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ABSTRACT 

Alemu, SW(2015) Indirect Genetic effects for Group-housed Animals. Joint PhD thesis 

between Aarhus University, Denmark and Wageningen University, the Netherlands. 

 

Social interactions among individuals are common both in plants and animals. With social 

interactions, the trait value of an individual may be influenced by the genes of its 

interacting partners, a phenomenon known as indirect genetic effects (IGE). An IGE is 

heritable effect of an individual on trait values of another individual. A large body of 

literature has shown that social interactions can create addition heritable variation in both 

plants and animals, for both behavioural and production traits. 

When IGE are estimated it is usually assumed that an individual interacts equally with all 

its group mates, irrespective of genetic relatedness. This assumption may not be true in 

mixed groups of kin and non-kin, where an individual may interact systematically different 

with kin and non-kin. Current IGE models ignore such systematically different interactions 

between kin and non-kin. Thus, the main aim of this thesis was to develop and apply 

statistical methods to estimate IGE when interactions differ between kin and non-kin. 

Social interactions are important in mink that are kept in groups for the production of fur. 

Group housing of mink increases aggression behaviours, which is reflected by an increase 

in the number of bite marks on the pelts, and reduces the welfare of the animals. We 

estimated the genetic parameter for bite mark traits in group-housed mink, to investigate 

the prospects for genetic improvement of bite mark traits. We found that there are good 

prospects to produce mink that have a low level of biting. Finally, we further concluded 

that genetic parameter estimation for bite mark score should take into account systematic 

interactions due to sex or kin. 
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In this thesis we also investigated genomic selection for socially affected traits, considering 

survival time in two lines of brown egg layers showing cannibalistic behaviour. Despite the 

limited reference population of ~234 progeny tested sires, the accuracy of estimated 

breeding values (EBV) was ~35% higher for genomic selection compared with the parent 

average-EBV. We found that the response to genomic selection per year for line B1 was 

substantially higher than for the traditional breeding scheme, whereas for line BD 

response was slightly higher than for the traditional breeding scheme. In conclusion, 

genetic selection with IGE combined with marker information can substantially reduce 

detrimental social behaviours such as cannibalism in layers and biting in group-housed 

mink. 
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General introduction 

1.1 Social interaction 

Social interactions among individuals are a common phenomenon in both domestic and 

wild populations, and in plants and animals (Frank, 2007). Social interaction can be either 

cooperative or competitive. Cooperative interactions originate from cooperative behaviour 

among individuals, for example, cooperative hunting in African wild dogs (Clutton-Brock, 

2009), or cooperative behaviour between mother and offspring (Willham, 1963). 

Cooperative social interactions have a positive effect on production and welfare of 

livestock. 

Competitive social interactions originate from competition for limited resources such as 

feed or space. It can also originate from aggressive behaviours such as social dominance. 

Competitive social interactions have a negative effect on productivity and welfare of 

livestock. For example, mixing of unfamiliar pig is common practise in pig production 

systems (Tan et al., 1991). After mixing there will be intensive fighting and this aggressive 

behaviour results skin lesion (Stookey and Gonyou, 1998; Turner et al., 2010). Also in 

group-housed layers, there are social interactions, and these interactions lead to feather 

pecking and mortality (Muir, 1996; Blokhuis and Wiepkema, 1998). The same is true for 

group-housed mink. Group housing of mink increases social interactions and these 

interactions result in more bite marks (Pedersen and Jeppesen, 2001; Moller et al., 2003; 

Hansen et al., 2014). Competitive social interactions can also affect growth rate and feed 

intake in pigs (Arango et al., 2005; Chen et al., 2008), and growth rate in forest trees 

(Cappa and Cantet, 2008; Brotherstone et al., 2011; Silva et al., 2013). Other than 

maternal genetic effect models, traditional genetic models ignore these social interactions 

and may result in suboptimal response to selection. Therefore, social interactions are an 
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important factor when designing artificial breeding programmes in domestic animals for 

which group housing is common practise (Muir, 2005). 

Because of social interactions, the trait value of the individual may be influenced by the 

interacting partners’ phenotype. The effect of the interacting partners’ phenotype on the 

focal individual may be heritable and this heritable effect is termed Indirect Genetic Effect 

(Moore et al., 1997; Wolf et al., 1998), social effect or associative effect (Griffing, 1967; 

Muir, 2005; Bijma et al., 2007a). A well-known example is the maternal genetic effect of a 

mother on pre-weaning growth rate of her offspring (Willham, 1963). 

Apart from maternal genetic effects, the traditional quantitative genetic model ignores IGE 

created by social interactions. Griffing (1967) showed theoretically that ignoring indirect 

genetic effects will result in suboptimal response to selection, or even negative response to 

selection. This theoretical prediction was later proven empirically, using selection 

experiments both in laboratory populations and domestic populations (Goodnight, 1985; 

Craig and Muir, 1996). For example, individual selection to increase (decrease) leaf area of 

Arabidopsis thaliana decreased (increased) leaf area, and individual selection to decrease 

mortality in Japanese quail increased the mortality, though the increase was non-

significant (Muir, 2005). Thus, inclusion of IGE in quantitative genetic models is essential 

to get an optimal response to artificial selection for socially affected traits (Bijma et al., 

2007b). 

Group selection is selection among groups. In group selection, either the entire group is 

selected or culled based on the performance of the group (Muir, 2005). Group selection is 

one way of including IGE in breeding programmes. Group selection is effective compared 

with individual selection when the trait is influenced by IGEs. Group selection was 

effective compared with individual mass selection in decreasing mortality of laying hens, 
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mainly from aggression, from 68 % in generation 2 to 9 % in generation 6 (Muir, 1996). 

Leaf area of Arabidopsis thaliana responded positively for both low leaf and high leaf area 

with group selection, but responded negatively with individual selection (Goodnight, 

1985). Group selection was also effective in improving longevity of layers (Craig and Muir, 

1996). The reason for the effectiveness of group selection is that it accounts for part of the 

IGEs (Griffing, 1976a). 

Though group selection was effective compared with individual selection, it has two 

important limitations. First, group selection is not efficient especially when the 

relationship in the group is lower. For example, when the group consists of unrelated 

individual, group selection utilizes only part of the total genetic variance since genetic 

variation between unrelated groups is small. On the other hand when the group consists of 

cloned individuals, for example, group selection fully takes into account both DGEs and 

IGEs, resulting in high accuracy (Griffing, 1976a; Griffing, 1976b; Bijma, 2011). However, 

though relatedness increases the efficiency of group selection, it also increases the rate of 

inbreeding. Second, though group selection can be used to generate response to selection, 

it does not explain the relative importance of direct vs. indirect genetic effects. It is vital to 

understand the genetic parameters underlying the interaction. This allows us to quantify 

the potential contribution of IGEs to response to selection, to estimate breeding values for 

both direct and indirect genetic effects, and to optimize breeding programmes (Bijma et 

al., 2007a). To achieve optimal response to selection an index that weigh both the direct 

and indirect genetic effect optimally is required (Griffing, 1977). This can be achieved by a 

BLUP (best linear unbiased prediction) model that separates the direct breeding value 

weighted by 1 and indirect genetic effects weighted by n-1. (Muir, 2005; Bijma et al., 

2007a; Bijma et al., 2007a). 



1 General introduction 

   

14 
 

1.2 Quantitative genetic model  

In traditional quantitative genetics, the phenotypic value of individual i is the sum of a 

heritable component, Ai, known as breeding value, and a non-heritable residual, Ei 

(Falconer and Mackay, 1996)  

 

With the presence of IGEs, the observed phenotype of an individual originates from two 

unobserved effects: A direct effect originating from the individual itself, and the sum of 

indirect effects originating from each of its n−1 group mates (Griffing, 1967),  
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where  i denotes the focal individual, j a group mate, iDA ,  
the direct genetic effect (DGE) of 

i, iDE ,  
the corresponding non-heritable direct effect, jSA ,  the IGE of group mate j, and jSE ,

the corresponding non-heritable indirect effect. Equation 2 contains two genetic effects, 

direct effects, DA , and indirect effects, SA .  

The phenotypic variance is given as (Bergsma et al., 2008) 

       222222 2211
SDsSDD AAESAEAP nrnn    (3) 

 

 

iii EAP   (1) 



1 General introduction 

 

15 
 

where 2

DA  refers to the direct genetic variance, 2

DA  to the indirect genetic variance , 
DSA

to the covariance between direct genetic effects and indirect genetic effects, and r refers to 

the average genetic relatedness in a group. 

The total breeding value of an individual  TA  is the heritable impact of an individual on the 

population mean and is given as: 

  SiiDTi AnAA 1  (4a) 

 

The total breeding value entirely originates from the focal individual i, it is purely the focal 

individual’s heritable effect on the population mean. However, the phenotype of an 

individual is the direct genetic effect originating from the focal individual i and the social 

genetic effect originating from group mates j (Equation 2). 

The variance of total breeding values is the potential heritable variation available for 

response to selection  

    2222 112
SDT ADSAAA nn         (4b)                                                                                    

 

Expressing total heritable variation as a proportion of phenotypic variance, 
2

2

2

P

A

σ

σ
T T , 

which is an analogy of classical heritability, 
2

2
2

P

A

σ

σ
h  , helps to judge the contribution of 

social effects to heritable variance. Note that 2T  is not a classical heritability, i.e., not the 

regression coefficient of breeding value on phenotype; it just represents total heritable 

variance among individuals expressed on the scale of phenotypic variance among 

individuals.  
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Using the model in Equation 2, there is a large body of literature that shows that IGE may 

contribute a substantial amount of heritable variation (Griffing, 1967; Muir, 2005; Bijma et 

al., 2007a; Bergsma et al., 2008; Ellen et al., 2008; Wilson et al., 2009; Wilson et al., 

2011; Silva et al., 2013). For survival days in layer chicken, Bijma et al.(2007a) showed that 

67% of the heritable variation was due to interactions among individuals. Alemu et al. 

(2014b) found that heritable variation from social interaction for total bite mark trait in 

mink accounts for about 85% of the total heritable variation. Wilson et al. (2009) found 

that more than 80% of heritable variation for aggressive behavioural traits such as rearing 

rate and reciprocal latency to fight in deer mice was due to interactions among individuals. 

Bergsma et al. (2013) found that more than 30% of heritable variation for growth rate and 

feed intake in a population of domestic pigs originated from social interaction. Therefore, 

for socially affected traits, IGE can be a significant source of heritable variation in both 

animals and plants, for both behavioural traits and production traits (Moore et al., 1997; 

Muir, 2005; Bijma et al., 2007b; Wilson et al., 2011). 

The estimation of genetic parameters in the above mentioned empirical studies relies on an 

important assumption. The assumption is that an individual express the same IGE on each 

of its social partners, irrespective of whether this partner is its relative or a non-relative. 

This assumption is at odds with kin selection theory (Hamilton, 1964). Kin selection theory 

predicts that individuals behave differently towards relatives vs. non-relatives (Hamilton, 

1964). Hence, IGEs expressed on relatives may differ systematically from those expressed 

on non-relatives. 

Empirical evidence indeed suggests that individuals show different behaviours towards 

relatives vs. non-relatives. Social insects, for example, such as honey bees, sweat bees, and 

some ants can recognise their kin and selectively care for related individuals (Hepper, 

1986). Blanding’s ground squirrel and Richardson’s ground squirrel are less aggressive to 
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their relatives than to unrelated individuals (Sheppard and Yoshida, 1971; Holmes and 

Sherman, 1982). Kin recognition also occurs in fish (Olsen, 1989; Brown and Brown, 1996; 

Olsen et al., 1998). When fish are reared in kin groups, individuals weigh more and differ 

less in size compared with individuals reared in non-kin groups. Aggressive interactions 

are also more common among strangers than in kin groups (Brown and Brown, 1993; 

Brown and Brown, 1996; Brown et al., 1996). Also plants can recognize other plants in 

their surroundings based on relatedness and identity (Biedrzycki and Bais, 2010). The 

annual plant Cakile edentula, for example, generates more root when grown with strangers 

than when grown with family members (Dudley and File, 2007). Kin recognition and 

preferential behaviour towards kin, therefore, appear to be wide-spread in both plants and 

animals. 

The current model ignores this systematic interaction due to kin recognition, which may 

result in biased estimates of genetic parameters and suboptimal response to selection. 

Thus, this thesis fills this gap by developing statistical methods to estimate IGE when 

interactions differ between kin and non-kin. The model is important, for instance, for pigs, 

fish, and group-housed mink. 

 

1.3 Group housing of mink 

Naturally, mink is a solitary and territorial species. Traditionally mink are housed in a pair 

of full sibs, one male and one female. This type of housing limits the aggressive 

interactions among cage mates. However, this housing has some limitations, such as 

limited space for the individuals, which makes the mink stressful. Group housing of mink 

was recommended by the Council of Europe (European Commission, 1999). This is 

because it may improve welfare from ‘social enrichment’ as outlined in (European 
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Commission, 2001), and it increases the stocking density in the cages and thereby 

decreases housing investments. Though group housing offers some advantages, it has still 

some limitations such as increased competition for food and aggressive behaviour 

(Pedersen and Jeppesen, 2001; Moller et al., 2003). 

The aggressive behaviour in group-housed mink is higher than in pair-wise housing and it 

is reflected by increased bite marks and bite wounds (Hansen and Damgaard, 1991; 

Pedersen and Jeppesen, 2001; Moller et al., 2003). 

Thus, for continuity of group housing, the welfare of mink should be improved. For 

example, mink in group housing should have a lower level of biting. One solution to 

improve the welfare in group-housed mink is to improve the management by the use of 

environmental enrichment, such as plastic tubes (Hansen, 2012). However, this still does 

not improve the welfare sufficiently (Hansen, 2012). 

Another promising solution is genetic selection. Genetic selection can reduce bite marks in 

group-housed mink. Thus, this thesis addresses genetic selection with indirect genetic 

effect models, and investigates whether this can be a solution to reduce aggression 

behaviour in group-housed mink. 

Bite mark traits in mink are recorded after life, after the mink are killed and pelleted. Thus, 

for breeding against bite marks, we will not have own performance records. We, therefore, 

have to use sib or progeny information. If we use sib information, the accuracy of 

estimating the breeding value is lower and the rate of inbreeding is higher, and if we use 

progeny testing the generation interval is increased. Consequently, using sib or progeny 

information may yield limited response to selection. We hypothesize that genomic 

selection can offers a solution for this problem.  
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Genomic selection is a type of marker assisted selection in which genetic markers covering 

the entire genome are used so that all quantitative trait loci are in linkage disequilibrium at 

least with one single nucleotide polymorphism (Meuwissen et al., 2001). Genomic 

selection estimates the breeding value more accurately than pedigree- BLUP. Genomic 

selection is therefore particularly promising for low heritable traits and for traits that are 

difficult to record or recorded later in life for example, such as carcase quality, bite marks, 

and survival time (Calus et al., 2008). Thus, we planned to test whether genomic selection 

increases the response to selection compared with traditional selection for socially affected 

traits. Due to unavailability of genomic data for mink, we focussed on survival time in 

brown layers showing cannibalism. Thus, we investigated whether genomic selection can 

increase the accuracy of estimating breeding values and increase the response to selection 

compared with pedigree BLUP for survival time in layers. 

 

1.4 Outline of the thesis 

The primary aim of this thesis was to develop statistical methods to estimate IGE when 

interactions differ systematically between kin and strangers. This thesis also investigates 

IGE for bite marks in group-housed mink, and the prospects of genomic selection for 

socially-affected traits 

Chapter two develops statistical methods to estimate IGE when interactions differ 

systematically between kin and non-kin. There is a lot of empirical evidence that 

individuals interact differently with kin and non-kin. The current IGE model ignores such 

systematic differences in interaction between kin and non-kin. Thus, Chapter two develops 

statistical methods that estimate IGE when interactions differ between kin and non-kin. I 

further investigate the bias in the estimated genetic parameters when IGEs differ between 
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kin and non-kin while this is ignored in the statistical analysis (using the traditional IGE 

model). 

Chapter three investigates IGE for bite mark trait in group-housed mink. Group housing of 

mink increases aggressive behaviour and this behaviour leads to an increased number of 

bite marks. Chapter three shows that genetic selection with IGE can reduce bite marks and 

possibly aggressive behaviour. In the estimation method the non-genetic social 

environment was accounted for by fitting cage*sex effect. Cage*sex effects of the same sex 

was equal and different sex was zero.  

In Chapter four I studied the non-genetic systematic interactions in more detail. The non-

genetic social interaction was accounted by fitting a cage random effect plus a cage*sex 

random interaction effect. The cage*sex random effect had a separate variance for males 

and for females. Accounting non-genetic social environment using cage plus cage*sex 

improved the fit of the model. Finally, it is concluded from Chapter four that ignoring the 

systematic interactions due to sex or kin results biased estimates of all the genetic 

parameters. 

Bite mark traits in mink are recorded after the life of the animal. This will increase the 

generation interval and/or reduce the accuracy of estimating the breeding values (see 

above). With genomic information we can estimate the breeding value of an individual 

immediately after birth. Due to unavailability of genomic data for mink, we studied a 

similar trait which is survival time in a population of brown layers showing cannibalistic 

behaviour. Thus in Chapter five we investigated genomic selection for survival time in two 

lines of brown layers. The accuracy of estimating the breeding value was higher for B1 and 

BD line when we used genomic information than the pedigree-BLUP, and the predicted 
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response to selection was higher for the B1 line when we used genomic information than 

progeny testing.  

Chapter six is the general discussion. I discuss five main topics that put the thesis is a 

broader perspective. These are: kin recognition mechanisms and consequences for the 

estimation of genetic parameters when we ignore kin recognition, genome-wide marker to 

estimate all genetic parameter when IGE differ between kin and non-kin, trait-based 

models when IGE differ between kin and non-kin, accuracy of estimating the breeding 

value using individual selection when IGE differ between kin and non-kin, and prospects 

of reducing the number of bite mark in mink using genetic selection. 
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ABSTRACT 

Social interactions among individuals are wide-spread, both in natural and domestic 

populations. As a result, trait values of individuals may be affected by genes in other 

individuals, a phenomenon known as Indirect Genetic Effects (IGEs). IGEs can be 

estimated using linear mixed models. The traditional IGE-model assumes that an 

individual interacts equally with all its partners, whether kin or strangers. There is 

abundant evidence, however, that individuals behave differently towards kin compared to 

strangers, which agrees with predictions from kin-selection theory. With a mix of kin and 

strangers, therefore, IGEs estimated from a traditional model may be incorrect, and 

selection based on those estimates will be suboptimal. Here we investigate whether genetic 

parameters for IGEs are statistically identifiable in group-structured populations when 

IGEs differ between kin and strangers, and develop models to estimate such parameters. 

First, we extend the definition of total breeding value and total heritable variance to cases 

where IGEs depend on relatedness. Next, we show that the full set of genetic parameters is 

not identifiable when IGEs differ between kin vs. strangers. Subsequently, we present a 

reduced model that yields estimates of the total heritable effects on kin, on non-kin, and on 

all social partners of an individual, as well as the total heritable variance for response to 

selection. Finally we discuss the consequences of analysing data in which IGE depend on 

relatedness using a traditional IGE-model, and investigate group structures that may allow 

estimation of the full set of genetic parameters when IGEs depend on kin. 

 

Key words: Social interactions, indirect genetic effects, kin recognition, kin, stranger
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2.1 INTRODUCTION 

Social interactions among individuals are common, both in wild and domestic populations, 

and in animals, plants and microorganisms (Frank, 2007). With social interactions, the 

trait value of an individual may be affected by genes in other individuals, a phenomenon 

that works out as Indirect Genetic Effects (IGEs; Griffing, 1967; Griffing, 1976; Moore et 

al., 1997; Wolf et al., 1998). An IGE is a heritable effect of one individual on the trait value 

of another individual (reviewed in Wolf et al., 1998; Bijma, 2011a). A well-known example 

is the maternal genetic effect of a mother on pre-weaning growth rate of her offspring 

(Willham, 1963; Falconer, 1965; Kirkpatrick and Lande, 1989). 

IGEs may have significant effects on the rate and direction of response to selection, and 

can substantially increase or decrease heritable variation in a trait (Griffing, 1967; Moore 

et al., 1997; Bijma and Wade, 2008; McGlothlin and Brodie III, 2009; Bijma, 2011b; 

Wilson et al., 2011). Thus, knowledge of IGEs is essential for understanding response to 

selection in socially affected traits. The magnitude of IGEs can be estimated using linear 

mixed models that include a direct genetic effect for the individual producing the record, 

and an IGE for each of its social partners (Arango et al., 2005; Muir, 2005; Bijma et al., 

2007b). This approach has been used both in agricultural populations of animals and 

plants (e.g., Muir 2005; Silva et al., 2013), and in natural populations (e.g., Wilson et al., 

2011). Bijma (2010a) showed that estimation of genetic parameters for IGEs in group-

structured populations can be optimized by placing two families in each group. Such 

schemes are an attractive breeding design, because they also yield a relatively high 

response to selection (Odegard and Olesen, 2011). 

In the linear mixed model commonly used to estimate IGEs (Muir, 2005), it is assumed 

that an individual expresses the same IGE on each of its social partners, irrespective of 
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whether a partner is its family member or an unrelated individual. Kin selection theory, 

however, predicts that individuals behave more cooperatively towards their relatives, 

because this increases their inclusive fitness (Hamilton, 1964). Hence, IGEs expressed on 

kin may differ systematically from those expressed on strangers; they may differ not only 

in average level, but also show incomplete correlation. Empirical evidence indeed suggests 

that kin recognition and preferential behaviour towards kin are wide-spread in both 

animals and plants (e.g. Holmes and Sherman, 1982; Hepper, 1986; Olsen, 1989; Dudley 

and File, 2007; Biedrzycki and Bais, 2010), and at least four mechanisms for kin 

recognition have been described (Tang-Martinez, 2001; Mateo, 2004; Mateo and Holmes, 

2004; Coffin et al., 2011).  

When individuals express a different IGE on kin versus strangers, estimated breeding 

values for direct and indirect effects from the common linear mixed model are incorrect, 

and selection based on those estimates will yield suboptimal response. Moreover, when 

IGEs are estimated from groups composed of strangers (e.g., Ellen et al. 2008), the 

resulting estimates may not accurately reflect the IGEs that occur in the relevant natural or 

domestic populations, which may consist of kin groups. In natural populations, limited 

dispersal often leads to interactions among relatives (Hamilton, 1964), while in livestock 

populations such as domestic pigs, groups often contain a number of family members 

(Chen et al., 2008). Thus, a potential difference between IGEs on kin vs. strangers is 

relevant for both livestock and natural populations. The current statistical methods for 

estimating IGEs, however, ignore the dependency of IGEs on relatedness.  

Here we propose a model for traits affected by IGEs that differ between kin and strangers, 

investigate whether genetic parameters of that model are statistically identifiable, and 

develop statistical models to estimate those parameters. First we show that the full set of 
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genetic parameters is not identifiable when IGEs differ between kin vs. strangers. 

Subsequently, we developed a reduced model, and show that the reduced model can 

estimate meaningful linear combinations of the genetic parameters. In the Discussion, we 

consider population structures that may allow estimating the full set of genetic parameters. 

 

2.2 QUANTITATIVE GENETIC MODEL 

2.2.1 Trait Model  

This section introduces the trait-model when IGEs differ between kin vs. strangers. We 

consider here a population stratified in to groups of n members each, where interactions 

occur within groups. We consider the scheme that is optimal for the estimation of IGEs in 

the absence of kin recognition (Bijma, 2010a). In this scheme, each group is composed of 

members of two families, each family contributing n/2 individuals. Generalisation of 

results to other group structures is addressed in the Discussion.  

In traditional quantitative genetics, the phenotypic value of individual i is the sum of a 

heritable component, Ai, known as breeding value, and a non-heritable residual, Ei 

(Falconer and Mackay, 1996; see Table 1 for a notation key), 

iii EAP  .              (1) 

 

With IGEs that do not depend on relatedness, the phenotype of an individual stems from 

two components: a direct effect originating from the individual itself, and the sum of 

indirect effects originating from each of its n−1 group mates (Griffing, 1967),  
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where i denotes the focal individual, j a group mate, iDA ,  
the direct genetic effect (DGE) of 

i, iDE ,  
the corresponding non-heritable direct effect, jSA ,  

the IGE of group mate j, and jSE ,  

the corresponding non-heritable indirect effect (subscript S, suggesting “social”, is used to 

denote indirect effects instead of a subscript I, to avoid confusion of i with I; Equation 2 is 

known as a variance component model of IGEs, as opposed to a trait-based model. See 

McGlothlin and Brodie III, 2009 for a comparison of models). Equation 2 contains two 

kinds of genetic effects, direct effects, DA , and indirect effects, SA . Hence, fitting Equation 2 

involves the estimation of three genetic variance components; 
2

DA ,
 DSA and 2

SA . 

(Throughout, 2  denotes a variance and   a covariance). 

With different interactions among kin versus strangers, two types of IGEs may be 

distinguished: IGEs on kin versus IGEs on strangers. In our population structure, where 

n/2 members of each family make up a group, the trait model becomes: 
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(3) 

 

where j denotes a family member of i, k a member of the other family in the group, 1
2
n  

the number of group mates of i from its own family, n/2 the number of group mates of i 

from the other family, subscript “ fS ” denotes IGEs on family members, and subscript “ uS ” 

denotes IGEs on members of the other, unrelated, family (u indicating “unrelated”). 
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Equation 3 contains three genetic effects, direct effects, DA , IGEs on family members, 
fSA

, and IGEs on strangers, 
uSA . Hence, fitting Equation 3 involves the estimation of six 

genetic variance components; three variances:
2

DA , 2

fSA and 
2

uSA , and three covariances: 

fSDA ,
 , 

uSDA ,
  and 

uSfSA ,
 . The genetic correlation between an individual’s IGE on kin and 

its IGE on strangers, )/(,
uSfSuSfSuSfS AAAAAAr  , reflects the difference between IGEs on 

kin vs. strangers. Equation 3 does not explicitly include a potential difference in the mean 

value of the IGE on kin vs. strangers, because this has little consequences for the 

estimation of genetic parameters. Nevertheless, such a difference is relevant in statistical 

data analysis, and can be accommodated easily in the fixed-effects part of the model (see 

Discussion). 
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Table 1 Notation Key1 

Symbol Meaning 

i,j,k,x,l,m Subscript to denote an individual. 

iP  Observed trait value of an individual.  

iuif SSiD PPP
,,

,,,
 Direct effect of i, indirect effect of i to kin, indirect effect of i to stranger. 

