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Chapter 1
Introduction and thesis outline

Highlights:

- Lupin seeds are rich in protein and dietary fibres and contain unsaturated fatty acids

- Simplified fractionation processes for functional fractions

- Focus on functional fractions rather than molecular purity
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The growth in the world population requires an increase in the production of protein-rich 

foods. About two-thirds of the protein in the European diet is obtained through animal-

based food products, like meat and dairy (de Boer et al., 2006). The production of these 

products requires significant amounts of land, nutrients, (fresh) water and valuable plant 

proteins (Aiking, 2011). For example, the production of 1 kg of animal protein requires 6 kg 

of plant protein (Pimentel and Pimentel, 2003). It would be more efficient to include these 

plant proteins in the human diet directly. 

Currently, the increasing demand for proteins is met through increased production 

of tropical crops like soybeans. As a consequence, large scale deforestation and land 

degradation are enhanced. To encourage a more sustainable use of land, the biodiversity 

and rotation of crops need to be improved (Aiking, 2011). Besides, the exploration of crops 

that can be grown in temperate climates should be encouraged. Legumes that can be grown 

in temperate climates like the north-western parts of Europe are amongst others white 

beans, red kidney beans, broad beans, lupin seeds, rapeseed, several types of peas, and 

since recently also quinoa. 

1.1 Lupin as a novel crop for plant protein 

Lupin seeds have the potential to become a ‘novel’ plant protein source for food products 

because they can be grown in temperate climates as in Northern Europe and on different 

soil types (Berger et al., 2008; Sujak et al., 2006). The potential of lupin as protein source was 

already recognized around World War I, when banquets with amongst others lupin coffee, 

lupin margarine and lupin soup being consumed were reported (Becker-Dillingen, 1929). The 

main drawback of the consumption of lupin seeds was their high level of alkaloids, i.e. bitter 

compounds that made the seed unpalatable and sometimes toxic for human consumption 

(Sujak et al., 2006). In recent years, sweet lupin with an alkaloid content lower than 200 mg/

kg, and thus less toxicity for humans, have been bred, e.g. Australian Lupinus angustifolius, 

Lupinus albus and Andean Lupinus mutabilis (Chew et al., 2003; Ranilla et al., 2009; Wu and 

Sun, 2012). An important advantage of the lupin plant is its ability to fixate nitrogen in the 

soil and thus to improve the soil fertility, and improve crop yields when rotating the crops 

with for example potatoes and wheat (Fumagalli et al., 2014; Honeycutt, 1998; Huyghe, 

1997). With the upcoming shortage of phosphorus, another advantage of the lupin plant is 

its ability to acquire phosphorus from soil when grown under phosphor-deficient conditions 

by a specific root structure: cluster roots (Liao et al., 2012).

Lupin seeds of L. angustifolius L. are composed of a hull (25 wt%) and two cotyledons 



11General introduction

(75 wt%) (Fig 1). The cotyledons are rich in protein (320 - 337 g/kg with a nitrogen-to-

protein conversion factor of 5.7 (Lqari et al., 2002; Oomah and Bushuk, 1983)) and the main 

proteins found in lupin seeds are conglutin-α, -β, -γ and -δ. The proteins contain several 

essential amino acids but are deficient in methionine and cysteine, like many other legumes 

(El-Adawy et al., 2001; Sujak et al., 2006). In combination with cereals, which generally have 

sufficient amounts of methionine and cysteine, most of the essential amino acids can be 

supplied by a plant-based diet (Day, 2013). Lupin seeds contain about 80 g oil/kg in the 

form of oil bodies. Oil bodies have a lipid core that is surrounded by a membrane-like layer 

composed of phospholipids and proteins, making them physically and chemically stable 

against the environment (Fisk et al., 2008; Iwanaga et al., 2007). The oil in the oil bodies of 

lupin seeds is rich in mono- and poly-unsaturated (omega-3 and omega-6) fatty acids (Sbihi 

et al., 2013). The seeds also contain dietary fibres, like celluloses and pectins, but hardly any 

starch (Doxastakis, 2000). Additionally, lupin seeds contain biologically active compounds, 

e.g. phenolic compounds and flavonoids like isoflavones (Ranilla et al., 2009; Siger et al., 

2012). Some of these compounds show anti-oxidant activity, which has been related to 

many health benefits e.g. decreased obesity, decreased insulin resistance and lowering 

elevated blood cholesterol (Arnoldi et al., 2007). The seeds are low in anti-nutritional factors 

like phytates, trypsin inhibitors, and lectins, compared with soybeans (Dijkstra et al., 2003) 

and other grain legumes (Arnoldi et al., 2007), which is advantageous for application in the 

human diet. 

Figure 1 Composition of lupin 
seeds of Lupinus angustifolius 

(adapted from www.lupins.org) 

1.2 Application of lupin

Even though lupin seeds are consumed as a snack in Mediterranean countries, Northern 

Europeans do not eat the seeds as is (Huyghe, 1997). Ingredients prepared from lupin seeds 

are however quite commonly applied in food products. Lupin grits and lupin flour are used 
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in breads, biscuits and pasta for improvement of the appearance and shelf life (Dervas et 

al, 1999; Doxastakis, 2000). Lupin protein concentrate can be added to fish meal because 

of its low viscosity and gelling properties (Draganovic et al., 2013). Lupin protein isolate is 

added to processed meat products like Frankfurters and meat gels, where small amounts of 

the protein have a beneficial effect on processing and sensory perception (Alamanou et al., 

1996; Mavrakis et al., 2003). This is because lupin proteins posess good interfacial properties 

for emulsions and foams (Pozani et al., 2002). Sosulski et al. (1978) evaluated the potential 

of lupin as the protein component in imitation milks. Sironi et al. (2005) showed how the 

individual proteins of lupin can be fractionated and potential applications for these fractions 

were suggested, like fat-reduced spreads, spreadable cheese, emulsified meat products and 

salad dressings because of their emulsifying properties and marshmallows and ice creams 

because of their foaming properties. 

Lupin ingredients might become functional ingredients for the food and feed industry, if 

produced on a commercial scale. The economic feasibility of lupin fractionation processes 

and the functionality of the fractions obtained was reported to require more research 

(Sipsas, 2008). 

1.3 Fractionation processes

Contrary to soybeans, lupin seeds are not processed for the oil because of the low oil 

content, which means that the main component of interest is the protein (Doxastakis, 

2000). Dry fractionation of lupin seeds yields functional, protein-enriched flours (Pelgrom et 

al., 2014). Wet fractionation processes were initially developed for soy and then applied to 

lupin (Doxastakis, 2000). Wet fractionation yields protein concentrates; further purification 

results in protein isolates (>90% protein). The German Fraunhofer Institute (Freising) 

produces high-purity lupin protein isolates from lupin flakes on pilot scale (D’Agostina et 

al., 2006; Wäsche et al., 2001) and on lab scale (Bader et al., 2011; Muranyi et al., 2013; 

Süssmann et al., 2011). This process usually starts with dehulled seeds being ground or 

flaked and subsequently defatted with organic solvents, like hexane or petroleum ether (Fig 

2). 

After oil extraction, acidic and alkaline solubilisation steps are applied to remove anti-

nutritional factors and insoluble carbohydrates from the protein-rich supernatant. The 

protein is then precipitated at its iso-electric point (pI) through addition of ammonium salts 

or with dilute acids. The pH at which the lupin proteins are least soluble is around 4.5 (Ruiz 

and Hove, 1976). Wäsche et al. (2001) and Duranti et al. (2008) named this lupin protein 
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isolate (LPI) ‘LPI type E’. This LPI type E did not contain all the proteins present in lupin 

because e.g. conglutin-γ has a higher pI (around pH 7.6) and therefore does not end up in 

the precipitated protein pellet (Duranti et al., 2008). This protein fraction can be separated 

from the supernatant of the acidic extraction step(s) by ultra- and diafiltration and is called 

'LPI type F' (Fig 2) (Wäsche et al., 2001). These two fractions have a different functionality 

because of the different proteins in these fractions, which have a different solubility. After 

protein extraction, the protein isolates are dried with spray-drying (pilot scale) or freeze-

drying (lab scale).

Figure 2 Lupin protein isolate 
fractionation process based on 

D’Agostina et al. (2006) (pink lines 
show variations on the process) 

and Bader et al. (2011) (green lines 
show variations on the process)

1.4 Alternative, milder fractionation processes

Due to the extraction and drying steps necessary for the production of the protein isolates, 

the sustainable image of using plant proteins for food is negatively impacted (Apaiah et al., 

2006). Therefore, the isolation process should consume less solvent, less water and less 

energy. There are several process steps which show inefficiencies: defatting, the actual 

protein extraction and drying after extraction. From an application point of view, complete 

purification might not be necessary, which would reduce the need for those inefficient 

processing steps. For example, products aiming at replacing animal-based products or 
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animal-based ingredients, may contain other components as well. The plant material that 

should resemble the composition of animal-based products, has to be rich in protein but 

may also contain oil and water and should be low in long-chain carbohydrates. Accordingly, 

fractionation should aim at removing the long-chain carbohydrates instead of the isolation 

and purification of the protein.

Current fractionation processes that focus on achieving purity make use of organic solvents 

like hexane or petroleum ether for oil extraction, which is undesired from a sustainability 

and health perspective. Besides, oil extraction decreases the content of essential amino 

acids, especially cysteine and methionine, which are already minor in lupin seeds (Schindler 

et al., 2011). Avoiding oil extraction is thus preferred. Another drawback of the current 

protein extraction procedure is the use of large amounts of water and chemicals, with 

sample-to-solvent ratios in the range of 1:8 - 1:20 (w/v). Water needs to be removed from 

protein concentrates and protein isolates for chemical and microbial stability (and for 

standardization purposes). However, drying is an energy-intensive process. A third drawback 

is the use of chemicals to alter the pH, which is not environmentally friendly, usually not 

regarded organic and the chemicals have to be removed from the ingredients at the end of 

the process by washing or filtration processes, which requires extra processing steps.

1.5 Novel approach in fractionation of legumes

As stated above, the production of pure ingredients may not be necessary because no food 

product is composed of a single ingredient. The production of ingredients and structuring 

into a food product often follows the upper scheme in Fig 3. However, it is not efficient 

to isolate ingredients with water, evaporate the water for stabilization of the ingredients, 

Figure 3 Upper scheme: conventional ingredient production and product processing route, focusing 
on purity and yield. Lower scheme: new approach, focusing on functionality and sustainability
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and then for the final product, mix the ingredients again with water and then evaporate 

water again through heating to set the structure. It would be more efficient to produce 

fractions that have the desired composition and functionality for the application in mind 

as is depicted in the lower scheme in Fig 3. With this approach, less water and energy will 

be needed and less pure, but functional fractions can be produced (Schutyser and van der 

Goot, 2011). 

In this thesis, dry fractionation and purely aqueous processing are explored as more 

sustainable routes to obtain protein-rich materials from lupin seeds. Dry fractionation 

consumes hardly any energy and no water, but produces functional, protein-enriched 

flours that do still contain other components, such as carbohydrates (Pelgrom et al., 2014). 

Aqueous fractionation omits an oil extraction step, thus skipping the use of organic solvents. 

This implies that lupin flour or flaked lupin seeds are dispersed in water and concentrated 

or isolated under aqueous conditions (Aguilera et al., 1983; Bader et al., 2011; Hojilla-

Evangelista et al., 2004; Jung, 2009; Muranyi et al., 2013; Süssmann et al., 2011). The 

aforementioned authors studied the process parameters of aqueous fractionation and the 

effect of these parameters on the protein yield and protein content of the protein isolates. 

The efficiency of aqueous fractionation processes may be further improved by optimising 

less on purity and yield, and more on functionality of a protein-enriched fraction. This 

may reduce water and chemical consumption. Additionally, less and milder processing is 

beneficial for the quality and functionality of the protein. Minimal processing will also be 

beneficial for the quality and usability of the side streams produced with protein extraction 

processes. Adding value to the side streams can further increase the sustainability of protein 

extraction processes because less waste is produced. 

Depending on the exact composition but more importantly on the method of isolation, 

the functional properties of protein isolates may be improved. Wäsche et al. (2001) 

showed that lupin protein can be a good emulsifier (LPI type E) or foaming agent (LPI 

type F), but this depends on the composition of these protein isolates. Papalamprou et al. 

(2009) reported that milder processing techniques improved the functional properties of 

chickpea protein isolates; milder processing through ultrafiltration increased its solubility, 

reduced the minimum protein concentration needed for gel formation and improved the 

gel elasticity. Ultrafiltration was also shown to improve the solubility behaviour of soy 

protein concentrates and isolates relative to the concentrates obtained with dissolution and 

precipitation (Alibhai et al., 2006). Ultrafiltration of lupin protein isolates resulted in gels at 

lower protein concentration than their conventional counterparts (Kiosseoglou et al., 1999). 
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It is thus interesting to combine these mild processes with aqueous fractionation processes. 

Since drying consumes a lot of energy, it may be interesting to for example skip drying steps 

and replace them with membrane filtration processes like ultrafiltration. The chemical, 

microbial and physical stability of a wet (i.e., not dried) protein isolate may be affected and 

this has, to our knowledge, not yet been reported.

Aqueous fractionation of lupin seeds implies that oil bodies will remain present during 

fractionation. Even though oil bodies are known to be physically and chemically stable, 

processing may influence their stability. Lipid oxidation is one of the primary mechanisms 

of quality deterioration in foods, e.g. the loss of nutritional value and the formation of 

unpleasant flavours and odours. The beany, bitter flavour of many legume protein isolates 

is attributed to the conversion of poly-unsaturated fatty acids to aldehydes, ketones and 

alcohols (Sessa, 1979) and prohibits incorporation into food products. Even though the 

presence of oil might be desired from a nutritional point of view, the oxidative stability of 

the products obtained with aqueous fractionation needs to be assured.

1.6 Aim and outline of the thesis

The overall aim of this thesis was to obtain understanding of the production of functional, 

protein-rich materials from lupin seeds with reduced environmental impact. The research 

can be divided into two objectives relating to the fractionation processes for lupin seeds and 

the functionality of lupin proteins. These topics are interwoven throughout the chapters. 

Chapter 2 compares conventional wet and aqueous fractionation (being conventional wet, 

but excluding de-oiling) processing to obtain lupin protein isolates (LPIs). The compositions 

of the LPIs were not exactly the same because the aqueous process yielded an LPI that 

contains 2 wt% oil, but the functionality of the aqueous-fractionated LPI was similar to that 

of the conventional wet-fractionated LPI. The influence of temperature on the fractionation 

process and protein functionality is also discussed. Chapter 3 describes the differences in 

gelling properties of soy protein isolate (SPI) and LPI. SPI forms a firm gel while LPI forms 

weak and deformable gels. Even prolonged heating to unfold lupin proteins resulted in 

deformable gels. Sulfhydryl reactivity and particle size distribution before and after heating 

were used to explain the differences in the gelling properties between SPI and LPI.

A sustainability assessment of lupin fractionation processes is discussed in Chapter 4. 

Sustainability of processes is assessed with exergy analysis. Exergy is a thermodynamic state 

variable that quantifies the potential work that can be performed with a specific stream. 
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Several indicators like exergy efficiency and exergy losses can be used to calculate and 

visualize inefficiencies in processes or the conversion of raw materials. Dry fractionation was 

found to be the most sustainable route to obtain protein-enriched flours. Wet and aqueous 

fractionation processing were used to further increase the protein content of lupin flour or 

the protein-enriched flour. Wet and aqueous fractionation processing consume water and 

energy for drying of the LPIs, leading to high exergy losses. To reduce water consumption and 

exergy losses, dry and aqueous fractionation processes can be combined to obtain LPIs. The 

consumption of energy can be further reduced by concentrating the LPI to higher protein 

concentrations instead of drying. It was also shown that utilising all side streams for valuable 

products is a key factor in improving the exergetic efficiency of fractionation processes.

The technical functionality of LPIs produced with aqueous fractionation that did not 

receive a drying treatment were compared with the technical functionality of freeze-dried 

LPIs. Chapter 5 reports on the viscosity, solubility and swelling properties of wet and freeze-

dried LPIs. The heat stability of these LPIs was tested; wet LPIs have a higher solubility, 

higher swelling capacity and a higher viscosity upon heating. Freeze-dried LPIs are more 

heat stable than the wet LPIs. The chemical stability of the LPIs and other fractions obtained 

with aqueous fractionation at two processing temperatures (4°C and 20°C) is described in 

Chapter 6. Lipid and protein oxidation marker values were determined and both processing 

temperatures resulted in LPIs with oxidation marker values below the acceptability limits. An 

intermediate heat treatment was applied to inactivate lipoxygenase, but it reduced protein 

and oil recovery and did not reduce oxidation marker values. This implies that cooling of the 

process (4°C) and an intermediate heat treatment are not necessary, herewith reducing the 

environmental impact of the aqueous fractionation process.

Chapter 7 concludes with a general discussion of all results presented in the thesis. It starts 

with summarizing the main findings, after which potentials and bottlenecks of the novel 

fractionation processes are discussed. The chapter ends with a future outlook on further 

scientific research on simplified fractionation processes and potential applications. 
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Aqueous fractionation of protein from lupin seeds was investigated as an 
alternative to the conventional wet fractionation processes, which make 
use of organic solvents. The effect of extraction temperature was studied 
and the consequences for downstream processing were analysed. Omitting 
the extraction of oil with organic solvents resulted in a protein isolate that 
contained 0.02 - 0.07 g oil/g protein isolate, depending on the exact extraction 
conditions. Nevertheless, the protein functionality of the aqueous fractionated 
lupin protein isolate was similar to the conventional lupin protein isolate. 
The protein isolate suspension could be concentrated to 0.25 g/mL using 
ultrafiltration, which provides a relevant concentration for a range of high-
protein products. Based on the results, we conclude that aqueous fractionation 
can be a method to lower the environmental impact of the extraction of 
proteins from legumes that contain water- and dilute salt-soluble proteins.
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Highlights:

- Aqueous and conventional extracted protein isolates had similar protein functionality

- A lengthy heat treatment increased the water holding capacity of the protein isolate

- Ultrafiltration was successful in concentrating the protein isolate to 0.25 g/mL

- Aqueous processing lowers the environmental impact of protein extraction from plants

Chapter 2
The potential of aqueous fractionation 

of lupin seeds for high-protein foods

This chapter has been published as:

Berghout, J.A.M

Boom, R.M.

van der Goot, A.J.

The potential of aqueous fractionation 

of lupin seeds for high-protein foods

in

Food Chemistry (2014) vol 159 

pages 64-74
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2.1 Introduction

Many protein-rich plants are used as animal feed to produce protein-rich products like 

milk, eggs and meat. However, the conversion of plant proteins into animal proteins is 

inefficient (Pimentel and Pimentel, 2003). Even though plant proteins are more abundant, 

direct consumption of protein-rich plants, beans or seeds is limited (Day, 2013). Previous 

studies showed that consumers are willing to switch to plant-based products provided that 

those products have similar taste and texture as their animal-based equivalents (de Boer 

et al., 2006). Important conditions for the development of plant-based alternatives are the 

availability of plant protein concentrates and isolates with high functionality and produced 

in a sustainable manner. Current protein extraction processes are inefficient due to the use 

of organic solvents, acids and bases, and large amounts of water, as a result of which the 

environmental gain is less than theoretically possible (Apaiah et al., 2006; Schutyser and van 

der Goot, 2011).

Lupin is a legume with high protein content and is therefore an interesting raw material 

for plant-based, high-protein products. Additionally, the seeds of lupin are known to have 

beneficial health effects, while the plant accepts versatile breeding conditions (Arnoldi et 

al., 2007; Cerletti and Duranti, 1979; Foley et al., 2011; Fontanari et al., 2012). The sweet 

variety Lupinus angustifolius has a protein content of about 400 g/kg flour and is further 

composed of carbohydrates (480 g/kg of flour), oil (70 - 100 g/kg of flour), minerals and 

water. Its proteins have an excellent amino acid composition (El-Adawy et al., 2001; Lqari 

et al., 2002). 

For use in high-protein food products, the proteins need to be extracted from the seeds. 

Conventional wet extraction processes remove the oil through organic solvent extraction, 

followed by aqueous extraction steps with varying the pH to obtain an almost pure protein 

fraction (Alamanou and Doxastakis, 1995; Jayasena et al., 2011; Kiosseoglou et al., 1999; 

Lqari et al., 2002; Sironi et al., 2005; Süssmann et al., 2011; Wäsche et al., 2001). However, 

the focus on purity might not be necessary as almost no food product consists of a single 

ingredient only. In case the plant material should resemble the composition of animal-based 

food products, it has to be rich in protein, may contain oil and water and it has to be low in 

long-chain carbohydrates. Consequently, fractionation should aim at removing the undesired 

insoluble carbohydrates, rather than obtaining pure protein. For this, aqueous fractionation 

seems to be a suitable method. Aguilera et al. (1983), Chew et al. (2003), Hojilla-Evangelista 

et al. (2004), Jung (2009) and Bader et al. (2011) studied aqueous processing of lupin and in 



21The potential of aqueous fractionation of lupin seeds for high-protein foods

the present study we looked into possibilities to make the process more efficient, for instance 

by using less extraction steps. For example, the low level of alkaloids in Lupinus angustifolius 

(<200 mg/kg, Alimex, the Netherlands) offers the opportunity to omit the acidic extraction 

step at the beginning of the process. Performing all extraction steps with fewer repetitions 

will reduce the use of water and chemicals. Aguilera et al. (1983) and Hojilla-Evangelista et 

al. (2004) obtained protein concentrate fractions with 670 - 790 g protein/kg (N x 6.25), 40 

- 66 g oil/kg, and still 60 - 150 g carbohydrates/kg. Jung (2009) studied aqueous processing 

of lupin flakes where oil and protein were separated. In our case, the presence of oil in 

the protein-rich fraction might be an advantage for the final product composition. Bader 

et al. (2011) obtained protein recoveries of only 430 g/kg for conventional fractionation 

and 420 g/kg for aqueous fractionation, which is lower than protein recoveries of 500 - 600 

g/kg that are usually reported (Chew et al., 2003; D’Agostina et al., 2006; Fontanari et al., 

2012; Jayasena et al., 2011; King et al., 1985; Ruiz and Hove, 1976; Süssmann et al., 2011). 

Generally, the protein isolate or concentrate is dried at the end of the process. This might 

be a redundant step in case the final application contains or requires water, which means 

that the protein powder needs to be rewetted for post-processing. From an environmental 

point-of-view, it is interesting to study methods to concentrate the protein isolate instead 

of drying it to a powder.

This paper investigates aqueous fractionation of lupin seeds in greater detail to obtain 

protein-enriched fractions that have the potential to be used in plant-based, high-protein 

foods. As explained above, the presence of a certain amount of oil in the protein fraction is 

acceptable, which allows the introduction of a simplified fractionation process. In addition 

to the omission of the oil extraction step, the acidic extraction step at the start of the 

process is skipped and all extraction steps are performed once. The effects of extraction 

temperature and pH on protein recovery, chemical composition and techno-functional 

properties are determined. These properties include the water holding capacity and the 

nitrogen solubility index. Because high-protein food products contain water, it is also 

explored how to concentrate the protein. The results are captured in a novel process design 

for aqueous processing.

2.2 Materials and methods

2.2.1 Raw materials and chemicals

Dehulled, untoasted full-fat lupin seeds (Lupinus angustifolius) were obtained from Alimex 

(the Netherlands). All chemicals and reagents used in this study were of analytical grade. 
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Tap water was used throughout unless stated otherwise.

2.2.2 Pre-treatment of the seeds

Lupin was pre-milled to grits with a Condux-Werk pin mill LV 15 M (Condux-Werk, Wolfgang 

bei Hanau, Germany). The grits were further milled into a full-fat flour with a ZPS50 impact 

mill (Hosokawa-Alpine, Augsburg, Germany) with a classifier wheel set at 1000 rpm and the 

air flow at 80 m3/h. The screw feeder was set at 2 rpm (corresponding to circa 0.75 kg/h), 

the impact mill speed was 8000 rpm and the batch size was 1 kg. Part of the full-fat lupin 

flour was used to prepare defatted lupin flour. To extract the oil from the flour, 45 g of full-

fat lupin flour was weighed into a cellulose thimble. Four thimbles (with in total 140 g of full 

fat flour) were mounted onto the fully automated Büchi extraction system B-811 LSV (Büchi 

Labortechnik AG, Flawil, Switzerland). The oil extraction was performed with petroleum 

ether (boiling range 40 – 60°C) in Standard Soxhlet mode for 3 h with a sample-to-solvent 

ratio of 1:6. The extracted oil and the defatted samples were dried in an oven at 105°C until 

constant weight. The petroleum ether was removed by evaporation and recovered within 

the Büchi extraction system.

2.2.3 Preparation of protein isolates

The process conditions used for protein extraction were chosen based on explorative 

experiments and literature data (Fontanari et al., 2012; Lqari et al., 2002; Süssmann et al., 

2011). Seven different protein isolates (PI) were produced. The processing conditions and 

abbreviations can be found in Fig 4. An overview of the conventional fractionation process 

and the newly developed aqueous fractionation (AF) processes are also depicted in Fig 4. The 

conventional lupin PI was produced by dispersing the defatted flour in water using a sample 

to solvent ratio of 1:15. The pH of the dispersion was adjusted and kept at 9 through addition 

of 1 mol/L NaOH. The dispersion was stirred at 20°C for 2 h and subsequently centrifuged 

at 11,000 x g and 20˚C for 30 min. The time between centrifugation and decanting was kept 

as short as possible. The pellet, containing the fibre-rich fraction was freeze dried, while the 

protein-rich supernatant was collected. The pH of the supernatant was adjusted to 4.5 with 

1 mol/L HCl. The dispersion was stirred at 20°C for 1 h and subsequently centrifuged again 

at 11,000 x g at 20°C for 30 min. The supernatant, containing the soluble solids fractions, 

was collected and freeze dried. The pellet, which contains the lupin PI, was washed with 

Millipore water twice and subsequently neutralised to pH 7 with 1 mol/L NaOH and kept at 

20°C overnight. One-third of the protein suspension was kept for post-processing at 80°C 

and the other two-third of the protein suspension was freeze-dried.
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Figure 4 Conventional and aqueous fractionation processes, processing 
conditions and abbreviations for all protein isolates
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The aqueous fractionated lupin protein isolates (AF PIs) were produced by dispersing the 

full-fat lupin flour in water using a sample to solvent ratio of 1:15. The pH of the dispersions 

was adjusted to 9 through addition of 1 mol/L NaOH. The dispersions were stirred at 4˚ C, 20 

˚C, 50˚ C or 90 ̊C for 2 h, depending on the fractionation method (Fig 4), and subsequently 

centrifuged at 11,000 x g and 20˚C for 30 min. The time between centrifugation and 

decanting was kept as short as possible. After centrifugation, an oily layer was visible on 

top of the protein-rich supernatant. This oil could be collected with the supernatant or the 

pellet, but part of the oil remained stuck onto the tube walls. In all experiments, it was tried 

to combine the oil with the supernatant, which eventually becomes the protein-rich fraction. 

