
 

 

 

Daqu- 
A traditional fermentation starter in China:  

microbial ecology and functionality 

 
 

 

 

 

 

 

 

 

 

 

 
Xiao-Wei Zheng  



 

 

 
 
 
 
 
 
 
 
 
Thesis committee 

 
Promotors 
Prof. Dr M.H. Zwietering 
Professor of Food Microbiology 
Wageningen University 
 
Prof. Dr E.J. Smid 
Personal chair at the Food Microbiology Laboratory 
Wageningen University 
 
Co-promotor 
Dr M.J.R. Nout 
Associate professor, Food Microbiology Laboratory 
Wageningen University 
 
Other members 
Prof. Dr H. Smidt, Wageningen University 
Prof. Dr J. Schnürer, Swedish University of Agricultural Sciences, Uppsala, Sweden 
Dr J. Dijksterhuis, CBS-KNAW Fungal Biodiversity Centre, Utrecht 
Prof. Dr B.J. Zwaan, Wageningen University 

 
 
 
This research was conducted under the auspices of the Graduate School VLAG (Advanced 
studies in Food Technology, Agrobiotechnology, Nutrition and Health Sciences).  



 

Daqu- 
A traditional fermentation starter in China:  

microbial ecology and functionality  

 

 

 

 
Xiao-Wei Zheng 

 

 

 

 

 
Thesis 

submitted in fulfilment of the requirements for the degree of doctor 
at Wageningen University 

by the authority of the Rector Magnificus 
Prof. Dr M.J. Kropff, 

in the presence of the  
Thesis Committee appointed by the Academic Board 

to be defended in public 
on Thursday 21 May 2015 

at 11 a.m. in the Aula.  



 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Xiao-Wei Zheng 
Daqu - A traditional fermentation starter in China: microbial ecology and functionality, 
188 pages. 
 
PhD thesis, Wageningen University, Wageningen, NL (2015) 
With references, with summaries in English, Dutch and Chinese 
 
ISBN 978-94-6257-280-5  

  



 

 

 

 

 

 

 

 

 

 

 
                                             天道酬勤 

                                                              地道酬善 

                                                                  人道酬诚 

                                                                      业道酬精 

 

 

 

 

 

 

 



 

 



 

Table of Contents 

Abstract 

Chapter 1  General introduction and thesis outline 1 

Chapter 2  Review: Daqu - A traditional Chinese fermentation starter 13 

Chapter 3  Characterization of the microbial community in different types of Daqu 35 

Chapter 4  Distribution of microbiota in a Chinese fermentation starter (Fen-Daqu)              

- comparison of inner and outer Daqu 55 

Chapter 5  Microbiota dynamics related to environmental conditions during the 

fermentative production of Fen-Daqu 73 

Chapter 6  Characterization of bacteria and yeasts isolated from traditional fermentation 

starter (Fen-Daqu) through a 
1
H NMR-based metabolomics approach 93 

Chapter 7  General discussions and future perspectives 121 

List of references 137 

Summary 155 

Samenvatting 159 

概要 163 

Acknowledgements 167 

List of publications 171 

Curriculum vitae 173 

Overview of completed training activities 175 

 

 

 



 

 



 

 

Abstract 

Fermented products have high nutritional value and constitute an important part of the 

Chinese dietary profile; they are also gaining popularity throughout the world. Daqu is a 

traditional natural fermentation starter culture that has a significant impact on the quality 

and flavour of Chinese liquor and vinegar.  

A review of the literature was conducted focusing on the classification, composition, 

and manufacture of Daqu. The review provided a preliminary understanding of the link 

between the fermentation process and the characteristics of the final Daqu product. Then 

the occurrence, levels, and diversity of microorganisms were studied in different types of 

Daqu produced by various fermentation processes. The results showed that Bacillus 

licheniformis and Saccharomycopsis fibuligera were present in all the tested samples of 

Daqu. Regional comparisons showed Staphylococcus gallinarum and Staphylococcus 

saprophyticus in southern Daqu. The fungi Sm. fibuligera and Lichtheimia ramosa were 

found in low/medium-temperature Daqu and Thermomyces lanuginosus occurred in high-

temperature Daqu.  

In order to study the functionality of Daqu and the contribution of the predominant 

microorganisms to alcoholic fermentation, the mesophilic and thermophilic bacteria and 

spores, Enterobacteriaceae, lactic acid bacteria, yeasts, and moulds present in the core and 

outer portions of Fen-Daqu were isolated. The isolates were identified by culture-

dependent sequencing of rRNA genes (16S rRNA for bacteria; 18S rRNA, 26S rRNA, and 

ITS rRNA for fungi). A succession of fungi, lactic acid, and Bacillus spp. was associated 

with prevailing acidity, moisture content, and temperature during Daqu fermentation. The 

predominant species in fermentation were B. licheniformis, Pediococcus pentosaceus, 

Lactobacillus plantarum, Pichia kudriavzevii, Wickerhamomyces anomalus, Sacchromyces 

cerevisiae, and Sm. fibuligera.  

One strain of the each of the above-mentioned predominant species, with the highest 

starch degrading ability and alcohol tolerance, was selected and used in different 

combinations to perform alcoholic fermentation. Metabolite composition differed 

significantly between various fermentation trials. S. cerevisiae provided superior ethanol 



 

 

production. Sm. fibuligera and B. licheniformis provided the amylolytic activity that 

converted starch and polysaccharides into fermentable sugars. Finally, W. anomalus was 

found to be an important contributor to formation of the liquor aroma.  

Understanding the microbial diversity and functional activity, as well as the 

production dynamics and safety of Daqu will enable commercial producers to improve 

and/or scale-up traditional processes and enhance product quality and safety, thus 

facilitating entry into international markets.  
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Chapter 1 

2 

Chinese fermented foods have received increased attention owing to their specific 

flavours, nutritional value, and health benefits, and are a major part of the food production 

system in China. Alcoholic beverages including beer, Chinese liquor, and wine are 

important indigenous fermented products. In particular, Chinese liquor is an economically 

vital cultural commodity in China that is enjoyed by consumers at various social occasions. 

The liquor is typically generated by natural solid-state fermentation (SSF), and the product 

quality depends primarily on the skills of process operators; in general, the latter have little 

knowledge of microbiological and biochemical events occurring during the production 

process. However, non-standardised process parameters often lead to products with 

inconsistent quality. Several industries have tried to automate their production technology 

or replace some of the indigenous ingredients, but these attempts have resulted in the loss 

of unique product flavours due to circumvention of traditional methods. A detailed 

investigation of the microbiological and biochemical processes involved in the production 

of traditional fermented foods is therefore necessary for successful commercial-scale 

production. 

1.1 Background 

Solid-State Fermentation (SSF) 

SSF is a process in which microbial cultures are grown on a solid matrix in the 

absence of a liquid (aqueous) phase (Barrios-González, 2012). This method has gained an 

increase in scientific and industrial attention in the past 20 years as a cost-saving measure 

for the efficient utilisation of agricultural products and waste (Barrios-González, 2012). 

Several fermented foods and beverages such as soy sauce, men, meju, and Chinese liquor 

are traditionally produced by SSF (Kim et al., 2011b; Tanaka et al., 2012; Wang et al., 

2008b). SSF can also be applied for the production of enzymes that hydrolyse 

macromolecules and facilitate fermentation by bacteria and fungi (Singhania et al., 2009). 

In addition, SSF can provide high yields and can improve the functionalities of a variety of 

biomolecules including flavours, colourants, preservatives, and sweeteners, which could 

add value to the fermented products (Couto et al., 2006). SSF-associated indigenous 

microbiota include different lactic acid bacteria (LAB), Bacillus spp., yeast, and fungi 
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(Nout, 2009). These microorganisms convert substrates into fermentation end-products and 

also synthesise a variety of aroma compounds. For example, 2,5-dimethylpyrazine and 

tetramethylpyrazine are important flavour enhancers that are generated by Bacillus natto 

and Bacillus subtilis, respectively (Couto et al., 2006). A downside of SSF however, is that 

microbial growth and community composition are difficult to control; nutrient diffusion, 

enzyme stability, metabolic activities, and aerobic processes are influenced by various 

parameters including moisture content, temperature, pH, particle size, aeration, and 

agitation (Krishna, 2005). A better understanding of the microbiological and biochemical 

mechanisms underlying SSF would enable better control of the process and assure the 

quality of the final product. 

Production of Chinese liquor (Baijiu) 

Chinese liquor (known as Baijiu in Chinese) is a potent, distilled spirit containing 40-

65% alcohol by volume. The annual production of Chinese liquor has steadily increased in 

recent years and currently exceeds ten million metric tons annually (Anonymous, 2014). 

Hundreds of different types of Chinese liquor are produced by various processes in 

different regions of China, and can be previously classified as strong, light, sauce and 

miscellaneous, according to their flavour (Shen, 2005), nowadays more flavours such as 

rice, sesame, feng, chi, fuyu, yao, teyi, laobaigan appear. Representatives of six major 

Chinese liquor types are shown in Figure 1.1. Traditionally, Baijiu contained average 

ethanol levels of 50-65% v/v, but most products now contain around 40% v/v through the 

addition of water and adjustment of flavours (Fan et al., 2006). 

Techniques used to produce Chinese liquor have a long history and have been passed 

on through many generations. Chinese liquor is typically produced from grains such as 

sorghum, wheat, rice, glutinous rice, and maize by a complex SSF process, which 

comprises (i) material preparation, (ii) grinding and cooking, (iii) mixing with powdered 

natural starter cultures (Daqu) (Figure 1.2), (iv) alcoholic fermentation, and (v) distillation 

(Hong, 2001). Fresh distillates often have undesirable characteristics such as harsh, green, 

or raw flavour; therefore, the liquor must be aged for several years to produce the desired 

balance of aromas through chemical transition, including an acid increase and decrease in 

ester contents (Zhang et al., 2008).  
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Figure 1.1 Examples of different types of Chinese liquor (Baijiu). 

(1) Daqu making 

Daqu is a specific fermentation starter culture that plays an important role in the 

production of Chinese liquor and vinegar (Hong, 2001). It not only contributes to starch 

degradation and alcohol production during the alcoholic fermentation of sorghum, but also 

strongly impacts the flavour and taste of the final product. Daqu contains a diverse 

microbial population that hydrolyses and ferments substrates, and is cultured under 

dynamic conditions of temperature and humidity for a few weeks to enable the 

establishment of the microorganisms that will be functional during the later process stages 

of alcoholic fermentation (Le et al., 2011; Li et al., 2013). 

 

Figure 1.2 Daqu - Chinese traditional fermentation starter blocks (Photo by X.W. Zheng). 

 Feng-flavour   Rice-flavour   Strong-flavour   Light-flavour   Sauce-flavour   Miscellaneous-flavour  
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Several Asian alcoholic fermentation starters such as marcha, loog-pang, and men 

have been described (Kishida et al., 2009; Thanh et al., 2008; Tsuyoshi et al., 2005) that 

contain a mixture of fungi and bacteria in a rice-based tablet. Daqu contains similar 

microorganisms, but is made from a mixture of beans and grains such as pea, wheat, and 

barley, the latter contributing to the aroma of the final distillate (Cao et al., 2010b; Zhang et 

al., 2012). Daqu contains a combination of yeasts, bacteria, and moulds; its quality highly 

depends on factors such as ingredient formulation and microbiota composition, which vary 

by place of origin and confer unique flavours to the fermented liquor (Zhang et al., 2011b). 

As such, investigations of the microbial diversity and optimum conditions for producing 

Daqu have raised attention of the Chinese liquor production industries. 

(2) Alcoholic fermentation 

Alcoholic fermentation is typically carried out under anaerobic conditions in earthen 

jars dug-in the ground or in a cellar (Figure 1.3). About 10-30% Daqu powder is added to 

cooked grains (mainly sorghum) and the mixture is transferred to the jars or cellar where it 

is left to ferment for about 1 month. The enzymes and chemical components in Daqu 

provide substrates for microbial growth and precursors for the development of the liquor 

aroma. The entire process consists of polymer degradation, release of carbohydrates, 

alcohol production, and aroma generation. The main microorganisms involved in 

fermentation are Saccharomyces cerevisiae, non-Saccharomyces yeasts, lactic acid bacteria 

(LAB), and filamentous fungi including Mucor, Absidia, and Aspergillus spp. (Li et al., 

2011; Qiao et al., 2004).  

 

Figure 1.3 Alcoholic fermentation from sorghum in earthen jars (left) and in a cellar (right). 
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(3) Distilling and ageing 

Distillation is a key step in the development of aroma in liquor. The impact of 

distillation depends on four parameters, i.e. steaming time, water content, distillation speed, 

and porosity of materials (Lai et al., 2005). After distillation is complete, the first distillate 

containing high concentrations of low-boiling components such as methanol and aldehyde 

and the last fraction (approximately last half-kilogram of distillate) containing high 

concentrations of fusel oil (e.g., isoamyl and isobutyl alcohol) and esters of fatty esters 

(e.g., linoleic acid ethyl ester, ethyl palmitate, oleate), are removed in order to stabilise the 

aroma and ensure the safety (Wang, 2003). 

The collected distillate is aged for several years to develop the bouquet of Chinese 

liquor, according to an ageing process specific to each type of liquor. In general, the ageing 

time for sauce-flavour liquor is more than 3 years, while at least 1 year is required for 

strong- and light-flavour liquors (Zhang, 2003). Ageing plays an essential role in the 

flavour of liquors, since a variety of aromatic compounds (mainly acids and esters) are 

balanced during this process through physical changes mainly van der Waals interaction 

combined with chemical reactions such as reduction-oxidation, esterification, hydrolysis, 

condensation, decomposition, and the Maillard reaction (Xiong, 2000). Owing to the low 

storage temperature and dark environment, chemical reactions occur slowly; as such, liquor 

flavours that require a shorter ageing time are principally induced by physical changes. 

Intermolecular hydrogen bonding is the most important physical determinant of liquor 

stability (Zhang, 2003), with longer ageing times leading to stronger van der Waals 

interactions between ethanol and water; this decreases the spicy taste induced by ethanol, 

leaving an aroma that is fresh and soft. 

Approaches to studying microbial diversity 

The analysis of microbial community structure and interspecies interactions are 

relevant factors in revealing of microbiota function. Standard culture-dependent analyses 

can detect only between 1% and 10% of all environmental microbiota, suggesting that our 

knowledge of environmental microbial diversity and function is fairly limited (Muyzer, 

1999). Advances in molecular microbiology using techniques such as denaturing gradient 

gel electrophoresis (DGGE), analysis of single-stranded conformational polymorphisms 
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(SSCP) and restriction fragment length polymorphisms (RFLP), gene cloning, and next 

generation DNA sequencing (NGS) have enabled researchers to obtain a broad view of 

microbial communities present in different environments, including in complex food 

systems. These approaches along with traditional culture-based methods are currently used 

to analyse microbial diversity of fermented foods, and the knowledge acquired has been 

successfully applied to the commercial production of a wide variety of foods and beverages 

(Erkus et al., 2013). 

(1) Culture-dependent approaches 

Traditional analyses of microbiota rely on the isolation and enumeration of 

microorganisms using various types of growth medium (Liu et al., 2010a). Microbial 

diversity is analysed based on growth, nutrient utilisation, type of energy metabolism, and 

morphological characteristics. Species identification in foods has been greatly enhanced by 

sequencing of 16S rRNA (bacteria) and 26S rRNA (fungi) genes. Only 1-10% of 

environmental microorganisms can be cultured, isolated, and characterised using traditional 

methods, with the overwhelming majority being uncultivable and thus, inaccessible for 

conventional analysis (Muyzer et al., 1998). Moreover, culture-dependent approaches can 

provide only limited information on microbial evolutionary relationships, preventing the 

accurate classification of existing microorganisms. Nonetheless, active strains can be 

obtained by this approach, and therefore the development and application of microbial 

resources still rely on traditional isolation and culture techniques, which are widely used to 

analyse microbial communities in traditional fermented products both qualitatively and 

quantitatively (Adewumi et al., 2013; Greppi et al., 2013). 

(2) Culture-independent approaches 

Culture-independent approaches for evaluating microbial diversity are based on 

analyses of nucleic acid (DNA and RNA) sequences, for which microbial DNA or RNA is 

extracted and selected regions amplified by polymerase chain reaction (PCR), with size and 

composition characterised by gel electrophoresis and nucleotide composition determined by 

sequencing (Xu, 2006). Three standard culture-independent approaches are the construction 

of environmental DNA clone libraries (Riesenfeld et al., 2004), DGGE- or temperature 

gradient gel electrophoresis (TGGE)-based community fingerprinting (Ercolini, 2004), and 
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NGS-based community profiling (Li et al., 2013), all of which have been applied for the 

investigation of microbial diversity in fermented food products. 

Constructing clone libraries from phylogenetic markers such as 16S (bacteria) or 26S 

(fungi) rRNA genes is currently the most widely used method for assessing microbial 

community composition and diversity (Green et al., 2012; Timmis et al., 2010). In gene 

cloning, amplified target genes are ligated into a plasmid vector that is introduced into 

competent cells (typically Escherichia coli). Clones derived from individual transformant 

cells are used to construct a clone library and for subsequent sequence analysis. Although 

library construction is labour-intensive and costly, sequence analyses using libraries are 

highly efficient in providing information about the microbial composition of food products. 

DGGE and TGGE are techniques involving the sequence-specific separation of PCR-

derived rRNA gene amplicons on polyacrylamide gels containing a linearly increasing 

concentration gradient of denaturant (urea and formamide) or temperature, respectively 

(Muyzer et al., 1998). In a DGGE gel, double-stranded DNA fragments are subjected to 

increasing denaturing conditions that induce partial melting in discrete regions termed 

melting domains, starting from the domain with the lowest melting temperature (which is 

dictated by nucleotide sequence). This creates denatured DNA molecules that have reduced 

mobility on acrylamide gels. Therefore, DNA fragments of the same size but with different 

base compositions behave distinctly in the denaturing gradient. DGGE analysis can be 

applied to the monitoring of microbial fermentation during food production, assessment of 

microbial communities in food products, and analysis of food microbial community 

dynamics in response to environmental changes (Adewumi et al., 2013; Andorra et al., 

2010; Chen et al., 2011; Guan et al., 2012). 

A more recently developed culture-independent approach is NGS, which has replaced 

Sanger-based sequencing as the mainstream sequencing technology. NGS has been applied 

to investigations of microbial diversity in environmental, medical as well as in food-related 

ecosystems (Claesson et al., 2010; Li et al., 2013), as it allows a high-throughput analysis 

of materials to generate a massive amount of raw sequencing data in a short time at a 

relatively low cost. The use of NGS in metagenomics research requires significant 

computational resources as well as experienced bioinformaticians to perform data analyses 
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(Scholz et al., 2012). Moreover, it requires careful consideration of the research objective 

and information demand in order to make efficient use of the large quantities of data that 

are obtained, which concern a broad range of biological phenomena (genetic variation, 

RNA expression, protein-DNA interaction, chromosome conformation, etc.). 

Microbial activity, environment, and food product characteristics 

Production of fermented foods creates an ecological environment in which 

microorganisms are subjected to the influence of various internal (pH, water activity, 

nutrient composition) and external (temperature, gases, contaminating microbes) factors. 

Environmental factors can directly influence microbial community structure and activities, 

which may in turn affect food quality (Figure 1.4). During the Daqu making process, LAB 

produce several types of natural antimicrobials, including organic acids (such as lactic, 

acetic, formic, phenyllactic, and caproic acids), carbon dioxide, hydrogen peroxide, ethanol, 

and bacteriocins, which suppress the growth of competing bacteria such as Bacillus spp. 

(Liu, 2011). LAB-generated organic acids create an acidic environment and directly 

influence the pH of the Daqu product (Hai et al., 2014). On the other hand, changes in pH 

can also adversely affect the growth of LAB (Katina et al., 2002), which have an optimal 

range for growth between pH 4.3 and 6.5 (Adamberg et al., 2003; Yan et al., 2002). 

Meanwhile, a reduced production of acetic and lactic acids can negatively impact the 

flavour of the final liquor (Cao et al., 2010a). Mesophilic bacteria dominate the first phase 

of fermentation and are followed by LAB during Daqu production, resulting in an increase 

in Daqu acidity (Zhang et al., 2011b). Therefore, interactions between chemical, physical, 

and microbial components of Daqu may improve the final sensory characteristics of 

Chinese liquor by shortening fermentation time and/or enhancing microbial growth via the 

control of physical parameters during Daqu production. 
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Figure 1.4 Relationship between microbial activity, environment, and food product characteristics. 

1.2 Research objectives and thesis outline 

The main objectives of the study described in this thesis are: (1) to gain insight into the 

biodiversity and population dynamics of the microbial community in Daqu and their 

relationship to environmental conditions; and (2) to determine the effects of the major Daqu 

microbiota on subsequent sorghum alcoholic fermentation, in order to generate a 

knowledge-base for the improvement of Daqu production with prospects for quality 

development of Chinese liquor. 

Information on traditional Daqu fermentation, including classification and 

microbiological aspects, is presented in Chapter 2. During preliminary field work, the 

production of different types of Daqu was observed, and representative starter samples 

were collected from leading producers in China and characterised according to their 

microbial composition using culture-independent cloning methods in conjunction with 

multivariate statistical analysis. Representative biomarkers for different types of Daqu were 

identified (Chapter 3). Based on specific production characteristics, Fen-Daqu was 

selected as the starter for subsequent culture-dependent investigation. The microbial 

diversity of Fen-Daqu was compared across different Daqu fractions, and bacterial, yeast, 

and mould species were isolated (Chapter 4). The environmental and microbial changes 

during Fen-Daqu production were also investigated, and the link between environmental 

parameters and microbial communities are discussed in Chapter 5. The microbial 

Microbial Activity Environment 

 

 

 

Food Product  
Characteristic

s 

Water activity, pH, temperature, 
oxygen, humidity, etc. 

Flavour, texture, safety 

Microbial community 
composition  
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composition in the successive stages of Daqu making processes and in the final products 

was assessed, and the most abundant bacterial and yeast species were identified. Chapter 6 

describes the screening and characterisation of functional bacteria and yeasts for the 

selection of starter cultures to carry out laboratory-scale alcoholic fermentation using 

sorghum. The contribution of each microbial species is discussed. Finally, Chapter 7 is a 

general discussion of Daqu types and their respective contributions to alcoholic 

fermentation as well as proposed improvements to the Daqu manufacturing process. 

 



 

 



 

 

                                Chapter 2 

Review: Daqu - A traditional Chinese fermentation starter 

Abstract 
Chinese liquor is one of the world’s oldest distilled alcoholic beverages, and it is 

typically obtained with the use of Daqu fermentation starters. Daqu is a 

saccharifying and fermenting agent, having a significant impact on the flavour of 

the product. Daqu can be categorized according to maximum incubation 

temperatures (high, medium and low) and flavour (sauce, strong, light and 

miscellaneous). Most Daqu are prepared by solid-state fermentation from wheat, 

barley and/or peas by ingredients formulation, grinding and mixing, shaping, 

incubation, and maturation. Although there is a wealth of artisanal experience in 

the production of a range of different types of Daqu, the scientific knowledge base 

- including the microbiota, their enzymes and their metabolic activities - needs 

further development. Daqu as a specific alcoholic starter is compared with other 

Asian amylolytic fermentation starters in terms of microbial diversity and function. 

Filamentous fungi (Rhizopus, Rhizomucor, Aspergillus, and other genera), yeasts 

(Saccharomyces, Candida, Hansenula, and other genera) and bacteria (acetic acid 

bacteria, lactic acid bacteria and Bacillus spp.), are considered to be the functional 

microbiota, responsible for the formation of a range of lytic enzymes, formation of 

substrates for alcoholic fermentation and formation of flavour compounds. 

However, the knowledge about the microbiota composition and their function is 

still fragmentary information, so further research is required to establish the 

functionality and growth kinetics of microbiota in diverse types of Daqu. 

 

 

 

 
 

Zheng, X.W., Tabrizi, M.R., Nout, M.J.R., Han, B.Z., 2011. Daqu - a traditional Chinese liquor 

fermentation starter. Journal of the Institute of Brewing 117, 82-90.  
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2.1 Introduction 

Alcoholic fermented products play an important role in the quality of Chinese life and 

culture, and have a long history. The annual production of Chinese liquor in 2008 has been 

estimated at about 5 million metric tons per year (Anonymous, 2008). Chinese liquor is 

typically obtained from cereals such as sorghum by complex fermentation processes using 

natural mixed culture starters (Fan et al., 2007). 

Already over 20 years ago, Hesseltine et al. (1988) mentioned three major categories 

of amylolytic starters used in Asia for alcoholic fermentation, namely (1) koji, pure cultures 

of Aspergillus sojae and Aspergillus oryzae, used for soya sauce and miso production; (2) 

large compact cakes based on whole-wheat flour, fermented for about 4 weeks, containing 

yeasts, Rhizopus and Absidia spp., used for the “kao-liang” process of alcohol fermentation; 

and (3) mixed cultures of yeasts, bacteria and fungi, in the form of flattened or round balls, 

compact in texture and dry. These are allowed to ferment for a short time, dried and used to 

make alcohol or fermented foods from starchy materials such as rice or cassava. 

During the recent past, most of the attention in scientific publications has been given 

to categories 1 and 3. Koji (category 1) production and its use in soy sauce manufacture 

was reviewed previously (Nout et al., 2002), as well as a number of examples of category 3 

starters, such as ragi (Nout, 1992), men (Dung et al., 2006), bubod (Sakai et al., 1985), 

murcha (Tamang et al., 1995), and nuruk (Lee, 2001). In contrast, category 2 starters have 

been underreported in the international literature. This is precisely the type of product that 

is the subject of our present review. Whereas the name “kao-liang” used earlier (Hesseltine 

et al., 1988) seems to be out of use presently, Chinese people know this starter as “Daqu”. 

The purpose of this review is to provide a “state-of-the-art” of the present Daqu making 

process, microbiology and biochemistry. 

In order to better understand the complex Chinese terminology, a short explanation of 

the major terms is provided below. The key words include “Qu” (moulded cereals), “Jiuqu” 

(moulded cereals used as an alcoholic fermentation starter), and “Daqu” (moulded cereals 

used as an alcoholic fermentation starter, obtained through natural fermentation). 

In more detail, “Qu” [tsju:] written in hieroglyphics, was reported to have been 

discovered accidentally through natural fermentation. “Qu” are moulded cereals which are 
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a source of enzymes necessary for the degradation of carbohydrates and proteins in grains, 

and supply a portion of the substrate for fermentation as well. “Jiuqu” [djū, tsju:] as a 

Chinese word came from the word “Jiu” [djū] or “alcoholic beverage”, and “Qu” as the 

traditional fermentation starter. Based on their ingredients and technological application, 

“Jiuqu” can be classified into three categories, which are Daqu, Xiaoqu and Fuqu (Hong, 

2001). 

 

Figure 2.1 The production process of Daqu. 

1 Some Daqu such as Moutai-Daqu use previous Qu as additives; 2 Accessories such as rush mats, 

bamboo, etc. are used as covers to control the temperature; 3Involves low temperature incubation 

phase, high temperature converting phase and aroma creating phase; 4 Maturation aims at achieving 

spatial equilibrium of moisture, acidity, enzyme activities and microbiota. 

 

Daqu is the type of grain Qu, which is made from raw wheat, barley and/or pea. It is a 

natural fermentation starter, especially for distilled liquor and traditional vinegar 

production. Powdered Daqu are used to inoculate cooked cereals (mainly sorghum) and this 

mixture is then fermented in sealed jars or cellar for about one month in order to carry on 

distillation. On the other hand, Xiaoqu and Fuqu are inoculated starters, consisting of cereal 

flour or bran that was inoculated with mother culture or moulds, respectively.  

Ingredients formulation 

↓ 

Grinding 

↓ 

Mixing 

↓ 
Shaping 

↓ 

Incubation 

↓ 
        Control of temperature3  

↓ 

          Maturation4 

↓ 

                 Daqu  

← Adding water, additives1 
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In the development of different Qu, Daqu becomes more and more important, because 

in liquor production it has more functions than just providing inocula. The exact origin(s) of 

manufacture of Daqu is difficult to establish, but it can be safely assumed to date back to 

the Han Dynasty (221 BC to 207 AD) (Needham, 2000; Qin, 2000). Nowadays, almost all 

famous liquors in China are made with Daqu. Moutai liquor, Luzhou liquor, Fen-liquor and 

Xifeng liquor are the representatives of four most famous and typical Chinese liquor 

flavours (sauce-flavour, strong-flavour, light-flavour, and miscellaneous-flavour, 

respectively), which are all fermented using Daqu as a fermentation starter. 

The shape, microbial composition and function of Daqu are very different from those 

of Asian amylolytic starters of categories 1 and 3 according to Hesseltine et al. (1988). In 

particular, Daqu contains (a) cereals such as wheat, barley plus significant amounts of peas, 

(b) a mixed microflora of fungi and bacteria, (c) microbial enzymes and metabolites, and 

(d) an important flavour note that will contribute to the aroma of the final distillate (Fu, 

2004; Hong, 2001; Kang, 1991; Wang et al., 2004). 

Another difference with categories 1 and 3 amylolytic starters is that Daqu also 

functions as the initial fermentation substrate for liquor making, similar to some other solid 

fermentation products, such as sourdough bread (De Vuyst et al., 2005; Gänzle et al., 

2008). Daqu is thus not only a source of inoculum, but it also represents about 20% of the 

substrate for alcoholic fermentation. For this reason, considerable quantities of Daqu 

powder are required in the fermentation of Chinese liquor. For example, in Fen-liquor 

fermentation, Daqu represents 10-15% of the total substrate, while for Luzhou liquor, even 

more (20-25%) Daqu is added. 

2.2 Classification and composition of Daqu 

Classification of Daqu 

Different types of Daqu can be distinguished based on their maximum incubation 

temperatures and their flavour characteristics. 

(1) Temperature control characteristics 

Daqu production involves specific time-temperature control schemes resulting in a 

succession of microorganisms. According to the maximum incubation temperature, 
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achieved as a natural result of metabolism, the three different types of Daqu can be 

distinguished (Table 2.1). They are as follows. (i) High-temperature Daqu represented by 

Moutai and Site liquor Daqu (Xiong, 2005c): Maximum temperatures reached during the 

incubation period range between 60 and 70°C; (ii) Medium-temperature Daqu represented 

by Wuliangye and Luzhou liquor Daqu (Xiong, 2005b): Maximum temperatures reached 

during the incubation period range between 50 and 60°C; (iii) Low-temperature Daqu 

represented by Fen-liquor and Erguotou liquor (Xiong, 2005a). Maximum temperatures 

reached during incubation period range between 40 and 50°C. 

(2) Flavour characteristics 

According to their flavour, Daqu can be classified into four major types. (i) Sauce-

flavour Daqu such as Moutai liquor Daqu (Xiong, 2005a) which gives a liquor with a 

flavour reminding of soy sauce, full bodied, and with a long lasting aroma. A major 

representative aroma compound of sauce flavour liquor is tetramethylpyrazine occurring at 

levels of 3000-5000 mg/l, which is higher than in other types of liquor (Fan et al., 2007), 

(ii) Strong-flavour Daqu. The liquor produced by this kind of Daqu such as Luzhou liquor 

has a fragrant flavour, soft mouthfeel, and “endless” aftertaste. The representative aroma 

compounds are predominantly ethyl hexanoate, in harmonious balance with ethyl lactate, 

ethyl acetate and ethyl butanoate (Xu, 1991); (iii) Light-flavour Daqu. The liquor such as 

Fen-liquor (Xiong, 2005a) produced with this type of Daqu is known by its pure and mild 

flavour, mellow sweetness and refreshing aftertaste. The representative aroma compounds 

in light flavour liquor are mainly ethyl acetate, in balance with considerable levels of ethyl 

lactate; (iv) Miscellaneous-flavour Daqu. The liquor produced with this type of Daqu can 

have sensory characteristics ranging between those of sauce-flavour Daqu and strong-

flavour Daqu. The representative aroma compounds in corresponding miscellaneous 

flavour liquors are heptanoic acid, ethyl heptanoate, isoamyl acetate, 2-octanone, isobutyric 

acid, and butyric acid. 

Composition of Daqu 

(1) Microbiological aspects 

The large number of liquor brewing enterprises countrywide in China, with their 

unique ecological environments and diverse manufacturing procedures result in typical 
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“home microbiota” with a large diversity of microorganisms in Daqu. In general, four 

categories of microorganisms occur in Daqu: filamentous fungi (moulds), yeasts, bacteria 

and actinomycetes (Wu, 2004; Yang et al., 2007; Zhang, 1999). Table 2.1 summarizes the 

groups of microorganisms that have been isolated and reported from different types of 

Daqu. Of the filamentous fungi, the role of A. oryzae and A. sojae in koji has been studied 

extensively (Machida et al., 2008; Wicklow et al., 2007) and their production of proteolytic, 

and other lytic enzymes has been linked to the transformation of insoluble soya bean and 

wheat compounds into water-soluble peptides, sugars, free amino acids and other 

degradation products that constitute soy sauce. Also in Daqu, Aspergillus spp. have been 

reported in representatives of high (Huang et al., 1993; Wang et al., 2008a), medium (Wu et 

al., 2009b; Yao et al., 2005a) and low-temperature (Xiong, 2005a) types. Few 

identifications have been published except in one type (Huang et al., 1993) where 

Aspergillus flavus, A. oryzae and Aspergillus niger were reported. According to Wang et al. 

