrijpen en de relevante problemen in het

toepassingsgebied te identificeren. De belangrijkste uitkomsten van de literatuurstudie

zijn als volgt: (i) de meeste studies gaan uit van een volledig deterministisch systeem

en besteden geen aandacht aan onzekerheid; (ii) de uitdaging om productverlies in de

voedsellogistiek te beperken heeft onvoldoende aandacht gekregen; (iii) de enige indi-

cator om transportkosten en emissies te schatten is vaak de afgelegde afstand; (iv) de

meeste modellen hebben een enkelvoudige doelstelling om het logistieke probleem aan

te pakken (meestal kostenminimalisatie). Dit hoofdstuk concludeert dat nieuwe, gea-

vanceerde kwantitatieve modellen nodig zijn om besluitvorming in de praktijk van SFLM

te ondersteunen. Deze modellen dienen rekening te houden met de specifieke dynamiek

180



Samenvatting

van voedselketens. Deze bevindingen vormen de basis voor het werk aan de onderzoeks-

doelstellingen RO2, RO3, RO4 en RO5.

Het tweede onderzoeksdoel (RO2) is het analyseren van de relatie tussen economis-

che prestaties (kosten) en milieu prestaties (broeikasgasemissies door transport) in een

netwerk van een bederfelijk product. Deze RO wordt uitgewerkt in hoofdstuk 3. Een

lineair programmeringsmodel met meerdere doelstellingen (in het Engels multi-objective

linear programming, afgekort MOLP) wordt gepresenteerd voor een generiek logistiek

netwerkprobleem voor een rundvleesketen. De doelstellingen van het model zijn: (i) het

minimaliseren van de totale logistieke kosten, en (ii) het minimaliseren van de totale

broeikasgasemissie door transportactiviteiten. Het model wordt opgelost met behulp van

de ε-constraint methode. Dit onderzoek onderscheidt zich van de huidige literatuur over

logistieke netwerkmodellen door tegelijkertijd emissies door transport (o.a. bëınvloed door

de kwaliteit van wegen, het type voertuig en brandstof, de voertuig belading en gereden

afstand), de terugreis na aflevering van de lading en bederfelijkheid van de producten, op

te nemen in een MOLP model. Het model wordt gebruikt in een casus van een bestaande

internationale logistieke keten voor rundvlees, waarin het vlees naar de Europese Unie

wordt geëxporteerd vanuit Nova Andradina, Mato Grosso do Sul, Brazilië. De analyse en

resultaten van de gemaakte berekeningen worden gepresenteerd. De afwegingen tussen

de verschillende doelstellingen worden zichtbaar gemaakt met een Pareto-curve. Hierin is

te zien wat de kosten zijn van verduurzaming door middel van reductie van emissies door

transport. De resultaten wijzen op het belang van de afstand tussen de actoren voor de

totale milieu-impact van de keten. Bovendien laat gevoeligheidsanalyse van belangrijke

parameters zien dat: (i) de (beperkte) capaciteit van exporthavens druk uitoefent op het

logistieke systeem; (ii) slechte infrastructuur zorgt voor afnemende brandstofefficiëntie

en dus een negatieve invloed heeft op de kosten en emissies; (iii) groene fiscale prikkels

leiden tot economische en milieu-gerelateerde verbeteringen.

Voor het derde onderzoeksdoel (RO3) onderzoeken we de invloed van het expliciet meen-

emen van verkeersopstoppingen en energieverbruik tijdens transport op prestaties in een

routeringsprobleem met twee niveaus of echelons, rekening houdend met het laadver-

mogen van voertuigen (in het Engels two-echelon capacitated vehicle routing problem,

afgekort 2E-CVRP). Dit wordt uitgewerkt in hoofdstuk 4. De multi-echelon distributies-

trategie waarin een vracht wordt geleverd aan klanten via tussenliggende depots in plaats

van in rechtstreekse zendingen, is een steeds populairdere strategie in stedelijke logistiek.

Deze populariteit is vooral te danken aan het feit dat deze strategie de milieueffecten

(zoals energieverbruik en verkeersopstoppingen) en sociale effecten (zoals verkeersgere-

lateerde luchtvervuiling, ongevallen en lawaai) van logistieke handelingen verbetert. Dit
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hoofdstuk presenteert de formulering van een uitgebreid gemengd integer lineair program-

meringsmodel voor een tijdsafhankelijk 2E-CVRP. Hierin wordt rekening gehouden met

het type voertuig, de afgelegde afstand, de snelheid en belasting van het voertuig, verschil

in verkeersdrukte gedurende de dag en emissies. Een case studie voor een Nederlandse

supermarktketen toont de toepasbaarheid van het model aan op een reëel probleem. Ver-

schillende varianten van het model, elk met een andere doelfunctie, worden getest om

een aantal belangrijke prestatie indicatoren (in het Engels Key Performance Indicator,

afgekort KPI) te genereren. Deze zijn gerelateerd aan afstand, tijd, brandstofverbruik

en kosten. Dit hoofdstuk biedt inzicht in de economische analyse van milieuvriendelijke

routering van voertuigen in distributiesystemen met twee echelons. De resultaten wi-

jzen erop dat een milieuvriendelijke oplossing wordt verkregen met het gebruik van een

distributiesysteem met twee echelons, terwijl een distributiesysteem met één echelon de

oplossing biedt met de laagste totale kosten.