The pellets, which contain the fibres, were freeze-dried. The supernatants were collected 

and the pH was adjusted and kept at 4.5 using 1 mol/L HCl. The resulting dispersions were 

stirred at 4˚C, 20˚C , 50 ̊C or 90˚ C for 1 h and then centrifuged at 11,000 x g and 20˚C for 30 

min. The supernatants, representing the soluble solids fractions, were collected and freeze- 

dried. The pellets, which contain the lupin PI, were washed twice with Millipore water to 

remove impurities and sodium chloride.

The protein suspensions were split into four parts for further analysis. One of the parts, 

prepared at 20˚C and pH 4.5 and at 4˚C and pH 4.5, were freeze dried. Another part of 

the protein suspension, prepared at 20˚C and pH 4.5, was kept for ultrafiltration. The 

remaining parts of both protein suspensions and the complete protein suspension at 90˚C 

were neutralised to pH 7. One part of the protein suspension, neutralized to pH 7, was 

kept for post-processing at 80˚C. The protein suspension, produced at 4˚ C, was kept at 

4˚C overnight and those produced at 20˚ C, 50˚C and 90˚C were kept at 20˚C overnight. All 

protein extractions were performed in duplicate.

The dried PI was weighed and the protein recovery was calculated as gram of protein in 

the fraction relative to the gram of protein present in the lupin flour before extraction. Oil 

recovery was calculated as gram of oil in the fraction relative to the gram of oil present in the 

lupin flour before extraction. The protein and oil recovery were corrected for the increase in 

mineral residue by sodium chloride formation.

2.2.4 Post-processing of protein isolate

One part of the wet AF PI at 20˚C and pH 7 and one part of the wet conventional lupin 

PI were heated at 80˚ C for 8 h in a stirring dry bath (2mag magnetic(e)motion, Munich, 

Germany). Even though water holding capacity was already influenced after 30 min of 

heating, we chose to make the effect of heating more pronounced. After heating, the samples 
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were cooled with running tap water and stored for freeze-drying. The heat treatments were 

performed in duplicate.

2.2.5 Ultrafiltration for protein concentration

Approximately 50 mL of the neutralized AF-PI was kept in its wet state. The solution was 

subjected to ultrafiltration in an Amicon stirred cell, 50 mL (Millipore Co. Bedford, USA) 

fitted with a disc membrane with a surface area of 13.4 cm2 made of regenerated cellulose 

with a molecular weight cut-off equal to 5 kDa (Millipore Co. Billerica, USA). Pressurized air 

of 6 bars was put onto the cell and the speed of rotation was set at 1000 rpm to suppress 

concentration polarization on the membrane.

2.2.6 Chemical analyses

The dry matter content was determined by drying 1 g of sample in an oven at 105˚ C 

overnight. The total ash content was determined with AACC official method 08-01 (AACC, 

1983a). The protein content was determined with the Dumas combustion method on 

a NA 2100 Nitrogen and Protein Analyser (ThermoQuest-CE Instruments, Rodeno, Italy). 

Methionine was used as standard during the analysis. The protein content was calculated 

with a nitrogen-to-protein conversion factor of 5.7 that is used for seed storage proteins 

and a nitrogen-to-protein conversion factor of 6.25 to facilitate comparison with literature. 

The residual fat content in each fraction was determined with the Standard Soxhlet mode 

according to AACC method 30-25 (AACC, 1983b). The oil extraction was performed with 

petroleum ether (boiling range 40 - 60˚ C). It was tested that the oil extraction values obtained 

with petroleum ether were similar to values obtained with hexane. The carbohydrate 

content of the flour was calculated as the difference of the dry matter content and the other 

components measured (protein, oil, and mineral residue).

The protein composition of the samples was determined with non-reducing sodium 

dodecyl sulphate (SDS) polyacrylamide gel electrophoresis. The samples were diluted to a 

protein concentration of 0.01 g/mL. A sample of 100 μL was mixed with 200 μL of 0.02 g/mL 

SDS-0.13 MTris–HCl buffer (pH 6.8) solution. The samples were heated at 95˚C for 4 min in 

a heating block, and cooled to room temperature in about 30 min. Samples were separated 

on a 12% Tris–HCl SDS-ready gel in a Bio-Rad Mini-Protean cell (Bio-Rad Laboratories 

Inc., Hercules, USA). The cell was filled with 1 L of running buffer. The running buffer was 

prepared by diluting a stock solution of 0.03 g/mL Tris base, 0144 g/mL glycine and 0.01 g/

mL SDS ten times with Millipore water. Subsequently, 15 μL of sample was applied on the 

gel. At one of the outside wells of the gel, a marker ranging from 7 kDa to 207 kDa (Bio-Rad 



26 Chapter 2

Laboratories Inc., Hercules, USA) was applied. The gels were run at 200 V for approximately 

45 min. Afterwards, the gels were washed three times for 5 min with Millipore water to 

remove the remains of the buffer. Staining was done with Bio-Safe Coomassie Stain (Bio-Rad 

Laboratories Inc., Hercules, USA) for one hour. Finally, the gels were washed with Millipore 

water and scanned with an Imagescanner III (GE Healthcare Bio-Sciences, Little Chalfont, 

UK).

2.2.7 Water holding capacity

The water holding capacity (WHC) was determined according to the official method AACC 

56-30 (AACC, 1983c). The approximate WHC value is defined as the maximum amount of 

water that 1 g of sample will absorb and subsequently retain under low-speed centrifugation 

(2000 x g, 20˚ C for 10 min). The sample was placed into pre-weighed 50 mL Greiner tubes 

and demineralised water was added in small amounts until a supernatant and pellet could be 

distinguished. This method ensures that no soluble material is extracted from the material.

2.2.8 Nitrogen solubility index

The nitrogen solubility index (NSI) was determined according to the method described by 

King et al. (1985) and Mohamed et al. (2005). The lupin PIs were suspended in demineralised 

water at a concentration of 0.01 g/mL. The suspensions were shaken at room temperature 

for 1 h and then centrifuged (3000 x g, 25 ̊C for 15 min). The supernatants and pellets were 

dried and analysed for protein content with the Dumas combustion method. The NSI was 

taken as the fraction of soluble nitrogen to total nitrogen.

2.2.9 Statistical analysis

The results are presented as mean ± absolute deviation on a dry weight basis. Student 

t-tests were performed to evaluate the differences between the fractionation processes. 

Differences between means were considered to be significantly different when P was 

smaller than 0.05.

2.3 Results

2.3.1 Protein and oil recovery

The full-fat lupin flour contained 945 g dry matter/kg, of which 347 g was protein (N  x 5.7), 

95 g oil and 26 g mineral residue. Due to the extraction of oil, the protein content of the 

fullfat lupin flour is lower than that of defatted lupin flour. After oil extraction, the defatted 

lupin flour contained 929 g dry matter/kg, of which 405 g was protein (N x  5.7) and 35 g 
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mineral residue while there was no residual oil that could be extracted with a second batch 

of petroleum ether.

Conventional fractionation from defatted lupin flour resulted in foam formation inside 

the centrifuge tubes. Apart from the foam, the separation of the fibre-rich pellet from 

the supernatant afterthe first centrifugation step was difficult, because the pellet was 

not solid but fluid. The fibre-rich pellet obtained with the aqueous fractionation (AF) 

process was more solid. The distribution of protein over the fractions of the conventional 

fractionation process and the AF process at 20˚C and pH 7 was hardly influenced by the 

type of fractionation process (Table 1), suggesting that both the foam formation and a fluid 

pellet did not influence the extraction process as such. Most of the protein ended up in 

the protein-rich fractions, which is in agreement with previous studies (D’Agostina et al., 

2006; Fontanari et al., 2012; King et al., 1985; Kiosseoglou et al., 1999). The lowest protein 

Table 1 Protein recoveries (g/g) and oil recoveries (g/g) on a dry weight 
basis of each fraction for each fractionation process

Sample Protein recovery (g/g) Oil recovery (g/g)

Conventional 
fractionation 

20ºC pH 7

Protein-rich fraction 0.61 ± 0.01 0.00 ± 0.00

Soluble solids fraction 0.22 ± 0.01 0.00 ± 0.00

Fibre-rich fraction 0.22 ± 0.01 0.00 ± 0.00

Aqueous 
fractionation         

4ºC pH 7

Protein-rich fraction 0.61 ± 0.00 0.05 ± 0.02

Soluble solids fraction 0.21 ± 0.00 0.00 ± 0.00

Fibre-rich fraction 0.15 ± 0.01 0.53 ± 0.03

Aqueous 
fractionation 

20ºC pH 7

Protein-rich fraction 0.60 ± 0.01 0.07 ± 0.00

Soluble solids fraction 0.18 ± 0.03 0.00 ± 0.00

Fibre-rich fraction 0.18 ± 0.01 0.68 ± 0.01

Aqueous 
fracionation 
50ºC pH 7

Protein-rich fraction 0.53 ± 0.00 0.06 ± 0.00

Soluble solids fraction 0.29 ± 0.00 0.00 ± 0.00

Fibre-rich fraction 0.14 ± 0.01 0.53 ± 0.04

Aqueous 
fractionation 

90ºC pH 7

Protein-rich fraction 0.60 ± 0.02 0.29 ± 0.07

Soluble solids fraction 0.22 ± 0.00 0.00 ± 0.00

Fibre-rich fraction 0.18 ± 0.01 0.45 ± 0.08

Aqueous 
fractionation         
4ºC pH 4.5

Protein-rich fraction 0.64 ± 0.07 0.21 ± 0.02

Soluble solids fraction 0.21 ± 0.02 0.00 ± 0.00

Fibre-rich fraction 0.15 ± 0.00 0.62 ± 0.04

Aqueous 
fractionation 
20ºC pH 4.5

Protein-rich fraction 0.60 ± 0.02 0.12 ± 0.02

Soluble solids fraction 0.22 ± 0.02 0.00 ± 0.00

Fibre-rich fraction 0.13 ± 0.02 0.56 ± 0.09
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recovery in the protein-rich fraction was found for the AF at 50˚C and pH 7. In this experiment 

the fluidity of the pellet troubled the separation of the fibre-rich pellet from the protein-

rich supernatant. For all other conditions, about 0.60 g/g of the protein was recovered 

in the protein-rich fractions. The division of oil over the various fractions was influenced 

by the extraction procedure. The higher the temperature during extraction, the more oil 

was recovered in the protein-rich fraction and subsequently less oil was recovered in the 

fibre-rich pellet (Tables 1 and 2). None of the supernatants contained any oil that could be 

extracted with the Soxhlet method. For oil, the mass balances do not add up completely. 

Amongst others, this is caused by about 0.5 g of dry matter remaining in the centrifuge 

tubes after centrifugation, due to the dimensions of the tubes. In case this fraction is mainly 

oil, it is about 0.19 g/g oil present in the system.

Except for the protein-rich fractions produced at 50˚C and 90˚ C, all protein-rich fractions 

had a protein content higher than 0.90 g/g with a nitrogen-to-protein conversion factor 

of 6.25 (Table 2), which is the technical requirement for a protein isolate (PI) according 

to the Codex Alimentarius for vegetable proteins (FAO, 2001). The PI obtained with the 

conventional fractionation process had a slightly, but not significantly, higher protein content 

than the AF PI under the same conditions. Removal of the oil from the AF PI prepared at 

20°C and pH 7 would give almost exactly the same protein content as the conventional PI. 

The conventional PI has a slightly lower protein content (N x 5.7) than those reported by 

Alamanou and Doxastakis (1995) and Süssmann et al. (2011) who used more purification 

steps, but similar protein content to Rodriguez-Ambriz et al. (2005) when re-calculating 

their results with a nitrogen-to-protein conversion factor of 5.7. The protein content of the 

AF PIs was in range with the values reported by Bader et al. (2011) and Jung (2009) when 

re-calculating their results with the nitrogen-to-protein conversion factor of 5.7.

Next to protein and oil, the PIs consisted of mineral residue and most likely soluble sugars. 

In contrast to the PIs, the fibre-rich pellet and the soluble solids fraction were not washed. 

The sodium chloride resulting from the pH adjustment steps is water soluble, and thus adds 

to the mineral content of those samples. It can be calculated that the mineral content will 

increase with a factor 10 when the sample is neutralized to a pH of 7.

2.3.2 Composition and functionality

As described above, the protein content and protein recovery were hardly influenced by 

the changes in conditions during fractionation, except at 90˚ C. These extraction conditions 

also resulted in a strong off-odour, while the addition of hydrochloric acid resulted in 
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Table 2 Protein content for N x 5.7 and N x 6.25 (g/g), oil content (g/g) and ash content 
(g/g) on a dry weight basis of each fraction for each fractionation condition

Figure 5 SDS–page on 12% Tris–HCl gel, 1. AF PI 4°C pH 4.5, 2. AF PI 20°C pH 4.5, 3. AF PI 50°C pH 
7, 4.AF PI 90°C pH 7, 5.AF PI 4°C pH 7, 6. Conventional PI 20°C pH 7, 7. AF PI 20°C pH 7, M. marker

Sample Protein content Nx5.7 
(Nx6.25) (g/g)

Oil content (g/g) Ash content (g/g)

Conventional 
fractionation 

20ºC pH 7

Protein isolate 0.85 (0.93) ± 0.01 0.00 ± 0.00 0.04 ± 0.00

Sol solids fraction 0.31 (0.35) ± 0.01 0.00 ± 0.00 0.12 ± 0.00

Fibre-rich fraction 0.22 (0.24) ± 0.00 0.00 ± 0.00 0.04 ± 0.00

Aqueous 
fractionation 

4ºC pH 7

Protein isolate 0.83 (0.91) ± 0.03 0.02 ± 0.01 0.02 ± 0.01

Sol solids fraction 0.29 (0.31) ± 0.02 0.00 ± 0.00 0.00 ± 0.00

Fibre-rich fraction 0.11 (0.12) ± 0.00 0.11 ± 0.01 0.11 ± 0.01

Aqueous 
fractionation 

20ºC pH 7

Protein isolate 0.82 (0.90) ± 0.00 0.02 ± 0.00 0.02 ± 0.00

Sol solids fraction 0.28 (0.31) ± 0.01 0.01 ± 0.01 0.14 ± 0.01

Fibre-rich fraction 0.13 (0.14) ± 0.00 0.14 ± 0.00 0.01 ± 0.00

Aqueous 
fractionation 

50ºC pH 7

Protein isolate 0.81 (0.89) ± 0.01 0.02 ± 0.00 0.03 ± 0.00

Sol solids fraction 0.37 (0.40) ± 0.00 0.00 ± 0.00 0.11 ± 0.00

Fibre-rich fraction 0.11 (0.12) ± 0.00 0.11 ± 0.01 0.03 ± 0.00

Aqueous 
fractionation 

90ºC pH 7

Protein-rich fraction 0.72 (0.79) ± 0.00 0.09 ± 0.02 0.03 ± 0.00

Sol solids fraction 0.32 (0.35) ± 0.01 0.00 ± 0.00 0.12 ± 0.01

Fibre-rich fraction 0.13 (0.14) ± 0.00 0.09 ± 0.02 0.03 ± 0.00

Aqueous 
fractionation 
4ºC pH 4.5

Protein isolate 0.84 (0.92) ± 0.05 0.07 ± 0.01 0.01 ± 0.00

Sol solids fraction 0.29 (0.31) ± 0.02 0.00 ± 0.00 0.13 ± 0.00

Fibre-rich fraction 0.11 (0.13) ± 0.00 0.12 ± 0.01 0.02 ± 0.00

Aqueous 
fractionation 
20ºC pH 4.5

Protein isolate 0.85 (0.93) ± 0.00 0.04 ± 0.01 0.01 ± 0.00

Sol solids fraction 0.33 (0.36) ± 0.00 0.01 ± 0.01 0.11 ± 0.00

Fibre-rich fraction 0.12 (0.13) ± 0.00 0.12 ± 0.02 0.03 ± 0.01

Means ± absolute deviation (n=2)
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flocculation of the proteins. The final PI was grey, whereas all other PIs were yellowish. At 

4˚C no off-odour was noted and a yellow protein pellet was obtained.

To check the protein composition of the PIs, sodium dodecyl sulphate polyacrylamide gel 

electrophoresis (SDS–page) analysis was performed (Fig 5). The protein composition of the 

aqueous protein isolate and the full-fat lupin flour were similar (results not shown). Most 

protein bands were found within the range of 20 - 90 kDa, which is a common range for 

lupin proteins (Fontanari et al., 2012; Nikolić et al., 2012). The patterns on the SDS-gel were 

similar for all PIs, except for the AF PI at 90˚ C and pH 7, which had less pronounced protein 

bands in the higher molecular weight region. This indicated that higher molecular weight 

proteins had a reduced solubility after extraction at 90˚ C and thus did not end up in the 

supernatant that was transferred onto the gel.

The water holding capacity (WHC) of the conventional and AF lupin PIs at 4˚C, 20˚C and 

50˚ C with pH 7 could not be determined (Table 3). Even with an excess of water, no distinct 

pellet was formed after centrifugation. Instead of forming a pellet, the solids remained 

dispersed in the water after centrifugation, and no gel was obtained. The PIs obtained 

without the neutralisation step did show a distinct pellet after centrifugation and yielded 

WHCs of about 1 mL/g protein. Heat treatment of the conventional PI and the neutralised 

AF PI increased the WHC further to values of about 3.5 mL/g protein. The highest WHC 

was found for the PI produced at 90˚ C. Our hypothesis is that the fact that lupin proteins 

at pH 7 do not sediment upon centrifugation and remain dispersed could be related to 

the formation of a fluffy conformational structure. At their iso-electric point (pI 4.5) the 

charge on the proteins decreases and the protein can adopt a more compact conformation. 

Table 3 Water holding capacity (mL/g protein) and nitrogen solubility 
index (g/g)of conventional and aqueous lupin protein isolates

Sample Water holding capacity (ml/g protein) Nitrogen solubility index (g/g)

Conventional PI
20ºC pH 7 Dispersion (no distinct layer 

after centrifugation)
0.95 ± 0.00 

HTa 80ºC 8 hr 4.3 ± 0.4 0.97 ± 0.02

Aqueous PI

4ºC pH 7
Dispersion (no distinct layer 

after centrifugation)

0.90 ± 0.02

20ºC pH 7 0.92 ± 0.02

50ºC pH 7 0.86 ± 0.02

90ºC pH 7 3.9 ± 0.0 0.76 ± 0.01

4ºC pH 4.5 1.1 ± 0.0 0.68 ± 0.04

20ºC pH 4.5 1.3 ± 0.1 0.42 ± 0.03

HTa 80ºC 8 hr 3.5 ± 0.2 0.79 ± 0.00
Means ± absolute deviation (n=2) 
a HT = Heat Treated
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Also upon heating proteins undergo transformations, which cause conformational changes 

and even association or dissociation. Probably, those transformations are a prerequisite 

for the formation of a pellet. There was no statistically significant difference in nitrogen 

solubility index (NSI) between the conventional lupin PI and the AF lupin PI at 20˚ C and pH 

7. A significantly lower NSI was found for the PI at 90˚ C and pH 7, the heat treated PI and 

for the PIs at pH 4.5. The lowest NSI was found at pH 4.5, where the proteins are at their 

iso-electric point and therefore least soluble.

2.4 Discussion

The application of protein isolates in plant-based, high-protein foods asks for an 

environmentally benign method for the production of the protein isolates. Insoluble 

carbohydrates, like fibres need to be removed and the protein content enhanced. We will 

here discuss the suitability of aqueous fractionation methods for this aim.

2.4.1 Potential of aqueous fractionation processes for protein isolation

The conventional approach to make plant-based alternatives from legume seeds is to 

separate the materials into their pure constituents and then blend these into the final 

composition of the food product. This is not efficient: conventional fractionation of legume 

materials requires so much chemicals for extraction and energy for drying of the ingredients 

that the overall potential for improving the sustainability of our food when for example 

replacing animal proteins is significantly reduced (Apaiah and Hendrix, 2005; Day, 2013). 

It is more efficient to directly prepare a protein-rich fraction with the desired composition 

and functional properties for its use in the final products, e.g. the incorporation of aqueous 

extracted lupin protein concentrates in bread dough (Dervas et al., 1999) and lupin protein 

extracts for protein-based beverages due to its low viscosity (Chew et al., 2003). In our case, 

fractionation should aim at removing the undesired insoluble carbohydrates, rather than 

obtaining pure protein isolates.

Aqueous fractionation (AF) was successfully applied to obtain protein isolates with 0.02 

- 0.07 g oil/g protein isolate. The solubility of the protein isolates (PIs) was influenced 

by the water temperature during extraction. The solubility of the proteins was high at 

4˚ C, enhancing high protein recoveries and high protein content of the protein isolate. 

Additionally, the microbial stability of the system at 4˚ C will be high and enzymatic reactions 

are known to be suppressed at this temperature (Yoshie-Stark and Wäsche, 2004). Aqueous 

fractionation at 90 ̊C would even inactivate micro-organisms and enzymes.
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To produce semi-solid high-protein foods, proteins need to form a gel or even solidify at 

water holding capacities (WHC’s) of about 3 mL/g protein. Interestingly, the water holding 

capacity of the protein isolate produced at 90˚C lies in the desired range for these high-protein 

foods. However, during fractionation at 90˚ C off-odours were noticed and colour changes 

were perceived indicating undesired chemical transformations in the PI. Experimentally we 

found that applying a post-process heating step at 90˚ C using the protein isolate produced 

at 4˚C led to an increase in WHC, which seems a suitable option because this procedure did 

not give off-odours. Only the yellow colour turned slightly paler. Based on these results and 

the fact that the use of organic solvents was omitted, we think that the AF process at 4˚ C 

has potential to replace conventional fractionation, while an additional heat treatment can 

be used to tune the final functional properties.

2.4.2 Towards a novel process design for fractionation processes

In conventional processes, fractionation is followed by a drying step to stabilise the protein 

isolate. This might not be necessary in case the final application contains or requires water. 

Therefore, it was explored whether this drying step could be omitted. The AF process gives 

a PI in suspension with a dry matter content of about 0.04 g/mL. This means that a large 

part of the water needs to be removed for most applications. Because the PI is completely 

soluble up to high concentrations (>0.20 g/mL), concentration can be achieved with 

membrane (ultra)filtration. Ultrafiltration (UF) is more energy efficient than evaporation and 

has high protein recoveries while small solutes, such as sugars and salts, will be removed 

to a certain extent. We tested UF at room temperature and observed that it was possible 

to concentrate the 0.04 g/mL protein suspension into a 0.25 g/mL protein dispersion. This 

concentration is relevant for high-protein food applications (Purwanti et al., 2010) such 

as meat analogues, low viscosity protein beverages, ice cream based on lupin or fish feed 

(Draganovic et al., 2014). Given the short shelf life of products with a high water content 

(and consequently a high water activity), the protein isolate needs to be processed within 

short time after extraction. However, in current industrial process chains, spray drying might 

remain necessary to stabilise the protein isolate and allow storage time before application. 

The results presented indicate the possibility to separate proteins, oil and carbohydrates 

using the natural properties of the raw material in an aqueous dispersion, without using 

organic solvents and minimal use of acid and base. Further, it might be possible to control 

the oil content in the AF PI fraction without resorting to organic extraction. During the 

experiments, an oily layer was visible on top of the supernatant after the first centrifugation 

step, which could be either decanted with the supernatant or retained onto the pellet. If 
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Figure 6 Novel aqueous fractionation process at 4°C with conventional oil 
extraction for the fibre-rich pellet and ultrafiltration for the protein isolate
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desired, the fibre-rich fraction could be defatted to collect the oil that did not end up in the 

protein isolate, using for example conventional oil extraction. Since the mass of this fibre-

rich fraction is only one third of the initial mass of the flour, it will reduce the amount of 

organic solvents needed for defatting, and avoid any solvent residues in the protein fraction. 

Consequently, the novel, simplified AF process for lupin protein fractionation can be adapted 

as is depicted in Fig 6. It can be expected that the process will apply for other legumes or 

oilseeds that contain water- and dilute salt-soluble proteins as well.

2.5 Conclusion

Modern fractionation processes should be environmental friendly and focus on 

functionality rather than molecular purity. Besides, when connected to the application, 

complete drying of the protein isolate might not be necessary and can be replaced with a 

concentration process, for example through the use of membranes. This was the motivation 

to study the potential of aqueous fractionation to prepare a protein-enriched fraction from 

lupin seeds. The procedure omits the use of organic solvents and yields protein isolates 

that contain 0.02 - 0.07 g oil/g protein isolate. The protein content of the aqueous protein 

isolate is similar to that of protein isolates obtained with conventional extraction processes. 