2222

, ,,
uSfSD PPPP   Phenotype variance among individuals, unobserved phenotype variance 

on self, on kin, on strangers. 

222 ,,
uSfSD AAA   Variance of DGEs among individuals, variance of IGEs on kin among 

individuals, variance of IGEs on strangers among individuals. 

22 ,
TfT AA   Variance of family breeding value among individuals, variance of total 

breeding value among individuals. 

222 ,,
uSfSD EEE   Variance of direct environment among individuals, variance of indirect 

environment on kin among individual, variance of indirect environment 
on strangers among individual. 

uSDuSDfSDfSD AAAA rr
,,,,

,,,   Covariance between DGEs and IGEs to kin, correlation between DGEs and 
IGEs to kin, covariance between DGEs and IGEs to strangers, correlation 
between DGEs and IGEs to strangers. 

fSfSuSfS AA r ,,  Covariance between IGEs to kin and IGEs to strangers, correlation 
between IGEs to kin and IGEs to strangers. 

uSDuSD

fSDfSD

EE

EE

r

r

,,

,,

,

,





 

Covariance and correlation between non-genetic direct and non-genetic 
indirect on kin.  
Covariance and correlation between non-genetic direct and non-genetic 
indirect on strangers. 

uSfSuSfS EE r ,, ,  Covariance and correlation between non-genetic in direct on kin and non-
genetic indirect on strangers. 

,r , 2, gn   Relatedness among individual in a group, residual correlation of family 
member in a group, group size, variance of non-family member in a group. 

Abbreviations: DGE, direct genetic effect; IGE, indirect genetic effect. 

aThroughout, hats (^) denote estimates, whereas symbols without hats refer to true value. 
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2.2.1 Total breeding value and heritable variation  

This section presents the heritable variation available for response to selection in a trait 

when IGEs differ between kin and strangers.  

Irrespective of the trait model, response to selection in any trait can be expressed as 

TATAR    (4)                                                                                                               

,   

where R is the genetic change in mean trait level from one generation to the next due to 

selection, TA  the change in mean total breeding value ( TA ) of the population,  the 

intensity of selection, ρ the accuracy of selection, and 
TA  the standard deviation in total 

breeding value (Bijma, 2011a); an equivalent expression in terms of a selection gradient 

can also be found there, and may be more appropriate for natural populations). In the 

context of Equation 4, the accuracy of selection is the correlation between an individual’s 

value for the selection criterion and its total breeding value. (This definition applies to any 

selection criterion; see Falconer and Mackay 1996 for further explanation of the “accuracy 

of selection”). The total breeding value represents the average impact of an individual’s 

genes on the mean trait value of the population, and is a generalization of the traditional 

breeding value to account for IGEs and to allow modelling of so-called emergent traits 

(Bijma, 2011b). Thus, analogous to the classical breeding value, the total breeding value 

represents an individual’s value for response to selection. As illustrated in Equation 4, in 

which  and  are standardized parameters, the standard deviation in total breeding value 

represents the intrinsic potential of a population to respond to selection.  

For any trait model, the total breeding values follows from the genetic mean of the 

population (Bijma, 2011b). From Equation 3, the genetic mean of the trait value for our 

population structure equals 
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uf SSDA AnAnAP 2
1

2
1 )1(  . 

Therefore, following Bijma (2011b), an individual’s total breeding value is the sum of its 

DGE, ½n−1 times its IGE on family members, and ½n times its IGE on strangers, 

iSiSiDiT uf
AnAnAA ,2

1
,2

1
,, )1( 

. 

                                                    (5) 

 

Taking the variance of the total breeding value yields an expression for the heritable 

variation available for response to selection,                                               
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(6) 

 

Note that 2

TA  does not reflect the additive genetic component of phenotypic variance, but 

the heritable variation that determines the potential of a population to respond to selection 

(see Equation 4 and Bijma, 2011b). 

An individual’s total breeding value can be partitioned into a family component,
fTA , which 

summarizes all its heritable effects on family members (including the direct effect on itself) 

and is considered the family breeding value here, and a non-family component,
uTA , the 

non-family breeding value. This partitioning will be used below, where the family 

components of the total breeding value will be grouped for reasons of statistical 

identifiability. With each family contributing ½n group members 
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Taking the variances of Equation 7 yields 

 

 

222 2
uTuTfTfTT AAAA   , (8a) 
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22
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2.2.2 VARIANCE COMPONENT ESTIMATION 

Genetic parameters can be estimated using a linear mixed model including correlated 

random genetic effects, the so-called animal model (Henderson, 1953; Henderson, 1975; 

Lynch and Walsh, 1998). The classical animal model includes DGEs only, but can be 

extended with IGEs (Muir, 2005).  

 

iTiTiT uf
AAA ,,,  , (7a) 

iSiDiT ff
AnAA ,2

1
,, )1(  , (7b) 

iSiT uu
nAA ,2

1
,  . (7c) 
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Full model 

The full model includes DGEs, IGEs on family members, and IGEs on strangers,  

eWgaZaZaZXby 
uuff SSSSDD

 (9) 

 

where b is a vector of fixed effects with incidence matrix X, 
Da is a vector of DGEs with 

incidence matrix 
DZ  linking observation on individuals to their own DGE, 

fSa is vector of 

IGEs on family members with incidence matrix 
fSZ  linking observations on individuals to 

the IGEs of their group mates belonging to the same family, and 
uSa is vector of IGEs on 

strangers with incidence matrix 
uSZ  linking observations on individuals to the IGEs of 

their group mates belonging to the other family, g  is a vector of random group effects, with 

),(~ 2
ggN I0g  and incidence matrix W linking records to groups, and e is a vector of 

residuals with ),(~ 2

eeN I0e , where I  is an identity matrix. The covariance structure of the 

genetic terms is  
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C ,  

  indicates the Kronecker product of matrices, and A is a matrix of additive genetic 

relationships between individuals, the so-called numerator relationship matrix 

(Henderson, 1985).   
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When fitting the full model, the results showed that there are multiple parameter 

combinations that give the same likelihood. Hence, using this model, the genetic 

parameters are statistically non-identifiable. In particular, results showed that the variance 

of IGEs on strangers, 2

uSA , is identifiable, but that the variance components referring to 

interactions between family members, 2

DA , 
fSD AA , , and 2

fSA , are fully confounded. We 

investigated why this occurs and found that there are only five informative genetic 

covariances in the data, but six genetic parameters to estimate (Appendix A).  Thus, when 

IGEs differ between kin vs. strangers, it is not possible to estimate all six genetic 

parameters from group-structured data. This is not a problem of the estimation method, 

but a property of the data structure and occurs when group composition with respect to 

family is the same for all groups (See Discussion and Appendix A).Thus the data structure 

that is optimal for estimating the variance of IGEs that do not depend on kin renders the 

estimation of kin-dependent IGEs impossible. In the Discussion, we consider alternative 

schemes that may allow estimating all parameters of the full model. Note that the variance 

structure given above for the residual of Equation 9 ignores the distinction between 

indirect effects on kin vs. strangers. However, as the full model is non-identifiable, we did 

not further investigate this issue. 

 

2.2.2 Reduced Model 

Because the full model was not identifiable, we investigated a reduced model, aiming to 

estimate part of the genetic parameters or meaningful linear combinations. Since the full 

model indicated that the effects due to the focal family were fully confounded, we fitted 

only a single term for the family of the focal individual. Therefore, the reduced model was 

eWgaZaZXby 
uu SSFD , (10) 
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where 
Fa  is a vector of genetic effects due to the family of the focal individual, and ZD is 

the incidence matrix for direct genetic effects as in the full model (Equation 9). Hence, 

with respect to the genetic terms, the only difference between the full and reduced model is 

that the 
ff SS aZ  term is omitted in Equation 10; the other genetic terms are the same. 

However, as omitting the 
ff SS

aZ  will change both the estimates and the interpretation of 

the “direct” genetic effects, we write 
FDaZ  in Equation 10, where subscript F suggests 

“family”, rather than DDaZ . The covariance structure of the genetic terms in Equation 10 is  
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C .  

The Wg term is as in Equation 9. The covariance structure for the residual term is  

  2var eRe  ,  (11) 

 

where Rii = 1, Rij = ρ when i and j are group mates from the same family, and Rij = 0 

otherwise. Hence, this structure allows for a covariance between residuals of group mates 

belonging to the same family. Thus, when individuals are ordered by group and by family 

within group, then R is block-diagonal, with blocks of size n/2, diagonal elements equal to 

1, off-diagonals of blocks equal to ρ, all other off-diagonals equal to zero, and two blocks 

per group, one for each family. Appendix B shows that this residual variance structure 

together with the random group effect corresponds to the non-genetic variance structure 

generated by the assumed true model (Equation 3). Thus, the eWg   in Equation 10 
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accounts for the variance structure generated by the term  
kujf SSiD EEE

,,,
 in 

Equation 3. 

Investigation of Equation 10 showed that there are five informative genetic covariances in 

the data to estimate three genetic parameters, indicating that the model in Equation 10 is 

identifiable. To investigate the interpretation of the genetic estimates from the reduced 

model, we derived their expectation, assuming that the data is generated by the model 

given in Equation 3 (Appendix A). With 

iSiDiF f
AnAA ,2

1
,, )1(  ,  (12a) 

and  

iSiS uu
AA ,,  ,  (12b) 

it follows that  

    22

2
122 12)ˆE(

, fSfSDDF AAAA nn   , (12c) 

 
uSfSuSDuSF AAA n

,,,
1)ˆE( 2

1   , (12d) 

22 )ˆE(
uSuS AA   . (12e) 

 

Equation 12c-e sum up all the variance components considered in the true model. 

Equation 12e shows that the reduced model yields an estimate of the variance of IGEs on 

strangers. Moreover, combining Equations 12c-e with the decomposition of the total 

breeding value into a family and a non-family component given in Equations 7 & 8 above 

shows that the reduced model yields estimates of the family and non-family genetic 

parameters, 

22 ˆˆ
FfT AA   , (13a) 
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uSFuTfT AAA n
,

ˆˆ
2

1    (13b) 

22
4

12 ˆˆ
uSuT AA n   . (13c) 

Thus, the variance of the total breeding value can be obtained from the reduced 

model as 

 

 

22
4

1
,

22 ˆˆˆˆ
uSuFFT ASAAA nn    (13d) 

 

Thus, the reduced model allows the estimation of the total heritable variation, even though 

not all the underlying parameters are identifiable.  

Equation 13b refers to the covariance between the family breeding value and the non-

family breeding value. This is a meaningful linear combination, as it expresses the 

covariance between genetic effects on kin (including self) versus those on strangers. If this 

covariance is positive, members from different families are cooperative, whereas a negative 

value indicates competition between families. 

Appendix B shows that the expectations of the non-genetic variance components in 

Equation 10 are given by  

 
uSfSuSDg EE nE

,,
22)ˆ( 2    (14a) 

  22
2

12
2

122 1)ˆ(E gEEEe
uSfSD

nn    (14b) 

 
2

22
2

12
2

1 22
)ˆE(

e

gEEEE
uSfSfSD

nn







  

(14c) 

 

Equations 14a-c shows that the underlying non-genetic parameters are not uniquely 

identifiable, because there are only three estimable parameters ( 2
g , 2

e  and  ) which are a 
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function of six unknowns. This was expected, as it is also the case for models not 

distinguishing between IGEs on kin vs. strangers (Bijma et al., 2007b). 

 

2.2.3 Consequences of ignoring kin-dependent IGEs  

This section investigates the bias in the estimated genetic parameters when IGEs differ 

between kin and strangers while this is ignored in the statistical analysis. Thus, it is 

assumed that the true model generating the trait values is given by Equation 3 above, 

which distinguishes between IGEs on kin vs. strangers, while the statistical model used to 

estimate genetic parameters is the traditional direct-indirect mixed linear model (Muir, 

2005), 

,eWgaZaZXby  SSDD  (15) 

 

where Sa is vector of IGEs on group mates, not distinguishing between kin and strangers, 

and SZ  an incidence matrix linking observations on individuals to the IGEs of all their 

group mates. The DDaZ and  Wg are as in the full model (Equation 9), whereas the residual 

variance structure is as in the reduced model (Equations 11; see discussion below). Note 

that Equation 15 differs from the reduced model (Equation 10), because the term SSaZ  

includes the IGEs of all n–1 group mates; not only those belonging to the other family 

making up the group. 

To investigate the bias resulting from fitting a conventional IGE model (Equation 15) to 

data in which IGE differ between kin and strangers, we derived the expectations of the 

estimated breeding values and variance components produced by Equation 15 when data 

are generated by Equation 3. Those expectations follow from the informative covariances 
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in the data that Equation 15 utilizes to estimate the genetic parameters, and can be 

obtained using the method of Bijma (2010a; see Appendix C). Results showed that  

))(2(

2)1(½)ˆ( 2222
15.

2

uSDfSD

uSuSfSfSDD

AAAA

AAAAAEqnA

n

nE












 

 

(16a) 

)()1()ˆ( 2
2

1
15.

uSuSfSuSDDS AAAAAEqnA nE    (16b) 

2
15.

2 )ˆ(
uSS AEqnAE    (16c) 

2
15.

2 )ˆ(
TT AEqnAE    (16d) 

 

These results show that the direct genetic variance and the direct-indirect genetic 

covariance estimated with the conventional linear model for IGEs (Equation 15) are biased 

when IGEs depend on relatedness. In other words, the estimate of 2

DA  is biased because 

the right-hand side of Equation 16a differs from. Similarly, difference of the right-hand 

side of Equation 16b from 
DSA  indicates bias of

DSA . Moreover, the estimated indirect 

genetic variance from Equation 15 refers to the magnitude of IGEs expressed on strangers 

(Equation 16c). Surprisingly, despite the incorrect model assumptions, the traditional 

direct-indirect model yields an unbiased estimate of the total heritable variance (Equation 

16d). Beware that results in Equations 16a-d are correct only if the residual co-variance 

structure accounts for differences between indirect effects on kin vs. strangers, as given by 

Equation 11. Therefore, when the aim is to estimate TBVs using the traditional direct-

indirect mixed model of Muir (2005), this model should be implemented including a 

random group effect and the residual variance structure given in Equation 11 above. 

We did not attempt to derive the expectations of estimated genetic parameters from the 

traditional direct-indirect model (Equation 15) when the residual variance structure is 
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incorrect (i.e., different from that given in Equation 11). The reason is that those 

expectations will depend not only on the assumed true genetic model (Equation 3), but 

also on the data structure. For example, in data consisting of many groups, the covariance 

between relatives in different groups will dominate the estimates, and incorrect 

covariances within groups may have little effect. In that case, estimates may be close to 

values given in Equation 16. On the other hand, when groups are fewer, information from 

the within-group (co)variances will become more important and results may deviate more 

from Equation 16.  

 

2.2.4 Simulation 

Methods. We used Monte Carlo simulation to validate the theoretical relationships 

between the true model, the reduced model and the traditional model presented above 

(Equations 12, 14 and 16). Data were generated under the model in Equation 3, and 

analysed using either the reduced model in Equation 10 or the traditional model in 

Equation 15, using the ASReml software (Gilmour et al., 2006). A population of two 

discrete generations was simulated using R (R Development Core Team, 2011).  No fixed 

effects were simulated. The base generation consisted of 100 sires and 1000 dams, which 

were unrelated. To produce the second generation, sires and dams of the first generation 

were mated at random, each sire being mated to 10 dams, and each dam producing 10 full 

sib offspring. Individuals of the second generation were kept in 2,500 groups of 4 

individuals each, and each group consisted of two full sib families, each family contributing 

two individuals. Table 2 shows the range of genetic parameters simulated. For each set of 

genetic parameters, estimates were averaged over one hundred replicates. Details of the 

simulation are given in Appendix D. 
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2.3 Results 

Table 3 shows a comparison between simulated and estimated values for 22 ,,
uSuSfTfT AAAA   

and 2

TA from the reduced model, for different magnitudes of IGEs. We used  22

uSfS PP   of 

either 50% or 25% of 2

DP , to represent high or low indirect effects, and 2

fSA , 2

uSA of either 

10%,12.5%, 20% and 25% of 2

uSP , 2

fSP , to represent high or low heritability of  IGE, and a 

range of genetic correlations between direct effects, indirect effects on kin and indirect 

effects on strangers (Table 2). Results show close agreement between simulated and 

estimated values as proven by the relative error which is less than or equal to 5% in all 

cases. (Those small errors originate from stochasticity among replicates, and do not 

indicate systematic bias). These results confirm the theoretical relationships between the 

full and reduced model presented in Equations 12 and 13. Thus, the reduced model yields 

unbiased genetic parameters of the family and non-family breeding values, and of the total 

breeding value. We also compared the estimated non-genetic components to their 

expectations given in Equation 14, showing close agreement (results not shown). 
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Table 2. Parameter values used for validation of reduced and traditional 

model 

Scheme Deviation from basic scheme1 

Alt.1 100.0,125.0 22 
uSfS AA 

 

Alt.2 ,25.022 
uSfS PP  063.0,050.0 22 

uSfS AA 
 

Alt.3 ,25.022 
uSfS PP  050.0,063.0 22 

uSfS AA 
 

Alt.4 5.0
,,


fSDfSD EEAA rr

 

Alt.5 1.0,125.0,5.0 22

,,


uSfSfSDfSD AAEEAA rr 
 

Alt.6 5.0
,,


fSDfSD EEAA rr 25.0,063.0,050.0, 2222 

uSfSuSfS PPAA 
 

Alt.7 5.0
,,


fSDfSD EEAA rr 25.0,05.0,125.0, 2222 

uSfSuSfS PPAA 
 

Alt.8 5.0
,,


fSDfSD EEAA rr

 

Alt.9  5.0
,,,,


uSfSuSDuSfSuSD EEEEAAAA rrrr

 

Alt.10 ,5.0
,,,,


uSfSuSDuSfSuSD EEEEAAAA rrrr

 
100.0,125.0 22 

uSfS AA 
 

Alt.11 ,5.0
,,,,


uSfSuSDuSfSuSD EEEEAAAA rrrr

25.0,063.0,050.0 2222 
uSfSuSfS PPAA 

 

Alt.12 ,5.0
,,,,


uSfSuSDuSfSuSD EEEEAAAA rrrr ,050.0,0625.0 22 

uSfS AA 

25.022 
uSfS PP 

 

Alt.13 5.0
,,,,,,


uSfSuSDfSDSufSuSDfSD EEEEEEAAAAAA rrrrrr

 

Alt.14 1.0
,,,,,,


uSfSuSDfSDSufSuSDfSD EEEEEEAAAAAA rrrrrr

 

1The basic scheme has 2

DP  = 1, 2

DA  = 0.5, 
22

uSfS PP    = 0.5, 
2

fSA  = 0.125, 
2

uSA  = 0.100
 
and all 

correlations are zero. Alternative schemes only show parameters that deviate from the basic scheme.
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Table 3. Errors in estimates for the reduced model  

 Error% 

Scheme 2ˆ
fTA  

uSfT AA ,̂  
2ˆ

uSA  
2ˆ

TA
 

Basic 0 0 -1 0 

Alt.1 1 0 0 1 

Alt.2 -2 0 2 -1 

Alt.3 -1 0 -2 -1 

Alt.4 2 0 -1 -1 

Alt.5 0 0 0 -1 

Alt.6 -2 0 0 -2 

Alt.7 -1 0 2 0 

Alt.8 -1 0 1 0 

Alt.9 1 1 2 1 

Alt.10 -1 -2 -2 -2 

Alt.11 0 1 2 1 

Alt.12 1 1 0 1 

Alt.13 -2 -4 -3 -3 

Alt.14 1 5 -1 1 

See Table 2 for a description of schemes. Error %=100%  (estimated -simulated)/simulated. When the 

prediction equals the true value E[error%] 0 . The expected absolute error equals E [|error%|] ~2.5%, and 

E|error %|> 5% implies significant bias (p<0.05; two sided). 
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Table 4. Comparison of the expected (Equation 16) and empirical estimates 

for the traditional model 

 Error% 

Scheme 2ˆ
DA  

SDA̂  2ˆ
SA  

2ˆ
TBVA

 

Basic -1 - 2 -2 -1 

Alt.1 1 -1 0 1 

Alt.2 0 1 0 -1 

Alt.3 0 4 -2 0 

Alt.4 0 -4 0 2 

Alt.5 -2 0 -1 -2 

Alt.6 -1 2 1 -1 

Alt.7 0 0 0 0 

Alt.8 1 2 -1 -3 

Alt.9 0 2 2 1 

Alt.10 -3 -4 0 -2 

Alt.11 -1 -2 0 -1 

Alt.12 0 2 0 1 

Alt.13 -2 -5 -3 -3 

Alt.14 1 3 0 -2 

 

 

 

Table 4 shows a comparison between the theoretically expected values of the estimated 

variance components from the traditional model (Equation 16) and the empirical values 

estimated from the simulated data using the traditional model (Equation 15). Results 

confirm the theoretical expectation that the traditional direct-indirect model yields biased 
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estimates of the direct genetic variance and the direct-indirect genetic covariance, but 

unbiased estimates of the genetic variance of IGEs on strangers and of the total genetic 

variance. 

 

2.4 Discussion 

We have proposed a quantitative genetic model and investigated methodology to estimate 

the genetic parameters of traits affected by IGEs when those IGEs differ systematically 

between kin vs. strangers. Results show that the full set of genetic parameters for the full 

model is not statistically identifiable. We also presented a reduced model that yields 

unbiased estimates of meaningful linear combinations of genetic parameters: the variance 

of the family breeding value, the covariance between family breeding value and IGEs on 

strangers, and the variance of IGEs on strangers. The reduced model also provides 

estimates of the variance in total breeding value, and predictions of the total breeding 

values of individuals. 

An interesting question is whether experimental designs exist that allow estimating all six 

genetic parameters of the full model (Equation 3). Our results show that this is not possible 

when pairs of individuals can be categorized into either kin or unrelated, each category 

shows a different IGE, and group-composition is the same for all groups. As long as group 

composition with respect to family is the same for all groups, this situation results in full 

confounding of the direct effect and the IGE on kin, irrespective of the composition of the 

groups (i.e., 50/50, 25/75, etc.; Appendix A).  

When differences in IGE originate from factors that usually go together with relatedness 

such as familiarity, rather than from relatedness per se, experimental designs that 

disconnect relatedness from those factors may allow estimation of the full set of genetic 
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parameters. For example, when individuals recognize each other due to prior association 

(see Introduction), relatives that grow up together will recognize each other and adjust 

their behaviour, whereas relatives that grow up separately will interact similarly to 

unrelated individuals. This may, for example, occur in mammals such grey mouse lemur 

(Kessler et al., 2012) or rats (Hepper, 1983; Hepper, 1986), where full siblings often grow 

up in the same litter, while paternal half siblings grow up in different environments. Our 

preliminary investigations show that all six genetic parameters are statistically identifiable 

in this situation when groups consist of a mix of full sibs, half sibs and unrelated 

individuals. A statistically more powerful approach may come from cross-fostering 

designs, where full siblings that grow up in different litters may interact as if they were 

unrelated. When cross-fostering is impossible and a mix of full and half siblings is 

unavailable, a solution may come from utilizing the variation in relatedness among pairs of 

full siblings, estimated using genome-wide genetic markers (Hill, 1993; Visscher et al., 

2006). However, as variation in relatedness among full siblings is limited, this approach 

will require large sample sizes. 

When relatedness itself (as opposed to, e.g., familiarity) is the causal factor underlying a 

difference in IGE, it would seem unlikely that the full set of genetic parameters can be 

identified. When individuals adjust their behaviour according to their relatedness to the 

recipient of the behaviour, as predicted by kin selection theory (Hamilton, 1964), any 

covariance between trait values of individuals is a function of relatedness and of genetic 

parameters of interest, which depends on this relatedness. This would seem to suggest full 

confounding. 

However, variation in group-composition seems to offer a solution. For example, having 

three different group compositions in a population may allow estimating all six genetic 

parameters. The first composition may have unrelated individuals only, the second may 
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have two family members supplemented with unrelated individuals, and the third may 

have three family members supplemented with unrelated individuals. From the first 

composition, 
2

DA , 
uSD AA ,

 and 2

uSA  can be estimated using the traditional direct-indirect 

mixed model (Muir, 2005). Then, using the reduced model, 

222

,
2)2(

fSfSDDF AAAfA n    can be estimated from the second composition, and 

222 44)3(
, fSfSDDF AAAfA n    can be estimated from the third composition, as well as 

uSfS
A

,
  and again 2

uSA . Then, since 
2

DA  is known from the first composition, this yields 

two equations with two unknowns, and thus can be solved yielding estimates of 
fSD AA  and 

2

fSA . Moreover, the estimate of 
uSFA ,

  from either the second or third composition can be 

used to obtain
uSfSA

,
 , because 

uSD AA ,
  is known from the first composition (see Equation 

12b). Then all six genetic parameters are estimated. Thus, variation in group composition 

with respect to family seems to allow estimating all six genetic parameters. Statistical 

power, however, may be very limited, and further complications may arise when IGEs 

depend on group size (Hadfield and Wilson, 2007; Bijma, 2010b), which we did not 

investigate here.    

