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1 Background 

In COMMIT/ eFoodLab we are carrying out research into how we can better find and share knowledge about food.   

There are diverse data sources in existence in the food community, made available by various different parties, from 

government regulators to commercial businesses, via many different sorts of interfaces.  It may not be known at the 

moment of accessing these sources exactly what data is available in which source, or the required data may be 

divided over several different sources.  To effectively and efficiently access food knowledge, it is necessary to be able 

to query across multiple data sources.  

A core part of our approach is to store information semantically, so that the meaning of the information is clear.  

Semantic data is usually stored using RDF [RDF], a W3C standard.  There are various types of databases available 

for storing RDF, within our project we use Sesame [Sesame], free software developed by Aduna which is well suited 

to applications of the scale which we are developing and which has been widely adopted.  Data expressed in RDF 

can be accessed using SPARQL [SPARQL].  This query language was developed specifically for query semantic data, 

and is widely used within the semantic community, including the eFoodLab project.  It is therefore of essential 

interest to our activities in the project to know what the state of art and best practices are for ‘federated’ querying of 

SPARQL – querying of multiple data sources. 

This deliverable discusses what data federation is, with relation to RDF1 and SPARQL, and describes various ways 

of achieving federation, with their advantages and disadvantages.  It then examines the state of the art in federation 

technology, and summarises the factors discussed in the literature which can influence federated querying 

performance.       

2 What is federation? 

In data federation a query is carried out over multiple data sources.  Ideally, the data consumer should not be 

concerned about these different sources and just view them as a single source. The query must be sent to the 

different data sources (possibly split into subqueries) and the results combined before they are presented to the user.  

Technically this is no problem, but it comes at a high cost in terms of performance if done blindly. There are various 

ways of achieving this in a more efficient manner.  Some of these are regarded as ‘federation’ in the strict sense, 

others are not called federation but accomplish the same goal.  We will discuss these types and what their advantages 

and disadvantages are. 

2.1 Types of federation 

2.1.1 ‘Federation’ in application code 

Within an application, it is possible to send a query to different data sources.  The application itself handles 

distributing the query and combining the results into one set.  This is not a ‘federation’ in the usual sense of the 

word, as it is customised to particular queries and particular data sources, but for the end user of the application the 

effect is the same.  If the queries and sources are known beforehand and the number is limited, then this approach 

can often be attractive in terms of performance, as it can be optimised for the required queries.  The sources must 

also be organised so that they are independent of each other for the desired queries – the results from one should 

not affect which results are obtained from another. 

                                                           
1 Note that there are techniques available for making relational databases available as RDF sources 
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2.1.2 ‘Federation’ in one data source 

If the input sources allow it, it is possible to copy the RDF into one single repository, which can then be queried as 

normal.  This is again not strictly speaking a federation, as the querying is performed on one source.  However if the 

sources are static, or if updates are carried out when data is changed, then the result is, again, the same for the user.  

This is a simple approach which does not require foreknowledge of the queries or the sources, or additional 

processing of the results, and which can have high performance.  However it is not feasible for large repositories, 

and some data suppliers do not allow copying the data into a local repository. This approach also assumes that the 

input sources are stable and well-known.   

2.1.3 SPARQL 1.1 Federation Extensions 

Another form of federation allows the data consumer to include directions to specific input sources in the query 

itself. The most recent version of the SPARQL language, SPARQL 1.1 [SPARQL], specifically provides support for 

this type of federated querying.  It is possible to specify per section of the query from which source the data should 

be obtained.  Data sources must be SPARQL endpoints.  This approach allows querying of multiple sources without 

any additional processing of the results.  The disadvantage is that it is necessary to know exactly which data comes 

from which source, and to write the queries accordingly.  Note that a difference with the application code approach 

is that the results can influence each other.  The extensions can be used on any RDF repository which supports 

SPARQL 1.1.   

In the following example from the SPARQL documentation, persons are obtained from one data source (not visible 

in the example but assumed to be pre-set for the entire query), and information about their acquaintances from 

another (http://example.org/sparql).  