Moreover, the functional properties such as water holding capacity and nitrogen solubility 

were in the same range and could be adjusted using an additional heat treatment. The use 

of ultrafiltration after protein extraction at 4˚C yields stable protein dispersions of up to 

0.25 g/mL in water, which might be relevant for a range of high-protein food applications. To 

increase the shelf life of the protein isolate, UF may be followed by spray drying. If desired, 

the oil,which ends up for 0.50 - 0.60 g/g in the fibre-rich fraction, can be recovered by an 

additional oil extraction step. Overall, it seems that scope exists to lower the environmental 

impact of the extraction of water- and dilute salt-soluble proteins from legume materials. 

this is required to facilitate the transition from animal-based protein foods towards plant-

based protein foods in a sustainable manner.
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The gelling properties of lupin protein isolate (LPI) were compared with those 
of soy protein isolate (SPI). It was found that LPI behaves fundamentally 
different than SPI, evidenced by the formation of weaker and deformable 
gels. Further investigation shows that both protein isolates can be considered 
particle gels and that LPI particles do not swell as much as SPI particles 
inside the network. Besides, heating hardly affects LPI particles while SPI 
particles show additional swelling. To explain the differences, the sulfhydryl 
reactivity of LPI was tested. The amount of free sulfhydryl groups on LPI 
was higher than the amount of free sulfhydryl groups on SPI. Upon heating 
the amount of free sulfhydryl groups on LPI increases. We hypothesize that 
the compact, heat stable structure of the protein particles suppresses the 
intermolecular bonding through disulphide bridge formation and favours 
intramolecular crosslinking. The small sulphur-rich proteins that are not 
incorporated within the particles but are present in the surrounding solution 
cannot strengthen the particle network, due to their low concentration. 
LPI did not form gels of similar consistency as SPI and may therefore be 
less useful for solid food products. The thermal stability of LPI could offer 
opportunities for high-protein foods that require low viscosity after heating.
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Chapter 3
Understanding the differences in 
gelling properties between lupin 

protein isolate and soy protein isolate

Highlights:

- Lupin protein isolate forms weaker heat-induced gels than soy protein isolate

- Lupin protein isolate and soy protein isolate form particle gels

- Lupin protein particles are heat stable

- The sulfhydryl reactivity of lupin protein isolate increases upon heating

- The concentration of free SH groups on soluble proteins is too low for strong gels
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3.1 Introduction 

Legume seed proteins have gained increased attention due to their favourable nutritional 

and functional properties for modern food production (Batista et al., 2005; Day, 2013; Makri 

et al., 2005). The traditional raw materials for many plant-based alternatives to animal-

based foods are soybeans and wheat and lately also peas and lupin can be found in these 

alternatives. Animal-based foods are mainly composed of protein, water and oil. Soybeans 

and lupin seeds are rich in protein, contain oil and are low in starch, while peas and wheat 

are high in starch. Soybeans do not grow in temperate areas though and therefore rely 

on a long supply chain while lupin can be grown in moderate climates areas as Northern 

Europe. Therefore, more research focuses on legumes that can be grown in moderate 

climate countries, like pea and lupin (Batista et al., 2005; Cai et al., 2002; Dijkstra et al., 

2003; Drakos et al., 2007; Fontanari et al., 2012; Hojilla-Evangelista  et al., 2004; Kiosseoglou 

et al., 1999; Makri et al., 2005; Mohamed et al., 2005; Swanson, 1990). Lupin seeds are 

interesting as food ingredient because of their high protein content, which is at least similar 

to that of soybeans. Currently, soy protein isolates and concentrates are mainly used in 

plant-based products because of their excellent gelling and structuring behaviour (Banerjee 

and Bhattacharya, 2012; Day, 2013). Many other legumes and oilseeds do not possess these 

functional properties naturally and that is why soybeans are taken as a benchmark. For 

example, pea and lupin protein isolates are reported to form weaker heat-induced gels than 

soy protein isolates (SPI) (Batista et al., 2005). The low gelling capacity made lupin an ideal 

protein source for replacing fish meal in fish pellets (Draganovic et al., 2014). 

Food gels can be considered high-moisture, 3D polymeric networks that resist flow 

and retain their distinct structural shape upon deformation (Banerjee and Bhattacharya, 

2012). Food gels are a continuous network of assorted macromolecules or interconnected 

particles dispersed in a continuous liquid phase, for which the properties are determined 

by the components present in the network. For example, differences in gel strength and 

deformability are related to differences in protein molecular weight and the hydrodynamic 

size of the polypeptides in the gel (Renkema, 2001; Totosaus et al., 2002). Gel formation 

of plant proteins can be induced through heating, which leads to transformations such 

as molecular unfolding, dissociation-association and aggregation (Batista et al., 2005; 

Damodaran et al., 2008). An unfolded protein exposes functional groups on the surface 

of the protein such as hydrophobic, hydrogen, electrostatic and sulfhydryl groups. After 

protein unfolding, protein aggregates are formed through hydrophobic interactions and 

strengthened further due to the formation of disulphide bridges (Wang and Damodaran, 
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1991). The role of disulphide bridges in protein gelation is related to their ability to increase 

the protein molecular weight and hence the chain length, rather than acting as an initial 

network stabilizer (Clark, 1998; Wang and Damodaran, 1990). 

Soy and lupin flour both contain globular proteins, more specifically salt-soluble globulins 

and water-soluble albumins in a ratio of 9:1. During the production of protein isolates part 

of the water-soluble albumins are lost, enriching the protein isolate in globulins (Berghout 

et al., 2014; Lqari et al., 2002). Batista et al. (2005) established a relationship between the 

gelling ability of soy, pea and lupin protein isolates and their resistance to thermal unfolding. 

SPI formed strong gels, which was associated with more protein unfolding during and 

after thermal treatment. LPI formed only weak gels and the authors stated that this was 

because the unfolding of LPI upon heating was not significant due to its high denaturation 

temperature. However, it remains interesting to explore the nature of those differences. The 

reduced thermal unfolding of LPI might be related to the ratio of polar and non-polar amino 

acids present in LPI and SPI. Fisher (1964) introduced the polarity ratio p, which is the ratio 

of polar to non-polar volume of amino acid residues. This ratio is 1.7 for lupin flour and 1.4 

for soy flour, which means that both have very polar proteins. The small difference between 

lupin and soy flour probably does not explain the major differences in gelling properties 

of SPI and LPI. The accessibility of sulfhydryl groups on LPI upon heating might play a role, 

though this has not been reported yet. 

In this study we further explore the differences between LPI and SPI’s functional properties 

and investigate the effect of an altered gelling process, such as prolonged, high temperature 

heat treatments, on LPIs gelling properties. Small deformation rheology is used to identify 

the differences between LPI and SPI dispersions and gels for 12 - 30% (w/v) protein and 

at 95°C. The swelling behaviour of LPI and SPI on macroscopic scale is studied with light 

microscopy and laser scattering. The differences between SPI and LPI on microscopic 

scale are investigated by the determination of the size of their protein subunits and by 

quantification of the amount of free sulfhydryl groups for disulphide bridge formation.

3.2 Materials and methods 

3.2.1 Materials 

Soy protein isolate (SPI), Supro 500E IP, was kindly provided by Barentz, the Netherlands. 

This product contained at least 90% protein (N x 6.25) and was not chemically modified 

after isolation according to the manufacturer’s specifications. Lupin protein isolate (LPI) 
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with a protein content higher than 90% (N x 6.25) was prepared in-house, with the aqueous 

fractionation method as described previously by Berghout et al. (2014), from untoasted 

lupin seeds (LI Frank, Twello, the Netherlands). All reagents used were of analytical grade 

unless otherwise stated.

3.2.2 Methods

3.2.2.1 Preparation of protein dispersions and gels 

Prior to gelling, the protein isolates were dispersed into Millipore water in 15 mL Falcon 

tubes at room temperature. The pH of the SPI dispersions varied between 7.1 and 7.2. The 

pH of the LPI dispersions varied between 6.8 and 7.0. The protein dispersions were stirred 

with a glass rod until completely wetted. The concentrations used were 12, 15, 18 and 24% 

(w/v) for SPI and 12, 15, 18, 24 and 30% (w/v) for LPI. After viscosity measurements (see 

3.2.2.4 Small deformation rheology), the dispersions were heated in a water bath at 95°C 

and kept for 30 min. The dispersions were cooled with running tap water and subsequently 

stored at 4°C for 24 h. Two additional LPI dispersions of 30% (w/v) were prepared; the 

first dispersion was heat-treated in a water bath at 80°C and kept for 30 min, the second 

dispersion was heat-treated at 80°C and kept for 8 h. Both protein dispersions were cooled 

with running tapwater and stored at 4°C for 24 h. The protein dispersion heated at 80°C for 

30 min was re-heated to 130°C in an in-house developed shearing device (van der Zalm et 

al., 2012) for about 10 min and then cooled down to 10°C. All dispersions and gels were 

prepared in duplicate.

3.2.2.2 Differential scanning calorimetry 

Differential scanning calorimetry (DSC) measurements were performed with a Diamond 

DSC (PerkinElmer, USA) using stainless steel pans. About 10 mg of sample was weighed 

into the pans. The DSC analyser was calibrated with indium and an empty pan was used for 

reference. Samples were scanned between 20°C and 130°C with a heating rate of 10 °C/min. 

Measurements were analysed for peak temperature and enthalpy of denaturation.

3.2.2.3 Light microscopy 

An upright microscope Axioscope (Carl Zeiss Microscopy, LLC, United States) with camera 

was used to inspect the samples. The LPI and SPI powders were dissolved in Millipore water 

at 1% (w/v) and mixed at 900 rpm for 1 h on a Multi Reax vibrating shaker (Heidolph, Essex, 

UK). One LPI dispersion and one SPI dispersion were heated at 90°C for 30 min and cooled 

under running tapwater. The samples were prepared on a glass slide at room temperature 

and covered with a cover slip. Snapshots of 100 x, 200 x and 400 x magnification were taken.
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3.2.2.4 Small deformation rheology 

The protein dispersions were transferred to a rheometer (Anton Paar Physica MCR301, 

Graz, Austria) using a cone-plate geometry (CP-20-2). The samples were equilibrated for 5 

min; subsequently the flow properties were determined at 25°C using a shear rate range 

from 1 to 100 s-1. The flow properties of the protein gels were determined with plate-plate 

geometry (PP-25/P2) under the same conditions as the protein dispersions. Amplitude 

sweeps were performed to find the linear viscoelastic region of SPI and LPI gels. A frequency 

sweep test was performed on the protein gels with cone-plate geometry (CP-20-2) at 

constant strain (0.1%) and increasing angular frequency (0.1 - 10 rad/s) at 25°C. The gels 

were equilibrated for 10 min. Tangent delta (tan δ = G’’/G’) was calculated from frequency 

sweep data at 1 rad/s (within LVE).

3.2.2.5 Static laser scattering 

For particle size analysis, 1% (w/v) protein isolate was dispersed in Millipore water in a 15 

mL Falcon tube. For each protein isolate, five tubes were prepared: one tube was kept at 

room temperature, three tubes were heated at 75°C, 85°C or 95°C for 30 min, and one tube 

was heated at 80°C for 8 h. Additionally, one tube of 1% (w/v) LPI was heated at 90°C for 8 

h. The particle size distribution was estimated by laser diffraction with a Mastersizer-2000 

particle size analyser (Malvern Instruments Ltd., UK) with a wet module (Hydro SM). The 

Mastersizer measured the percentage volume particle size distribution (PSD) from which we 

calculated the percentage cumulative volume PSD.

3.2.2.6 High Performance-Size Exclusion Chromatography

The method used for High Performance-Size Exclusion Chromatography (HP-SEC) was 

based on a method previously used for soy proteins (Kuipers et al., 2006). Samples were 

dissolved in 500 mL of 0.15M Tris-HCl pH 8, containing 8M guanidine chloride and 0.1M 

1,4-dithiothreitol. The final protein concentration was 20 mg/mL. Samples were mixed for 

45 min. To the samples, 215 mL of acetonitrile containing 2% (v/v) trifluoretic acid (TFA)

was added. After mixing for another 45 min, samples were centrifuged (1000 x g, 10 min, 

20°C). The supernatant was pipetted into Eppendorf tubes and 10 mL was separated using 

a Phenomenex BioSep-SEC-S 4000 300 x 7.8 mm column (Phenomenex, Torrance, USA) by 

HPLC (Thermo Scientific, Sunnyvale, USA) operated with Chromeleon software (Dionex Corp., 

Sunnyvale, USA). The flow rate was 0.5 mL/min and the absorbance was monitored at 280 

nm. The running buffer was a solution of 6M urea + 1% (v/v) TFA. The column was calibrated 

using various proteins in a molecular mass range of 1.35 kDa - 670 kDa. To determine the 
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ratios of small and large protein subunits, the peaks were split up into four areas: 5 - 10 kDa, 

10 - 20 kDa, 20 - 50 kDa and 50 - 500 kDa. The surface areas under the chromatograms were 

used to estimate the relative amount of protein subunits. 

3.2.2.7 Sulfhydryl content 

The sulfhydryl reactivity was measured according to the method described by Van Horn 

et al. (2003), Alting et al. (2003) and Purwanti et al. (2011) with some modifications for 

insoluble particles. Ellman’s reagent or 2-nitro-5-mercaptobenzoic acid (DTNB) was used 

as a reagent for spectrophotometric analysis (Ellman, 1959). In a 3 mL cuvette, 2.55 mL 

of 50 mM Bis-TRIS buffer (pH 7.0) was added to 0.25 mL DTNB solution (0.1% (w/v) Bis-

TRIS buffer). Samples were diluted with deionized water to final protein concentrations of 

2% (w/w), and then 0.2 mL of sample was added to the cuvette with Bis-TRIS buffer and 

DTNB solution inside. The mixtures were transferred into Eppendorf tubes, wrapped with 

aluminium foil and mixed for 10 min, after which the Eppendorf tubes were centrifuged at 

10,000 x g for 1 min. After centrifugation, the supernatants were transferred into cuvettes 

and stored under aluminium foil for a few min. After a total incubation time of 15 min, the 

absorbance was measured at 412 nm with a spectrophotometer UV-vis Beckman Coulter 

DU-720 (Woerden, the Netherlands). The number of sulfhydryl (SH) groups was calculated 

using a molar extinction coefficient of 13,600 M-1cm-1 for DTNB using the following formula 

(Eqs (3.1) and (3.2)):

  

 (Eq 3.1)    

  

(Eq 3.2) 

where Iz/I0 is the transmittance, ɛ the molar extinction coefficient, z the path length and 

df the dilution factor. The values of the blanks were subtracted from the absorbance value 

to calculate the net absorbance value.

3.2.2.8 Statistical analysis 

All rheological measurements were performed in duplicate. The figures show the mean 

value of duplicate experiments. The errors in the measured viscosities and stress values 

were determined as the ratio of the absolute deviation and the average value, multiplied by 

100%. The uncertainty in the storage moduli and loss moduli for duplicate samples may be 

large, but due to their dependence, the uncertainty in the tangent of delta (tan δ) is small 
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(in the range of 3%). The protein subunit size and sulfhydryl content are expressed as mean 

± absolute deviation based on duplicates. The protein subunit size and sulfhydryl content 

were evaluated with one-way analysis of variance (ANOVA) for significant differences  

(P < 0.05).

3.3 Results and discussion 

Isolation of protein generally denatures protein, but DSC analysis showed that LPI was not 

fully denatured after protein isolation. SPI was fully denatured. We chose to study gelling 

properties of the SPI and LPI powders at their natural pH. The pH of SPI and LPI were close 

to neutral and close to each other (6.8 - 7.2) and we therefore expect little influence of pH 

on the gelling properties we studied.

3.3.1 Rheological behaviour of lupin protein isolate dispersions and gels

Visual observation and manual deformation of the LPI and SPI gels showed different 

consistencies. The LPI gel was easy to deform after gelation and did not reform (i.e. no elastic 

behaviour). The SPI gel was a self-standing gel that ruptured or broke upon deformation. 

The concentration at which the dispersions did not flow anymore was 15% (w/v) for the 

SPI gel and 18% (w/v) for the LPI gel. Dispersing 30% (w/v) SPI in water was not possible 

because the powder was not fully hydrated at this moisture content. LPI could be readily 

dispersed and hydrated at 30% (w/v). Fig 7 shows that the SPI dispersions had a much 

higher viscosity than the LPI dispersions at similar protein concentration. The LPI and SPI 

dispersions were shear thinning, but the SPI dispersions showed stronger shear thinning 

behaviour than the LPI dispersions. At low shear rates, 1 - 10 s-1, LPI showed shear thinning 

Figure 7 Viscosity as a function of shear rate at 25°C of SPI and LPI dispersions: (A) 
non- normalized flow curves, (B) normalized flow curves. Protein concentrations 
are given in the legend. The maximum error for shear rate sweeps was 33.7% for 

12% (w/v) SPI and 24.6% for 12% (w/v) and 24% (w/v) LPI dispersions

A B
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behaviour, indicating the presence of a network, which was broken down at higher shear 

rates. At 30% (w/v) the viscosity as well at the shear thinning behaviour of the LPI dispersion 

were in the same range as the 12% (w/v) SPI dispersion. Fig 8 shows the small deformation 

results of the SPI and LPI gels that were heated at 95°C. SPI gels did not show frequency 

dependent behaviour (Fig 8A). According to Clark and Ross-Murphy (1987) weak gels show 

more frequency dependent behaviour than strong gels. Even though the loss modulus 

G’’ fluctuated slightly at low frequency for the LPI gels at 15% (w/v) and 18% (w/v), no 

strong frequency dependent behaviour was observed (Fig 8B), which contrasted the visual 

observations and manual deformation of the weak LPI gels. The storage modulus of SPI 

was higher than the storage modulus of LPI for each protein concentration (Fig 8C). At high 

protein concentration (30% w/v) the storage modulus of LPI gels was similar to the storage 

modulus of the 24% (w/v) SPI gel, but the deformability of the gel remained. Fig 8D shows 

A B

D

Figure 8 Gel properties of heat-induced SPI and LPI gels heated at 95°C: (A) storage (G’ 
closed symbols) and loss modulus (G’’ open symbols) of all SPI dispersions (v 24%, □ 

18%, ◊ 15% and ∆ 12%) as a function of angular frequency, (B) storage modulus and loss 
modulus of all LPI dispersions (○ 30%,v 24%, □ 18% and ◊ 15%) as a function of angular

frequency, (C) storage modulus and loss modulus at 1 rad/s as a function of protein 
concentration (%) and (D) tangent delta at 1 rad/s as a function of protein concentration 

(%). Vertical Vertical error bars represent absolute deviation of the mean

C
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that the tan δ of all SPI gels was lower than the tan δ of LPI gels. High storage moduli values 

are indicative of stronger inter-molecular networks and increased interactions between 

proteins, while low tan δ values indicate more elastic networks (Sun and Arntfield, 2010). It 

can be concluded that LPI formed weaker, less elastic gels than SPI at the same conditions.

3.3.2 Swelling of protein particles 

Mixing of LPI and SPI with water resulted in a dispersion with protein particles. Obviously, 

the final drying process in the isolation process did not allow for complete dissolution of 

the protein particles. This was revealed by microscopy and the particle size distribution 

(PSD) analysis (Figs 9 and 10). In case of a particle dispersion, the formation of a gel can 

be achieved through strong inter-particle interactions or through particle jamming, which 

is enhanced by particle swelling (van der Sman and van der Goot, 2009). Fig 9 shows that 

the structure of LPI particles (A) upon heating (B) hardly changed, whereas SPI particles 

(C) changed considerably upon heating (D). Particle size changes with temperature due to 

association, swelling or dissociation of particles. The heated SPI particles seemed more 

Figure 9 Microscopic images: (A) LPI dispersion unheated, (B) LPI dispersion heated at 90°C 
for 30 min, (C) SPI dispersion unheated and (D) SPI dispersion heated at 90°C for 30 min. 
The scale bars correspond to 100 μm in (A) and (C), and to 200 μm in (B) and (D). In the 
small pictures the scale bars correspond to 100 μm in (A) and 50 μm in (B), (C) and (D)

A B

DC
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swollen and deformable than LPI particles, which is probably due to the absorption of 

water. The observations made in the microscopic studies were in line with the cumulative 

volume PSD calculated for LPI and SPI upon heating (Fig 10); after heating the PSD for SPI 

changed, while for LPI hardly any difference was observed in the PSD. SPI particles swelled 

or aggregated upon heating until 95°C for 30 min and started to dissociate upon longer 

heating times as can be seen from the increase in the smaller particle size range in Fig 10. 

Fig 10 shows little change in particle size with an increase in temperature for LPI particles, 

indicating limited particle swelling or association. Even prolonged heating did not show 

an increase in smaller particle sizes, thus dissociation of particles was limited. The lack of 

change in particle size of LPI particles with temperature indicates that the particles have 

a high thermal stability. Sousa et al. (1995) found the 7S globulin of lupin to be more heat 

stable than the 7S globulin of soy, which is in line with our results. This heat stability could 

explain some of the differences in gelling properties of LPI and SPI. 

Fig 11 compares non-heated LPI dispersions of 30% (w/v) with LPI dispersions that were 

heated for 30 min and for longer time (8 h). It turned out that the absolute viscosities of 

the heat-treated dispersions were higher than the viscosity of the unheated LPI dispersion. 

Figure 10 Cumulative volume particle size 
distribution (mm) of (A) SPI dispersion 

unheated (std = standard), SPI dispersions 
that were heated at 75°C, 85°C, 95°C 

for 30 min and an SPI dispersion heated 
at 80°C for 8 h, and (B) LPI dispersion 

unheated (std = standard), LPI dispersions 
that were heated at 75°C, 85°C, 95°C 
for 30 min and LPI dispersions that 

were heated at 80°C and 90°C for 8 h

B

A
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Figure 11 Viscosity as a function of shear 
rate at 25°C of 30% (w/v) LPI dispersion 
(un- heated), 30% (w/v) LPI gel that was 
heated at 80°C for 0.5 h and 30% (w/v) 
LPI gel that was heated at 80°C for 8 h

The shear thinning behaviour did not change upon prolonged heating. Short and prolonged 

heating increased the viscosity to a value similar as an unheated 24% (w/v) SPI dispersion. 

Nevertheless, Figs 9B and 10 indicated limited particle swelling upon heating, which could 

explain a limited effect on viscosity. Even an additional heat treatment at 130°C (re-heating 

and re-cooling) of the 30% (w/v) LPI gel resulted in a weak, deformable gel. To conclude: LPI 

remains a weak, deformable gel independent of its thermal history.

3.3.3 Particle gels and jamming

As stated previously, both protein isolates resulted in particle dispersions rather than 

protein solutions. Thermal treatment altered the particle structure of SPI, leading to the 

formation of a firm gel. Upon particle swelling, particle interactions increased (most likely 

due to jamming effects), explaining the increased viscosity and the shear thinning behaviour 

of SPI. LPI particles were nearly stable upon heating and remained compact. Only at a 

concentration of 30% (w/v), a marked increase in viscosity was observed suggesting that 

particles interact due to jamming effects.

Fitting the viscosity data with the Krieger and Dougherty equation would indicate that 

jamming occurs at mass fractions of 0.3 for LPI, assuming no water absorption. The 

assumption of a density of 1.35 g/cm3 for LPI protein (Fischer et al., 2004) leads to a volume 

fraction of 0.24 for jamming of LPI particles. For monodisperse systems, jamming normally 

occurs at volume fractions of 0.64 and for polydisperse systems this value can be higher 

(Walstra, 2003). This suggests that LPI has to absorb about 1.6 - 1.7 times its weight in water 

to obtain particle volume fractions larger than 0.6. SPI absorbs much more water, leading 

to larger particles and jamming effects at much lower concentrations. Those observations 

are in line with the water holding capacity of SPI: 4 mL/g (corresponding to a φmax of around 

0.16) and the amount of water that was retained by LPI (±1.3 mL/g, indeed agreeing with a 
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φmax of around 0.24), just before a viscous supernatant appeared on the pellet (Berghout et 

al., 2014).

3.3.4 Cross-linking ability of LPI and SPI 

The amount of sulfhydryl groups in protein is determined by the amount of sulphur-

containing amino acids: methionine and cysteine. The approximate amino acid composition 

and molecular sizes of lupin and soy proteins were reported before (Belski, 2012; Duranti 

et al., 2008; Fontanari et al., 2012; Utsumi et al.,1997). Table 4 gives an overview of the 

protein fractions of soy and lupin and their molecular sizes. We determined the ratio of 

large to small proteins and the amount of free sulfhydryl groups in LPI and SPI. Dissociating 

HP-SEC showed that the molecular size distributions of LPI and SPI were different (Fig 12). As 

expected, SPI had more protein subunits in the size range of 50 - 500 kDa while LPI had more 

protein subunits in the smaller molecular size ranges: 5 - 10 kDa, 10 - 20 kDa and 20 - 50 kDa. 

Table 4 Comparison of SPI and LPI on proteins, protein size, amount of disulphide bridges and sulfhydryl 
reactivity

Figure 12 HP-SEC (dissociating 
conditions) elution profiles of SPI 
and LPI. Vertical error bars represent 
absolute deviation of the mean (n = 2)

Protein
% in 

bean or 
seed

Non reduced 
Mr (kDa) Reduced Mr (kDa)

Amount of 
disulphide 

bridges

Free sulfhydryl 
groups 

(µmol/g)e

LPI
 

11S Conglutin αac 35-37 330-430 42-45 and 20-22 6

19.5 and 
increases 

upon heating
7S

Conglutin βa 44-45 143-260 53-64 and 25-46 
and 17-20 0

Conglutin γa 4-5 200 29 and 17 2

2S Conglutin δ/
albumina 10-12 13 4 and 9 4

SPI

11S Glycininbd 52 300-360  2
10.6 and 

decreases 
upon heating

7S β-Conglycininbd 33-35 150-200 63.5-67.2 and 47.8 0

2S  15 8-22  0
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The amount of free sulfhydryl groups quantified for SPI and LPI before and after heating at 

different temperatures was always higher for LPI than for SPI (Fig 13), which was expected 

from the amount of sulphur-containing amino acids in LPI and SPI (Table 4). For SPI, the 

value of free sulfhydryl groups decreased with increasing temperature, suggesting that 

new disulphide bridges formed upon cooling. For LPI, this value increased with increasing 

temperature, indicating that no new disulphide bridges could be formed. This suggests that 

sulfhydryl groups cannot react into disulphide bridges, confirming the idea that the particles 

are compact, with limited mobility of the proteins inside those particles. Our measurements 

showed that LPI consists of smaller protein molecules than SPI but that the smaller LPI 

molecules are more reactive than the larger SPI molecules. A change in protein configuration 

is accompanied by a rearrangement of disulphide bridges. These rearrangements can 

occur once the temperature is reached to overcome the activation energy for disulphide 

bridge opening. Sulfhydryl groups in SPI are present on glycinin (11S) (Table 4), which are 

known to aggregate into larger polymers (15S), strengthened by the formation of additional 

disulphide bridges (Adachi et al., 2004; Speroni et al., 2009). LPI has more disulphide 

bridges (Table 4) and the chance that those will open at the same time will decrease with 

the number of disulphide bridges present, thereby reducing the ability for the protein to 

change configuration. We suspect that this effect could explain the thermal stability of LPI. 