(2008a), Aspergillus spp. Would contribute to the saccharification of starch. The fungi 

mentioned by Hesseltine et al. (1988) for category 2 starters included yeasts, Absidia and 

Rhizopus spp. Indeed these were reported to some extent in Daqu. Of the yeasts, Candida 

(Huang et al., 1993; Leimena, 2008; Yao et al., 2005a), Citeromyces, Debaryomyces, 

Oosporidium (Wu et al., 2009b), Endomycopsis, Hansenula (Xiong, 2005b), Hyphopichia, 

Issatchenkia, Zygosaccharomyces (Jiang, 2004; Jiang et al., 2003), Pichia (Li et al., 2005; 

Wu et al., 2009b), Rhodotorula (Leimena, 2008),, Saccharomyces (Huang et al., 1993; 

Leimena, 2008; Wu et al., 2009b) and Torulopsis (Huang et al., 1993) were encountered, 

but there is no evidence to date that indicates the continuous presence of one or more of 

these genera. In some types of Daqu, data about yeasts are unavailable. Concerning the 

filamentous fungi, on the one hand, the genera Absidia (Leimena, 2008; Wu et al., 2007; 

Xiong, 2005a; Yao et al., 2005a) and Rhizopus (Huang et al., 1993; Wang et al., 2008a; 

Xiong, 2005a), mentioned by Hesseltine et al. (1988) were encountered in Daqu but they do 

not seem to represent a constant factor. In the same way, other filamentous fungi such as 

Aspergillus (Huang et al., 1993; Leimena, 2008; Wang et al., 2008b; Wu et al., 2009b), 

Gilmaniella (Wu et al., 2007), Monascus, Penicillum, Mucor (Huang et al., 1993; Leimena, 

2008; Wang et al., 2008a; Yao et al., 2005a), Trichoderma (Huang et al., 1993), and 
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Rhizomucor (Leimena, 2008), were encountered in Daqu, but no single genus was found to 

be always present. Monascus spp. Are associated with ester formation (Wang et al., 2008a), 

Trichoderma spp. With degradation of cellulose and starch (Wang et al., 2008a) and 

Rhizopus spp. With formation of volatiles (Wang et al., 2008a). Penicillium spp. Are 

considered to be undesirable contaminants as they can interfere with Daqu quality by 

inhibiting the growth of other beneficial micro-organisms (Shen, 2001b). Clearly, the data 

available to date are quite fragmentary and more detailed studies will be required to fill the 

gaps and to get more insight into characteristic fungal communities. In certain high- and 

low-temperature Daqu, Actinomycetes were encountered (Li et al., 2009; Wu et al., 1993). 

Their possible role in the process is not yet known. In category 3 amylolytic starters, 

Hesseltine et al. (1988) found it remarkable that in each starter at least one species of 

Mucor, Rhizopus and Amylomyces was present. Yeast counts were mostly in the range of 7-

8 log CFU/g, as was confirmed by subsequent researchers. However, available data on 

Daqu do not mention the presence of Amylomyces spp.. 

In Daqu the presence of bacteria has been reported by several investigators, and on the 

basis of the limited information it appears that acetic acid bacteria, lactic acid bacteria and 

Bacillus spp. (Li, 2008; Li et al., 2009; Li et al., 2005; Wang et al., 2008a) are predominant 

and that bacterial loads may vary between 5 and 8 log CFU/g (Table 2.1). Our own 

preliminary data on Erguotou-Daqu indicate the presence of 19pprox.. 8 log CFU/g, mainly 

B. licheniformis (Leimena, 2008). The interesting aspect of the presence of high levels of 

Bacillus spp. Is that their functional role in other fermented products such as cocoa 

(Schwan et al., 2004), kinema (Sakar et al., 1994) and dawadawa (Meerak et al., 2008) is 

related to the degradation of cell walls and other polysaccharides and proteins, as well as 

the formation of flavours and precursors such as pyrazines (Larroche et al., 1999). Bacillus 

spp. Were reported to be a continuous factor in Daqu. They can contribute to the evolution 

of flavour (Fan et al., 2007) and enzyme activities such as amylases and proteinases (Wang 

et al., 2002) needed in the fermentation of cooked sorghum for alcoholic fermentation. 

Until recently, most Chinese publications relied on culture-dependent microbiological 

analysis using selective media (i.e., with antibiotics (Yao et al., 2005a), sodium 

desoxycholate (Xu et al., 2002), cycloheximide (Lei et al., 2006), ampicillin (Mu et al., 
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2004), or nystatin (Mu et al., 2004)). These revealed the presence of Lactobacillus, 

Acetobacter and Bacillus spp., but did not lead to species identifications. Mycological 

media in combination with morphological, physiological and biochemical methods for 

characterization, such as temperature for growth (Li, 2004) and assimilation of carbon and 

nitrogen sources (Guo, 2006) revealed the occurrence of fungi, mainly Aspergilus, 

Rhizopus, Mucor, Penicillium, Monascus. And Absidia spp. (Shen, 2001b; Wan, 2004). In 

addition, some Thermoactinomycetes were reported to be present in few types of Daqu at 

levels of 5-8 log CFU/g Daqu. These are typical soil microorganisms and are not 

considered to be relevant for the production of liquor (Li et al., 2009; Wu et al., 1993). 

Modern culture-independent techniques have recently been used to study the microbial 

diversity in Zaopei (an intermediate semi-finished product during Chinese liquor 

fermentation) (Zhang et al., 2005; Zhang et al., 2007a) and fermented grain (Wang et al., 

2008b), but only few such studies were undertaken for Daqu to date (Leimena, 2008; Li et 

al., 2009). Xie et al. (2007) compared fungal diversity in wheat Qu (which differs from 

Daqu and is used for the production of Shaoxing rice wine) using both culture-dependent 

and molecular-based methods. ITS sequences of RISA (Ribosomal Intergenic Spacer 

Analysis) bands revealed the presence of 13 fungal species, many of which were not 

detected from plate cultures. On the other hand, some cultured species were not detected by 

RISA. This shows the importance of developing an integrated approach to gain a better 

understanding and better coverage of microbial communities in complex food systems. We 

expect that polyphasic studies of Daqu microbiota will provide more detailed species and 

strain level data on the functional microbiota of different types of Daqu. 

(2) Enzymatic aspects 

The microbiota of Daqu (e.g., Rhizopus, Aspergillus and Monascus) (Fan et al., 2000) 

produce a range of enzymes in Daqu such as α-amylase, β-amylase, glucoamylase and 

proteases. It is likely that in Daqu, Bacillus spp. Produce amylases as well. The function of 

amylases is to degrade starch into dextrins or maltose, and further to glucose (Wan, 2004). 

Some yeasts have autolysis property, which can result in the accumulation of nutrients for 

microbial growth. Some peptides and amino acids can influence the formation of aroma and 

even the flavour of the final liquor (Wan, 2004). Only acid proteases have been reported to 
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be present in Daqu, particularly those producing single amino acids as their final product 

(Shen, 2001b). This type of protease is active only after the lysis of yeast cells, i.e., at the 

end of the alcoholic fermentation, which contributes to adequate aroma compounds for the 

final taste of Chinese liquor (Shen, 2001b). 

(3) Chemical aspects 

Daqu is mostly made from wheat, barley and/or peas, which are significant sources of 

carbohydrates, crude protein, crude fat, minerals, and amino acids (Men et al., 1995; Shi et 

al., 1996). Because the proportion of these raw materials can differ for different types of 

Daqu, the chemical composition shows certain variability. The biggest fraction in Daqu is 

starch, which represents about 40-60% of the dry matter. That is also the reason why Daqu 

is popularly referred to as a “starch based starter”. With an additional protein fraction 

representing around 13-20%, the ingredients offer a good source of nutrients and substrate 

for the growth of microorganisms during liquor fermentation. Although the proximate 

chemical composition of Daqu has been analysed, little information is available about the 

role of specific microbiota on the chemical compounds present. Recently a non-targeted 

metabolomics approach using high resolution 
1
H nuclear magnetic resonance (NMR) was 

taken in order to distinguish representative compounds of well-known flavour types of 

Daqu (Wu et al., 2009a). It was observed that this spectroscopy combined with principal 

component analysis, enabled the distinction of flavour types and specific biomarkers were 

identified for each of these. Higher levels of glycerol, malate, acetate and N-

acetylglutamine are biomarkers for light-flavour Daqu; higher levels of mannitol, betaine, 

trimethylamine and pyroglutamate are biomarkers for strong-flavour Daqu; and higher 

levels of lactate, isoleucine, leucine, isovalerate and valine are biomarkers for sauce-flavour 

Daqu. 



 

 

Table 2.1 Microbiota isolated from different types of Daqu 

Microorganisms High-temperature Daqu 

（60-70°C） 

Medium-temperature Daqu 

（50-60°C） 

Low-temperature Daqu 

（40-50°C） 

Moutai  Site Lang Wuliangye Luzhou Xufang Fen Erguotou 

Moulds (total viable 

counts) 

[7.0](Wang 

et al., 2008a) 

   [6.4](Yao    

et al., 2005a) 

[6.7], 

[6.1]
*(Shi    

et al., 2001) 

[6.2]a; [6.7]b;  

[6.1]c
 (Xiong, 2005a) 

 

Absidia spp. [P](Wu et al., 

2007) 

   [6.7](Yao    

et al., 2005a) 

 [4.8]a; [4.8]b;  

[5.0]c
(Li et al., 2005) 

 

Absidia corymbifera        [P](Leimena, 2008) 

Aspergillus spp. [6.9](Wang 

et al., 2008a) 

[6.5](Huang 

et al., 1993) 

  [5.2](Wu     

et al., 2009b; 

Yao et al., 

2005a) 

 [4.2]a; [4.4]b;  

[3.8]c
(Li et al., 2005) 

 

Aspergillus flavus  [5.5](Huang 

et al., 1993) 

      

Aspergillus oryzae  [5.6](Huang 

et al., 1993) 

      

Aspergillus niger  [4.6](Huang 

et al., 1993) 

      

Gilmaniella spp. [P](Wu et al., 

2007) 

       

Monascus spp. [P](Jiang, 

2004; Jiang    

et al., 2003) 

[5.7](Huang 

et al., 1993) 

  [6.0](Yao    

et al., 2005a) 

   

Mucor spp. [6.3](Wang 

et al., 2008a) 

[7.7](Huang 

et al., 1993) 

  [6.7]§§
(Yao 

et al., 2005a) 

   

Mucor circinelloides        [P](Leimena, 2008) 

 

 

 



 

 

Table 2.1 Microbiota isolated from different types of Daqu (continued) 

Microorganisms High-temperature Daqu 

（60-70°C） 

Medium-temperature Daqu 

（50-60°C） 

Low-temperature Daqu 

（40-50°C） 

 Moutai Site Lang Wuliangye Luzhou Xufang Fen Erguotou 

         

Penicillum spp. [P](Jiang, 2004; 

Jiang et al., 2003) 

   [5.9](Yao       

et al., 2005a) 

   

Trichoderma spp.  [3.4](Huang     

et al., 1993) 

      

Rhizopus spp. [6.0](Wang        

et al., 2008a) 

[2.6](Huang     

et al., 1993) 

    [3.1]a; [3.2]b;  

[2.9]c
(Li et al., 2005) 

 

Rhizomucor pusillus        [P](Leimena, 

2008) 

Rhizomucor variabilis        [P](Leimena, 

2008) 

Yeasts (total viable 

count) 

[6.0](Wang        

et al., 2008a) 

   [5.4](Tang      

et al., 2005) 

[6.0](Shi        

et al., 2001); 

[5.8]
*(Shi      

et al., 2001) 

[5.9]a
(Li et al., 2009); 

[5.9]b
(Li      et al., 

2009);  

[5.8]c
(Li et al., 2009) 

[6.7]§
(Leimena, 

2008) 

Candida spp.     [5.8](Yao       

et al., 2005a) 

   

C. kunwiensis        [P](Leimena, 

2008) 

C. utilis  [6.5](Huang     

et al., 1993) 

      

Citeromyces spp.     [P](Wu et al., 

2009b) 

   

Debaryomyces spp.     [P](Wu et al., 

2009b) 

   

Endomycopsis spp.       [3.7]a
(Xiong, 2005a); 

[3.7]b
(Xiong, 2005a);  

[3.6]c
(Xiong, 2005a) 

 

 



 

 

Table 2.1 Microbiota isolated from different types of Daqu (continued) 

Microorganisms High-temperature Daqu 

（60-70°C） 

Medium-temperature Daqu 

（50-60°C） 

Low-temperature Daqu 

（40-50°C） 

 Moutai Site Lang Wuliangye Luzhou Xufang Fen Erguotou 

Hansenula anomala  [6.3](Huang     

et al., 1993) 

      

Hyphichia burtoniia [P](Jiang, 2004; 

Jiang et al., 2003) 

       

Issatchenkia orientalis [P](Jiang, 2004; 

Jiang et al., 2003) 

       

I. scutulata varaxingae [P](Jiang, 2004; 

Jiang et al., 2003) 

       

Oosporidium spp.     [P](Wu et al., 

2009b) 

   

Pichia spp.     [P](Wu et al., 

2009b) 

 [P](Li et al., 2005)  

Rhodotorula colostri        [P](Leimena, 

2008) 

Saccharomyces spp.     [P](Wu et al., 

2009b) 

   

S. bayanus×cerevisiae 

hybrid 

       [P](Leimena, 

2008) 

S. cerevisiae var. 

ellipsoideus 

 [6.4](Huang     

et al., 1993) 

      

Saccharomycopsis 

fibuligera 

       [P](Leimena, 

2008) 

Torulopsis glabrata  [6.4](Huang     

et al., 1993) 

      

 

 



 

 

Table 2.1 Microbiota isolated from different types of Daqu (continued) 

Microorganisms High-temperature Daqu 

（60-70°C） 

Medium-temperature Daqu 

（50-60°C） 

Low-temperature Daqu 

（40-50°C） 

 Moutai Site Lang Wuliangye Luzhou Xufang Fen Erguotou 

Lachancea cidri 

(Zygosaccharomyces 

cidri) 

[P] (Jiang, 2004; 

Jiang et al., 2003) 

       

Bacteria 

(Total viable count) 

[7.8](Wang      

et al., 2008a) 

 [7.9](Wu, 

2004) 

[7.9](Wu, 2004) [5.9](Yao    

et al., 2005a) 

[6.2](Shi    

et al., 2001)  

[5.0]
*(Shi   

et al., 2001) 

[9.3]a
(Li et al., 

2009); [9.4]b
(Li  

et al., 2009);  

[9.5]c
(Li et al., 

2009) 

 

Acetic acid bacteria  [6.5](Huang   

et al., 1993) 

[4.1] (Wu, 

2004) 

[5.9](Wu, 2004); 

[P]†(Wang et al., 

2008b) 

[P](Yao         

et al., 2005a) 

 [5.8]a
(Li et al., 

2009); [5.6]b
(Li   

et al., 2009); 

[5.6]c
(Li et al., 

2009) 

 

Bacillus spp. [7.60](Wang   

et al., 2008a) 

[6.8](Huang   

et al., 1993) 

[7.3] (Wu, 

2004) 

[6.5](Wu, 2004); 

[P]†
(Wang et al., 

2008b) 

[5.7](Tang   

et al., 2005) 

[6.3](Shi    

et al., 2001);  

[5.7]
*(Shi   

et al., 2001) 

[9.5]a
(Li et al., 

2009); [9.3]b
(Li  

et al., 2009);  

[9.8]c
(Li et al., 

2009) 

 

B. amyloliquefaciens [P](Jiang, 2004; 

Jiang et al., 2003) 

     [P](Li, 2008)  

B. cereus       [P](Li, 2008)  

B. coagulans [P](Jiang, 2004; 

Jiang et al., 2003) 

       

B. firmus [P](Jiang, 2004; 

Jiang et al., 2003) 

       

B. licheniformis [P](Jiang, 2004; 

Jiang et al., 2003) 

     [P](Li, 2008) [P](Leimena, 

2008) 

 



 

 

Table 2.1 Microbiota isolated from different types of Daqu (continued) 

Microorganisms High-temperature Daqu 

（60-70°C） 

Medium-temperature Daqu 

（50-60°C） 

Low-temperature Daqu 

（40-50°C） 

 Moutai  Site Lang Wuliangye Luzhou Xufang Fen Erguotou 

B. pumilus       [P](Li, 2008)  

B. stearothermophilus [P](Jiang, 2004; 

Jiang et al., 2003) 

       

B. subtilis [P] (Jiang, 2004; 

Jiang et al., 2003) 

     [P](Li, 2008)  

B. 

thermoglucoseidasuis 

[P] (Jiang, 2004; 

Jiang et al., 2003) 

       

B. thuringiensis       [P](Li, 2008)  

Enterobacteriaceae        [5.3](Leimena, 

2008) 

Lactic acid bacteria  [6.7](Huang       

et al., 1993) 

[7.6] 

(Wu, 2004) 

[P]†
(Wang et al., 

2008b) 

[P](Wu et al., 

2009b; Yao et al., 

2005a) 

 [8.3]a
(Li et al., 

2009); [7.7]b
(Li, 

2008);  

[8.3]c
(Li, 2008) 

 

L. acetotolerans    [P]†
(Wang et al., 

2008b) 

    

L. manihotivorans    [P]†
(Wang et al., 

2008b) 

    

L. panis    [P]†
(Wang et al., 

2008b) 

    

 
[ ] = log CFU/g; a: A type of Fen Daqu, named Hongxin Daqu; b: A type of Fen Daqu, named Qingcha Daqu; c: A type of Fen Daqu, named 

Houhuo Daqu; [P] Presence confirmed by identification of isolated pure cultures; [P]† Presence confirmed in similar product, by molecular 

identification; * Identified from a very similar product; § Yeasts & Moulds counted together; §§ Mucor & Rhizopus spp. counted together. 
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2.3 Manufacturing process of Daqu 

Common procedure for Daqu making 

The present production of Daqu has evolved from a simple artisanal scale to a large 

scale industrial process. Whereas in the past, liquor producers purchased starter from a 

manufacturer that used stone mills, nowadays liquor factories produce their own Daqu 

using mechanical milling operations. Nevertheless, the principle of the process has 

remained the same and can be summarized in five steps (Figure 2.1). These are (i) 

ingredients formulation, (ii) grinding and mixing, (iii) shaping, (iv) incubation, and (v) 

maturation. The steps are discussed below. 

Ingredients formulation: Most of the high-temperature Daqu is made from pure wheat, 

while the medium-temperature Daqu is made with a blend of barley and peas. 

Grinding and mixing: The purpose of grinding is to break the grains to release starch 

with the aim of increasing water absorption to obtain a desirable cohesion of the mass. The 

main purpose of mixing with water is to obtain a homogenous texture and dispersion of the 

added water and additives in all parts of the substrate. 

Shaping: The wetted material is transferred to a molding press and formed to a brick 

weighing approximately 1.5-4.5 kg each, with either flat surfaces, or with one end in a 

convex shape. 

Incubation: This step of Daqu processing is the period during which the incubation 

temperature needs to be controlled. Specific incubation conditions for Daqu vary according 

to the Daqu type to be produced. The three-stage principle used for strong- and sauce-

flavour Daqu consists of (a) a low temperature incubation phase, (b) a high temperature 

"converting" phase and (c) an aroma creating phase. To adjust the temperature, for some 

types such as light-flavour Daqu, three different arrangements of stacking of the Daqu 

bricks are used to achieve adequate ventilation and maximum yield, as shown in Figure 2.2. 

During the first day of incubation, Daqu is still quite soft and thus may only be stacked to a 

maximum of 3 layers to avoid deformation and to allow good ventilation (Figure 2.2A). 

Next, when the Daqu texture becomes harder, and temperature control needs to be 

optimized, arrangements such as shown in Figures 2.2B and 2.2C can be used according to 
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the requirements for the different incubation phases. The basis for control for these 

different phases is as follows: 

(a) Low temperature incubation phase: The aim of this phase is to activate initial 

microbial growth and to allow the temperature to increase gradually, attaining 30-40ºC in 3-

5 days. The initial 24-48 h is considered to be a crucial time for establishing the structure of 

Daqu’s microbial community; pioneer microorganisms such as fungi start to colonize and 

mycelium will spread over the surface of Daqu. 

(b) High temperature "converting" phase: The goal of this phase is to accumulate 

flavour compounds by the metabolic conversion of amino acids. This phase is characterized 

by a controlled and gradual increase of the temperature at a rate of 5-10ºC/day, while 

maintaining the relative humidity at 90%, with the aim of increasing the microbial 

metabolic rate and accumulating CO2 in the product. After finally reaching the maximum 

temperature of 50-65 ºC, doors and windows are opened to ventilate and lower the 

humidity. 

(c) Aroma creating phase: The goals of this phase are to evaporate water and 

accumulate flavour compounds. During this 9-12 day incubation period, the temperature 

should not be lower than 45ºC, and the relative humidity should be 80%. After this phase, 

the temperature should decrease steadily to 30ºC. 

Maturation: During maturation, the temperature of Daqu gradually equilibrates with 

the ambient temperature. Usually, maturation takes about 6 months. 

2.4 Comparison of process conditions for different flavour Daqu 

types 

Choice and formulation of ingredients 

Moutai-Daqu, Luzhou-Daqu, Fen-Daqu, and Xifeng-Daqu are examples of four 

different flavours. Of these, both Fen-Daqu and Xifeng-Daqu (miscellaneous-flavour, low 

temperature) are made from barley and pea with the ratio of 6:4 or 7:3 (Shen, 2001b); while 

Moutai-Daqu and Luzhou-Daqu are produced from only pure wheat (Chen et al., 1995).  
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Stacking methods for Daqu 

Light-flavour Daqu is a low-temperature Daqu. During the production of this type of 

Daqu, the stacking pattern should allow good ventilation and release of heat. Therefore all 

three stacking patterns of Daqu (“1” shape, “delta” shape and “fish bone” shape) are strictly 

applied according to the different incubation phases, and stacking is between 3 and 7 layers 

high (Wang et al., 2004). On the other hand, strong-flavour and sauce-flavour Daqu are 

high or medium temperature Daqu, so their production is geared towards maintaining high 

temperature and humidity levels. Consequently, stacking of the Daqu follows one pattern 

only, with 4-5 layers high throughout the incubation (Shen, 2001b). For miscellaneous-

flavour Daqu, both stacking pattern and number of layers are diverse, because the 

ingredients, incubation and process differ as preferred by producing companies. 

Table 2.2 Successive incubation periods for light-flavour Daqu 

Incubation 

period 

Explanation Time 

range (d) 

Temperature 

(°C) 

Phenomena 

Shangmei Natural inoculation and 

activation of initial 

microbial growth 

2-4 38 White spots of 

mycelium occur 

Liangmei Cooling down; to prevent  

damage from overheating; 

equilibration of moisture, 

microbial activity, and 

temperature 

3-4 24-36 Daqu becomes 

harder 

Chaohuo Succession of dominate 

groups of microorganism 

4-5 43-47 Most moisture is 

released 

Dahuo Enhanced proteolysis and 

accumulation of amino 

acids 

7-8 43 Decrease of 

acidity and 

humidity 

Houhuo Pre-maturation
* 4-5 34-38 Equilibrate 

temperature of 

Daqu to room 

temperature 

 
Data compiled from (Shen, 2001b; Wang et al., 2004; Wang, 2000) 
* This equilibration should take place prior to the “maturation” as shown in Figure 2.1. 
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Incubation of Daqu types 

The production of light and miscellaneous-flavour Daqu follows distinct and specific 

temperature regimes, which are named the Shangmei, Liangmei, Chaohuo, Dahuo and 

Houhuo periods. These five stages are associated with the initiation of microbial growth, 

hardening, succession of dominant groups of microorganisms, enhancing proteolysis, and 

maturation. Table 2.2 gives detailed information for every period. Shangmei, also 

sometimes called Shengyi or Guayi, means “growth of filamentous fungal mycelium”. 

Fungi occur as a natural inoculum on raw materials, water, rush mats, bran coat and 

environment. The mycelial development takes about 2-4 days. When white spots of 

mycelium occur on the surface of Daqu, the next period Liangmei, for cooling and 

hardening, is started. The key incubation period for microbial succession is “Chaohuo”. As 

shown in Table 2.2, the temperature increases to about 43-47°C. During this incubation 

period, functional groups of microorganisms are favoured to grow into dominance, and 

cause the development of aroma compounds during Dahuo period. Finally, to allow the 

equilibration of moisture, acidy and enzyme activity, the Houhuo period is essential. As 

mentioned earlier, strong and sauce flavour Daqu require three stage incubation regimes. 

The scientific basis for these different scenarios is unclear and merits further investigation. 

Sensory characteristics of Daqu 

The different ingredients and incubation conditions will determine microbial 

succession and dominance, expressing distinct sensory characteristics such as colour, aroma 

and texture. Table 2.3 allows a comparison of physical and sensory characteristics of the 

four typical famous types of Daqu. Different Daqu have different sizes and weights. Sauce-

flavour Daqu bricks are the biggest and heaviest (4.8 kg) whereas light-flavour Daqu bricks 

are the smallest and lightest (1.7 kg). Daqu types have their own specific texture and 

aroma. Because the incubation temperature of sauce-flavour Daqu is quite high, reaching 

up to 70°C, Maillard reactions result in colour gradients from brown inside to yellow on the 

surface. Under these hot incubation conditions, only a few microorganisms will be able to 

survive and dominate, and these are associated with the formation of a pungent flavour. On 

the other hand, the incubation temperature of light- and miscellaneous-flavour Daqu is 
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relatively lower (40-50°C), allowing for more fungal growth and the aroma is described as 

light and mushroom-like. Strong-flavour Daqu has a medium incubation temperature (50-

60°C); at this range, thermophilic bacteria may become a dominant group, competing with 

other bacteria and moulds, and producing a strong flavour. 

 

Figure 2.2 Stacking arrangements during incubation of Daqu (a) “1” shape; (b) “delta” shape; 

(c) “fish bone” shape. 

2.5 Relationships between process conditions characteristics and 

functionality of Daqu 

Daqu is produced from raw (uncooked) ingredients. Experience has shown that this 

results in better microbial and enzymatic activity for the production of liquor, because 

endogenous hydrolytic enzymes, such as β-glucanase (Xu et al., 2003) are present in barley. 

These enzymes can convert β-glucans to fermentable sugars and lead to reduced viscosity, 

which later can improve the exchange of substrates for second stage yeast alcoholic 

fermentation. Furthermore, some of the microorganisms grown in uncooked ingredients 

have been reported to produce acidic carboxyl proteases. This enzyme activity is important 

A 
B 

C 
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in the degradation of denatured proteins and their conversion into amino acids, which in 

turn enhance microbial growth and the formation of trace levels of aroma compounds 

(Shen, 2001b). 

2.6 Conclusion 

In order to facilitate technological progress, improve control of quality, and reduce the 

variability in fermentation outcomes, qualitative and quantitative knowledge of the 

microbial diversity of Daqu is a prerequisite. Also required is a scientific understanding of 

the ecological role of processing conditions on microbial diversity and functionality. 

As yet, limited work has been done to study these products with a view of upgrading 

traditional techniques. Therefore, the further study of microbial ecology during the 

production of Daqu and the ensuing alcoholic fermentation will be a considerable 

challenge. A better understanding of the eco-physiology of microorganisms of relevance for 

the specific types of Chinese liquors will stimulate the standardization and optimization of 

Chinese liquor production, allowing Chinese liquor to be increasingly recognized and 

appreciated by an international market. 
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Table 2.3 Physical and sensory characteristics of major types and famous representatives of Daqu 

Type of Daqu Representative 

Daqu 

Brick sizea Massa  Sensory properties 

  (l/w/h; cm) (kg / 

brick) 

Surface Texture Aroma 

Sauce-flavour Daqu Moutai 37 /23 /6.5 4.8 - 5.0 yellow brown soft inside pungent 

Strong-flavour Daqu Luzhou 34 /20 /5 2.5 - 2.8 white, white spots or 

microbial colonies visible 

hard to cut heavy 

Light-flavour Daqu Fen 27.5/16 /5.5 1.7 - 2.0 smooth, white, grain 

husks visible on edges 

hard to cut, big 

particle size 

light, mould 

flavour 

Miscellaneous-flavour 

Daqu 

Xifeng 28 /18 /6 2.2 - 2.5 white, grain husks visible hard to cut, small 

particle size 

light, pleasant, 

mould flavour Baiyunbian   

Site   

 

a Approximate size and mass. 
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Characterization of the microbial community in different  
types of Daqu 

Abstract 

Daqu is a fermentative saccharification agent that is used to initiate fermentation 

in the production of Chinese liquor and vinegar. Different types of Daqu can be 

distinguished based on the maximum fermentation temperature, location of 

production, and raw materials used. We aimed to characterize and distinguish the 

different types of Daqu using a culture-independent cloning method. The lowest 

microbial diversity was found in Daqu produced at high-temperature. Principal 

Component Analysis (PCA) was used to compare the bacterial composition of 

Daqu from different regions (i.e., northern Daqu and southern Daqu). 

Staphylococcus gallinarum and Staphylococcus saprophyticus were found in 

southern Daqu, and were absent in northern Daqu. The fungi Saccharomycopsis 

fibuligera and Lichtheimia ramosa dominated in low/medium-temperature Daqu, 

whereas Thermomyces lanuginosus occurred in high-temperature Daqu. Our study 

identified potential biomarkers for the different types of Daqu, which can be 

useful for quality control and technology development of liquor or vinegar 

production. 
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3.1 Introduction 

Chinese liquor and vinegar have a long history of production and consumption and are 

produced through unique brewing processes. They are typically produced from cereals, 

such as sorghum, by solid-state fermentation using a natural fermentation starter termed 

Daqu. Daqu comprises a microbial community and is rich in enzymes. Daqu is made by a 

natural fermentation process running for a few weeks such that a microbial succession 

occurs (Zheng et al., 2011; Zheng et al., 2014). Being a major source of microorganisms 

and enzymes, Daqu is crucial for the quality, safety, and flavour of its derived products, 

such as liquor and vinegar. Different types of Daqu can be distinguished (Zheng et al., 

2011), for instance, according to the maximum incubation temperature during the 

fermentation. Daqu can be grouped into three classes based on the production temperature: 

(i) high-temperature Daqu (60-70°C), (ii) medium-temperature Daqu (50-60°C), and (iii) 

low-temperature Daqu (40-50°C). According to the raw materials used for production, 

Daqu can be classified as single-grain Daqu or multi-grain Daqu. Daqu can also be 

classified geographically into southern and northern Daqu. Generally, southern Daqu is 

classified as a single-grain product produced at medium to high temperature. The northern 

variant is commonly a multi-grain, low to medium temperature Daqu (Shen, 2001a). 

Several studies have shown the diversity of the microbial community in Daqu (Wang et al., 

2011b). We hypothesized that the microbial composition of Daqu correlates with 

environmental factors prevailing during the fermentation process. Thus, the microbial 

community in similarly classified Daqu is predicted to harbour common species or similar 

dominant groups of microorganisms. 

The microbial community of Daqu has been analysed in previous studies using 

culture-dependent methods, such as isolation and enumeration on selective media (Li et al., 

2009; Ma et al., 2011; Zheng et al., 2012), as well as by culture-independent methods, such 

as polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE), and 

amplified fragment length polymorphism (Gao et al., 2010; Meng et al., 2010; Yan et al., 

2012). In the present study, a semi-quantitative culture-independent cloning method was 

used for the analysis of microbial communities in Daqu. By comparing clone libraries, not 

only qualitative information on the composition of the microbial community is obtained, 
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but also quantitative information of the relative abundance of the identified species. The 

main objective of this study was to obtain an overview of the composition of the microbial 

communities in different types of Daqu. This analysis is expected to deliver potential 

biomarkers for fast and reliable verification of the authenticity of Daqu types. 

3.2 Materials and Methods 

Sampling 

Eight types of brick-shaped Daqu were obtained from five commercial distilleries 

located in northern and south-western China. Daqu was produced and matured according to 

the procedures of the different distilleries. An overview of the types of Daqu and their 

technological parameters is presented in Table 3.1. In order to obtain adequate repetition, 

three blocks of each type of Daqu were randomly selected from each of the upper, middle, 

and lower stacked layers, and ground together. About 100 g of these Daqu powders was 

used as an experimental Daqu powder sample. Samples were then collected in sterile 

Stomacher
®
 bags (Seward Laboratory Systems Inc., London, UK), transported to the 

laboratory in a cool box, and stored at -20°C until analysis. 

DNA extraction and PCR amplification 

DNA from eight powdered Daqu samples was extracted according to the method of 

Wang et al. (2008b) and diluted to a DNA concentration of 50 ng/μl. The 16S rRNA 

bacterial gene was amplified using universal primers “B-for” (5′-

AGAGTTTGATCCTGGCTCAG-3′) and “B-rev” (5′-AAGGAGGTGATCCAGCCGCA-

3′) (Edwards et al., 1989). The D1/D2 domain of the 26S rRNA fungal gene was amplified 

using universal primer “NL1” (5′-TGCTGGAGCCATGGATC-3′) and reverse primer 

“RLR3R” (5′-GGTCCGTGTTTCAAGAC-3′) (Okoli et al., 2007). PCR was performed in a 

total reaction volume of 50 μl containing 26.6 μl ddH
2
O, 5 μl PCR buffer, 3 μl MgCl

2 
(25 

mM), 10 μl dNTP (2 mM), 2 μl of each primer (10 μM), 1 μl DNA template (approximately 

50 ng), and 0.4 μl Taq DNA polymerase (5 U/μl) (Fermentas, USA). PCR was performed 

using a GeneAmp PCR system 9700 (Applied Biosystems, USA) with the following PCR 

conditions: initial denaturation for 5 min at 94°C; 35 cycles each consisting of 30 s at 94°C, 
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20 s at 56°C (bacteria) or 52°C (fungi), and 1 min at 72°C; and extension of incomplete 

products for 7 min at 72°C, followed by cooling at 4°C. The sizes and quantities of the PCR 

products were determined using 1.5% (wt/vol) agarose gel electrophoresis. The PCR 

products were analysed by electrophoresis and then stored at -20°C for future experiments. 