When IGEs depend on relatedness, the traditional direct-indirect mixed model that 

ignores this dependency yields biased estimates of the direct genetic variance and the 

direct-indirect genetic covariance, but an unbiased estimate of the variance in total 

breeding value. Thus, even though the full set of genetic parameters is not statistically 

identifiable, the total heritable variance and total breeding values can be estimated, either 

using the reduced model or the traditional model. This is an important result, because kin-
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dependent IGEs appear to be widespread in natural and domestic populations of both 

animals and plants (see Introduction).   

The reduced model and traditional model are statistically equivalent, i.e., yield the same 

maximum likelihood, but represent different linear combinations of the underlying 

parameters. The main difference is that the estimates of the reduced model are biologically 

meaningful in the context of kin-selection theory (Hamilton, 1964), as they separate the 

effects on kin (the family breeding value) from those on unrelated individuals. The 

correlation between the family breeding value and IGE on strangers, for example, 

measures the degree of competition or cooperation between families.  With the exception 

of the IGEs on strangers and the total breeding value, the estimates of the traditional 

model do not seem to have a clear biological meaning (Equation 16). Thus, the reduced 

model is preferable in terms of interpretation.  

In this study, we have considered only the random effects; consequences of kin-dependent 

IGEs on the fixed effects to be included in the Xb term of the models have been ignored. 

When IGEs depend on relatedness, IGEs on kin vs. strangers probably not only show 

incomplete correlation, but also differ systematically in level. In other words, individuals 

interacting primarily with kin probably receive more favourable IGEs than those 

interacting primarily with strangers, which creates a systematic difference in trait level 

between individuals interacting with different numbers of kin. This is not accounted for by 

the random effects in the model, because those are zero on average by construction. Hence, 

a fixed effect for the number of relatives an individual interacts with should be included in 

the model. This is similar to the inclusion of a fixed effect for the number of group mates 

when group size varies. Because estimation of a fixed effect with a few degrees of freedom 

is straight forward, we did not investigate this in detail. In our simulations, there was no 
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need to account for such a fixed effect, because all individuals had the same number of kin 

and strangers among their group mates.  

In animal and plant breeding, the focus is on improving the mean trait value of the 

population in the next generations. Theoretical studies have shown that group and kin 

selection methods utilize the total heritable variation for response to selection (Muir, 

2005; Bijma et al., 2007b; Ellen et al., 2008; McGlothlin et al., 2010). This theoretical 

expectation is supported by results from selection experiments that have used group 

and/or kin selection without explicit reference to the total breeding value (Wade, 1976; 

Wade, 1977; Goodnight, 1985; Muir, 1996). Whether or not this result extends to the 

situation where IGEs differ between kin and strangers is interesting, but has not been 

investigated to our knowledge.  

To optimize selection for traits affected by interactions among individuals, the ideal 

selection criterion is the TBV of selection candidates estimated using all available 

information. This is because response to selection equals the change in mean TBV from 

one generation to the next, so that maximizing the accuracy of estimated TBVs also 

maximizes response to selection. Because Equation 4 is generally valid, this result holds 

irrespective of whether or not IGEs depend on relatedness (Bijma, 2011b). Hence, the 

availability of kin and group selection methods does not make estimated TBVs superfluous. 

Moreover, knowledge of the total heritable variance quantifies the intrinsic potential of a 

population to respond to selection, and therefore provides a measure of efficiency for 

breeding schemes (Bijma, 2011b). The variance in TBV, therefore, is an important 

parameter both for optimizing individual selection decisions and for the evaluation of 

breeding schemes. This work has shown how the definition and estimation of the variance 

in TBV can be extended to schemes where IGEs differ between kin and strangers. This 
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extension of variance in TBV to schemes where IGEs differ between kin and strangers may 

contribute to breeding plan design and application. 
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Appendix A  

This appendix shows that the full model is not statistically identifiable, whereas the 

reduced model is identifiable. Estimation of genetic parameters for direct and indirect 

genetic effects rests on covariances between phenotypes of relatives and of their social 

partners (Lynch and Walsh, 1998). Only covariances between relatives (or social partners) 

present in different groups contribute to the estimation of genetic parameters, because 

within-group covariances are fully confounded with the non-genetic direct and indirect 

effects. The following, therefore, considers between-group covariances only. 

Each group consists of members of two families. There are no genetic covariances between 

groups not sharing a family; hence those group combinations can be ignored. Then, when 

considering two groups having one family in common, there are three families in total; the 

common family, denoted F1, and its partner family in each group, denoted F2 and F3. 

Before we derive covariance between individual, the individual’s total breeding value, 

which is the total heritable impact of an individual’s genes on the mean trait value of the 

population when interaction differ between kin vs. strangers, is given as: 

 
uf SfSfDiiT AnAnAA  12,  (A1) 

Taking the variance of the total breeding value yields 

 

 

      222222 12112
uSA

uSAfSfS
fSADDT

nnnnn AffAfAfAA    (A2) 

 

When we have one family common in two groups there are only three informative 

covariances. First, the covariance between the phenotypes of a member of F1 in each group, 
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



  222

1 )1()1(2),|,(
fSfSDD AfAAfAji nnrFjiPPCov   (A3) 

where r denotes relatedness between members of the same family, and fn  the number of 

members of F1 in each group (assumed to be the same in both groups). Second, the 

covariance between a member of the common family (F1) in the one group, and a member 

of a partner family in the other group (F2 is considered here, but the result for F3 is 

identical), 





 

uSfSuSD AAffAAfji nnnrFjFiPPCov  )1(),|,( 21  (A4) 

Third, the covariance between two members of the partner families (F2 and F3) in 

different groups is 

 

 

22
32 ),|,(

uSAfji nrFjFiPPCov   (A5) 

 

This equation shows that the variance of IGE on strangers is estimable. In total, however, 

these three equations contain six unknowns (the six genetic parameters to be estimated) 

and cannot be solved. Thus, the full model is not identifiable. 

Equations A1 through A3 also show that the reduced model is identifiable, since they 

represent the informative covariances and there are only three genetic parameters to 

estimate. Moreover, Equations A1 through A3 imply that the expected values of the 

estimated genetic parameters of the reduced model are given by Equation 12a-c when

nn f 2
1 . 
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Appendix B  

This appendix shows the derivation of the non-genetic covariance structure generated by 

Equation 3 (Equations 11 and 14) and refers to the reduced model. Non-genetic 

covariances occur only among individuals within the same group. Since the genetic model 

terms fully account for genetic covariances within groups, those can be ignored here.  

There are three non-genetic parameters of interest: the covariance between group 

members of different families, the covariance between group members of the same family, 

and the residual variance. Because all groups have the same composition, these parameters 

are the same for all groups. This leads to the block-diagonal residual variance structure 

given by Equation 11, which has a single residual variance, a covariance between group 

mates of the same family, and a second covariance between group mates of different 

families.  

Consider two group mates, say i and k. The group mates of i of its own family are denoted j, 

and those of the other family j’. Analogously, the group mates of k are denoted l and l’. Note 

that k is one of the individuals included in j and j’, whereas i is one of the individuals 

included in l and l’. Then the non-genetic covariance between the phenotypes of i and k is 

given by  
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First consider this covariance when i and k are group members of different families, giving 

   
uSfSuSD EEEki nPP

,,
22,cov   . (B2) 
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The first term arises because i affects k and vice versa, whereas the second term arises 

because i and k have 2n  group mates in common. In Equation 10, the non-genetic 

covariance between unrelated group mates equals the variance of the random group effect. 

Hence,   

 
uSfSuSD EEg nE

,,
22)ˆ( 2   ,  (B3) 

 

which is Equation 14a. 

Next, consider the full non-genetic variance. From Equation B1, it follows that 

  2
2

12
2

12 1)var(
uSfSD EEEE nnP    (B4) 

 

In Equation 10, the full non-genetic variance is the sum of the group variance and the 

residual variance. Hence, the residual variance in Equation 10 follows from subtracting the 

group variance from Equation B4, giving 

  22
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122 1)ˆ(E gEEEe
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which is Equation 14b.  

Finally, consider the covariance when i and k are group members of the same family, 

    2
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1 22,cov
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The first term arises because i affects k and vice versa, the second term arises because i and 

k have 22
1 n  group mates of their own family in common, and the third term arises 

because i and k have n2
1  group mates of the other family in common. In Equation 10 and 

11, the covariance between unrelated group mates is the sum of the group variance and the 

residual covariance, 22
eg   . Hence, the residual correlation follows from subtracting the 

group variance from Equation B5 and dividing by the residual variance, giving 

which is Equation 14b.  
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, 

which is Equation 14c. 
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Appendix C  

This appendix shows the derivation of Equations 16a-d, being the expectations of genetic 

parameters when the traditional direct-indirect model (Equation 15) is applied to data 

generated by the model in Equation 3. The derivation uses the method of Bijma (2010a). 

Direct genetic variance: With two families per group, the information for estimating 

the direct genetic variance using Equation (15) comes from the variable lkklkl PPz ' , in 

which 
n

n

2
1

2
1 1

 , klP  is the mean phenotype of the family of interest k in group l, and lkP '  is 

the mean phenotype of the other family k´ in group l (Equations B15 and B16 in Bijma, 

2010a; the zkl is referred to as the “effective record”) and n is the group size. When the data 

are generated by Equation 3, the expectation of zkl conditional on the family of interest k in 

group l equals  

      kSkSkDkl uf
AnAnAkzE ,2

1
,2

1
, 11|   (C1) 

 

which depends not only on the DGE of family k, but also on the IGEs of family k on kin and 

strangers. The expected value of the estimated direct genetic variance follows from the 

variance of z, giving  
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which is Equation 16a. 
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Indirect genetic variance: The information for estimating the indirect genetic variance 

using Equation (15) comes from the variable )/( 2
1

' nPz lkkl   (Equation B18 in Bijma, 2010a). 

When the data are generated by Equation 3, the expectation of zkl conditional on the family 

of interest, equals 

  kSkl u
AkzE ,|   (C2) 

 

Thus the expected value of the estimated indirect genetic variance equals  

2
15.

2 )ˆ(
uSS AEqnAE     

 

, which is Equation 16c. 

Direct-indirect genetic covariance: From Equations C1 and C2, it follows that  

),()1()ˆ( 2
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1
15.

uSuSfSuSDDS AAAAAEqnA nE     

which is Equation 16b. Thus, when the IGE on kin is identical to the IGE on strangers, the 

second term becomes zero, and
DSDS AEqnAE  15.)ˆ( .  

Total heritable variation: The information for estimating the total heritable variance 

using Equation (15) comes from the variable )/( 2
1

1 , nPz n
j jklkl    (Equation B20 in Bijma, 

2010a). When the data are generated by Equation 3, the expectation of zkl  conditional on 

the family of interest equals  
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Thus the expected value of the estimated total heritable variance equals  

2
15.

2 )ˆ(
TT AEqnAE     

, 

which is Equation 16d. 

Appendix D 

This appendix shows details of the stochastic simulation. Breeding values of individuals in 

the base generation were simulated from the multivariate normal distribution   
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To produce the second generation, sires and dams of the first generation were mated at 

random, each sire being mated to 10 dams, and each dam producing 10 full sib offspring. 

Second generation breeding values for all three genetic effects were simulated as

idamsirei MSAAA 
2
1

2
1 , where MS   denotes the Mendelian sampling term. The MS were 

simulated from the multivariate normal distribution  
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Non-genetic effect were simulated only for the second generation, from  
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Then we calculated the phenotypes of the individual from second generation using the full 

model (Equation 3). Those phenotypic values were used to estimate the variance 

components. We simulated hundred replicates for each set of genetic parameter and the 

estimates were averaged over replicates 
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Abstract 

Since the recommendations on group housing of mink (Neovison vison) were adopted by 

the Council of Europe in 1999, it has become common in mink production in Europe. 

Group housing is advantageous from a production perspective, but can lead to aggression 

between animals and thus raises a welfare issue. Bite marks on the animals are an 

indicator of this aggressive behaviour and thus selection against frequency of bite marks 

should reduce aggression and improve animal welfare. Bite marks on one individual reflect 

the aggression of its group members, which means that the number of bite marks carried 

by one individual depends on the behaviour of other individuals and that it may have a 

genetic basis. Thus, for a successful breeding strategy it could be crucial to consider both 

direct (DGE) and indirect (IGE) genetic effects on this trait. However, to date no study has 

investigated the genetic basis of bite marks in mink. A model that included DGE and IGE 

fitted the data significantly better than a model with DGE only, and IGE contributed a 

substantial proportion of the heritable variation available for response to selection. In the 

model with IGE, the total heritable variation expressed as the proportion of phenotypic 

variance (T2) was six times greater than classical heritability (h2). For instance, for total 

bite marks, T2 was equal to 0.61, while h2 was equal to 0.10. The genetic correlation 

between direct and indirect effects ranged from 0.55 for neck bite marks to 0.99 for tail 

bite marks. This positive correlation suggests that mink have a tendency to fight in a 

reciprocal way (giving and receiving bites) and thus, a genotype that confers a tendency to 

bite other individuals can also cause its bearer to receive more bites. Both direct and 

indirect genetic effects contribute to variation in number of bite marks in group-housed 

mink. Thus, a genetic selection design that includes both direct genetic and indirect genetic 
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effects could reduce the frequency of bite marks and probably aggression behaviour in 

group-housed mink. 
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3.1 Introduction 

Social interactions among individuals are common both in plants and animals (Frank, 

2007) and can have significant effects on production and welfare traits. For example, social 

interactions can affect feed intake and growth rate in domestic pigs (Arango et al., 2005; 

Chen et al., 2008), lead to mortality due to cannibalism in laying hens (Muir, 1996) result 

in aggression and tail biting if mixing is carried out in pigs (Turner et al., 2010) , increase 

competition in fish (Moav and Wohlfart.Gw, 1974) , affect growth rate and disease traits in 

forestry (Cappa and Cantet, 2008; Brotherstone et al., 2011; Silva et al., 2013), and result 

in bite marks in mink (Hansen and Damgaard, 1991; Damgaard and Hansen, 1996; 

Pedersen and Jeppesen, 2001; Moller et al., 2003). Because social interactions may have a 

heritable component, selection acting on these interactions may affect significantly 

response to artificial selection (Griffing, 1967; Muir, 2005; Bijma et al., 2007a; Bijma et 

al., 2007b). Therefore, social interactions are a key factor when designing artificial 

breeding programmes in domestic animals for which group housing is common practise 

(Muir, 2005). 

Results have shown that social interactions among individuals may create additional 

heritable variation(Bijma et al., 2007b) .Ellen et al. (2008) found that, in laying hens, total 

heritable variation in survival days, expressed as the proportion of phenotypic variance, 

was 1.5 to 3-fold greater than the variance of the direct genetic effect (DGE). Wilson et al. 

(2009) reported that indirect genetic effects (IGE) increased total heritable variation, 

expressed as a proportion of phenotypic variance, from 0.01 to 0.6 for rearing rate and 

0.05 to 0.56 for reciprocal latency rate. These results indicate that more than 80% of the 

heritable variation of these behavioural traits is due to social interactions (Wilson et al., 

2009). Therefore, for socially affected traits, the heritable variation due to social 
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interactions can be a significant source of heritable variation in domestic, natural, and 

laboratory populations, for both behavioural traits and production traits (Moore et al., 

1997; Muir, 2005; Bijma et al., 2007b; Wilson et al., 2011) and taking such interactions 

into account may reveal that their genetic variation is significantly greater than previously 

thought. However, if these interactions are competitive, the heritable variation may be 

significantly reduced, even to a value of zero when the direct-indirect genetic correlation 

equals -1 (Bijma, 2011; Wilson et al., 2011). The negative covariance between direct and 

indirect genetic effect cancels both the direct and indirect genetic effects (Bijma, 2011; 

Wilson et al., 2011). 

With the exception of maternal genetic effects, breeders have focused on improving the 

direct effect of the genotype of the individual on its own phenotype (Falconer, 1960). 

Hence, the traditional genetic model does not include the social effect of an individual on 

the phenotypes of its group mates, the so-called Indirect Genetic Effect (IGE; (Griffing, 

1967; Moore et al., 1997) . Ignoring IGE may result in a suboptimal response to selection 

and even a negative response to selection for socially affected traits (Griffing, 1967). For 

example, individual selection to increase the size of flour beetles populations (Tribolium 

castaneum) decreased the population size in the next generations (Wade et al., 2010). 

Similarly, in non-beak-trimmed laying hens, selection of the survivors decreased survival 

rate in the next generations (Muir, 2005). Thus, inclusion of IGE is vital to obtain an 

optimal response to selection for socially affected traits, which means that the traditional 

quantitative genetic model should be extended to include the heritable effect of an 

individual on the phenotypes of its group mates (Griffing, 1967; Muir, 2005; Bijma et al., 

2007b; Ellen et al., 2008). 
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One way of using IGE for response to selection is group selection. It was shown that group 

selection was effective compared to individual mass selection in decreasing the mortality 

rate of laying hens, mainly due to aggression, from 68% in generation 2 to 9% in 

generation 6 (Muir, 1996) and in improving longevity of layers (Craig and Muir, 1996). 

Another example is the positive response for low leaf and high leaf area in Arabidopsis 

thaliana obtained with group selection versus the negative response with individual 

selection (Goodnight, 1985). The reason for the effectiveness of group selection is that it 

takes into account part of the IGE. 

Although group selection is effective in reducing mortality in chickens and increasing 

growth in Arabidopsis thaliana, it uses only the between-group genetic variance and 

completely ignores the within-group variance. Thus, group selection is efficient only when 

group members are sufficiently related (Griffing, 1976b; Griffing, 1976a; Bijma, 2011). 

Moreover, using group selection does not provide any insight into the relative importance 

of direct vs. indirect genetic effects. It is important to understand the genetic parameters 

that underlie the interactions because it would help to quantify the potential contribution 

of IGE to response to selection, to estimate breeding values for both direct and indirect 

genetic effects, and to optimize breeding programmes (Bijma et al., 2007a). This can be 

achieved by a BLUP (best linear unbiased prediction) model that separates DGE and IGE 

and gives weights to each of them according to the variance covariance structure of the 

genetic parameters (Arango et al., 2005; Muir, 2005; Bijma et al., 2007a). 

IGE are increasingly important in European mink production because of changes in the 

housing system from pair-wise to group housing that is becoming more and more frequent. 

In the wild, juvenile mink leave the mother’s territory at the age of three to four months in 

order to find their own territory (Birks, 1986; Dunstone, 1993) and by the end of the 



3 Indirect genetic effects for group-housed mink 

 

76  
 

growth season, their territorial behaviour is fully developed. This process of dispersal 

involves increased aggression between the dam and the juveniles as well as between 

juveniles. The male territory may overlap that of several females but is defended against 

mink of the same sex (Gerell, 1970; Dunstone, 1993). Therefore, in Europe during the 

growth season, juvenile mink are traditionally housed in pairs of one male and one female 

per cage. In spite of their territorial nature, recommendations on cage sizes for group 

housing of mink were adopted by the Council of Europe in 1999 (European Commission, 

1999), probably because welfare improvements were expected from ‘social enrichment’ as 

discussed in (European Commission, 2001). Group housing has become more and more 

common because it increases the stocking density in the cages and thereby decreases 

housing investments. Group housing also increases the social dynamics of the environment 

which could be a potential disadvantage, since studies on animal welfare in group housing 

report increased aggression resulting in more bite wounds and bite marks (Pedersen and 

Jeppesen, 2001; Moller et al., 2003; Hanninen et al., 2008a; Hanninen et al., 2008b). 

Direct observation of aggression is time-consuming and it is difficult to distinguish 

between aggressions and play in mink (Hanninen et al., 2008a; Hansen and Malmkvist, 

2011). Thus, it is not a feasible option for collecting the required data for breeding against 

aggressive behaviours in mink. An alternative solution could be to record the consequences 

of aggressive behaviours, such as bite marks. Bite marks are the result of a hard pressure to 

the skin, e.g. a bite, during the 7-week growth phase of the winter coat (Hansen et al., 

2014) and, as such, are an excellent indicator of aggression accumulated over this period, 

and of reduced animal welfare (European Commission, 2001; Moller et al., 2003; Hansen 

and Houbak, 2005). In mink, bite marks can occur anywhere on the body and are often 

scored on the neck, tail and all the body without neck and tail (referred to as “body” in the 

following) , in order to quantify different types of aggressive interactions (Damgaard and 
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Hansen, 1996; Hansen and Houbak, 2005). If inflicting bite marks is a genetically 

inherited behaviour, then genetic selection that includes both DGE and IGE may be an 

efficient way to reduce bite marks in group-housed mink. To date, no studies have 

quantified direct and indirect genetic variation for the number of bite marks in mink. 

In this study, we tested the hypothesis that the number of bite marks on different parts of 

the body is affected by both DGE and IGE. Towards this aim, we estimated the direct and 

indirect additive genetic (co)variances for the number of bite marks on different regions of 

the body. Genetic correlations between the numbers of bite marks on different parts of the 

body were also estimated. Furthermore, we tested whether DGE and IGE on the bite marks 

in different parts of the body were related to the individual’s body weight, since body 

weight can be an indicator of social dominance. For instance, a positive genetic correlation 

between body weight and IGE on bite mark number could indicate that individuals with a 

dominant genotype for higher weight inflict more bite marks on group mates. 

3.2 Methods 

3.2.1 Materials 

The consequences of aggressive behaviour in mink (Neovison vison) can be recorded by 

visual observation of injuries i.e. scars on the skin of live animals or dead bodies at pelting, 

or by the number of bite marks on the flesh side of the skin just after fleshing during the 

pelting process. The number of bite marks gives an indication of the number of aggressions 

received by the individual over a period of time prior to pelting. 

We used bite marks recorded at pelting as an indirect measure of aggressive behaviour. 

Bite marks were recorded just after fleshing and after scraping and brushing off sawdust. 

In 2009, a selection experiment was initiated to select for reduced number of bite marks at 
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pelting, at the mink farm at the Research Centre Foulum in Denmark. We analysed data 

from the first three generations of that selection experiment. A total of 1985 mink 

descending from 136 sires and 349 dams were used. Two weeks after weaning i.e. at 

around 10 weeks post-partum, the juveniles were separated into groups composed of four 

juvenile mink. Each group of two male siblings and two female siblings was placed in a two 

storey cage. These procedures were applied in 2009 and repeated in 2010 and 2011. The 

female siblings were unrelated to the male siblings within a cage except for the 2009 data 

set, but most individuals had siblings present in other cages. In some cases, data from only 

three or two mink was obtained mainly because of lack of pedigree information or loss of 

ID tags during the pelting procedure, and in few cases because of injury or death. Overall, 

useful data was recorded for two mink from 208 pens, for three mink from 87 pens and all 

four mink from 327 pens. Individuals were pelted in November 2009, December 2010 and 

December 2011. At pelting, the number of bite marks on the skin side of the pelt was 

recorded. The number of bite marks was subjectively measured based on the scale 

described in Table 1, and expressed as a bite mark score (BMS). From each litter, siblings 

of the group-housed juveniles were kept in pairs and were the selection candidates. Parents 

for the next generation were selected from the candidates based on the number of bite 

marks in their group-housed litter mates. Each individual was selected based on the 

performance of the mean phenotype of the litter mates’ pen. Thus, the selection method 

takes into account both DGE and IGE. 
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Table 1 Bite mark score (BMS) used for subjectively measuring the number of 

bite marks at pelting 

BMS Number of bite marks 

0 0 

1 1-5 

2 6-10 

3 11-15 

4 16-20 

5 21-25 

6 26-30 

7 31-35 

8 36-45 

9 More than 45 

The number of bite marks was scored on the Neck (from the nose tip to the shoulder/front 

leg), body (from the shoulder, including the front legs, to 10 cm above the base of the tail) 

and Tail (from 10 cm above the base of the tail, including the hind legs). A total score was 

computed as the sum of these three scores. As shown on the histogram in Figure 1, the data 

were not normally distributed. Log transformation after adding 100 to each observation 

improved the normality slightly, as illustrated by skewness and kurtosis before and after 

transformation (Figure 2). Table 2 summarizes BMS per sex for the different parts of the 

body. 
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Figure 1 Histogram of residuals1 of raw data on total BMS2 before transformation3. 1Residuals 

come from a model y = Xb + e, where fixed effects in Xb are identical to those used in the mixed model that 

is explained in the text; 2since total BMS is the sum of BMS on the three body regions, it ranges from 0 to 27 

(see Table 1); 3for the male and female populations, skewness for total BMS corrected for fixed effects was 

equal to 1.67 and 1.12, respectively and kurtosis was equal to 4.14 and 1.43, respectively 

 

 

http://www.gsejournal.org/content/46/1/30/figure/F1?highres=y
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Figure 2 Histogram of residuals1 for total BMS2 after transformation3. 1Residuals come from the 

model y = Xb + e, where fixed effects in Xb are identical to those used in the mixed model explained in the 

text; 2since total BMS is the sum of BMS on the three body regions, it ranges from 0 to 27 (see Table 1), 3for 

the male and female populations, skewness for total BMS corrected for fixed effects was equal to 1.54 and 

0.96, respectively andkurtosis was equal to 3.1 and 0.43, respectively; 2the transformation was yt = ln(y + 

100). 

 

http://www.gsejournal.org/content/46/1/30/figure/F2?highres=y
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Table 2 Mean (standard deviation) of BMS and body weight per sex 

Trait Male Nb individuals Female Nb individuals 

Neck BMS 1.35 (1.62) 996 2.72 (2.33) 986 

Body BMS 2.18 (2.53) 992 2.25 (2.34) 984 

Tail BMS 1.54 (1.95) 992 2.91 (2.98) 984 

Total BMS 5.06 (5.13) 983 7.87 (6.65) 991 

Body weight (kg) 2.87 (0.41) 965 1.46 (0.24) 964 

Data on BMS and weight were analysed using the GLM procedure in R (R Development 

Core Team). This programme was used to decide which fixed effects should be included in 

the model to estimate the genetic parameters. The following fixed effects i.e. year, sex, 

number of individuals in a cage (group size; fitted as a factor), and the linear regression on 

the proportion of male mates per cage (i.e., a covariate, referred to as social sex ratio) were 

included in the model. 