The thermal stability is further enhanced by the compact protein particles that form upon 

drying, where short-range cross-linking dominates over longer range cross-linking. Rector 

et al. (1989) and O’Kane et al. (2004) respectively, stated that re-heating a whey protein 

isolate and pea protein isolate gel would increase the amount of disulphide bridges being 

formed, consequently enabling more extensive short-range crosslinks upon re-cooling. Our 

Figure 13 Free sulfhydryl groups of 
unheated and heat-treated LPI and 

SPI. Vertical error bars represent the 
absolute deviation of the mean (n = 2)
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experiment with re-heating to 130°C and re-cooling showed no improvement in the gelling 

properties of LPI, and thus deviates from the behaviour of whey and pea protein isolate. 

We hypothesize that the thermal stability of LPI particles is related to their high sulfhydryl 

content, resulting in a large number of intramolecular bonds that leads to a stable structure. 

Part of the free sulfhydryl groups are present on the smallest proteins in LPI (2S albumin and 

conglutin δ) that might not be incorporated inside the particles but are present in the liquid 

surrounding the particles. In that case, we postulate that the small size (<23 kDa) of these 

proteins prevents them from strengthening the whole network (Wang et al., 1990). Whey 

protein isolate (WPI) however, contains 65% of β-lactoglobulin with a molecular size of 18.2 

kDa, is rich in disulphide bridges (Walstra et al., 2006), and forms self-standing gels upon 

heating (Purwanti et al., 2010). Similar to LPI, the amount of free sulfhydryl groups in WPI 

increases upon heating (Adachi et al., 2004; Alting et al., 2003) but decreases upon cooling, 

probably due to disulphide bridge formation. The concentration at which β-lactoglobulin is 

present in WPI, is much higher than the concentration of conglutin δ and 2S albumin in LPI. 

It can therefore be concluded that the concentration of conglutin δ and 2S albumin in LPI is 

too low to obtain a strong protein gel with LPI. 

3.4 Conclusion 

The aim of this paper was to investigate whether LPI could have similar gel properties as 

SPI. SPI was taken as reference material because of its wide applicability in many semi-solid 

food products, amongst others those aimed at meat replacement. Given the similarities in 

composition of LPI and SPI, LPI is considered an attractive alternative for soybeans because 

lupin seeds can be grown in moderate climate areas. This paper showed that LPI behaved 

fundamentally different than SPI, as a result of which it is not able to form gels with similar 

consistency and deformability as SPI gels. However, LPI offers opportunities for high-protein 

food and feed products that require a protein source with a high dispersability and lower 

viscosity after heating at high concentration. 
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Traditional ingredient production focusses on high purity and yield, resulting 
in energy- and resource-intensive fractionation processes. We explored 
alternative fractionation routes for oilseeds by focussing on functionality and 
optimal resource use. Lupin seeds were taken as model material because 
they are rich in protein and oil and they can be grown in moderate climate 
conditions. Dry fractionation yields functional protein-enriched flours without 
using water, consumes the least energy and exergy losses are low. Purer protein 
fractions are obtained via wet or aqueous fractionation, but these processes 
require large amounts of water and an energy-intensive drying step. With the 
use of exergy analysis, we demonstrate that water and energy consumption 
can be reduced by replacing drying steps with concentration steps and by 
combining dry and aqueous fractionation processes. Finally, by valorising 
side streams, the exergetic efficiency of all fractionation processes increases.
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Highlights:

- Aqueous fractionation consumes fewer resources than conventional wet fractionation 

- Chemical exergy has a bigger impact on process sustainability than physical exergy 

- Combining dry and aqueous fractionation decreases water use during protein isolation 

- Adding value to side streams improves process sustainability
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4.1 Introduction

Plant-based diets are more sustainable than animal-based diets (Pimentel and Pimentel, 

2003). To replace animal-based protein products, plant-based materials are needed that 

meet the nutritional, functional and textural properties of animal-based products (Hoek 

et al., 2011). Animal-based products consist of water, protein and fat. Pulses, legumes and 

oilseeds contain these components as well, but they also contain carbohydrates, like dietary 

fibre, starch and sugar, and oil. Promising oilseeds for plant-based materials are soybeans, 

lupin seeds, canola meal, and sunflower seeds or sunflower meal because they are rich in 

protein, oil and they are low in starch (Day, 2013). Especially lupin seeds are of interest be-

cause they have the highest protein content in comparison with other oilseeds and they can 

be grown in moderate climate areas like Northern Europe. To better mimic animal-based 

products, the carbohydrate content has to be reduced, which leads to the necessity of re-

fining. This is generally carried out by wet fractionation, aiming at complete separation and 

high purity of the components. Unfortunately, conventional wet fractionation processes 

consume solvents, energy and water, which negatively impact the sustainability of the pro-

duction of plant-based materials (Apaiah et al., 2006). It leads to a need for milder fraction-

ation alternatives that consume less solvents and energy. 

A milder wet fractionation method is aqueous fractionation, where the use of organic sol-

vents is omitted (Aguilera et al., 1983; Campbell et al., 2010; Jung, 2009). In a previous 

paper we showed that aqueous fractionation of lupin seeds yields protein isolates with 2 - 7 

g oil/100 g protein isolate that has similar functionality as protein isolates obtained with 

conventional wet fractionation (Berghout et al., 2014). Wet and aqueous fractionation of 

lupin seeds yield wet protein isolates that have to be stabilized to prevent microbial and 

chemical spoilage, which is often accomplished through drying steps. Drying consumes a 

lot of energy while it can detrimentally affect protein functionality (Hu et al., 2009; Joshi et 

al., 2011; Liao et al., 2013). A less energy intensive process is ultrafiltration, however this 

leads to a reduced microbial and chemical stability and therefore the protein isolates have 

to be processed shortly after fractionation to prevent spoilage. We investigated the poten-

tial of replacing the drying step in the process with a concentration step. Dry fractionation 

is a sustainable alternative for wet and aqueous fractionation, because it avoids the use 

of water and consumes less energy (Schutyser and van der Goot, 2011). In addition, the 

fractions have been processed in a milder way because they have not been wetted and 

subsequently dried, and therefore retain their original functionality (Pelgrom et al., 2013 

and 2014; Schutyser and van der Goot, 2011). Dry fractionation involves fine milling and 
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air classification. The classification is based on particle size and density differences of the 

particles obtained after milling. Pelgrom et al. (2014) showed that dry fractionation of lupin 

seeds provides protein-enriched flours with protein contents of 53.5 g protein/100 g pro-

tein concentrate (N x 5.7) and unique protein functionality. The protein-enriched flours can 

be further refined into protein isolates by aqueous fractionation in case a higher protein 

content is desired. Separating the raw materials into pure ingredients is however not effi-

cient, because no end product is composed of one pure ingredient. It may be more efficient 

to produce less pure fractions that can be directly used for an application, consequently 

avoiding the need for other pure ingredients. Focusing on molecular purity, as is done with 

protein isolates, also increases the amount of side streams that are produced. These side 

streams still contain valuable ingredients that can potentially be used for other (food) ap-

plications, which can contribute to a more sustainable future (Aiking, 2011; Mirabella et al., 

2014). That is why we evaluated the effect of valorising these streams on sustainability of 

fractionation processes. 

Exergy is an environmental indicator that is demonstrated to be useful for development 

of sustainable products and processes, like for the minimization of the use of resources and 

the emissions of processes (Bastianoni et al., 2005; Dincer and Rosen, 2004; Rosen et al., 

2008). Exergy, also called available work, is a thermodynamic state variable that is based on 

the second law of thermodynamics (Apaiah et al., 2006) and it shows the potential work 

that can be done by exchange with a reference environment (Rosen et al., 2008). Rosen et 

al. (2008) showed there is a positive relation between exergy efficiency and environmental 

impact. 

The objective of this paper is to assess the impact of producing protein-enriched fractions 

using dry, wet and aqueous fractionation. The production routes are evaluated for mass of 

solvents used, for energy consumed and for exergy losses and efficiencies. It is evaluated 

whether a combination of dry and aqueous fractionation processes increases the sustaina-

bility of fractionation of lupin seeds. In addition, coupling fractionation and product appli-

cation, i.e. skipping the final drying step, is discussed. A final optimization of individual unit 

operations was outside the scope of this study.

4.2 Material and methods

4.2.1 System boundaries

Fig 14 shows the materials and products for all fractionation processes chosen for analysis. 
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4.2.2 Fractionation processes

Dry fractionation was performed as described by Pelgrom et al. (2014). Lupin seeds (L. 

angustifolius) were obtained from LI Frank (Twello, the Netherlands). The seeds were pre-

milled into grits with a pin mill LV 15 M (Condux-Werk, Wolfgang bei Hanau, Germany) and 

were then milled into flour with a ZPS50 impact mill (Hosokawa-Alpine, Augsburg, Germa-

ny) with classifier wheel speed set at 1000 rpm, mill speed of 8000 rpm, and air flow at 80 

m3/h. The flour was fractionated with an air-classifier set at 10,000 rpm and air flow at 80 

m3/h, which resulted in a fine and a coarse fraction. 

Conventional wet fractionation was performed as described in Berghout et al. (2014). Full 

fat lupin flour was defatted with petroleum ether (boiling range 40 - 60°C) with a sample-

to-solvent ratio of 1:6 on a fully automated Büchi extraction system B-811 LSV (Büchi 

Labortechnik AG, Flawil, Switzerland). The defatted lupin flour was then dispersed into tap 

water using a sample-to-solvent ratio of 1:15. The pH of the dispersion was set to 9 with 1 

mol/L NaOH and the dispersion was stirred at 20°C for 1 h. The dispersions were centrifuged 

at 11,000 x g and 20°C for 30 min. The supernatant was separated from the pellet and the 

pH of the supernatant was adjusted to pH 4.5 with 1 mol/L HCl. The protein-rich supernatant 

was stirred at 20°C for 1 h and subsequently centrifuged at 11,000 x g and 20°C for 30 min. 

The supernatant was separated from the pellet and the pellet was rinsed twice with 50 mL 

Millipore water and kept at 20°C for 1 h and then centrifuged at 10,000 x g and 20°C for 10 

min to remove impurities. The protein pellet was stored in the freezer at -20°C for freeze-

drying.

Figure 14 Fractionation processes: dry fractionation, conventional wet fractionation, 
aqueous fractionation and a combination of dry and aqueous fractionation

The impact of the processes was evaluated based on the main differences between them. 

This means that for comparing dry and wet fractionation, the use of water is evaluated and 

for the conventional wet and aqueous fractionation process the use of an oil extraction step 

is evaluated. The combination of both processes will be evaluated as well because the prod-

ucts obtained with dry fractionation are not as pure as with wet fractionation.
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Aqueous fractionation omits the oil extraction step used during the conventional wet frac-

tionation process and was performed as described previously by Berghout et al. (2014). The 

full fat lupin flour was dispersed into tap water using a sample-to-solvent ratio of 1:15. The 

rest of the fractionation process was the same as for the conventional wet fractionation 

process, except that the whole process was performed at 4°C. Aqueous fractionation was 

also performed with the fine fraction that was obtained after air classification. This process 

is the same as described for the full fat flour.

4.2.3 Data collection

Compositions and masses of all fractions are based on the experimental work. The amount 

of protein isolate produced was set to 1000 kg (1 ton). Aqueous fractionation yields protein 

isolates that contain oil, a fibre-rich pellet that contains most of the oil and a soluble solids 

fraction that does not contain oil. For ease of comparison, it was assumed that the protein 

isolates (in contrast to the protein-enriched flours) obtained with the different fractionation 

processes had similar composition, i.e. 83 g protein/100 g, 5 g water/100 g, 10 g carbohy-

drates/100 g and 2 g mineral residue/100 g. Data of equipment like a spray drier, an oil ex-

traction system and a cooling system are based on equipment often used on pilot scale. The 

ratio of sample-to-solvent in the oil extractor is based on lab scale experiments performed 

at the German Fraunhofer Institute in Freising (Bader et al., 2011).

4.2.4 Protein recovery and purity

The protein content of each fraction was calculated from the nitrogen content (N x 5.7), 

determined with the Dumas combustion method on a NA2100 Nitrogen and Protein 

Analyser (ThermoQuest-CE Instruments, Rodeno, Italy). Methionine was used as a standard 

for the analysis. Dry matter content was determined by drying each fraction in an oven at 

105°C overnight. The protein recovery in each fraction of each fractionation process was 

calculated with Eq. 4.1 and the purity (protein content) of each fraction was calculated with 

Eq. 4.2,

(Eq. 4.1)

   

(Eq. 4.2)

where m is mass (kg), xp is mass fraction protein and xdm is mass fraction dry matter.
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4.2.5 Calculations

The mass and energy flows were calculated with Eq. 4.3 and Eq. 4.4,

(Eq 4.3)

(Eq 4.4)

where m is mass (kg), h is enthalpy (kJ/mol), Q is heat (kJ) and W is work performed by the 

system. 

The exergy taken into account is based on the chemical exergy of the raw material (i.e., 

the work that could be done by converting this material into environmental components), 

products and processing aids (Eq. 4.8) and physical exergy (thermal, Eq. 4.5 and pressure 

exergy, Eqs. 4.6 and 4.7) of the selected processes. For dry fractionation, the electrical 

exergy was included as well (Eq. 4.9), while thermal and pressure exergy were neglected. 

The physical exergy refers to potential work that can be performed by heat or expansion, or 

any other physical exchange with the environment, and is related to inefficiencies in process 

steps. The chemical exergy refers to potential work of a stream and is related to efficiencies 

in the use of materials. Exergy losses are calculated with Eqs. 4.10 and 4.11. The exergy 

efficiency calculations are based on the chemical exergy of streams; the chemical exergy 

efficiency (CEE) is defined as (1) total exergy out over the exergy that enters a process (total 

chemical exergy efficiency; Eq. 4.12) and as (2) useful exergy out over the exergy that enters a 

process (useful chemical exergy efficiency; Eq. 4.13). Useful exergy is defined as the chemical 

exergy of the fractions that may theoretically find an application, like the protein isolate (PI), 

the oil, the coarse fraction, the fibre-rich pellet (FP) and the soluble solids fraction (SSF). The 

sum of the chemical exergy of all these fractions equals the total exergy out.

(Eq 4.5)

(Eq 4.6)

(Eq 4.7)

(Eq 4.8)

(Eq 4.9)

(Eq 4.10)

(Eq 4.11)
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(Eq 4.12)

(Eq 4.13)

where Ex is exergy (kJ), m is mass (kg), cp is specific heat capacity (kJ/kg·K), T0 is the reference 

temperature (K), T is temperature (K), R is the ideal gas constant (kJ/mol·K), Mx is average 

molar mass of the stream (kg/mol), P is pressure (Pa), P0 is the reference pressure (Pa), Q is 

heat (kJ/kg), f is a quality factor (=1 for electrical exergy), bstchem is standard chemical exergy 

(kJ/kg) for which the values can be found in Appendix Table A2, and xi mass fraction of 

component i (-).

4.2.6 Mass and exergy flow visualizations

Mass and energy flows were visualized with Sankey diagrams and exergy flows were 

visualized with Grassmann diagrams, using e!Sankey 3.1 (ifu Hamburg GmbH, Hamburg, 

Germany). 

4.2.7 Assumptions

For consistent results, exergy analysis relies on the use of a standardised environment, 

which models our real environment and provides a fixed framework of reference.

• The standard environment has a temperature of 20°C (293.15 K) and pressure of 
101.325 kPa.

• Water is available at 293.15 K.

• Natural gas is used to heat up the air for spray drying.

• The specific heat capacity (cp) (kJ/kg·K) is temperature-dependent but the effect 
has little influence on the calculated heat values and we thus assumed the cp to be 
temperature-independent.

• The gas burner has an enthalpic efficiency of 0.65 (i.e. 35% of the heat is lost).

• Chemical exergy values of lupin seeds, water, hexane, sodium hydroxide, hydrochloric 
acid and steam were considered.

• Waste streams can be emitted to the environment without additional processing.

• There is no accumulation or loss in the process.

• The cooling equipment for aqueous processing has an efficiency of 0.5.

• Heat exchange was assumed to be ideal. Heating duty is provided by steam (403.15 K, 
271.8 kPa) and cooling duty is provided by cooling water (288.15 K).

• The maximum amount of hexane wasted, may not exceed 0.8 kg hexane/ton (soybean) 
seeds, as specified in European law (European Commission, 2008).

Useful chemical exergyefficiency UsefulEx out
TotalEx i

chem

chem

=
nn

Total chemical exergyefficiency TotalEx out
TotalEx in

chem

chem

=
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4.3 Results and discussion

4.3.1 Dry fractionation versus wet fractionation

Dry and wet fractionation processes differ in their separation principle, the use of resources, 

the unit operations needed, and the yield and composition of fractions obtained. The 

efficiency of these fractionation processes is evaluated through calculating and visualizing 

mass, energy and exergy flows.

4.3.1.1 Protein yield and protein content

Dry fractionation by fine milling is based on the physical disentanglement of protein bodies 

from fibres and other cellular components, which allows their subsequent separation by 

air classification (Boye et al., 2010; Pelgrom et al., 2013). Wet fractionation is based on 

the differences in solubility of the different components in organic solvents, water and 

saline solutions. Dry fractionation of lupin seeds leads to protein-enriched flours (>50 

g protein/100 g). Wet fractionation of lupin seeds can yield protein concentrates (>70 g 

protein/100 g) and further fractionation leads to protein isolates (>90 g protein/100 g). Fig 

15 illustrates that the protein yield usually decreases with increasing protein content for wet 

fractionation: the amount of protein isolate obtained is generally smaller than the amount 

of protein concentrate obtained. 

Dry fractionation yields a fine fraction and a coarse fraction. Depending on the exact 

parameter settings of the mill and the air classifier, the process results ideally in about 33 

Figure 15 Schematic representation of protein content as a 
function of protein yield upon wet fractionation of protein
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g fine fraction/100 g flour and 67 g coarse fraction/100 g flour for lupin seeds. The fine 

fraction is enriched in protein (to max. 53.5 g/100 g fine fraction) while the coarse fraction 

is enriched in fibres and has a protein content of 28.9 g/100 g coarse fraction (Pelgrom et 

al., 2014). Thus, 48 g/100 g of protein that was initially present in the flour is recovered in 

the fine fraction, and 52 g/100 g of protein ends up in the coarse fraction. The large volume 

and the high protein content of the coarse fraction are due to the cut-off between small and 

large particles in lupin (Pelgrom et al., 2014). The protein yields and protein contents for dry 

fractionation will follow a different curve than the curve for wet fractionation in Fig 15; half 

of the protein originally present in the flour shifted to the fine fraction and the other half 

to the coarse fraction. Wet fractionation on lab scale yielded a protein isolate (28 g/100 g 

of the seed) with a protein content of 82.6 g/100 g protein isolate. This means that about 

63 g/100 g of the protein that was initially present in the flour can be recovered with wet 

fractionation. 

4.3.1.2 Energy requirements for evaporation of water

Dry fractionation is often praised for the mild disclosure of particles, for the absence of 

water in the process, and the low energy use. Bond’s empirical model indicates that the 

energy requirement for dry fractionation and air classification is about 1 MJ/kg lupin 

protein-enriched flour, which is in line with the values estimated by Schutyser and van 

der Goot (2011). Conventional wet fractionation processes require the following process 

equipment: oil extractor, mixers, decanters, solids separators and spray driers (i.e. water 

evaporation). Oil extraction and spray drying are the most energy consuming steps, while 

mixing and decanting consume less energy. The mass and energy flows are visualized with 

Sankey diagrams in Fig 16. The energy requirement for drying a wet protein isolate from 30 

g dry matter/100 g to 95 g dry matter/100 g in a spray drier was calculated to be 6 MJ/kg 

evaporated water, which is in concurrence with the values reported by Filková et al. (2007). 

In other words, this single unit operation requires already 6 times more energy than the 

total dry fractionation process. In case the fibre-rich pellet (FP) and soluble solids fraction 

Figure 16 Sankey diagrams of spray drier: (A) Mass flows (kg), (B) Energy flows (MJ)

A B
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(SSF) also need to be dried, the drying duties will at least double, considering the water 

content in those streams.

4.3.1.3 Exergy losses for dry fractionation and spray drying

The chemical and physical exergy flows for the spray drier were calculated and the physical 

exergy flows were visualized (Fig 17A). The chemical exergy of the natural gas flow was 

not visualized in the diagram because this stream is much larger than the other streams 

masking relevant details. The natural gas flow accounts for the biggest exergy loss of the 

spray drier; 12.8 MJ/kg protein isolate (Fig 18). The physical exergy loss is linked to water 

vapour coming out of the spray drier and is about 12% of the chemical exergy loss (Fig 18). 

The physical exergy loss of dry fractionation is calculated to be 1 MJ/kg protein-enriched 

flour and thus about 6% of the total exergy loss (chemical + physical) for spray drying. Those 

outcomes clearly demonstrate that dry fractionation is the most efficient method from an 

environmental point of view as no water is added and no water needs to be evaporated, 

provided that the protein-enriched flour is a product of interest, i.e. for its functionality. If a 

higher purity is required, dry fractionation alone is not enough.

Figure 17 Grassmann diagrams: (A) Spray drier, chemical exergy of the feed, product and natural 
gas are left out, (B) Oil extractor, chemical exergy of feed, product and hexane are left out

A B

4.3.2 Aqueous versus conventional wet fractionation

Protein fractions with higher purity (protein content) are produced with wet or aqueous 

fractionation. Conventional wet fractionation usually starts with an oil extraction step with 

organic solvents, i.e. hexane or petroleum ether, for which the mass and energy flows are 

visualized with Sankey diagrams in Fig 19 Alkaline solubilisation is performed to separate 

protein from insoluble fibres, and iso-electric precipitation is performed to separate soluble 

sugars from protein. Water is used for solubilisation, for pH adjustment with 1 mol/L NaOH 
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and 1 mol/L HCl, and for washing of the protein pellet to remove excess mineral residue and 

soluble sugars. The total water consumption adds up to 87 kg water/kg protein isolate, of 

which most ends up as waste.

4.3.2.1 Energy requirements for oil recovery

Conventional wet fractionation of lupin protein assumes that oil is extracted for food 

purposes. However lupin oil is not available commercially because of the small amount 

of oil that is extracted from the seeds (Doxastakis, 2000). An advantage of oil extraction 

is that the oxidative stability of the remaining biomass produced increases. Lupin seeds 

contain oil bodies that are well protected by proteins, but pH switches and milling might 

lead to rupture of oil bodies in lupin, though the extent of this effect is not described yet. 

Especially (poly-) unsaturated fatty acids are sensitive to lipid oxidation, which are abundant 

in lupin (Lqari et al., 2003). Oxidation is catalysed by the oxidative enzyme lipoxygenase 

Figure 18 Physical and chemical exergy loss, divided in exergy 
destruction and exergy waste, for spray drying and oil extraction

Figure 19 Sankey diagram of oil extractor: (A) Mass flows (kg), (B) Energy flows (MJ)

A B
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(LOX) that reacts with unsaturated fatty acids once the oil body is damaged by processing. 

Generally organic solvents, e.g. hexane or petroleum ether, are used to extract the oil, but 

these organic solvents are or will become undesired from an environmental point of view, 

so their use should be reduced or even omitted. To produce 1 ton lupin protein isolate, 22.4 

ton of hexane is needed, of which 3 kg is lost as vapour (European Commission, 2008) (Fig 

19). The evaporation and condensation of hexane requires 12.9 MJ/kg protein isolate. Since 

LPI is not produced on industrial scale, it was chosen to evaluate the sample-to-solvent ratio 

used for lab scale experiments. It should be noted that on pilot scale the sample-to-solvent 

ratio is much higher and we thus underestimate the amount of hexane used by a factor of 

1.67 and on industrial scale the sample-to-solvent ratio is smaller and we thus overestimate 

the amount of hexane used by a factor of about 3.