DNA clone library construction 

Clone libraries of 16S rDNA and 26S rDNA amplicons from Daqu samples were 

constructed. Amplicons derived from PCR products were purified with a QIAquick PCR 

purification Kit (Qiagen, Hilden, Germany), cloned using a pGEM-T Easy Cloning Kit 

(Promega, Madison, WI, USA) and transformed into Escherichia coli JM109 High 

Efficiency Competent Cells (Promega), following the manufacturer’s instructions. Around 

90 positive clones (white colonies) were randomly picked from the plates of each sample. 

These plasmid-harbouring clones were transferred with a sterile toothpick into 50 μl of 

Tris-EDTA buffer, lysed, and amplified with “T7” and “Sp6 pGem-T”-specific primers to 

confirm the appropriate size of the insert (approximately 1,500 bp for bacteria and 700 bp 

for fungi).  

Table 3.1 Daqu samples investigated 

Sample code Type Raw materials Maximum 

temperature 

reached during the 

fermentation (°C) 

Location 

9-H-S-W* High-temperature wheat 62.7±0.2 28.32° N (S) 

5-H-S-W High-temperature wheat 65.2±0.1 28.88° N (S) 

8-M-N-BP Medium- temperature barley and pea 54.2±0.1 40.02° N (N) 

5-M-S-W Medium- temperature wheat 54.6±0.1 28.88° N (S) 

4-M-S-W Medium- temperature wheat 56.5±0.2 28.55° N (S) 

7-L-N-BP’ Low-temperature barley and pea 50.1±0.2 37.31° N (N) 

7-L-N-BP Low-temperature barley and pea 45.2±0.1 37.31° N (N) 

8-L-N-BP Low-temperature barley and pea 50.7±0.1 40.02° N (N) 

*indicate the codes of Daqu samples: The number in codes means the name of liquor factory; the letter “H” “M” 

and “L” indicates the high temperature Daqu, Medium temperature Daqu and Low temperature Daqu, 

respectively. The letter “N” and “S” indicates that the Daqu is produced in northern China and southern China, 
respectively. The letter “W” and “BP” indicates that the Daqu is produced from wheat and “barley and peas”, 

respectively. The only difference between samples 7-L-N-BP and 7-L-N-BP’ is maximum temperature. 
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Clones containing the plasmid with an insert were sent for sequencing at the Beijing 

Genomics Institute (Beijing, China). Sequences were assembled and edited with Seqman II 

software (DNAStar Inc., Madison, WI, USA) and aligned with Megalign (DNAStar Inc.). 

Chimeric sequences in the clone library were identified and discarded using the software 

package Chromas v.2.31 (Technelysium Pty Ltd.). The nucleotide sequences obtained were 

identified in GenBank using BLAST (http://blast.ncbi.nlm.nih.gov/) to determine the 

closest known relatives of the partial ribosomal DNA sequences obtained. 

Calculation of species diversity indices 

To determine the diversity of species in Daqu samples (as revealed by cloning), 

Shannon’s diversity index (H' = -∑pi ln(pi), where pi is the proportion of taxon i), was 

calculated.  

Statistical analysis 

The composition of microbiological communities in all Daqu samples was analysed by 

PCA using the software package SIMCA-P 12.0 (Umetrics, Umea, Sweden) to cluster the 

samples into different groups. Samples were plotted in two dimensions based on scores for 

the first two principal components to evaluate relationships among samples. The proportion 

of variance explained by each principal component was calculated. 

3.3 Results 

Composition of microbial communities in Daqu 

The composition of the microbial communities in Daqu, representing three 

temperature types obtained from five factories, is shown in Table 3.2. About 69 bacterial 

species and 19 fungal species were detected by the cloning method. Only three species 

(Bacillus licheniformis, Saccharomycoposis fibuligera and one uncultured bacterium) were 

detected in all types of Daqu. Twenty bacterial species and 11 fungal species were found in 

high-temperature Daqu, but only five species, i.e. B. licheniformis, Enterobacter sp., Pichia 

kudriavzevii, Sm. fibuligera, and Thermomyces lanuginosus were found in all high-

temperature Daqu samples. Forty-three bacterial species and 10 fungal species were found 

http://blast.ncbi.nlm.nih.gov/
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in medium-temperature Daqu, but only four species, i.e. B. licheniformis, Bacillus sp., Sm. 

fibuligera, and Lichtheimia ramosa were found in all medium-temperature Daqu. Twenty-

nine bacterial species and four fungal species were found in low-temperature Daqu, with B. 

licheniformis, Sm. fibuligera, Lichtheimia corymbifera, and P. kudriavzevii as common 

species occurring in all low-temperature Daqu. The lowest bacterial diversity (H
’
 = 1.19) 

was found in sample 9-H-S-W, and the highest bacterial diversity (H
’
 = 3.40) was found in 

sample 4-M-S-W. For fungi, the lowest diversity (H
’
 = 0.49) was in sample 8-M-N-BP, and 

the highest (H
’
 = 1.59) in sample 5-H-S-W (Table 3.2). 

Characteristics of different types of Daqu 

Group-wise PCA comparisons of the bacterial and fungal composition of the different 

types of Daqu were constructed (Figures 3.1a and 3.2a). The loading plots indicate the 

species that are responsible for the separation of the clusters (Figure 3.1b and Figure 3.2b). 

Based on bacteria detected, five of the eight samples (8-L-N-BP, 4-M-S-W, 5-H-S-W, 

5-M-S-W and 9-H-S-W) clustered together (cluster 1). Furthermore, samples 7-L-N-BP and 

7-L-N-BP
’
 clustered together (cluster 2) and sample 8-M-N-BP was separated from all 

other samples (Figure 3.1a). With one exception (i.e., sample 8-L-N-BP), all Daqu samples 

in the main cluster 1 are from southern China, while the Daqu samples 7-L-N-BP, 7-L-N-

BP’ and 8-M-N-BP are from northern China. The loading plot (Figure 3.1b) indicates the 

bacterial species that contributed to this discrimination. The microbial species that most 

significantly characterized different types by their increased relative abundance were in 

cluster 1 are: Saccharypolyspora rosea, Streptomyces albus, Thermomonospora 

chromogena, Staphylococcus gallinarum, Staphylococus sp., Staphylococcus 

saprophyticus, Bacillus sp., Enterobacter cowanii, and Escherichia hermannii. In cluster 2, 

Weissella confusa showed a marked increase in relative abundance and in cluster 3 the 

species Thermoactinomyces sanguinis, Saccharopolyspora sp., Saccharopolyspora 

rectivirgula were detected with an increased abundance in the microbial population. 

The PCA of three temperature types of Daqu based on fungal composition (see Figure 

3.2), showed three groups (Figure 3.2a). The species that most significantly characterized 

the different clusters by their fungal composition were in cluster 1 Rhizomucor pusillus, 
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Absidia idahoenis and L. corymbifera; in cluster 2 Sm. fibuligera and L. ramosa and in 

cluster 3 T. lanuginosus and Aspergillus flavus (Figure 3.2b).  

3.4 Discussion 

Knowledge of the microbiota of Daqu is still far from complete. Therefore, this study 

was initiated to understand the composition of the microbial community in three 

temperature types of this saccharafication agent. Daqu is made from different ingredients 

(barley, pea, or wheat), and is produced in different locations in China, each location 

applying different fermentation conditions. The most variable parameter is the maximum 

temperature of fermentation. Three arbitrary classes can be distinguished with regard to the 

latter parameter: (i) high-temperature, (ii) medium-temperature, and (iii) low-temperature 

processes for Daqu production. It is expected that the relative abundance of several of the 

identified microorganisms correlates with specific environmental conditions. For instance, 

the prevailing temperature is expected to have a major selective effect on the microbiota.  

The presence or relative abundance of other microorganisms could be associated with 

available substrates for fermentation, the location of production facility, and unique factory 

conditions. The lowest bacterial diversity as measured by the Shannon index (H
’
=1.19) was 

found in a high-temperature Daqu (9-H-S-W). Temperatures higher than 65°C occurred 

during the production of high-temperature Daqu, and such temperatures only permit the 

survival and growth of thermophilic or thermotolerant bacteria and fungi, such as Bacillus 

spp. and Thermomyces spp., respectively (Moretti et al., 2012). This explanation is in line 

with our observations of the high abundance of B. licheniformis, and T. lanuginosus in 

high-temperature Daqu (samples 9-H-S-W and 5-H-S-W). Samples 5-H-S-W and 5-M-S-W 

were made from the same raw materials (wheat) and produced in the same factory; they 

only varied in their fermentation temperatures (about 10°C differences). The comparison of 

the microbial diversity between samples 5-H-S-W and 5-M-S-W revealed a reduction in 

fungal diversity upon elevation of the fermentation temperature: sample 5-H-S-W had a 

lower number of species and a lower value of Shannon’s diversity index compared to 

sample 5-M-S-W. Two samples obtained from factory 8 (i.e., 8-L-N-BP and 8-M-N-BP) 

were also produced in the same factory and they reavealed the same trend: the higher the  



 

 

 

Table 3.2 Microbial composition of three types of Daqu 

Microorganisms High-temperature Daqu 

（60-70°C） 

Medium-temperature Daqu 

（50-60°C） 

Low-temperature Daqu 

（40-50°C） 

9-H-S-W 5-H-S-W 8-M-N-BP 5-M-S-W 4-M-S-W 7-L-N-BP 7-L-N-BP’ 8-L-N-BP 

Bacteria         

Acinetobacter baumannii     [7]    

Acinetobacter sp.     [1]    

Actinopolyspora salina   [1]      

Altererythrobacter sp.     [1]    

Bacillus atrophaeus      [1]   

Bacillus licheniformis [27] [21] [5] [18] [4] [4] [10] [55] 

Bacillus oleronius  [1]   [1]    

Bacillus pumilus      [1] [3]  

Bacillus sp.  [29]  [21]  [1] [2] [6] 

Bacillus subtilis     [3]  [8]  

Bacillus shackletonii        [1] 

Bacillus sonorensis      [3]   

Brevundimonas sp.     [1]    

Corynebacterium sp.      [1]   

Desmospora activa   [1]      

Endophytic bacterium     [4]    

Enterobacter asburiae  [2]   [7]    

Enterobacter cowanii [21]        

 



 

 

Table 3.2 Microbial composition of three types of Daqu (continued) 

Microorganisms High-temperature Daqu 

（60-70°C） 

Medium-temperature Daqu 

（50-60°C） 

Low-temperature Daqu 

（40-50°C） 

9-H-S-W 5-H-S-W 8-M-N-BP 5-M-S-W 4-M-S-W 7-L-N-BP 7-L-N-BP’ 8-L-N-BP 

Bacteria         

Enterobacter cloacae  [1]       

Enterobacter sp. [4] [5]   [11]  [5] [1] 

Enterococcus canintestini      [1]   

Enterococcus saccharolyticus      [1]   

Escherichia hermannii [28]        

Kocuria sp.     [1]    

Klebsiella pneumonia     [8]    

Klebsiella sp.     [2]    

Klebsiella variicola     [5]    

Kurthia gibsonii      [1]   

Lactobacillus farciminis      [2] [4]  

Lactobacillus fermentum     [1]    

Leclercia sp.     [1]    

Legionella taurinensis     [1]    

Leuconostoc citreum     [1]    

Leuconostoc 

pseudomesenteroides 

     [1]   

Microbispora bispora   [2]      

Myxococcus xanthus  [1]       



 

 

 

Table 3.2 Microbial composition of three types of Daqu (continued) 

Microorganisms High-temperature Daqu 

（60-70°C） 

Medium-temperature Daqu 

（50-60°C） 

Low-temperature Daqu 

（40-50°C） 

9-H-S-W 5-H-S-W 8-M-N-BP 5-M-S-W 4-M-S-W 7-L-N-BP 7-L-N-BP’ 8-L-N-BP 

Bacteria   [3]     [11] 

Oceanobacillus sp.         

Pantoea agglomerans     [1] [1]   

Pantoea sp.  [2]       

Pantoea vagans      [2]   

Patulibacter minatonensis     [1]  [4]  

Pediococcus acidilactici   [2]      

Nilaparvata lugens     [1]    

Saccharopolyspora hordei  [2] [2]  [1]    

Saccharopolyspora rectivirgula   [13]     [4] 

Saccharopolyspora rosea   [6]  [2]    

Saccharopolyspora sp.   [12]     [3] 

Saccharopolyspora spinosa   [1]      

Sphingomonas aurantiaca      [1] [2]  

Staphylococcus gallinarum [2] [2]  [9] [1]    

Staphylococcus saprophyticus [2] [3]  [20] [3]    

 

 

 



 

 

Table 3.2 Microbial composition of three types of Daqu (continued) 

Microorganisms High-temperature Daqu 

（60-70°C） 

Medium-temperature Daqu 

（50-60°C） 

Low-temperature Daqu 

（40-50°C） 

9-H-S-W 5-H-S-W 8-M-N-BP 5-M-S-W 4-M-S-W 7-L-N-BP 7-L-N-BP’ 8-L-N-BP 

Bacteria         

Staphylococcus sciuri      [4] [3]  

Staphylococcus sp.    [18] [5] [6] [7]  

Stenotrophomonas 

maltophilia 

  [1]  [6]    

Streptomyces cacaoi         [3] 

Streptomyces albus    [4]     [3] 

Streptomyces sp.   [1]      

Tepidanaerobacter sp.  [2]       

Thermoactinomycetaceae 

bacterium 

 [2]       

Thermoactinomyces sanguinis  [1] [36]  [1]   [6] 

Thermoactinomyces vulgaris  [1]       

Thermobispora bispora   [2]      

Thermomonospora 

chromogena 

  [3]      

Weissella cibaria  [1]    [5] [12]  

Weissella confusa  [2]   [10] [50] [38]  

 

 



 

 

 

Table 3.2 Microbial composition of three types of Daqu (continued) 

Microorganisms High-temperature Daqu 

（60-70°C） 

Medium-temperature Daqu 

（50-60°C） 

Low-temperature Daqu 

（40-50°C） 

9-H-S-W 5-H-S-W 8-M-N-BP 5-M-S-W 4-M-S-W 7-L-N-BP 7-L-N-BP’ 8-L-N-BP 

Bacteria         

Weissella paramesenteroides      [2]   

Uncultured bacterium [3] [9] [1] [1] [3] [2] [1] [3] 

         

Fungi          

Absidia idahoenis      [20]    

Aspergillus flavus [3]        

Aspergillus fumigatus [2]   [2]     

Coelometopinae sp  [1]       

Cucujus clavipes  [5]       

Eurotium amstelodami    [2]     

Lichtheimia ramosa   [5] [21] [5]    

Lichtheimia corymbifera  [1]   [15] [11] [18] [15] 

Pichia kudriavzevii [31] [21]    [21] [19] [21] 

Pselaphacus signatus  [1]       

Pselaphacus vitticollis  [5]       

Rhizomucor miehei     [2]    

Rhizomucor pusillus     [39]    

 

 



 

 

Table 3.2 Microbial composition of three types of Daqu (continued) 

Microorganisms High-temperature Daqu 

（60-70°C） 

Medium-temperature Daqu 

（50-60°C） 

Low-temperature Daqu 

（40-50°C） 

9-H-S-W 5-H-S-W 8-M-N-BP 5-M-S-W 4-M-S-W 7-L-N-BP 7-L-N-BP’ 8-L-N-BP 

Fungi         

Saccharomycopsis fibuligera [21] [20] [52] [42] [7] [53] [48] [45] 

Stephanoascus ciferrii     [1]    

Talaromyces luteus  [1]       

Thermomyces lanuginosus [28] [30]       

Trichomonascus ciferrii    [2]     

Wickerhamomyces anomalus      [12]   

Total [172] [167] [153] [156] [184] [187] [184] [177] 

Bacterial diversity scores 

(Shannon’s diversity, Hb’) 
1.19 2.03 2.13 1.62 3.40 1.92 1.88 1.61 

Fungal diversity scores 

(Shannon’s diversity, Hf’) 
1.28 0.97 0.49 1.59 1.49 1.16 1.08 0.98 

 

The number in the brackets [ ] indicates the number of clones isolated. 
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Figure 3.1 PCA of Daqu extracts on bacterial composition (a) Score plots of three temperature types 

of Daqu (b) Loading plots of PC1 and PC2. ▲low-temperature Daqu; ● medium-temperature Daqu; 

■ high-temperature Daqu. 

temperature, the lower the diversity in fungal composition (Table 3.2). However, the 

bacterial composition revealed an opposite trend. This indicates that the bacterial 

composition, in comparison to the fungal composition, is affected more by other factors 

such as moisture content and oxygen condition. The production technique used could be 

another factor affecting the bacterial community in Daqu. One specific technique called 

“back-slopping” was used in factory 9. The Daqu (4-8%) that was produced one year ago 

(named “mother Daqu”) was added to the raw materials, and the mixture was used to carry 

out the Daqu fermentation. On the one hand, the mild acidity of the “mother Daqu” could 
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inhibit the growth of fungi (Li, 2013), on the other hand however, the dominant 

microorganisms in the “mother Daqu” could dominate the Daqu fermentation, thereby 

suppressing the less prevalent microorganisms. This presumably explains why only seven 

bacterial species were detected in the sample 9-H-S-W. 

B.licheniformis, Sm. fibuligera and one uncultured bacterium were detected in all 

tested Daqu samples. This result is in agreement with the study of Wang et al. (2011b). B. 

licheniformis is a ubiquitous spore-forming bacterium associated with a variety of 

fermented food products (Lima et al., 2012; Ramos et al., 2010; Wang et al., 2011.), and it 

is a well-known producer of proteases and amylases (Karataş et al., 2013). The high relative 

abundance of B. licheniformis in Daqu suggests that it plays an important role in flavour 

formation in products such as Chinese liquor and vinegar by hydrolysis of complex 

carbohydrates and proteins during fermentation. B. licheniformis was found to produce 

more than 70 metabolites, most of which are flavour compounds and flavour precursors 

important for the aroma of fermented products (Yan et al., 2007). Yan et al. (2013b) 

reported high levels of acetic acid and lactic acid produced by B. licheniformis. These 

organic acids may give rise to a variety of aroma compounds by esterification with ethanol. 

This corresponds well with the fact that the key aroma compounds in light-flavour liquor, 

such as Fen-liquor (factory 7), are mainly ethyl acetate and ethyl lactate. An abundance of 

B. licheniformis, Bacillus subtilis, and non-specified Bacillus sp. was found in high-

temperature Daqu, as has been observed elsewhere (Huang et al., 2006; Yan et al., 2007). 

Wu et al. (2009a) analysed the metabolite composition in different types of Daqu, and 

found higher concentrations of amino acids, such as isoleucine and leucine, in high-

temperature Daqu. This correlates with the abundance of Bacillus spp. in high-temperature 

Daqu, since Bacillus spp. were shown to be important thermophilic protease producers 

(Zhang et al., 2007b). 

Sm. fibuligera was encountered in different types of Daqu (Wang et al., 2011b). The 

role of Sm. fibuligera in Daqu production may be the secretion of amylases, acid proteases, 

and β-glucosidases, which have high potential application in the fermentation industry (Chi 

et al., 2009). Sm. fibuligera also has been reported to degrade and assimilate raw starch as a 
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carbon source (Chi et al., 2009); thus, it may contribute to the formation of fermentable 

carbohydrates for subsequent alcoholic fermentation. 

In the current study, various genera of lactic acid bacteria (LAB) were identified in 

Daqu samples, including Enterococcus, Lactobacillus, Leuconostoc, Pediococcus, 

Streptococcus and Weisella. In general, LAB was found in low abundance, except Ws. 

confusa which was found at high abundance in two Daqu samples (i.e., 7-L-N-BP and 7-L-

N-BP’). Based on this, the high abundance of Ws. confusa can be used potentially to 

distinguish Daqu from factory 7 from Daqu samples originating from other production 

locations. Among the LAB species, Lactobacillus fermentum, Leuconostoc citreum, 

Pediococcus acidilactici, Ws. confusa, and Ws. cibaria were reported in earlier studies on 

other types of Daqu (Wang et al., 2011b; Zheng et al., 2012). Several studies mentioned the 

importance of LAB during the production of Daqu, but it was only found at high abundance 

during the beginning of the Daqu production process (Lei, 2011). The study of Katina et al. 

(2002) indicated that some species of Lactobacillus inhibit the growth of Bacillus spp., 

especially B. subtilis and B. licheniformis. This might explain that a high abundance of 

LAB was present at early stages of Daqu production. However, the increase in temperature 

throughout the fermentation process results in the fast growth of thermophilic bacteria such 

as Bacillus spp. in Daqu and slower growth of mesophilic LAB (Lei, 2011). This might 

explain the low abundance of LAB in the final Daqu products. 

Thirteen species of actinomycetes were detected in Daqu, i.e., Actinopolyspora salina, 

Saccharopolyspora hordei, Sac. rectivirgula, Sac. rosea, Saccharopolyspora spinosa, 

Saccharopolyspora sp., Streptomyces cacaoi, Str. albus, Streptomyces sp., T. sanguinis, T. 

chromogena, Thermoactinomyces bacterium and Thermobispora bispora (Table 3.2). Of 

these, Sac. rectivirgula, Saccharopolyspora sp. and Str. albus were detected particularly in 

8-M-N-BP and 8-L-N-BP, which both originate from the same factory (i.e., factory 8), but 

were processed at different fermentation temperatures. Since Sac. rectivirgula, 

Saccharopolyspora sp. and Str. albus were not present in other Daqu samples; these three 

actinomycetes may represent the “house microbiota” of the factory 8. Wang et al. (2012a) 

monitored the presence of actinomycetes during the production of liquor and observed that 

>80% of all the identified actinomycetes (especially Streptomyces spp.) originated from the 
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air in the production room. This result was in line with our hypothesis that Sac. 

rectivirgula, Saccharopolyspora sp., and Str. albus belong to the “house microbiota”. To 

date, no studies have been published on the role of actinomycetes in the production of 

Daqu, even though they commonly occur in Daqu. However, other studies have reported 

the ability of Thermoactinomycetes sp. and Streptomyces spp. to secrete alkaline 

phosphatase, esterase, lipid esterase, and phosphate hydrolase (Liu et al., 2012b; Wang et 

al., 2012a), which might play important roles in the formation of the flavour compounds or 

flavour precursors during Daqu fermentation processes. 

Analysis of different samples of southern Daqu revealed that Staphylococcus spp., 

especially St. gallinarum and St. saprophyticus could be considered as biomarkers of 

southern Daqu (Gao et al., 2010; Wang et al., 2012b), since these two bacteria were absent 

in the northern Daqu samples (8-M-N-BP, 8-L-N-BP, 7-L-N-BP and 7-L-N-BP’). This 

indicates that the bacterial community of Daqu is highly dependent on locations. In 

addition, the selection of raw materials and the environmental conditions (soil, air, etc.) 

could also influence the bacterial community in Daqu (Gao, 2010; Xu et al., 2004). 

Klebsiella was found to be heavily associated with the soil used for planting wheat. Only 

one Daqu sample (4-M-S-W) contained Klebsiella (including Klebsiella pneumonia, 

Klebsiella variicola, and Klebsiella sp.), and its presence probably indicates soil 

contamination. Another study reports that bacteria belonging to the genera Bacillus and 

Micrococcus were the only dominant bacterial species in wheat (Xu et al., 2004). The high 

number of Bacillus sp. in the Daqu samples, 5-H-S-W and 5-M-S-W, may be attributed to 

the dominance of Bacillus in the wheat samples originating from factory 5. 

Temperature is an important environmental parameter that affects the growth and 

survival of microorganisms and, consequently, largely contributes to the microbial 

community structure of Daqu (Wang et al., 2011b). In general, yeasts and moulds are more 

sensitive to heat than bacteria (Wang et al., 2011b). PCA confirmed grouping of the 

composition of the fungal communities of Daqu according to the fermentation temperature 

(Figure 3.2). T. lanuginosus, a thermophilic fungus that survives at temperatures higher 

than 60°C (Singh et al., 2003), is a candidate biomarker for high-temperature Daqu. T. 

lanuginosus has been reported to be an efficient xylanase producer, and the xylanase from  
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Figure 3.2 PCA of Daqu extracts on fungal composition (a) Score plots of three temperature types of 

Daqu (b) Loading plots of PC1 and PC2. ▲low-temperature Daqu; ● medium-temperature Daqu; ■ 

high-temperature Daqu. 

this fungus is active over a wide pH range (Singh et al., 2003). This might imply that T. 

lanuginosus also plays a role in degrading xylan, as reported previously (Archana et al., 

1997). Sm. fibuligera occurred in all tested types of Daqu and represented about 50% of the 

total fungal community in low/medium-temperature Daqu. This observation suggests an 

important role for this species in Daqu. L. ramosa is known to occur on wheat (Shang et al., 

2012). Liu et al. (2010b) compared the microbial diversity on wheat and its derived Daqu, 

and observed that L. ramosa and R. pusillus occurred in both Daqu and wheat. In our study, 

R. pusillus was present in relatively high numbers in the Daqu sample 4-M-S-W, and this 

species probably originated from the wheat used in factory 4 (Xu et al., 2004). A 
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comparison of dominant microorganisms in different wheat varieties (Xu et al., 2004) 

revealed two dominating fungal genera (Rhizopus and Aspergillus) in wheat. Therefore, the 

Asp. flavus and Aspergillus fumigatus species detected in the southern Daqu samples (9-H-

S-W and 5-M-S-W) could possibly be associated with the wheat used. All these findings 

indicate that the fungal communities in Daqu also depend on the raw materials formulation 

used during production. 

Sample 9-H-S-W showed a relatively high abundance of Enterobacteriaceae (Ent. 

cowanii and E. hermannii) and this may indicate problems with hygienic processing in 

factory 9. Also, 9-H-S-W was the only sample with Aspergillus flavus (but at low 

abundance). Although we did not study the effect of Asp. flavus on the quality and safety of 

Daqu, the fact that this species is potentially able to produce aflatoxins, indicates that 

factory 9 requires a more strict quality control than other factories during the whole Daqu 

production process. Fortunately, this fungus was not observed in other types of Daqu, and 

therefore we do not regard this as a potential safety risk during Daqu production in general. 

Until now, little attempt has been made to compare the microbial community 

structures of different types of Daqu. We have demonstrated that the fungal diversity in 

Daqu is highly influenced by fermentation temperature and raw materials, and that the 

bacterial diversity is influenced by fermentation temperature and geographic environment 

(i.e. climate, water, and air). The microbial communities of different types of Daqu samples 

differed significantly from each other. However, the relative abundances of species 

belonging to the genus Bacillus were higher than that of species of other bacterial genera. 

Among the Bacillus species, B. licheniformis was predominant and found in all Daqu 

samples, consistent with previous studies (Yao et al., 2005b; Zheng et al., 2011). On the 

other hand, each type of Daqu contained a high proportion of sample-specific bacteria. 

These bacteria and fungi are regarded as candidate biomarkers to distinguish different types 

of Daqu. 

Differences in abundance of specific microorganisms present in Daqu samples as a 

function of regional origin potentially facilitate the selection of starters for creation of 

unique, region-specific flavours. Further research is required to establish the impact of 

Daqu composition on other quality aspects such as health effect of its derived product. This 
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work may help liquor and vinegar industries to understand the microbial ecology of Daqu, 

and this enables further optimization of using different types of Daqu for liquor and vinegar 

production.  
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                                Chapter 4 

Distribution of microbiota in a Chinese fermentation starter 
(Fen-Daqu) by culture-dependent and culture-independent 

methods - comparison of inner and outer Daqu 

Abstract 

Daqu is a traditional fermentation starter that is used for Chinese liquor production. 

Although partly mechanized, its manufacturing process has remained traditional. 

We investigated the microbial diversity of Fen-Daqu, a starter for light-flavour 

liquor, using combined culture-dependent and culture-independent approaches 

(PCR-DGGE). A total of 190 microbial strains, comprising 109 bacteria and 81 

yeasts and moulds, were isolated and identified on the basis of the sequences of 

their 16S rDNA (bacteria) and 26S rDNA and ITS regions (fungi). DGGE of DNA 

extracted from Daqu was used to complement the culture-dependent method in 

order to include non-cultivable microbes. Both approaches revealed that Bacillus 

licheniformis was an abundant bacterial species, and Saccharomycopsis fibuligera, 

Wickerhamomyces anomalus, and Pichia kudriavzevii were the most common 

yeasts encountered in Fen-Daqu. Six genera of moulds (Absidia, Aspergillus, 

Mucor, Rhizopus, Rhizomucor and Penicillium) were found. The potential function 

of these microorganisms in starters for alcoholic fermentation is discussed. In 

general the culture-based findings overlapped with those obtained by DGGE by a 

large extent. However, Weissella cibaria, Weissella confusa, Staphylococcus 

saprophyticus, Enterobacter aerogenes, Lactobacillus sanfranciscensis, 

Lactobacillus lactis, and Bacillus megaterium were only revealed by DGGE. 
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4.1 Introduction 

Chinese liquor is one of the world’s oldest distilled alcoholic beverages, and plays an 

important role in Chinese culture and people’s daily life. The total annual production of 

Chinese liquor was estimated at approximately 5 million metric tons per year (Anonymous, 

2008). The popularity of Chinese liquor is in part due to the diversity of flavours. Chinese 

liquor flavours can be distinguished as strong-flavour [Nongxiang in Chinese](Zhang et al., 

2012), light-flavour [Qingxiang in Chinese] and sauce-flavour [Jiangxiang in Chinese] 

(Shen, 2001a; Wu et al., 2009a; Zhang et al., 2011a). The liquor is made from cereals, 

mainly sorghum, by fermentation, distillation and maturation. Mixed culture starters (Fan et 

al., 2007), which are locally called “Daqu”, are used as inoculum for the solid-state 

fermentation, as shown in Figure 4.1. The cooked cereals are inoculated by mixing with 

approximately 9-10% powdered Daqu and this mixture is fermented in sealed jars for 21-28 

days at 10-16°C. Daqu is an important saccharifying and fermenting agent for the 

production of Chinese liquor and traditional vinegar, and has a significant impact on the 

flavour of the final product (Shen, 2001a; Zheng et al., 2011). 

Daqu itself is also made by fermentation, which takes about one month. This is 

followed a storage period of 6 months for maturation. The manufacture of Daqu by 

traditional uncontrolled solid-state fermentation techniques results in products with 

inconsistent quality; this causes large losses of unsuccessful products which go to waste as 

animal feed (Shen et al., 2005). Therefore, standardization of the Daqu production process 

is an important objective for Chinese liquor producers. So-far, this has resulted in the 

application of modernized machinery, but little attention has been given so-far to the 

functional composition, i.e. the microbiota of Daqu, in view of controlling its fermentation. 

Fen-Daqu is a light-flavour Daqu from Shanxi province, which is made from barley 

and pea, and contains around 50% of starch (Zheng et al., 2011). “Fen-type” liquor has a 

flavour that is described as pure and sweet, with a refreshing aftertaste (Xiong, 2005a). 

During the production of Daqu by solid-state fermentation, the temperature in the Daqu 

blocks may increase up to 60°C as a result of metabolic heat. In Fen-Daqu production, care 

is taken to restrict maximum temperatures to <50°C by ventilation. Most microorganisms 
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are expected to grow and survive these temperatures, and, therefore, Fen-Daqu is expected 

to contain a diverse microbial community. 

 

Figure 4.1 Process diagram for the production of Fen-Daqu and its role in the production process 

of Chinese liquor. 

Traditional microbiological methods such as enumeration using different general and 

selective media can provide (i) quantitative data on the occurrence of different groups of 

microorganisms and (ii) isolated pure cultures for experimental fermentations. However, 

this classical culture-dependent approach only reveals the cultivable microbes. Therefore, 

molecular microbiological methods such as analysis of direct DNA extracts by PCR-

T/DGGE, pyrosequencing, sequencing of clone libraries, etc. are useful additions to realize 

rapid and high throughput microbial communities analysis (Aquilanti et al., 2007; Camu et 

al., 2007; Iacumin et al., 2009; Papalexandratou et al., 2011a; Papalexandratou et al., 

2011b; Thanh et al., 2008). In this study we report an investigation of the microbial 

community in Fen-Daqu using combined culture-dependent and -independent approaches. 
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4.2 Materials and Methods 

Sample collection and storage of Daqu 

Fen-Daqu was obtained from Shanxi Xinghuacun Fenjiu Group Company, the largest 

producer of light-flavour liquor. The dimensions of Daqu blocks are approximately 27 × 16 

× 6 cm, weighing around 1.7 kg each. Fen-Daqu is fermented and matured in stacked layers 

of blocks. Three Daqu blocks (having been stored for 6 months of maturation) were 

randomly selected from upper, middle and lower layers in order to obtain an adequate 

representation. Before performing microbiological analysis, each Daqu block was separated 

into two parts, namely its outer greyish-coloured surface layer of 1 cm thick, and the 

remaining brownish-coloured inner part. Both inner and outer parts were weighed before 

being ground to powder in an alcohol-disinfected grinder (Krups 75, model F203); the 

powder was kept in plastic jars at 4°C during the experimental work. 