Genetic parameters were estimated using residual maximum likelihood with an animal 

model (Henderson, 1975; Kruuk, 2004). Six models were compared with different 

combinations of random effects. All six models included the DGE of the individual on 

which the BMS was recorded. The first three models did not include IGE. The first model 

fitted cage as a random effect, while the second model fitted sex within cage (cage*sex) as a 

random effect. The reason for fitting cage*sex as a non-genetic random effect, was to test 

whether social interactions in mink depend on sex. This hypothesis is based on the fact 

that male mink are usually larger than female mink and thus aggression could occur 
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mainly between cage mates of the same sex. The third model included a cage plus cage*sex 

random effect. Each of these three models was extended with IGE, giving a total of six 

models. The best model was selected based on its Akaike information criterion (AIC). In all 

six models, we used the same fixed effects (see above). Non-genetic maternal effects 

(common litter effects) were not significant for BMS, and thus were not included in the 

models. Based on AIC, non-genetic maternal effects were included in the model for body 

weight. In this section, we present only the most complete model; in the simpler models 

the relevant terms were omitted. However, we will present results for the two models that 

had the highest likelihood i.e. one in which IGE were ignored and one in which IGE were 

included. 

The most complete model (referred to as Model 6; see Table 3) was: 

,D D S S     y Xb Z a Z a Wg Vg*s e   

 

where y is a vector of observed BMS; b is a vector of fixed effects, with the incidence matrix 

X linking observations to fixed effects, ZD and ZS are known incidence matrices for direct 

DGE and IGE, and aD and aS are vectors of random DGE and IGE, with 
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⊗ indicates the Kronecker product, and A is the numerator relationship matrix (Falconer, 

1960; Lynch and Walsh, 1998). g is a vector of random cage effects and W the incidence 
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matrix linking records to cages, with  2~ 0, g gN g I  , where Ig is an identity matrix of 

appropriate dimension and 
2

g  is the cage variance, g * s a vector of random cage*sex 

effects and V an incidence matrix, with  2

* ** ~ 0, g s g sN g s I , where Ig * s is an identity 

matrix of appropriate dimension and 
2

*g s  is the variance of the cage*sex effect, and e is a 

vector of residuals. We fitted different residual variances for male and female individuals, 
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where em is the vector of residuals for males, and ef the vector of residuals for females, and 

2

me  and 2

fe  are the corresponding variances. In Model 6, the ZSaS accounts for heritable 

indirect effects, and Wg and Vg * s account for covariances among cage mates due to non-

heritable indirect effects (Bijma et al., 2007a; Alemu et al., 2014a). 

 

 

 

A was calculated using information on five generations of pedigree that included 2806 

animals. Bivariate analysis was also used to estimate the genetic correlation between bite 
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marks on each part of the body, and to estimate the genetic correlation between bite marks 

and body weight. 

Table 3 Model comparisons using AIC1 

  Neck BMS Body BMS Tail BMS Total BMS 

Model # Param. Log L AIC Log L AIC Log L AIC Log L AIC 

1. cage 10 -24.9 47.9 -35.3 68.6 -28.0 54.0 -34.1 66.3 

2. cage*sex 10 -45.8 89.6 -57.3 112.6 -36.5 70.9 -69.8 137.6 

3. cage + cage*sex 11 -24.5 49.0 -33.4 66.8 -16.7 33.4 -31.1 64.0 

4. IGE + cage 11 -1.4 2.7 0 0 -3.2 6.4 -0.1 0.2 

5. IGE + cage*sex 11 0 0 -0.2 0.4 0 0 0 0 

6.IGE + cage + cage*sex 12 0.06 1.9 0.2 1.5 -1 1.3 0.1 1.9 

1Akaike’s information criterion (AIC) and likelihood value AIC were set to zero as reference for the best 
model; AIC = 2× # parameters – 2 × log-likelihood; thus lower values indicate a better model. Genetic 
parameters for BMS were estimated by implementing the above-mentioned linear animal models in the 
ASReml software (Gilmour et al., 2002). The matrix of additive genetic relationships  

 

3.2.2 Heritable variation 

The above model yields estimates of three genetic parameters, 
2

DA , 
DSA  and 

2

SA . 

Following Bijma (Bijma, 2011), these three parameters can be combined into a measure of 

the total heritable variance that determines the potential of the trait to respond to 

selection. Since each individual interacts with n-1 group mates, the total heritable impact 

of an individual’s genes on trait values in the population equals: 

 1 ,
i i iT D SA A n A  

 
(1) 
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where A T represents the total breeding value, which is a generalization of the traditional 

breeding value to account for IGE. The total heritable variance is the variance of the total 

breeding values among individuals, 

   2 2 22 1 1 .
T D DS SA A A An n       

 
(2) 

 

The 
2

TA  expresses the heritable variance in absolute units as the additive genetic variance 

in classical models. The interpretation of 
2

TA  becomes easier by expressing heritable 

variance relative to phenotypic variance, similarly to the classical heritability (Bergsma et 

al., 2008): 

2

2

2
.

TA

P

T





  

A comparison of h2 versus T2 reveals the proportion of the contribution of IGE to the 

heritable variance that determined the potential of the population to respond to selection. 

3.3 Results 

Table 4 shows the estimated fixed effects and their statistical significance. The fixed effect 

year was significant for bite marks on all regions of the body i.e. neck, body, and tail. Sex 

and social sex ratio were also significant for bite marks on the neck and tail but not on 

body and group size was significant only for bite marks on the neck. 
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Table 4 Estimated fixed effects and their significance 

Trait Year Sex1 Social sex ratio2 Group size3 

Neck *** 1.44** -0.20** (0.63,0.71) * 

Body *** 0.01NS 0.17NS (1.80, 1.93) NS 

Tail *** 1.81*** -0.97*** (1.89,1.67) NS 

Total *** 1.2*** -0.50** (1.53,1.54) NS 

Body weight NS 2.7*** -0.10NS (-0.33 ,-0.31) * 

*, **, *** significant at P ≤ 0.05, 0.01, 0.001, respectively; 1the estimate for sex refers to females minus males; 
2social sex ratio represents the proportion of male group mates of an individual, fitted as a covariable, thus 
the estimate is the regression coefficient of bite marks on proportion of male group mates in the cage; 3the 
two group size estimates refer to the difference between group size three minus group size two and group size 
four minus group size two, respectively. 

 

Table 3 (see above) shows the log-likelihood values and AIC for all Models 1 through 6. 

Based on AIC, the best model among the six tested is Model 5 for bite marks on all regions 

except body for which Model 4 is slightly better. AIC values show that, in spite of the 

relatively small dataset, models that included IGE were substantially better than those that 

did not (Models 1 to 3 vs. 4 to 6). Thus, IGE contribute to the heritable variation of BMS on 

all locations of the body. Models with a random cage*sex effect were the best based on AIC, 

but differences in AIC between Models 4 to 6 were very small. 

Table 5 shows the estimated variance components obtained with the classical model that 

included direct genetic effects only, but accounted for both cage and cage*sex as non-

genetic random effects (Model 3). The genetic parameters were assumed to be the same in 

both sexes. The additive genetic variance ranged from 0.78 for neck bite marks to 1.15 for 

tail bite marks. Heritability ranged from 0.18 to 0.23, and differed significantly from zero. 

We found no common maternal effects for BMS. Non-genetic variances of BMS were 
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higher in females than in males, which agrees with the observation that the mean BMS for 

females was closer to the middle of the scale used for BMS (Tables 1 and 2). 

Table 5 Estimated variance components (±SE) from a traditional animal 

model ignoring IGE (model 3)1 

Parameter Neck BMS Body BMS Tail BMS Total BMS Weight (Kg) 

2ˆ
A  

0.62 ± 0.15 1.06 ± 0.22 0.95 ± 0.19 7.26 ± 1.38 0.06 ± 0.015 

̂2

 

0.28 ± 0.047 0.26 ± 0.04 0.17 ± 0.028 0.26 ± 0.04 -0.15 ± 0.09 

s̂
3

 
0.05 ± 0.054 -0.09 ± 0.05 -0.17 ± 0.03 -0.09 ± 0.05 0.40 ± 0.19 

2ˆ
me

 

1.18 ± 0.12 2.74 ± 0.22 2.31 ± 0.20 11.4 ± 1.14 0.026 ± 0.008 

2ˆ
fe

 

2.93 ± 0.22 3.53 ± 0.27 5.98 ± 0.34 22.4 ± 1.72 0.03 ± 0.009 

24 ˆ
P  

3.54 ± 0.11 4.95 ± 0.24 5.31 ± 0.18 31.09 ± 1.00 0.011 ± 0.005 

2ĥ
 

0.18 ± 0.04 0.21 ± 0.08 0.18 ± 0.036 0.23 ± 0.04 0.57 ± 0.13 

2ĉ  
- - - - 0.07 ± 0.05 

1Model 3 was y = Xb + ZDaD + Wg + Vg * s + e; 2although cage and cage*sex covariances were fitted, the 
result is expressed as the non-genetic correlation between phenotypes of cage mates, 
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 ; 4for BMS, phenotypic variance was estimated from 

a separate analysis using the model y = Xb + e, this was done because our objective was to present a single 
number for phenotypic variance and heritability, covering both sexes, since a single genetic variance was 
fitted covering both sexes; however, since our aim was to estimate the other model terms with the best fitting 
model, a separate analysis for phenotypic variance was performed; the standard errors of heritability 
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estimates were calculated from the full model, averaging the residual variances for both sexes; 
2

2

2

ˆ

ˆ
ˆ

p

ndc



 , 

2ˆ
dn  refers to the non-genetic dam variance; 

2ĉ  refers to the non-genetic maternal effect. 
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The estimated heritability for body weight was equal to 0.58. We found a non-significant (

22 / Pc   = 0.07) common maternal environment effect for body weight. Although the effect 

is non-significant, it improved the fit of the model for body weight. The cage variance was 

significantly different from zero for bite marks on all regions of the body. (This conclusion 

is based on the ratio of the estimate and its SE (standard error), which was much greater 

than 2). Although the cage*sex-effect was not significantly different from zero for all 

regions of the body, it was included in the model because it improved the AIC (Table 3). 

Thus, both cage and cage*sex effects improved the AIC when IGE were ignored. 

Table 6 shows the estimated variance components obtained with Model 5 that includes 

both DGE and IGE and the cage*sex effect. The standard errors on the estimated genetic 

variances show that both DGE and IGE contributed to variation in BMS. IGE were 

significantly different from zero for bite marks on all regions of the body and variance of 

IGE ranged from 0.14 for tail bite marks to 0.27 for body bite marks. The total heritable 

variation for BMS ranged from 1.65 to 19.13, and was significantly higher than the additive 

genetic variance obtained with the traditional model. The total heritable variation 

expressed as the proportion of phenotypic variance ranged from 0.41 to 0.61, and was ~6 

times greater than the direct heritability. The correlation between DGE and IGE of BMS 

ranged from 0.55 to 0.99 in all parts of the body. Comparison of heritability estimates in 

Tables 5 and 6 ( 2h  and 2
Dh ) indicates that ordinary heritability estimated with the 

traditional model overestimates the importance of direct effects by a factor of ~2. In the 

traditional model, presence of IGE biases the estimate of additive genetic variance 

upwards. This occurs because cage mates are partly related and thus, an individual receives 

an IGE from its cage mates that is similar to its own IGE. This in turn increases the 
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covariance between relatives in different cages, which biases heritability upwards (Peeters 

et al., 2013). 
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Table 6 Estimated variance components (±SE) for both direct effect and 

indirect effects using Model 51 

Parameter Neck BMS Body BMS5 Tail BMS Total BMS 

2ˆ
DA

 

0.26 ± 0.11 0.37 ± 0.14 0.34 ± 0.13 2.95 ± 0.90 

SDA ,
̂

 

0.12 ± 0.04 0.27 ± 0.05 0.21 ± 0.04 1.97 ± 0.30 

2ˆ
SA

 

0.18 ± 0.04 0.27 ± 0.06 0.14 ± 0.04 1.6 ± 0.32 

 
22 ˆ
TA

  
1.65 ± 0.25 2.56 ± 0.56 2.19 ± 0.30 19.13 ± 2.40 

DSAr̂
 

0.55 ± 0.22 0.67 ± 0.21 0.99 ± 0.23 0.90 ± 0.15 

s̂
3

 
0.09 ± 0.05 -0.04 ± 0.04 -0.09 ± 0.03 -0.02 ± 0.04 

2ˆ
me

 

1.40 ± 0.12 3.15 ± 0.21 2.80 ± 0.18 14.8 ± 1.01 

2ˆ
fe

 

3.07 ± 0.20 3.90 ± 0.25 6.10 ± 0.32 24.77 ± 1.54 

 24 ˆ
P  3.54 ± 0.11 4.95 ± 0.14 5.31 ± 0.16 31.09 ± 1.00 

 25 ˆ
Dh  

0.07 ± 0.10 0.07 ± 0.03 0.06 ± 0.02 0.10 ± 0.03 

26T̂  
0.47 ± 0.08 0.52 ± 0.21 0.41 ± 0.06 0.61 ± 0.08 

1Model 5 was y = Xb + ZDaD + ZSaS + Vg * s + e; 2from Equation 2 using a pen size of 3.18; 
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same sex; 4 for BMS, phenotypic variance was estimated from a separate analysis using the model y = Xb + 
e, this was done because our objective was to present a single number for phenotypic variance and 
heritability, covering both sexes since a single genetic variance was fitted covering both sexes; however, since 
our aim was to estimate the other model terms with the best fitting model, a separate analysis for phenotypic 
variance was performed; the standard errors of heritability estimates were calculated from the full model, 
averaging the residual variances for both sexes; 5although Model 4 was slightly better, we presented 

estimates obtained with Model 5 for reasons of consistency; 
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Table 7 shows the genetic correlations between BMS on different regions of the body and 

body weight. Genetic correlations were positive for all bite mark correlations (direct-direct, 

direct-indirect, and indirect-indirect). Since the bivariate analysis of total BMS with BMS 

at specific regions of the body failed to converge, total BMS was removed from Table 7. 
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However, there were small negative genetic correlations between direct effects on BMS and 

body weight, and between indirect effects on BMS and body weight, some of which were 

significantly different from zero. Hence, there is a weak indication that heavier individuals 

are less likely to get involved in aggressive interactions. 

 

Table 7 Genetic correlation estimates (±SE) between bite mark scores1 at 
different parts of the body and with body weight 
   Direct   Indirect  

  Weight2 Neck BMS Body BMS Tail BMS Neck BMS Body BMS 

Direct Neck BMS -0.29 ± 0.17      

 Body BMS -0.08 ± 0.17 0.48 ± 0.22     

 Tail BMS 0.21 ± 0.16 0.57 ± 0.22 0.57 ± 0.22    

Indirect Neck BMS -0.05 ± 0.10 0.55 ± 0.22 0.78 ± 0.19 0.89 ± 0.16   

 Body BMS -0.10 ± 0.10 0.52 ± 0.19 0.67 ± 0.21 0.68 ± 0.22 0.78 ± 0.19  

 Tail3 BMS -0.17 ± 0.10 0.60 ± 0.23 0.85 ± 0.24 0.99 ± 0.23 0.96 ± 0.21 0.99 ± 0.27 

1The analysis for total BMS did not converge and was thus omitted from this Table; 2 there was no evidence 

for IGE on body weight, thus, weight refers to the direct effect only; genetic correlation of direct total BMS vs. 

direct weight was equal to -0.28 ± 0.13 and indirect total BMS vs. direct weight was equal to -0.15 ± 0.08; 

correlation of TBV of total BMS with body weight was - 0.21 ± 0.08. 

 

3.4 Discussion 

We have provided evidence that BMS is a heritable trait, and thus can be changed by 

selective breeding. We found that both DGE and IGE contribute to genetic variation of 

BMS on all regions of the body. IGE contributed a significant proportion of the heritable 

variation available for response to selection (
2

TA ). The contribution of IGE variance to total 

heritable variation, measured by the ratio 
2 2 2( 1) /

S TA An   , ranged from 30% for tail bite 
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marks to 52% for neck bite marks, while that of DGE variance was about 16% for all 

regions of the body. Moreover, there was a strong positive correlation between DGE and 

IGE, which further increased total heritable variance. Thus, most of the heritable variation 

in BMS relates to IGE. For instance, for total BMS, the variance in IGE and the direct-

indirect genetic covariance together contributed 85% of the heritable variation. Estimated 

genetic correlations between direct and indirect genetic effects were strong and positive 

and ranged from 0.55 to 0.99, i.e. significantly different from zero, except for bite marks in 

the neck region. Thus, these results suggest that if a genotype causes an individual to bite 

more, it also leads the individual to be more bitten, which, in turn, suggests that an 

individual benefits from not harming others. 

Regarding the non-genetic random effects, the cage*sex effect fitted the data better than 

the cage effect (except for Body BMS). Ignoring cage*sex effects may cause bias in the 

estimates of the genetic parameter, which has been reported in previous studies using both 

simulated (Van Vleck and Cassady, 2005) and real data (Bijma et al., 2007a). Without 

fitting cage*sex effects, the estimated variance in both the DGE and the IGE was about 7% 

lower in our data, indicating a minor effect. This makes sense since the cage*sex effect was 

not very significantly different from zero. 

Both cage and cage*sex effects improved the AIC of the traditional model (Model 3). In 

contrast, when IGE were included in the model, cage effect did not improve the fit of the 

model. This suggests that IGE are included in the cage variance when they are not 

accounted for. We included a cage*sex random effect to allow for stronger interactions 

between individuals of the same sex within a cage (this was expected based on knowledge 

of behaviour in mink) (Gerell, 1970; Birks, 1986; Dunstone, 1993). Such within-sex 

interactions might lead to systematic similarities or dissimilarities between cage mates of 
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the same sex. Although we fitted cage and cage*sex as covariances, the results are 

presented as non-genetic correlations between cage mates and between cage mates of the 

same sex, for ease of interpretation. The cage*sex correlation was close to zero for all parts 

of the body (Table 6). This result indicates that the non-genetic direct-indirect correlation 

is close to zero, since the expected value of ρs is calculated as: 

 

 

2

sex

2 2 2 2

2 2 2
,

1 2.18

DS S DS

D S D S

E E E

s

E E E E

n

n

  


   

 
 

  
  

where 
DSE  is the covariance between direct and indirect non-genetic effects, 2

DE  is the 

direct environmental variance, 2

SE  is the indirect environmental variance, n is the number 

of individuals in a cage, and nsex is the number of individuals of the same sex in a cage, 

which on average was equal to 2 in our data. Thus, in contrast to the clearly positive direct-

indirect genetic correlation (
DSAr , Table 6), the non-genetic direct-indirect correlation was 

practically zero. 

Given the strong positive direct-indirect genetic correlation, it is surprising that the non-

genetic direct-indirect correlation is near zero. However, in our data, group mates of the 

same sex were full sibs. Thus, the cage*sex correlation not only represents the non-genetic 

correlation between group mates of the same sex, but also between full sibs and those 

correlations are fully confounded in our data. The kin selection theory predicts that sibs 

show less competitive interactions (Hamilton, 1964), which agrees with observations 

reported for pigs, where members of the same family fight less compared to unrelated 

individuals (Stookey and Gonyou, 1998; Li and Johnston, 2009). Hence, the apparent 

difference between the genetic and non-genetic correlations between direct and indirect 

effects may be due to the fact that information on the non-genetic correlation depends 
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completely on interactions between siblings in our data. The estimated direct-indirect 

genetic correlation, in contrast, includes interactions among non-kin. 

By including the cage*sex correlation, we have, at least partly, accounted for non-genetic-

indirect effects that depend on relatedness. However, the indirect genetic effects may also 

differ between kin and non-kin. Hence, estimated parameters for DGE and IGE may 

depend on group composition with respect to relatedness. This has proven to be a complex 

issue that we will explore in a future study. 

The direct-direct genetic correlations for BMS on different regions of the body were 

positive (Table 7), which suggests that an individual that is less bitten on one part of its 

body is also likely to be less bitten on the other parts of its body. The direct-indirect genetic 

correlations for BMS on different regions of the body were also positive, which indicates 

that an individual that is less bitten on one part of its body is less likely to bite other parts 

of the body of its cage mates. Finally, the indirect-indirect genetic correlations for BMS 

were also positive, which implies that an individual that bites more or less one part of the 

body of its cage mates will also bite more or less the other parts of the body of its cage 

mates. We also investigated the genetic correlations between weight and direct and 

indirect effects on BMS, but found no significant correlations. Thus, selecting for increased 

size (larger pelts) animals, which implies increased weight, is not expected to lead to more 

biting. 

Our findings suggest that it is possible to select mink that have a considerably lower level 

of biting. Irrespective of the selection strategy, response to selection is always equal to the 

product of the intensity of selection, the accuracy of selection, and the standard deviation 

of total heritable variation, 
TAiR   (Bijma, 2011). For instance, for total BMS, 

TA  is 

equal to 4.36 and the mean of total BMS is equal to 6.47, which means that the current 
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total level is only 1.48 genetic standard deviation away from zero. Even with a low accuracy 

and a moderate intensity, we can produce mink that have a significantly lower level of 

biting. For instance, with mass selection for total bite marks, which would require 

recording BMS on live animals, the accuracy is (Ellen et al., 2007) 

   2 2

,

1 1
,

T D DS

T

A A A

T IS

A P

r r n  


 

       

 

which equals ~0.4 based on our estimates. Then, if 10% of the population is used for 

breeding to have an intensity of selection equal to 1.76, the predicted response to selection 

will be equal to ~3.07 and the total BMS is predicted to reduce from ~6.47 to ~ 3.4, which 

is a very substantial reduction in a single generation of selection. When using group 

selection for groups of four sibs, two males and two females that all belong to the same 

family, it is possible to reach an even higher accuracy i.e. ~ 0.65, and thus the predicted 

response to selection will be ~5. Using sib selection, which is more appropriate for bite 

marks since they are recorded on the pelts of dead individuals, the predicted accuracy will 

be equal to ~ 0.54 and the response to selection to ~4.14. Thus, total BMS will be reduced 

from ~6.47 to ~ 3.33, again a very substantial reduction in a single generation of selection. 

In 2011, on average, the difference in total BMS between the selected and control lines was 

4.5 in both sexes, which is in reasonable agreement with the range of predicted responses. 

Thus, although in practice response to selection is usually lower than the theoretical 

predicted value, our results indicate that it is possible to select mink that have a 

considerably lower level of biting in a few generations. 
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3.5 Conclusion 

In summary, we confirm the hypothesis that both DGE and IGE contribute to variation in 

number of bite marks in group-housed mink. Since IGE contribute a substantial amount of 

heritable variation, genetic selection can reduce bite marks and possibly aggressive 

behaviour in group-housed minks. Including IGE in selection designs would ensure a more 

efficient selection against bite marks. 
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Abstract 

Social interactions among individuals are abundant, both in wild and domestic 

populations. With social interactions, genes of an individual may affect the trait values of 

other individuals, a phenomenon known as Indirect Genetic Effects (IGEs). IGEs can be 

estimated using linear mixed models. Current IGE-models assume that individuals interact 

equally to all group mates irrespective of relatedness. Kin selection theory, however, 

predicts that an individual will interact differently with family members vs. non-family 

members. Here we investigate kin and sex–specific social interactions in group-housed 

mink. Furthermore, we investigated whether IGEs depend on relatedness between 

interacting individuals or on their sex. In conclusion, our results indicate that male mink 

show different non-genetic interactions than female mink. Moreover, we have shown how 

estimates from a family-based model can be translated to the ordinary direct-indirect 

model, and vice versa. We find no evidence for genetic differences in interactions among 

related versus unrelated mink. 

 

Key words: Indirect genetic effect, kin recognition, social interaction, mink
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4.1 Introduction 

Social interactions are common in plants and animals, and are caused by mechanisms such 

as limited resources, social dominance, or maternal effects (Frank, 2007). Because of social 

interactions an individual’s genes may affect trait values of its social partners, a 

phenomenon known as Indirect Genetic Effects (IGE, (Griffing, 1967; Moore et al., 1997). 

 

IGEs can be estimated using linear mixed models, by fitting a direct genetic effect for the 

individual producing the phenotype record, and an IGE for each of its social partners 

(Arango et al., 2005; Muir, 2005; Bijma et al., 2007a). However, the current models 

assume that individuals express the same IGE to each of their social partners. This 

assumption may not be correct when there are systematic differences between group 

mates. Individuals may, for example, interact differently with family members vs. 

strangers, or with males vs. females (Alemu et al., 2014a).  

 

An individual may interact differently with family vs. non-family members because of kin 

recognition. Kin recognition is a preferential behavior to family members or familiar 

individuals compared to unrelated or unfamiliar individuals. Kin recognition occurs for 

instance, in social insects (Hepper, 1986), in Blanding’s ground squirrels and Richardson’s 

ground squirrels (Sheppard and Yoshida, 1971; Holmes and Sherman, 1982), in fish 

(OLSEN 1989; BROWN and BROWN 1996; OLSEN et al. 1998), in large mammals, such as pigs 

(Stookey and Gonyou, 1998; Li and Johnston, 2009), and in plants (Biedrzycki and Bais, 

2010). Thus kin recognition is common in both animals and plants (Holmes and Sherman, 

1982; Hepper, 1986; Olsen, 1989; Biedrzycki and Bais, 2010). 
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Differential interactions with different sexes may result from sexual selection. Sexual 

selection is natural selection arising through preference of one sex for certain 

characteristics in individuals of the other sex (Darwin, 1874; Thom et al., 2004). In mink, 

there is a clear difference in size between males and females, which may arise from sexual 

selection (Darwin, 1874; Thom et al., 2004; Zuffi et al., 2011). Thus, interactions between 

members of the same sex may be more important than between members of different 

sexes. Therefore, when estimating indirect genetic effects it is important to take in to 

account differential interactions due to kin or sex.  