4.3.2.2 Aqueous fractionation

Previously, the potential of aqueous fractionation to make protein isolates with a certain 

amount of oil was described. The protein isolates obtained had similar functionality to 

a defatted protein isolate (Berghout et al., 2014), which indicates that the oil extraction 

step with organic solvents is not always necessary. The protein isolate contained 82.6 g 

protein/100 g protein isolate and represents 63 g/100 g of the seed protein, similar to 

conventional wet fractionation. Since oil is not removed prior to protein purification, the oil 

might be oxidized during processing, having a negative effect on the quality of the protein 

isolate obtained. A route to prevent oil oxidation is to suppress the activity of the enzyme 

LOX by carrying out the extraction process at 4°C. Cooling the extraction process consumes 

about 5.4 MJ/kg protein isolate (see Appendix A). The energy for cooling the fractionation 

process is about 50% of the energy required for oil extraction. Additionally, aqueous 

fractionation requires 10% less lupin flour than conventional wet fractionation to produce 1 

ton protein isolate (Table 5) because the oil is not extracted before processing. For ease of 

Table 5 Yield (%), protein recovery after isolation (%), total protein recovery (%), protein in dry 
state (%), amount of water, NaOH and HCl needed for isolation (kg/ton protein isolate)

Raw 
material 

yield

Protein recovery 
after isolation

Total 
protein 

yield

Protein 
in dry 
state

Amount 
of water 
used for 
isolation 

Amount 
of NaOH

Amount 
of HCl

% of initial 
weight 
flour

% protein of initial 
amount protein in 
starting material

% % kg/ton 
protein 
isolate

kg/ton 
protein 
isolate

kg/ton 
protein 
isolate

Aqueous 
fractionation

100 66.4 66.4 0 51000 36.6 45.6

Dry and aqueous 
fractionation

67 65.7 44.0 52.7 35404 16.3 19.2
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comparison, we assumed that the protein isolates obtained with all processes have similar 

composition even though 5-7 g/100 g of the oil initially present in the seeds ends up in the 

protein isolate with aqueous fractionation. The chemical exergy value of the protein isolate 

will increase somewhat because of the oil, but it does not affect the exergy efficiency of this 

process significantly.

4.3.2.3 Exergy losses for oil extraction

The physical exergy flows for the oil extractor were calculated and visualized (Fig 17B). 

Chemical exergy flows were also calculated and left out of these diagrams because of their 

large magnitude compared with physical exergy flows. Fig 18 shows that the contribution 

of chemical exergy loss is larger than that of the physical exergy loss. The exergy loss can 

be divided into exergy waste and exergy destruction (Szargut et al., 1988). Exergy waste 

can possibly be minimized by recuperating streams and reclaiming their exergy, like water 

vapour or condensate. Exergy destruction is a consequence of the irreversible changes 

occurring during processing. As a consequence, exergy destruction is unavoidable and 

cannot be minimized. 

Spray drying leads to the biggest exergy losses in the total fractionation process. The oil 

extraction is the second processing step with respect to large exergy losses. In case of spray 

drying, most of the losses originate from exergy waste production, which can be minimized 

by recuperating streams, e.g. water vapour and condensate. Exergy waste in the spray 

drier can only be minimized if air is heated up by something else than natural gas or when 

the latent heat in the evaporated moisture can be recuperated. This could be done by for 

example not using hot air for spray drying, but using superheated steam. As demonstrated 

above, the exergy indicators (exergy loss, waste and destruction) can help to determine the 

most inefficient step in the fractionation process and provide routes for optimisation. 

4.3.3 Dry fractionation as a pre-treatment for aqueous fractionation

Dry fractionation can be used as a pre-treatment for aqueous fractionation. The advantage 

is that less material has to be processed under aqueous conditions to obtain the same 

amount of protein isolate. The combination of dry and aqueous fractionation requires about 

half the amount of water of the aqueous process to produce 1 ton protein isolate (Table 6). A 

similar reduction in the use of NaOH and HCl can be realised (Table 6). A disadvantage is that 

the combination of processes requires about double the amount of flour of the aqueous 

fractionation process (Table 5). More flour is needed for the combination of processes 

because only the fine fraction (enriched in protein) is used for further processing while the 
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coarse fraction is not (yet). This can also be an advantage, because 52 g/100 g of the protein 

originally present in the seeds is still in a dry, native state in the coarse fraction and can be a 

valuable, functional fraction for other applications. 

Performing aqueous fractionation with the fine fraction as starting material results in an 

altered distribution of protein and carbohydrates over the various fractions (see Appendix 

A Table A1 for exact values) because the fine fraction was already enriched in protein. The 

FP and the SSF of the combined process have fewer carbohydrates than the FP and the SSF 

of the aqueous process, because the fibres were separated from the fine fraction by air 

classification. Additionally, the sizes of these side streams decreased with the combination 

of dry and aqueous fractionation compared with purely wet or aqueous fractionation (Table 

5). These results are valuable when looking for applications for the side streams of the 

fractionation processes and thus for selecting a sustainable fractionation process.

4.3.4 Valorisation of side streams

Minimizing the amount of waste streams increases the sustainability of the fractionation 

process. The chemical exergy efficiency (CEE) of all processes was calculated and visualized 

in Fig 20. The CCE was calculated for each process for raw material, products and processing 

aids used (alkali, acids, and water). For conventional wet fractionation, only the hexane that 

was lost is taken into account. Fig 20 shows that when only the protein isolate (PI) is seen 

as a useful product (CEE useful 1), aqueous fractionation has the highest CEE. Obviously, 

when more products are seen as useful product, such as the coarse fraction, the oil, the FP 

and the SSF (Fig 20), the CEE’s of all processes increased. In case all products are regarded 

as useful products, the useful CEE equals the total CEE. The CEE’s of the combination of dry 

and aqueous fractionation depend largely on the coarse fraction. These results shows that 

 Mass in kg (mass % of initial mass flour)

Conventional wet 
fractionation Aqueous fractionation Dry and aqueous 

fractionation

Full fat flour 3739 (100) 3400 (100) 7152 (100)

Oil 265 (7) - -

Coarse fraction - - 4792 (67)

Fibre-rich pellet 1365 (37) 1577 (46) 782 (11)

Soluble sugars 994 (27) 676 (20) 491 (7)

Protein isolate 1000 (27) 1000 (29) 1000 (14)

Table 6 Masses of starting material and products produced in kg (and as 
% of initial mass of flour), for conventional wet fractionation, aqueous 
fractionation and the combination of dry and aqueous fractionation
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purification of a single ingredient reduces the exergetic efficiency of the fractionation process 

considerably and that adding value to side streams is crucial for increasing sustainability of 

fractionation processes in general. According to current bio-refining concepts, making use 

of the whole crop should not only focus on the potential of fractions for food, but also on 

the potential for feed, chemicals, materials and energy (Aiking, 2011; Mirabella et al., 2014).

Figure 20 Chemical exergy efficiency (CEE) for different scenarios of useful products 
for conventional wet fractionation, aqueous fractionation and the combination of 

dry and aqueous fractionation: raw material, products and processing aids taken into 
account. PI = Protein Isolate, FP = Fibre-rich pellet, SSF = soluble solids fraction

Lupin oil is not used for commercial purposes because the total yield of lupin oil is small, but 

making use of the oil increases the CEE of the conventional wet fractionation process with 

at least one-third. The FP contains valuable nutrients; it contains about 12 g protein/100 g, 

65 g carbohydrates/100 g and about 16 g oil/100 g on a dry basis (see Appendix A Table A1). 

Depending on the animal species this fraction can be used for animal nutrition (Drew et al., 

2007; Zhang et al., 2012). In case the oil content limits the processability of the fibre-rich 

pellet, conventional oil extraction can be used. In this case, less hexane will be consumed 

because the mass of the FP is about one-third of the mass of flour. Now the FP becomes 

a raw material for feed production, and therefore the chemical exergy of this fraction can 

also be allocated to feed production (Draganovic et al., 2013), which improves the exergy 

efficiency of the fractionation processes described in this paper.

The mass of the coarse fraction in the dry fractionation process is larger than the mass 

of the fine fraction. The coarse fraction is a dry stream, has a protein content of 29 g/100, 

contains oil and is enriched in dietary fibre (see Appendix Table A1). The nutritive value of 

lupin fibres is high (Bähr et al., 2014; Kapravelou et al., 2013). Fechner et al. (2013) showed 
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that the addition of 50 g dietary fibres (of Lupinus angustifolius) to the human diet per day 

has beneficial physiological benefits; it improved colonic function and reduced risk factors 

for colorectal cancer. The SSF of the process contains protein, sugars and minerals. Reducing 

the sugar and mineral content with e.g. dialysis will increase the protein content and this 

fraction may have unique functionalities because of high levels of sulphur-containing amino 

acids in the proteins in this fraction (Berghout, unpublished results).

4.3.5 Coupling fractionation and application

We showed that the energy requirements and exergy losses for (spray-) drying are large 

because a large drying air flow needs to be heated. Normally, drying is performed to stabilize 

the product for the final application. However, the drying step at the end of the fractionation 

process can be omitted in case the time of transport between fractionation and application 

is reduced. Besides, a product that is still in the wet state may have functional properties 

that the dry product cannot have, e.g. a higher dispersibility in water. Wet fractionation is 

usually performed at low solid concentrations and therefore concentration or evaporation 

of some water will still be necessary. This can be done with solid separators, evaporators, or 

with ultrafiltration. Ultrafiltration requires hardly any energy, no chemicals, no application 

of heat, and results in protein isolates retaining their functionality (Dijkstra et al., 2003). The 

pressure exergy of ultrafiltration is 0.0001 MJ/kg protein isolate, which is small compared 

with the physical (and chemical) exergy used by spray drying. Additionally, ultrafiltration can 

be applied to remove impurities from the protein isolate, which would save 37 kg water/kg 

protein isolate and thus reduce the water consumption of wet fractionation processes with 

42%. Fractionation of lupin protein can also be performed at higher solid concentration, but 

the results (yields, purity) on lab scale became worse when using sample-to-solvent ratios 

below 1:10. We here showed how sustainability of fractionation processes for lupin seeds 

could be improved and we expect that this also applies for fractionation processes for other 

oilseeds. 

4.4 Conclusion

Producing functional protein fractions rather than pure ingredients reduces the 

environmental impact, i.e. the use of fewer resources and production of less waste, of 

fractionation processes for the case of lupin seeds. We assessed the impact of oil extraction 

and drying on process sustainability. Dry fractionation yields rather impure but functional 

protein-enriched fractions and requires the least amount of energy and no water. To obtain 

fractions with higher protein contents, wet and aqueous fractionation have to be used. 
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Conventional wet fractionation required 22.4 kg hexane/kg protein isolate for oil extraction 

and 87 kg water/kg protein isolate for further protein fractionation. The extraction of oil is an 

energy-intensive process, while the presence of oil in the protein isolate did not influence its 

functionality significantly. Aqueous fractionation omits the oil extraction step, but requires 

a similar amount of water for protein fractionation. One way to reduce water consumption 

of the process is by combining dry and aqueous fractionation processes; 34% less water was 

needed. A disadvantage of this process is that the amount of flour needed to obtain 1 ton 

protein isolate was double the amount needed for purely aqueous fractionation. However, 

51 g/100 g of the protein initially present in the seeds remains in a dry, native state in the 

coarse fraction and can thus be another functional fraction. Another way to reduce water 

consumption is by replacing or preceding the final drying step (requiring 6 MJ/kg evaporated 

water and having large exergy losses) of the protein isolate with a concentration step, e.g. 

ultrafiltration. Ultrafiltration requires hardly any energy, but the wet protein isolate needs 

to be heat-treated or stabilized directly after fractionation. Process sustainability could be 

further increased by valorising the side streams that are enriched in dietary fibres, like the 

fibre-rich pellet and the coarse fraction.
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The technical functionality of freeze-dried lupin protein isolates (LPIs) was 
compared with that of ‘wet’, non-dried LPIs, both obtained through aqueous 
fractionation. The wet LPI was concentrated to 10% (w/v) with ultrafiltration, 
and kept in the wetted state, while freeze-dried LPI was obtained through 
freeze-drying and re-dispersed at 10% (w/v) in water. The viscosity, nitrogen 
solubility index (NSI), particle size distribution and the volume fraction of 
wet and freeze-dried LPI dispersions were compared before and after 
heating. The NSI of the freeze-dried LPI was lower than that of the wet LPI. 
This observation was attributed to the presence of large protein aggregates 
in the freeze-dried LPI, as observed by microscopy and light scattering. The 
viscosity of the wet LPI dispersions at 10% (w/v) increased after heating at 
100°C, while the viscosity of the freeze-dried LPI dispersions at 10% (w/v) 
remained unchanged. This behaviour could be explained by considering 
the large protein aggregates found in the freeze-dried LPI and their volume 
fraction after heating. The volume fraction of the freeze-dried LPI dispersions 
increased only slightly after heating, while the volume fraction of the wet 
LPI dispersions increased significantly after heating at 100°C and increased 
by a factor of 2 after heating at 121°C. Thus, the freeze-drying process 
induced aggregation of lupin protein, thereby creating heat-stable protein 
aggregates that did not swell upon heating. The wet LPI may be described 
as small protein aggregates that swell upon heating and do not aggregate 
below 80°C, but aggregate further when heated to 100°C and 121°C.



71Functionality-driven fractionation of lupin seeds

Chapter 5
Freeze-drying induces aggregation 

in lupin protein isolates

Highlights:

- Aqueous fractionation consumes fewer resources than conventional wet fractionation 

- Chemical exergy has a bigger impact on process sustainability than physical exergy 

- Combining dry and aqueous fractionation decreases water use during protein isolation 

- Adding value to side streams improves process sustainability

Part of this chapter has been submitted as:

Berghout, J.A.M

Venema, P.

Boom, R.M.

van der Goot, A.J.

Freeze-drying induces aggregation 

in lupin protein isolates



72 Chapter 5

5.1 Introduction

Plant protein isolates can be prepared using wet fractionation techniques. Here, prior to 

protein extraction from oilseeds, the flour is defatted with organic solvents like hexane or 

petroleum ether. The defatted flour is then solubilized in water or a buffer at alkaline pH, 

after which insoluble parts are separated from the protein-rich supernatant. The protein is 

separated from other soluble solids, like sugars, by iso-electric precipitation of the protein. 

Aqueous fractionation of lupin seeds without oil extraction results in lupin protein isolates 

(LPIs) containing a few percent of oil and with functional properties similar to those of wet-

fractionated LPIs, which generally does not contain oil (Berghout et al., 2014). The LPIs 

obtained by wet fractionation techniques have a low gelling capacity and high heat stability 

(Berghout, Boom, & van der Goot, 2015), which makes lupin protein a potential raw material 

for plant-based foods with suitable dairy-like attributes. Suitable dairy-like attributes for 

high-protein beverages are for example high solubility in water and low viscosity after 

pasteurization and sterilization, which are important properties for consumer acceptability 

(Chew et al., 2003).

Generally, protein isolates are dried after protein isolation for chemical and microbial 

stability. Water-based plant protein dispersions are typically dried using freeze-drying, spray-

drying or vacuum-drying (Hu et al., 2009; Joshi et al, 2011). Freeze-drying is an expensive 

drying process, which is typically used for specialty ingredients and is generally perceived 

to be a relative mild drying process. Spray drying is often applied in industry because of 

its scalability, continuous operation and standardized quality specifications (Georgetti et 

al., 2008). Vacuum drying is a low cost process that is performed at low temperature, but 

requires long residence times (Joshi et al., 2011). An operational disadvantage of all drying 

methods is the fact that a drying step is energy-intensive (Berghout, Pelgrom, Schutyser 

et al., 2015). To reduce the energy consumption of protein fractionation processes, the 

drying steps may be replaced by ultrafiltration to concentrate the protein dispersion up 

to the concentration relevant for direct product application (e.g. up to 10% (w/v) for high-

protein beverages). After fractionation and concentration, the protein dispersion will have 

to be heated to ensure microbial and chemical stability. The properties of the resulting 

concentrated LPI dispersions have not yet been reported to our knowledge.

The processing steps, like drying, influence the functional properties of plant proteins, like 

their solubility, aggregation, water absorption capacity and gelling capacity (D’Agostina et 

al., 2006; Hu et al., 2009; Joshi et al, 2011; Liao et al., 2013; Roy and Gupta, 2004). A crucial 
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functional property of protein is its solubility because the other functional properties of a 

protein depend on the solubility. Papalamprou et al. (2009) reported that milder processing 

techniques, rather than the composition of the protein isolate, improved the functional 

properties of chickpea protein isolates in terms of increased protein solubility, reduced 

minimum protein concentration needed for gel formation, and improved gel elasticity. 

Ultrafiltration was shown to improve the solubility behaviour of soy protein concentrates 

and isolates (Alibhai et al., 2006) and resulted in gels at lower protein concentration for 

LPIs (Kiosseoglou et al., 1999). The effect of the drying method on protein functionality 

depends on the drying method and on the type of protein. Freeze-drying influences the 

morphology and size of the protein particles and the surface hydrophobicity of proteins by 

partial denaturation, due to stresses such as low temperatures, freezing stresses (e.g. phase 

separation, pH change and ice crystal formation) and drying stresses (Hu et al., 2009; Wang, 

2000). Spray drying reduced the solubility of a lentil protein isolate less than vacuum drying 

(Joshi et al., 2011), but thermally damaged lupin protein isolates (D’Agostina et al., 2006). 

Since freeze-drying is generally perceived as the mildest form of drying, this drying method 

was chosen for comparison with ultrafiltration.

The objective of this paper is to better understand the differences in the properties of 

ultrafiltered, non-dried ‘wet’ LPI dispersions and freeze-dried LPI dispersions, both obtained 

by aqueous fractionation. The properties of the wet and freeze-dried LPIs are compared by 

measuring viscosity, nitrogen solubility index, volume fraction and the zeta potential before 

and after heat treatment. These parameters reflect the influence of freeze-drying on the 

structural properties of LPI on a molecular and mesoscopic scale, like solubility and state of 

aggregation of the protein. 

5.2 Materials and methods

5.2.1 Materials

Lupin seeds (Lupinus angustifolius) were obtained from LI Frank (Twello, the Netherlands). 

Tap water (4.8ºdH) was used throughout, unless stated otherwise. All reagents used were 

of analytical grade.

5.2.2 Protein isolation

Freeze-dried lupin protein isolates (LPIs) were prepared by aqueous fractionation as 

described by Berghout et al. (2014). In short, aqueous fractionation starts with solubilizing 

full-fat lupin flour into tap water in a ratio of 1:15 (w/v) and adjusting the pH to 9 with 1 
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mol/L NaOH. The dispersions were stirred at 4°C for 1 h and subsequently centrifuged, after 

which a fibre-rich pellet could be separated from a protein-rich supernatant. The protein-

rich supernatant was acidified to pH 4.5 with 1 mol/L HCl and stirred at 4°C for 1 h. Then the 

dispersions were centrifuged and the protein pellet was washed twice with distilled water. 

The protein pellet was re-dispersed in distilled water and the pH was adjusted to 7.0 with 

1 mol/L NaOH. These protein dispersions at pH 7.0 were stored in the freezer at -20°C and 

subsequently freeze-dried. Wet LPIs were prepared in a similar way, except for the freezing 

and drying step. Instead, after neutralization to pH 7.0 with 1 mol/L NaOH, the wet LPI 

dispersions were concentrated using membrane (ultra)filtration (Amicon cell, Millipore Co. 

Bedford, USA), fitted with a regenerated cellulose membrane having a molecular weight cut-

off of 5 kDa (Millipore Co. Billerica, USA). Pressurized air at 4 atm was applied over the cell 

and the stirring speed was set at 500 rpm. To prevent bacterial growth during concentration, 

the water jackets surrounding the Amicon cells were cooled with a circulating water bath set 

at 4°C. All protein isolations were performed in duplicate.

5.2.3 Sample preparation

Protein dispersions were prepared by dispersing the freeze-dried LPI in distilled water at 

10% (w/v) and the wet LPI dispersions were concentrated to 10% (w/v) using membrane 

filtration. The dispersions were at pH 7.0 and were stirred for 1 h before heat treatment. 

One dispersion was kept at room temperature, the second dispersion was heat-treated 

in a water bath at 60°C for 30 min, the third dispersion was heat-treated in a water bath 

at 80°C for 30 min, the fourth dispersion was heat-treated in an autoclave (Systec V-150, 

Systec GmbH, Germany) at 100°C for 5 min and the fifth dispersion was heat-treated in an 

autoclave at 121°C for 5 min. The autoclave required 30 min to reach the set temperature, 

cooling down required 20 min. All bottles containing the protein dispersions were cooled to 

room temperature with running tap water. Each heat treatment was performed in duplicate.

5.2.4 Sample composition

The dry matter content was determined by drying 1 g of sample overnight in an oven 

at 105°C. The oil content was determined by a Soxhlet extraction according to AACC 

method 30-25 (AACC, 1983b) on a fully-automated extractor (Büchi extractor B-811, Büchi 

Labortechnik, Germany). Oil extraction was performed with petroleum ether (boiling range 

40 - 60°C) for 3 hrs. The protein content was determined with the Dumas combustion 

method on a NA 2100 Nitrogen and Protein Analyser (ThermoQuest-CE Instruments, 

Rodeno, Italy). Methionine was used as standard and the protein content was calculated 



75Freeze-drying induces aggregation in lupin protein isolates

5.2.5 Volume fraction of protein dispersions

To calculate the volume fraction of protein (φ) for wet and freeze-dried LPI dispersions, the 

Einstein expression was used:

in which ηrel is the relative viscosity (ηdispersion/ηwater) and φ is the volume fraction of the 

dissolved material (-). The LPI dispersions were diluted with distilled water in a range of 2 - 

30 mg/mL, which is sufficiently diluted to use the Einstein expression. The relative viscosity 

of each dilution was measured using glass capillary viscometers having an internal diameter 

of 0.63 mm (Ubbelohde). The viscometer was placed in a temperature controlled water 

bath at 25.00ºC ± 0.01 (TV 4000, Tamson). Each dilution was measured in triplicate and 

average viscosity values were calculated. The volume fraction of the dispersions could then 

be calculated with:

in which c is the concentration (mg/mL) and k the slope (mL/mg) in the relation ηr=1+kc.

5.2.6 Particle size distribution

The particle size distribution was estimated by static light scattering (Mastersizer-2000, 

Malvern Instruments Ltd., UK). Particle sizes of the LPIs were also measured using a Zetasizer 

nano series (Zetasizer Nano ZS, Malvern Instruments) using 173° backscattering light from 

a laser with a wavelength of 633 nm. The LPI dispersions were filtered to remove particles 

>11 µm with Whatman No. 1 filter paper using a Buchner funnel that was connected to a 

vacuum pump. The dispersions were subsequently diluted to avoid multiple scattering.

with a nitrogen-to-protein conversion factor of 5.7 that is used for seed storage proteins. 

The ash content was determined with the AACC official method 08-01 (AACC, 1983a). The 

chemical compositions of wet and freeze-dried LPIs are shown in Table 7.

Protein Oil Ash Carbohydrates 
‘by difference’

Wet lupin protein isolate 86.7±1.9 1.5±0.6 6.3±0.0 5.5±1.2

Freeze-dried lupin protein isolate 89.7±0.6 1.5±0.0 5.1±0.1 3.7±0.6

Table 7 Chemical composition of wet and freeze-dried protein isolates, 
presented as mean ± absolute deviation (% on wet basis, 5% moisture)

η ϕrel = + ⋅1 5
2

ϕ
c

k
=
5
2
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5.2.7 Protein dispersibility

The nitrogen solubility index (NSI) was determined according to the method described by 

Berghout et al. (2014). Freeze-dried LPIs were suspended in distilled water at a concentration 

of 1% (w/v) and wet LPIs were diluted to 1% (w/v) with distilled water. The dispersions were 

shaken at room temperature for 1 h and then centrifuged (3000 × g, 25°C for 15 min). The 

supernatant solutions were separated from the pellets, frozen at -20°C, freeze-dried and 

analysed for protein content with the Dumas combustion method. The NSI was calculated 

as the fraction of soluble nitrogen to total nitrogen.

5.2.8 Viscosity

One hour after heat treatment, the protein dispersions were transferred to a rheometer 

(Anton-Paar Physica MCR301, Austria) using a cone-plate geometry (CP-20-2). Samples were 

equilibrated for 5 min and flow properties were recorded at 25°C using a shear rate range of 

0.01 - 100 s-1 and 100 - 0.01 s-1. The wet LPI dispersions heated at 121°C were subjected to a 

frequency sweep at constant strain (0.1% - within linear regime) from 0.1 - 10 rad/s at 25°C.

5.2.9 Zeta potential

The zeta potential was measured by using a Zetasizer Nano ZS (Malvern Instruments Ltd., 

UK) fitted with an autotitrator (MPT-2, Malvern Instruments). Protein dispersions were 

prepared at 1% (w/v). Titration started at pH 10.0 and went down to pH 3.0. Measurements 

were repeated three times. 

The zeta potential of the LPIs after heat treatment were measured in a measuring cell. 

About 1 mL of a 1% (w/v) dispersion was transferred into the measuring cell and five 

measurements were made of each sample.

5.3 Results and discussion

5.3.1 Functionality of freeze-dried LPI dispersions

Fig 21 shows microscopic images of a wet lupin protein isolate (LPI) and a freeze-dried LPI. 

The freeze-dried LPI contains large, irregularly shaped aggregates of protein, which were not 

found in the wet LPI. These irregularly shaped aggregates were found after freeze-drying, 

but it is possible that these may have been formed either during freezing or during freeze-

drying. The LPIs were submitted to a relatively slow freezing process in the freezer at -20°C, 

which can induce local protein concentration due to ice crystal formation.
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The nitrogen solubility index (NSI) was determined after protein isolation. Even though the 

average iso-electric point (pI) of lupin protein is close to pH 4.5, the individual proteins have 

a range of pI’s (Duranti, 2008). This pI range explains why only part of the lupin proteins 

ends up in the LPI. The other part was either trapped in the fibre-rich pellet in the first 

solubilisation step during isolation, or the proteins involved did not precipitate at pH 4.5.

The proteins that precipitate at pH 4.5 end up in the LPI and therefore the NSI of both LPIs 

is 0% around this pH (Fig 22A). The proteins re-solubilize at a higher or lower pH but the wet 

and freeze-dried LPIs behave differently. The freeze-dried LPI had a lower solubility than the 

wet LPI at pH above 6 and below 4: the drying process does not allow complete dissolution 

of the protein aggregates (Berghout, Boom, & van der Goot, 2015). Incomplete dissolution 

Figure 21 Effect of freeze-drying on the macroscopic structures of lupin protein isolate as observed 
with the light microscope. Lupin protein isolates were prepared by aqueous fractionation and 

subsequently concentrated to 10% (w/v) and kept in a wet state (A) or by aqueous fractionation, 
freezing at -20°C and subsequent freeze-drying of the aqueous protein pellet and re-dispersing the 

protein pellet at 10% (w/v) in water (B). Samples were diluted to 1% (w/v) with distilled water

Figure 22 Differences in dispersibility (nitrogen solubility index) of wet and freeze-dried lupin 
protein isolate at 1% (w/v) as a function of pH (A) and as a function of temperature (B)

BA
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was found to be caused by the removal of the protein hydration shell during freeze-drying 

(Wang, 2000). We found similar behaviour for the NSI of freeze-dried and wet LPI at pH 7.0 

as a function of the temperature (Fig 22B). 