Microbiological analysis 

Samples of Daqu powder (10 gram each) were transferred to stomacher bags and 

homogenized with 90 ml sterile PPS (Peptone Physiological Salt) solution containing (g/l) 

peptone (Oxoid LP0034) 1, and NaCl 8.5, in a Stomacher Lab-blender 400, twice 1 minute 

at high speed. Appropriate serial dilutions were prepared using the same diluent. Unless 

otherwise indicated, 1 ml portions of the diluted suspension were mixed with molten (45°C) 

medium and poured in duplicate counting plates of the media described below. 

Total aerobic and anaerobic bacteria were enumerated on Plate Count Agar (PCA; 

Oxoid CM035) and Reinforced Clostridial Agar (RCA; Oxoid CM0151), respectively. 

Plates were incubated at 30 and 55°C for 1-2 days. 

For the enumeration of bacterial spores, the homogenized sample suspension was 

heated at 80°C for 5 min. Serial dilutions were prepared from this heated suspension and 

mixed with PCA to which an additional top layer of 1.5% bacteriological agar (Oxoid, 

LP0011) was added to prevent spreading of colonies. Plates were incubated at both 30 and 

55 °C for 2 days. 
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Lactic acid bacteria (LAB) were enumerated on MRSA (Oxoid CM0361) with 0.1% 

(w/v) natamycin (Delvocid, DSM, Delft, The Netherlands) to prevent yeast growth. Plates 

were incubated at 30°C for 72 h. To confirm the presence of presumed LAB, gram staining 

and catalase reactions were carried out. The results were corrected, based on counting of 

gram-positive and catalase negative organisms. 

Enterobacteriaceae were counted with Violet Red Bile Glucose Agar (VRBGA; Oxoid 

CM0485). The medium was boiled twice before use. Plates were incubated at 37°C for 24 

h. To confirm the presence of Enterobacteriaceae, oxidase- and glucose fermentation tests 

on presumptive colonies were carried out. The results were corrected based on the counting 

of oxidase negative, but glucose fermenting colonies. 

Yeasts and moulds were enumerated on three different media, namely Malt Extract 

Agar (MEA; Oxoid CM0059), Dichloran-Glycerol Agar (DG18; Oxoid CM0097) and Rose 

Bengal Chloramphenicol Agar (RBCA; Oxoid CM0549), to which 100 mg/l 

chloramphenicol (Oxoid, SR0078E) was added. The diluted suspension (0.1 ml) was added 

to make spread plates which were incubated at 25°C for 2-4 days. 

All enumerations of bacteria were carried out under both aerobic and anaerobic 

incubation conditions. Anaerobic growth conditions were achieved by flushing gas jars 

with a mixture of 80% nitrogen, 10% carbon dioxide, and 10% hydrogen. All counts were 

made in duplicate for each of the duplicated samples and the results were reported as the 

means ± SD (n=4). From plates with 20-300 colonies, the square root of the total number of 

colonies was randomly selected as isolates. 

DNA extraction and PCR amplification 

Genomic DNA of bacteria was extracted by a Bacteria Genomic DNA Purification Kit 

(Tiangen, Beijing, China), according to the manufacturer’s instructions. The 16S rRNA  

gene was amplified using forward primer 5’-AACGCGAAGAACCTTAC-3'
 
and reverse 

primer 5'-CGGTGTGTACAAGACCC-3' (Niemann et al., 1997). PCR was performed with 

a total volume of 50 μl containing 26.6 μl ddH
2
O, 5 μl PCR buffer, 3 μl MgCl

2 
(25 mM), 10 

μl dNTP (2 mM), 2 μl of each primer (10 μM), 1 μl DNA template, and 0.4 μl Taq DNA 

polymerase (5 U/μl) (Fermentas, USA). PCR was done using the GeneAmp PCR system 
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9700 (Applied Biosystems, USA) with the following PCR conditions: initial denaturation 

for 5 min at 94°C; 35 cycles each consisting of 30 s at 94°C, 20 s at 56°C, and 1 min at 

72°C; and extension for 7 min at 72°C followed by cooling at 4°C. The PCR products were 

analysed by electrophoresis and stored at -20°C for further sequencing analysis. 

Genomic DNA of fungi was extracted by a Yeast Genomic DNA Purification Kit 

(Tiangen, Beijing, China), according to the manufacturer’s instructions. The 26S rRNA 

gene and ITS regions were amplified by different primer sets. For yeast strains, forward 

primer NL1 (5′-TGCTGGAGCCATGGATC-3′) and reverse primer RLR3R (5'-

GGTCCGTGTTTCAAGAC-3') were used for amplification of the D1/D2 domain of the 

26S rDNA gene; forward primer ITS1 (5’-TCCGTAGGTGAACCTGCGG-3’) and reverse 

primer ITS4 (5’-TCCTCCGCTTATTGATATGC-3’) were used for amplification of the 

ITS 1 and ITS2 regions (Okoli et al., 2007). For moulds, forward primer V9G (5’-

TTACGTCCCTGCCCTTTGTA-3’) and reverse primer LS266 (5’-

GCATTCCCAAACAACTCGACTC-3’) were used for amplification of ITS1-5.8S-ITS2 

(Zhang et al., 2011c). The PCR master mix was the same as described for bacteria, and 

PCR conditions were as follows: initial denaturation for 5 min at 95°C followed by 35 

cycles comprising denaturation at 95°C for 60 s, annealing was at 52°C for 45 s, extension 

at 72°C for 60 s, and final 7 min extension at 72°C followed by 4°C. The PCR products 

were analysed as described before. 

Sequencing and strain identification 

The PCR products were purified using GFX columns (Amersham Pharmacia Biotech 

Inc., Roosendaal, The Netherlands). The bacterial and fungal rRNA genes were sequenced 

using the BigDye terminator cycle sequencing kit (Applied Biosystems) and analysed on an 

ABI Prism 3700 sequencer (Applied Biosystems, Foster City, CA). The sequences were 

compared with those present in the GenBank/NCBI database using the BLAST 2.0 program 

(Altschul et al., 1990). Sequences were assembled and edited with Seqman II software 

(DNAStar Inc., Madison, Wis.) and aligned with Megalign (DNAStar Inc., Madison, Wis). 

DNA extraction and PCR-DGGE analysis 

DNA from Fen-Daqu samples was extracted according to Wang et al. (2008b) and 
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diluted to 1-50 ng/µL. Two sets of universal primers were tested for the amplification of 

fragments of the 16S rRNA and 26S rRNA genes, respectively. The V6-V8 region of the 

16S rRNA gene was amplified using the primers EUB968GC-for and EUBL1401-rev (500 

bp) (Nubel et al., 1996). The D1 region of the 26S rRNA gene was amplified using the 

primers NL1GC-for and LS2-rev (250 bp) (Flórez et al., 2006). All PCR reactions were 

carried out on an AG 223B1 Thermoblock (Eppendorf, USA). Amplifications were 

performed as described previously. The sizes and quantities of the PCR products were 

determined using 1.5% agarose gel electrophoresis. The amplification products obtained as 

described above were subjected to DGGE analysis using the Dcode Universal Mutation 

Detection system (Bio-Rad Laboratories, Richmond, CA, USA) on 20 cm × 16 cm × 1 mm 

gels. Electrophoresis was performed at 60°C in 0.5 × TAE buffer (20 mM Tris-acetate, 2 

mM EDTA; pH 8.0) using 8% polyacrylamide gels containing 30-60% urea-formamide 

linear denaturing gradient (100% corresponded to 7 M urea and 40% v/v formamide) 

increasing in the direction of electrophoresis for 16 h at 85V. Following electrophoresis, the 

gels were stained by AgNO3 solution as follows. The gel was fixed and shaken gently in 

Cairn’s fixation solution (200 ml 96% ethanol; 10 ml acetic acid; 40 ml demi-water) for 3 

min. The gel was transferred to a freshly made 2 g/l AgNO3 staining solution and shaken 

gently for 10 min, followed by a brief rinse in water. The stained gel was developed in a 

freshly made developing solution (10 mg NaBH4; 250 ml 1.5% NaOH solution; 750 µl 

formaldehyde) until the desired exposure was achieved. The gel was scanned with 

“Quantity One” software using a calibrated imaging densitometer GS-710 (BioRad, CA, 

USA). The identity of the microorganisms was revealed by sequencing selected bands from 

the DGGE profiles. Small fragments of selected DGGE bands were punched out from the 

gels, put in sterile water and boiled for 30 min to release DNA. The gel solutions were 

cooled and stored overnight. The obtained supernatant was used directly for re-

amplification of the PCR products with primers described above without GC clamp. 

Statistics 

Statistical analysis was carried out using IBM-SPSS V19.0 (IBM
®
 SPSS

® 
Statistics; 

NY, U.S.A). A one-way ANOVA with Duncan’s test was used to determine the 

significance of different microbial enumeration data. 
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4.3 Results 

Enumeration of representative bacteria and fungi on selective media  

The population levels of bacteria and fungi that were present in the inner and outer 

portions of the Fen-Daqu starter are summarized in Table 4.1. The total viable numbers of 

mesophilic and thermophilic bacteria in the inner and outer parts were not significantly 

different; whereas the numbers of bacterial spores were significantly higher in the inner 

part. The numbers of mesophilic bacteria, including total viable cells, LAB and 

Enterobacteriaceae, were similar when grown under aerobic or anaerobic conditions. 

However, total numbers of thermophilic bacterial spores were about 1 log CFU/g higher 

when grown aerobically, especially for the inner portion. The levels of LAB and 

Enterobacteriaceae were similar in both inner and outer portions of Daqu. The total counts 

of yeasts and moulds in inner Daqu were about 1 log CFU/g lower than in outer Daqu. No 

statistically significant differences were found for fungal counts when grown at 25°C or 

37°C. We noticed that isolation using RBCA resulted in higher number of countable 

colonies if compared to the other two media used, viz. MEA and DG18. Bacteria were 

generally numerically dominant microorganisms in Fen-Daqu, followed by yeasts and 

moulds. The numbers of fungal colony forming units were more than 2 log CFU/g higher 

than those of LAB and Enterobacteriaceae. 

Bacterial diversity based on identification of 16S rDNA 

A total of 109 bacterial strains were randomly selected and identified by sequencing 

the 16S rDNA. Thirteen species were encountered in Fen-Daqu. The results are presented 

in Table 4.2. Bacillus spp. were predominant in Fen-Daqu. Particularly, Bacillus 

licheniformis and Bacillus subtilis together represented about 57% of the bacteria isolated 

from inner and outer portions of Fen-Daqu. In addition, Brevibacterium sp., LAB, i.e. 

Enterococcus faecalis, Lactobacillus plantarum and Pediococcus pentosaceus, represented 

4, 17, 6, and 6% of the total number of isolates, respectively. Other bacteria such as 

Salmonella enterica and Escherichia coli were also encountered in outer Daqu. 
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Table 4.1 Microbiota of inner and outer parts of Fen-Daqu presented as log CFU/g 

log CFU/g  Aerobic counts  Anaerobic counts 

Microbial groups  inner outer  inner outer 

Mesophilic bacteria  7.5±0.4def 7.5±0.6def  7.4±0.2cdef 7.7±0.2ef 

Mesophilic bacterial spores  7.1±0.6bcdef 6.6±0.2bcd  7.7±0.3ef 6.8±0.4bcdef 

Thermophilic bacteria  7.4±0.1cdef 6.9±0.4bcdef  7.5±0.2cdef 6.7±0.5bcde 

Thermophilic bacterial spores  7.8±0.3f 6.7±0.3bcde  7.2±0.2bcdef 6.4±0.5bc 

Lactic acid bacteria  4.0±0.4a 4.9±0.3a  4.0±0.3a 4.8±0.2a 

Enterobacteriaceae  4.0±0.6a 4.8±0.8a  4.0±1.2a 4.8±0.7a 

Fungi on MEA 25ºC  6.2±0.7b 7.1±0.6bcdef    

Fungi on MEA 37ºC  6.7±1.2bcde 6.9±1.6bcdef    

Fungi on DG18 25ºC  6.3±0.5bcd 7.1±0.3bcdef    

Fungi on DG18 37ºC  6.6±0.7bcd 7.1±1.2bcdef    

Fungi on RBCA 25ºC  6.7±0.5bcde 7.7±0.6ef    

Fungi on RBCA 37ºC  6.7±0.5bcde 7.6±0.4def    

 

Value represent means ± SD (n=4). Means with different superscripts are significantly different  

(One-Way ANOVA ; P<0.05). 

 

Table 4.2 Bacterial diversity in Fen-Daqu 

Species identification Related GenBank 

sequence 

% of bacterial 

isolates (n=109) 

Isolated 

froma 

Identity 

Bacillus cereus EU111736 1 O 380/380 (100%) 

Bacillus licheniformis AF399743 39 I & O 393/393 (100%) 

Bacillus pumilus EU874880 1 I 387/392 (98.7%) 

Bacillus subtilis FJ225312 18 I & O 392/392 (100%) 

Brevibacterium sp. EU596384 4 O 396/396 (100%) 

Escherichia coli EU026432 1 O 364/365 (99.7%) 

Enterococcus faecalis AB507170 17 I & O 389/391 (99.5%) 

Lactobacillus plantarum FJ749885 6 O 362/363 (99.7%) 

Leuconostoc citreum FJ040203 1 O 364/366 (99.5%) 

Micrococcus luteus FJ380953 1 O 381/382 (99.7%) 

Pediococcus pentosaceus FM179609 6 I & O 352/352 (100%) 

Pseudomonas aeruginosa GQ180118 2 O 369/370 (99.7%) 

Salmonella enterica FJ997268 3 O 343/343 (100%) 

 

n = the total number of isolates 
a I/O:    isolated from Inner or Outer part of Fen-Daqu. 
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Fungal diversity based on identification of D1/D2 domain of  26S rDNA 

and ITS region 

A total of 81 fungal strains were randomly selected and identified by rDNA 

sequencing as shown in Table 4.3. Absidia corymbifera, Aspergillus flavus, Rhizopus 

stolonifer and Saccharomycopsis fibuligera occurred throughout the inner and outer 

portions of Fen-Daqu. Others were found only in the outer portion, namely Mucor 

circinelloides, Penicillium commune, Rhizomucor variabilis var. regularior, Pichia 

kudriavzevii (formally known as Issatchenkia orientalis), Wickerhamomyces anomalus 

(formally known as Pichia anomalus) and Saccharomyces cerevisiae. One species, 

Rhizomucor pusillus (1%), was isolated from the inner portion only. The predominant 

isolates consisted of Sm. fibuligera (56%), Abs. corymbifera (11%), W. anomalus (8%), P. 

kudriavzevii (6%) and R. stolonifer (6%). 

Analysis of bacterial and fungal populations using Denaturing Gradient 

Gel Electrophoresis (DGGE) 

DGGE analysis of the amplified 16S rDNA fragments obtained from the samples of 

the inner and outer portions of Fen-Daqu provided the fingerprint shown in Figure 4.2. Up 

to twelve bands, representing 10 different species were detected in the polyacrylamide gel. 

Bacillus spp., Lactobacillus spp. and Weissella spp. were the dominant bacterial species. A 

higher bacterial diversity was found in the outer layers of Daqu when compared to the inner 

part, as evidenced by the presence of Staphylococcus saprophyticus, Lactobacillus 

sanfranciscensis and Bacillus megaterium in the outer layers. DGGE fingerprints of the 

amplified fungal 26S rDNA fragments with primers NL1GC and LS2 are shown in Figure 

4.3. The identified microbiota in the Fen-Daqu was less complex than the bacterial biota. 

Only four fungal species were detected, namely W. anomalus, Sm. fibuligera, P. 

kudriavzevii and Debaromyces hansenii. The fungal biota of inner and outer Daqu layers 

were largely similar. 
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Table 4.3 Fungal diversity in Fen-Daqu 

Group of 

Fungi 

Species identification Related 

GenBank 

sequence 

% fungal 

population 

(n=81) 

Isolated 

froma 
Identity 

Moulds Absidia corymbifera AB305110 11 I/O 757/758 (99.9%) 

Aspergillus flavus FJ878681 4 I/O 651/655 (99.4%) 

Mucor circinelloides DQ118990 1 O 638/638 (100%) 

Penicillium 

commune 

AF236103 3 O 669/676 (99.0%) 

Rhizomucor pusillus AB369914 1 I 605/606 (99.8%) 

Rhizomucor 

variabilis  

var. regularior 

DQ119007 2 O 528/530 (99.6%) 

Rhizopus stolonifer DQ273817 6 I/O 242/244 (99.2%) 

Yeasts Pichia kudriavzevii AY939808 6 O 547/547 (100%) 

Saccharomyces 

cerevisiae 

EU798694 2 O 652/654 (99.7%) 

Saccharomycopsis 

fibuligera 

FJ475057 56 I/O 728/728 (100%) 

 Wickerhamomyces 

anomalus 

EF449518 8 O 558/558 (100%) 

 
n = the total number of isolates 
a I/O:    isolated from Inner or Outer part of Fen-Daqu. 

4.4 Discussion 

The bacteria of Fen-Daqu represent higher numbers than the yeasts and moulds. It 

should be realised however that since yeast cells are larger than bacterial ones, this doesn’t 

imply that bacteria have a larger metabolic impact on the eco-physiology or biochemistry of 

Daqu. Studies on other types of Daqu, i.e. light-flavour and strong-flavour Daqu types 

(Leimena, 2008; Qiao et al., 2004; Zhang, 1999) also showed the presence of high numbers 

of bacteria. This high level (7-8 log CFU/g) of especially thermophilic bacteria and spores 

in Daqu makes this starter different from other Asian traditional alcoholic fermentation 

starters such as men (Dung et al., 2007; Thanh et al., 2008) or ragi (Hesseltine et al., 1988) 

of which the bacterial loads of 2.6-6.2 log CFU/g and 4.3-5.8 log CFU/g, respectively, 

represented mainly lactic acid bacteria. 
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Figure 4.2 DGGE profiles (30-60% denaturant) representing bacterial 16S rRNA gene fragments of 

Fen-Daqu samples. 1, Weissella cibaria; 2, Staphylococcus saprophyticus; 3, Enterobacter 

aerogenes; 4, Lactobacillus sanfranciscensis; 5, Lactobacillus lactis; 6, Bacillus megaterium; 7, 

Lactobacillus plantarum; 8, Weissella confusa; 9, Uncultured bacterium; 10, Bacillus licheniformis; 

11, Weissella cibaria; 12, Weissella confusa. The dotted bands had also been excised but could not be 

identified since no amplicons were obtained. 

Combining the results of culture-dependent and -independent analyses, we found that 

the outer layers of Fen-Daqu have a broader microbial biodiversity and higher numbers of 

mesophilic microorganisms than the inner part, which contained less species and higher 
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numbers of thermophilic microorganisms, mostly Bacillus spp. This observation is 

consistent with those of previous studies (Shi et al., 2009; Wang et al., 2008). 

This “microbiota stratification” within the blocks of Daqu may be explained by the 

changes of temperature that take place during the processing of Fen-Daqu (Zheng et al., 

2011), as well as the characteristics of the solid state fermentation of Daqu, which results in 

mass - and heat gradients causing relatively high temperatures in the centre (inner portion) 

of the blocks (data not shown). 

Fen-Daqu is a representative of light-flavour Daqu. During its manufacture by solid-

state fermentation, the maximum temperature in the centre of the Daqu blocks during 

fermentation does not exceed 50°C (Kang, 1991). Most bacteria tolerate these temperatures 

and, therefore, a wide range of bacterial species was observed in this type of Daqu, 

particularly at the somewhat cooler outside. B. subtilis and B. licheniformis were the 

dominant members from the inner portion. Bacterial DGGE patterns also revealed the 

presence of Weissella cibaria and Weissella confusa. Interestingly, the total viable counts in 

the inner part of Daqu were sometimes lower than those of bacterial spores present, which 

may have been caused by heat-activation of spores during the preparatory heat treatment at 

80˚C for 5 min before plating (Morn et al., 1990). We note that spore-forming bacteria are 

the predominant microbiota of Fen-Daqu, especially in the inner part. 

The analyses of microbial communities in Fen-Daqu were carried out by both culture-

dependent and -independent approaches. The Bacillus spp. encountered in Fen-Daqu were 

B. licheniformis, B. subtilis, B. pumilus, B. megaterium and B. cereus. Of these, B. 

licheniformis was most prevalent with 39% strains identified and the species was detected 

by both approaches. B. subtilis was another dominant species, with 18% identified strains, 

but it could not be detected by DGGE. In comparison, the method used by Shi et al (2009) 

encountered two Bacillus spp. in Fen-Daqu namely B. licheniformis and Bacillus 

decisifrondis. 

The functionality of the bacterial biota needs further investigation. B. subtilis, B. 

licheniformis and B. pumilus may facilitate the conversion of starch into fermentable 

carbohydrates due to their amylolytic activity, thus generating a suitable substrate for the 

second stage of liquor production, i.e., the alcoholic fermentation (Mukherjee et al., 2009; 
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Wang et al., 2008a). In addition, Bacillus spp. produce nitrogenous flavour compounds 

such as diverse pyrazines (Li et al., 2011; Zhang et al., 2011c; Zheng et al., 2011) and we 

expect that these to contribute to Daqu flavour. 

 

Figure 4.3 DGGE profiles (30-65% denaturant) representing 26S rRNA gene fragments of Fen-Daqu 

samples. 1, Pichia kudriavzevii; 2, Saccharomycopsis fibuligera; 3, Wickerhamomyces anomalus; 4, 

Debaryomyces hansenii; 5, Pichia kudriavzevii; 6, Wickerhamomyces anomalus; 7, Pichia 

kudriavzevii. The dotted bands had also been excised but could not be identified since no amplicons 

were obtained. 
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Several lactic acid bacteria viz., Ent. faecalis, Ped. pentosaceus, Lb. plantarum, Lb, 

lactis, Leuc. citreum, Ws. cibaria and Ws. confusa were identified that commonly occur in 

fermenting matter (Nout, 2009). Their contribution to the flavour development of Fen-

Daqu or the final fermented liquor, for example, due to the formation of organic acids and 

other flavour compounds (Huang et al., 1993; Li et al., 2005; Wee et al., 2008) requires 

further attention. 

Other bacteria including E. coli, Ps. aeruginosa, M. luteus, and Sa. enterica occurred 

in low numbers. Although we did not study their effects on quality or safety of Daqu we 

suggest that, because of their low numbers, they are not essential for the fermentation 

process, and that they originate from external contamination sources, such as air, soil, 

hands, or insects. Their presence, however, is not expected to pose a safety problem, as 

after fermentation, the product will be distilled to obtain the final liquor. During the steam 

distillation the cells of bacteria and fungi will be killed. Moreover, the alcohol 

concentration of the crude distillate is approximately 70% v/v, which is adequate to 

practically sterilize the liquor. 

In this study we used three mycological media (MEA, DG18 and RBCA) (Boekhout et 

al., 2003) to increase the detection of diverse fungal biota. In Daqu analysis, RBCA was 

superior for yeasts and moulds enumeration, mainly because distinct individual colonies 

were obtained and spreading of mould colonies was inhibited due to the presence of rose 

bengal (Baggerman, 1981). DG18 proved most appropriate to distinguish between yeasts 

and moulds, although yeasts were occasionally overgrown by spreading fungi, such as 

Mucor spp. 

In contrast with the distinct bacterial population, the yeast microbiota identified from 

Fen-Daqu is more similar to that described from other Asian traditional alcoholic starters 

(Hesseltine et al., 1988; Jeyaram et al., 2008; Saelim et al., 2008; Sujaya et al., 2004; 

Tsuyoshi et al., 2005). These studies revealed that Sm. fibuligera occurred commonly in 

these starters, and this species plays an important role during the initial stages of alcoholic 

fermentation. Sm. fibuligera typically grows prior to the main alcoholic fermentation and 

produces various enzymes, particularly glucoamylase and α-amylase, which contribute to 

glucose accumulation (Brimer et al., 1998; Horváthová et al., 2004; Knox et al., 2004; 
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Lemmel et al., 1980; Steverson et al., 1984). It was also found that glucoamylase produced 

by Sm. fibuligera can digest native starch (Chi et al., 2009), which improves the 

degradation of starch from the raw materials (i.e. barley and pea) of Daqu. S. cerevisiae 

usually dominates in alcoholic fermentations (Li et al., 2011; Nout, 2009; Urso et al., 2008) 

as it has the ability to grow under strictly anaerobic conditions. However, in the DGGE 

profiles, S. cerevisiae was not detected and using isolation only one strain of S. cerevisiae 

was obtained. This demonstrates that S. cerevisiae is not a dominant yeast species in Daqu. 

Recently, a study of Li et al (2011) investigated the species that involved in-situ Fen-liquor 

fermentation. This result indicated that the major active yeast species during this 

fermentation process was S. cerevisiae. The dominance of S. cerevisiae in alcoholic 

fermentation might be due to its competitive growth in the presence of fermentable sugars 

and its ethanol tolerance. We expect that it could grow quickly and become dominant 

during the liquor fermentation stage, such as has been observed in various wine 

fermentations (Dung et al., 2006; Dung et al., 2007; Jeyaram et al., 2008; Nyanga et al., 

2007; Sujaya et al., 2004). Or it might be the host yeast species recycled in the fermentation 

jars. Mohanty et al. (2009) investigated the effect of different environmental factors on the 

S. cerevisiae fermentation. They observed that the combination of higher temperatures and 

lower moisture contents decreasing to around 10% at the end of maturation. Such 

conditions could be expected to limit the growth and survival of S. cerevisiae. This may 

thus well explain the low numbers of S. cerevisiae in matured Daqu. Other yeasts, such as 

P. kudriavzevii and W. anomalus, were observed in Daqu as well by both detection 

approaches. These yeast species are common in cereal fermentations (e.g. men, hamei, 

wheat qu and zaopei) and in combination with LAB, have been associated with the 

production of flavour and ethanol (Dung et al., 2006; Jeyaram et al., 2008; Nout, 2009; 

Thanh et al., 2008; Xie et al., 2007; Zhang et al., 2007a). 

Six genera of moulds, viz., Absidia, Aspergillus, Mucor, Penicillium, Rhizomucor and 

Rhizopus were obtained by direct plating. The predominant moulds in Fen-Daqu were A. 

corymbifera and R. stolonifer (Mucoraceae), which are known to be strong amylase 

producers (Blandino et al., 2003; Hesseltine et al., 1988; Thanh et al., 2008). M. 

circinelloides, Rhizomucor variabilis var. regularior, R. pusillus and P. commune were also 
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isolated. In other fermentations, these moulds were responsible for volatile production 

during fermentation, such as ethanol, 2-methyl-1-butanol and 3-methyl-1-butanol 

(Sunesson et al., 1996; Sunesson et al., 1995; Wang et al., 2008a). In our analysis of Fen-

Daqu, Asp. flavus was found as well. This species is known to produce aflatoxins (Degola 

et al., 2007) and, therefore, it may be prudent to check for the presence of mycotoxins in 

Daqu and derived products. Sometimes, the DGGE method using total DNA extracted from 

complex food products is unable to detect some fungal species, whereas these could be 

detected by culturing and identification by DNA sequencing. Cocolin (2001) and 

Prakitchaiwattana et al. (2004) reported that individual species in a mixed population could 

be detected by DGGE when the concentrations were higher than 4 log CFU/g, which may 

be the threshold level to detect species. Fen-Daqu is a kind of solid cake covered with 

mycelia of white moulds that mainly belong to the so-called zygomycetes. It seems that 

DNA of this group of fungi is more difficult to extract, even when pure cultures are used 

(Hrncirova et al., 2010). We assume that the absence of bands for this group fungi in our 

DGGE gel is mainly caused either by (i) inadequate DNA extraction of filamentous fungi 

from the complex food matrix of Daqu, or (ii) by the presence of high concentrations of 

competing DNA, such as that from yeasts in Fen-Daqu. 

Presently, the study of microbial diversity can be undertaken with culture-dependent 

and/or culture-independent analyses. Both approaches have their advantages and 

disadvantages. From our study, we conclude that the culture-dependent analysis of Daqu 

samples resulted in a different and more complex microbiota than did DGGE analysis. A 

clear advantage of culturing is that a collection of pure cultures is obtained that can be used 

for further experimentation. A number of species (B. licheniformis, Lb. plantarum, Sm. 

fibuligera, P. kudriavzevii and W. anomalus) were detected using both approaches, that in 

total revealed 30 species, most of which were found by either the culture-dependent or 

culture-independent technique. This shows that although PCR-DGGE analysis provides a 

broad picture of the different groups of microorganisms present in Daqu, including 

uncultivable ones, a combined approach is preferred for the detection of dominant and 

minor species in order to better understand the complete microbial ecosystem present in 

such natural mixed fermentation starters. 
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Fen-Daqu is a representative of low-temperature Daqu. Although the manufacturing 

techniques have been modernized during recent years, the inconsistency and instability of 

Daqu is still a problem that hampers the standardization of Chinese liquor making.  Our 

study provides qualitative and quantitative information on the microbial diversity present in 

Fen-Daqu. The knowledge of microbial composition and functionality will enable further 

upgrading of the Chinese traditional Daqu making processes, e.g. by selection of 

functionally important strains, and optimization of microbial composition and quality 

control. 
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                                Chapter 5 

Microbiota dynamics related to environmental conditions 
during the fermentative production of Fen-Daqu 

Abstract 

Chinese Daqu is used as a starter for liquor and vinegar fermentations. It is 

produced by solid state fermentation of cereal-pulse mixtures. A succession of 

fungi, lactic acid bacteria and Bacillus spp. was observed during the production of 

Daqu. Mesophilic bacteria followed by fungi, dominated the first phase of 

fermentation. Next, lactic acid bacteria increased in relative abundance, resulting 

in an increase of the acidity of Daqu. At the final stages of fermentation, Bacillus 

spp. and thermophilic fungi became the dominant groups, possibly due to their 

tolerance to low water activity and high temperature. Both culture-dependent and 

culture-independent analyses confirmed that Bacillus spp. were ubiquitous 

throughout the process. Yeast species such as Wickerhamomyces anomalus, 

Saccharomycopsis fibuligera and Pichia kudriavzevii were present throughout 

almost the entire fermentation process, but the zygomycetous fungus Lichtheimia 

corymbifera proliferated only during the final stages of fermentation. Canonical 

correspondence analysis (CCA) revealed the significance of acidity, moisture 

content and temperature in correlation with the composition of the microbial 

communities at different stages. 
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5.1 Introduction 

Chinese liquor (a traditional distilled alcoholic beverage) and vinegar are important 

commercial fermented products in China with an annual production of about 12 million 

metric ton and 5 million metric ton in the country, respectively (Han, 2007). Daqu serves as 

a fermentation inoculum, and it makes a considerable contribution to the flavour of Chinese 

liquor and traditional Chinese vinegar (Wu et al., 2009a). It is an intermediate natural 

fermentation product that contains metabolically active microorganisms and enzymes. It is 

an essential ingredient responsible for the release of fermentable sugars from sorghum 

starch. Generally, Daqu can be classified into four major types, i.e. light-flavour Daqu, 

strong-flavour Daqu, sauce-flavour Daqu and miscellaneous-flavour Daqu (Zheng et al., 

2011). Fen-Daqu is a light-flavour Daqu that is prepared from barley and peas in five steps: 

(i) formulation of ingredients; (ii) grinding and mixing; (iii) shaping; (iv) incubation (about 

1 month); and (v) maturation (about 6 months). The incubation stage, also called the 

fermentation stage, as described by Zheng et al. (2012) can be divided into seven stages 

according to the core temperature profile of Daqu during its production (Figure 5.1): Stage 

1 - Woqu (layering and covering, 20°C), Stage 2 - Shangmei (molding, 38°C), Stage 3 - 

Liangmei (cooling and hardening, 24-36°C), Stage 4 - Chaohuo (succession of dominant 

groups of microorganisms, 43-47°C), Stage 5 - Dahuo (enhancing microbial metabolism, 

43°C), Stage 6 - Houhuo (evaporative dehydration and equilibration, 34-38°C), and Stage 7 

- Yangqu (pre-maturation, 30°C). 

Fen-Daqu is produced using traditional fermentation technology and contains 

microorganisms that are naturally present in the ingredients (i.e., barley and peas) and its 

production environment (i.e., tools, soil, air, and machines) (Lei, 2011). Recently, the 

microbial diversity in various types of Daqu has been investigated (Lei, 2011; Wang et al., 

2011b; Zheng et al., 2012). However, limited data have been reported on the microbial 

communities prevailing during Daqu production (Li et al., 2013). With their study, only a 

culture-independent cloning method was used, and the microbial dynamics in relation with 

the environmental conditions during Daqu fermentation processes has not been reported. 

Therefore, the objectives of this study were to analyse changes in temperature, acidity, 

moisture content and microbial communities during Daqu production and to understand the 



Microbiota dynamics related to environmental conditions during the fermentative production of Fen-Daqu 

75 

predominance and succession of microbes during its fermentation process as a function of 

dynamics of environmental conditions.  

 

Figure 5.1 Process diagram for the production of Fen-Daqu. 

Note: The text within the rectangle marked with black-dotted lines present the dominant 

microorganisms at each stage. The content given in brackets presents the factors that determine 

microbial diversity at that stage. The percentage (%) represents the moisture content in the stages. 

5.2 Materials and Methods 

Sampling 

Fen-Daqu samples were obtained from Shanxi Xinghuacun Fenjiu Distillery Co. Ltd 

(Fenyang, Shanxi, China) during the month of October 2009, which is the season of Daqu 

production. Samples were separately taken from four independent processes and collected 

at the seven production stages, as shown in Figure 5.1. At each of the sampling events, 

approximately 100 g of Daqu was aseptically collected in triplicate (in order to obtain 

adequate representation, three blocks were randomly selected from upper, middle and lower 

layers), ground and pooled to provide an experimental Daqu powder sample. Samples were 
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      Stage 7:      Yangqu 
      (7 d; 30°C; 10%) 

      Stage 6:      Houhuo 
      (5 d; 34-38°C; 15%) 

      Stage 5:      Dahuo 
      (4 d; 43°C; 18%) 

      Stage 4:      Chaohuo 
      (5 d; 43-47°C; 27%) 

          Shaping 
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then collected into sterile Stomacher bags (Stomacher
®
 Lab System, London, UK), and 

transported to the laboratory in a cooler box. 