 

Alemu et al. (2014b) found substantial IGEs for bite mark traits in group-housed mink. 

They found a strongly positive genetic correlation between direct and indirect effects, but a 

near zero environmental correlation between direct and indirect effects on full-sib group 

mates of the same sex. These results suggest that biting behaviour in mink may depend on 

relatedness or sex of the individuals. Alemu et al. (2014b) however, did not investigate the 

genetics of kin or sex specific interactions. They did consider sex-specific non-genetic 

interactions by fitting a covariance between group mates of the same sex. However, this 

covariance was assumed to be the same for both sexes, suggesting that interactions 

between males are similar to those between females.  

 

In a theoretical study, Alemu et al. (2014a) proposed a model to investigate kin-specific 

genetic interactions, which distinguished between genetic effects on kin (including self) 

and strangers (referred to as the “reduced model” in the following). They showed that total 

breeding values and indirect genetic effects on strangers can be estimated using either the 

reduced model or the traditional direct-indirect model. When interactions depend on kin, 

however, the traditional model gives biased estimates for the direct genetic variance and 
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the direct-indirect genetic correlation. Alemu et al. (2014a) did not clarify the relationship 

between estimates from both models, nor how estimates from the traditional model can be 

converted to the reduced model.  

 

Here we investigate kin and sex–specific social interactions in group-housed mink. We 

apply both the traditional direct-indirect model, and the reduced model of Alemu et al. 

(2014a), and show how estimates of both models are related. We also investigate the 

presence of sex or kin-specific non-genetic interactions in mink, by allowing for a sex-

dependent non-genetic covariance between group mates. We discuss the interpretation of 

such effects, and the need to fit them to avoid bias in the genetic estimates.  

 

4.2 Materials and methods  

4.2.1 Materials 

Aggressive behavior in mink results in bite marks (EC 2001; Moller et al., 2003; Hansen 

and Houbak, 2005). Those bite marks can be recorded by visual observation of injuries or 

scars on the skin on live animals, or on the dead bodies at pelting, or as the number of bite 

marks on the flesh side of the skin, just after fleshing during the pelting process. We used 

bite marks recorded at pelting as an indirect measure of the aggressive behavior an 

individual received over its life time.  

 

Bite marks were collected on mink that were part of a selection experiment started in 2009 

at the mink farm at Research Centre Foulum in Denmark, with the objective to reduce the 

number of bite marks. We analysed data from the first three generations of this 

experiment. A total of 1969 mink descending from 136 sires and 349 dams were used in 

our analysis. Two male siblings and two female siblings were placed in 2 storey cages in 
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years 2009, 2010, and 2011. The female siblings were unrelated to the male siblings within 

the same cage, but most individuals had siblings present in another cage. The number of 

records on some of the cages was reduced to three or two, mainly because of loss of id, and 

partly due to injury or death. Overall we had data from only 2 of the 4 mink from 212 

cages, from 3 mink from 85 cages, and from all 4 mink from 325 cages.  

 

Individuals were pelted in November 2010, December 2011, and December 2012. At 

pelting, the number of bite marks was recorded at the skin side of the pelt. The number of 

bite marks was subjectively scored on the scale described in Table 1, and expressed as a 

bite mark score (BMS). Bite marks were scored in the Neck (from nose tip to 

shoulder/front leg), Body (from shoulder to 10 cm above the base of the tail) and Tail 

region (from 10 cm above the base of the tail, incl. back legs). Total BMS was computed as 

the sum of these three scores. We log-transformed the data after adding 100 to each 

observation, which improved the normality slightly (Alemu et al., 2014b).  
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Table 1 Bite mark score (BMS) used for subjectively measuring the number of 

bite marks at pelting  

 

 

  

BMS 

Number of bite 

marks 

0 0 

1 1-5 

2 6-10 

3 11-15 

4 16-20 

5 21-25 

6 26-30 

7 31-35 

8 36-45 

9 More than 45 
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Table 2 Mean (standard deviation) of BMSs per sex1  

Trait Males Females 

Neck BMS 1.34 (1.60)  2.72 (2.32)  

Body BMS 2.16 (2.32)  2.26 (2.54) 

Tail BMS 1.53 (1.95) 2.92 (2.97) 

Total BMS 5.02 (5.10) 7.88 (6.66)  

 

1The number of records on males was 991, and the number of records on females was 978. 

 

4.2.2 Statistical models 

First the data were analysed using the GLM procedure in R, to decide which fixed effects 

should be included. The fixed effects of year, sex, number of individuals in a cage (group 

size), and the linear regression on the proportion of male cage mates, referred to as the 

social sex effect, were included in the model. Next, genetic parameters were estimated with 

residual maximum likelihood and animal models (Henderson, 1975), using ASReml 

(Gilmour et al., 2002). For all models, the matrix of additive genetic relationships, A, was 

calculated using information on five generations of pedigree, including a total of 2,806 

animals. 

 

Following the aim of this work, we compared the traditional direct-indirect genetic model 

to the reduced model proposed by Alemu et al. 2014a, and investigated the need for sex-

specific non-genetic covariances between cage members of the same sex. We compared 

four models in total. 

  

Model 1 was a traditional animal model with IGE and a random group effect, as proposed 

by (Muir, 2005; Bijma et al., 2007b), 
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g  is the cage effect variance, W is an incidence matrix linking records to cages, and e  

is a vector of residuals. We fitted different residual variances for male and female 

individuals, 
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where em is the vector of residuals for males, ef  the vector of residuals for females, 
2

me  

and 2

fe  the corresponding variances, and Im and If are identity matrices of the 

appropriate dimensions.  
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Model 2 contained a non-genetic covariance between cage mates of the same sex, rather 

than a single covariance between all cage mates, 

eVkaZaZXby  SSDD  (Model 2) 

 

,     

where k is a vector of random cage*sex effects and V an incidence matrix for sex*cage, 

with  

),(~ 2
kk σN I0k , where Ik is an identity matrix of the appropriate dimension and 2

kσ  is the 

variance of the cage*sex effect. The model term Vk accounts for non-genetic covariances 

between cage mates of the same sex, i.e., between the siblings in a cage. (In the data, 

siblings in the same cage were always either both male, or both female, see above). In 

Model 2, this covariance has the same magnitude for both sexes. All other elements are the 

same as in Model 1. Model 2 is identical to the best model of Alemu et al. (2014b; Model 5 

with results in their Table 6). 

 

Model 3 partitioned the non-genetic covariance between cage mates into a cage-effect 

common to all cage mates, and a sex-specific covariance of different magnitude for each 

sex, 

eVkWgaZaZXby  SSDD  (Model 3) 

 

.    

The genetic terms in Model 3 are the same as in Model 1. The Vk term represents a non-

genetic random effect for cage members belonging to the same sex (and thus the same 

family), with a separate variance for males and for females. Thus V is the incidence matrix 

for sex*cage, as in Model 2, and k is a vector of random effects common to the two family 
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members in the same cage, with ),(~ gN IK0k  , where Ig is an identity matrix with 

dimensions equal to the number of cages. When data are ordered by sex within cage,  
















2

2

0

0

f

m

k

k

σ

σ
K , 

subscript m denoting males and f denoting females. Other elements were the same as in 

Model 1. 

 

The 2

mkσ  and 2

fkσ  essentially represent the non-genetic covariance between cage mates of 

the same sex, and can therefore take negative values. To facilitate the interpretation of 

these estimates, we expressed them as non-genetic correlations between cage mates of the 

same sex,  

222

2

ˆˆˆ

ˆ
ˆ

mm

m

ekg

k
m

σσσ

σ
ρ


   

222

2

ˆˆˆ

ˆ
ˆ

ff

f

ekg

k

f
σσσ

σ
ρ


  

Hence, mρ̂  and fρ̂  measure the non-genetic similarity of male cage mates and female cage 

mates, respectively, on top of an overall similarity of cage mates due to the random cage 

effect. The variance of the cage effect, 2ˆgσ , represents the non-genetic covariance among 

cage mates of different sex, and will also be expressed as a correlation in the results,  
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The denominator of this expression is the average of the non-genetic variance in males and 

females. 
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Model 4 was the reduced model of Alemu et al. (2014a) with respect to genetic terms, 

which partitions genetic effects into a component due to the family (including the focal 

individual) and a component due to strangers, and includes the same non-genetic effects 

as Model 3,  

 

eVkWgaZaZXby 
uS

u
SFD  (Model 4)

 

 

    
 

where DZ  is the incidence matrix for direct genetic effects, identical to the DZ  in Model 1, 

and u
SZ  is a known incidence matrix for indirect genetic effects of cage mates belonging to 

the other family (hence, subscript u indicates “unrelated”), and Fa  and 
uSa  are vectors of 

random family breeding values and indirect genetic effects on unrelated individuals, 

respectively, with  

 AG0
a

a
















r

S

F

MVN

u

,~ ,  

in which 
















2

2

uSuFS

uFSF

AA

AA

r
σσ

σσ
G . 

Thus Model 4 does not explicitly include the IGE of the sibling of the focal individual; this 

effect is captured by the family breeding value aF. The family breeding value captures the 

sum of the direct genetic effect of the focal individual itself, and the indirect genetic effect 

of its sibling (Alemu et al., 2014a). 

 

Model 4 is equivalent to Model 3 in terms of likelihood, but partitions the genetic effects 

differently. With kin or sex specific interactions, genetic estimates from Models 1 through 3 
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are a mix of genetic effects on the same family and on strangers, whereas Model 1 groups 

genetic effects by family (Alemu et al., 2014a). With respect to the non-genetic model 

terms, a comparison of Model 2 to either Model 3 or 4 will test whether individuals interact 

systematically different depending on their sex or family relationship to cage mates.  
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Table 3 Model comparison using likelihood and AIC1 

  Neck BMS Body BMS Tail BMS Total BMS 

Model # 

Param. 

Log L AIC Log L AIC Log L AIC Log L AIC 

1 12 -17.99 31.98 -5.77 7.54 -10.14 16.28 -5.43 6.86 

2 12 -16.16 28.32 -5.61 7.22 -6.87 9.66 -4.98 5.96 

3 14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

42 14 -0.93 1.86 -5.65 11.30 -2.14 4.28 -3.40 6.80 

 

1AIC and likelihood value of best model according to AIC was set to zero as reference. AIC = 2× # parameters 

– 2 × log-likelihood; thus smaller values indicate a better model. 2Model 3 and 4 are statistically equivalent in 

theory. Differences in likelihood originate probably from deviations of normality.
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Heritable variation 

For Models 1, 2 and 3, total heritable variation available for response to selection is given 

by (Bijma et al. 2007a) 

2222 )1()1(2
SDSDT AAAA nn   . 

For Model 4, total heritable variation is given by Alemu et al. (2014a) 

.22
4

122

uSuFSFT AAAA σnσnσσ   

For all models, total heritable variation was expressed relative to phenotypic variance, 

using 

2

2
2

P

ATT



  , 

to facilitate easy comparison with ordinary heritability (Bergsma et al. 2008). 

 

Relationship between the reduced and the traditional IGE model 

Traditional IGE-models (Models 1 through 3) yield estimates of the direct and indirect 

genetic (co)variances, 2

DAσ , 
DSAσ  and 2

SAσ . The reduced IGE-model (Model 4), in contrast, 

yields estimates of the family-variance, 2

FAσ , the variance of IGE on unrelated individuals, 

2

uSAσ , and their covariance, 
uFSAσ . The relationship between those estimates can be derived 

using Equations 12 and 16 of Alemu et al. (2014a). The result shows that estimates for the 

reduced model can be calculated from those of the traditional model, using 

22
2

122 )1()2(
SDSDF AAAA σnσnσσ   

2
2

1 )1(
SDSuFS AAA σnσσ   

22

SuS AA σσ  , 

and vice versa, 
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22
2

122 )1()2(
uSuFSFD AAAA σnσnσσ   

2
2

1 )1(
uSuFSDS AAA σnσσ   

22

uSS AA σσ  . 

Therefore, when the non-genetic effects in the model are the same, all genetic parameters 

of the reduced model are linear combination of the traditional IGE model, and vice versa. 

Furthermore, the likelihoods of both models are identical (Alemu et al., 2014). Thus, the 

reduced model and traditional IGE models are statistically equivalent. We validated the 

equivalency of both models using simulated data, and found exact agreement (Results not 

shown).  

  

 

 

4.3 Results and Discussion 

Mean BMS were higher in females than in males, for all body regions (Table 2). The fixed  

year effect was significant for all traits. Effects of sex and group size were significant for 

bite mark traits, except for body bite marks. Effects of social sex were significant for tail 

and total bite mark traits. 

 

Models 3 & 4 were statistically superior over Models 1 & 2 when compared based on 

likelihood and AIC (Table 3). Thus the model term for sex-specific non-genetic interactions 

was statistically significant. This result indicates that non-genetic interactions among male 

siblings differ from non-genetic interactions among female siblings in mink. Hence, 

estimation of genetic parameters for group-housed mink should take such systematic 

interaction into account.  
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Though Models 3 & 4 are theoretically equivalent in terms of likelihood, they produced 

somewhat different likelihoods. When data were simulated under multivariate normality, 

however, they produced identical likelihoods (Alemu et al., 2014b). Hence, the difference 

in likelihood is probably due to deviations of the data from normality (See Alemu et al. 

2014b for histograms of residuals). 

 

Table 4 shows estimated parameters from Model 4. Estimated total heritable variance 

from Model 4, 2ˆ
TAσ , was ~22% smaller than the corresponding estimate from Model 2 

(15.00 vs. 19.13; estimates from Model 2 are shown in Table 6 of Alemu et al. 2014b). This 

suggests that a model ignoring the sex-specific interaction among cage mates may result in 

overestimated genetic variance. Previous studies also showed that estimation of genetic 

parameters for indirect effect is sensitive to non-genetic terms in the model. Van Vleck and 

Cassady (2005) observed this in simulated data, and Bijma et al. (2007b) in data on 

mortality in laying hens. When we omitted both the cage and the cage*sex random effects, 

the estimated total heritable variation for total BMS was 83 % higher than with Model 4.  
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Table 4 Estimated parameters from Model 4 

 

Parameter Neck BMS Body BMS Tail BMS Total BMS 

2ˆ
FAσ  

0.52±0.14 0.93±0.22 0.75±0.18 5.20±1.12 

uSFAσ ,
ˆ  0.24±0.06 0.40±0.1 0.25±0.06 2.17±0.47 

2ˆ
uSAσ  

0.15±0.04 0.27±0.07 0.11±0.04 1.13±0.31 

uSFAr ,
ˆ

 
0.86±0.13 0.80±0.10 0.86±0.15 0.89±0.10 

1 2ˆ
TA  1.67±0.38 2.91±0.0.59 1.81±0.40 15.00±2.95 

̂  0.05±0.04 0.03±0.06 0.06±0.04 0.08±0.05 

m̂  0.00±0.04 -0.10±0.07 -0.13±0.05 -0.07±0.06 

f̂  0.40±0.05 0.08±0.08 0.01±0.08 0.20±0.06 

2ˆ
me  1.30±0.12 3.12±0.26 2.66±0.21 11.21±1.1 

2ˆ
fe  2.30±0.19 3.57±0.29 5.68±0.41 16.6±1.43 

2 2ˆ
P  3.50±0.11 4.95±0.16 5.29±0.17 28.00±1.00 

2T̂  0.48±0.14 0.59±0.14 0.33±0.80 0.54±0.11 

 

1We used n = 3.18 to calculate the TBV. 2Phenotypic variance was calculated in a separate analysis using the model

eXby  . The reason is that we wanted a single number for phenotypic variance and heritability, covering both 

sexes, because also a single genetic variance was fitted covering both sexes. As we didn’t want to estimate the other model 

terms assuming same residual variance for both sexes, we fitted a separate model for phenotypic variance.
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The estimated genetic correlation between the family breeding value and the IGE on 

unrelated individuals, 
uF SAr , , was strongly positive. For total BMS, the estimate was very 

similar to the estimated direct-indirect genetic correlation from Model 2, which does not 

distinguish between kin and non-kin (0.89 in Table 4 vs. 0.90 in Table 6 of Alemu et al. 

2014b). Hence, this result suggests that there is little difference in genetic interactions 

among kin vs. non-kin in mink. Thus, though such differences may be expected based on 

kin selection and/or selection theory, we find no indications for them.  

 

The random group-effect, as measured by the non-genetic correlation between cage mates, 

ρ̂ , was not significantly different from zero. For neck BMS, there was a clear difference 

between the non-genetic correlation between male vs. female cage mates; 04.000.0ˆ mρ  

whereas 04.040.0ˆ fρ . This result suggests that females fight in a reciprocal way, 

resulting in a similar number of neck bite marks in both female cage members. As total 

BMS is the sum of BMS of the three body regions, this difference for the neck region also 

resulted in different correlations for total BMS. Overall, this result shows that female cage 

mates tend to be similar for non-genetic reasons, whereas there was no such similarity for 

male cage mates. 

It is an integral part of mating behaviour of males to bite (and thus hold) females in the 

neck. Non-genetic differences in mating behaviour among males would result in non-

genetic correlations among females, whereas genetic differences in mating behaviour 

would have resulted in genetic differences in interactions (Robert 1952). 

 

In conclusion, our results indicate that male mink show different non-genetic interactions 

than female mink, and that ignoring this difference may inflate estimated genetic variance. 

Moreover, we have shown how estimates from a family-based model can be translated to 
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the ordinary direct-indirect model, and vice versa. We find no indications for genetic 

differences in interactions among related versus unrelated mink. 
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Abstract 

Mortality due to cannibalism is an economic and welfare problem in laying hens. Beak 

trimming and genetic selection are two strategies to reduce mortality and to increase 

survival time. Genetic selection becomes more efficient by taking into account heritable 

variation originating from social interaction. Social interactions may lead to so-called 

Indirect Genetic Effects (IGE), which are heritable effects of an individual on trait values of 

others. Though there is a considerable heritable variation in survival time when the 

contribution of IGE is included, genetic improvement of survival time in laying hens is still 

challenging for the following reasons. The heritability of the trait even with IGE is still 

limited, ranging from 0.06 to 0.26, and the individuals that are still alive at the end of the 

recording period are censored. Furthermore, survival time records are available late in life 

and only on females. Thus, we need new genetic tool such as genomic selection to cope 

with these challenges. Here we tested the hypothesis that genomic selection increases the 

accuracy of estimating the breeding value compared with parental average and the 

response to selection for the survival time compared with a traditional breeding scheme in 

two lines of brown layers showing cannibalism. We also tested the hypothesis that the rate 

of inbreeding per generation for genomic selection is lower compared with the traditional 

breeding scheme. Genetic parameters and breeding values were estimated using residual 

maximum likelihood with an animal model, using the programme BLUPF90. Response to 

selection and rate of inbreeding were predicted using the programme SelAction. The total 

genetic standard deviations in genomic EBVs were around 20 days for both lines, 

indicating good prospects for selection against mortality due to cannibalism in these brown 

layer lines. The accuracy of the EBV was increased by 35% when we included the marker 

information, when compared to the parent average EBV in both lines. The response to 

selection using genomic information was substantially higher than with the traditional 

breeding scheme for line B1 and slightly higher for line BD. The higher response in B1 line 
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for genomic selection is due to higher linkage disequilibrium. The predicted rate of 

inbreeding per generation was substantially lower for genomic selection than for the 

traditional breeding scheme for both lines. Our results show that genomic selection is a 

promising tool for the improvement of socially affected traits.  

 

 

Key words: socially affected trait, survival time, ssGBLUP, genomic selection, response to 

selection 
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5.1 Introduction 

Mortality due to cannibalism is an economic and welfare problem in laying hens. As a 

consequence, survival time is reduced (Blokhuis and Wiepkema, 1998). Beak trimming and 

genetic selection are two strategies to reduce mortality and to increase survival time. 

Genetic selection has been implemented to increase survival time; however, responses to 

selection have been limited, partly because the heritability of the trait is low (around 0.02 

to 0.10) which leads to low accuracy (Ellen et al., 2008). Moreover, survival in laying hens 

showing cannibalistic interactions depend on social interactions among cage mates, and 

this interaction may have a heritable component (Griffing, 1967; Muir, 1996; Muir, 2005; 

Bijma et al., 2007a). Ignoring the heritable components due to social interactions 

contributes to the low accuracy and low response to selection, and may even cause a 

negative response to selection (Griffing 1967). 

Recently, genetic selection methods have become more efficient by taking into account the 

additional heritable variation created by social interactions among cage mates (Craig and 

Muir, 1996; Muir, 1996; Arango et al., 2005; Ellen et al., 2008). In laying hens showing 

cannibalism, social interactions increase the heritable variation two to five times compared 

to the classical direct additive genetic variance (Ellen et al., 2008; Peeters et al., 2012). 

Though there is a considerable heritable variation in survival time when the contribution 

of IGE is included, genetic improvement of survival time in laying hens is still challenging 

for two reasons. First, heritable variation of the trait even with IGE is still low (proportion 

of total heritable variation to phenotypic variation 0.06 to 0.26), and some of the 

individuals are censored (Ellen et al., 2008; Peeters et al., 2012). Second, and more 

important, survival time records are available later in life and available only in females. 

Furthermore, breeding females are kept in single bird cage which makes that for survival 

time own performance for females is not available. Thus, selection of females is based on 
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pedigree and sib information which leads to limited accuracy. We have to rely on 

information of relatives for males, mainly on progeny information which leads to long 

generation interval for males. Consequently, the response to selection for survival time will 

be low. Thus, we need a new genetic tool such as genomic selection to increase response to 

selection. 

Currently, breeding programmes for laying hens are also changing from progeny testing to 

genomic selection and this is mainly for response in egg number. The response to selection 

per year for egg number using genomic selection is expected to be higher than progeny 

testing. A relevant question is whether this will also work for survival time in cannibalistic 

laying hens is when using genomic selection compared with the traditional breeding 

scheme. In the following “traditional breeding scheme” refers sires are selected based on 

progeny testing and dams are selected based on sib information and pedigree information. 

Genomic selection is a genetic selection method in which genetic markers covering the 

whole genome are used so that all quantitative trait loci are in linkage disequilibrium at 

least with one single nucleotides polymorphism (SNP) (Meuwissen et al., 2001). Genomic 

selection increases the response to selection compared with traditional breeding for the 

following reasons. Genomic selection may increase the accuracy of estimating the breeding 

values, particularly when compared with the parent-average EBV (Gonzalez-Recio et al., 

2009; Hayes et al., 2009b; Daetwyler et al., 2010a) and genomic selection can reduce the 

generation interval compared to e.g. schemes based on progeny testing. Thus, genomic 

selection schemes may result in higher response to selection per year compared with 

traditional breeding programs. For instance, in dairy cattle the genetic gain is increased by 

a factor of ~2 (Schaeffer, 2006).  
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Genomic selection can be implemented using GBLUP that uses a relationship matrix 

derived from a genome-wide markers (Zhang et al., 2007; VanRaden, 2008). In this 

method, we estimate the genomic breeding values using individuals that are both 

genotyped and phenotyped. However, we often do not have genotypes for all phenotyped 

individuals. Exploiting these non-genotyped but phenotyped individuals is one of the 

challenges of genomic selection. Recently, single-step genomic BLUP (SSGBLUP) has been 

developed. This procedure combines the relationship matrix derived from the pedigree (A) 

and from genome wide markers (G) into a single relationship matrix (H) that allows for 

genomic selection in a single step (ssGBLUP; (Legarra et al., 2009; Aguilar et al., 2010; 

Christensen and Lund, 2010). The accuracy of predicting breeding values with correct 

blending for ssGBLUP is higher than with GBLUP and BLUP (Christensen et al., 2012). In 

conclusion, when the population consists of a substantial number of non-genotyped but 

phenotyped individuals, ssGBLUP is a promising method to use as it utilizes all available 

information. 

Genetic selection with IGE coupled with genomic information may increase the survival 

time for layers compared with pedigree-BLUP. This can be tested by comparing the 

accuracy of estimated breeding values for survival time using genomic selection vs. 

pedigree-BLUP. More importantly, it can be tested by comparing the responses to selection 

and rates of inbreeding using genomic selection vs. a traditional breeding scheme. The aim 

of this paper is therefore to investigate whether genomic selection increases the accuracy of 

estimating breeding values compared with pedigree-BLUP for survival time in two 

crossbred brown layers, with the data currently available. Furthermore, we investigate 

whether genomic selection increases response to selection per year compared with a 

traditional breeding scheme. Finally, we investigate whether genomic selection reduces the 

rate of inbreeding per generation compared with a traditional breeding scheme. 
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5.2 Materials and Methods 

5.2.1 Population and pedigree 

Data were provided by the Institute de Sélection Animale B.V., the layer breeding division 

of Hendrix Genetics. Sires were mated to approximately 8 dams and each dam produced 

~five males and ~five females offspring. 19,755 crossbred laying hens had B1 as sire line, 

and 10,910 had BD as sire line (the crosses and their number are given in Table 1). Of each 

crossbred individual, only the sire ID was recorded; dam IDs were unknown. 

Table1: Number of individuals per different combination of crosses  

cross(♂x♀) Number of 
individuals 

Line 

B1 × BA 3,570 B1 

B1× BB 1,270 B1 

B 1× BD 5,735 B1 

B1× BE 1,365 B1 

B1× BF 4,715 B1 

B1× BH 3,100 B1 

BD× B1 790 BD 

BD× B5 5,415 BD 

BD× B6 4,705 BD 

 

 

 

Post-hatching, the chicks were wing-banded, sexed, and vaccinated for infectious 

bronchitis and Marek’s disease. Their beaks were kept intact. At approximately 17 weeks of 
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age, each batch was placed in a different laying house. Five paternal half sibs were placed 

in a cage. Nine commercial crosses were produced. 