The NSI of the freeze-dried LPI was lower than the NSI of the wet LPI after heating at 

60°C and 80°C. The lower NSI of freeze-dried LPI could be related to the structure of the 

aggregates as depicted in Fig 21B. Upon centrifugation these aggregates probably end up 

in the pellet; the pellets obtained after centrifugation were significantly denser for the 

freeze-dried LPI than for the wet LPI (not shown). The NSI of the freeze-dried and wet LPI 

decreased with increasing temperature (Fig 22B), indicating that both LPIs still denatured 

and aggregated upon heating, leading to a reduced dispersibility. For the wet LPI this effect 

showed at 100°C and for the freeze-dried LPI at 80°C.

Figure 23 Viscosities of wet and freeze-dried lupin protein isolate (LPI) dispersions at 10% (w/v) 
before heating (A) freeze-dried LPI before and after heating (B), wet LPI dispersions before and 
after heating (C), and (D) picture of 10% (w/v) wet LPI gel (heated at 121°C) on the rheometer. 

Wet LPI dispersions were prepared by concentrating the LPI dispersion to 10% (w/v) after aqueous 
fractionation with ultrafiltration and freeze-dried LPI dispersions were prepared by dispersing the 
freeze-dried LPIs at 10% (w/v) in distilled water. For B and C: ◊ is before heating, □ is heat-treated 

at 60°C, ∆ is heat-treated at 80°C, ○ is heat-treated at 100°C and × is heat-treated at 121°C. Symbols 
of the same kind represent the upward and downward flow curve and overlap in all cases

BA

DC
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The viscosity of a 10% (w/v) freeze-dried LPI dispersion was about a factor 2 higher 

compared with a 10% (w/v) wet LPI dispersion before heat treatment (Fig 23A). The freeze-

dried LPI dispersion was more shear thinning compared with the wet LPI dispersion, which 

is probably due to the alignment of non-spherical aggregates. At higher shear rates (>10 s-1) 

the viscosity of the freeze-dried LPI dispersion became similar to the viscosity of the wet LPI 

dispersion. The freeze-dried LPI dispersion became less viscous upon heating at 60°C and 

80°C and tended towards Newtonian behaviour (Fig 23B). A possible explanation could be 

that the protein aggregates folded slightly different upon heating at 60°C and 80°C, which 

influences the flow behaviour of the dispersion. At low shear rates (0.1 s-1), the viscosity of 

the freeze-dried LPI increased from 10 mPa·s to 20 mPa·s after heating at 100°C and to 10 

Pa·s after heating at 121°C. 

The viscosity of the wet LPI in contrast, did not change when heating to 60°C and 80°C, 

but increased to 1 Pa·s after heating at 100°C and to 100 - 250 Pa·s after heating at 121°C 

at low shear rates (0.1 s-1). Heating at 100°C and 121°C resulted in shear thinning behaviour 

of the wet LPI (Fig 23C). The fact that the upward and downward shear sweeps overlapped 

indicated that no break-up of aggregates occurred during shear. The large increase in 

viscosity after heat treatment at 121°C can be related to a physical change of the protein 

but also to chemical reactions that might take place, e.g. Maillard reactions. 

The flow curve of the wet LPI that was heated at 121°C showed a steep slope at the 

beginning of the curve (until 1 s-1), and an even steeper slope between 1 and 10 s-1, 

suggesting  the disruption of a network or wall slip due to syneresis. The gel that formed 

after heating to 121°C in the autoclave broke into smaller gel fragments when dipping in a 

spoon but the downward shear sweep showed that the gel reformed quickly. The gel was 

transferred to the rheometer without breaking it, but moisture was expelled (Fig 23D), thus 

showing syneresis. To probe the dynamic behaviour of the gel network, a frequency sweep 

was performed. Fig 24 shows that both moduli of the LPI gel were basically independent of 

frequency, indicating elastic gel-like properties (Clark and Ross-Murphy, 1987).

5.3.2 Characterisation of wet and freeze-dried lupin protein isolate dispersions

We found that freeze-dried LPI contains irregular, non-spherical protein aggregates (Fig 

21B). To determine the change in particle size upon drying and heating, the particle size 

distributions (PSDs) for the freeze-dried and wet LPI before and after heat treatment were 

measured (Fig 25). The particles in the freeze-dried LPI had a ten times larger average volume-

based size (d0.5 = 25.6 ± 1.1 µm) than the aggregates of the wet LPI (d0.5 = 2.7 ± 0.1 µm). 
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Figure 25 Volume-based particle size 
distributions of freeze-dried and wet 
lupin protein isolates before heating 
(A) and of freeze-dried lupin protein 
isolates after heating (B) and of wet 

lupin protein isolates after heating (C)

B

A

C

Figure 24 Frequency dependent 
behaviour of a gel formed by wet LPI at 

10% (w/v) that was heated at 121°C
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It should be realized that large particles dominate the PSD but that smaller particles 

are present. Nanosizer experiments showed that particles down to 0.02 µm are present 

in both LPIs (Appendix B). The wet LPI showed a narrower PSD than the freeze-dried LPI 

(Fig 25A) hence suggesting that the freeze-dried LPI contains small protein aggregates and 

large protein aggregates. Drying of the LPI thus changes the morphology of its proteins; 

probably by aggregation of the initially small aggregates. The aggregates resulting from 

the drying were irregular, non-spherical in shape, offer a large surface area and are thus 

prone to aggregate further into a percolating network. Due to aggregation, the viscosity 

of the protein dispersion increased (Genovese et al., 2007), explaining the higher viscosity 

measured before heating (Fig 23). The volume-based PSDs of the freeze-dried and wet LPI 

changed after the heat treatments (Fig 25B & C) where especially the wet LPI at 121°C shows 

a wider PSD and much bigger particles than before heating.

The flow behaviour of the LPIs suggests that the wet LPIs swell more upon heating, but 

this was not reflected in the PSDs. We therefore studied the volume fractions occupied 

by the freeze-dried and the wet LPI upon heating in diluted systems. The volume fraction 

(φ) of proteins is calculated from the initial slope of the concentration dependence of the 

relative viscosity using Einstein’s equation. These slopes were similar for both unheated 

LPI dispersions but the φ of the wet LPI changed after heat treatment at 100°C and 121°C, 

while the φ of the freeze-dried LPI changed only after heat treatment at 121°C (Table 8). At 

a protein concentration of 30 mg/mL the φ of the wet LPI before and after heating at 121°C 

increased with a factor of 2.1 (from 0.31 to 0.64), while the φ of the freeze-dried LPI only 

increased with a factor of 1.4 (from 0.27 to 0.38) (Table 8).

 Protein 
concentration 

(mg/mL)

Volume fraction φ

Wet LPI Freeze-
dried LPI

Wet LPI 
100°C

Freeze-dried 
LPI 100°C

Wet LPI 
121°C

Freeze-
dried LPI 

121°C

10 0.10 0.09 0.14 0.10 0.21 0.13

20 0.21 0.18 0.28 0.19 0.42 0.25

30 0.31 0.27 0.42 0.29 0.64 0.38

Table 8 Volume fraction of wet and freeze-dried protein isolates (LPI) before and after heating

The zeta potential of the particles in a colloidal dispersion is a measure for the stability 

against aggregation in a colloidal dispersion as caused by electrostatic repulsion. A zeta 

potential in excess of 25 mV (corresponding with about 1kT) generally leads to an electro-

statically stabilized dispersion. Lupin protein has a zeta potential of -35 mV at neutral pH 
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(7.0), with only minor differences in the zeta potential between the wet and freeze-dried 

LPI over a pH range from 3.0 -10.0 (Fig 26A). After heating, the zeta potential of the wet 

LPI becomes less negative (about -28 mV) while the zeta potential of the freeze-dried LPI 

remains similar (Fig 26B). This difference is really small and since dynamic light scattering 

assumes that particles are spherical and the protein aggregates were not spherical (Fig 21B), 

the difference may not be significant.

Figure 26 Zeta potential of wet lupin protein isolates and freeze-dried lupin protein 
isolates as a function of pH (A) and temperature of heat treatment at pH 7.0 (B)

Doxastakis (2000) found spray-dried lupin milk to be unacceptable as a drinkable product 

because lupin protein was not heat-stable and aggregated upon mild heat treatment 

(pasteurisation). We here show that freeze-dried LPI is composed of heat-stable particles 

(up to 100°C) that consist of aggregated protein that hardly swell upon heating to 100°C. 

Heating at 121°C increased the viscosity of the freeze-dried LPI, caused by heat-induced 

internal rearrangements where chemical reactions may play a role as well. The wet LPI 

remained a dispersion of smaller protein aggregates and was heat-stable up to 80°C. 

Heating to 100°C lead to particle swelling and an increase in the viscosity. At 121°C chemical 

reactions probably play a role, which may induce stronger binding between the particles.

5.3.3 The potential of mild fractionation without drying

Mild fractionation that avoids the use of large amounts of organic solvents, plus avoidance of 

drying increases the sustainability of fractionation processes (Berghout, Pelgrom, Schutyser 

et al., 2015). However, higher sustainability should ideally not be developed at the expense 

of functionality. Kiosseoglou et al. (1999) and Papalamprou et al. (2009) found that a milder 

treatment, like dialysis or ultrafiltration, resulted in gels at lower protein concentration and 

with high elasticity. Arogundade et al. (2012) found that potato protein isolate produced 

by ultra-filtration had a lower viscosity than potato protein isolate produced by iso-electric 

BA
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precipitation. We therefore investigated the differences in the functionality of wet LPI 

dispersions obtained with ultrafiltration and freeze-dried LPI dispersions.

The results described above showed that concentration of the wet LPI dispersion with 

ultrafiltration is a milder fractionation technique than freeze-drying of the LPI dispersion 

because extended aggregation was absent after ultrafiltration. Ultrafiltration instead of 

freeze-drying altered the functionality of the LPI dispersion slightly; its NSI was higher 

compared with a freeze-dried LPI and before heat treatment its viscosity was lower than 

that of a freeze-dried LPI. These characteristics are often preferred in dairy-like applications. 

Even though both LPIs were stable to heat treatments at 80°C (pasteurisation temperature), 

heating to higher temperatures resulted in more viscous dispersions or even mild gelling. 

After heating at 100°C and 121°C, the viscosity of the wet LPI was much higher than that of 

the freeze-dried LPI due to stronger swelling of the small protein aggregates. At 121°C, the 

gelling was probably stronger because of chemical interactions between the aggregates, 

leading to a stronger network and syneresis. From an application point of view this means 

that a freeze-dried LPI may be useful for high-protein drinks because of its heat stability, 

while a wet LPI is more useful for dairy applications with higher viscosity, like pudding.

In the experiments above, the heating time was not varied. In industrial pasteurisation and 

sterilisation conditions, high temperature is only applied for a short time, and we expect that 

the isolates will then show an improved heat stability. On the other hand, longer heating 

could also be used to further alter the gel properties. It would thus be interesting to test the 

time dependence of the heat stability of the protein isolates at high temperature for short 

times (seconds) under flow. 

5.4 Conclusion

We explored the differences in functionality between freeze-dried lupin protein isolate 

(LPI) dispersions at 10% (w/v) in water and wet, non-dried LPI dispersions that were 

concentrated with ultrafiltration to 10% (w/v) in water. The main differences between 

the LPI dispersions were their particle size distribution, their nitrogen solubility index and 

their viscosity. Differences in behaviour were ascribed to the fact that a freeze-dried LPI is 

composed of small and large protein aggregates, while the wet LPI only contains small protein 

aggregates. The larger protein aggregates in the freeze-dried LPI reduce the solubility of the 

LPI dispersion relative to the wet LPI dispersion. Freeze-drying thus alters the morphology 

of protein isolates, which was supported by volume fraction (φ) measurements after heat 

treatment: the φ of the wet LPI doubles upon heating, while that of the freeze-dried LPI 
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increases only slightly upon heating. Before heating, the freeze-dried LPI had a higher 

viscosity than the wet LPI, but the viscosity of the wet LPI increases upon heating at 100°C 

and 121°C while the freeze-dried LPI only showed an increase in viscosity at 121°C. The wet 

LPI can thus still undergo swelling or further aggregation, in contrast to the freeze-dried 

LPI, in which the proteins already aggregated more extensively during drying. Concluding, 

freeze-drying induces aggregation in LPIs, creating heat-stable protein aggregates that do 

not swell extensively. Wet, non-dried LPI is composed of small protein aggregates that are 

heat-stable up to 80°C but are sensitive for temperatures above 100°C and forms gels at 

121°C.
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The chemical stability of lupin protein isolates (LPIs) obtained through 
aqueous fractionation (AF, i.e. fractionation without the use of an organic 
solvent) at 4°C or 20°C was assessed. AF of lupin seeds results in LPIs 
containing 2 wt% oil. This oil is composed of mono- and poly-unsaturated 
fatty acids and the isolate may thus be prone to lipid and protein oxidation. 
Lipid and protein oxidation marker values of LPIs obtained at 4°C and at 20°C 
were below the acceptability limit for edible vegetable oils and meat tissue 
protein; the level of lipid oxidation markers was lower at 20°C than at 4°C. 
The fibre-rich pellet and the protein-rich supernatant obtained after AF also 
had lower levels of oxidation markers at 20°C than at 4°C. This is probably 
the result of a higher solubility of oxygen in water at lower temperature, 
which could promote lipid oxidation. The differences between fractions can 
be explained by the differences in their composition; the fibre-rich pellet 
contains polysaccharides that potentially have an anti-oxidative effect, 
while the protein-rich supernatant is rich in sulphur-rich proteins that may 
scavenge metal ions and free radicals from the aqueous phase. Additionally, 
the differences in solubility of metal ions and metal-chelating properties 
of protein at pH 4.5 and pH 7.0 explain the higher level of oxidation in the 
LPI at pH 4.5 compared with the LPI at pH 7.0. The application of a heat 
treatment to reduce oxidation decreased the protein and oil recovery values, 
and increased oxidation values above the acceptability limit. Therefore, 
AF at 20°C is the most suitable process to obtain chemically stable LPIs.
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Highlights:

- Aqueous fractionation at 4°C and 20°C yielded fractions within the quality limits

- Aqueous fractionation at 4°C resulted in higher lipid oxidation values than at 20°C

- Protein and polysaccharides had protective effects against oxidation

- A heat treatment increased lipid oxidation values above the acceptability limit
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6.1 Introduction

Lupin seeds are rich in protein, which makes this crop a promising candidate for plant-

based, high-protein foods. Dehulled lupin seeds of Lupinus angustifolius L. contain about 

39 - 44 wt% protein, about 7 - 10 wt% oil and are further composed of dietary fibres, sugars, 

minerals and water (Bähr et al., 2014). L. angustifolius L. is a sweet lupin, implying that the 

alkaloid levels are well below the critical value of 200 mg/kg for lupin-based foodstuffs, 

and thus not toxic to humans (Small, 2012). Lupin protein isolation is generally performed 

through wet fractionation processes (Lqari et al., 2002; Wäsche et al., 2001), in which 

aqueous fractionation is preceded by defatting using an organic solvent. In a previous 

paper we introduced an alternative fractionation process, referred to as purely aqueous 

fractionation (AF), which is a sustainable alternative to conventional wet fractionation 

because the oil extraction step is omitted and thereby the use of organic solvents (Berghout 

et al., 2014). It is worth mentioning that the solubility and water holding capacity of the lupin 

protein isolate (LPI) obtained with AF was similar to that obtained with conventional wet 

fractionation (Berghout et al., 2014). However, a consequence of AF is the presence of some 

lupin oil during the fractionation process and in the resulting products. The composition of 

lupin oil has already been studied (Sbihi et al., 2013; Schindler et al., 2011), and includes 

a substantial amount of polyunsaturated fatty acids (PUFAs), which is an asset from a 

nutritional point of view, but also makes the oil sensitive to oxidation. Hence, the presence 

of oil could give rise to increased oxidation of both oil and protein in the obtained fractions. 

Oil in lupin seeds is present in the form of oil bodies that have a size around 0.1 - 0.5 µm 

(Tzen, 1992), which are stabilized by phospholipids and a dense protein complex. This outer 

structure provides physical and chemical protection against environmental stresses, such as 

moisture variation, temperature fluctuation and the presence of oxidative reagents (Chen et 

al., 2012; Gray et al., 2010; Karkani et al., 2013). 

Lipid oxidation is one of the prime mechanisms of quality deterioration in foods, as it 

leads to the loss of nutritional value and the formation of unpleasant flavours and odours 

(Velasco et al., 2010). Mono- and especially poly-unsaturated fatty acids, are related with 

health benefits (Siriwardhana et al., 2012) and it is thus important that these remain non-

oxidized. Due to physical-chemical changes during storage and fractionation (high moisture 

content) and the presence of oxygen, chemically active compounds can be oxidized, but the 

stability of lupin flour against oxidation has not yet been the subject of study. The initiation 

mechanism of lipid oxidation occurs through photo-oxidation, enzymatic oxidation, and 

auto-oxidation (Berton-Carabin et al., 2014; Kolakowska and Bartosz, 2014; Skibsted, 2010). 



89Aqueous fractionation yields chemically stable lupin protein isolates

While oxidation through direct (sun)light (photo-oxidation) is not of concern for AF of lupin 

seeds, the other mechanisms are relevant. The enzyme lipoxygenase (LOX) enhances lipid 

oxidation and is naturally present in lupin seeds. LOX in lupin seeds is reported to have 

an optimum pH of about 7.5 (Stephany et al., 2014; Yoshie-Stark and Wäsche, 2004) and 

its activity is suppressed at temperatures below 20°C and above 80°C (Yoshie-Stark et al., 

2004). De-hulling, flaking and protein isolation from de-oiled lupin flakes results in about 10 

times lower LOX activity (Stephany et al., 2014; Yoshie-Stark and Wäsche, 2004). The activity 

of LOX in full fat (non-de-oiled) LPIs has not been reported. The free radicals formed through 

lipid oxidation can oxidize proteins in the aqueous phase as well, leading to the formation 

of protein carbonyls, peptides, and protein cross-linking, which deteriorates the protein’s 

functional properties (Baron, 2014; Skibsted, 2010). Boatright et al. (1995) studied protein 

oxidation in different types of soy protein isolates (SPIs) and found that reduced-lipid SPI 

had significantly lower levels of protein oxidation than full-fat and commercial SPIs.

The aim of the work reported here was to investigate the chemical stability of LPIs containing 

oil. The level of oxidation of full fat lupin flour was determined at storage temperatures of 

4°C and 20°C. Full fat lupin flour was then subjected to AF in various conditions. First, to 

suppress the potential activity of LOX, we performed the AF process under chilled conditions 

(4°C). For comparison, the process of AF was also conducted at ambient temperature (20°C). 

Finally, the influence of a heat treatment (80°C) during AF was evaluated regarding protein 

and oil recovery, and regarding lipid and protein oxidation.

6.2 Materials and methods

6.2.1 Materials

Untoasted, full fat lupin seeds (Lupinus angustifolius L.) were purchased from L.I. Frank 

(Twello, The Netherlands) in October, 2012 and stored at 4°C in dark, de-aerated containers 

(8 wt% water). The reagents and chemicals used were of analytical grade and obtained 

from Sigma-Aldrich (Sigma Chemical Co., St. Louis, MO, USA) except for the ethanol, ethyl 

acetate, n-hexane, petroleum ether that were obtained from Merck (Merck, Germany). 

The bicinchoninic acid-assay kit was obtained from Sigma Aldrich. Tap water was used 

throughout, unless stated otherwise.

6.2.2 Processing methods

The seeds were pre-milled to grits with a pin mill (Condux-Werk LV 15 M, Wolfgang bei 

Hanau, Germany). The grits were then milled into full fat flour with an impact mill ZPS50 
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(Hosokawa-Alpine, Augsburg, Germany), by setting the classifier wheel at 1000 rpm and the 

air flow at 80 m3/h. The screw feeder speed was 2 rpm (0.75 kg/h), the impact mill speed was 

8000 rpm and the batch size 1 kg. One-tenth of the full fat flour was stored in six separate 

containers: three containers were kept at 4°C and three containers were kept at 20°C in the 

dark for 2 weeks to analyse the oxidation levels. The flour for aqueous fractionation was 

stored in separate containers; each container had 30 g flour for triplicate experiments.

Aqueous fractionation (AF) was performed as described in Berghout et al. (2014) at 4°C 

and at 20°C. Additionally, AF was performed with the inclusion of a heat treatment. An 

overview of the AF processes is shown in Fig 27. The additional heating step was applied 

after the solubilisation step at pH 9. The flour was solubilized in tap water and adjusted 

to pH 9.0 with 1 mol/L NaOH. After 1 h, the samples were heated to 80°C in a water bath 

while shaking. The temperature of the sample reached 80°C after about 40 min and the 

samples were kept at this temperature for 1 min. Subsequently, the samples were cooled 

to about 30°C in 20 min and centrifuged at 11,000 x g at 4°C for 30 min. The protein-rich 

supernatant was decanted and adjusted to pH 4.5 with 1 mol/L HCl. After stirring at 4°C 

for 1 h, the samples were centrifuged at 11,000 x g at 20°C for 30 min and the supernatant 

was discarded. The protein pellet was washed twice with distilled water (Millipore, Merck, 

Figure 27 Aqueous fractionation (AF) 
processes at 4°C (in green), 20°C 

(in pink) and the inclusion of a heat 
treatment (in orange) performed 

during the AF process at 4°C
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Germany) and then either kept at pH 4.5 or neutralized to pH 7 with 1 mol/L NaOH. The 

fibre-rich pellets, protein-rich supernatants and LPIs at pH 4.5 and pH 7 were frozen at -20°C 

and then freeze-dried. Each AF process was performed in triplicate.

6.2.3 Oil extraction

The oil for oxidation measurements was extracted by performing Standard Soxhlet 

(Dobarganes Nodar et al., 2002; Özcan and Al Juhaimi, 2014) on a fully automated Büchi 

B-811 extractor (Flawil, Switzerland) according to AACC method 30-25 (AACC, 1983). 

Petroleum ether was used as extraction solvent. The extraction was performed for 3 h and 

the solvent was evaporated on the Büchi extractor until a small layer of solvent remained in 

the beaker. The beakers were then removed from the equipment, covered in aluminium foil 

and left in the fume hood so that the solvent could evaporate. Evaporation was considered 

to be complete when the weight of the beakers remained constant. Longer extraction times 

(up to 10 h) resulted in 18% higher oil recoveries. Since lipid oxidation values increased with 

longer waiting times after evaporation of the solvent, it was chosen to have slightly lower oil 

recoveries to avoid the higher oxidation values. 

6.2.4 Chemical composition

The dry matter content of each fraction obtained with AF was determined by weighing 

every fraction before and after freeze-drying. The moisture contents of the full fat flours 

stored at 4°C and at 20°C were determined by drying 2 g flour at 105°C in an oven until 

constant weight. The protein content was determined by measuring the nitrogen content 

with the Dumas combustion method on a Flash EA 1112 Series NC Analyser (CE Instruments 

Ltd., Wigan, UK). The protein content was calculated by multiplying the nitrogen content 

with a nitrogen-to-protein conversion factor of 5.7, a value which is commonly used for 

seed storage proteins (FAO, 2002). Methionine was used as a standard. Samples of about 

10 mg were measured in duplicate. The amount of sulfhydryl groups for each fraction 

was determined with the sulfhydryl reactivity method as described by Berghout, Boom, 

& van der Goot (2015). Briefly, protein samples reacted with Ellmann’s reagent (DTNB) 

and the absorbance of the samples was measured at 412 nm with a spectrophotometer 

UV-vis Beckman Coulter DU-720 (Woerden, The Netherlands), after which the number of 

sulfhydryl groups was calculated. The iron and copper content of the flour, the fibre-rich 

pellet and the LPI were determined by the Chemical Biological Laboratory Bodem (soil) 

(Wageningen University, The Netherlands). The samples (about 300 mg) were dried at 70°C 

and subsequently destructed using HNO3-HCl-H2O2 in a microwave (MARS-Xpress, CEM, 
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USA). The iron and copper content were then measured on an Inductively Coupled Plasma-

Atomic Emission Spectroscopy (ICP-AES) (Varian Vista Pro Radial, Varian Inc., USA) according 

to SWV E1362.

6.2.5 Water activity measurements

The water activity of the full fat flour that was stored at 4°C and at 20°C was measured 

with an Aqualab water activity meter (Decagon Devices Inc., Pullman, WA, USA). The water 

activity was measured in duplicate at 25°C. 

6.2.6 Lipid oxidation

6.2.6.1 Peroxide value

Primary lipid oxidation products in the oil extracted from the different samples were 

determined with the peroxide value (PV), which was determined according to the 

colorimetric method of Shantha and Decker (1994) with slight modifications for our 

material. A ferric thiocyanate reagent solution was prepared by mixing 0.132 mol/L barium 

chloride in 0.4 mol/L HCl with 0.144 mol/L iron sulphate in equal volume, and subsequently 

mixing this solution with an equal volume of 3.94 mol/L ammonium thiocyanate. The oil was 

mixed with n-hexane in an oil-to-solvent ratio of 1:60 (w/v). Then, 0.10 mL of the dispersion 

was added to 1.4 mL methanol/1-butanol (2:1, (v/v)), followed by the addition of 15 µL 

ferric thiocyanate reagent. After 20 min, the absorbance at 510 nm was measured. A blank 

of n-hexane was used. Peroxide concentrations of the samples were determined using a 

standard curve (R2 is 0.99) prepared with cumene peroxide. Final PV’s were calculated in 

meq oxygen/kg oil according to the equation:

in which 2 is the conversion factor from mmol to meq and moil is the mass of oil in kg. 