Microbiological analysis - culture dependent methods 

(1) Enumeration and isolation 

Samples from all 7 stages, each weighing 10 g were transferred to Stomacher bags and 

homogenized with 90 ml sterile PPS (Peptone Physiological Salt) solution containing (g/l) 

peptone (Oxoid LP0034) 1, and NaCl 8.5, in a Stomacher Lab-blender 400. Portions (1 ml) 

of the diluted suspensions were plated on different selective agar media. Total aerobic 

bacteria and spores, lactic acid bacteria, Enterobacteriaceae and fungi were enumerated on 

Plate Count Agar (PCA; Oxoid CM035), MRSA (Oxoid CM0361), Violet Red Bile 

Glucose Agar (VRBGA; Oxoid CM0485) and Malt Extract Agar (MEA; Oxoid CM0059), 

respectively. These were incubated at different temperatures (30°C, 37°C and 55°C) for the 

isolation and enumeration (by recording the number of CFU) of specific groups of micro-

organisms (Zheng et al., 2012). 

(2) Extraction of DNA from pure culture 

Single colony isolates for subsequent DNA extractions were obtained from the 

counted plates. The plates corresponding to a number of colonies less than or equal to 50, 

were selected to perform isolations. The square root of the total number of colonies was 

randomly picked up from both duplicate plates. After purification, isolates were grown 

under the same conditions as used previously for cultivation. Cells at stationary phase were 

collected by centrifugation at 9000 g for further extraction of total DNA. The genomic 

DNA of bacteria and fungi was extracted using a Bacteria Genomic DNA Kit (Tiangen, 

Beijing, China) and a Yeast Genomic DNA Kit (Tiangen, Beijing, China), respectively, 

according to the manufacturer’s instructions. DNA concentration was measured by UV-Vis 

spectrometry (Unico, Shanghai) and diluted to a final concentration of approximately 10 

ng/μl. The DNA solutions were stored at -20°C. 

(3) Nucleotide sequence accession numbers 

The primers used in this study are listed in Table 5.1. The 16S rRNA gene sequences 

of the bacteria in this study were deposited in GenBank under the accession numbers 

KJ526822-KJ526949; the 26S rRNA and ITS gene sequences of the yeasts were deposited 
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in GenBank under the accession numbers KJ526950-KJ526985 and KJ527033-KJ527069, 

respectively; the ITS gene sequences of the moulds were deposited in GenBank under the 

accession numbers KJ527009-KJ527032. 

Microbiological analysis—culture-independent methods 

(1) PCR-DGGE analysis and bands excision 

Total DNA was extracted from Daqu powder by the same method used previously 

(Zheng et al., 2012). Two sets of universal primers were tested for the amplification of a 

fragment of the 16S rRNA gene and the 26S rRNA gene (Table 5.1). Amplifications, 

DGGE analysis and identification of bands of interest were performed as described by 

Zheng et al. (2012). The sequences of excised bands in this study were deposited in 

GenBank under the accession numbers KJ526994-KJ527008 for bacteria and the accession 

numbers KJ526986-KJ526993 for fungi. 

Physicochemical analysis  

(1) pH measurements 

The pH was measured with a pin electrode of a PB-10 pH meter (Sartorius, Germany) 

inserted directly into the sample suspension (1 g/10 ml). From each stage, four samples 

were measured in duplicate. Means and standard deviations were calculated. 

(2) Determination of acidity 

The acidity of the samples was determined in suspensions containing 25 g of Daqu in 

150 ml of CO2-free distilled water that was titrated with a standard 0.1 M NaOH solution. 

Total titratable acidity was expressed as g lactic acid per kg dry matter. Means and standard 

deviations were calculated on all data. 

(3) Determination of temperature and relative humidity 

The surface temperature of Daqu was recorded with a calibrated mini infrared 

thermometer gun (UNI-T UT301A, Beijing, China) at the time of sampling. The relative 

humidity (RH) of the incubation room was recorded with a humidity/temperature logger 

(Testo 175-H2, Shanghai, China). The continuous online detection of the core temperature 

of Daqu and room temperature was performed with electronic temperature sensors 

(iButton, Maxim, USA) which were inserted into the centre of the Daqu blocks (Figure 5.2) 
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and stuck on the wall of incubation room. For this purpose, during stage 1, three Daqu 

blocks were randomly selected from each incubation room and labelled. The i-buttons 

recorded data at hourly intervals until the end of stage 7. Means and standard deviations 

were calculated. 

Statistical analysis 

The plate count numbers of the four experiments were log transformed, and the 

average and standard error of the mean were calculated. Statistical analysis was carried out 

using IBM-SPSS V19.0 (IBM, SPSS Statistics; NY, U.S.A). A one-way ANOVA with 

Duncan’s test was used to determine the significance of different microbial enumeration 

data and part of physical data (pH and acidity). DGGE data and environmental data were 

analysed by Canonical Correspondence Analysis (CCA), using CANOCO 4.5 for Windows 

software (Biometris, the Netherlands). Before performing the CCA, DGGE profiles were 

first transformed numerically using Quantity One v4.62 software (Bio-Rad, USA) so that 

the relative abundance of each species could be expressed as the relative intensity of each 

band. The resulting intensities were then expressed as the fraction of each species of the 

total microbial abundance. The ordination triplot obtained by CCA approximated the 

weighted average of each species with respect to environmental variables, which were 

represented as arrows. The length of these arrows indicated the relative importance of that 

environmental factor in explaining variation in microbial profiles, while the angle between 

the arrows (environmental factor-environmental factor or environmental factor - species) 

indicated the degree to which they were correlated. The distance between samples indicates 

their similarity in microbial diversity, i.e. the closer, the more similar. Significance was 

tested by the distribution-free Monte Carlo test (199 random permutations). 

 

 



 

 

 

 
Figure 5.2 Insertion of temperature sensors into Daqu. Numbers refer to the different components (1: cylinder cutter with a 3 cm diameter; 2: 

Daqu block; 3: pusher; 4: knife; 5: electronic temperature sensor). Letters refer to the different steps (A: preparation of materials; B: insertion of 

cylinder cutter into Daqu block; C: taking cutter (Daqu included) out from Daqu block; D: pushing Daqu out; E: cut Daqu from the middle and 

insertion of temperature sensor into Daqu; F: putting cylinder cutter back to Daqu; G: returning Daqu to Daqu block; H: taking cutter out of 

Daqu block). 
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5.3 Results 

Changes in viable cell counts over time during Daqu fermentation 

Changes in microbial counts were monitored during the seven stages of Fen-Daqu 

fermentation (see Table 5.2). The average bacterial counts of the various groups at the start 

of fermentation (Stage 1) were rather low and varied between 3.4 log CFU/g and 6.2 log 

CFU/g with mesophilic bacteria dominant. After this stage, total counts increased over 

time, reaching values as high as 9-11 log CFU/g for mesophilic and thermophilic bacteria 

and bacterial spores, and 5-7 log CFU/g for Enterobacteriaceae and lactic acid bacteria. The 

levels of mesophilic and thermophilic bacteria and bacterial spores remained at the same 

level (P< 0.05) after Stage 5 (Dahuo). In the case of lactic acid bacteria, the highest 

numbers were obtained at stage 3 which decreased thereafter (Table 5.2). With respect to 

fungi, average levels of 5.2 to 8.1 log CFU/g were observed. The number of fungi increased 

approximately 3 orders of magnitude during Stage 2 (Shangmei) and showed a declining 

trend until the final stage 7 (Yangqu). 

Identification of bacteria and fungi 

A total of 112 bacterial isolates were obtained from the fermentation stages of Fen-

Daqu. They were identified by conventional methods in combination with molecular 

methods. The bacteria were numerically dominant during the fermentation and could be 

classified as representatives of the genera Bacillus, Lactobacillus, Acetobacter, 

Lactococcus and Staphylococcus and of the family of Enterobacteriaceae (Table 5.3). 

Members of the genus Bacillus comprised approximately 70% of total bacterial isolates. By 

using a culture-based approach, Bacillus spp. were found during every stage of Daqu 

fermentation as predominant microorganisms with Bacillus licheniformis as the most 

common species. Eight different species of the genus Bacillus were isolated and identified 

during fermentation, i.e. Bacillus anthracis, Bacillus cereus, Bacillus circulans, Bacillus 

curvatus/sakei, B. licheniformis, Bacillus megaterium, Bacillus pumilus and Bacillus 

subtilis. Also the lactic acid bacterium Pediococcus pentosaceus was isolated frequently. 

Other species of lactic acid bacteria, such as Lactococcus lactis, Lactobacillus plantarum; 
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and Staphylococcus epidermidis were isolated only during one stage (stage 1, stage 3 and 

stage 7, respectively) and at relatively low numbers. 

 

Table 5.1 PCR primers used in this study 

 
The GC clamp is underlined. 

* for: forward; rev: reverse 

A total of 95 fungal isolates were obtained during the fermentation of Fen-Daqu and 

were identified by conventional microbiological analysis and sequencing of the gene 

encoding 26S rRNA (Table 5.3). Four yeast species were isolated; Pichia kudriavzevii and 

Wickerhamomyces anomalus were detected in six stages and seven stages, respectively. 

Among the filamentous fungi, the zygomycetous species Absidia corymbifera appeared 

during stage 5 and increased in relative abundance towards the end of the fermentation. 

Primer Sequence (5′→3′) Aims Reference 

B-for* AGAGTTTGATCCTGGCTCAG Amplification 16S 

rRNA gene and 

sequencing for bacteria 

(Lima      

et al., 

2012) 

B-rev* AAGGAGGTGATCCAGCCGCA 

NL1-for GCATATCAATAAGCGGAGGAA

AAG 

D1 and D2 domains of 

26S rRNA gene and 

sequencing for yeasts 

(Zheng     

et al., 

2012) RLR3R- 

rev 

GGTCCGTGTTTCAAGAC 

ITS5-for GGAAGTAAAAGTCGTAACAAG

G 

Amplification of ITS1-

5.8S-ITS2 gene and 

sequencing for yeasts 

(Zheng    

et al., 

2012) ITS4-rev TCCTCCGCTTATTGATATGC 

V9G-for TTACGTCCCTGCCCTTTGTA Amplification of ITS1-

5.8S-ITS2 gene and 

sequencing for moulds 

(Zheng    

et al., 

2012) 

LS266- 

rev 

GCATTCCCAAACAACTCGACTC 

EUB968GC-for CGCCCGGGGCGCGCCCCGGGCG

GGGCGGGGGCAGGGGAACGCG

AAGAACCTTAC 
Bacterial DGGE 

(Zheng    

et al., 

2012) 
EUBL1401-rev CGGTGTGTACAAGACCC 

EUB968-for AACGCGAAGAACCTTAC Sequencing of excised 

bands from bacterial 

DGGE 

(Zheng    

et al., 

2012) 

EUBL1401-rev CGGTGTGTACAAGACCC 

NL1GC- 

for 

CGCCCGCCGCGCGCGGCGGGCG

GGGCGGGGGCACGGGGCATAT

CAATAAGCGGAGGAAAAG 
Fungal DGGE 

(Zheng    

et al., 

2012) 
LS2-rev ATT CCC AAA CAA CTCGAC TC 

NL1-for 

LS2-rev 

GCATATCAATAAGCGGAGGAA

AAG 

ATT CCC AAA CAA CTCGAC TC 

Sequencing of excised 

bands from fungal 

DGGE 

(Zheng    

et al., 

2012) 
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Bacterial DGGE patterns and identification of part of the obtained bands are shown in 

Figure 5.3. Up to 15 bands, representing 12 different species were detected during 

fermentation, of which six species (Enterobacter aerogenes, Lactobacillus 

sanfranciscensis, Staphylococcus saprophyticus, Weissella cibaria, Weissella confusa and 

uncultured bacterium) were not found by culture-dependent techniques. DGGE analysis 

confirmed the high relative abundance of Bacillus spp. throughout the fermentation process. 

Particularly, B. licheniformis (bands No. 9 and 15) was present throughout almost the entire 

process. At stage 1, 10 bands representing 8 different species were present, which indicates 

a high degree of diversity in the microbial community. From this stage onward, some bands 

disappeared, with mostly new bands emerging for both mesophilic and thermophilic 

bacterial species. 

Apart from bacilli, also Ws. cibaria and Ws. confusa were dominant during Daqu 

fermentation and were present in different ratio during each stage of fermentation. Other 

lactic acid bacteria, such as Lb. sanfranciscensis and Lb. plantarum, were present in high 

ratio during the stage 2 and stage 1, respectively, and decreased during the final stages 

(stage 4 to stage 7). 

By combining the results of culture-dependent and -independent methods, 23 bacterial 

species in total were observed in Daqu. Of these, 11 species (for example Acetobacter 

pasterianus, Bacillus anthracis and Lc. lactis) were detected only by culture-based 

methods. The highest bacterial diversity and the highest Bacillus spp. diversity were all 

observed during stage 3. 

In general, four dominant bands occurred in the DGGE profile of the fungal 

communities (Figure 5.4). With Saccharomycopsis fibuligera and Debaryomyces hansenii 

as exceptions, all other species were also found using culture-based techniques. Sm. 

fibuligera occurred during all stages, except for stage 3 and P. kudriavzevii was 

encountered only after stage 1. W. anomalus was present throughout the entire Daqu 

fermentation process. 

 

 



 

 

Table 5.2 Changes of viable microbial counts (log CFU/g), pH, and acidity during fermentation of Fen-Daqu 

 

TMAB: Total mesophilic aerobic bacteria 

TTAB: Total thermophilic aerobic bacteria 

Value represent means ± SD (n=4). Means with different superscripts are significantly different horizontally (One-Way ANOVA; P < 0.05). 
*  Stage 1: Woqu; Stage 2: Shangmei; Stage 3: Liangmei; Stage 4: Chaohuo; Stage 5: Dahuo; Stage 6: Houhuo; Stage 7: Yangqu 

 Fermentation stages* 

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7 

TMAB (30°C) 6.2 ± 0.1a 8.2 ± 0.3b 9.6 ± 0.1c 8.5 ± 0.1b 10.8 ± 0.4d 10.4 ± 0.9d 10.4 ± 0.3d 

TTAB (55°C) 3.5 ± 0.3a 5.2 ± 1.3b 5.3 ± 1.1b 7.2 ± 1.0c 8.1 ± 0.3cd 8.6 ± 0.6d 8.5 ± 0.5cd 

Mesophilic aerobic bacterial  

endospore (30°C) 
4.1 ± 0.5a 5.9 ± 0.4b 5.1 ± 0.2b 7.3 ± 0.2c 9.6 ± 1.0e 8.7 ± 0.6d 8.8 ± 0.6de 

Thermophilic aerobic bacterial 

endospore (55°C) 
3.7 ± 0.1a 5.9 ± 0.4b 5.9 ± 0.4b 7.4 ± 1.1c 8.4 ± 0.4cd 8.8 ± 0.3d 8.5 ± 0.4cd 

Lactic acid bacteria 4.9 ± 0.3a 5.7 ± 0.2bc 6.5 ± 0.1d 6.3 ± 0.1cd 6.1 ± 0.7cd 6.0 ± 0.5cd 5.3 ± 0.6ab 

Enterobacteriaceae 3.4 ± 0.2a 3.8 ± 0.4ab 4.2 ± 0.8bc 5.0 ± 0.2d 4.7 ± 0.2 cd 4.6 ± 0.5cd 4.1 ± 0.5bc 

Fungi 5.2 ± 0.4a 8.1 ± 0.4d 7.7 ± 0.2cd 7.3 ± 0.1bc 7.4 ± 0.3bc 7.4 ± 0.5bc 7.2 ± 0.3b 

pH 4.3 ± 0.1a 4.2 ± 0.1a 4.4 ± 0.3a 6.1 ± 0.6b 6.8 ± 0.1c 6.8 ± 0.1c 6.9 ± 0.1c 

Acidity (g lactic acid/kg dry matter) 1.4 ± 0.2a 4.6 ± 0.5d 4.2 ± 0.3d 3.7 ± 0.4c 3.1 ± 0.7bc 3.1 ± 0.4b 3.3 ± 0.5bc 



 

 

 

Table 5.3 Microbiota composition at each stage of Fen-Daqu fermentation 

 
Fen-Daqu fermentation stages* 

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7 

Bacteria 

A. pasterianus  [11.8]+ (I)     [6.25]+ (I)  

A. tropicalis   [5]+ (I)     

B. anthracis/B. cereus + (D)  [15]+ (I)  + (D) + (D) + (D) 

B. amyloliquefaciens      [12.5]+ (I)  

B. circulans   [5]+ (I)     

B. licheniformis  [37.5]+ (I/D)  [23.5]+ (I/D) [15]+ (I/D) [81.25]+ (I/D) [88.2]+ (I/D) [43.75]+ 
(I/D) 

[50]+ (I/D) 

B. megaterium  + (D)  [15]+ (I/D)  + (D)  + (D) 

B. pumilus [6.25]+ (I) [11.8]+ (I/D) [10]+ (I)   [25]+ (I)  

B. subtilis  + (D) [23.5]+ (I) + (D)    [25]+ (I/D) 

Enterobacter sp./ 

Escherichia sp. 

[25]+ (I) [23.5]+ (I) [15]+ (I)     

E. aerogenes + (D)  + (D) + (D) + (D)   

Georgenia sp.  [6.25]+ (I)       

Lb. curvatus/Lb. sakei  [5.8] + (I)      

Lb. plantarum  + (D)  [10]+ (I) + (D) [11.8 ]+(/ID) + (D) + (D) 

Lb. sanfranciscensis  + (D)  + (D) + (D) + (D)  

Lc. lactis  [12.5]+ (I)       

Microbacterium sp.   [5]+ (I)     

 Ped. pentosaceus  [12.5]+ (I)  [5]+ (I) [18.75]+ (I)  [12.5]+ (I) [12.5]+ (I) 

 St. epidermidis       [12.5]+ (I) 

 St. saprophyticus + (D)   + (D) + (D) + (D) + (D) 

 Uncultured bacterium  + (D) + (D)  + (D) + (D) + (D) 

 Ws. cibaria  + (D) + (D) + (D) + (D) + (D) + (D) + (D) 

 Ws. confusa  + (D) + (D) + (D) + (D) + (D) + (D) + (D) 

Yeasts 

D. hansenii     + (D) + (D)  

P. kudriavzevii  [38.4]+ (I/D) [23.1]+ (I/D) [28.5]+ (I/D) [8.3]+ (I/D) [25]+ (I/D) [28.5]+ (I/D) 

Pseudozyma sp. [7.7]+ (I)       

 

 



 

 

Table 5.3 Microbiota composition at each stage of Fen-Daqu fermentation (continued) 

  Fen-Daqu fermentation stages* 

  Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7 

Yeast Sm. fibuligera  + (D) + (D)  + (D) + (D) + (D) + (D) 

 W. anomalus  [46.1]+ (I/D) [23]+ (I/D) [69.2]+ (I/D) [71.4]+ (I/D) [66.7]+ (I/D) [37.5]+ (I/D) [28.5]+ (I/D) 

Filamentous 

fungi 

Alternaria sp.   [7.6]+ (I)    [7.2]+ (I) 

Asp. versicolor      [6.2]+ (I)  

Cladosporium sp [23.1]+ (I)       

L. corymbifera     [25]+ (I) [25]+ (I) [35.8]+ (I) 

Penicillium sp.  [15.3]+ (I)       

Phoma sp [7.7]+ (I)       

Rhizomucor pusillus      [6.2]+ (I)  

R. stolonifer  [38.4]+ (I)      

 
* Stage 1: Woqu; Stage 2: Shangmei; Stage 3: Liangmei; Stage 4: Chaohuo; Stage 5: Dahuo; Stage 6: Houhuo; Stage 7: Yangqu 

+ indicates species is detected at this stage; I indicates strain obtained only by culturing at this stage; D indicates strain obtained only by DGGE at 

this stage; I/D indicates strain obtained from both isolation and DGGE at this stage. A: Acetobacter; B: Bacillus; E: Enterobacter; Lb: 

Lactobacillus; Lc: Lactococcus; Ped: Pediococcus; St: Staphylococcus; Ws: Weissella; D: Debaryomyces; P: Pichia; Sm: Saccharomycopsis; W: 

Wickerhamomyces; L: Lichtheimia; Asp: Aspergillus; R: Rhizopus; [ ] indicates the frequency of presence (%) of each species within the groups of 

bacteria or within the groups of yeasts and moulds at each stage of fermentation.  
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Figure 5.3 DGGE profiles (30-60% denaturant) representing 16S rRNA gene fragments of Fen-Daqu 

samples during fermentation (S1: Stage 1-Woqu; S2: Stage 2-Shangmei; S3: Stage 3-Liangmei; S4: 

Stage 4-Chaohuo; S5: Stage 5-Dahuo; S6: Stage 6-Houhuo; S7: Stage 7-Yangqu). 

Changes in environmental factors during fermentation 

The pH of Daqu increased steadily after stage 3 of the fermentation process, the 

titratable acidity increased rapidly during stage 2, reaching the maximum value of 

approximately 5 g/kg at the end of this stage, followed by a decline (Table 5.2). 

Changes in core and surface temperatures of Daqu blocks and of the incubation room, 

as well as relative humidity and moisture content that occurred during the Daqu 

fermentation process were monitored continuously (Figure 5.5). The core temperature 
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increased from 20°C to 52°C between stage 1 and stage 5, and thereafter decreased rapidly 

to ambient room temperature in stage 6. A gradual decrease of moisture content took place 

throughout the whole process, from 40 g water/100 g Daqu at the start to around 10 g 

water/100 g Daqu at the final stage. The changes in room temperature were less 

pronounced than those of the core of the Daqu blocks. With increasing temperature, the RH 

of incubation room dropped from approximately 100% to 20%. 

 

Figure 5.4 DGGE profiles (30-60% denaturant) representing 26S rRNA gene fragments of Fen-Daqu 

samples during fermentation (S1: Stage 1-Woqu; S2: Stage 2-Shangmei; S3: Stage 3-Liangmei; S4: 

Stage 4-Chaohuo; S5: Stage 5-Dahuo; S6: Stage 6-Houhuo; S7: Stage 7-Yangqu).The dotted bands 

were also excised but could not be identified because no amplicons were obtained. 

Microbiota composition in relation to environmental variables 

Canonical correspondence analysis (CCA) was carried out using abundant DGGE 

bands together with environmental variables. Species-environment correlations for both 
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axes were higher than 0.99 (canonical coefficients), suggesting that microbial diversity was 

strongly correlated with environmental factors. In the CCA triplot (Figure 5.6), the length 

of arrows indicated the relative importance of that environmental factor in explaining 

variation in microbial profiles, while the angle between the arrows (environmental factor - 

environmental factor or environmental factor-species) indicated the degree to which they 

were correlated. It shows that acidity, pH and surface temperature were the three most 

important environmental variables which could be correlated with the microbial diversity in 

different samples, since the lengths of these arrows are longer than those of others. 

Moisture content was the sole environmental factor that correlated with the microbial 

diversity at stages 3 and 7. Acidity correlated with the composition of the microbial 

community of stage 2, in which a relatively high abundance of Ws. confusa, Ws. cibaria, B. 

cereus, B. pumilus and P. kudriavzevii was found. Temperature and pH were found to be 

strongly correlated with the composition of the microbiota during the stages 4, 5 and 6. 

5.4 Discussion 

This study showed that species of the genus Bacillus are predominant during all stages 

of Fen-Daqu fermentation. By combining both culture-dependent and culture-independent 

data, stage 3 was identified as the stage with the highest diversity of Bacillus spp. This 

result is in agreement with the data of Yan et al. (2013b). In our study, seven Bacillus 

species, namely B. anthracis/B. cereus, B. amyloliquefaciens, B. circulans, B. licheniformis, 

B. megaterium, B. pumilus, and B. subtilis, were found during the whole Daqu fermentation 

process, whereas almost all these species were detected simultaneously at stage 3. Of these 

bacilli, only B. licheniformis and B. subtilis were found in the study of Fen-Daqu 

production by Li et al. (2013). This result emphasizes the importance of using two 

complementary methods because higher numbers of species could be obtained. Bacillus 

spp. can survive harsh environmental conditions such as drying (Deng et al., 2012). Daqu 

after stage 3 became dry due to evaporation, caused by the use of forced ventilation in order 

to control the incubation temperature during stage 3. This explains the decrease of both 

room temperature and core temperatures in Figure 5.5. As a result, the moisture content of 

Daqu decreased. Zhao et al. (2011) reported that bacilli have a better ability to survive 



Microbiota dynamics related to environmental conditions during the fermentative production of Fen-Daqu 

89 

under low moisture conditions than other bacteria. Canonical correspondence analysis also 

revealed the significance of moisture content in correlation with the microbial communities 

at this stage (Figure 5.6). 

The number of thermophilic bacteria and bacterial spores increased from 5.9 at stage 3 

to 8.8 log CFU/g at stage 6 (Table 5.2), when the diversity of Bacillus spp. decreased. 

Correspondence analysis indicated that pH and temperature were the most important factors 

that correlated with the composition of the microbial community during the stages 4, 5 and 

6. The core temperature during these three stages reached a maximum of about 52°C 

between stages 4 and 5 (Figure 5.5). Such high temperature is expected to have a selective 

effect, favouring thermotolerant, aerobic endospore-forming bacteria. Only Bacillus spp., 

such as B. licheniformis and B. subtilis, are able to grow between 50-60°C (Burgess et al., 

2010). This may be the reason why members of the genus Bacillus spp. were dominating 

the microbial community during the last four stages. This could also explain why B. 

licheniformis and B. subtilis were encountered frequently in strong or sauce flavour Daqu 

(Wang et al., 2011b) in which fermentation temperatures are even higher than in Fen-Daqu. 

LAB also play a role in the production of Daqu (Zheng et al., 2011), especially 

Lactobacillus spp. (Li et al., 2013). Acidity was recognized as the most significant factor 

that correlated with the composition of the microbial communities of stage 2 (Figure 5.6). 

The increase in acidity correlates with the occurrence of high numbers of LAB and fungi, 

especially Lb. sanfranciscensis, Ws. cibaria, Ws. confusa, W. anomalus and P. kudriavzevii. 

The fungal community associated with Fen-Daqu fermentation was found to be less 

diverse than the bacterial one. A succession of yeast species during fermentation could not 

be observed. Li et al. (2013) reported the predominance of P. kudriavzevii in Fen-Daqu, 

however, in our study two other yeasts species (Sm. fibuligera and W. anomalus) were 

predominant during Daqu fermentation, since they occurred during almost the entire 

production process. Sm. fibuligera has been reported to degrade and assimilate raw starch 

as a carbon source (Chi et al., 2009) so it may contribute to the formation of fermentable 

carbohydrates for the subsequent alcoholic fermentation. W. anomalus and P. kudriavzevii 

are known as ester-producing yeasts and a higher abundance of these organisms correlate 

with an elevated concentration of esters in liquor (Li et al., 2012; Wu et al., 2012b). 
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Figure 5.5 Changes in temperature, RH, and moisture content during fermentation of Fen-Daqu. 

(Stage 1: Woqu; Stage 2: Shangmei; Stage 3: Liangmei; Stage 4: Chaohuo; Stage 5: Dahuo; Stage 6: 

Houhuo; Stage 7: Yangqu). 

Filamentous fungi are commonly used in solid state fermentations, because of their 

relatively high tolerance to low water activity and their production of hydrolytic enzymes 

(Rahardjo, 2005). The major moulds associated with Daqu fermentation can be categorized 

into two groups. The first group belongs to the family of Mucoraceae. These are known as 

strong amylase producers in amylolytic Asian fermentation starters (Rahardjo, 2005). Of 

these fungal species, L. corymbifera occurred during stage 5 and persisted until the end of 

the fermentation. The relatively high core temperature of the Daqu above 45°C during 

stages 4-5 allows only thermophilic or thermotolerant fungi to survive. This may be true for 

L. corymbifera that has been reported to grow at temperatures as high as 48-52°C 

(Weitzman et al., 1995), and may explain that it was detected during the last three stages of 

Daqu fermentation. The second group comprises Aspergillus spp., which are used in solid 

state fermentations and also are known to produce extracellular proteolytic and 

saccharolytic enzymes (Rahardjo, 2005). 
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In this study, both culture-dependent and culture-independent approaches were 

combined to analyse the dynamics of microbial communities during Daqu fermentation. 

Although both techniques may provide different results due to the use of various sampling 

methods, they showed sufficient overlap of information on the dominant groups of 

microbial communities. Only 6 bacterial species, i.e. B. cereus, B. licheniformis, B. 

megaterium, B. pumilus, B. subtilis and Lb. plantarum and 2 fungal species, i.e. P. 

kudriavzevii and W. anomalus could be detected by both approaches. By the culture 

independent method, no bands were identified as filamentous fungi. We assume that the 

absence of bands for filamentous fungi in our DGGE gel is mainly caused either by (1) 

inadequate DNA extraction of filamentous fungi from the complex food matrix of Daqu, or 

(ii) by the presence of high concentrations of competing DNA, such as that from yeasts in 

Daqu. These results reinforce the necessity of employing both culture-dependent and 

culture-independent approaches to uncover the microbial diversity of complex microbial 

ecosystems, such as Daqu. 

Li et al. (2013) applied cloning methods to analyse the microbial communities during 

the production of Fen-Daqu, and they reported the predominance of lactobacilli and P. 

kudriavzevii in Daqu. However, our study showed the predominance of different groups of 

microorganisms at different stages of the fermentation. In conclusion, a succession in 

relative abundance of fungi, LAB and Bacillus spp. was observed during the Daqu 

fermentation process (Figure 5.1), which can be linked to changes in environmental 

conditions such as pH, temperature, acidity and moisture content. Better knowledge of 

microbial succession driven by environmental changes may facilitate long-term 

technological developments and innovation that will benefit the liquor and vinegar industry. 
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Figure 5.6 Canonical correspondence analysis (CCA) of DGGE community profiles from Daqu 

samples from the 7 stages. Numbers refer to the different stages, arrows refer to different 

environmental factors, and triangles refer to the individual abundant microbial species. 
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                                Chapter 6 

Characterization of bacteria and yeasts isolated from 
traditional fermentation starter (Fen-Daqu) through a 1H NMR-

based metabolomics approach 

Abstract 

Daqu is a traditional fermentation starter for the production of Chinese liquor and 

vinegar. It is an important saccharifying and fermenting agent associated with 

alcoholic fermentation and also a determining factor for the flavour development 

of these products. Bacterial and yeast isolates from a traditional fermentation 

starter (Fen-Daqu) were examined for their amylolytic activity, ethanol tolerance 

and metabolite production during sorghum-based laboratory-scale alcoholic 

fermentation. The selected strains (Bacillus licheniformis, Pediococcus 

pentosaceus, Lactobacillus plantarum, Pichia kudriavzevii, Wickerhamomyces 

anomalus, Saccharomyces cerevisiae, and Saccharomycopsis fibuligera) were 

blended in different combinations, omitting one particular strain in each mixture. 

1
H-nuclear magnetic resonance (NMR) spectroscopy coupled with multivariate 

statistical analysis was used to investigate the influence of the selected strains on 

the metabolic changes observed under the different laboratory-controlled 

fermentation conditions. Principal component analysis showed differences in the 

metabolites produced by different mixtures of pure cultures. S. cerevisiae was 

found to be superior to other species with respect to ethanol production. Sm. 

fibuligera and B. licheniformis converted starch or polysaccharides to soluble 

sugars. Lactic acid bacteria had high amylolytic and proteolytic activities, thereby 

contributing to increased saccharification and protein degradation. W. anomalus 

was found to have a positive effect on the flavour of the Daqu-derived product. 

This study highlights the specific functions of S. cerevisiae, Sm. fibuligera, B. 

licheniformis, W. anomalus and lactic acid bacteria in the production of light-

flavour liquor (Fen-liquor).  
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6.1 Introduction 

Chinese liquor and vinegar are products that are obtained from cereals such as 

sorghum and wheat by complex fermentation processes using natural mixed culture starters 

(i.e., Daqu) followed by distillation (Zheng et al., 2011). Chinese liquor and vinegar contain 

a number of metabolites that either originate directly from the raw materials and 

ingredients, such as the sorghum and Daqu, or are produced during alcoholic fermentation 

by the consortia of yeasts and bacteria originating from the Daqu. Although the constituents 

of sorghum affect metabolite formation, the vast majority of components found in Chinese 

liquor and vinegar are of microbial origin and produced during fermentation (Li et al., 

2014a; Zheng et al., 2014). Daqu contains a diversity of microorganisms, and has 

significant effects on ethanol production and flavour development during alcoholic 

fermentations (Zheng et al., 2012). Predominant groups of bacteria and yeasts in Fen-Daqu 

(viz., Bacillus licheniformis, Pichia kudriavzevii, Saccharomycopsis fibuligera, 

Wickerhamomyces anomalus, and lactic acid bacteria [LAB]) were isolated and identified 

previously (Zheng et al., 2012; Zheng et al., 2014). However, not much is known about the 

specific contributions of these microorganisms to the composition of Chinese liquor or 

vinegar. Therefore, we characterized the effect of these microorganisms on saccharification, 

ethanol production, and flavour production during lab-scale alcoholic fermentation studies. 