PREFIX foaf:   <http://xmlns.com/foaf/0.1/> 

SELECT ?s ?o 

{ 

  ?s a foaf:Person 

  SERVICE <http://example.org/sparql> {?s foaf:knows ?o } 

} 

2.1.4 Federation Engines 

Federation engines are the most sophisticated method of federated querying.  These carry out any valid SPARQL 

query over multiple sources, without requiring any prior knowledge from the data consumer of where the exact data 

is stored. The query is automatically split into subqueries, which are sent to the different sources, and the results are 

combined.  This has the advantage of allowing a great deal of flexibility in querying.  This has however a cost in 

terms of performance, so a great deal of attention has to be paid to optimisation.  The exact approach and how good 

the performance is, varies per engine.  [Rakhmawati] describes how federation engines work. They distinguish a 

number of basic steps which all federation engines carry out: 

- Query parsing 

o The query is split into subqueries 

- Choice of sources 
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o The engine must decide, per subquery, which data sources are relevant. Most engines use one of 

the following: 

 ASK queries2 

 Data catalogues 

 Data indexes 

 Statistical information about the data sources 

- Query planning and execution 

o Grouping the queries to reduce the overhead associated with querying each data source 

o Determining the best order to carry out the queries in 

o Joining the results together efficiently 

NB: For manual control it is still possible to use the SERVICE keyword from SPARQL 1.1 in a query that is sent to 

a federation engine.  This has the effect of specifying the source for that part of the query instead of letting the 

federation engine determine it.  This can improve the performance.  

Some engines are intended for accessing Linked Data rather than for Federation.  The difference is that a federated 

approach selects the sources from the federation members prior to query execution, whereas the Linked Data 

approach steps from source to source via links in the data, while the query is being executed.  A Linked Data 

approach has the advantage that it can work on any form of linked data, whereas federation usually requires that the 

sources be SPARQL endpoints.  The Linked Data approach is usually less efficient, but work on optimizing this path 

is in progress [Saleem]. 

2.2 Available federation engines 

A number of federation engines have been built, some of which are available as commercial products, others which 

are research prototypes.  The most promising candidates are described here in more detail; the others are 

summarised in a list. 

2.2.1 Sesame Federation SAIL 

Since version 2.7.0, Sesame supports the SPARQL 1.1 extension.  In addition to this they have an implementation of 

their SAIL store as a Federation.  There is as yet no official documentation of how this Federation works.  

According to Jeen Broekstra, one of the developers, the Sesame Federation SAIL splits the query on each join, and 

evaluates these in parallel on the federation members.  Further, subqueries which can be evaluated on one single 

federation member are isolated.   

There are currently no plans for further development of Sesame Federation.  The federation engine was released 

after the most recent of the overview papers in the literature was published, so no comparison of the performance is 

available.   

2.2.2 FedX 

The FedX engine is commercially available from http://www.fluidops.com/fedx/. It is built on top of Sesame, and 

contains more optimisations.  Their article [Schwarte 1] gives an overview of these optimisations, which are 

discussed further in  [Schwarte 2].  A summary of the most important features is: 

 

                                                           
2 An ASK query in SPARQL simply checks if a triple conforming to the pattern in the query is present in the database.  
ASK queries are usually much faster than queries which return data. 

http://www.fluidops.com/fedx/
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- Statement sources: SPARQL ASK queries are used to determine the relevant sources 

- Parallel processing: Joins and Unions are multithreaded 

- Join order: Heuristics are used to determine the cost of each join, and these costs are used to choose the 
best order 

- Bound joins: Joins are calculated in a block to reduce the number of requests  

- Groupings: Statements with the same relevant source are grouped 

 

FedX is considered as one of the best solutions, given discussions in the literature.  In  [Montoya 1] FedX was 

demonstrated not to cope as well with poor network performance.  ANAPSID was better in this respect.  Both 

FedX and ANAPSID were influenced by the data structure, sometimes ANAPSID was better, sometimes FedX. 

Table 5 in [Montoya 1] showed that the type of query also has a strong effect on which of the two engines performs 

better.  In the tests in [Saleem] FedX came top of the six federations tested. 