According to the Codex Alimentarius for vegetable oils, acceptable PV levels for edible 

vegetable oils are below 10 meq/kg oil (Codex Alimentarius, 2001).

6.2.6.2 Para-anisidine value

The para-anisidine value (pAV) gives an estimation of the amount of secondary oxidation 

products (2-alkenals and 2-4-alkadienals) (Osborn-Barnes and Akoh, 2003) and was 

determined according to AOCS’s official method Cd 18-90 with some modifications (AOCS, 

2004). The oil-to-solvent ratio was 1:60 (w/v) for each sample. First, the absorbance of 1.7 

PV meq
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mL sample was measured at 350 nm. Second, 0.3 mL 20.3 mmol/L para-anisidine was added 

to 1.5 mL oil-hexane sample. After 10 min, the absorbance at 350 nm was measured. A 

blank of n-hexane was used. The pAV can be calculated with the equation:

in which Ab is the absorbance of the blank at 350 nm, As is the absorbance of the sample 

at 350 nm and m is mass of substance in test solution in g. The pAV has arbitrary units. The 

Codex Alimentarius for vegetable oils reports that the pAV for edible vegetable oils should 

be lower than 10 (Codex Alimentarius, 2001).

6.2.7 Protein oxidation

The reagent used to determine carbonyl groups on proteins is generally 

2,4-dinitrophenylhydrazine (DNPH) (Levine et al., 1990). The protocol by Sante-Lhoutellier 

et al. (2007) and Levine (1990) for emulsions was adapted for freeze-dried samples. 

About 4 - 8 mg was diluted with 1.8 mL 1-propanol to solubilize the lipids and precipitate 

the proteins. The samples were sonicated for 5 min in an ultrasound bath, followed by 

centrifugation at 15,000 x g for 5 min. The supernatant was discarded and the addition 

of 1-propanol, the sonication, and the centrifugation step were repeated twice more for 

each tube. Subsequently 500 µL of 10 mmol/L DNPH in 2 mol/L HCl was added to the 

pellets. The tubes containing the pellets were incubated at room temperature for 1 h in the 

dark, vortexing every 10 min (Multi Reax vortex Heidolph Instruments GmbH., Schwabach, 

Germany). Next, protein was precipitated by adding 500 µL trichloracetic acid (20% solution) 

per tube, followed by keeping the samples on ice for 10 min. The samples were centrifuged 

(15,000 x g, 5 min) and the remaining pellets were washed twice with 1 mL ethanol/ethyl 

acetate 1:1 (v/v) to remove free reagent. The supernatant was discarded. The precipitated 

protein was dissolved in 1 mL of a 6 mol/L guanidine hydrochloride solution at 37°C for at 

least 1 h, vortexing every 10 min (Thermo mixer Eppendorf AG., Hamburg, Germany). The 

insoluble fractions were removed by centrifugation (15,000 x g, 5 min). The absorbance of 

the supernatant was measured at 370 nm. The guanidine hydrochloride solution was used 

as a blank. To calculate the carbonyl content, a molar absorption coefficient (ε) of 22,000 L/

mol∙cm was used:

pAV As Ab
m
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L

Abs
carbonyls

nm





 =

370

µ



94 Chapter 6

Due to the centrifugation steps in this protocol, and the possible loss of some insoluble 

proteins, it was necessary to measure the actual amount of protein dissolved in the final 

guanidine solution. The bicinchoninic acid (BCA) assay was used for this. The BCA working 

reagent is prepared by mixing reagent A (BCA, sodium carbonate, sodium tartrate and sodium 

bicarbonate in 0.1 mol/L NaOH) with reagent B (4% w/v copper (II) sulphate pentahydrate) 

in a ratio of 50:1 (v/v). Subsequently, 2 mL of BCA working reagent was mixed with 0.1 mL 

protein sample. The guanidine solution (without protein) was used as blank. A standard 

curve was made with bovine serum albumin (BSA). After 30 min of incubation at 37°C, the 

samples were cooled to room temperature and the absorbance at 562 nm was measured. 

The protein concentration (g/L) was determined from the BSA standard curve. The protein-

bound carbonyl concentration is presented in mmol/kg protein.

6.2.8 Statistical analysis

All results are presented as means ± standard deviation (n = 3). Student’s t-tests were 

performed to evaluate differences between samples. Differences between samples were 

considered significant when p < 0.05. 

6.3 Results and discussion

6.3.1 Oxidation of lupin flour

The results of the peroxide value (PV), the para-anisidine value (pAV), the carbonyl concen-

tration, the water activity measurements and the moisture content of full fat lupin flour that 

was stored for 2 weeks at 4°C or 20°C, are presented in Table 9.

Sample Peroxide value 
(meq/kg oil)

Para-anisidine 
value (-)

Carbonyl 
concentration 

(mmol/kg protein)
aw

Moisture 
content (%)

Full fat flour at 4°C 1.87±0.04a 3.04±0.97a 2.73±0.06a 0.35±0.00a 6.7±0.0a

Full fat flour at 20°C 1.25±0.02b 1.92±0.03b 2.79±0.06a 0.29±0.00b 5.9±0.0b

Table 9 Peroxide values, para-anisidine values, carbonyl concentrations, water activity values 
and moisture content in full fat lupin flour after 2 weeks of storage at 4°C or 20°C (n=3). For 
a given column, different superscript letters (a,b) indicate a significant difference (p<0.05)

For both flours, the PV and the pAV are clearly below the critical limits as indicated in the 

Codex Alimentarius (2001). However, the values are slightly higher than the values normally 

reported for intact seed oil bodies, which are in the range of 0 - 1 meq/kg oil. Those low 

values can be explained by considering the stabilizing properties of the interfacial membrane 

and the presence of exogenous proteins in the aqueous extract (natural emulsion) (Gray et 

al., 2010; Karkani et al., 2013; O’Keefe and Pike, 2010). The Soxhlet method for oil extraction 

disrupts the structure of the oil bodies and might cause increased lipid oxidation. Hence, the 
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lipid oxidation values reported in this work are probably a slight overestimation of the actual 

oxidation values in the flour or aqueous dispersions described in the next sections. Karkani 

et al. (2013) and Chen et al. (2012) found that oil bodies remained intact after AF of maize 

germ flour and soybean flour and that they were remarkably stable against oxidation when 

dispersed in water, and after heat treatment (Chen et al., 2012; Karkani et al., 2013). When 

the two flours are compared, it can be seen that the PVs and pAVs are significantly higher in 

the full fat flour that was stored at 4°C. This observation is, at first sight, somewhat surprising, 

as the rate of lipid oxidation generally increases with increasing temperature (Schaich et al., 

2013). A first hypothesis may be that the difference is due to a slight, but significant, higher 

moisture content in the full fat flour stored at 4°C (Table 9) and subsequently to the resulting 

higher solubility of oxygen in water at 4°C (13.1 mg O2/L) than at 20°C (9.15 mg O2/L) as 

calculated with Henry’s equation for the saturated dissolved oxygen concentration in water 

(Walstra, 2003). However, estimating the amount of oxygen that can maximally dissolve per 

g of flour, resulted in 0.88 µg O2/g flour at 4°C, compared with 0.54 µg O2/g flour at 20°C. 

These small amounts of oxygen do probably not explain the higher PV and pAV at 4°C. A 

second hypothesis is that the difference is due to a higher water activity (aw) in the flour at 

4°C. However, the measured aw values (Table 9) are in the range in which lipid oxidation is 

known to have a minimum (aw 0.25 - 0.35) (Nelson and Labuza, 1994). A clear explanation 

for the differences in PV and pAV can thus not be found. 

On the other hand, the carbonyl concentrations in the flour samples stored at 4°C and 

20°C are not significantly different, with a value around 2.8 mmol carbonyl/kg protein. To 

our knowledge, maximum acceptable carbonyl concentrations for plant-based materials 

have not been defined yet. Lund (2007) stated that non-oxidized samples of meat tissue 

have carbonyl concentrations of 1 - 2 mmol/kg protein and acceptable values for fresh 

meat tissue to be up to 14 mmol/kg protein (Lund, 2007). Finally for comparison, carbonyl 

concentrations higher than 50 mmol/kg protein were measured for dairy proteins in 

extensively oxidized emulsion systems (Berton et al., 2012), which indicates that the values 

that we found (2.7 – 2.8) are quite low. 

Based on the lipid and protein oxidation data shown in Table 9, and the fact that the PVs 

and pAVs for full fat flour stored at 4°C and 20°C were below the acceptability limits for 

edible vegetable oils (Alimentarius, 2001), we conclude that storing full fat lupin flour under 

chilled conditions (4°C) does not improve the sample’s oxidative stability, compared with 

storage at 20°C. Therefore, the full fat flour stored at 20°C was chosen as starting material 

for the AF processes.
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Sample
Dry matter 

content 
(g/g)

Protein 
content 

(g/g)

Oil 
content 

(g/g)

AF 4°C

Fibre-rich pellet 0.19±0.00 0.14±0.01 0.13±0.01

Protein-rich 
supernatant 0.04±0.00 0.59±0.02 0.03±0.01

Lupin protein 
isolate pH 4.5 0.33±0.00 0.88±0.03 0.02±0.01

Lupin protein 
isolate pH 7.0 0.04±0.00 0.88±0.03 0.01±0.00

AF 20°C

Fibre-rich pellet 0.20±0.00 0.15±0.01 0.12±0.00

Protein-rich 
supernatant 0.04±0.00 0.61±0.01 0.02±0.00

Lupin protein 
isolate pH 4.5 0.37±0.01 0.90±0.02 0.03±0.01

Lupin protein 
isolate pH 7.0 0.05±0.00 0.87±0.02 0.01±0.00

AF 4°C 
+ HT

Fibre-rich pellet 0.18±0.00 0.21±0.02 0.16±0.01

Protein-rich 
supernatant 0.04±0.00 0.59±0.02 0.01±0.00

Lupin protein 
isolate pH 4.5 0.20±0.00 0.84±0.04 0.01±0.00

Lupin protein 
isolate pH 7.0 0.03±0.00 0.82±0.01 0.01±0.00

Figure 28 Schematic drawing of separation process and table with chemical 
compositions of all fractions (dry matter, protein, oil) on a dry weight basis for 

AF processes at 4°C, at 20°C, and at 4°C including a heat treatment (n=3)

Figure 29 (A) Peroxide values for all fractions of the aqueous fractionation (AF) process 
at 4°C, 20°C and at 4°C with heat treatment (HT), (B) Para-anisidine values for all 

fractions of the AF process at 4°C, 20°C and at 4°C with HT. Vertical error bars represent 
the standard deviation of the means (n=3). The dotted lines represent the maximum 

values set for edible vegetable oil according to the Codex Alimentarius (2001)



97Aqueous fractionation yields chemically stable lupin protein isolates

6.3.2 Lipid oxidation during aqueous fractionation

The chemical compositions of all fractions obtained from the AF process, conducted at 

4°C or at 20°C, are shown in Fig 28. The lupin protein isolates (LPIs) obtained at 4°C and 

20°C contain more than 87 wt% protein and between 1 - 3 wt% oil, which is in line with 

previous results on AF of lupin seeds (Berghout et al., 2014). Most of the oil was recovered 

in the fibre-rich pellet (Fig 28), probably because of mechanical reasons. The centrifugal 

forces pull the fibres down, taking some of the dispersed protein and oil bodies with them. 

In addition, some of the protein and oil are recovered in this fraction due to the high water 

holding capacity of the fibres: the aqueous phase held by the fibre-rich pellet contains a 

significant amount of protein and oil, which is supported by the work of Towa et al. (2011) 

who showed that oil and protein were trapped in the fibre-rich pellet obtained by aqueous 

extraction of soybean.

6.3.2.1 The influence of extraction temperature

The PV and pAV of all fractions obtained after AF were found to be lower at 20°C than at 

4°C (Fig 29A & B). In this aqueous environment, a possible explanation could be a higher 

oxygen solubility in water at 4°C (13.1 mg O2/L) than at 20°C (9.15 mg O2/L) as was calculated 

with Henry’s equation (Walstra, 2003). A higher oxygen concentration implies that more 

hydroperoxides can be formed, accounting for higher values of oxidation markers. The PV 

and pAV values of all fractions after AF at both 4°C and 20°C were, however, below the 

acceptability limit for edible vegetable oils (Alimentarius, 2001).

The comparison of primary and secondary lipid oxidation products can provide information 

about the relative rate and extent of hydroperoxide decomposition, even though direct 

comparison of primary and secondary lipid oxidation values is irrelevant because the PV 

and the pAV have different units. The pAV has arbitrary units and, to our knowledge, there 

Figure 30 Ratio of secondary-to-primary 
oxidation products for all fractions of the 
AF processes at 4°C and 20°C, calculated 

from the data in Figure 29 (n=3)
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is no conversion factor into molar units of secondary oxidation products (aldehydes) per kg 

of oil. We therefore converted the PV and pAV data of Fig 29 into a ratio of secondary-to-

primary oxidation products (Fig 30). This ratio was expected to be higher with treatment at 

higher temperature, and Fig 30 shows that the protein-rich supernatant and the LPI at pH 

7 had indeed a higher ratio at 20°C than at 4°C, except at pH 4.5. The difference in ratio for 

the fibre-rich pellet was not significant, which may be related to the chemical composition 

of the fibre-rich pellet. The lower ratio for the LPI at pH 4.5 at 20°C may be related to the 

physical state of the protein at this pH. At pH 4.5, lupin proteins exhibit zero net charge 

(Ruiz Jr and Hove, 1976) and are therefore expected to form a denser network (around oil 

droplets) in the protein pellet, providing a barrier against oxidation.

We therefore conclude that 20°C is still the preferred temperature during AF because AF at 

20°C avoids the use of extra energy and water to cool the process, and it gives relatively low 

values of secondary oxidation products in the protein fractions.

6.3.2.2 The influence of the chemical composition

The extracted fractions have different chemical compositions; the protein isolates had 

the highest protein content (87 - 90 wt%) and contained 2 – 3 wt% oil, while the protein-

rich supernatant contained 60 wt% protein and about 2 wt% oil, while the fibre-rich pellet 

contained fibres, most of the oil and less protein (14 wt%) than the other fractions (Fig 28). 

These differences explain part of the differences found in PV and pAV between fractions 

because proteins and polysaccharides can show anti- or pro-oxidative action (Waraho et al., 

2011). The exact anti- or pro-oxidative effect of these components is rather complex because 

it depends on their concentration, their reactivity, the partitioning between phases, the 

interactions with other components, and on environmental conditions like temperature, pH 

and ionic strength (Waraho et al., 2011). The effect of these factors on oxidation markers are 

often studied for emulsions and even though our system is more diluted than an emulsion, 

it contains proteins and oil dispersed in an aqueous phase and we therefore compare our 

results with those reported for emulsion systems.

Proteins can inhibit lipid oxidation by chelation of metal ions and the free radical 

scavenging properties of their amino acids, and by physically (sterically) hindering the 

substrate – pro-oxidant interactions (Elias et al., 2008; Karkani et al., 2013; Levine et al., 

1999). The free radical scavenging properties depend on the amino acid composition of the 

protein and are limited by the tertiary structure of the polypeptide because free radicals 

need to be buried within the core to be inaccessible to oxidants (Elias et al., 2008). The 
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metal-chelating properties depend on the specific protein, and on the presence of aromatic 

and sulphur-rich amino acid residues that can chelate the metal ions (Elias et al., 2008; 

Fuentes et al., 2014). Conglutin-γ and conglutin-δ are sulphur-rich proteins found in lupin at 

a concentration of about 5 wt% and about 10 wt% respectively, relative to the total amount 

of protein (Duranti et al., 2008). Conglutin-γ has a net zero charge around pH 7.8 – 8.0, 

therefore ends up in the protein-rich supernatant and subsequently in the soluble solids 

fraction (Blagrove et al., 1980). After AF, the sulphur-rich proteins are mainly recovered in 

the protein-rich supernatant. The sulfhydryl reactivity of the soluble solids fraction that 

was discarded added to the sulfhydryl reactivity of the protein-rich supernatant, which was 

26 µmol/g protein compared with 19.5 µmol/g protein in the LPI, and may have improved 

the protection against oxidation in the protein-rich supernatant. Conglutin-γ was shown to 

chelate iron ions and especially copper ions (Duranti et al., 2001). The anti-oxidant capacity 

of the sulphur-rich proteins thus may have caused the lower levels of oxidation markers in 

the protein-rich supernatant than in the LPI fractions (Fig 29). 

The physical hindrance or barrier effect is due to extraneous protein that is either 

adsorbed on the oil body surface or present in the continuous phase of an emulsion (Decker 

and McClements, 2001). The proteins on the interface permit limited access for oxygen 

or pro-oxidants to the oil body (Fisk et al., 2008; Karkani et al., 2013). Fisk et al. (2008) 

and Karkani et al. (2013) suggested that sunflower seed protein and maize germ protein in 

the continuous (aqueous) phase can chelate the metal ions and thus improve the oxidative 

stability of emulsions. Gray et al. (2010) studied emulsions prepared with oil bodies from 

Echium plantagineum and states that the protective effect of the protein is caused by 

interfacial proteins on the oil bodies, forming a barrier to oxygen and hydroperoxides and 

besides preventing the oil bodies from coalescing. The anti-oxidative mechanism of lupin 

protein may thus be due to interfacial and continuous phase proteins. Even though higher 

protein concentrations usually imply better protection against oxidation, the LPIs exhibited 

higher oxidation marker values than the protein-rich supernatant and thus the presence of 

sulphur-rich proteins in the protein-rich supernatant may be a more important anti-oxidant 

than the higher protein concentrations. 

Polysaccharides can have anti-oxidative properties as well, as reported for oil-in-water 

emulsions (Chen et al., 2004; Mateos-Aparicio et al., 2010; Wang et al., 2013; Waraho et 

al., 2011; Zhou et al., 2008). The anti-oxidative mechanism is due to their metal-chelating 

activity, free radical scavenging activity, and additionally by the increase in viscosity (Waraho 

et al., 2011). Mateos-Aparicio et al. (2010) reported that the soluble polysaccharide fraction 
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of soybean cell wall material shows reductive power towards iron (III) and shows radical 

scavenging activity. The presence of polysaccharide-protein complexes, e.g. containing 

glycoproteins, made it difficult to completely eliminate the role of the anti-oxidative 

properties of protein (13 wt% on dry basis), but the ‘fibre-rich pellet’ material did show 

anti-oxidative properties (Mateos-Aparicio et al., 2010). Since lupin has a higher total 

dietary fibre content and a higher soluble dietary fibre percentage than soybean (Bähr et al., 

2014), the fibre-rich pellet may exhibit even higher anti-oxidative activity than the fibre-rich 

material from soybean. Additionally, uronic acids, present in pectin, are positively related 

with an improved oxidative stability of polysaccharides in tea and brown algae through 

radical-scavenging (Chen et al., 2004; Zhou et al., 2008). The cell walls of the lupin cotyledon 

contain a substantial amount of pectins (Guillon and Champ, 2002), and thus an improved 

oxidative stability of the fibre-rich pellet was to be expected. Besides, a higher viscosity 

increases anti-oxidative activity because of reduced oxygen ingestion (Waraho et al., 2011). 

All these effects may thus have a role in the lower oxidation marker values found for the 

fibre-rich pellet (Fig 28 and Fig 29).

6.3.2.3 The influence of pH

In general, the PV and the pAV were higher for LPI at pH 4.5 than for LPI at pH 7 (Fig 29). At 

pH 4.5, lupin proteins were expected to form a denser network around oil droplets providing 

a barrier against oxidation (see 6.3.2.1 The influence of extraction temperature). This is not in 

agreement with our results; obviously other mechanisms dominate. One other mechanism 

could be related to the metal chelation of the proteins in the aqueous dispersions. At higher 

pH (far from the pI), the protein is anionic and thus able to bind positively charged iron ions 

(Berton-Carabin et al., 2014). At pH 4.5, the metal-binding capacity of lupin proteins may 

thus have been reduced. Faraji et al. (2004) showed that whey protein isolate (WPI) and soy 

protein isolate (SPI) continuous phase proteins inhibited lipid oxidation at pH 7.0. This was 

related to the metal-chelating properties of free sulfhydryl groups on WPI and SPI (Faraji 

et al., 2004). Since LPIs also contain free sulfhydryl groups (Berghout et al., 2015), a similar 

effect may have improved the oxidative stability of lupin oil.

6.3.2.4 The role of other minor components

The differences in PV and pAV at 4°C and 20°C and between fractions are thus a result of 

oxygen solubility, composition, but may additionally be caused by differences in solubility 

and the anti- or pro-oxidative activity of minor ingredients, such as phenolic compounds 

(anti- and pro-oxidative) and trace metals (pro-oxidants). Lupin seeds contain natural anti-
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oxidants, such as tocopherols and other phenolic compounds (Sbihi et al., 2013; Siger et al., 

2012). The specific effect of these separate compounds on the overall anti-oxidant capacity 

was outside the scope of this work. 

Other potential pro-oxidants in lupin fractions are metal ions, such as iron and copper. 

The iron and copper content of lupin flour, the fibre-rich pellet and the LPI are shown in 

Table 10. Iron contents were higher than copper contents in all fractions, while the highest 

concentrations of iron and copper were found in the LPI. Sørensen et al. (2008) showed that 

iron increased the PV of an emulsion at low pH (3.0) compared with pH 6.0 because iron has 

a higher solubility at low pH and might have played a role in the higher lipid oxidation levels 

in the LPI dispersion at pH 4.5, compared with the LPI dispersion at pH 7.0. Osborn-Barnes 

and Akoh (2003) showed that copper had a smaller influence on lipid oxidation values at 

low pH (3.0) and a larger influence on lipid oxidation values at higher pH (7.0). The exact 

pro- and anti-oxidant effects of metal ions in an aqueous dispersion, or natural emulsion, 

thus depends on many different factors. A further specification of these factors was outside 

the scope of this work.

Table 10 Iron and copper content of full fat flour, fibre-rich 
pellet and lupin protein isolate on a dry basis

Iron (mg/kg) Copper (mg/kg)

Full fat flour 56.5±0.5 4.2±0.1

Fibre-rich pellet 76.0±1.0 2.6±0.1

Lupin protein isolate 91.5±0.5 12.7±0.2

6.3.3 Carbonyl formation during aqueous fractionation

A common protein oxidation marker is the carbonyl concentration (Nyström, 2005). 

The carbonyl concentrations of all the fractions at 4°C and 20°C (Fig 31) were below the 

acceptability limit of 14 mmol/kg oil for fresh meat tissue (Lund, 2007). The carbonyl 

concentrations were highest in the fibre-rich pellet even though this fraction had the lowest 

protein content of all tested fractions (Fig 28). Additionally, the fibre-rich pellet had the 

lowest solubilized protein content in the final measured solution (see values in the bars in 

Fig 31). This is in line with results previously reported by Berton et al. (2012) who found the 

highest carbonyl concentrations at the lowest protein solubilities in the creamed phase of 

an emulsion. 

A possible explanation for the high carbonyl concentration is the presence of other 

components that are measured as well with the DNPH-assay, such as secondary lipid 
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products that can react with sulfhydryl groups to form stable, covalent thioethers with 

carbonyl groups (Armenteros et al., 2009). Since the fibre-rich pellet contains most of the 

oil and relatively high levels of secondary lipid oxidation products (evidenced by the pAV), 

we hypothesize that the DNPH-assay measures these exogenous derivatives as well. The 

carbonyl concentration is in fact underestimated because less than half of the total protein 

amount was solubilized in the guanidine solution. However, the LPIs at pH 4.5 and pH 7 

have the highest solubility in the guanidine solution and the lowest carbonyl concentrations, 

which concurs with the behaviour of the unabsorbed proteins found in the aqueous phase 

of an emulsion (Berton et al., 2012). This thereby suggests that AF is a suitable process to 

obtain chemically (oxidatively) stable LPIs. 

6.3.4 Oxidation after heat treatment

In some of the experiments, a heat treatment (80°C, 1 min) was performed after the flour 

was solubilized (Fig 27). This was to inactivate any lipoxygenase (LOX) that may influence 

the measured oxidation values. Such a heat treatment is known to inactivate LOX (Seth and 

Nath, 2007). Yet, the heat treatment increased the PV in the protein-rich supernatant and in 

the LPI at pH 7, and it increased the pAV in the LPI at pH 4.5 and pH 7 (Fig 29). This suggests 

that either LOX is not strongly involved in the lipid oxidation or that the heat treatment itself 

induces lipid oxidation. Surprisingly, the PV increased in the protein-rich supernatant but 

remained similar in the fibre-rich pellet, even though the fractions were obtained from the 

Figure 31 Carbonyl concentrations of all fractions after aqueous fractionation (AF) at 4°C, 20°C 
and AF at 4°C with heat treatment (HT). The values in the bars represent the percentage of 
soluble proteins in guanidine chloride for which the carbonyl concentration was measured. 
The horizontal dotted line indicates the acceptability limit for fresh meat tissue (Lund, 2007)

6.5 6.4 4.0 33.934.731.4 67.263.665.3 61.2 57.160.0
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same bottle (Fig 28). We suspect that this could be due to a slightly different oil composition 

in the fibre-rich pellet and the protein-rich supernatant (Fig 29). Hydroperoxides are known 

to be surface-active (Nuchi et al., 2002) and therefore tend to migrate to the oil-water 

interface where they are accessible for pro-oxidants in the aqueous phase (protein-rich 

supernatant) (Decker and McClements, 2001). The higher pAV in the LPIs then are a result of 

the conversion of the hydroperoxides in the protein-rich supernatant after heat treatment 

into secondary lipid oxidation products. 

Remarkably, none of the fractions had higher protein oxidation levels by heat treatment. 