Microbes isolated from mixed microbial populations obtained from traditional fermented 

foods are shown to exhibit strain specific metabolic activities (Nyanga et al., 2013; Smid et 

al., 2014b). Therefore, we performed an extensive screening exercise with the objective to 

select candidate species for use in starter cultures. 

Proton nuclear magnetic resonance
 
(

1
H NMR) based metabolomics coupled with 

principle component analysis (PCA) was used to evaluate the performance of selected 

bacterial and yeast strains isolated from Fen-Daqu during alcoholic fermentation. 

6.2 Materials and Methods 

Screening of bacteria and yeast isolates for sorghum fermentation 
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       (1) Cultivation of strains 

A total of 161 microbial cultures, comprising 72 isolates of B. licheniformis, 46 

isolates of Sm. fibuligera, 9 isolates of P. kudriavzevii, 26 isolates of W. anomalus, 1 isolate 

of Saccharomyces cerevisiae, and 7 isolates of LAB (Ped. pentosaceus and Lactobacillus 

plantarum), were previously isolated from Daqu (Zheng et al., 2012). Eight reference S. 

cerevisiae strains were obtained from the College of Food Science and Nutritional 

Engineering of China Agricultural University. Yeasts were grown on malt extract agar 

(MEA; Oxoid CM0059), bacilli were grown on plate count agar (Oxoid CM035), and LAB 

were grown on MRSA (Oxoid CM0361). All stocks were stored in 30% glycerol at -80°C. 

       (2) Preparation of inoculum 

Cultures were incubated for 2 d at 30°C in 10 ml nutrient broth (NB; for bacteria) or 

YPD broth (for yeast). Suspensions of 10
8
 cells/ml were made in sterile peptone 

physiological salt solution (0.85%) as confirmed by microscopic counts. 

       (3) Starch degradation assay 

An aliquot (1 μl) of the inoculum was transferred to the center of a starch agar plate 

and incubated at 30°C for 2 d. Starch degradation was visualized by flooding the plate with 

a 0.25% iodine solution. The diameter of the colony and surrounding halo were recorded, 

and the ratio of these diameters (Dh/Dc) was calculated as a measure of starch degradation. 

Table 6.1 Experimental design of fermentation trials with different strain mixtures 

Mix S.c-1 S.f-4 W-29 P-12 B-128 L.p-1 P.p-6 Daqu 

M Χ Χ Χ Χ Χ Χ Χ  

F1  Χ Χ Χ Χ Χ Χ  

F2 Χ  Χ Χ Χ Χ Χ  

F3 Χ Χ  Χ Χ Χ Χ  

F4 Χ Χ Χ  Χ Χ Χ  

F5 Χ Χ Χ Χ  Χ Χ  

F6 Χ Χ Χ Χ Χ  Χ  
F7 Χ Χ Χ Χ Χ Χ   

D        Χ 

Note: B = Bacillus licheniformis; P.p = Pediococcus pentosaceus; L.p = Lactobacillus plantarum; P = Pichia 
kudriavzevii; W = Wickerhamomyces anomalus; S.c = Saccharomyces cerevisiae; S.f = Saccharomycopsis 

fibuligera. “Cross” indicates that the strain was added to the fermentation.  
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       (4) Enzyme activity assays 

An aliquot (1 ml) of culture was grown in 10 ml of growth medium (NB for bacilli, 

MRS broth for LAB, and malt extract broth [MEB] for yeast) with 0.1 g of crushed 

sorghum. A crude enzyme solution was prepared according to the methods of Ali (1989) 

and Srivastava.(1986) The crude enzyme was obtained by centrifugation at 10,000 × g for 

10 min at 4°C. Each time the obtained supernatant was used to assay for amyloglucosidase 

and α-amylase activities, respectively. 

Amyloglucosidase assay 

Amyloglucosidase was assayed by using a test kit (Megazyme, RAMGR3) with p-

nitrophenyl-β-maltoside as a substrate, according to the manufacturer’s instructions. 

α-Amylase assay 

α-Amylase activity was assayed by using the EnzyChrom α-Amylase Assay Kit 

(Bioassay system, Hayward, USA) according to the manufacturer’s instructions. 

       (5) Alcohol tolerance test 

All strains were tested for their ethanol tolerance by using the spot test according to 

Kim.(2011a) The strains were grown in MEB (for yeast) and NB broth (for bacteria) to an 

OD600 of 1, and then diluted ten-fold with a sterile physiological salt solution (0.85%, w/v). 

Aliquots (1 μl) of each suspension were spotted onto MEA or PCA plates containing 0%, 

4%, 8%, or 12% (v/v) ethanol, which were incubated at 30°C for 2 d. Ethanol tolerance was 

calculated based on colony size (diameter). Each strain was plated in duplicate. 

Fermentation tests 

       (1) Preparation of inoculum 

Based on the starch degradation and alcohol tolerance screening results using pure 

cultures of bacterial and yeast species isolated from Fen-Daqu, seven strains representing 

seven species were selected for lab-scale fermentation as shown in Table 6.1. Each strain 

(B. licheniformis 128, Ped. pentosaceus 6, Lb. plantarum 1, P. kudriavzevii 12, W. 

anomalus 29, S. cerevisiae 1, and Sm. fibuligera 4) was grown in 10 ml of NB (bacteria) or 

MEB (yeasts) at 30°C for 2 d. A 1-ml aliquot of the culture was then centrifuged at 2,000 × 

g for 10-15 min. The cell pellets were suspended in a sterile physiological salt solution (8.5 

g/l) and adjusted to a density of 10
7 
CFU/ml for yeast and 10

8 
CFU/ml for bacteria. 
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       (2) Preparation of sorghum mixture 

Aliquots of sorghum crude powder (100 g; obtained from Xinghuacun Fenjiu Group, 

Shanxi province, China in Jan. 2013) were mixed with 80 ml of hot water (80°C) and 

soaked for 24 h. After soaking, the mixture was steamed in an autoclave for 30-40 min at 

100°C. The obtained sorghum paste was mixed with sterile cold water (30 g/100 g paste; 

18-20°C), and then cooled to room temperature. 

       (3) Laboratory-scale fermentation 

Hundred g of the sorghum mixture was placed into a sterile 250-ml conical flask and 

then closed with a water lock. Nine independent alcoholic fermentations were carried out as 

shown in Table 6.1. According to the experimental design, 1 ml of total microbial 

suspension containing of yeast suspension (10
7 

CFU/ml) and bacteria suspension (10
8 

CFU/ml), or 10 g of powdered Daqu were used (Table 6.1). The fermentation flasks were 

incubated at 25°C for 28 d. Samples (approximately 30 g) were taken on 0, 14, and 28 d. 

Each fermentation (flask) was performed in triplicate. 

The combination matrix of different cultures is presented in Table 6.1. The selected 

strains were mixed together in a series of cultures, each with 1 strain omitted, except for 

fermentation M, which contained all the candidate strains. The culture mixtures were added 

to sorghum, and the alcoholic fermentation process of Fen-liquor (see materials and 

methods) was followed. One control fermentation with Fen-Daqu was used in this study. 

Physicochemical analyses 

       (1) pH measurement 

The pH of the fermentations was measured with a pin electrode and a pH meter 

inserted directly into each sample suspension (1g/10ml). Three independent measurements 

were done on each sample. 

       (2) Determination of moisture content 

The moisture content of the samples was determined using a standard oven drying 

method at 105°C until constant weight was reached. The determinations were conducted in 

triplicate and the mean values calculated. 
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Chemical analysis 

       (1) Extraction of polar compounds 

Polar compounds were extracted from the fermented materials according to the 

method of Le et al. (2011) with a minor modification. Briefly, 300 mg of sample, (instead 

of 100 mg to increase the concentration of extract) was transferred to a centrifuge tube 

containing 1.5 ml of cold Milli-Q water. The solution was mixed and vortexed at 2,500 

oscillations/min for 1 min using a Biospec Beadbeater (Mini Beadbeater-8; Biospec, 

Bartlesville, USA) without beads. The tube was then incubated on ice for 10 min, and 

centrifuged at 16,060 × g for 10 min at 4°C. The centrifugation was repeated twice until the 

supernatant became clear. The clear supernatant was then transferred to a new tube and 

stored at -80°C until analysis. Each extraction was performed in triplicate. 

       (2) NMR 

The aqueous extracts for NMR measurements were prepared as reported 

previously.(Wu et al., 2009a) A 600 μl aliquot of each sample was transferred into a 5-mm 

NMR tube. All 
1
H NMR spectra were measured at 300 K using an AVANCE NMR 

spectrometer (proton frequency = 600.13 MHz, 14.1 T; Bruker, Billerica, Germany) with a 

cryogenic NMR probe. The 
1
H NMR experiments were performed using the following 

conditions: NOESYGPPRR1D pulse sequence; relaxation delay, 4 s; mixing time (for 

NOESY), 1 s; acquisition time, 2.28 s; number of steady states transients (dummy scans), 4; 

gradient pulse time, 1 ms; solvent suppression, presaturation with spoil gradient; spectral 

width, 7,184 Hz; and time domain size, 32 k. The compounds were identified and 

quantified with Chenomx software (version 5.0; Chenomx, Edmonton, Canada) with 

reference to the internal standard TSP. 

Statistical analysis 

The plate counts of the triplicate experiments were log transformed, and the averages 

and standard errors of the mean were calculated. Statistical analyses were performed using 

IBM-SPSS V19.0 (IBM, SPSS Statistics; NY, USA). One-way ANOVA with Duncan’s test 

were used to determine the significance of differences in physical data (i.e., pH and 

moisture). NMR data were analysed by PCA using AMIX software (version 3.7.10; 



Characterization of bacteria and yeasts isolated from traditional starter (Fen-Daqu) 

99 

BrukerBioSpin, Rheinstetten, Germany). Before performing the PCA, the NMR spectra 

(δ=0.70-9.20) were segmented into 0.04-ppm bins. The water region (δ=4.4-5.3) and 

imidazole regions (δ=7.35-7.50 and δ=8.4-8.6) were excluded from the analysis. All 

spectral data were first scaled to the total intensity of the corresponding spectrum using 

AMIX software so that the relative concentration of each compound could be expressed as 

the relative intensity of each spectrum. The output from the PCA analysis consisted of score 

plots, which provided an indication of the differentiation of the classes in terms of 

metabolome similarity, and loading plots, which provided an indication as to which NMR 

spectral regions were important with respect to the classification obtained in the score plots. 

6.3 Results 

Screening of bacterial and yeast isolates for starch degrading ability 

A total of 79 bacterial and 90 yeast isolates were tested for their starch degrading 

abilities. The amyloglucosidase activity of B. licheniformis was only approximately 0.03 

U/g (dw), whereas some Ped. pentosaceus and Lb. plantarum showed activities as high as 

0.1-0.3 U/g (dw) (see Figure 6.1). Ped. pentosaceus 6 (P.p-6) and Lb. plantarum 1 (L.p-1) 

also showed high starch degrading abilities with Dh/Dc value of 3.3 and 3.6, respectively. 

Of the B. licheniformis isolates, strain B-128 showed the highest starch degradation (Dh/Dc: 

3.1). In addition, this strain also showed a higher ability to produce amyloglucosidase as 

compared to the other B. licheniformis strains. 

Of the four yeast species studied, Sm. fibuligera had generally a higher starch 

degrading activity than the other 2 species (P. kudriavzevii and W. anomalus, see Figure 

6.2). W. anomalus (W-29) showed high starch degrading ability (Dh/Dc: 1.4) and high α-

amylase activity (0.144 U/g). Although P. kudriavzevii 12 did not produce α-amylase and 

amyloglucosidase, it showed starch degrading ability, with a Dh/Dc value of 1.4. 
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Figure 6.1 Bubble plot diagram of starch degradation (X-axis), α-amylase activity (Y-axis) and 

amyloglucosidase activity (bubble size, see legend top right) of bacterial strains. Note: B = Bacillus 

licheniformis; P.p = Pediococcus pentosaceus; L.p = Lactobacillus plantarum; Dh = The diameter of 

halo; Dc= the diameter of colony. Arrows indicate the selected strains. 

 
Figure 6.2 Bubble plot diagram of starch degradation of (X-axis), α-amylase activity (Y-axis) and 

amyloglucosidase activity (bubble size, see legend top right) yeast strains. 

Note: P = Pichia kudriavzevii; W = Wickerhamomyces anomalus;  S.c = Saccharomyces cerevisiae; S.f = 
Saccharomycopsis fibuligera. Twenty-three strains (P-6, P-10, P-12, P-13, W-3, W-4, W-5, W-8, W-10, W-11, W-

14, W-15, W-17, W-18, W-19, W-21, W-22, W-27, W-30, W-36, W-43, S.c-SC8, Sc-YS7) were not included in 

the figure since no starch degradation activities were observed. Arrows indicate the selected strains. 
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More than 90% of the Sm. fibuligera strains were able to produce amyloglucosidase 

and α-amylase. The highest starch degrading yeast strain was Sm. fibuligera strain S.f-26. 

This strain not only had the highest ratio of 2.0, but also high α-amylase and 

amyloglucosidase activities, with values of 0.143 U/g and 0.064 U/g, respectively. Except 

for strain S. cerevisiae 1, the other S. cerevisiae strains were isolated from traditionally 

fermented red wine grapes. By taking into account the α-amylase activity, 

amyloglucosidase activity, and the Dh/Dc-values, S. cerevisiae 1 showed the highest starch 

degradation ability. In general, amyloglucosidase activity had less discriminating effect 

compared to the other two factors including α-amylase activity and Dh/Dc (Duncan’s test, 

data not shown). 

Table 6.2 Alcohol tolerance test of bacterial isolates 

Bacteria 
Growth on medium* containing 

ethanol 

 
4%  

ethanol 

8% 

ethanol 

12% 

ethanol 

B. licheniformis (9,41,43,49,121) + + + 

B. licheniformis (104,106) + + w 

B. licheniformis (42,63,71,76,108,112,118,120,134,138) + + - 

B. licheniformis (60,69,123) + w w 

B. licheniformis (47,65,122,128,131) + w - 

B. licheniformis(109) + v - 

B. licheniformis 

(16,27,30,33,44,45,48,50,51,52,54,55,62,64,66,67,73,77,101

,102,103,105,107,110,111,114,115,116,117,119,124,125,12

6,127,129,130,132,133,135,136,137,139,140) 

+ - - 

B. licheniformis (46) - - - 

Ped. pentosaceus (2,6) + + + 

Ped. pentosaceus (5) + + - 

Ped. pentosaceus (1,3) + - - 

Lb. plantarum (2) + + v 

Lb. plantarum (1) + - - 

Notes: + = positive, w = weak, - = negative, v = variable. A control of media without alcohol showed growth for 
all bacterial strains.*for B. licheniformis, Plate count agar was used; for lactic acid bacteria, MRSA was used 

Screening bacterial and yeast isolates for ethanol tolerance  

The ethanol tolerance of bacterial and yeast strains is shown in Tables 6.2 and 6.3, 

respectively. Of the bacteria, Ped. pentosaceus 2 and 6 (P.p-2 and P.p-6) were able to grow 

up to 12% (v/v) alcohol, whereas Lb. plantarum was able to tolerate up to 8% alcohol. Only 

a few B. licheniformis strains (B-9, B-41, B-43, B-49, B-104, B-106, and B-121) were able 
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to grow with 12% alcohol; however, most B. licheniformis strains only showed growth on 4% 

alcohol. 

One P. kudriavzevii strain (P-1) was able to tolerate up to 12% alcohol, and the other 

strains showed variable tolerances of 4% and 8% alcohol (Table 6.3). None of the W. 

anomalus strains showed growth in 12% alcohol, and only 9 of these were able to tolerate 8% 

ethanol. One S. cerevisiae strain (S.c-1) was able to tolerate up to 12% alcohol. Half of the 

Sm. fibuligera strains were able to tolerate 8% alcohol and of these, 4 strains (S.f-4, S.f-6, 

S.f-9, and S.f-43) were able to tolerate 12% alcohol. 

Table 6.3 Alcohol tolerance of yeast isolates 

Yeasts 

Growth on MEA containing ethanol 

4% 

 ethanol 

8% 

ethanol 

12% 

ethanol 

P. kudriavzevii (1) + + + 

P. kudriavzevii (4,6,13,14) + + - 

P. kudriavzevii (10) + - w 

P. kudriavzevii (3,5,12) + - - 

W. anomalus (8,10,11,15,25,27,29) + + - 

W. anomalus (5,28) + w - 

W. anomalus (23) + v - 

W. anomalus 

(3,4,7,9,14,16,17,18,19,20,21,22,24,30,32,36) 
+ - - 

S. cerevisiae (1) + + + 

S. cerevisiae (NJSC5) + + v 

S. cerevisiae (GM6,NJSC5,YS7) + + - 

S. cerevisiae (CC18,SC8,SS2,YS8) + - - 

Sm. fibuligera (4,9) + + + 

Sm. fibuligera (6,43) + + v 

Sm. fibuligera 

(1,5,8,10,11,13,17,22,25,31,33,36,41,42,44) 
+ + - 

Sm. fibuligera (16,28,34,37,38) + w - 

Sm. fibuligera (27) + v - 

Sm. fibuligera 

(2,3,7,12,14,15,18,19,20,21,23,24,26,29,30,32,35,40,4

5,46) 

+ - - 

Sm. fibuligera (39) v - - 

Notes: + = positive, w = weak, - = negative, v = variable. A control of media containing no alcohol showed 
growth for all the yeast strains. 

Design of fermentation trials by mixing pure bacterial and yeast cultures 

First, high starch degrading ability was used as criteria to select candidate bacterial 

and yeast strains for fermentation trails. Next, the ethanol tolerance of the selected strains 
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was compared. B. licheniformis 128 and Ped. pentosaceus 6 were selected based on the 

above mentioned criteria. Although strain Lb. plantarum 1 had a low ethanol tolerance, this 

species is frequently encountered in liquor fermentations (Li et al., 2011); therefore, we 

also included this strain in the fermentation trials. W. anomalus 29, P. kudriavzevii 12 and S. 

cerevisiae 1 were selected for their high starch degradation ability; Sm. fibuligera 4 and Sm. 

fibuligera 26 were similar in starch degradation ability, Sm. fibuligera 4 instead of Sm. 

fibuligera 26 was selected for its high alcohol tolerance. 

 

Figure 6.3 Changes of pH and moisture content in different fermentation trials at different stages of 

fermentation. The bars correspond to the estimated average levels of pH (A), and moisture content 

(B). The error bars indicate standard errors of the mean. * indicates the pH value or moisture content 

of the sample is significantly different from that of sample M. 
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Fermentation tests 

       (1) Monitoring pH and moisture content during fermentation 

Fermentation trial D (containing Daqu) showed a lower initial pH value (pH 6.1) as 

compared to the other fermentation trials (Figure 6.3A). After 28 days of incubation, the pH 

values of all the fermentations reached the same level as fermentation D, except for F1 and 

F7 that showed less acidification. 

Figure 6.3B shows the changes in moisture content in all trials during alcoholic 

fermentation. A similar level in moisture content was detected in most of trials throughout 

the fermentation process, with trial D showing significantly higher values. 

       (2) Characteristics of the 9 different fermentation trials 

The comparison of different trials with respect to metabolite composition was 

performed by PCA. All the trials were individually compared to trial M based on their 

metabolites composition using pairwise PCA score plots (Figure 6.4). PC1 scale illustrates 

the effects of the changes of condition on the metabolites profile. The PC2 scale gives the 

differences between the triplicates and is enlarged over the PC2 scale but generally is of 

much minor magnitude than the PC1 effect. To identify the metabolites responsible for the 

variations in the PCA scores plots in the different fermentation trials, loading plots of PC1 

were generated (Figure 6.4I-P). The upper sections of the loading plots represent the 

concentrations of metabolites that were higher in fermentations F1-F7 and D, whereas the 

lower sections revealed metabolite concentrations that were higher in fermentation M. 

Lactate and acetate are two important microbial metabolites that occurred during alcoholic 

fermentations. It shows that the higher concentrations of acetate and lower concentrations 

of lactate are detected in fermentation 1 (without S. cerevisiae), 3 (without W. anomalus), 5 

(without B. licheniformis), and 7 (without Ped. pentosaceus), whereas opposite trend at 

lower acetate and higher lactate level were detected in fermentation 2 (without Sm. 

fibuligera) and 4 (without P. kudriavzevii) when compared to the levels in fermentation M. 

Figure 6.4N shows that the concentrations of lactate and acetate were all higher in 

fermentation 6 (without Lb. plantarum) than in fermentation M, whereas the concentrations 

of alanine and butyrate were higher in the latter fermentation. Amino acids such as alanine 

and threonine were detected with higher concentration in fermentation M when compared 
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to fermentation 2 (Figure 6.4J). Ethanol was detected in higher concentration in 

fermentation 6, 7 and D (Figure 6.4N, O and P), with significant higher level in 

fermentation D. Figure 6.4P shows the differentiation of fermentation M and fermentation 

D (with Daqu). It shows that the concentrations of lactate, butyrate and acetate were higher 

in fermentation M. 



 

 

 

 

Figure 6.4 PCA scores (A-H) and loading (I-O) plots derived from the 1H NMR spectra demonstrating significant statistical changes of 

metabolites in different fermentation samples. 
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Figure 6.4 PCA scores (A-H) and loading (I-O) plots derived from the 1H NMR spectra demonstrating significant statistical changes of 

metabolites in different fermentation samples (continued). 
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6.4 Discussion 

Screening bacterial and yeast strains for sorghum fermentation 

Bacillus and LAB are dominant members of the microbial community of Daqu 

and thus thought to be important for the functionality of the starter (Liu et al., 2012a; 

Zheng et al., 2012). In our study, B. licheniformis isolates showed starch degrading 

abilities with Dh/Dc values in the range of 0-3.1, α-amylase activities in the range of 0-

0.598 U/g (dw), and amyloglucosidase activities at levels below 0.03 U/g (dw) (Figure 

6.1). Some Lb. plantarum and Ped. pentosaceus strains (L.p-1 and P.p-6) showed 

higher starch degrading activities than B. licheniformis. Generally, B. licheniformis, Lb. 

plantarum, and Ped. pentosaceus showed a little bit higher starch degrading abilities 

than yeast isolates, this suggests that these three species are the important starch 

degraders in the microbial community of Daqu. 

Only five B. licheniformis strains (B-9, B-41, B-43, B-49, and B-121), one Lb. 

plantarum strain (L.p-2), and two Ped. pentosaceus strains (P.p-2 and P.p-6) were able 

to tolerate 12% ethanol. Several factors are known to be involved in the ethanol 

tolerance of bacteria, including ethanol-induced changes in plasma membrane 

composition and inactivation of cytosolic enzymes (e.g., ATPase and glycolytic 

enzymes)(Huffer et al., 2011). Some B. licheniformis strains (B-9, B-41, B-43, B-49, 

and B-121) showed a high ethanol tolerance possibly related with the formation of cell 

macro-fibres and structured filamentous growth when exposed to ethanol stress (Torres 

et al., 2005). Lb. plantarum and Ped. pentosaceus strains are known to be ethanol 

tolerant (Liu et al., 2009) due to solvent induced changes in the membrane lipid 

composition. 

Sm. fibuligera has been reported as the only yeast species that is present in all 

different types of Daqu (Wang et al., 2011b). In several studies, this yeast was 

considered as the major amylolytic yeast in indigenous food fermentations (Chen et al., 

2010; Chi et al., 2009). This is consistent with our results, as most Sm. fibuligera 

strains tested showed good starch degrading abilities (Figure 6.2). 
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Contributions of selected strains during alcoholic fermentation 

       (1) Saccharomyces cerevisiae 

Saccharomyces cerevisiae is probably the most important yeast species during 

alcoholic fermentation, as it is able to ferment glucose, sucrose, maltose and galactose 

to ethanol (Sun, 2014). This was confirmed by our results (Figure 6.4I and Table S1) 

showing that the concentration of ethanol was significantly higher in fermentation M 

than in fermentation 1 (without S. cerevisiae). S. cerevisiae produced ethanol more 

efficiently than any other tested species as the ethanol content (12 mmol/g) in 

fermentation 1 was the lowest among all fermentation trials, except for Fermentation 5 

(without B. licheniformis). The presence of S. cerevisiae was found to be associated 

with a decrease in pH (Figure 6.3A). Two factors could lead to this change: a) 

alcoholic fermentation driven by S. cerevisiae is associated with the production of 

organic acids such as citric acids (Acourene et al., 2012); b) S. cerevisiae may have a 

positive effect on the production of lactic acid by LAB (Gül et al., 2005). This 

synergetic effect can explain the higher concentration of lactic acid (17 mmol/g) in 

fermentation M if compared to fermentation 1 (0.3 mmol/g) (Table S1). 

       (2) Saccharomycopsis fibuligera 

Saccharomycopsis fibuligera is found in starchy substrates worldwide, and is the 

major amylolytic yeast in indigenous food fermentations involving cereals, such as rice 

and sorghum (Nie et al., 2013; Saelim et al., 2008). The major contribution of Sm. 

fibuligera during alcoholic fermentation appears to be the degradation of starch or 

polysaccharides to small, fermentable molecular sugars, such as maltose, maltotriose, 

and dextrin that can subsequently be hydrolysed to glucose. Sm. fibuligera secretes 

almost exclusively α-amylase and glucoamylase (Ismaya et al., 2012), and this explains 

the high α-amylase activity of most tested Sm. fibuligera strains (Figure 6.2). Although 

Sm. fibuligera can produce a large amount of amylases that hydrolyse starch into 

glucose, it cannot ferment glucose into ethanol. S. cerevisiae on the other hand, is 

unable to convert starch to glucose. Therefore, a mixed culture of S. cerevisiae and Sm. 
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fibuligera could increase the production of ethanol, which is suggested by the higher 

ethanol concentration found in fermentation M than in fermentation 2 (without Sm. 

fibuligera). This effect was observed in other studies as well (Chen et al., 2010; Knox 

et al., 2004). In addition, the concentration of lactate was higher when Sm. fibuligera 

was not present in the fermentation. The accumulation of lactate suggests that Sm. 

fibuligera stimulates the conversion of lactate to other compounds, such as ethyl 

lactate. This compound might be abundant in fermentation M. Moreover, Sm. 

fibuligera could secrete proteinases with an optimum pH 4 (Ismaya et al., 2012), and 

these enzymes could degrade proteins to peptides and amino acids. As shown in Table 

S1and Figure 6.4J, the content of amino acids such as glycine, histamine, alanine, 

proline and threonine in fermentation 2 are clearly lower compared to that in 

fermentation M. This might be associated with the proteinase activity of Sm. fibuligera, 

especially its high acid proteinase activity (Chi et al., 2009). Several studies have 

reported that Sm. fibuligera could produce acid protease with an optimum pH in the 

acidic range (pH 2-5) (Wang et al., 2011a; Yu et al., 2010), it might play an important 

role in alcoholic fermentation industry, because it could hydrolyse protein in the 

fermented mash to liberate amino acids or peptides under the acidic condition (Chi et 

al., 2009). The production of amino acids not only could provide nitrogen source for 

the growth of other yeasts, also could react with reducing sugars via Maillard reactions 

producing flavour compounds, and they might contribute to the soft, delicate and full 

body of Fen-liquor as described by Xiong et al.(2005a). 

       (3) Wickerhamomyces anomalus and Pichia kudriavzevii 

Wickerhamomyces anomalus is regarded as an important aroma producer that is 

present in a wide range of fermented products (Nyanga et al., 2013; Soka et al., 2013). 

The species is a well-known, significant producer of acetate esters, especially ethyl 

acetate (Rojas et al., 2001). Ethyl acetate has a fruity, sweet aroma that can contribute 

to a product’s olfactory complexity; thus, enhancing the bouquet of Chinese liquor or 

vinegar. Non-polar compounds were not included in our sample extraction, and 

therefore, esters were hardly detected by the NMR analysis of our samples. However, 
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we observed that the acetate (flavour precursor) content was higher in fermentation 3 

(without W. anomalus) than in fermentation M (with W. anomalus) (Figure 6.4K). The 

acetate in fermentation M could be converted by W. anomalus to other substances, 

especially ethyl acetate, which is in agreement with observation made by Passoth et 

al.(2006). They reported that ethyl acetate could be synthesized by W. anomalus from 

acetate via an esterase. Moreover, Sun (2014) reported that W. anomalus could produce 

both acetate and ethyl acetate in high concentrations in sorghum juice. Ethanol and 

ethyl acetate may be responsible for the antimicrobial activity of W. anomalus (Coda et 

al., 2011), as the species is a highly competitive yeast able to inhibit a variety of other 

microorganisms, such as Penicillium and Aspergillus species (Passoth et al., 2011), 

This may explain why Penicillium and Aspergillus species were present at low 

abundance in both Daqu and fermented grains. If so, W. anomalus also contributes to 

the safety of the Daqu products, as Penicillium and Aspergillus is associated with 

mycotoxin production (Moss, 2002). 

Pichia kudriavzevii is another good ethanol producer (Yuangsaard et al., 2013), 

which is confirmed by our results (Figure 6.4L) that showing a higher ethanol 

concentration in fermentation M if compared to fermentation 4 (without P. 

kudriavzevii). 

       (4) Bacillus licheniformis 

Bacillus licheniformis was reported to be widely present in different types of 

Daqu, zaopei, and other fermented grains (Wang et al., 2011b). We observed that this 

species has a high starch degrading ability, particularly due to high α-amylase activities 

(i.e., greater than 0.5 U/g, Figure 6.1). Starch comprises 65-81% of the total weight of 

sorghum grains (Cao et al., 2010b). The amylases produced by B. licheniformis were 

reported to yield maltose, maltotriose, and maltodextrins(Coda et al., 2011) from 

starch. Although maltose is expected to be fermented by other microorganisms at the 

end of the fermentation, the addition of B. licheniformis to the fermentation starter 

caused maltose to accumulate as the main by-product of the initial phase of the 

fermentation process (see Table S1). During fermentation, B. licheniformis potentially 
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produces acetate and lactate (Shen, 2003; Yan et al., 2013a), which may explain why 

the lactate concentration increased in the fermentation trial with B. licheniformis (i.e. 

fermentation M). Lactate is an important substrate for esterification into the main 

aroma compound ethyl lactate found in light-flavour liquors such as Fen-liquor (Yan et 

al., 2013a). Ethyl lactate is mainly produced via esterifying enzymes secreted by other 

microorganisms, such as butyric acid bacteria, during the fermentation of Chinese 

liquor (Sun, 2014). Therefore, B. licheniformis most likely makes an important 

contribution to the formation of flavours and aromas of Chinese liquor and vinegar. 

Ethanol production increased when B. licheniformis was added, which could be the 

result of synergistic effects between S. cerevisiae and B. licheniformis (Ling, 2013). B. 

licheniformis could promote the production of ethanol and acids (acetic acid, caproic 

acid, octanoic acid and azelaic acid) by S. cerevisiae (Ling, 2013), which may explain 

the lowest ethanol concentration (0.7 mmol/g) found in fermentation 5 (the one without 

B. licheniformis). 

       (5) Lactobacillus plantarum and Pediococcus pentosaceus 

The two LAB species Lb. plantarum and Ped. pentosaceus are frequently 

encountered in Daqu and fermented grains (Li et al., 2013; Zheng et al., 2012; Zheng et 

al., 2014). Amylolytic activity of Lb. plantarum strains was reported (Li et al., 2014b) 

and this species can be regarded as a producer of amylolytic enzymes in the 

fermentation of sorghum, as was also demonstrated in our screening (see Figure 6.1). 

Our results also showed its proteolytic activity during fermentation, as amino acids, 

such as glycine and alanine, were produced (Figure 6.4N). Alanine is used as a 

sweetener in the food industry and was frequently found in Daqu and its derived 

products (Mukherjee et al., 2009); therefore, LAB might contribute little to the final 

flavour of Chinese liquor, especially light-flavour liquors, such as Fen-liquor, as this 

type of liquor has a pure and sweet taste (Xiong, 2005a). The PCA analysis of 

metabolite profiles of fermentations M and 6 revealed one unexpected result: the 

concentration of lactate was higher when Lb. plantarum was absent. One possible 
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reason for this is that Lb. plantarum could convert lactate to acetate under limited 

oxygen conditions (Goffin et al., 2004; Liu, 2003). 

Ped. pentosaceus is found in many cereal-based fermented foods, such as uji and 

ben-saalga (Nout, 2009), mainly contributing to the acidification of the raw materials. 

The pH of fermentation 7 reached approximately pH 6, whereas the pH of the other 

fermentation trials except fermentation 1 was approximately 4.3 (Figure 6.3). This 

indicates that Ped. pentosaceus can lead to a pH decrease during alcoholic 

fermentation, similar to that caused by S. cerevisiae, and this is mainly due to the 

production of lactic acid. In contrast to Lb. plantarum, Ped. pentosaceus seems 

incapable to convert lactate; instead, lactate accumulates as an end product. 

The metabolite profile of fermentation D (with Daqu) was also compared with 

that of fermentation M (Figure 6.4H). The results indicated a higher ability of Daqu to 

produce ethanol when compared to that formed by the blend of all seven species (S. 

cerevisiae, Sm. fibuligera, W. anomalus, P. kudriavzevii, B. licheniformis, Ped. 

pentosaceus, and Lb. plantarum) (Figure 6.4P). Daqu also contains moulds, that are 

associated with strong amylase activity, such as Lichtheimia corymbifera (Zheng et al., 

2012). As a result, more fermentable sugars may be generated for use in the alcoholic 

fermentation by S. cevervisiae resulting in higher ethanol yields. However, 

fermentation M tends to produce more acid, especially lactate and acetate, instead of 

ethanol (Figure 6.4P). The reason for this observation could be the high proportion of 

Lb. plantarum and Ped. pentosaceus added to the mixtures. As described previously, 

about 10
7 

CFU/g Lb. plantarum and Ped. pentosaceus were added, which is ten times 

higher than in Daqu (10
6 

CFU/g). LAB have a very strong ability to compete with S. 

cerevisiae to use glucose as a carbon source for their growth. As a consequence, more 

lactate and acetate could accumulate and less glucose could be used for the production 

of ethanol. 