The trait of interest, “survival time”, was defined as “the number of days from the start of 

the laying period till either death or the end of the experiment”. We have different 

censoring moments for different batches and it is therefore necessary to set a limit (Table 

2). We avoided to set either the youngest age group to the maximum number of survival 

time or taking the oldest age group as the maximum number of survival time. In both 

cases, many individuals will be censored or removed. For example for BD line in Table 2 if 

we take 351 as cut of point then all individuals with survival time >= 351 will be censored 

which is more than 80% of individuals are censored. On the other hand if we take 413 as 

cut of point, we need to remove the other two batches because those individuals will have 

unknown survival time which means we lose88 % of the data. Therefore, for BD line we 

took 372 as cutting point so that 57% of the individual are censored, and we lose 45% of the 

data which is optimal compared with the other cutting points. We did the same for B1 line. 

Finally in BD line we removed cages which do not have five individuals. For BD line we 

have about 70 cages which had four individuals and 11 cages which had 3 individuals, and 

we removed these cages. For line B1 all cages had five individuals.  



5 Genomic prediction for brown layers 

   

136  
 

 

  

Table 2: Number of individuals (No ind) censored at different censoring 

points for line BD 

Batch No ind No indi>=351 No indi>=372 No ind >= 413 

201042 5122 2461 0 0 

201182 4786 2859 2774 0 

2009191 6437 3805 3705 3567 

 

 

5.2.2 Genomic data  

Quality control 

Genotypes were available on part of the sires. Out of 509 B1 sires, 207 were genotyped, and 

out of 284 BD sires 234 were genotyped, both with 60k SNP chips. The following quality 

controls were undertaken in the programme. Markers were excluded with call rate ≤0.90 

or, with a minor allele frequency ≤2%. (Based on cross validation, this gave the highest 

accuracy of EBVs compared with values of 0.01, 0.03, 0.04, and 0.05). SNPS with a 

deviation of 2 ≥ 600 from Hardy-Weinberg equilibrium were excluded. Overall, we had a 

total of about 35k SNP satisfying all the criteria in both lines. 

Data analysis 
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To decide which fixed effects should be included in the model to estimate the genetic 

parameters, data on survival time were analysed using GLM procedure in R. The fixed 

effects of batch, cross and the interaction term for each laying house*row*level were fitted. 

We fitted a traditional sire model, with a “direct” sire effect only. Data on both sire lines 

were analysed separately. Because cages consist of full sibs, the sire effect captures the 

total sire effect, rather than the classical (direct) sire effect. In other words, when cages are 

composed of relatives, the EBV from an ordinary sire model is an estimate of the total sire 

effect, including both direct and indirect genetic effects, and the estimated additive genetic 

variance is an estimate of the total genetic variance, rather than of the classical direct 

additive genetic variance. This is explained in detail in (Peeters et al., 2013). The model 

was  

eZuWgXby  , 

where y is a vector of survival times, X is the incidence matrix for fixed effects, b is the 

vector of fixed effects including cross, batch, and an interaction term for each laying 

house*row*level, which was included to correct for infrastructural effects (e.g., differences 

in light intensity). The g is a vector of random group effects, with  2,0~ ggN Ig  , 
gI  is an 

identity matrix of the appropriate dimension, W an incidence matrix for cage effect , 2

g  is 

the group variance, and Z is an incidence matrix for additive sire genetic effect, u is vector 

of sire effects and e  is a vector of residuals. 

 

Model 1 was pedigree-BLUP, where the breeding value was assumed normally distributed 

as:  2,0~ uN Au , where A is the genetic relationship matrix derived using the pedigree 

information and five generations of pedigree was included to calculate A. where 2

u  is the 

additive genetic sire variance 
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Model 2 was SSGBLUP, where the breeding value was assumed normally distributed as 

 2,0~ uN Hu , H is the relationship matrix that combines both pedigree and marker based 

genomic relationships, 
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where 
11A  is the sub-matrix of the pedigree based relationship matrix ( A ) for genotyped 

animals only, 
22A  is the sub-matrix of A  for non-genotyped animals, 

12A  and 
21A  are the 

sub matrices of A  for the relationship between genotyped and non-genotyped animals, 

  11ω AGG   1  where ω  is the weight which is the default value of the software 

PreGSf90 (0.95)(Aguilar et al., 2011)  

The inverse of the H  is (Aguilar et al., 2010; Christensen and Lund, 2010) 
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G and H are calculated using preGSf90 (Aguilar et al., 2011). The allele frequencies of the 

current population were used for the calculation of G. G and A are constructed to have the 

same base population. It is constructed using, mean diagonal of (G) equals mean diagonal 

of (A11) and mean off diagonal of (G) equals mean off diagonal of (A11) (Aguilar et al., 

2011). Genetic parameters and breeding values were estimated using residual maximum 

likelihood with an animal using the programme BLUPF90 (Misztal, 1997; Misztal, 2013). 

5.2.3 Cross validation  
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We considered two scenarios for breeding value estimation. In the first scenario both 

genotyped and non-genotyped sires were used as reference population. In the second 

scenario only genotyped sires were used as reference population. We compared the 

accuracy of predicted breeding values for the two models, pedigree-BLUP and ssGBLUP 

using cross validation. We randomly sampled approximately twenty percent of the 

genotyped sires (n = 207 for B1 and n = 234 for BD) without replacement, to produce five 

mutually exclusive validation data sets. For each validation data set, the remaining 80% of 

the data set served as a training data set. The breeding values for all individuals were 

estimated using the training data set. 

The use of cross validation requires observed phenotypes on the individuals in the 

validation data set. However, part of the individuals were censored, and records were 

available on offspring, whereas EBV were predicted on sire. Therefore, the following steps 

were undertaken to estimate the Spearman correlation between true breeding value and 

estimated breeding value.  

First the observed phenotypes were adjusted for fixed effects, using a linear model

 eXby  . The residuals from this model served as the corrected phenotypes. Second the 

corrected phenotypes were sorted, so that the rank of censored individual followed by the 

rank of uncensored individuals. For example, assume we have 100 individuals with 30% 

censoring. Then the phenotype is known for 70 individuals, but the phenotype is unknown 

for the 30 individuals that were still alive at the end of the experiment. The individuals 

with known phenotype have known rank of 1 to 70, while the individuals with unknown 

phenotype will have rank of 71 to 100 in unknown order. We assumed that the rank of 

censored individuals was in random order. Then the expected rank correlation can be 

calculated by substituting the unknown ranks by the mean rank of censored individuals, in 

this case 85.5 (Ellen et al., 2010). Third, the rank of the sire was calculated as the mean 
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rank of its daughters. Forth, the correlation between the estimated breeding values of sires 

and the mean corrected rank of the offspring of the sires was calculated (
offs PA ,

 ). This 

procedure was repeated 5 times, once for each validation set. We calculated the standard 

error of the correlation for each validation using the following equation,  
)(

ˆ1
ˆ

2

nsqrt

r
rSE


 , 

where n refers to the number of individuals in the validation set and 2r̂  refers to the 

correlation between the estimated breeding values of sires and the mean corrected rank of 

the offspring (Stuart and Ord, 1994). The standard error over the total of the five sets was 

calculated using bivariate analysis of mean rank of corrected phenotypes for the sires vs. 

rank of estimated breeding value for the sires, with a fixed effect for validation set, using 

the ASREML software (Gilmour et al., 2002). 

Finally, accuracy of estimated breeding value (
ss AA ˆ

,

 ) is calculated by taking the ratio of 

correlation calculated from cross validation (
offs PA ,

 ) with the accuracy of progeny testing (

offs PA ,
 ). Thus,  

offs

offs

ss

PA

PA

AA

,

,

,

ˆ

ˆ



  . 

The accuracy of progeny testing was calculated using the following equation 

do

EA

d

A
A

A
PA

nn

σσ

n

σ
σ

σ
ρ

offs 222
2

2

5.025.0
25.0

25.0
, 



  
(1) 

Where nd  is  number of dams mated to a sire and no the number of offspring per dam. On 

average a sire mated 8 dams and each dam gave five offspring in both lines. 

5.2.4 Response to selection  
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Breeding programmes in laying hens are shifting from traditional progeny testing to 

genomic selection. The reason is it is expected and found that the egg number is improved 

using genomic information. Here, we want to investigate the potential of genomic selection 

for survival time in brown layer compared with a traditional breeding scheme. 

To investigate the benefit of genomic selection with the current reference population, 

response to selection and rate of inbreeding were compared between a traditional breeding 

scheme and a genomic selection scheme. Response to selection was predicted using 

deterministic simulation based on selection index theory, using the SelAction software 

(RUTTEN et al. 2002).  Response to genomic selection can be predicted by treating the 

genomic EBV as a correlated trait with full heritability (Rutten et al., 2002; Schrooten et 

al., 2005; Dekkers, 2007). SelAction predicts the response to selection and accuracy of 

selection for breeding programmes by accounting for the reduction in variance due to 

selection, known as the “Bulmer effect”. This is essential when comparing genomic 

selection and traditional breeding programs, particularly when accuracies differ 

substantially between the sexes (Dekkers, 1992; Bijma, 2012).   

 

The following inputs were used in the SelAction programme to predict response to 

selection and rate of inbreeding and these inputs were provided by Hendrix genetics (Table 

3). We used 8% of male and female for breeding for the traditional breeding scheme and 

2% of males and 8% of females for genomic selection. The generation interval for 

traditional breeding scheme for males is 1.9 and for females is 1.06 years. The generation 

interval for genomic selection for males is 0.63 and for females is 1.06 years. We used 20 

breeding males and 400 breeding females for both genomic selection and traditional 

breeding scheme. 

file:///M:/Setegn_PHD_thesis/chapter%20five/Setegn_paper4withabstract.docx%23_ENREF_31
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Table 3: Inputs used to estimate response to selection and rate of inbreeding 

using SelAction  

input Progeny testing Genomic selection 

Selection intensity for males  8 % 2 % 

Selection intensity for females 8 % 8%  

Generation interval for males 99 weeks 33 weeks 

Generation interval for females 55 weeks 55 weeks 

Information used for males  Pedigree, progeny (40) own 

Information used for females Pedigree own  

Number of sire (dam) 

 

20 (400) 20 (400) 

 

 

 

 

5.3 Results 

A significant effect on survival time was found for cross, batch, and laying house*row*level 

for both lines. The average survival time for line B1was higher than for line BD (see 

Figure1). 
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Figure 1 : Proportion of survival individuals  

 

 

 

Table 4 shows estimated genetic and non-genetic parameters. The proportion of total 

heritable variation relative to phenotypic variance, T2, was 0.18 for line B1 and 0.22 for line 

BD (Table 3). The estimated genetic variance was very significantly different from zero (P 

< 0.001). Estimated total genetic standard deviations were ~44 days for line B1 and ~ 53 

days for line BD, indicating good prospects for genetic improvement. Note that this 

estimate includes both the contribution of the direct and of the indirect genetic effects to 

total genetic variance.  
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Table 4: Estimated parameters for survival time for lines B1 and BD   

Variance 

components 

B1 line BD line  

2ˆ
e  

8,885.00±99.00     10,270.00±154.66 

2ˆ
g

 
1,084.00 ±72.00     1,431.00 ±116.50     

2ˆuσ  1,912.00±  244.19            2,739.00± 421.25     

2ˆ
P

 
10,446.00±115.61     12,386.00±187.35     

2T̂  
0.18±0.02   0.22±0.03 

2ˆ
u =     222 112

SDSD AAA nn   . Thus, 
2ˆuσ  is an estimate of total heritable variation 

 

 

Table 5 a &b shows the correlation between the estimated breeding values of sires and the 

mean corrected rank of the offspring of the sires, calculated from the cross validation. The 

correlation between estimated breeding values of sire vs. mean phenotype of the offspring 

was higher for ssGBLUP than for parental average, for both line B1 and BD and for both 

scenarios: for both genotyped and non-genotyped sires as reference population and for 

genotyped sires only as reference population. Correlations were only slightly higher when 

including non-genotyped sires in the reference population (0.37 vs 0.35 for line B1, and 

0.28 vs 0.27 for line BD). 
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Table 5a: Correlation of estimated breeding value of sire with average 

phenotype of the offspring sire (
offPA,ˆ

 ) for ssGBLUP and pedigree-BLUP for 

line B1 line for two scenarios: genotyped + non genotyped sires and genotyped 

sires only as reference population(
offPA,ˆ

 ) 

 Genotyped+ non-genotyped 

sire  

Genotyped sires 

method ssGBLUP pedigree-

BLUP 

ssGBLUP pedigree-

BLUP 

1st 20% 0.29±0.13 0.15±0.15 0.16±0.15 0.08±0.15 

2nd 20% 0.30±0.13 0.08±0.14 0.38±0.12 0.17±0.14 

3rd 20% 0.37±0.15 0.26±0.16 0.30±0.15 0.21±0.16 

4th 20% 0.48±0.12 0.42±0.13 0.44±0.12 0.43±0.13 

5th20% 0.42±0.13 0.43±0.13 0.43±0.13 0.42±013 

average 0.37±0.06 0.27±0.07 0.35±0.06 0.26±0.07 

Accuracy1  0.48±0.08 0.35±0.09 0.46±0.08 0.34±0.09 

1The accuracy of estimating the true breeding value  
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Table 5b: Correlation of estimated breeding value of sire with average 

phenotype of the offspring sire ssGBLUP vs BLUP for BD line for two 

scenarios for BD line: genotyped +non genotyped and genotyped only as 

reference population(
offPA,ˆ

 ) 

 Genotyped+ non-genotyped 

sire  

Genotyped sires 

method ssGBLUP p-BLUP ssGBLUP p-BLUP 

1st 20% 0.36±0.12 0.24±0.14 0.36±012 0.23±0.14 

2nd 20% 0.33±0.12 0.19±0.14 0.30±0.13 0.19±0.14 

3rd 20% 0.35±0.12 0.18±0.14 0.29±0.13 0.11±0.14 

4th 20% 0.14±0.12 0.18±0.14 0.16±0.14 0.18±0.14 

5th20% 0.19±0.14 0.19±0.14 0.25±0.14 0.27±0.13 

average 0.28±0.06 0.20±0.060 0.27±0.06 0.20±0.07 

Accuracy1 0.35±0.06 0.25±0.08 0.34±0.08 0.25±0.09 

1The accuracy of estimating the true breeding value  

Table 6 shows the predicted response to selection per year and rate of inbreeding per 

generation. The predicted response using genomic selection is significantly higher than the 

traditional breeding scheme response to selection for line B1, and slightly higher than the 

traditional breeding scheme for line BD. This table shows that the rate of inbreeding for 

genomic information is lower than for the traditional breeding scheme for lines B1 and BD.  
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Table 6: Predicted response to selection(R) and rate of inbreeding for both 

line B1 and BD . 

parameter B1 BD 

AA
r ˆ

1  0.48 0.35 

AA
r ˆ

2  0.35 0.25 

2T̂  0.18 0.22 

pr  0.21 0.17 

 

R traditional per year 

 

24.6 

 

30.5 

 

R genomic per year 

 

39.4 

 

34.6 

 

Rate of inbreeding per 

generation traditional  

 

2.76 

 

2.74 

 

Rate of inbreeding per 

generation  

genomic selection 

 

 

0.76 

 

0.76 

1refers genomic accuracy ,2 refers parental average accuracy and 
pr  is the phenotypic correlation and is 

calculated as 
AA

hrˆ  

5.4 Discussion 

We provide evidence that genomic selection increases the accuracy of estimating the 

breeding value for survival time in brown layers compared with the parental average 

(Table 5). More importantly, despite the currently small reference population, genomic 
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selection results in substantially higher response to selection per year for survival time in 

line B1 compared with the traditional breeding scheme. Thus, genetic selection with IGE 

coupled with marker information increases survival time for line B1, mainly by reducing 

the generation interval in males and by improving the accuracy of predicting the breeding 

values for females. The standard deviations in genomic EBVs are around 20 days for both 

lines, indicating good prospects for selection against mortality due to cannibalism in these 

brown layer lines. 

Genetic parameters: The data structure with paternal half-sibs in a cage allows us to 

estimate the linear combination of the direct genetic effect and the indirect genetic effect, 

which is the total breeding value (Peeters et al., 2013). The proportion of the total heritable 

variation to phenotypic variance for survival time was 0.18 for B1 line and 0.22 for BD line. 

Similar results for survival time were found in white layer by Ellen et al. (2008) and by 

Peeters et al. (2013) in crossbred white laying hens, who found values around 0.1 to 0.2. 

With cages composed of sibs, the contribution of direct and indirect genetic effects to the 

total genetic variance cannot be estimated (Peeters et al. 2013). Hence, these contributions 

are unknown for brown layers. In white layer lines, the indirect genetic variance 

contributed the majority of the total genetic variance (Ellen et al. 2008; Peeters et al. 

2013). 

Accuracy using cross validation: We found that the accuracy of predicting the 

breeding value is higher when we include the marker information, when compared to the 

parent average EBV. We compared two scenarios, scenario one with genotyped and non-

genotyped sires as the reference population, and scenario two with  genotyped sires only as 

reference population. In both scenarios the accuracy of predicting breeding values 

increased by 35% by including the genomic information for both lines.  
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Response to selection: the response to selection per year for traditional breeding 

scheme was about 24.6 days for B1 and 30.5 days for BD increase in survival time . For 

genomic selection it was about 39.4 days for B1 and 34.6 days for BD increase in survival 

time. Thus, using genomic selection response to selection per year increased by 60 % for B1 

and by 13 % for BD compared with traditional breeding scheme.  

The large increase in response to selection for genomic selection compared with traditional 

breeding scheme for B1 line is due to the following reason. The correlation between the 

estimated breeding value and true breeding value is higher for B1 than for BD (0.48 vs. 

0.36). The reason is that B1 shows higher linkage disequilibrium than BD.  

We estimated the genome-wide linkage disequilibrium using the following relationship,

)var(

11
2 G


LD

e
r

M  where Me is the effective number of segments in the genome, which is an 

indirect measure of linkage disequilibrium between each SNP across the genome 

(Daetwyler et al., 2008; Goddard, 2009; Daetwyler et al., 2010b). 2
LDr  refers the genome-

wide average linkage disequilibrium. Instead of using G, we used AGD  , where the 

expected value for all elements of D  is zero since G and A were constructed so that they 

had the same base. Thus, we used 
)var(

11
2

D


LD

e
r

M  because our populations consisted of 

related individuals (Wientjes et al., 2013). We found Me = 799 for B1 and Me = 1020 for 

BD. Thus, the variation in family relationship for B1 line is higher than BD and 

consequently the linkage disequilibrium in B1 is higher than BD that causes to have higher 

accuracy of predicting the breeding value even if the reference population for B1 is slightly 

lower than for BD. 
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Finally, we compared the accuracy of estimating the true breeding value from empirical 

estimates from cross validation with the theoretical value based on the formula of 

Daetwyler et al. (2008):  

gp

p

AA NhN

hN
r




2

2

2
ˆ    

2h  refers the reliability of the trait and it equals the heritability if own information is used. 

Our data is not own performance rather it is progeny information. Thus, we calculated the 

reliability which equals the square of the accuracy of progeny testing which is given in 

equation 1. PN  refers to the number of individual in the reference population and gN refers 

the the number of loci underling the trait. For our case we used eM  as measure of gN .  

We found out for B1 line 
AA

r ˆ  0.46 and for BD line 
AA

r ˆ was 0.38. We previously showed from 

cross validation
AA

r ˆ  for B1 line was 0.48 and for BD line was 0.36. Thus, there is remarkable 

agreement between the empirical cross validation and theoretical expected value based on 

Daetwyler et al. (2008) both for B1 and BD. 

Rate of inbreeding: We also compared the predicted rates of inbreeding for the genomic 

selection vs. traditional breeding scheme. We found that the rate of inbreeding using the 

traditional breeding scheme is 2.75 % increase per generation for both lines, but using 

genomic selection it is 0.77% per generation for both lines. Thus, genomic selection 

reduces the rate of inbreeding compared with the traditional breeding scheme due to the 

following reason. There is a strong Bulmer effect for genomic selection since the genomic 

estimated breeding value has a heritability of one. This reduces the correlation between 

EBV of sires and more distance relatives. Thus, the strong Bulmer effect reduces the rate of 

inbreeding for genomic selection (Bijma et al., 2000). The rate of inbreeding increases for 
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traditional breeding scheme because in traditional breeding scheme we used parental 

average estimated breeding values for females. Thus, females which originate from the 

same family have the same EBV, which leads to family selection. This family selection is 

the main reason to have high rate of inbreeding for the traditional breeding scheme.  

Overall, despite the small reference population (207 genotyped sires for B1 and 242 for 

BD) genomic selection gives a reasonable good accuracy of predicting breeding true 

breeding values compared with pedigree-BLUP. More importantly, it gives a substantially 

higher response to selection and lower rate of inbreeding compared with the traditional 

breeding scheme for line B1 and slightly higher response to selection and substantial lower 

rate of inbreeding for line BD. Thus, if the reference population increases in the future, the 

accuracy of estimating the breeding value and the response to selection will increase 

further (Hayes et al., 2009a; VanRaden et al., 2009).  
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6.1 Introduction  

Social interactions such as competition or cooperation are common both in plants and 

animals (Hamilton, 1964; Moore et al., 1997; Muir, 2005; Frank, 2007). When there are 

social interactions, the trait value of an individual may be influenced by genes of its 

interacting partners, a phenomenon known as Indirect Genetic Effects (IGE; (Griffing, 

1967; Muir, 2005). An IGE is a heritable effect of an individual on the trait value of its 

interacting partner (Griffing, 1967; Muir, 2005). A large body of literature confirmed that 

social interactions can create addition heritable variation in both plants and animals, for 

both behavioural and production traits (Moore et al., 1997; Muir, 2005; Bijma et al., 2007; 

Wilson et al., 2009; Wilson et al., 2011; Alemu et al., 2014b). 

In this thesis, we developed statistical methods to estimate IGE when interactions differ 

between kin and non-kin (Chapter two). We also investigated whether social interactions 

create additional heritable variation for bite mark traits in group-housed mink. More than 

85% of the heritable variation for total bite mark score originated from social interactions 

(Chapter three). Furthermore, we showed that IGE estimation should take into account 

systematic interactions between individuals due to their sex or kin for bite mark traits in 

group-housed mink (Chapter four). Finally, we studied the use of genomic information to 

increase survival time in poultry showing cannibalistic social interactions. We found that 

the predicted response to selection for line B1 is higher using genomic information than 

with progeny testing, and the accuracy of estimating the breeding value for lines B1 and BD 

is higher for genomic selection compared with the parent-average EBV. 

In this general discussion, I want to discuss the following five topics: 

1. Kin recognition mechanisms and kin recognition consequences for animal breeding 
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2. The use of genome wide markers to estimate IGEs when IGE differ between kin and 

non-kin  

3. IGE estimation using a trait based model when IGE differ between kin and non-kin 

4. Accuracy of estimating the total breeding value when IGE differ between kin and 

non-kin 

5. Prospects of genetic selection for reducing bite mark in group-housed mink 
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6.2 Kin recognition mechanisms 

Kin recognition is the ability of an individual to distinguish kin from non-kin and interact 

differently with kin vs. with non-kin (Holmes and Sherman, 1982; Holmes and Sherman, 

1983; Hepper, 1986; Gamboa et al., 1991). It is a widespread phenomenon in various 

species of animals. For instance, there is kin recognition in bees (Greenberg, 1979), frogs 

(BLAUSTEIN AND OHARA, 1981), spiny mice (Porter et al., 1981), pigs (Horrell and Hodgson, 

1992b; Horrell and Hodgson, 1992a), lambs (Porter et al., 2001; Ligout et al., 2002; Ligout 

and Porter, 2003), and cloned heifers in cattle (Coulon et al., 2010). There are four 

possible kin recognition mechanisms mentioned in the scientific literature. These are 

recognition based on spatial distribution, prior association, phenotypic matching and 

recognition alleles. 

 

6.2.1 Recognition based on spatial distribution: With this mechanism, an 

individual considers as kin any other individuals encountered within a given distance 

(Holmes and Sherman, 1983; Hepper, 1986). Recognition based on spatial distribution 

may evolve when individuals found in specific locations are genetically related to one 

another. For instance, individuals located in a nest may be treated as kin (Waldman et al., 

1988). I agree with Tang-Martinez (2001) that kin recognition based on spatial distribution 

should not be considered as a kin recognition mechanism, because the individual treats all 

individuals encountered in a particular area equally irrespective of their true genetic 

relatedness (Tang-Martinez (2001). 
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6.2.2 Recognition based on prior association: This is an important kin recognition 

mechanism that enables an individual to recognize familiar kin (Holmes and Sherman, 

1983; Tang-Martinez, 2001). The kin recognition process is as follow: during the rearing 

period an individual learns the phenotype of its relatives (sibs, parents). Later they use this 

learned template to distinguish these familiar relatives from newly encountered 

individuals (Holmes and Sherman, 1983; Tang-Martinez, 2001). Sibling recognition in the 

prairie vole, (Microtus ochrogaster) (Gavish et al., 1984), in the white-footed mouse 

(Peromyscus leucopus) (Halpin and Hoffman, 1987) and in the spiny mouse (Acomys 

cilicicus) (Porter et al., 1981) depends on association prior to weaning. 

Prior association may be the most important kin recognition mechanism for livestock and 

fish. In pigs, for example, sibs weaned together from birth to weaning learn the phenotype 

of their relatives (in this case sibs). Later when families are mixed at the start of the 

fattening phase, individuals fight with members of other families but not with their family 

members (Erhard and Mendl, 1997; Giersing and Andersson, 1998; Stookey and Gonyou, 

1998; D'Eath, 2004). Lambs interact differently with familiar individuals (kin) than with 

non-familiar individuals, and mainly they use prior association to recognize familiar kin 

(Porter et al., 2001; Ligout et al., 2002; Ligout and Porter, 2003). Cattle can discriminate 

the familiar herd members in learning experiments (Hagen and Broom, 2003). Laying 

hens prefer to associate with the familiar group rather than with a group of strangers 

(D'Eath and Keeling, 2003). Both cattle and laying hens most probably use prior 

association to recognize familiar individuals (D'Eath and Keeling, 2003; Hagen and 

Broom, 2003). 