2.2.3 ANAPSID 

The ANAPSID source code is available from github https://github.com/anapsid/anapsid  

This engine is described in [ANAPSID].  ANAPSID uses statistics to select the best sources, and a bushy-tree plan 

to plan the queries.  Attention is also paid to handling the situation where a source does not respond (timely).  In the 

measurements in [Montoya 1]  ANAPSID is sometimes faster than FedX, sometimes slower.   

2.2.4 SPLENDID 

The SPLENDID engine is available on the Google Code website http://code.google.com/p/rdffederator/  

Sources are selected based on predicates.  Statistics about the predicates are available from VOID (Vocabulary Of 

Interlinked Datasets).  If these statistics are insufficient to choose a source, then ASK queries are used.  SPLENDID 

uses dynamic programming with bushy trees to optimise queries.  The execution of these queries itself is not yet 

optimised. According to their own paper, SPLENDID is almost as fast as FedX [SPLENDID]. 

2.2.5 Semagrow 

Semagrow is currently being developed as part of an EU project.  They use metadata about the available stores to 

select the best ones.  If necessary then they carry out an ontology alignment step to translate the subquery into the 

vocabulary of the relevant source.   The architecture is described in [Semagrow].  As yet the engine itself is not 

complete. 

2.2.6 SSGS/SSGM  

Heuristics and information about the predicates are used to choose the data sources.  A bushy-tree plan is used for 

query execution.  Similar times to FedX are measured [Montoya 2] when testing on the FedBench [FedBench] 

queries.  For their own self-designed complex queries their system performs better than FedX, which fails to give 

results in those cases.  

2.2.7 Others 

- Aderis – Uses metadata, in the simplest case a list of predicates, to choose sources.  Can only handle simple 

query patterns [Aderis]. 

- Atlas – Uses an index [Atlas]. 

https://github.com/anapsid/anapsid
http://code.google.com/p/rdffederator/
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- Avalanche – Uses the cardinality of variables (which is dynamically checked), plus the prefixes in the 

subquery to select the source.  The cardinality is used to indicated how selective a subquery is for a given 

source; the most selective (least distributed) is executed first [Avalanche]. 

- DARQ – Built on Jena ARQ.  Uses indexes of the predicates to choose the best sources.  It is no longer 

being developed but is often used for comparison purposes [DARQ]. 

- DAW – Uses a combination of an index and ASK queries. Detects where data is duplicated in different 

datasets [DAW].  

- Defender– Built on top of ANAPSID. Uses a predicate list to choose the source, and a bushy-tree plan for 

query execution.  They describe plans for testing and comparing with FedX en DARQ, but these have not 

yet been carried out. [Defender]. 

- GDS – Built on Jena. Uses the Kruskal algorithm [GDS].  

- Granatum – Uses federation over Linked Data [Granatum].   

- Jena ARQ – Uses SPARQL 1.1 and nested inner joins [Jena ARQ].   

- LDQPS - Uses federation over Linked data [LDQPS].  

- LHD – Sources are chosen from VoID plus using ASK queries.  Dynamic programming is used to build 

the query plan [LHD]. 

- SemWIQ - Uses a catalogue to choose the sources.  The RDF type of each subject must be known 

[SemWIQ]. 

- SIHJoin - Uses federation over Linked data.  They define a new JOIN operator [SIHJoin]. 

-   SPARQL DQP – Rewrites the queries using rules to optimise them[SPARQL-DQP]. 

- WoDQA – Built on ARQ.  The sources are selected using VOID. They then use federation over Linked 

data [WoDQA]. 

[Saleem] gives a good overview of almost all the engines listed here.  They also compare the performance of DARQ, 

SPLENDID, FedX, LHD, ANAPSID and Aderis. FedX gave the best performance. 

 

3 Factors influencing the performance of a federation 

In the literature there are a number of factors described which affect the performance of a federated query.  The 

importance of these factors depends for a large part on the approach used by a specific federation engine.  Some 

factors relate to the query, others to how the data sources are structured, and some are relevant for both.  The 

factors have been roughly divided into these three categories; however it is important to remember than they can 

influence each other – for example, a different data structure requires a different query. 