The outcomes of fermentations 1-7 were significantly different from each other 

(Figure S1), indicating that each species plays a particular role during mixed 

fermentations. Based on the statistical analysis, adding or removing any of the species 
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resulted in significantly different metabolite profiles. The selected S. cerevisiae 1, Sm. 

fibuligera 4, W. anomalus 29, P. kudriavzevii 12, B. licheniformis 128, Ped. 

pentosaceus 6, and Lb. plantarum 1 strains may be regarded as important for Daqu. 

However, the behaviour of Daqu could not yet be simulated completely. Further study 

involving the additional effect of filamentous fungi will be required. 
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Table S1 Presumptive metabolites and their contents (micromoles per gram of fermented grain) in samples during the alcoholic 

fermentation M, and 1-7 and D  

 

Metabolites Start M F1 F2 F3 F4 F5 F6 F7    D  

 0d 14d 28d 14d 28d 14d 28d 14d 28d 14d 28d 14d 28d 14d 28d 14d 28d 14d 28d 

1,6-Anhydro-β-glucose 0.67 nd nd nd nd 0.42 0.36 0.56 0.65 0.34 0.88 0.44   nd nd  nd  nd nd  0.62 nd 

4-Aminobutyrate 0.98 1.57 0.35 1.49 1.86 0.57 0.72 1.71 0.91 1.34 0.98 0.44  0.18  0.43  0.48 1.45  1.73 1.74 1.78 

3-Hydroxyisovalerate 0.04 0.15 0.15 0.03 0.05 0.03 0.05 0.01 0.01 nd nd 0.02  0.04 0.04 0.02  0.01 0.00  0.16 0.81  

4-Hydroxybutyrate nd 0.21 0.24 nd nd nd nd nd nd nd nd nd nd nd nd nd nd 0.14  0.29 

2-Phosphoglycerate 0.24 0.21 0.27 0.68 0.95 0.23 0.84 0.08 nd 0.27 1.13 0.21 0.14 nd nd nd nd 0.58 2.00  

Acetate 8.87 14.61 16.79 14.06 25.00 0.57 12.82 15.64 25.36 15.61 11.28 14.86  26.84  15.76  30.81  15.83  20.15 6.94  7.94 

Acetoacetate 0.27 0.31 0.35 0.14 0.39 0.11 0.07 0.01 0.01 0.06 0.06 0.01  0.09 0.02 nd 0.03 0.12 0.01 0.15  

Acetone 0.41 2.95 0.05 2.17 1.24 1.84 0.12 1.87 0.08 2.13 0.07 1.46  0.19 1.14  0.32 2.32  1.58 0.65  1.76 

Adenine 0.28 0.27 0.28 nd nd 0.23 0.31 0.04 0.01 0.06 0.16 nd nd 0.07 0.01 0.04  0.07 0.03 nd 

Adipate nd nd nd nd nd 0.14 0.22 nd nd 0.03 1.26 nd nd nd nd nd nd nd nd 

Alanine 0.42 0.71 1.30 0.61 1.25 0.23 0.27 0.73 0.99 0.45 0.93 0.14 1.10  0.18  0.38 0.41 1.10 2.38 3.33  

Arabinitol 0.42 0.56 0.44 0.23 0.22 0.32 nd nd nd nd nd 0.10  0.21 nd nd nd nd 4.29 0.10  

Arginine nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd 2.58  nd 

Ascorbate nd 0.50 0.12 0.13 0.13 nd nd 0.10 nd nd nd nd nd nd nd nd nd 0.02  0.64  

Aspartate nd nd nd nd nd nd nd 0.05 nd nd nd nd nd nd nd 0.08  nd nd nd 

Betaine 1.43 0.85 0.29 0.68 0.56 0.73 0.69 0.82 0.59 0.63 0.53 0.64  1.25 0.79  0.91 0.73  0.77  1.83  1.19  

Butyrate 0.06 0.66 27.72 1.11 2.14 0.24 14.15 0.68 31.57 0.57 15.42 0.07  32.47  0.73  15.42  0.60  1.91  0.88  0.82  

Carnitine 0.34 0.20 0.13 0.16 0.12 0.09 0.21 0.19 0.06 0.15 0.17 0.10  0.07 0.11  0.11  0.16  0.11  2.17  1.94  

Choline 0.40 nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd 0.02  0.06  

Creatine 0.28 0.01 nd nd nd nd nd nd 0.22 nd nd nd nd nd nd nd nd 0.15  0.25  

Creatinine 0.32 nd nd nd nd nd nd nd 0.11 nd nd nd nd nd nd nd nd 0.18  0.06  

Cysteine nd nd nd nd nd nd nd nd nd 0.03 0.14 0.03 0.05  nd nd nd nd 0.05  0.22  

Ethanol 13.32 41.05 36.40 34.97 12.45 5.07 19.58 43.17 21.58 23.29 26.51 4.51  7.11  5.85  44.62  32.63  43.24  98.31  153.80  



 

 

Table S1 Presumptive metabolites and their contents (micromoles per gram of fermented grain) in samples during the alcoholic 

fermentation M, and 1-7 and D (continued) 

Metabolites Start M F1 F2 F3 F4 F5 F6 F7    D  

 0d 14d 28d 14d 28d 14d 28d 14d 28d 14d 28d 14d 28d 14d 28d 14d 28d 14d 28d 

Ethylene glycol 0.36 0.12 1.45 0.29 0.25 0.09 0.05 0.19 0.03 0.24 0.03 0.24 0.29  1.23  1.33 1.28  1.47  1.29  1.28  

Fructose 1.58 0.11 nd nd nd nd nd nd nd 0.40 nd nd 0.18 nd nd nd nd 1.66  1.44  

Galactose 0.63 0.26 nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd 0.13  0.69  

Galactonate 0.34 0.14 0.04 0.05 0.02 nd nd nd nd nd nd nd nd nd nd nd nd 0.74  0.04  

Glucose 2.23 nd nd 0.14 0.24 nd nd nd nd nd nd nd nd nd nd nd nd 9.28  16.56 

Glucitol 0.87 nd nd nd nd nd nd nd nd nd nd 0.12  0.19  nd nd nd nd 2.62  3.32  

Glutamate nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd 1.48  1.97  

Glycerol 5.38 1.50 2.23 1.40 0.76 1.46 1.98 1.52 1.90 1.50 1.75 1.47  0.70  1.55  3.83  1.55  3.03  18.36  31.10  

Glycine 0.54 0.61 1.58 0.90 0.82 0.21 0.35 0.27 0.31 0.15 0.45 0.34 0.27  0.08  0.31  0.43  0.99  1.18  1.68  

Histamine 0.28 0.22 0.22 0.07 0.06 nd nd 0.10 0.05 nd 0.01 0.34  0.11  0.04  0.03  0.22  0.31  0.62  0.61  

Imidazole 4.25 4.20 3.87 4.21 4.23 4.23 4.32 4.06 7.95 4.40 4.16 4.27  4.18  4.19  4.07  4.31  4.15  3.42  2.54  

Isoleucine nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd 0.61  0.68  

Isopropanol 0.29 0.30 0.17 0.26 1.96 nd nd nd nd 0.23 1.22 0.04 0.88  0.15  0.72  0.13  0.92  0.99  1.28  

Lactate 0.32 0.44 17.25 0.38 0.30 0.77 28.54 0.48 7.32 0.23 23.31 0.13 5.64  0.26  33.70  0.26  0.12  9.84  6.09  

Leucine nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd 0.90  1.46  

Malate 0.18 nd nd nd nd 0.12 nd 0.03 0.07 0.04 nd nd nd nd nd nd nd 0.09  0.10  

Maltose 0.33 1.21 nd 1.19 nd 1.02 0.03 1.04 nd 1.08 nd 0.03 nd 1.32  nd 1.09  nd 0.72  0.06  

Methanol 0.12 0.28 0.41 0.30 0.56 0.29 0.78 0.33 0.33 0.23 0.23 0.25  0.32  0.62  0.43  0.26  0.34  0.09  0.84  

Oxypurinol 0.29 0.65 1.72 0.49 0.44 0.31 0.79 0.31 0.25 0.82 0.99 0.86  0.81  0.79  0.99  0.22  0.21  0.23  0.19  

Proline 0.65 1.24 0.97 0.92 0.97 nd 1.23 nd nd nd nd nd nd nd nd 1.24  1.28  4.51  6.09  

Propionate 1.05 1.06 9.11 1.17 19.20 1.10 1.21 1.18 13.81 3.70 1.19 1.13  6.34  0.03  0.03  1.31 19.80  0.21  0.43  



 

 

 

Table S1 Presumptive metabolites and their contents (micromoles per gram of fermented grain) in samples during the alcoholic 

fermentation M, and 1-7 and D (continued) 

Metabolites Start M F1 F2 F3 F4 F5 F6 F7    D  

 0d 14d 28d 14d 28d 14d 28d 14d 28d 14d 28d 14d 28d 14d 28d 14d 28d 14d 28d 

Propylene glycol 0.60 0.50 0.68 0.24 0.26 nd 0.04 nd 1.17 nd 0.06 nd nd nd nd 0.46  1.32  0.66  1.13  

Pyruvate 0.10 0.04 0.12 0.17 0.17 0.10 0.03 0.01 0.03 0.02 0.03 0.02  0.03  0.03  nd nd nd 0.34  0.43  

Ribose 1.61 nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd 2.56  5.62  

Serine 0.01 nd 0.01 0.08 0.09 nd nd nd nd 0.10 0.06 0.03  0.10  nd nd nd nd 0.18  1.71 

Succinate 2.12 8.22 1.23 6.64 0.24 4.81 5.88 9.00 0.34 5.22 6.07 3.45  3.04  4.92  1.59  7.48  0.050  4.80  4.38 

Sucrose 0.60 0.29 0.19 0.17 0.16 0.01 0.01 nd nd nd 0.02 nd nd nd nd 0.01  0.03 0.07  0.50  

Threonine 0.14 0.76 1.10 1.00 1.23 0.23 0.61 0.82 1.24 0.92 0.99 0.92  0.99  0.87  1.34  0.97  1.25  0.98  1.35  

Trimethylamine 0.02 0.78 0.35 0.78 1.46 0.93 0.85 0.95 1.15 0.76 0.67 0.72  0.95  0.88  1.53  0.82  1.09  0.11  0.11 

Urea 1.21 2.32 3.83 0.98 0.04 1.40 1.52 0.97 0.91 1.37 0.94 1.24 1.15  2.09  1.10  1.32 2.14  0.23  nd 

Valine nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd 0.52  0.84  

 

 

  



 

 

 

Figure S1 PCA score plot of triplicate samplings of different fermentation trails. 
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PC1 51.59% 
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Chinese liquor is one of the best-known Chinese traditional fermented products. It is 

manufactured through a three-step process of which the first step is a solid-state 

fermentation of cereals initiated by the addition of a starter culture. The second step is the 

distillation of the fermented cereals followed by the third and final step: long term ripening 

of the distilled product (Tsao et al., 2010). The starter culture for this process (called Daqu) 

is also produced by a solid-state fermentation process. The temperature during the 

production process of the starter (Daqu) is variable and ranges from 25°C up to 65°C. The 

process is generally divided into three phases: a low-temperature incubation phase, a high-

temperature phase, and a final aroma-generating phase (Chapter 2). The duration of each 

phase depends on the type of Daqu that is produced (Shen, 2001a). 

Alcoholic fermentation starts with the mixing of milled and cooked grains (mainly 

sorghum) with hot water, and subsequently the addition of powdered Daqu. The mixture is 

then loaded into cellars fermenters (length ×width × height, 3.4 × 1.8 × 2.0 m) and solid-

state fermentation is carried out at 28°C-32°C for 28-60 days under anaerobic conditions 

(Li et al., 2013). 

The microbial composition of the Daqu directly impacts the flavour and microbial 

safety of the Daqu-fermented products (Huang et al., 2013). Although the microbial 

composition of Daqu depends on a combination of factors, including the choice of raw 

materials, climate, and production techniques, fermentation conditions such as temperature, 

moisture content, and oxygen availability are the most critical factors. 

The studies described in this thesis focus on one of the most widely used Daqu types 

in Chinese liquor production. Daqu classification (sauce-flavour Daqu, strong-flavour 

Daqu, and light-flavour Daqu) and traditional production processes, as well as the influence 

of fermentation conditions on the quality of Daqu starters has been reviewed. The results 

presented in Chapter 3 demonstrate that geographic location and fermentation temperature 

are the most important factors determining the microbial community structure of Daqu. 

Chapters 4 and 5 deal with the microbial diversity at the surface and in core fractions of 

Daqu as well as microbial succession during the fermentation process. The relationship 

between environmental factors including acidity, moisture content, and temperature and the 

microbial composition at different fermentation stages was described in detail. Finally, the 
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most common groups of microorganisms in an representative low-temperature Daqu (Fen-

Daqu) [Saccharomyces cerevisiae, Saccharomycopsis fibuligera, Bacillus licheniformis, 

Wickerhamomyces anomalus, and lactic acid bacteria (LAB)] were identified as being 

involved in the main processes such as saccharification, protein degradation, alcohol 

production, and flavour generation during alcoholic fermentation, thus highlighting the 

importance of Daqu as a starter culture. 

In the following sections, the most important results are discussed from an integrative 

perspective, and the advantages and disadvantages of different techniques for studying 

microbial diversity in food products are summarized and discussed. Future perspectives for 

research on Daqu production and Daqu driven alcoholic fermentations are outlined with 

focus on traditional fermented foods. 

7.1 Characterization of Daqu fermentation activity 

General information on the composition and processing of Daqu and its application in 

alcoholic fermentation processes were presented in Chapter 2. Daqu is a complex mixture 

of chemical compounds, microbes, and enzymes (Zheng et al., 2011). The composition of 

microbial communities in Daqu used by different liquor factories has traditionally been 

characterized based on culture-dependent or -independent approaches such as DGGE, 

PLFA, and cloning (Liu et al., 2012a; Zhang et al., 2014; Zheng et al., 2015). Although 

various Daqu types contain different microbial profiles, four major groups of 

microorganisms - Bacillus spp., LAB, non-Saccharomyces yeasts, and moulds - are present 

in all Daqu types. Among these organisms, B. licheniformis and Sm. fibuligera are most 

frequently isolated from Daqu and are present at all stages of fermentation (Liu et al., 

2012a; Zhang et al., 2014; Zheng et al., 2015), consistent with the results of our study 

(Chapter 2, 3, and 5). These species produce amylases that facilitate the conversion of 

starch into monomeric sugars and proteases that liberate peptides and amino acids 

(Chapter 6). In addition, B. subtilis and acetic acid bacteria are the predominant species in 

source-flavour Daqu (Wang et al., 2011b), in which the amino acids isoleucine, leucine, 

isovalerate and valine are the most important components; this may associated with the 

high protease activity of Bacillus spp. (Wu et al., 2009a). 
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LAB (primarily lactobacilli), which confer organoleptic properties to various 

fermented foods (Leroy et al., 2004; Sumby et al., 2014), have been detected in Daqu at 

concentrations of 4-6 log CFU/g and are associated with the rapid acidification of raw 

materials (sorghum) and the formation of specific aroma compounds found in Chinese 

liquor (Baijiu) and vinegar (Chapter 6). In addition, LAB in Daqu produces metabolites 

such as ethyl lactate, which is one of the main aromatic compounds in light-flavour Chinese 

liquor. 

Non-Saccharomyces yeasts contribute significantly to the overall character of wine 

(Ciani et al., 2010; Fleet, 2008). The present study confirmed that some non-

Saccharomyces species in Daqu such as Sm. fibuligera and Pichia kudriavzevii could 

enhance the ethanol production of S. cerevisiae, and species such as W. anomalus could 

increase the ester composition of the liquor, thereby conferring a more complex flavour. 

The moulds found in Daqu are thought to play a role in starch degradation as well as 

flavour generation during alcoholic fermentation of cereals. Mould growth is highly 

dependent on environmental conditions such as humidity, and ambient temperature (Brown 

et al., 2001). No moulds were present in all Daqu types, and moulds were therefore not 

characterised in our study. However, previous findings have indicated that moulds in Daqu 

are associated with starch degradation and the formation of esters and other volatile 

compounds (Ma et al., 2011; Zheng et al., 2011). Our current understanding of the role of 

moulds present in Daqu is fragmentary, and detailed studies are required to fill in the gaps 

and to obtain more insight into their role in the fermentation process. 

Daqu is not only a source of fermenting microorganisms but also of hydrolytic 

microbial enzymes such as α-amylase and amyloglucosidase (Chapter 6). The majority of 

Daqu-isolated B. licheniformis and Sm. fibuligera strains exhibit these activities, which are 

essential for starch degradation. Therefore, microbial species in Daqu are involved in the 

saccharification of raw substrates such as barley and pea during Daqu processing and 

sorghum during alcoholic fermentation. Other enzyme activities, including those of 

proteinases, esterases, lipases, cellulases, hemicellulases, tannase, and pectinases were 

reported to be present in Daqu (Zhang et al., 2011d); however, their origin and functional 

significance need to be determined. 
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A mould strain (TR12) with high starch utilization under acidic conditions was 

isolated from Luzhou Daqu (Fang et al., 2007); using it as a starter culture for alcoholic 

fermentation improved liquor production and aroma (Zhang et al., 2009). A systematic 

investigation of Daqu composition including microbial community structure and activity, 

enzymatic profile, and chemical components, is a prerequisite for understanding traditional 

liquor production techniques and for selecting starter cultures that produce the beverages 

with specific flavour. 

7.2 Safety evaluation of Daqu 

Daqu contains a complex mixture of different live microorganisms. During its 

production, an environment that supports the required microbiota while suppressing 

undesirable growth must be created to ensure the quality and safety of Daqu and its 

products (Hai et al., 2014). Although pathogenic microorganisms can be introduced by 

workers, production tools, and livestock feed during Daqu production (Shu et al., 2010), 

these microorganisms can not lead to infections in consumers since they will be pasteurized 

under distillation. However, metabolites of contaminating microorganisms can influence 

the growth of functional microbiota, and therefore, such contaminated products may pose a 

safety risk, therefore the toxicological safety of Daqu must be monitored and controlled. To 

identify contaminating and potentially harmful microorganisms this study addressed the 

microbial diversity in different types of Daqu (Chapter 2) and its influence on the Daqu 

production process (Chapters 3, 4, and 5).  

The presence of mycotoxin-producing fungi in Daqu is a potential risk factor for 

consumers of Chinese liquor and vinegar; several studies have identified mycotoxins and 

ethyl carbamate (EC) as potentially toxic factors (Fan et al., 2012a). Fungi such as 

Aspergillus flavus and Penicillium nordicum produce aflatoxin B1 and ochratoxin 

respectively (Moss, 2002), which are two mycotoxins frequently found in beer, wine, and 

condiments such as soy sauce and vinegar (Cao et al., 2010c; Sun, 2009; Yang et al., 2013). 

Of the 59 samples that included beer, soy sauce, and vinegar, 58 contained ≤ 5 μg/kg 

aflatoxin B1 and the remaining sample contained 8 μg/kg (Cao et al., 2010). In other studies, 

all of the tested sample contained ochratoxin at levels ranging from 0.14 to 1.10 μg/kg 
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(Chen et al., 2012; Sun, 2009). The National Standards of the People’s Republic of China 

(GB2761-2011) has set the maximum level in grain-based food products at 3μg/kg for 

ochratoxin and 5 μg/kg for aflatoxin B1, respectively (China State Bureau of Standards, 

2011), while the European Parliament has set the maximum level in grain-derived foodstuff 

or wine at 2 μg/kg for both toxins (European Parliament, 2006). The concentrations of these 

two mycotoxins in various Chinese liquors and starter Daqu range from 0.1 to 4 μg/kg 

(Sun, 2009; Yang et al., 2013; Ye et al., 2013); higher mycotoxin content can pose a risk for 

consumers. It is therefore necessary to control their levels by minimizing contamination by 

mycotoxin-producing fungi. The present study found that four Daqu producers (9-H-S, 1-

H-S, 7-L-N, and 2-H-S) may have issues related to mycotoxin contamination (Chapters 1 

and 2); however, in each case, the actual presence of mycotoxins has not been confirmed 

and contamination levels need to be analysed before further action is taken. 

Ethyl carbamate (EC) is a potentially carcinogenic compound frequently present in 

fermented foods, baked foods and alcoholic beverages (Zhao et al., 2013). EC is formed 

from various precursors such as hydrocyanic acid, urea, citrulline and N-carbamyl 

compounds (including carbamyl phosphate) by reacting with ethanol (Weber et al., 2009) 

under acidic conditions; the reaction is favoured by increasing temperature and acidic pH 

(Araque et al., 2009). Several lactic acid bacteria (LAB) including Lactobacillus plantarum, 

Pediococcus pentosaceus, Leuconostoc citreum, and Lactobacillus pseudomesenteroides, 

are involved in the production of these precursors (Patrignani et al., 2012; Qian, 2012; Zhao 

et al., 2013). Our analysis showed that three commercial Daqu samples (4-M-S-W, 7-L-N-

BP, and 7-L-N-BP’) contained one or two of these species. EC content was generally 

higher in high- than in low-temperature or medium temperature Daqu (2012b). In various 

local Chinese alcoholic beverages, EC levels were in the range of 88-241 μg/l (Wu et al., 

2012a). Given that alcoholic beverages represent the most likely source of EC intake, 

several countries have set limits on acceptable levels of consumption: in the United States, 

the maximum level is 15 μg/l for table wines and 100 μg/l for fortified wines (Zhao et al., 

2013), and in Canada, the limits are 30 μg/l for table wines, 100 μg/l for fortified wines, and 

150 μg/l for distilled spirits (Battaglia et al., 1990). The EC content in Chinese liquor are 

high relative to these standards; as such, EC has recently received considerable attention 
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due to the challenges faced by the liquor industry (Fan et al., 2012b; Zhao et al., 2013). 

Reducing EC content in Daqu is the most important measure for controlling EC level in the 

final liquor. EC content was lower in High temperature Daqu than in Medium or low 

temperature Daqu (Fan et al., 2012b), which may be explained by the high levels of LAB 

present under the latter conditions. The findings of this study can help liquor factories track 

potentially harmful metabolites and microorganisms in their products that pose the risk of 

mycotoxin and toxin contamination. 

7.3 Contribution of bacteria and yeasts isolated from Fen-Daqu to 

alcoholic fermentation 

The production of Fen-Daqu follows a strict temperature regimen (Chapters 2 and 5). 

B. licheniformis, Sm. fibuligera, W. anomalus, P. kudriavzevii, Lichtheimia corymbifera, 

and LAB are the predominant microbial species found in Fen-Daqu and are active at 

different stages of alcoholic fermentation (Chapter 6). 

S. cerevisiae is the most important species in the fermentation process owing to its 

ability to convert glucose, sucrose, maltose, and galactose into ethanol. Although S. 

cerevisiae was not predominant in the starter (Daqu), it grew rapidly and became 

predominant during alcoholic fermentation owing to its competitive growth in the presence 

of fermentable sugars and high ethanol tolerance. Similar results were obtained in a 

previous study (2012). In this study, the S. cerevisiae strain produced the highest 

concentration of ethanol than other yeast species (Chapter 6). 

B. licheniformis and Sm. fibuligera are predicted to perform saccharification of 

sorghum starch to release soluble sugar monomers, which can be converted to alcohol by 

yeast fermentation. High levels of amyloglucosidase and α-amylase production by B. 

licheniformis and Sm. fibuligera (Chapter 6) confirmed the saccharification activity of 

these two species. While important for providing fermentable sugars, these also affect the 

flavour of the products since Sm. fibuligera secretes an acidic proteinase (Chi et al., 2009) 

that stimulates the release of amino acids such as alanine and threonine (Chapter 6), which 

react with glucose to generate volatile compounds under acidic conditions during 

distillation by the Maillard reaction and confers a sweet and fruity odour to Chinese liquor. 
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Additionally, metabolites from microorganisms contribute to the main flavour of Daqu-

derived products (Zhang et al., 2011b). The major aroma-forming compounds in Fen-liquor 

are ethyl acetate and ethyl lactate (Yan et al., 2013a); the former is generated by B. 

licheniformis, indicating that this species may contribute to the palatability of the final 

product. 

Two other non-Saccharomyces yeast species that were examined, W. anomalus and P. 

kudriavzevii, had different effects on ethanol production and flavour development. P. 

kudriavzevii produced ethyl acetate in Fen-Daqu-derived products such as Fen-liquor 

(Chapter 6), which is also produced from acetate by W. anomalus via esterase activity. 

Ethyl acetate has a distinctly sweet and fruity aroma that significantly improves the final 

taste of Fen-liquor; however, it can also have a disagreeable flavour at concentrations 

above the threshold level of 0.02 g/l. Therefore, the esterase activity of W. anomalus must 

be carefully regulated in order to avoid leaving traces of this flavour in the products. 

LAB are the second largest group of bacteria in Fen-Daqu at around 5-6 log CFU/g 

(Chapter 5). Lb. plantarum and Ped. pentosaceus were the most abundant LAB in Fen-

Daqu, and were present throughout the entire Daqu production process (Chapter 5) and 

during alcoholic fermentation of Fen-liquor (Li et al., 2013). Both species are predicted to 

produce flavour precursors (mainly lactic acid), while only Lb. plantarum converts lactic 

acid to ethyl lactate (Chapter 6). Some strains of Lb. plantarum have proteolytic activity 

and release amino acids such as arginine, cysteine, glutamate, and isoleucine (Pastink et al., 

2009), which may also contribute to the complex aroma of liquor or vinegar. 

7.4 Effect of environmental factors on microbial diversity 

Biomarkers have been applied to food, clinical, and environmental sciences with the 

aim of fast identification of food safety, disease manifestation and environmental pollution 

(Fadda et al., 2010; Ptolemy et al., 2010; Wagner et al., 2007). The ideal biomarker 

provides a rapid and specific readout of environmental conditions or product characteristics. 

The identification and characterization of biomarkers that distinguish Daqu from different 

locations, factories, or products produced at different fermentation temperatures (i.e., 

attribute-specific biomarkers) is essential not only for verifying the authenticity of Daqu 
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but can also provide criteria for evaluating new processing methods or Daqu types. The 

present microbiological analyses demonstrated a higher degree of heat sensitivity of fungal 

communities as compared to bacterial communities present in Daqu (Chapter 2). 

Incubation temperatures ranging from 60°C to 70°C distinguished high-temperature Daqu 

from the other types. The high incubation temperature correlated with the abundance of 

thermophilic fungi, especially Thermomyces lanuginosus; thus, T. lanuginosus can be 

considered as a biomarker that can be used to screen for high-temperature Daqu samples. 

Medium and low-temperature Daqu types were difficult to distinguish because Bacillus 

spp., the predominant bacteria in Daqu, can grow in a wide range of temperatures (between 

30°C and 55°C). Therefore, maximum fermentation temperatures of 40-60°C are suitable 

for microbial growth in medium- and low-temperature Daqu but cannot be used to 

distinguish between these types. This can also explain the similarity between microbial 

community structures in the core and surface fractions of Daqu (Chapter 3), which have 

similar temperatures; this more than any other parameter including oxygen level determines 

microbial community structure. 

Bacterial communities in Daqu samples are more complex than those of fungi since 

the former are more tolerant to high temperatures and respond to different thermal regimes 

by altering community structure. However, this is also affected by other parameters such as 

pH, moisture, relative humidity, and acidity (Chapter 4). Analysis of the relative microbial 

abundance revealed that the representation of fungi and LAB during the initial stages of 

Fen-Daqu fermentation (stages 1, 2, and 3) was better correlated with pH, acidity, and 

moisture content than with incubation temperature. In addition, factors such as the choice of 

raw materials and geographical location also played an important role, suggesting that 

Daqu samples containing the same substrates and originating from similar climate zones 

have comparable microbial profiles. Staphylococcus gallinarum and Staphylococcus 

saprophyticus were present in Daqu samples from southern China but were absent in 

northern samples (Chapter 2); these species can therefore be considered as biomarkers of 

southern Daqu. The presence of certain microbial species can also be used along with 

attribute-specific biomarkers to distinguish between Daqu samples from the same liquor 

factory (i.e., sample-specific biomarkers). For example, Weissella confusa constitutes over 
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half of the bacterial population in Fen-Daqu, while present in low abundance in other Daqu 

types. Table 7.1 lists biomarkers that can be used to distinguish between Daqu types based 

on 16S and 26S rRNA gene libraries. The diversity of the biomarkers underscores the 

differences in microbial profiles among Daqu types depending on temperature, moisture 

content, pH, and acidity, and may facilitate the selection of Daqu samples that have the 

specific properties desired by liquor producers. Although these biomarkers have been 

selected based on statistical analyses, they should be regarded with caution due to the 

limited sample sizes and should be validated in future studies with a larger sample set and 

by using alternative approaches such as DGGE. It is also worth noting that different 

approaches (sampling methods and/or PCR amplicon choice) can produce variations in the 

microbial composition measured in the same sample (Chapters 2 and 3). 

Table 7.1 Potential biomarkers for various types of Daqu 

*Daqu sample codes indicating liquor factory 

Biomarkers Type Differentiation Justification 

Weissella confusa Sample- 

specific 

Daqu produced in 

Factory 5* vs. in other 

factories 

More than half of 

bacterial communities in 

Daqu from Factory 5 

consist of Weissella 

confusa 

Staphylococcus 

gallinarum  

and Stapylococcus 

saprophyticus 

Attribute-

specific 

Northern vs. southern 

Daqu 

 

Staphylococcus 

gallinarum and 

Staphylococcus 

saprophyticus were 

present in all Daqu 

samples from southern 

China but were absent in 

northern samples 

Thermomyces 

lanuginosus 

Attribute-

specific 

High-vs. medium/low- 

temperature Daqu 

Thermomyces 

lanuginosus was 

abundant in high-

temperature Daqu, but 

was absent in 

medium/low temperature 

Daqu 

Absidia idahoensis 

and Rhizomucor 

pusillus 

Sample- 

specific 

Daqu produced in 

Factory 4 vs. in other 

factories 

Absidia idahoensis and 

Rhizomucor pusillus 

were detected only in 

Daqu from Factory 4 
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7.5 Comparison of methods used to analyse microbial diversity 

Culture-dependent methods used to detect microorganisms in food are time-consuming, 

costly, and can yield ambiguous results (Riesenfeld et al., 2004; Xu, 2006); however, they 

can provide important information about microbial communities that can be confirmed by 

culture-independent methods such as DGGE (Chapters 3 and 4). Moreover, the culture-

dependent approach is essential for carrying out investigations on the growth, 

morphological characteristics, functionality, and activity of microbial species. In this study, 

three different methods, including an rRNA amplicon sequencing-based culture-dependent 

approach and two culture-independent approaches, DGGE and cloning, were used to 

analyse microbial diversity in Fen-Daqu (Chapters 2-4). Thirty-nine bacterial species 

(including one that was uncultured) and 15 fungal species were thus identified. Only B. 

licheniformis, Bacillus pumilus, and P. kudriavzevii were detected by all three approaches, 

indicating that although the culture-independent analyses provide comprehensive profiles of 

microbial communities present in Daqu including uncultivable organisms, a combined 

methodology is required to identify the dominant species and understand the complexity of 

microbial ecosystems in natural fermentation products. It should be noted that the choice of 

the methods could influence the accuracy of the results. 

The advantages and disadvantages of the various methods are listed in Table 7.2. 

Culture-dependent methods not only provide quantitative information about the major 

microorganisms present in food products and ingredients but also allow the establishment 

of microbial cultures that can be used for further experiments. Although standard culture-

dependent analyses can detect only between 1-10% of all environmental microbiota 

(Muyzer et al., 1998), our study showed that about 50% of microorganisms in Daqu can be 

detected. This indicates that the detection limit of the culture-dependent approach is highly 

dependent on the niche that is investigated. Faeces and soil are difficult niches since culture 

methods require other conditions, whereas culture conditions for foods are more similar to 

those used in this work, and therefore a higher proportion of microorganisms are expected 

to be cultivable. Generating clone libraries (a culture-independent approach), can provide 

additional options for detecting microbial species, although the results depend on the 

number of clones that are selected; typically, around 90 clones are recommended (Green et 
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al., 2012) but for fungi, the number of clones must exceed 90 in order to obtain accurate 

results due to the low cloning efficiency of fungal genes. PCR-DGGE analysis is a rapid 

method for monitoring microbial succession during food production and assessing 

fermentation quality; it can also help to identify the predominant microorganism 

populations and their dynamics in response to environmental changes. In addition, gene 

fragments can be isolated from a gel, and it is simple to implement and has high reliability. 

DGGE overcomes the challenge of detecting microorganisms that are present in low 

numbers (10
3
 CFU/ml or g) in a complex ecosystem (Cocolin et al., 2013). The present 

work confirmed the effectiveness of combining culture-dependent and -independent 

analytical approaches for the characterization of microbial communities in Daqu. Six 

bacterial species (Bacillus cereus, B. licheniformis, Bacillus megaterium, Bacillus pumilus, 

B. subtilis, and Lb. plantarum) and two fungal species (P. kudriavzevii and W. anomalus) 

were detected by the culture-dependent approach and DGGE; of these, B. licheniformis, Lb. 

plantarum, P. kudriavzevii, and W. anomalus were the predominant species in Fen-Daqu. 