A series of studies has shown kin recognition using prior association in different species of 

fish, such as sticklebacks (Gasterosteus aculeatus ) (Frommen et al., 2007) and bluegill 
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sunfish (Lepomis macrochirus) (Hain and Neff, 2006). Thus, kin recognition using prior 

association is a common phenomenon in livestock and fish. 

 

6.2.3 Recognition based on phenotypic matching: This is a useful kin recognition 

mechanism that enables an individual to recognize unfamiliar kin. The kin recognition 

process is as follow: animals learn the template of their own phenotype (Mateo and 

Johnston, 2000) and/or those of familiar kin (Sherman et al., 1997) and subsequently 

match the phenotypes of newly encountered individuals to this template (Hepper, 1986). 

The template may include visual (Cooke et al., 1972), chemical (Hepper, 1986), and 

auditory cues (Beecher, 1982). Using phenotype matching, an individual can recognise kin 

without previous experience. It is observed in Belding's ground squirrels (HOLMES, 1986), 

frogs (BLAUSTEIN AND OHARA, 1981), fish (Olsen, 1989; Olsen et al., 1998; Hesse et al., 

2012), western bluebirds (Akcay et al., 2013) and monkeys (Wu et al., 1980). Phenotype 

matching relies on correlation between phenotypic and genotypic similarity, so that 

recognizable traits are more similar among relatives than non-relatives (Holmes and 

Sherman, 1983; Gerlach et al., 2008). 

There is almost no literature on kin recognition due to phenotypic matching in livestock. I 

found one study that stated that cloned heifers might use phenotypic matching to 

recognize unfamiliar kin (Coulon et al., 2010). Cloned heifers from a specific genotype 

appeared to be more associated and interact with each other than with others (Coulon et 

al., 2010). This association could also be based on morphological and behavioural affinity 

(Coulon et al., 2010). Thus, there should be further investigation on the importance of kin 

recognition due to phenotypic matching in livestock species. 
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With respect to fish, there is some literature that shows that fish species such as Arctic 

charr (Salvelinus alpinus; (Olsen, 1989) and coho salmon (Oncorhynchuskisutch; (Quinn 

and Busack, 1985) use phenotypic matching to recognize unfamiliar kin. 

6.2.4 Kin recognition based on recognizing alleles: With this mechanism, a single 

gene or a group of genes produces a phenotypic cue such as an odor. Using these cues the 

individual will recognize similar cues in other individuals. The individual will show 

preferential treatment towards individuals that carry similar cues (Hamilton, 1964). 

Phenotypic matching and recognizing allele are more or less similar because recognition 

using recognizing allele is expressed in form of phenotype matching (Blaustein, 1983; 

Waldman, 1987). 

 

6.2.5 Consequence of kin recognition for animal breeding 

A genetic model that estimates indirect genetic effect was developed by (Griffing, 1967; 

Muir, 2005; Bijma et al., 2007a). The model assumes that an individual interacts equally 

with all group mates. This assumption may not be true in a mixed group of kin and non-

kin. In a mixed group of kin and non-kin, an individual may interact differently with kin 

vs. non-kin. In this thesis (Chapter two), we developed a statistical method that estimates 

IGEs when interactions differ between kin and non-kin. The method takes into account 

both heritable and non-heritable systematic interactions in a mixed group of kin and non-

kin. For example, the heritable systematic interactions are accounted for by modelling two 

types of IGE: IGE to kin and IGE to non-kin. The non-heritable systematic interactions are 

accounted for by modelling two types of indirect environmental effects: indirect 

environment to kin and indirect environment to non-kin. One important question I want 

to address here is the consequences of ignoring systematic interaction due to kin 

recognition or other systematic interactions factors such as sex when estimating IGEs. 
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In animal breeding, the aim is mainly improving the response to selection. The response to 

selection for socially affected trait depends on total heritable variation (Bijma, 2011). In 

chapter two, we showed that the total heritable variation can be estimated either using the 

reduced model or the usual indirect genetic effects model, regardless of whether IGE to kin 

vs. IGE to non-kin are the same or not. Thus, if an individual shows different IGE to kin 

and to non-kin due to kin recognition or due to sex, the total heritable variation can still be 

estimated. However, if an individual shows different non-genetic indirect effects to kin and 

to non-kin due to kin recognition or sex, it has a consequence for the non-genetic 

parameters of the model. Thus, ignoring non-heritable kin recognitions has an impact on 

the estimation of genetic parameters. 

 

In chapter two, we showed that the model accounts for non-genetic systematic interaction 

by fitting residual correlations for family members (kin) in a group in addition to random 

group effects. If this correlation is positive, it can be fitted easily by adding an additional 

non-genetic random effect (cage*kin) in addition to the cage effect and the residual (Bijma 

et al., 2007a). If this correlation is negative, it can be fitted by fitting residual correlations 

for family members (kin) in a group (BIJMA et al. 2007a, Chapter two). The cage*kin 

correlation represents non-heritable systematic interaction. Ignoring this parameter will 

result in biased estimates of the genetic parameters. For example, ignoring the non-genetic 

systematic interaction resulted in biased estimates of the genetic parameters for average 

daily gain in pigs (DUIJVESTEIJN 2014), for harvest weight in the gift strain of Nile tilapia 

(Oreochromis niloticus) (Khaw et al., submitted), and for bite mark traits in group-housed 

mink (Chapter three). 

One last point I want to add is that the IGE model takes in to account systematic 

interactions due to kin recognition irrespective of the mechanism of the kin recognition. 
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Thus, from animal breeding point of view it is not needed to know the mechanism of kin 

recognition. It is sufficient to know whether there is kin recognition or not. 

 

In summary, kin recognition is a widespread phenomenon in various species of 

animals. Non-heritable kin recognition can have a substantial effect on estimates 

of genetic parameters. Thus, genetic parameter estimation for socially affected 

traits should take into account non-heritable systematic interaction either due to 

kin recognition or other non-genetic systematic interaction, for example, 

systematic interaction due to sex. Ignoring the non-heritable systematic 

interactions may result in biased estimates of the genetic parameters. 
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6.3 The use of genome wide markers to estimate IGE when 

interaction differ kin vs. non-kin 

In chapter two, we showed that not all genetic parameters are statistically identifiable 

when interactions differ between kin and non-kin. We showed that a meaningful linear 

combination of genetic parameter is estimable and suggested a possible method to 

estimate all six genetic parameters. We suggested that all six genetic parameters are 

statistically identifiable in this situation when groups consist of a mix of full-sibs, half-sibs, 

and unrelated individuals. A statistically more powerful approach may come from cross-

fostering designs, where full siblings that grow up in different litters may interact as if they 

were unrelated. When cross-fostering is impossible and a mix of full and half siblings is 

unavailable, variation in relatedness among pairs of full siblings, estimated using genome-

wide genetic markers may provide a solution. Here, I discuss the estimation of all genetic 

parameters using the variation in relatedness among pair of full siblings estimated from 

genetic markers. 

6.3.2 Estimation of IGE when interactions differ between kin vs. 

strangers using genome wide markers 

Estimation of genetic parameters for direct and indirect genetic effects depends on the 

covariance between phenotypes of relatives and their social partners (Lynch and Walsh, 

1998). The degree of additive genetic covariance between relatives is expressed by the 

additive genetic relationship and is estimated from pedigree data (Odegard and 

Meuwissen, 2012). The pedigree additive genetic relationship has a limitation, as it is the 

expected relationships rather than the actual relationship (Hill, 1993; Odegard and 

Meuwissen, 2012). Thus, the same types of relatives, for example, two pairs of full-sibs, 

have the same additive genetic relationship which makes the pedigree based analysis based 
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on between family covariance. Thus, the residuals and the Mendelian sampling deviations 

of non-parents are fully confounded on the same individuals (Odegard et al., 2010). 

Recently, Visscher et al. (2006) have estimated actual relationships among human-full 

sibs, which range from 0.37 to 0.62. Using these actual relationships they quantified the 

additive genetic variation in human height using the within-family segregation only. In this 

way, they use the Mendelian sampling deviation. The reason behind this is the actual 

relationship from genetic marker utilises the variation in relatedness among pairs of twins. 

As stated in chapter two, not all the genetic parameters are estimable when interactions 

differ kin vs. non-kin. Direct genetic effects and IGE to kin are fully confounded and their 

linear combinations known as family breeding value is estimable in the reduced model. 

Thus, the main reason for not estimating all the genetic parameters is that there are not 

enough informative covariances, i.e., six genetic parameters need to be estimated using 

five informative covariances. The expected covariance between the phenotypes of group 

members of the same family members (full-sib) within a group is the same (Chapter 2 

Appendix A1). Thus, the actual relationship derived from marker enables us to use the 

within full-sib variation to estimate the components of the family breeding values, because 

the actual relationship for full-sibs in each group is different. In statistical term, we have 

enough informative covariances to estimate the components of the family breeding value 

variance. The covariance between each pair of individuals is different, though they may 

vary little. Thus, we may need large sample size because the power is limited. This method 

is more efficient for fecund species that have large family size (Odegard and Meuwissen, 

2012). 

Kin recognition experiments have been undertaken mainly in fecund species such as 

amphibians (Blaustein and Ohara, 1981; Waldman, 1981), rodents (Holmes and Sherman, 
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1982), and fish (Quinn and Busack, 1985; Olsen, 1989). As the family size increases, the 

actual variation within a family for pair of sib will be larger which makes the method more 

efficient. Thus, in fecund species the sample size required to test kin recognition may not 

be as large as in human data used by Visscher et al. (2006). 

6.3.3 Genomic model when IGE differ between kin and strangers 

In this section I discuss how the statistical model would look like. I propose a model that 

includes all SNP (single nucleotide polymorphisms) simultaneously (Habier et al., 2007). 

This model can be referred to as SNPBLUP. This model is equivalent with GBLUP 

(Goddard, 2009). In this model it is assumed that all SNPs contribute equally to the 

genetic variance. In addition to SNPGBLUP, Bayesian methods may be needed to allow 

different contributions to genetic variance across SNPs by differential shrinkage 

(Meuwissen et al., 2001b; Habier et al., 2007; Calus et al., 2008). SNPGBLUP or Bayesian 

methods help to estimate SNP associations with respect to direct genetic effects and 

indirect genetic effects to kin and indirect genetic effects to non-kin (Duijvesteijn, 2014). 

The proposed model is  

eWgαMαMαMXby InkInkIkIkDD   6.1 

 

where y is a vector of phenotypic observations; X is the design matrix for the fixed effects, 

b is a vector of unknown fixed effects; Dα  is a vector of direct SNP effects for each marker 

from the focal individual and DM  is a design matrix of which the entries are SNP 

genotypes of the focal individual coded as the count of a given allele. Vector Ikα  contains 

the indirect genetic effects to kin for each marker from the members of the same family 

found in the group, and IkM  is a design matrix of which the entries are the marker 

genotypes of j family members in the cage, coded as the count of a given allele. Vector INkα  
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contains the indirect genetic effects to non-kin for each marker from the non-family 

members found in the same group and InkM  is a design matrix of which the elements are 

the marker genotypes of Ink non-family members in the cage coded as the count of a given 

allele. The SNP effects in Dα , Ikα and Inkα can be derived from a normal distribution, e.g. in 

SNPBLUP, where ),0(~ 2
SNPN  I , where I  is an identity matrix and 2

SNP  the variance due to 

a single SNP (Meuwissen et al., 2001a). The g  is a vector of random group effects, with 

),(~ 2
ggN I0g  and incidence matrix W linking records to groups. The covariance structure 

for the residual term is   2var eRe  , where Rii = 1, Rij = ρ when i and j are group mates 

from the same family, and Rij = 0 otherwise (Chapter two). 

 

 

 

With large sample size and dense genomic information it is possible to test whether 

IGE differ between kin and non-kin. 
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6.4 Indirect genetic effect estimation using a trait based model 

 

Traits affected by indirect genetic effect can be modelled in two ways. First using the 

variance component model, where the trait value of the focal individual is partitioned into 

a direct genetic component originating from focal individual and an indirect genetic effect 

originating from the interacting partners and the residuals (Griffing, 1967; Muir, 2005; 

Bijma et al., 2007a).The variance component method divides the total phenotypic variance 

of the trait into the direct genetic variance which originates from an individual’s own 

genotype and the indirect genetic variance which originates from interacting partners’ 

genotypes and the residual variances. With this method direct and indirect genetic 

(co)variances are estimated without knowledge of the social traits that cause the IGEs 

(Willham, 1963; Griffing, 1967; Muir, 2005; Bijma et al., 2007a; Bijma et al., 2007b). After 

finding (co)variance of the genetic terms, DGEs, and IGEs are predicted as random effects, 

in the same way as prediction of ordinary breeding values (Henderson, 1975). 

The second method uses a trait-based model. Trait-based models define IGEs as variation 

of focal individual traits caused by one or more heritable traits in interacting individuals 

(McGlothlin and Brodie, 2009). Thus, these models specify the phenotype of the focal 

individual as a function of the phenotypic trait values of interacting partners, and are 

referred to as “interacting phenotypes” (Moore et al., 1997; Wolf et al., 1998). The strength 

of IGEs in the trait-based model is determined by ψ  (psi), a matrix of “regression 

coefficients” of trait values of the focal individual on trait values of its interacting 

partner(s) (Moore et al., 1997). In this topic, first I will review the compatibility of the 

variance component model and the trait-based model when IGE is the same between kin 

and non-kin. Second, I will show that the variance component model and trait-based 

model are compatible with each other when IGE differ between kin and non-kin. 
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6.4.2 Trait-based model when IGE is same for kin vs. non-kin  

Here, I am going to show the simplest situation, in which the trait of interest and the trait 

causing the IGE is the same trait, and the interaction is between two individuals. For this 

case, the trait based model equals (Moore et al., 1997) 

jiii PeAP  , 6.2 

where i represents the focal individual, j its interacting partner, iA  the additive genetic 

component of iP  originating fully from the focal individual,  (psi), the “regression 

coefficient” explaining the strength and direction of the effect of the trait value of j on the 

trait value of i. With symmetric interaction (reciprocal interaction), the same model 

applies to the interacting partner, ijjj PeAP  , which creates a feedback loop. We 

overcome this problem by substituting jP into the model for iP . This gives (Moore et al., 

1997) 

21

)(










jjii

i

eAeA
P . 

6.3 

Thus , the trait value is undefined for 1||  . 

From Equation 6.3 it follows that the magnitude of DGEs and IGEs using the trait-based 

model is given by (McGlothlin and Brodie, 2009)  
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𝑐𝑜𝑟𝑟(𝐴𝐷 , 𝐴𝑆) = {

−1 for 𝜓 < 0

0 for 𝜓 = 0

1 for 𝜓 > 1

 

6.4c 

Therefore, in the trait-based model the variance of A together with value of   determines 

the (co) variances of DGEs and IGEs. If the traits causing IGE are known, the trait-based 

model quantifies the strength of the interaction for each trait using the interaction 

coefficients (Bijma, 2014). Thus, when the traits causing IGE are known, trait-based model 

can help us to understand the biological mechanism of social interactions. 

6.4.3 Trait based model when interactions differ between kin vs. non-kin 

In this section, I show the trait-based model when interactions differ between kin and non-

kin and clarify how the trait-based model relates to the variance component model. The 

trait-based model when interactions differ between kin and non-kin is 

 
k

k
j

jiii PγPψeAP  
 

6.5 

where   explains the strength and direction of the effect of related individuals j on i (kin 

effect) and   explain the strength and direction of the effect of unrelated individuals k on i 

(non-kin effect). Here both   and   are population parameters. 

After defining the model, now we are going to show how this model is related to the 

variance component model. For simplicity assume we have a population divided into 

groups and each group consists of four individuals originating from two families. For 

example, we may have a group with members 1, 2, 3 and 4, where 1 and 2 are family 

members and 3 and 4 are members of another family. The phenotype of each individual 

will be: 

)( 432111 PPPeAP    
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)( 431222 PPPeAP    

)( 214333 PPPeAP    

)( 213444 PPPeAP    

Putting these equations in a matrix gives the following expression 









































































44

33

22

11

4

3

2

1

1

1

1

1

eA

eA

eA

eA

P

P

P

P









. 

Thus, we can express the phenotypes in terms of the underlying breeding values by solving 

for the vector of phenotypes, 
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Solving the matrix inverse using the mathematical software Mathematica (Wolfram 

Research, 2010) , we can write the phenotype in terms of the trait-based model. For 

instance, for individual one: 
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Thus, the trait value is undefined when the denominator is zero, which occurs for 
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The corresponding phenotypic value using variance component model for individual one 

is: 

443322111 nfnfnfnfff SSSSSSDD eAeAeAeAP   6.7 

Thus, the relationship between the trait-based model and the variance component model is 

given by: 
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6.7c 

 

Therefore, in the trait-based model the variance of A together with value of   and 

determines the (co) variances of DGEs, IGEs to kin and IGE to non-kin. 

One way of estimating   and   may seem to be as regression coefficients, for example 

using a model ePPbPbAY lknkjki  )( , where bk and bnk are expected estimates of   

and  . However, the relationship between regression coefficients and   and   is 

complex, even when IGE are the same between kin and non-kin and fitting the simplest 

possible case in which the trait of interest and the trait causing IGE is the same and the 

interaction is between two individuals (Bijma, 2014). In this simple case, it might be 

expected that b is an estimator of  . However, the relationship between   and b is 

complex, b is a quadratic function of   (Bijma, 2014). Therefore, when IGE differ between 

kin and non-kin, estimating  and   as functions of bk and bnk will be even more difficult. 

Both   and   will be complex functions of bk and bnk. 
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The second solution is fitting the variance component model and solving  and  as 

functions of the estimated variance components, using Equations 6.7a-6.7c. However, as 

can be seen from Equations 6.7a-c, the relationship is very complex, so that it is difficult to 

solve for   and   when fitting the trait- based model, even for the simplest possible case 

of a single trait. Therefore, when we fit variance components we could never back solve 

and  . 

In practical situations, estimation of   requires that all the traits that cause IGEs to kin 

should be known and recorded and estimation of   requires that all the traits that cause 

IGE to non-kin should be known and recorded. However, it is difficult to know all the traits 

of the interacting partner that affect the focal individual. 

 

 

 

 

 

Fitting trait-based model to estimate IGE when interactions differ between kin and 

non-kin is complex. The theoretical relationship between the variance component 

model and the trait-based model can be developed, but estimating and is difficult. 

Thus, it is very difficult to use empirically the trait-based model when IGE differ 

between kin and non-kin. 
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6.5 Accuracy of estimated breeding value when IGE differ 

between kin vs. non-kin 

Accuracy of estimating the breeding value is the correlation between true breeding 

value and estimated breeding value (Falconer, 1960). Accuracy of estimating the true 

breeding value is the most important genetic parameter (Falconer, 1960). It is 

directly proportional to the response to selection (Falconer, 1960). We have different 

types of accuracy for socially affected traits depending on the types of selection, such 

as mass selection, multilevel selection and group selection. Here I want to discuss the 

accuracy of mass selection when IGE differ between kin and non-kin. 

The accuracy of mass selection when IGE is the same for kin and non-kin was given 

as (WADE et al. 2010)  

    
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11 22 
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Here, I want to derive the accuracy of mass selection when IGE differ between kin 

and non-kin. The data structure is the same as in Chapter two, which is two full-sib 

families in each group, the relationship between both families in a group is zero, and 

the relationship within families in a group is 0.5. 

From Chapter two we have the phenotypic value and total breeding value as follow: 
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iSiSiDiT uf
AnAnAA ,2

1
,2

1
,, )1(   6.8b 

 

 

The accuracy of mass selection will be 
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Using Equations 6.8a and 6.8b, the covariance between total breeding value and 

phenotypic value of an individual will be 

 
22

1
2

1
2

11
2

),cov( 22
,

DSusfsu

SfDsfD

AA

AAAiiT

nnn
r

n
r

n
PA


 









































  

6.8c 

 

where r is the relatedness within families within a group. The phenotypic variance 

will be  
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Thus, the true accuracy of mass selection when IGE differ between kin and non-kin 

will be: 
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As can be seen from Equation 6.8e, the accuracy is directly proportional to direct 

genetic variance and IGE variance to kin and the three types of covariances 

(𝜎𝐴𝐷𝑠𝑓,𝜎𝐴𝐷𝑠𝑢,
𝜎𝐴𝑆𝑓𝑆𝑢

). The accuracy is independent of IGE variance to non-kin. This 

shows there is no direct selection for IGE to non-kin. The response in IGE to non-kin, 

therefore, depends on 𝜎𝐴𝑆𝑓𝑆𝑢
. If 𝜎𝐴𝑆𝑓𝑆𝑢

 is negative, the response in IGE to non-kin will 

be negative. Furthermore relatedness has smaller impact to the accuracy compared 

with the  traditional IGE model (when IGE is the same kin and non-kin) (Figure 1). 
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Figure1. Accuracy of mass selection when IGE differ between kin and non-kin. The following inputs 

were used to plot this figure 5.0,5.0 
uSfSuDSfDS AAA rrr and 1.0,5.0 222 

uf SSD hhh  

 

 

 

 

 

 

  

As shown in Figure 1 as relatedness between the same families within a group increases, 

accuracy of mass selection increases slightly. 
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6.5.2 Perceived accuracy of mass selection when IGE differ between kin 

and non-kin using traditional-IGE model 

In this topic, I want to derive the perceived accuracy of mass selection when IGE 

differ between kin and non-kin, but when this is not taken into account. In other 

words, IGE may depend on kin, but breeders may not be aware of this, and thus may 

calculate an accuracy based on the traditional model. This will result in a perceived 

accuracy that differs from the true accuracy. Here, for simplicity, I assumed that the 

non-genetic part of the model is correct (error structure from the full model is used). 

The perceived trait value and total breeding value are given by 
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Equation 6.8f and 6.8g are the models that are used to derive the accuracy if we 

assumed that IGE are the same for kin and non-kin. 

Using Equations 6.8f and 6.8g the perceived covariance between total breeding value 

and phenotypic value of an individual will be: 
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Thus, calculating the perceived accuracy requires values for 
2

DAσ , 
DSAσ  and 2

SAσ . 

When IGE differ between kin and non-kin, the estimates of 
2

DAσ and 
DSAσ  using the 
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traditional IGE model are biased, but the estimates of 2

SAσ is unbiased (see Chapter 

two). In Chapter two, we derived, using the effective record approach, the 

expectations of the estimates of 
2

DAσ , 
DSAσ and 2

SAσ  from the traditional model 

expressed as a function of the parameters of the full model. 

The expected value for these are (Chapter 2) 
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This provides the denominator of the perceived accuracy. 

The next step is to derive the phenotypic variance. The phenotypic variance is 
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expression for phenotypic variance yields  
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Thus, the perceived accuracy of mass selection will be 
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Hence, Equation 6.8j shows the perceived accuracy of mass selection when IGE 

depend on kin but this is ignored in the calculation of the accuracy. In the following, I 

investigate whether ignoring the dependency of IGE on kin leads to over- or under 

estimation of the accuracy. 

6.5.3 Comparing accuracy of mass selection using traditional IGE model 

vs. full model 

In this section, I want to compare the true accuracy of mass selection when IGE differ 

between kin and non-kin with the perceived accuracy when this dependency is 

ignored. As can be seen from Equation 6.8e and 6.8j, the two correlations are 

different. For instance, the covariance of the first correlation is independent of the 

variance of IGE to non-kin, but the covariance of the second correlation is dependent 

on the variance of IGE to non-kin. Furthermore, the phenotypic variances for the two 

correlations are also different. Thus, the accuracy of mass selection when IGE differ 

between kin and non-kin will be biased if we obtain it from the traditional-IGE 

model. 

In the next section, I want to compare both accuracies (full model accuracy vs 

traditional-IGE model accuracy) for a range of correlations between IGE to kin and 
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IGE to non-kin for three scenarios. In the first scenario, the variance of IGE to kin is 

the same as the variance of IGE to non-kin (Figure 2). In the second scenario, the 

variance of IGE to kin is four times the variance of IGE to non-kin (Figure 3). In the 

third scenario, the variance of IGE to kin is a quarter of the variance of IGE to non-

kin (Figure 4). 
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Figure 2 True accuracy from full model vs. perceived accuracy from traditional model when

22

SuSf AA   . The following inputs were used to plot this figure 

2.0,5.0 222 
ufuDSfDS SSDAA hhhrr  

 

For this scenario, the true accuracy using the full model is higher than the perceived 

accuracy using the traditional-IGE model. Also, the difference in accuracy between 

the full model and the traditional IGE model is lower as the correlation between IGE 

to kin and IGE to non-kin is higher. 
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Figure 3 True accuracy from full model vs. perceived accuracy from traditional model when

22 4
SuSf AA   . The following inputs were used to plot this figure 

2.0,5.0 222 
ufuDSfDS SSDAA hhhrr   
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For this scenario, the true accuracy using the full model is higher than the perceived 

accuracy using the traditional-IGE model when the correlation between IGE to kin 

and IGE to non-kin is higher than zero. The true accuracy using the full model is 

lower than the perceived accuracy using the traditional-IGE model when the 

correlation between IGE to kin and IGE to non-kin is lower than zero. Also, the 

difference between in true accuracy and perceived accuracy is higher as the absolute 

value of the correlation between IGE to kin and IGE to non-kin is higher. 

 

Figure 4 True accuracy from full model vs. perceived accuracy from traditional model when 
22 25.0

SuSf AA   . 