3.1 Factors relating to the query 

3.1.1 Number of triple patterns and query shape  

Data in RDF is stored in triples – statements consisting of a subject, predicate and object.  The effect of the number 

of the triple patterns is discussed in [Silurian], [Montoya 1].  The more triple patterns, the longer it takes for the 

query to complete.  The form of the query is also important, so-called ‘star shapes’ are difficult.  A ‘star shaped 

query’ is a join of multiple BGPs (basic graph patterns) which either share exactly one variable, or which are 

themselves ‘star-shaped’. 
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3.1.2 Bindings instead of Filters  

There are two main methods in SPARQL for searching for statements where a given variable has a specific value.  

With a Binding, the variable is set to the given value prior to querying.  With a Filter, the results are filtered 

afterwards to match for the value.  [Schwarte 2] discusses the difference, and concludes that it is better to use a 

binding than to filter afterwards.   

3.1.3 Instantiations and their position in triple patterns 

The position which variables occupy in a triple pattern can make a difference.  For example, if the predicate is a 

variable, then this can increase the query time, as many different endpoints will then match the triple pattern 

[Montoya 1]. 

3.1.4 Use of OPTIONAL 

The OPTIONAL keyword in SPARQL allows results to be returned even when part of the query finds no result.  

For example, if a user has a name specified but no email address, then they will still be found by the query if the 

email address is specified as OPTIONAL.  Using OPTIONAL has a large detrimental effect on performance 

[Montoya 1]. 

 

3.2 Factors relating to the data structure 

3.2.1 Remote or local 

Local repositories are faster as they have no HTTP overhead or network latency.  The speed is increased further if 

the repositories are accessed via their native API [Schwarte 2].  For this same reason repositories which are accessed 

via their interface perform better than SPARQL endpoints [Rakhmawati].   

3.2.2 Availability of concept types 

If the concept types are explicitly defined in the data instead of implicitly, then this can help performance 

[SPLENDID].  For some engines this is even a requirement [SemWIQ].  

3.2.3 Using owl:sameAs links  

Concepts in different repositories which are essentially the same thing, can be linked using the owl:sameAs 

relationship. The availability of such links improves the quality of search results.  It is better for performance if these 

relationships are not stored in 3rd party ‘link sets’ but in the original datasets, as this reduces the number of queries 

[SPLENDID]. 

3.2.4 Data partitioning and distribution 

How the data is distributed over the repositories, has an effect on performance.  In horizontal partitioning the 

properties are shared over different repositories.  In vertical partitioning one data source contains all triples for a 

single property.  Horizontal partitioning affects how complete the result set is.  Vertical partitioning affects how long 

it takes for the query to finish. It also matters if the data is duplicated in different repositories.  This can improve 

results in the situation where a data source drops out, but can increase the time required for the query to complete. 

[Montoya] [Silurian] [Rakhmawati].  
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3.2.5 The amount of data 

[Schwarte 3] state that a federation can actually be faster than a single central store for large amounts of data.  The 

balance between the advantages of distributed, parallel processing and the disadvantages of the extra communication 

overhead can then tip in the favour of federation.  

3.3 Factors related to both the query and the data structure 

3.3.1 Number of relevant sources per subquery 

All federation engines select relevant sources for each subquery.  The more relevant sources, the longer it takes for 

the query.  The distribution of the data and how the query is written determine how many sources are relevant.  

Depending on the engine the choice of a source is more or less difficult. 

3.3.2 General predicates  

General predicates such as rdf:type occur in almost all sources, and make it difficult to choose a source [Silurian].  

This is made worse if the source selection is based mainly on predicates. 

 

4 Future work related to federated querying 

In the future we are planning to conduct practical experiments on federated querying, to help make informed 

choices about setting up and using data federations.   We will use datasets from real-life examples to help assess the 

effect of the factors described in the literature.  In particular we want to address the question of when a federation is 

a good choice or not, and what the reasons are to choose for a federation engine or for one of the other three 

approaches.   This aspect has not been examined in the literature.  We will also look into how we can translate the 

information about factors into concrete tips for designing data sources. 
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