Thus, culture-dependent analyses combined with DGGE are the best choice for 

investigating microbial diversity and dynamics in complex fermentation systems. 

Table 7.2 Characteristics of methods used to analyse microbial diversity 

Method Advantages Disadvantages 

Culture-dependent 

combined with rRNA 

amplicon sequencing  

• Relatively inexpensive 

• Quantitative 

• Living isolates can be obtained 

• Labour-intensive 

• Detects only cultivable 

microorganisms 

Culture-independent 

clone library 

• Semi-quantitative 

• High sensitivity of detection 

• Includes uncultivable 

microorganisms 

• Costly and complex 

• Labour-intensive 

• Requires a high number of 

clones for reliability 

• Low detection level of 

fungal species 

Culture-independent 

DGGE 

• Semi-quantitative 

• Can reveal populations that are 

masked due to low abundance (> 

103 cfu/ml or g) 

• Highly sensitive 

• Enables isolation of gene fragments 

from the gel 

• Microbial dynamics during the 

production process can be 

visualized and dominant 

populations can be identified 

• Costly 

• Different organisms can 

appear as a single band 

• A single microbial strain 

can produce more than 

one band due to multiple 

rRNA genes 
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7.6 Recommendations and future directions 

A comprehensive analysis of microbial community structure in Daqu can modernize 

traditional technologies and help liquor and vinegar factories improve production efficiency 

and the quality and safety of their products. The following recommendations are made 

based on the results of this study. 

Development of a Fen-Daqu production process with a reduced time 

(1) Fen-Daqu is produced by a complex, traditional fermentation process consisting of 

seven steps: woqu, shangmei, liangmei, chaohuo, houhuo, dahuo, and yangqu. There were 

no significant differences in microbial diversity between stages 4 (chaohuo) and 7 (yangqu) 

(total duration, 21 days). B. licheniformis comprised > 80% of the bacterial population 

during stages chaohuo and houhuo, and fungal diversity was unaltered except for the 

appearance of L. corymbifera after stage 4 (houhuo); therefore, the fermentation process 

can be halted after stage 3 (liangmei) to investigate the quality of Daqu that can be obtained. 

In the meantime, another Daqu (termed Fuqu) can be formulated by adding B. licheniformis 

(6 log CFU/g) and L. corymbifera (5 log CFU/g) to the substrates (barley and pea) and 

incubating at 55°C for 3 days; Daqu produced only towards stage 3 and can be combined 

with Fuqu for subsequent alcoholic fermentation. B. licheniformis strain 128 has relatively 

high starch-degrading activity and ethanol tolerance, and can therefore be used directly for 

this purpose, whereas L. corymbifera strains must be subjected to further selection based on 

enzymatic activity and production of aromatic compounds. However, an excess load of 

these species can suppress the growth of other functional microorganisms. The present 

analysis found that the total number of microorganisms in Daqu, including bacteria and 

fungi, was in the range of 7-8 log CFU/g. The correct ratio of microorganisms in the 

inoculum must be determined before applying this method, which can significantly reduce 

labour and improve production efficiency. 

(2) Fresh Daqu is traditionally matured for at least 3 months in order to improve the 

fermentation ability of Daqu. However, maturation time is highly dependent on the type of 

Daqu produced and skills of process operators. A maturation time of ≥ 6 months is needed 

for some types of Daqu, which increases cost and labour. Maturation time can be reduced 
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by increasing inoculum size. Typically, 10-20% Daqu was added to alcoholic fermentation 

processes; 30% or 50% Daqu can be tested along with a shorter maturation time such as 2 

or  1 month, so as to reduce production time and cost. However, how this would affect the 

safety and flavour and overall quality of Chinese liquor should be further investigated. 

Development of the Daqu production process by introduction of the 

“back-slopping” technique 

Daqu is normally generated by natural solid-state fermentation, and the products 

normally are unstable and inconsistent. The quality of Daqu-derived products therefore 

differs significantly and flavours are variable. Therefore, a better regulation of the 

fermentation process is required to improve the technology of liquor and vinegar 

production. The “so called back-slopping” technique has been applied to the production of 

a variety of products such as cheese, beverages, and bread (Holzapfel, 2002; Smid et al., 

2014a; Viiard et al., 2013). This practice increases the success rate of natural fermentation 

and simultaneously allows microbial communities to develop an optimal composition 

(Smid et al., 2014a). Therefore, there is great opportunity for liquor and vinegar factories to 

apply back slopping technique to fermentation processes. The effects of back slopping on 

the stability of microbial composition in Daqu and quality of Daqu-derived products and 

the relationship between the number of propagation cycles and the stability of microbial 

composition in Daqu can be investigated with the aim of determining the probability of 

success when applying the back slopping technique to the production of Daqu-derived 

products. 

Fortified fermentation using different functional microorganisms 

Adding microorganisms as adjunct cultures at different stages of production is an 

option for improving alcoholic fermentation. For example, B. licheniformis and Sm. 

fibuligera are good starch and protein degraders, and can therefore be added at the start of 

the production process to ensure efficient degradation of starch and proteins in the raw 

material and their conversion into soluble compounds that can be used by other 

microorganisms. W. anomalus is a good aroma producer in light-flavour Daqu owing to its 
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active ethyl acetate synthesis; thus, adding W. anomalus during the alcoholic fermentation 

stage can potentially enhance the flavour of the end-product. The addition of specific 

microorganisms as adjuncts is an attractive approach for both industry and consumers since 

it would not only upgrade the existing technology but also provide a broader product 

selection. 

Oligonucleotide probes for the detection of dominant species during 

Daqu production and alcoholic fermentation 

Whole-cell fluorescence in situ hybridisation using 16S rRNA-targeted 

oligonucleotide probes is a powerful technique for evaluating phylogenetic identity, 

morphology, population size, and spatial arrangement of microorganisms in environmental 

samples (Hugenholtz et al., 2002). The present study identified the predominant 

microorganisms in Daqu, which can be used to design probes for target sequences. The 

quality of Daqu and Chinese liquor varies from one batch to the next; monitoring the 

growth of dominant species should help improve product consistency. A probe containing 

the sequences of each identified species can be used to detect growth at any stage of 

fermentation and can thereby optimize Daqu production and improve the quality of Daqu-

derived products. 

Next generation sequencing for the detection of microbial diversity 

and analysis of gene function 

Although three different approaches were employed in the present study to analyse 

microbial diversity in Daqu, the results were consistent only for dominant species and 

therefore the complete microbial community structure was not determined. The culture-

independent approaches had limited sensitivity due to incomplete DNA extraction. Next 

generation sequencing methods have considerable potential for investigating microbial 

communities (Davey et al., 2011), as they allow high throughput analysis and acquisition of 

quantitative and qualitative information about any nucleic acids present in the sample at a 

relatively low cost (Mardis, 2008). Valuable information can be obtained from genome-

wide sequencing and higher level functional analyses that can provide insight into 
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microbial community dynamics and fermentation activity during Daqu production and 

alcoholic fermentation. This knowledge can be used to establish different starter cultures 

composed of microbial species mixed in the desired proportions, which can be added prior 

to alcoholic fermentation. Next generation sequencing may also enable the analysis of 

potentially harmful contaminating microorganisms, which can help liquor industries 

improve product safety. Overall, this approach can support technological advancement in 

commercial liquor production via selection and enrichment of specific microorganisms. 

Concluding remarks 

As a traditional natural fermentation starter, Daqu has a significant impact on the 

quality and flavour of Chinese liquor and vinegar. An understanding of microbial diversity 

and functional activity, as well as production dynamics and safety of Daqu, can benefit 

commercial production by allowing the implementation of informed changes to improve 

and/or expand traditional processes and enhance product quality and safety, which can 

facilitate entry into international markets. The results of this study show the importance of 

using multiple approaches for the analysis of microbial dynamics relative to environmental 

changes. However, only limited data on enzyme activity in Daqu were obtained; additional 

studies of the enzymatic profiles of Daqu during different fermentation stages are required 

to assess the relationship between microbial diversity and metabolite composition, which 

can contribute significantly to the improvement of Chinese liquor production. 
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Summary 

Fermented products are important dietary components as staples, adjuncts to staples, 

condiments, and beverages. China has a long history of producing a wide range of 

traditional fermented products including Chinese liquor, vinegar, rice wine, and soy sauce, 

which are a major part of the Chinese economy, valued at about 2000 billion RMB 

annually. Daqu is regarded as a semi-product; it has an essential and critical role in the 

safety and quality of the final products, as it is involved biochemical changes occurring in 

raw materials (barley and/or pea), which are vital to the development of precursor 

compounds that contribute to the flavour and safety of fermented products. This study 

focused on the microbiological properties and functionality of Daqu and the fermentation 

process.  

Chapter 2 describes the characteristics, composition, and manufacture of Daqu, a 

saccharifying and fermenting agent that has a significant impact on flavour. Different types 

of Daqu vary in terms of their maximum fermentation temperature (high, medium, and low) 

and flavour (sauce, strong, light, and miscellaneous, etc.). Daqu consists of microbiota, 

enzymes, and various chemical compounds (starch, other carbohydrates, proteins, fat, 

minerals, and amino acids). Its fermentation involves changes in these three components. 

The manufacture of Daqu requires a formulation of ingredients in a proper ratio, grinding 

and mixing (to increase water absorption), shaping, fermentation (through a succession of 

major groups of microorganisms), and maturation (equilibrating the chemical composition 

and microbiological composition). Low-temperature Daqu fermentation processes follow a 

strict temperature regime over the various stages: Woqu, Shangmei, Liangmei, Chaohuo, 

Houhuo, Dahuo, and Yangqu. This results in a succession of microorganisms and the 

formation of precursors for liquor production.  

Microbial communities of different types of Daqu were analysed by constructing clone 

libraries of the 16S and 26S rRNA genes (Chapter 3). Only three species were detected in 

all types of Daqu (Bacillus licheniformis, Saccharomycopsis fibuligera, and one uncultured 

bacterium). Various genera of lactic acid bacteria (LAB) were identified in Daqu samples, 

including Enterococcus, Lactobacillus, Leuconostoc, Pediococcus, Streptococcus, and 
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Weissella. In general, Bacillus spp. were found in high abundance and LAB were found in 

low abundance. Weissella confusa was abundant in two Daqu samples from factory 7 It was 

used thus as a biomarker to distinguish the Daqu from factory 7 from the products of other 

factories. Staphylococcus gallinarum and Staphylococcus saprophyticus were found in 

southern Daqu and were absent in northern Daqu, and are thus regarded as location 

biomarkers (northern or southern China). In general, fungi are more sensitive to heat than  

bacteria. The fungi Sm. fibuligera and Lichtheimia ramosa were found in low/medium-

temperature Daqu, whereas Thermomyces lanuginosus occurred in high-temperature Daqu. 

The occurrence of opportunistic pathogens such as Enterobacter cowanii and Escherichia 

hermannii indicate a high level of contamination in factory 9, warrantying stricter quality 

control measures throughout the Daqu production process.  

In Chapter 4, the occurrence, levels, and diversity of Fen-Daqu in the core and outer 

parts as determined by culture-dependent and -independent approaches were described. 

Total viable numbers of mesophilic and thermophilic bacteria, LAB, and 

Enterobacteriaceae in the core and outer parts did not significantly differ at 4-8 log CFU/g, 

whereas the numbers of bacterial spores were significantly higher in the core of Daqu. 

Total counts of yeasts and moulds in core Daqu were about 1 log CFU/g lower than those 

in the outer Daqu. B. licheniformis was the predominant bacterial species in Fen-Daqu, 

with yeast species Sm. fibuligera, Wickerhamomyces anomalus, and Pichia kudriavzevii. 

Mycological media (MEA, DG18, and RBCA) were used for detection of members of the 

fungal community. RBCA was superior for yeast and mould enumeration. Six genera of 

moulds were identified in Fen-Daqu (Absidia, Aspergillus, Mucor, Rhizopus, Rhizomucor, 

and Penicillium). 

In Chapter 5, the dynamics of the microbiota as a function of changes in 

environmental factors occurring during Fen-Daqu fermentation were investigated. 

Mesophilic bacteria were dominant at the onset of fermentation. As fermentation 

progressed, fungi became the predominant members of the microbial community. Lactic 

acid bacteria followed, resulting in an increase in Daqu acidity. Bacillus spp. and 

thermophilic fungi became the dominant groups at the end of fermentation, possibly due to 

their tolerance to low water activity and high temperature. PCR-based approaches indicated 
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that members of the genus Bacillus comprised approximately 70% of total bacterial 

isolates. 16S rDNA-PCR-DGGE analysis confirmed that Bacillus spp. were ubiquitous 

throughout the process. Fungal species such as the yeasts W. anomalus, Sm. fibuligera, and 

P. kudriavzevii were present throughout the fermentation process, while the zygomycetous 

fungus L. corymbifera proliferated only during the final stages of fermentation. Canonical 

correspondence analysis (CCA) was carried out using the information obtained from DGGE 

bands, together with environmental variables, to characterize the link between microbial 

communities and environmental conditions.  

Chapter 6 describes the contribution of each dominant species on starch degradation, 

alcohol production, and flavour formation during alcoholic fermentation. B. licheniformis, 

Pediococcus pentosaceus, Lactobacillus plantarum, yeasts P. kudriavzevii, W. anomalus, 

Saccharomyces cerevisiae, and Sm. fibuligera were isolated from Fen-Daqu and the 

production line, and analysed for starch degradation and alcohol tolerance. In general, 

bacterial species showed higher starch degrading activities than yeast species. More than 

90% of Sm. fibuligera strains produced amyloglucosidase and α-amylase. Yeasts showed 

higher ethanol tolerance than bacterial species. Only a few strains were able to grow on 

12% alcohol; most of the yeast species were able to tolerate 8% alcohol, while most of the 

bacterial isolates were only able to tolerate 4% alcohol. High starch-degrading abilities and 

high ethanol tolerance were used as the criteria to select bacterial and yeast candidate 

strains for alcoholic fermentation trials. Therefore, B. licheniformis 128, Ped. pentosaceus 

6, Lb. plantarum 1, P. kudriavzevii 12, W. anomalus 29, S. cerevisiae 1, and Sm. fibuligera 

4 were blended in various ratios and used for lab-scale alcoholic fermentation trails. 

Metabolite profiles were determined by 
1
H-NMR. Significant differences in metabolite 

production during alcoholic fermentation were observed, and species-specific metabolites 

were identified by Principal component analysis. S. cerevisiae was superior to other species 

with respect to ethanol production. S. cerevisiae and Ped. pentosaceus were associated with 

the decrease of pH. Sm. fibuligera and B. licheniformis exhibit high amylolytic activities, 

transforming starch and other polysaccharides into fermentable sugars. Both species 

contribute little to the aroma of Fen-liquor. W. anomalus had positive effects on aroma 

formation, ethanol production, and inhibition of some mycotoxin-producing fungi such as 
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Aspergillus and Penicillium. Lb. plantarum and Ped. pentosaceus have different effects on 

lactate conversion. Lb. plantarum converts lactate, while Ped. pentasaceus does not. Both 

species exhibit high amylolytic and proteolytic activities and play important roles in the 

formation of aromatic compounds in Fen-liquor.  

In summary, this thesis presents the biodiversity and population dynamics of the 

microbial community in Daqu, a starter culture used for the production of Chinese liquor 

and vinegar, and examined the role of the major Daqu microbiota on subsequent sorghum 

alcoholic fermentation, with the objective of providing insights that can potentially improve 

and modernize the existing processes of Daqu production. The results obtained demonstrate 

the importance of using multiple approaches for the analysis of microbial dynamics relative 

to environmental changes in the Daqu production process. Based on these findings, five 

recommendations are made for optimizing Daqu production efficiency and improving 

product quality and safety. 
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Samenvatting 

Gefermenteerde producten zijn een belangrijk onderdeel van ons dieet, als 

hoofdbestanddeel van maaltijden, als ingrediënt en in de vorm van dranken. China heeft een 

lange traditie in het produceren van gefermenteerde producten zoals “Chinese liquor” (een 

alcoholische sterke drank), azijn, rijstwijn, en sojasaus. De productie van deze traditionele 

producten is belangrijk voor de Chinese economie. Daqu is een traditionele starter voor 

alcoholische en azijnfermentaties en is belangrijk voor de kwaliteit en veiligheid van 

gefermenteerde eindproducten. De samenstelling van de starter is mede bepalend voor de 

biochemische veranderingen die plaatsvinden in de grondstoffen (gerst en/of erwt). Deze 

studie richt zich op de microbiologische eigenschappen en functionaliteit van Daqu en het 

alcoholisch fermentatieproces.  

Hoofdstuk 2 beschrijft de karakteristieken, samenstelling, en het productieproces van 

Daqu. De starter wordt bij verschillende temperaturen geproduceerd (hoog, gemiddeld en 

laag). Deze verschillen leiden tot duidelijke effecten in de eindproducten, vooral wat betreft 

smaak en aroma. Daqu bestaat uit een complex mengsel van verschillende micro-

organismen, plantaardige en microbiële enzymen, en chemische bestanddelen (zetmeel, 

andere koolwaterstoffen, eiwit, vet, mineralen en aminozuren). Bij de fermentatie vinden 

veranderingen plaats van deze drie componenten. Het productieproces van Daqu start met 

een formulering van de ingrediënten in de juiste verhouding, malen en mengen (om de 

waterabsorptie te verhogen), vormen, fermentatie (door een opeenvolging van verschillende 

groepen van microorganismen), en rijping (waarbij de chemische en microbiële 

samenstelling in evenwicht komt). Lage-temperatuur Daqu-fermentatieprocessen volgen 

een strikt temperatuurregime over de verschillende stadia: Woqu, Shangmei, Liangmei, 

Chaohuo, Houhuo, Dahuo, en Yangqu. Dit resulteert in een successie in abundantie van 

verschillende soorten micro-organismen en de vorming van metabolieten die belangrijk zijn 

voor de liquor-productie. 

Met behulp van clone libraries van 16S en 26S rRNA genen is de microbiële 

samenstelling van verschillende typen Daqu geanalyseerd (Hoofdstuk 3). Slechts drie 

soorten werden in alle drie types Daqu gevonden (Bacillus licheniformis, 
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Saccharomycopsis fibuligera, en een niet-kweekbare bacterie). Verschillende geslachten 

van melkzuurbacteriën (MZB) werden geïdentificeerd in Daqu samples, zoals Enterococcus, 

Lactobacillus, Leuconostoc, Pediococcus, Streptococcus, en Weissella. Vaak werd Bacillus 

spp. in hoge aantallen gevonden en MZB in lagere hoeveelheden. Weisella confusa was 

oververtegenwoordigd in twee Daqu samples van bedrijf 7. Het kan daarom gebruikt 

worden als biomarker om de Daqu van bedrijf 7 te onderscheiden van producten van andere 

bedrijven. Staphylococcus gallinarum en Staphylococcus saprophyticus werden gevonden 

in zuidelijke Daqu en waren afwezig in noordelijke Daqu, en kunnen dus als locatie-

biomarker gezien worden (noord of zuid China). In het algemeen zijn gisten en schimmels 

(fungi) gevoeliger voor hitte dan bacteriën. De schimmels Sm. fibuligera en Lichtheimia 

ramosa werden in laag/medium-temperatuur Daqu gevonden, terwijl Thermomyces 

lanuginosus voorkwam in hoog-temperatuur Daqu. Het voorkomen van Enterobacteriaceae 

zoals Enterobacter cowanii en Escherichia hermannii geven een hoog besmettingsniveau 

aan van bedrijf 9, hetgeen wijst op een noodzaak voor striktere 

kwaliteitsbeheersingsmaatregelen over het gehele Daqu productieproces.  

In Hoofdstuk 4, wordt het vóórkomen, de niveaus en de microbiële diversiteit van Fen-

Daqu beschreven in zowel het centrum als de perifere delen van het product, bepaald met 

kweekafhankelijke en –onafhankelijke methoden. Totale aantallen mesofiele en thermofiele 

bacteriën, MZB, en Enterobacteriaceae in het centrum en de buitenste delen verschilden 

niet significant bij niveaus van 4-8 log KVE/g, terwijl de aantallen bacteriële sporen wel 

significant hoger waren in het centrum van Daqu. Totale aantallen gisten en schimmels in 

het centrum van Daqu waren ongeveer 1 log KVE/g lager dan die van de buitenste rand. B. 

licheniformis was de meest voorkomende bacteriële soort in Fen-Daqu. Sm. fibuligera, 

Wickerhamomyces anomalus, en Pichia kudriavzevii waren de meest abundante gistsoorten. 

Mycologische media (MEA, DG18, en RBCA) werden gebruikt voor de detectie van 

diverse gist en schimmelgemeenschappen. RBCA bleek beter geschikt voor gisten- en 

schimmeltellingen. Er werden zes schimmelgeslachten geïdentificeerd in Daqu (Absidia, 

Aspergillus, Mucor, Rhizopus, Rhizomucor, en Penicillium). 

In Hoofdstuk 5 wordt de microbiële populatie dynamica beschreven als functie van 

veranderende omgevingsfactoren gedurende de Fen-Daqu fermentatie. Mesofiele bacteriën 
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bleken dominant bij het begin van de fermentatie. Tijdens het verloop van de fermentatie 

werden fungi relatief belangrijkere vertegenwoordigers van de microbiële gemeenschap. 

Vervolgens namen de melkzuurbacteriën toe, hetgeen resulterende in een toename van de 

Daqu zuurgraad (lagere pH). Bacillus spp. en thermofiele fungi werden de dominante 

groepen aan het eind van de fermentatie, waarschijnlijk door hun tolerantie tegen lage 

wateractiviteit en hoge temperatuur. PCR-gebaseerde technieken gaven aan dat soorten van 

het geslacht Bacillus ongeveer 70% van de totale bacteriële isolaten uitmaakten. 16S 

rDNA-PCR-DGGE analyse bevestigde dat Bacillus spp. algemeen voorkwamen gedurende 

het gehele proces. De gistsoorten W. anomalus, Sm. fibuligera, en P. kudriavzevii konden 

gedurende het gehele fermentatieproces worden aangetoond, terwijl de schimmel 

Lichtheimia corymbifera alleen tijdens de laatste stappen van de fermentatie tot 

ontwikkeling kwam. Canonical Correspondence Analysis (CCA) werd gebruikt om de 

uitgebreide informatie van de DGGE banden en de omgevingsvariabelen te analyseren, om 

zo een koppeling te maken tussen de microbiële gemeenschappen en de 

omgevingscondities.  

Hoofdstuk 6 beschrijft de bijdrage van elk van de dominante soorten op de 

zetmeelafbraak, alcoholproductie, en smaakontwikkeling gedurende alcoholische 

fermentatie. B. licheniformis, Pediococcus pentosaceus, Lactobacillus plantarum, de gisten 

P. kudriavzevii, W. anomalus, Saccharomyces cerevisiae, en Sm. fibuligera werden 

geïsoleerd van Fen-Daqu en de productielijn, en geanalyseerd voor zetmeelafbrekend 

vermogen en alcoholtolerantie. Over het algemeen toonden de bacteriële soorten hogere 

zetmeelafbraak dan de gisten. Meer dan 90% van de Sm. fibuligera stammen produceerden 

amyloglucosidase en α-amylase. Gisten toonden hogere ethanoltolerantie dan bacteriële 

soorten. Slechts enkele stammen konden bij 12% alcohol groeien; de meeste giststammen 

tolereerden 8% alcohol, terwijl de meeste bacteriële isolaten slechts 4% alcohol tolereerden. 

Hoge zetmeelafbraakmogelijkheden en hoge ethanoltolerantie werden gebruikt als criteria 

om bacteriën en gisten te selecteren voor fermentatieproeven. Hiervoor werden B. 

licheniformis 128, Ped. pentosaceus 6, Lb. plantarum 1, P. kudriavzevii 12, W. anomalus 

29, S. cerevisiae 1, en Sm. fibuligera 4 gemengd in verschillende verhoudingen en gebruikt 

voor fermentatie-proeven op laboratorium-schaal. Metabolietprofielen werden bepaald met 
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proton-NMR. Er werden significante verschillen in metabolietproductie gevonden 

gedurende de alcoholische fermentatie, en soort-specifieke metabolieten werden 

geïdentificeerd. S. cerevisiae had ten opzichte van de andere species een hogere 

ethanolproductie. S. cerevisiae en Ped. pentosaceus konden geassocieerd worden met een 

afname in de pH. Sm. fibuligera en B. licheniformis toonden een hoge amylolytische 

activiteit, die zetmeel en andere polysacchariden omzet in fermenteerbare suikers. Beide 

soorten dragen weinig bij aan het aroma van Fen-liquor. W. anomalus had positieve 

effecten op de aromavorming, ethanolproductie, en remming van enkele mycotoxine-

producerende schimmels zoals Aspergillus en Penicillium. Lb. plantarum en Ped. 

pentosaceus hebben verschillende effecten op de melkzuurconversie. Lb. plantarum zet 

melkzuur om, maar Ped. pentasaceus doet dat niet. Beide species tonen een hoge 

amylolytische en proteolytische activiteit en spelen een belangrijke rol in de vorming van 

aromatische componenten in Fen-liquor.  

Samenvattend toont dit proefschrift de biodiversiteit en populatiedynamica van de 

microbiota van Daqu, een startercultuur gebruikt voor de productie van Chinese liquor en 

azijn, en beschrijft de rol van de belangrijkste spelers in de Daqu microbiota en de 

opvolgende sorghum alcoholfermentatie, met als doel inzicht te verschaffen dat 

mogelijkerwijs de bestaande Daqu-productie kan verbeteren en moderniseren. De behaalde 

resultaten laten het belang zien van het gebruik van verschillende methoden  voor het 

analyseren van de microbiële dynamica als functie van veranderingen in heersende 

omgevingsfactoren in het Daqu productieproces. Gebaseerd op deze resultaten konden vijf 

aanbevelingen worden gedaan om de Daqu productie-efficiëntie te optimaliseren en de 

productkwaliteit en veiligheid te verbeteren.  
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概要 

发酵食品在中国历史悠久，分布广泛，是人们日常膳食的重要组成部分，包括

主食、副食、饮料以及调味品，其每年生产总值约为 2 万亿人民币，已成为中国经

济的一个重要组成部分。中国传统发酵食品以其独特的发酵工艺和理论体系而别具

一格，普遍采用“曲”作为发酵剂进行生产，典型代表包括白酒、醋、黄酒和酱油

等。大曲是曲的一种，是一种传统固态发酵剂，它在终产品的安全和质量上扮演了

一个关键角色，因其涉及到原料（大麦和/或豌豆）的生化反应，大曲对终产品风味

的前体物质的生成以及发酵食品安全的提高至关重要。本论文旨在揭示大曲中微生

物的特性、功能及其生产过程中微生物菌相此消彼长的演变过程。 

第二章综述了大曲的分类、历史、功能及其生产工艺。大曲是酿造过程中的糖

化剂和发酵剂，含有大量微生物和酶类，其中所含微生物种类和数量比例直接影响

终产品的发酵过程和风味物质的形成。大曲根据所产白酒的香型大致可分为清香型、

酱香型、浓香型、兼香型等十二大类，按照其最高品温不同又可分为高温、中温、

低温三大类，每一类都有其独特的工艺和特点。大曲是一种天然的发酵基质，众多

物质包含其中，归纳起来主要有三类：微生物——菌系，生物催化剂——酶系，风

味前体物质和原料——物系。虽然大曲种类繁多，但其发酵原理基本一致。现今，

大曲的制作过程已经部分实现了工业化，分为五个步骤：原料配比（根据不同类型

的大曲和长期积累的经验来制定原料配比）、粉碎和拌料（增加吸水率、获得均匀的

纹理）、成型（形成表面光滑、标准尺寸的模块）、发酵（微生物的繁衍生息），以及

贮存过程（平衡化学和微生物组分）。低温大曲的发酵分为卧曲、上霉、晾霉、潮火、

大火、后火、养曲 7 个阶段，各阶段都有严格的温度要求，这是微生物菌相演变以

及风味前体物的形成过程。 

第三章通过构建 16S 和 26S rRNA 基因克隆文库，分析了不同类型的大曲微生物

的群落构成。结果表明地衣芽孢杆菌、扣囊复膜酵母和一株未培养的细菌普遍存在

于大曲中。另外，乳酸菌在大曲的样品中也被检出，包括肠球菌、乳酸杆菌、明串

珠菌、片球菌、链球菌和魏斯氏菌属，但其丰度远远小于芽孢杆菌。混淆魏斯氏菌
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在工厂 7 的两个大曲样品中丰度值很高，作为一种特征生物标记物可用于区分工厂

7 和其它工厂的产品。鸡沙门菌和腐生葡萄球菌普遍存在于南方大曲中，而在北方大

曲尚未被发现，因此可用作地域生物标记物。在一般情况下，真菌比细菌对热更敏

感。扣囊复膜酵母和多枝横梗霉在低/中温大曲中存在，而疏棉状嗜热丝孢菌存在于

高温大曲中。病原菌的污染如肠杆菌和赫氏埃希菌表明工厂 9 较之其他厂污染较严

重，因此在大曲生产过程中要施行严格的卫生控制措施。 

第四章以汾酒大曲为研究对象，采用传统培养和分子生物学相结合的方法对大

曲的曲心与曲表微生物数量及其多样性进行了鉴定。实验结果表明：适温菌、嗜热

菌、肠杆菌科的总菌数在曲心和曲表并没有显著不同，而细菌孢子的数量在大曲的

曲心部分均高于曲表。曲心中霉菌和酵母菌总数低于曲表真菌总数约 1 log CFU/g。

地衣芽孢杆菌、异常毕赤酵母、扣囊复膜酵母和东方伊萨酵母是汾酒大曲中的优势

菌群。另外，实验比较了三种真菌培养基 (MEA、DG18 与 RBCA) 对大曲中真菌群

落组成的检测效果。RBCA 培养基对酵母和霉菌计数是最有效的，共检出六种霉菌：

犁头霉、曲霉、毛霉、根霉、毛霉和青霉属。 

第五章对汾酒大曲发酵过程中微生物及其环境的变化进行了跟踪调查。适温菌

在发酵初期占主导地位；随着发酵的进行，真菌是微生物群落的主要力量；紧接着

是乳酸菌，导致大曲的酸度不断增加；芽孢杆菌和嗜热菌由于其强大的耐高温和耐

低水活性，在发酵后期迅猛生长。 经研究表明，芽孢杆菌属占总细菌数量约 70%。

16S rDNA–PCR-DGGE 指纹图谱鉴定结果证实了芽孢杆菌普遍存在于整个发酵过程。

除此之外，真菌如异常毕赤酵母、扣囊复膜酵母和东方伊萨酵母也存在于整个发酵

过程，而接合菌--伞状毛霉菌的增殖仅存在于发酵过程的最后阶段。本章还利用典范

对应分析(CCA) 对 DGGE 指纹图谱获得的微生物丰度信息与环境变量进行拟合，以

此揭示微生物群落结构与环境变化之间的相关联系。 

第六章研究了汾酒大曲中优势微生物在酒精发酵过程中的功能，包含淀粉降解、

酒精生成以及香味前体形成等。利用从汾酒大曲及其生产线中分离获得的地衣芽孢

杆菌、戊糖片球菌、异常毕赤酵母、东方伊萨酵母、植物乳杆菌、酿酒酵母和扣囊

复膜酵母对淀粉降解和酒精耐受力进行了检测。结果表明，细菌比酵母菌表现出较
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高的淀粉降解活性；植物乳杆菌和戊糖片球菌表现出最高的淀粉降解活性。超过

90%的扣囊复膜酵母会分泌淀粉葡萄糖苷酶和 α-淀粉酶；酵母菌比细菌更具酒精耐

受力；只有少数菌株能在 12%的酒精培养基中生长，多数的酵母菌能够耐受 8%浓度

的酒精，而大多数细菌菌株能耐受 4%浓度的酒精。高淀粉的降解能力和高的酒精耐

受力是筛选细菌和酵母进行模拟发酵试验的标准。因此，地衣芽孢杆菌 128、戊糖片

球菌 6、植物乳杆菌 1、东方伊萨酵母 12、异常毕赤酵母 29、酿酒酵母 1 和扣囊复

膜酵母 4 以各种比例混合，用于实验室规模的发酵试验。由氢核磁共振技术测定酒

精发酵过程中各发酵组代谢物组的变化，并利用主成分分析对关键代谢物及其特性

进行探究。结果表明，酿酒酵母在乙醇生产中优于其他菌种；酿酒酵母和戊糖片球

菌与 pH 值下降相关联，而地衣芽孢杆菌和扣囊复膜酵母表现出较高的淀粉酶活性，

可把淀粉和其他多糖转化成可发酵糖但对汾酒的香气贡献不大。而异常毕赤酵母在

很多方面起到积极作用，包括香气的形成、乙醇生产，以及对一些产毒真菌如曲霉

属和青霉属的抑制作用。植物乳杆菌和戊糖片球菌对乳酸转化的影响不同。植物乳

杆菌转化乳酸，而戊糖片球菌不转化。这两个菌株表现出较高的淀粉和蛋白降解能

力，并在汾酒香气成分的生成中起着重要作用。 

综上，本论文研究了大曲生产过程中微生物多样性与微生物群落的种群动态，

通过探讨大曲的微生物组成及其在酒精发酵过程中的功能特征，为提高大曲的质量

和安全、推动其生产过程的现代化提供了可靠的科学依据。本研究采用多种方法相

结合，揭示了微生物菌群与环境之间的密切关系，基于这些发现，对此提出了五个

建议以达到提高大曲生产效率和提高产品质量和安全的目的。 
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