

Bonamia ostreae infections in flat oysters (*Ostrea edulis*) from Lake Grevelingen, The Netherlands, 15 years after introduction

M.Y. Engelsma¹, P. van Banning, A. van Gool², F. Le Roux³, F. Berthe³, and O.L.M. Haenen¹

Introduction

Lake Grevelingen, an enclosed salt water lake in the South-West of the Netherlands, is the main centre of flat oyster (*Ostrea edulis*) culture in the Netherlands (Figure 1). In 1988 the protozoan parasite *Bonamia ostreae* was detected for the first time in the flat oyster population of Lake Grevelingen. The introduction of *B. ostreae* resulted in a dramatic decline of the flat oyster population in the Netherlands.

In 1980 a routine monitoring programme has been started to determine, on a yearly base, the prevalence of *B. ostreae* by means of histopathology. Recently, an *in situ* hybridisation (ISH) technique specific for *B. ostreae* was implemented as a confirmatory method.

In this study data on *B. ostreae* infections in Lake Grevelingen since 1988 were analysed. Oyster samples of 2001 and 2002 were also analysed on *B. ostreae* with ISH.

Material and Methods

In the period 1988-2002 flat oysters were sampled each year, in spring and autumn, at 6 sites in Lake Grevelingen. At each site a sample of 25 flat oysters was taken. The oysters were fixed in Davidson fixative and embedded in paraffin. Sections were stained with haematoxylin and eosin (H&E) and screened for *B. ostreae* infection by light microscopy. An ISH for detection of *B. ostreae* was used to analyse *B. ostreae* suspected oysters from the 2001 and 2002 monitoring. The ISH was performed according to Cochennec *et al.*, 2000 (*J Invert Pathol* 76: 26-32).

Results

Figure 2. Average percentage of oysters infected by *B. ostreae* from Lake Grevelingen in the period 1988-2002. Overall, the percentage of infected oysters was higher in spring than in autumn. In the recent years a tendency is observed to an increasing

Figure 3. Density of oysters at the sampling sites (2001-2002) with the accompanying average percentage of *B. ostreae* infected oysters at those locations. There was no correlation between the percentage infected oysters and the density of oysters at a site.

Figure 4. Non-infected and *B.* ostreae infected oysters from the 2001 and 2002 monitoring catagorised by weight class. In all weight classes approximately 10% of the total number of oysters was infected with *B. ostreae*.

Figure 5. ISH of *B. ostreae* infected flat oyster with a DIG-probe specific for *B. ostreae* 18S ribosomal RNA (purple-black) and counterstained with Bismarck Brown Yellow. (A) Gill tissue, (B) gill tissue, (C) mantle, (D) epithelium digestive tract, (E) digestive diverticulum and connective tissue and (F) inflammatory tissue.

Conclusions

Table 1. *Bonamia ostreae* positive samples were classified as light (+), moderate (++) and severe (+++) by histology (H&E score). Subsequently, for each class the presence of *B. ostreae* was estimated in each tissue type by means of ISH (absent -, low +, intermediate ++ and high +++) (ISH score).

H&E score	ISH score						
(Overall)	Gills	Mantle	Epithelium skin	Gonads	Dig.divert.	Connective tissue	e Epithelium dig. tract
+	+	-	-	-	-	-	±
++	++	+	-	-	+	+	+
+++	++	++	±	±	+	+++	++

¹CIDC-Lelystad (Central Institute for Animal Disease Control) Houtribweg 39, 8221 RA Lelystad, P.O. Box 2004, 8203 AA Lelystad, The Netherlands tel: +31 320 23 87 29 fax: +31 320 23 86 68 email: Marc.Engelsma@wur.nl ²RIVO, Centre for Shellfish Research, Yerseke, The Netherlands

- Despite earlier attempts to eradicate the parasite from the Netherlands, *B. ostreae* is now an endemic parasite of the flat oyster in Lake Grevelingen.
- In general, over the period 1988-2002 the prevalence of *B. ostreae* is higher in spring than in autumn. In recent years an increase of prevalence is seen, especially in autumn.
- *B. ostreae* infections in 2001 and 2002 were not correlated to oyster density or weight or length (data not shown) of the oyster.
- Compared to standard H&E screening, ISH facilitates the detection of *B. ostreae* at low levels of infection and enables precise topographical localisation of *B. ostreae* in the oyster.
- In light infections *B. ostreae* was predominantly present in inflammatory tissue in the gills and in epithelium of the digestive tract, suggesting these tissues to be prime targets for entrance of the parasite.
- In heavy infected oysters *B. ostreae* was detected in virtually all screened organs.

³IFREMER, Community Reference Laboratory for Mollusc Diseases, Laboratoire de Génétique et Pathologie, La Tremblade, France