Voor het vierde onderzoeksdoel (RO4) onderzoeken we de implicaties van het expliciet

meenemen van energieverbruik tijdens transport, productverlies en onzekere vraag op

de prestatie van een voorraad- en routeringsprobleem (in het Engels inventory routing

problem, afgekort IRP). RO4 wordt uitgewerkt in hoofdstuk 5. Gebruikelijke veronder-

stellingen die in de IRP literatuur worden gebruikt, zoals constante distributiekosten

tussen knooppunten, onbegrensde houdbaarheid van het product en een deterministische

vraag, beperken het nut van de voorgestelde modellen voor besluitvorming in de huidige

logistieke systemen voor voedselketens. Daarom is dit hoofdstuk erop gericht de tradi-

tionele IRP modellen te verbeteren, om ze bruikbaarder te maken voor besluitvormers

in het logistiek management van voedselketens. Een IRP model voor meerdere tijdspe-

rioden wordt gepresenteerd, waarin vrachtwagenafhankelijke (en dus routeafhankelijke)

distributiekosten en een minimaal service niveau worden meegenomen in de evaluatie van

de CO2-emissie, het brandstofverbruik en het bederf in de voedselsketen. Een cases-

tudie naar de distributieactiviteiten van een supermarktketen voor verse tomaten toont

de toepasbaarheid van het model op een reëel probleem. Variaties van het model wor-

den gebruikt om de voordelen van het opnemen van houdbaarheid en brandstofverbruik

in het model zichtbaar te maken. De resultaten suggereren dat met het voorgestelde

gëıntegreerde model aanzienlijke besparingen op de totale kosten kunnen worden bereikt,

terwijl voldaan wordt aan de vereisten voor het service niveau. Daarmee biedt het model

dus een betere ondersteuning aan besluitvormers dan de traditionele IRP modellen.

Het vijfde onderzoeksdoel (RO5) betreft het analyseren van de voordelen van horizon-

tale samenwerking in een groen IRP voor bederfelijke producten met onzekere vraag.

Dit wordt uitgewerkt in hoofdstuk 6. Een beslissingsondersteunend model wordt gep-

resenteerd. Dit model voor een IRP met meerdere leveranciers en klanten bevat een
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uitgebreide evaluatie van de CO2-emissie, het brandstofverbruik en bederf, en een vereist

service niveau om aan de onzekere vraag te voldoen. Het model maakt het mogelijk om de

voordelen van horizontale samenwerking in de IRP te analyseren met betrekking tot een

aantal KPI’s, in dit geval de totale uitstoot, totale rijtijd en de totale kosten bestaande

uit de voorraadkosten, afvalkosten en de routekosten (brandstof- en loonkosten). Een

case studie naar de distributieactiviteiten van twee leveranciers, een vijgenproducent en

een kersenproducent, toont de toepasbaarheid van het model op een reëel probleem. De

resultaten tonen aan dat de horizontale samenwerking tussen de leveranciers bijdraagt

aan de afname van de gezamenlijke totale kosten en emissies in het logistieke systeem,

maar dat de verkregen voordelen afhangen van veranderingen in parameters zoals de

grootte van een leverancier of de maximale houdbaarheid van een product. Volgens de

experimenten varieert het gezamenlijke kostenvoordeel van samenwerking van 4 tot 24%

en de gezamenlijke reductie van totale emissies varieert tussen de 8 en 33% ten opzichte

van de variant waarin niet wordt samengewerkt.

De bevindingen uit de hoofdstukken 2, 3, 4, 5 en 6 dragen bij aan de SFLM literatuur door:

(i) het weergeven van de stand van zaken van kwantitatieve logistieke modellen waarin

(aspecten van) duurzaamheid worden meegenomen; (ii) het verstrekken van beslissing-

sondersteunende modellen die door beleidsmakers kunnen worden gebruikt om de duurza-

amheidsprestaties van logistieke systemen voor voedselsketens te verbeteren op het gebied

van logistieke kosten, energieverbruik en uitstoot tijdens transport, en product verlies; (iii)

het aantonen van de toepasbaarheid van de voorgestelde modellen in verschillende case

studies met meerdere scenario’s, gebaseerd op data uit de praktijk. In tegenstelling tot

al bestaande modellen benutten de ontwikkelde beslissingsondersteunende modellen di-

verse logistieke verbeteringsmogelijkheden met betrekking tot energieverbruik en emissies

door transport en / of de reductie van voedselverliezen. De case studies in dit proefschrift

laten tot slot zien dat (i) bederfelijkheid en het expliciet meenemen van brandstofverbruik

belangrijke aspecten zijn in logistieke problemen, en (ii) de beschreven beslissingsonder-

steunende modellen door beleidsmakers in de praktijk gebruikt kunnen worden om de

duurzaamheid van logistieke systemen voor voedselketens verder te verbeteren.
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Sweden.
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