The following inputs were used to plot this figure 2.0,5.0 222 
fuuDSfDS SSDAA hhhrr  
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For this scenario, the true accuracy using the full model is higher than the perceived 

accuracy using the traditional-IGE model. Also, the difference in accuracy between 

the full model and the traditional IGE model is lower as the correlation between IGE 

to kin and IGE to non-kin is higher. This scenario is similar with the first scenario 

with the following difference. The difference in accuracy in scenario one become 

smaller than the difference in accuracy in this scenario at higher correlation. At 

correlation one there is no difference in accuracy in scenario one but there is still 

difference in this scenario. There should be further investigation on the accuracy 

difference for different scenarios. 
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6. 6 Group housing of mink 

Naturally, mink is a solitary and territorial species. Mink defend their territory by 

aggression towards mink of the same sex. The territory of a male can overlap with 

several females but not with other males (Dunstone, 1993). Thus, the overlap 

between mink of the same sex is not reported (Dunstone, 1993). The young mink 

leave the territory occupied by their mother to have their own territory. This 

dispersion happens when they are 12-16 weeks old (Dunstone, 1993). This 

characteristic is the main reason for keeping a pair of male and female sibs in a 

cage in Denmark. Through this type of housing, mink maintain their natural 

behaviour (e.g. solitary), but it has some limitations such as limited space for the 

individuals which makes the mink stressful. Group housing of mink (more than two 

mink) has been suggested as a potential way to improve the welfare. 

Group housing of mink is recommended by the Council of Europe (European 

Commission 1999). This is because it may improve welfare from ‘social enrichment’ 

as outlined in (European Commission 2001). It also increases the stocking density 

in the cages and thereby decreases housing investments. Though group housing 

offers some advantages, it has still some limitations such as increased food 

competition and aggression behaviour (Pedersen and Jeppesen, 2001; Moller et al., 

2003). 

The aggressive behaviour in group-housed mink is higher than in pair-wise housing 

and it is reflected by increased bite mark in grouped house mink than pair housing 

(Hansen and Damgaard, 1991; Pedersen and Jeppesen, 2001; Moller et al., 2003). 

Thus, for continuity of group housing the welfare of mink needs to be improved. 

For example, mink from group housing should have a low level of biting. One 

solution to improve the welfare in group-housed mink is improving the 
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management by the use of environmental enrichment such as plastic tubes 

(Hansen, 2012). However, the use of plastic tubes is not sufficient (Hansen, 2012). 

 

The other promising solution is genetic selection. Producing mink that have a lower 

level of aggression using genetic selection is a good solution. One possible way of 

measuring aggression behaviour in mink is by its consequences, for example, by 

using bite marks. Bite marks are an excellent indicator of aggression behaviour 

(Hansen et al., 2014). Thus, genetic selection using bite mark traits can be a 

solution to reduce aggression behaviours in group-housed mink. 

6.6.2 Prospects of genetic selection for reducing bite marks in group-

housed mink 

In 2009, a selection experiment was initiated to select for a reduced number of bite 

marks at pelting, at the mink farm at the Research Centre Foulum in Denmark. The 

experiment lasted three generations from 2009 till 2011. In chapter three, we 

analysed data from the first three generations of that selection experiment. The 

genetic parameters for the bite mark traits in the neck, body and tail region as well 

as total bite mark score were estimated. We found a substantial amount of heritable 

variation for bite mark traits in group-housed mink for all parts of the body. For 

example, for total bite mark score the total heritable variation expressed as a 

proportion of phenotypic variance was about 0.6. Thus, there are good prospects 

for genetic improvement of the trait. We predicted the response to selection. Using 

mass selection, the accuracy of selection based on estimates equals ~0.4 and if we 

used 10% of the population used for breeding the predicted response to selection 

will be equal to ~3.07 and the total BMS is predicted to reduce from ~6.47 to ~3.4, 

which is a very substantial reduction in a single generation of selection. When using 
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group selection for groups of four sibs, two males and two females that all belong to 

the same family, it is possible to reach an even higher accuracy of ~0.65, and thus 

the predicted response to selection will be ~5 and the total BMS is predicted to 

reduce from ~6.47 to ~1.47 in a single generation of selection (see chapter three for 

more details). However, mass selection and group selection are difficult to use, 

since currently bite mark scores are recorded on the pelts of the dead animals. 

Hence, recording the trait would require sacrificing the selection candidates. Thus 

sib selection is more appropriate. The predicted accuracy of sib selection for groups 

of four sibs, two males and two females that all belong to the same family will be 

equal to ~ 0.54 and the predicted response to selection to ~4.14. Thus, total BMS 

will be reduced from ~6.47 to ~ 3.33, again a very substantial reduction in a single 

generation of selection (Chapter four). I concluded that within a few generations, 

for instance three, it is possible to produce mink that have a much lower level of 

biting. 

This result is supported by a previous experiment at a research farm in Ederveen in 

the Netherlands, where no systematic difference in the number of bite wounds and 

bite mark between group housing and pair wise housing was found (de Rong J.  and 

van Willigen, 2012). The reason might be that the mink in the Netherlands are 

adapted for group housing because group housing has been practised since the 

1990’s. Thus, there are good prospect for producing mink that have a lower level of 

biting using genetic selection.  

We found that bite mark score is a highly heritable trait and that there are good 

prospects for genetic improvement. Based on the results so far I hypothesize that 

bite mark for group-housed mink will be as low as for the pair-housed mink in later 

generations, for example about generation three. To test this hypothesis, there 
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should be a selection experiment for number of generations. The selection 

experiment should consist of control line which has pair-housed mink and a 

selection line which has group-housed mink. The genetic selection will take place 

only in selection line. This experiment should last at least three generations.  

High responses to selection have been found in a selection experiment against 

mortality in laying hens. Genetic selection using group selection reduced the 

mortality of the layer line from 68% in generation two to 9 % in generation six 

(Muir, 1996). In the sixth generation, the mortality of the group-housed layers was 

similar to mortality of layers placed in single bird cages. Thus, it is essential to 

compare bite marks in group-housed vs. bite marks in pair-housed mink to have 

good conclusions on the prospects of genetic selection to reduce bite marks. I do 

preliminary comparisons based on Hansen and Møller (2012) findings on total bite 

mark comparisons between pair-housed mink and group-housed mink. They 

compared bite mark between pair-housed mink and group-housed mink in four 

farms. In one of the farm the pair-housed mink (one male and one female) had 

total bite mark score of 6.9 and the group-housed mink ( two male and two female) 

had total bite mark score 14.9. (Hansen and Møller, 2012). Thus, the difference in 

bite mark between group-housed mink and pair-house mink is about 8. If we apply 

sib selection scheme for this farm, the bite mark in group-housed mink will be the 

same as bite mark in pair-housed mink within three generations. 

 

 

There are good prospects of producing mink that have a low level of biting using 

genetic selection. 
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Social interactions among individuals are common both in plants and animals. Social 

interactions can be cooperative or competitive. In both types of social interactions the trait 

value of an individual may be influenced by genes of its interacting partners, a 

phenomenon known as indirect genetic effects (IGE). An IGE is heritable effect of an 

individual on the trait value of interacting partner. A large body of literature confirmed 

that social interactions may create addition heritable variation in both plants and animals, 

for both behavioural and production traits.  

When IGE are estimated, it is usually assumed that an individual interacts equally to all its 

social partners, irrespective of genetic relatedness. This assumption may not be true in 

mixed groups of kin and non-kin, as suggested by kin selection theory. Kin selection theory 

states that individuals interact systematically different to kin vs. non kin. One obvious 

reason for systematic interaction is kin recognition. Kin recognition is the ability of an 

individual to recognize kin and interact differently with kin vs. non kin. Thus, in mixed 

groups of kin and non-kin, an individual may distribute different IGEs to kin vs. non-kin. 

We, therefore, need a method that can estimate IGEs when interactions differ between kin 

and non-kin. In Chapter two, we developed a statistical method to estimate IGEs when 

interactions differ between kin and non-kin. The results show that not all genetic 

parameters are statistically identifiable. However, a genetic parameters of a family 

breeding value and of IGE expressed on non-kin can be estimated. 

Social interactions are important are mink kept for the production of fur. Recently, group 

housing of mink has become common. Group housing of mink increases aggression 

behaviours, which is reflected by an increase in the number of bite marks on the pelts, and 

reduces the welfare of the animals. Thus, for continuity of group housing, the biting in 

mink should be reduced. One solution to improve the welfare in group-housed mink is to 
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improve the management, for example by the use of environmental enrichment, such as 

plastic tubes. However, such measures do not reduce the level of biting sufficiently. 

Another promising solution is genetic selection.  

To judge the prospects for genetic improvement, we estimated the genetic parameter for 

bite mark trait in group housed mink in Chapter three. For total bite mark score, we 

found a total genetic variance equal to 61% of phenotypic variance, indicating very good 

prospects for genetic improvement. Results showed that a substantial amount of heritable 

variation originated from IGE. We concluded there are good prospects to produce mink 

that have a low level of biting. In the analysis in Chapter three we did not fully investigate 

systematic interactions due to sex or kin. 

In Chapter four we further investigated estimation of IGE for bite mark traits in group-

housed mink, by taking in to account systematic interactions due to the sex of individuals 

or the family relationship between individuals (“kin”). We found that IGE estimation needs 

to take in to account systematic interactions due to sex or kin in group-housed mink. 

Ignoring such systematic interactions biased estimates of all genetic parameters.  

Bite mark traits are recorded after life, after the mink are culled and pelleted. Thus 

recording of bite mark traits requires sacrificing the individual. Thus, we will not have own 

performance records for bite mark traits on the selection candidates. We can use sib 

information or progeny testing. With sib information the accuracy of the EBV is limited, 

and progeny testing increases the generation interval. Thus, using sib information or 

progeny testing may reduce the response to selection. We, therefore, need a new genetic 

tool such as genomic selection to increase the response to selection. 

Due to unavailability of genomic data on mink, we investigated genomic selection for 

socially affected traits by considering survival time in two lines of brown egg layers. Thus, 
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in Chapter five we investigated whether genomic selection can increase the accuracy of 

EBVs and the response to selection compared with a traditional breeding programme for 

survival time in layers. Despite the limited reference population of ~234 progeny tested 

sires, the accuracy of estimating the breeding value was ~35% higher for genomic selection 

compared with parental average-EBV. We found that the response to genomic selection 

per year for line B1 was substantially higher than for the traditional breeding scheme, 

whereas for line BD response was slightly higher than for the traditional breeding scheme.  

In the general discussion in chapter six, I discuss five topics that are related to the 

thesis. The first topic is kin recognition mechanisms, and I describe four kin recognition 

mechanisms found in the literature. The second topic is the use of genome wide marker to 

estimate all the genetic parameters when IGE differ between kin and non-kin. I argue that 

it is possible to estimate all genetic parameters when using genome wide markers. As the 

third topic focusses, I present a trait-based model for the case when IGE differ between kin 

and non-kin. The theoretical relationship between the variance component model and the 

trait-based model can be developed, but estimating of the parameters of the trait-based 

model is difficult. Thus, it is very difficult to use empirically the trait-based model when 

IGE differ between kin and non-kin. The forth topic is the accuracy of the estimated 

breeding value when IGE differ between kin and non-kin. I found that, when IGE differ 

between kin and non-kin, the accuracy of estimating the total breeding value using mass 

selection most likely will be biased if we use a statistical analysis that ignores the 

systematic difference in interactions between kin and non-kin. As final topic I discuss the 

prospects of genetic selection for reducing bite marks in group-housed mink. I conclude 

that there are good prospects of producing mink that have a low level of biting using 

genetic selection, within a few generations.  
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Sociale interaktioner mellem individer er almindelige både i planter og dyr. Sociale 

interaktioner kan være kooperative eller kompetitive. I begge typer af sociale interaktioner 

kan egenskaber hos èt individ være påvirket af gener hos sine interagerende partnere, et 

fænomen kendt som indirekte genetiske effekter (IGE). IGE er en arvelig effekt af et 

individ på egenskaben hos en interagerende partner. En stor mængde litteratur 

bekræftede, at sociale interaktioner kan skabe yderligere arvelig variation i både planter og 

dyr, for både adfærdsmæssige og produktionsegenskaber. 

 

Når IGE estimeres, antages det normalt, at et individ interagerer ligeligt med alle sine 

sociale partnere, uanset genetisk slægtskab. Denne antagelse er ikke nødvendigvis rigtig i 

blandede grupper af beslægtede og ubeslægtede, som foreslået af “kin selection theory”. 

“Kin selection theory” forudsiger, at individer interagerer systematisk anderledes med 

beslægtede vs. ikke beslægtede individer. En oplagt årsag til systematisk forskellig 

interaktion er genkendelse af slægtninge. Genkeldelse af slægtninge er et individs evne til 

at genkende beslægtede individer og interagere forskelligt med beslægtede vs. ikke 

beslægtede I blandede grupper af beslægtede og ubeslægtede, kan et individ bidrage med 

en forskellig IGE til beslægtede vs. ubeslægtede. Vi har derfor brug for en metode, der kan 

estimere IGE's når interaktioner varierer mellem beslægtede og ubeslægtede. I kapitel to, 

udviklede vi en statistisk metode til at estimere IGE'er når interaktioner er forskellige 

mellem beslægtede og ubeslægtede. Resultaterne viser, at ikke alle genetiske parametre er 

statistisk identificerbare. Men genetiske parametre for en familie avlsværdi og IGE udtrykt 

på ubeslægtede individer  kan estimeres. 

  

Sociale interaktioner er vigtige for mink der holdes til pelsproduktion. For nylig er 

gruppeindhusning af mink blevet almindelig. Gruppeindhusning af mink øger aggressiv 
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adfærd, hvilket afspejles i en stigning i antallet af bidmærker på skindene, og reducerer 

dyrenes velfærd. For fortsat brug af gruppeindhusning er der behov for at bid og aggressiv 

adfærd reduceres. En løsning til at forbedre velfærden i gruppeindhuste mink er at 

forbedre management, for eksempel ved brug af miljøberigelse, såsom plastrør. Men 

sådanne foranstaltninger reducerer ikke  niveauet af bid tilstrækkeligt. En anden lovende 

løsning er genetisk selektion. 

 

For at vurdere perspektivet for genetisk forbedring, estimerede vi de genetiske parametre 

for bidmærker i gruppeindhuste mink i kapitel tre. For total bidmærke score, fandt vi en 

total genetisk varians på 61% af fænotypisk varians, hvilket indikerer meget gode 

muligheder for genetisk forbedring. Resultaterne viste, at en væsentlig del af den arvelige 

variation stammede fra IGE. Vi konkluderede, at der er gode muligheder for at producere 

mink, der har et lavt niveau af bid. I analysen i kapitel tre undersøgte vi ikke fuldt ud 

systematiske interaktioner på grund af køn eller pårørende. 

 

I kapitel fire undersøgte vi yderligere estimering af IGE for bidmærke egenskaber i 

gruppeindhuste mink, ved at tage hensyn til systematiske interaktioner på grund af køn 

eller slægtskab mellem individer. Vi fandt, at estimering af IGE skal tage hensyn til 

systematiske interaktioner på grund af køn eller slægtskab i gruppeindhuste mink. 

Ignoreres disse systematiske interaktioner opstår bias i estimater for alle genetiske 

parametre. 

Bidmærker registreres efter at mink er aflivet , og forudsætter derfor at dyret er aflivet. Vi 

vil derfor ikke have observationer for bidmærker på de dyr der er kandiater til avl. Vi kan 

alternativt anvende sæskende information eller afkomsprøver. Med søskende information 

er sikkerheden på EBV begrænset, og afkomsprøver øger generations intervallet. Således 
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kan anvendelse af søskende information eller afkomsprøver reducere avlsfremgangen. Vi 

har derfor brug for et nyt genetisk værktøj som genomisk selektion for at at øge 

avlsfremgangen. 

 

På grund af manglende adgang til genomiske data på mink, undersøgte vi genomisk 

selektion for socialt påvirkede egenskaber ved at analysere overlevelsestid i to linier af 

brune æglæggere. I kapitel fem, undersøgte vi derfor om genomisk selektion kan øge 

sikkerheden på EBVs og avlsfremgangen sammenlignet med et traditionelt avlsprogram 

for overlevelsestid i æglæggere. På trods af den begrænsede reference population på ~ 234 

afkomstestede haner, var sikkerheden på estimerede avlsværdier ~ 35% højere for 

genomisk selektion i forhold til forældrenes gennemsnit-EBV. Vi fandt, at avlsfremganegn 

med genomisk selektion for linje B1 var væsentligt højere end for den traditionelle 

avlsplan, mens der for linje BD var lidt højere avlsfremgang end for den traditionelle 

avlsplan. 

 

I den generelle diskussion i kapitel seks, diskuteres fem emner, der er relateret til 

specialet. Det første emne er mekanismer for genkendelse af slægtninger, og jeg beskriver 

fire mekanismer for genkendelse af slægtninge fundet i litteraturen. Det andet emne er 

brugen af markører på tværs af genomet for at estimere alle de genetiske parametre, når 

IGE varierer mellem slægtninge og ikke-slægtninge. Det fremhæves at det er muligt at 

estimere alle genetiske parametre ved brug af markører på tværs af genomet. Som det 

tredje emne præsenterer jeg en egenskabs-model for det tilfælde hvor IGE er forskellig 

mellem slægtninge og ikke-slægtninge. Det teoretiske forhold mellem varians komponent 

modellen og egenskabs modellen kan udvikles, men estimering af parametrene for 

egenskabs modellen er vanskelig. Det er derfor meget vanskeligt at empirisk anvende 
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egenskabs modellen, når IGE varierer mellem slægtninge og ikke-slægtninge. Det fjerde 

emne er sikkerheden på den estimerede avlsværdi når IGE varierer mellem slægtninge og 

ikke-slægtninge. Jeg fandt, at når IGE er forskellig mellem slægtninge og ikke-slægtninge, 

vil sikkerheden på estimering af den samlede avlsværdi sandsynligvis være biased hvis vi 

bruger en statistisk analyse, der ignorerer den systematiske forskel i interaktioner mellem 

slægtninge og ikke-slægtninge. Som sidste emne, diskuteres mulighederne for genetisk 

selektion for at reducere bidemærker i gruppeindhuste mink. Jeg konkluderer, at der er 

gode udsigter til at producere mink, der har et lavt niveau af bidmærker, ved hjælp af 

genetisk udvælgelse i nogle få generationer.
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Sociale interacties tussen individuen zijn wijdverspreid in zowel planten als dieren. 

Dergelijke sociale interacties kunnen coöperatief of competitief van karakter zijn. In 

beide gevallen kunnen eigenschappen van dieren beïnvloed worden door genen in 

hun sociale partners. Dergelijke effecten staan bekend als indirect genetische effecten 

(IGE). Een indirect genetisch effect is dus een erfelijk effect van een individu op de 

kenmerken van zijn sociale partners. Uit de wetenschappelijke literatuur blijkt dat 

indirect genetische effecten additionele genetische variatie creëren in populaties van 

dieren en planten, voor zowel gedragskenmerken als productiviteit.  

Bij het in kaart brengen van indirect genetische effecten wordt meestal aangenomen 

dat individuen dezelfde interactie vertonen met al hun sociale partners, ongeacht de 

genetische verwantschap met die partners. Dat is waarschijnlijk niet het geval als 

groepen uit een mix bestaan van verwante en onverwante individuen. Kin selectie 

theorie suggereert dat individuen systematisch anders interacteren met verwante 

individuen dan met onverwanten. Als individuen verwanten kunnen herkennen, dan 

kan dit leiden tot systematisch verschillende interacties tussen verwanten en 

vreemden. In gemende groepen zouden individuen dus systematisch anders kunnen 

interacteren met verwanten en vreemden. Om dit fenomeen in kaart te brengen zijn 

methodieken nodig die een onderscheid maken tussen indirect genetische effecten op 

verwante en onverwante sociale partners. In hoofdstuk 2 wordt een statistische 

methodiek ontwikkeld om indirect genetische effecten te schatten wanneer 

interacties systematisch verschillen tussen verwante en onverwante individuen. Uit 

de resultaten blijkt dat niet alle genetische parameters statistisch identificeerbaar 

zijn, maar dat de fokwaarde voor effecten op de familie en voor effecten op 

onverwante dieren wel gescheiden kunnen worden.   
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Sociale interacties spelen een belangrijke rol in nertsen die gehouden worden voor de 

productie van bont. In nertsen is recentelijk groepshuisvesting ingevoerd. In 

groepshuisvesting komt meer agressief bedrag voor, wat leidt tot bijtplekken in de 

pelzen en verminderd welzijn van de dieren. Om nertsen in groepen te kunnen 

houden moet het bijtgedrag dus worden verminderd. Verrijking van de kooien, 

bijvoorbeeld met plastic buisjes, is een manier om het bijtgedrag te verminderen 

maar heeft onvoldoende resultaat. Genetische selectie is een andere mogelijkheid.  

Om de mogelijkheden voor fokkerij tegen bijtgedrag te onderzoeken zijn in 

hoofdstuk 3 genetische parameters geschat voor bijtplekken in de pelzen van 

nertsen gehouden in groepen. De geschatte erfelijke variatie voor het totaal aantal 

bijtplekken in een pels bedroeg 61% van de fenotypische variatie. Uit de resultaten 

blijkt ook dat een groot  deel van de erfelijke variatie door indirect genetische effecten 

wordt verklaard. Samenvattend betekent dit dat er zeer goede mogelijkheden zijn 

voor fokkerij tegen bijtplekken. In hoofdstuk 3 is niet gekeken of sociale interacties in 

nertsen systematisch verschillen tussen verwante en onverwante dieren, of tussen de 

beide seksen. 

In hoofdstuk 4 zijn indirect genetische effecten voor bijtplekken bij nertsen verder 

onderzocht, waarbij er een onderscheid is gemaakt tussen de seksen en tussen 

verwante en onverwante dieren. Uit de resultaten blijkt dat sociale interacties 

systematisch verschillen, ofwel tussen de seksen of tussen verwante en onverwante 

dieren. Hiermee moet in het statistisch model rekening worden gehouden om 

schattingsfouten in de genetische parameters te voorkomen. 

Bijtplekken in pelzen worden gemeten aan de binnenkant van de pels, nadat de 

nertsen zijn gedood en gestroopt. Om het aantal bijtplekken te tellen moet een dier 
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dus gedood worden, en kan dan niet meer gebruikt worden voor de fokkerij. Dus 

fokdieren kunnen niet worden geselecteerd op basis van hun eigen aantal bijtplekken. 

Dit bemoeilijkt de fokkerij tegen bijtgedrag. In principe kan gebruik worden gemaakt 

van gegevens aan bijtplekken die gemeten zijn aan broers en zussen of aan 

nakomelingen. Dergelijke fokprogramma’s hebben echter een lagere nauwkeurigheid 

of een hoger generatie-interval, wat leidt tot minder genetische verbetering. Voor dit 

soort situaties is zgn. genomische selectie een veelbelovende fokmethode om de 

genetische vooruitgang te versnellen. Op dit moment zijn er echter geen DNA 

gegevens om genomische selectie bij nertsen mogelijk te maken. Daarom is er in 

hoofdstuk 5 een vergelijkbare case bij legkippen onderzocht, waarvoor wel DNA 

gegevens beschikbaar zijn. Legkippen vertonen kannibalisme, waardoor er 

aanzienlijke sterfte kan optreden als het puntje van de snavel van kippen niet wordt 

verwijderd. In hoofdstuk 5 is gekeken naar de mogelijkheden van genomische selectie 

voor levensduur, in twee lijnen van bruine legkippen waarvan de snavels intact 

waren. De nauwkeurigheid van genomische fokwaardes voor levensduur is 

vergeleken met die van klassieke fokwaardes, en de mate van genetische verbetering 

is vergeleken tussen beide methodieken. Ondanks dat de referentie-populatie op dit 

moment nog maar klein is (ca. 234 hanen met nakomelingen) was de nauwkeurigheid 

van genomische fokwaardes ca. 35% hoger dan van klassieke fokwaardes op basis van 

afstamming. Voor beide onderzochte lijnen was de genetische verbetering van een 

fokprogramma met genomische selectie hoger dan van het traditionele 

fokprogramma.  

De algemene discussie in hoofdstuk 6 bespreekt vijf onderwerpen die gerelateerd zijn 

aan dit proefschrift. Als eerste onderwerp worden vier mechanismen besproken die 

het herkennen van verwanten mogelijk maken. Vervolgens wordt beargumenteerd 
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dat DNA gegevens het mogelijk maken om alle genetische parameters te schatten als 

indirect genetische effecten verschillen tussen verwanten en onverwanten. Als derde 

onderwerp wordt een zgn. kenmerk-gebaseerd model gepresenteerd, voor indirect 

genetische effecten die verschillen tussen verwanten en onverwanten. De theoretische 

relatie van dit model met het variantie-componenten model dat in de rest van het 

proefschrift wordt gebruikt wordt uitgewerkt. De resultaten laten zien dat het zeer 

lastig is om de parameters van het kenmerk-gebaseerde model te schatten. Dit 

betekent dat het kenmerk-gebaseerde model in de praktijk erg lastig te gebruiken is 

als indirecte effecten verschillen tussen verwanten en onverwanten. Als vierde 

onderwerp wordt de nauwkeurigheid van fokwaardes besproken, wanneer indirect 

genetische effecten verschillen tussen verwanten en onverwanten. De resultaten laten 

zien dat de nauwkeurigheid van de zgn. totale fokwaarde niet goed wordt geschat als 

in de statistische analyse genegeerd wordt dat indirect genetische effecten verschillen 

tussen verwante en onverwante individuen. Het laatste onderwerp dat aan de orde 

komt is de mogelijkheid om bijtplekken te verminderen door middel van fokkerij in 

nertsen gehouden in groepshuisvesting. Het blijkt dat er goede mogelijkheden zijn 

om binnen een paar generaties nertsen te fokken die veel minder bijten.
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