Protein oxidation generally increases with increasing processing temperature and time, for 

example for cooking beef and pig tissue (Gatellier et al., 2010; Traore et al., 2012). It is 

possible that higher temperatures are needed to oxidize the protein further. For example, 

Gatellier et al. (2010) showed that a temperature of 65°C did not influence the protein 

oxidation levels of beef tissue, but a temperature of 96°C and higher increased the protein 

oxidation levels of beef tissue significantly.

The heat treatment decreased the protein and oil recovery of the AF process as shown by 

the fact that the amount of protein recovered in the LPIs was only half of the value measured 

without heat treatment (21 wt% versus 47 wt%, respectively). This can be explained by the 

formation of local, denser protein networks surrounding the oil bodies, much like oil-filled 

gels from SPI and WPI (Gu et al., 2009; Sala, 2007). These locally dense networks with oil and 

high protein contents will have a high density, closer to that of water, and will end up in the 

fibre-rich pellet as evidenced by its increased protein content (Fig 28). 

The specific involvement of LOX in the oxidation mechanism of lupin oil was not assessed, 

but given the negative influence of heating we hypothesize that auto-oxidation has a larger 

influence than enzymatic oxidation. We found that a longer time of evaporation of the 

extraction solvent is positively correlated with increased oxidation values (data not shown). 

Besides, LOX is known to have a higher activity at 20°C than at 4°C (Yoshie-Stark and Wäsche, 

2004) while we found higher oxidation values at 4°C than at 20°C. This suggests that auto-

oxidation, the composition of the fractions, and the solubility of oxygen in water, are more 

important factors involved in the oxidative destabilisation of oil in our samples before and 

during AF compared with the activity of LOX.
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6.4 Conclusion

We investigated the chemical stability of lupin protein isolates (LPIs) obtained through 

aqueous fractionation (AF). AF at 4°C and 20°C resulted in LPIs containing 88 wt% protein 

and 2 wt% oil, with lipid and protein oxidation values well below the acceptability limit 

for edible vegetable oils and meat tissue protein. The level of lipid oxidation markers was 

lower when the AF process was conducted at 20°C compared with 4°C, which is attributed 

to the higher solubility of oxygen in water at lower temperature (4°C). The differences in 

oxidation values between the different fractions obtained by the AF process were related 

to their different chemical compositions, with protective effects of the matrix of protein 

and polysaccharides that surround the oil. Additionally, the metal-chelating properties of 

protein and the different solubilities of trace metals and proteins at pH 4.5 or 7.0 probably 

play a role in the oxidation mechanism of lupin oil. The application of a heat treatment 

to inactivate oxidative enzymes, did not reduce the oxidation marker values but instead 

increased oxidation marker values above the acceptability limit, and additionally decreased 

the protein and oil recovery values. Based on the lipid and protein oxidation levels of all 

fractions obtained through AF, a processing temperature of 20°C is preferable to obtain a 

chemically stable LPI from lupin seeds.
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Highlights:

The functional properties of lupin protein isolates depend mainly on drying

Before designing fractionation processes, one should have a clear image of the structure 

and interactions of the components of the seed or bean

Integration of fractionation and product processing sites is crucial for better sustainability

Functionality-driven fractionation can be extended to other legumes and pulses
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7.1 Outline

The conventional approach to separate a raw food material into its pure ingredients and 

then blend these to the final composition of the food product is not efficient. Firstly, the 

separation processes require dilution with water and many chemicals, like organic solvents, 

alkali and acids and secondly, drying of the ingredients consumes a lot of energy. It is more 

efficient to prepare fractions with the desired composition and functional properties for the 

food product; a concept referred to as functionality-driven fractionation. The aim of this 

thesis was to obtain understanding of the sustainable production of functional, protein-rich 

materials from lupin seeds. This chapter summarizes the main findings of the preceding 

chapters, after which the potentials and bottlenecks of simpler fractionation techniques 

are discussed. The chapter ends with a future outlook on the functionality-driven design of 

fractionation processes.

7.2 Main findings and conclusions

The design of conventional wet fractionation processes for the production of protein isolates 

focuses on achieving high purity and high yield, for which organic solvents, chemicals and 

loads of water are necessary. Since no end product is composed of a single ingredient and 

lupin seeds have a relative low oil content, a focus on purity and yield may not be necessary. 

Instead, functionality and sustainability should form the focus of modern fractionation 

processes. Consequently, we investigated the potential of purely aqueous fractionation (AF) 

of lupin seeds in chapter 2, in which the use of organic solvents was avoided completely 

and several extraction steps performed in the conventional wet fractionation process were 

skipped. This functionality-driven approach led to lupin protein isolates (LPIs) that contain 

about 2 wt% oil and have similar functionality as the conventional, wet-fractionated LPI. The 

higher extraction temperatures affected the separation efficiency and functionality of the 

LPI; an altered protein functionality could also be achieved by applying a heat treatment 

after fractionation. 

Common functionalities reported for lupin protein are foaming capacity and stability, 

emulsifying capacity and stability, and solubility (D’Agostina et al., 2006; Pozani et al., 2002; 

Wäsche et al., 2001). Other relevant functional properties for legume proteins are the water 

holding capacity, viscosity and gelling capacity. In the evaluation of the gelling properties of 

lupin protein, soy protein was taken as benchmark (Banerjee and Bhattacharya, 2012; Day, 

2013). In chapter 3, we showed that for several protein concentrations, LPI formed weaker 
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and more deformable gels than soy protein isolate (SPI). Microscopic imaging and static light 

scattering measurements showed that both protein isolates formed particle gels in which 

lupin protein particles swelled less upon heating than soy protein particles. The gelling 

properties of LPI and SPI were related to their sulfhydryl reactivity. The higher sulfhydryl 

reactivity of LPI and the increasing reactivity upon heating, suggested that LPI forms less or 

no new disulphide bonds to strengthen the particle network. The opposite behaviour was 

observed for SPI; a decreasing sulfhydryl reactivity upon heating, indicating the formation 

of (new) disulphide bonds. LPI may thus be less suitable for semi-solid food products but 

offers opportunities for high-protein foods that require a low viscosity after heat treatment.

The environmental impact of fractionation processes for lupin seeds is discussed in 

chapter 4, where we reported on a sustainability assessment with the use of mass, 

energy and exergy balances to pinpoint inefficiencies in the use of raw materials and in 

processes. Dry fractionation yields protein-enriched flours (54 wt% protein) and consumes 

least energy because it requires no water at all. For higher protein contents (>85 wt%), 

wet fractionation processes are needed. As expected, the conventional wet fractionation 

process requires more water and energy than the AF process. Replacing the drying step 

with a concentration step (i.e. producing the isolate in a concentrated liquid form) reduces 

the water and energy consumption of all fractionation processes. Water consumption was 

further reduced by combining dry and AF processes to obtain LPIs. Finally, the exergetic 

efficiency of all fractionation processes could be increased by valorising all the by-product 

fractions obtained, e.g. lupin oil, the soluble solids fractions, the fibre-rich pellet and the 

coarse fraction.

Replacing drying by concentration, i.e. membrane (ultra)filtration, resulted in ‘wet’ LPIs 

with different functional properties than freeze-dried LPIs. In chapter 5 the differences in the 

technical functionality of these LPIs was investigated. After heat treatment, the viscosity of the 

wet LPI increased and eventually resulted in gel formation at 121°C, while the viscosity of the 

freeze-dried LPI was slightly lower and did not result in gel formation. This difference is caused 

by a difference in the degree of aggregation, as evidenced by microscopic imaging, static light 

scattering, and swelling capacity measurements after heat treatment. The freeze-dried LPI 

was more intensively aggregated due to the drying process (freezing and freeze-drying) while 

the wet LPI was less aggregated and could swell upon heating and aggregate further after 

heat treatment above 100°C. We concluded that the extent of concentration is a parameter 

to control the final product properties. Wet LPIs show potential for yogurt-style alternatives, 

while the low viscosity of the freeze-dried LPIs show potential for high-protein beverages.
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Chapter 6 dealt with the chemical stability of the LPIs obtained with AF. The LPIs contain 

oil, have a high degree of unsaturated fatty acids and may thus be prone to oil and protein 

oxidation. We showed that AF at 4°C and 20°C resulted in LPIs for which the oil and protein 

oxidation marker values were within the quality limits. AF at 20°C is thus a feasible option to 

obtain chemically stable LPIs that contain oil, which means that cooling of the process is not 

necessary and thus AF consumes 5.4 MJ/kg LPI less energy (chapter 4).

Overall, it can be concluded that the environmental impact of oilseed fractionation can be 

reduced when the final application is considered as a design parameter for the fractionation 

process. For most food applications, pure ingredients are not necessary, but the production 

of pure ingredients requires most resources by far. In case of protein, enrichment is sufficient 

for application in foods, and dry fractionation might be an interesting option, provided that 

the by-product stream can be used for food applications as well. For applications in which 

higher protein contents are required, and the presence of oil is allowed (which will be the 

case in many food applications), the oil recovery step can be omitted. A detailed analysis 

showed that oxidation of oil and protein remained within quality limits in the simplified AF 

process. 

7.3 Evaluation of fractionation processes

The separation principle of conventional wet fractionation processes is based on 

differences in solubility of the different components. Generally, lipids are soluble in organic 

solvents, simple carbohydrates and minerals are soluble in water and proteins are soluble 

in dilute-salt solutions and water at a pH above their iso-electric point, while dietary fibres 

are not soluble in water or most organic solvents. By making use of organic solvents and pH 

switches, water-soluble and water-insoluble components can be separated. However, the 

use of organic solvents, water, and alkali and acids is not desirable from an environment and 

economic point of view. Therefore, the focus of future fractionation techniques should be 

on reducing the environmental impact of fractionation processes, by simplifying separation 

processes even further.

7.3.1 Simplification of separation processes

Raw materials are highly complex, structured mixtures of macro- and micro-nutrients. 

For several of these nutrients, isolation procedures have been developed. These isolation 

procedures disrupt the naturally present structures of the matrix in which the component 

of interest is embedded, which requires intensive processing, leading to waste production. 
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We proposed to focus less on molecular purity and more on the natural functionality of 

fractions of the raw material. With this we aim to obtain functional fractions that can be 

produced with a more efficient process, i.e. less intensive, producing less waste. The low 

alkaloid level of Lupinus angustifolius L. allowed us to skip acidic extraction steps before 

alkaline solubilisation, which simplified the fractionation process. We also performed all 

extraction steps with fewer repetitions, again simplifying the fractionation process. Further 

simplification included leaving out the oil extraction step. The presence of oil was not 

detrimental for the functionality and chemical stability of the LPI (chapter 2 and chapter 6), 

and significantly reduced the environmental burden of fractionation processes (chapter 4), 

thus enabling environmental benign fractionation processes for legume seeds. 

Reducing the environmental burden of fractionation processes even further was achieved 

by combining dry and AF processes, achieving a reduction of 34 wt% in water use and a similar 

amount in the use of chemicals for fractionation. This combination showed great potential 

to obtain LPIs that have functionality interesting for high-protein, plant-based products and 

that are produced in a more sustainable way (chapter 4). AF makes use of water and pH 

shifts to separate components such as protein, simple carbohydrates and fibres based on 

differences in solubility. Omitting the pH shifts to separate these components would make 

the AF process even simpler and more sustainable, making the use of chemicals redundant. 

This leaves only water and temperature as means for separation. In chapter 2, the use of a 

higher extraction temperature (in combination with pH shifts) was shown to decrease the 

protein solubility, which may not be desired for many high-protein food products. These 

temperatures (50°C and 90°C) were rather extreme, and thus we recommend to study the 

effect of less extreme extraction temperatures on functionality further.

Drying is energy-intensive (chapter 4) and influences the functionality of the LPIs significantly 

(chapter 5). Skipping a drying step reduces the energy consumption of the fractionation 

processes (12.7 MJ/kg LPI) (chapter 4). Instead of drying, the use of a concentration step 

was considered, to obtain a protein concentration that is appropriate for the preparation of 

high-protein foods (about 10% (w/v)). This concentration was achieved with ultrafiltration 

and resulted in a ‘wet’ LPI dispersion (chapter 5). Producing ‘wet’ fractions is however not 

common in industry because of increased (microbial) spoilage risks, physical and chemical 

instabilities, a reduction in standardization and costs of transportation. Processing the 

fractions right after fractionation may overcome some of these problems, but will have big 

implications for the current logistics in industry. A possible drawback of membrane filtration 

might be the fouling, which requires the use of chemicals and water for removal, or even 
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membrane replacement costs and down time (Mondor et al., 2010). The impact of these 

factors on the sustainability of membrane filtration processes should be evaluated versus 

the unique functionality of the protein.

7.3.2 Controlling LPI functional properties through drying conditions

Drying strongly influences the functional properties of the LPI. A mild drying technique 

involves flash-freezing or fast-freezing of the LPIs. We mimicked this by quickly freezing the 

wet LPIs with liquid nitrogen (N2) and subsequently freeze-drying the LPIs (Fig 32 and Fig 

33). Compared with the freezer-frozen-freeze-dried LPI (referred to as FF LPI), the N2-frozen-

freeze-dried LPI (referred to as N2F LPI) did not result in a powder, but yielded a fibre-like 

material with a more porous structure, as evidenced from scanning electron microscope 

images (Fig 32). After grinding the N2F LPI to a powder, it was observed that the N2F LPI 

shows electrostatic behaviour, which the FF LPI does not show. The particle size distribution 

(PSD) (Fig 33) shows that the N2F LPI consists of smaller particles than the FF LPI and has a 

PSD similar to the wet LPI. Smaller particle sizes can lead to more electrostatic behaviour 

because of a larger surface-to-volume ratio (Wang et al., 2014). It was also observed that the 

N2F LPI dispersed faster in water after freeze-drying than the FF LPI, which may be related to 

Figure 32 Scanning Electron Microscope images of freezer-frozen-freeze-dried 
protein isolate (A & B) and N2-frozen-freeze-dried protein isolate (C & D)

BA

DC
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their PSDs and the porous structure of the N2F LPI. This thus shows that the speed of freezing 

has a strong influence on the physical state of the LPI. The capital costs for the equipment 

for immersion freezing in N2 are relatively low but the liquid N2 itself is expensive (Smith, 

2011). Therefore, cryogenic freezing is mainly used for high-value, specialty ingredients.

Finally, there are options for drying protein isolates with fewer resources, such as 

supercritical CO2 drying (SC-CO2) because SC-CO2 is non-toxic, inexpensive and it is recyclable 

(Brown, 2010; Bušić et al., 2014; Nuchuchua et al., 2014). However, the use of SC-CO2 for 

drying needs further optimisation before implementation because the necessary equipment 

is capital intensive. In addition, since water has a limited solubility in SC-CO2, drying is not 

fast, and because of the extreme operating pressures that are needed (> 100 MPa) the size 

of the extraction vessels and thus throughput is limited (Temelli and Ciftci, 2014), while 

aroma properties and preservation of bioactive compounds in e.g. basil leaves was not as 

good as with freeze- and air-drying yet (Bušić et al., 2014). 

7.3.3 Towards total use (of raw materials)

The complete use of a raw material reduces the waste production and thus improves 

the chemical exergy efficiency and sustainability of fractionation processes (chapter 4). 

This illustrates the general principle that for better sustainability, cycles need to be closed, 

in which the products and residues from one industry serve as the raw material for the 

next (Vardanega et al., 2014). By-product streams of the fractionation processes that we 

discussed were the coarse fraction (after dry fractionation), the fibre-rich pellet and the 

soluble solids fraction after conventional wet fractionation and AF. Valorisation of by-product 

streams is dependent on the composition and quality of the components in the stream, 

Figure 33 Particle size distribution of wet (―), N2-frozen-freeze-dried (- - -), and 
freezer-frozen-freeze-dried (••••) LPIs, measured with static light scattering



114 Chapter 7

and may be useful for food, chemicals, materials, bio fuels or feed. The extracted oil was 

not seen as a waste stream, but it should be mentioned that lupin oil is not commercially 

marketed because of the relative low oil contents in comparison with soybean, rapeseed, 

sunflower, and peanut oil contents (Doxastakis, 2000; Rodrigues et al., 2012), which makes 

it unattractive as a primary product. Besides, valorising lupin oil for human consumption will 

require purification steps, thus increasing the environmental burden of the fractionation 

process. Therefore, it is attractive to keep the oil inside functional fractions.

The fibre-rich fractions and the coarse fractions contain valuable nutrients, like insoluble 

dietary fibre (celluloses, hemicelluloses), soluble dietary fibre (pectins), oil and proteins. 

Some of these fractions may find an application as is, but others require refinement. Lupin 

cotyledon fibre is rich in soluble fibres (pectin) and has a high water holding capacity (~8.5-

11.1 g/g dry solids) (Turnbull et al., 2005), and improves the texture and shelf-life of breads 

(Güémes-Vera et al., 2008) and bowel health (Fechner et al., 2013). The high water binding 

capacity may however complicate food production as was shown for expanded extrudates 

from wheat bran (Santala, 2014). For this, enzymatic hydrolysis may potentially be used 

to decrease the water holding capacity of the fibres. The fibre-rich pellet is rich in dietary 

fibre and protein, but also in oil. Since the fibre-rich pellet is in a wet state (17 wt% dry 

matter), the oil may be separated by adding some water and subsequent centrifugation 

before hydrolysis with carbohydrases, e.g. pectinases, to reduce the water holding capacity 

of the fibres. Lupin flour is added to e.g. breads to improve the nutritional value due to the 

high lysine and low methionine content of lupin protein (Dervas et al., 1999). The addition of 

lupin flour also improves texture, taste, colour and overall acceptability of bread (Dervas et 

al., 1999). The coarse fraction is in powder form, contains native protein, oil and is enriched 

in dietary fibres and may thus be applied as food ingredient for the fibre-enrichment and 

improved nutritional value of baked goods as is (Turnbull et al., 2005). 

The fibre-rich pellet contains a significant amount of protein and to test whether the 

protein could be extracted from the matrix, we performed repeated extractions with water 

or a 10% NaCl solution (Fig 34). The 10% NaCl solution was able to extract slightly more 

protein from the fibre-rich pellet than pure water. Preferably no chemicals should be used 

because their removal from the fraction requires more processing. The use of water for 

protein extraction would thus be a good option. The soluble solids fraction also contains 

(sulphur-rich) protein, as was shown in chapter 6. The amount of free sulfhydryl groups in 

the soluble solids fraction was about 26 µmol/g protein compared with 19.5 µmol/g protein 

in the LPI. These sulphur-rich proteins may have (unique) interesting functional properties 
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Figure 34 Protein extraction from the fibre-rich pellet obtained after AF with 
water and a 10% NaCl solution. From bottom to top: black is the protein obtained 

with the first extraction step, grey is the protein obtained with the second 
extraction step, and white is the protein in the pellet after extraction

7.3.4 Implications for process chains 

The feasibility of this novel approach of simplification depends on the physical distance 

between the fractionation and food product processing sites. This implies that integration 

of bio-refinery concepts with other industries is crucial and the de-centralization of local-

scale production is necessary (Bruins and Sanders, 2012; Herrero and Ibáñez, 2014; Santos 

et al., 2014). An example of economically attractive integration of industries was given by 

Santos et al. (2014), who evaluated the economic feasibility of integrating the supercritical 

extraction of bioactive compounds from ginseng roots with the bio-refining of sugarcane 

and found that the integration had a high economic potential because the supercritical 

extraction process could use the heat, CO2, ethanol and electricity already available. In the 

case of the production of the wet, concentrated LPI dispersions by AF and ultrafiltration, the 

bio-refining site should be close to the point where the end products, e.g. dairy alternatives, 

are produced. Using local resources (and also local crops) has the benefit of shorter supply 

chains and less deterioration. Small scale bio-refineries can be successful and economically 

attractive when capital investments are relatively low and when they are not aimed at full 

(pure) conversion (Bruins and Sanders, 2012). Additional costs may be covered by reduced 

and can possibly be separated from the simple carbohydrates and minerals with e.g. 

membrane filtration techniques as was done for liquors from soybean processing (Moure et 

al., 2005). The refining of protein requires extra water; therefore the added value in terms of 

their functionality should be evaluated versus resource consumption and waste production.
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transportation costs and the use of local produce and recycling of water and minerals (Bruins 

and Sanders, 2012). Integration of fractionation of lupin seeds and product processing may 

not seem realistic at first, but with research focusing on the integration of bio-refineries 

and other industries (Bruins and Sanders, 2012; Varbanov and Seferlis, 2014), concepts may 

become more realistic in the future.

The production of the isolates close to the point of use also implies that the use of the 

other product streams (coarse fraction, fibre-rich fraction) may not be close to their point 

of use. While in general this shows the benefit of a larger cluster of related industries, this 

point may need further attention in future studies. 

7.4 Future prospects on the design of fractionation techniques and 
new scientific challenges

7.4.1 The importance of food structure

An improved understanding of the components and the interactions between components 

in lupin seeds can provide better leads for the design of (more sustainable) fractionation 

processes. Lupin cotyledon cells are built of cell walls that are composed of cellulose, 

hemicellulose, pectin and non-storage proteins. The cells contain protein bodies and oil 

bodies as separate ‘structures’ that contain most of the storage proteins and oil (Aguilera, 

1989; Rosenthal et al., 1996), and other minor components such as starch and non-storage 

proteins (Garnczarska et al., 2007; Morkunas et al., 2012).

The protein bodies (PBs) are composed of 70 wt% storage proteins, 12.5 wt% lipids, 4 wt% 

soluble carbohydrates, 8 wt% mineral residue, and about 5.5 wt% water (Plant and Moore, 

1983), and have a size of about 5 – 25 µm (Pelgrom et al., 2014). PBs are dispersable in water 

at neutral pH and partly disintegrate, as was shown for soybean by microscopic imaging 

(Preece et al., 2015). Using water for fractionation therefore does not seem a logical option. 

Dry fractionation by fine milling and air classification is based on differences in particle size. 

Dry fractionation of lupin seeds yielded max 54 wt% protein in the fine fraction (chapter 4). 

Further protein enrichment may not be possible since the difference in particle size between 

PBs and milled fibres is too small to be separated with just air classification (Pelgrom et al., 

2014). Another dry fractionation method is electrostatic separation. This method is based 

on the separation of oppositely-charged particles (Wang et al., 2014) and may potentially 

be used to separate the small fibres from the protein bodies in the fine fraction (Pelgrom et 

al., 2015). Dry fractionation will however never reach higher protein contents than 70 wt% 
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because of the intrinsic composition of the PBs. For higher protein contents, the PBs need to 

be dispersed in aqueous environments to separate the protein from the sugars and minerals. 

Since food products generally do contain water, it is not a problem to use water for aqueous 

processing, as long as it is done in concentrated conditions, such that evaporation of water 

(energy-intensive, chapter 4) can be avoided or kept to a minimum. Since dry fractionation 

can increase the protein concentration of lupin flour, the use of water should be the very last 

step in the fractionation process to reduce spoilage risks, and omit the need for drying steps 

before product processing. Ultrafiltration may then be an interesting technique to further 

purify the protein fraction by removing soluble components < 5 kDa by diafiltration (for 

example). After the addition of water for further purification in concentrated conditions, 

heating steps can be applied for preservation, instead of applying drying steps to produce 

dry ingredients and then mixing these with water for product processing. 

Oil bodies have a size of about 0.1 – 0.5 µm and can be separated with organic solvents 

or via aqueous extraction (Rosenthal et al., 1996). Aqueous extraction makes use of the 

insolubility of oil in an aqueous environment, thus creating an oil and an aqueous phase (de 

Moura et al., 2008; Rosenthal et al., 1998). The recovery of intact oil bodies depends on the 

particle size after milling (not too coarse), interactions between oil and protein, extraction 

temperature, solid-water ratio, and on the addition of proteases (Campbell, 2010; Rosenthal 

et al., 1996). Latif et al. (2008 and 2011) and Campbell et al. (2010) reported the combined 

extraction of protein and oil from sesame seeds, rapeseeds, and soybeans, which required 

less energy than the separate extractions of oil and protein. Nevertheless, separating the 

protein from the oil in the emulsion by de-emulsification required the use of enzymes 

and extra processing steps (Campbell, 2010; Rosenthal et al., 1996). However, complete 

fractionation might not be necessary for most food applications. For aqueous extraction of oil 

bodies, no pH switches have to be applied, thus relying more on differences in dispersibility 

than in solubility. For lupin seeds, oil bodies did not impede the dry fractionation, but higher 

oil contents in other seeds seem to be a challenge because of stickiness.

In summary, one should have a clear image of the structure of the components, their 

interactions, and the dispersibility of the components before designing a fractionation 

process for legumes and pulses. Dry fractionation by fine milling and air classification, 

followed by electrostatic separation may be an interesting pre-processing route to obtain 

protein-rich fractions from lupin seeds that contain oil. To reach higher protein contents, 

aqueous processing is necessary. The addition of water to protein-enriched flours, preferably 

in concentrated conditions, should be postponed however until the end of the process 
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just before application/structuring, to reduce the risk of spoilage and omit the need for 

intermediate drying steps.

7.4.2 Towards the use of functional fractions

Until now, we have been looking for applications for the by-product streams that were 

created after the main fraction of interest had been extracted; the protein isolate. We 

concentrated on functional fractions and therefore the functionality, not the purity, of 

the AF LPI had to be similar to that of a wet-fractionated LPI (chapter 2). However, we did 

not test what concentration of impurities could be tolerated before the functionality is 

altered or lost. The reduced focus on molecular purity coincides with the current trend that 

consumers and consequently industry turn towards organic products (Morgera et al., 2012). 

Organic processing has many restrictions and does not allow the use of organic solvents 

(hexane), of chemicals like sodium hydroxide (except for specialty bakery products) and 

hydrochloric acid, but does approve the use of dry fractionation and water (IFOAM, 2012). 

This is thus another motivation for future research to focus less on molecular purity and 

more on functionality.

For feeling for the degrees of freedom in producing functional fractions, it would be helpful 

to design a model or diagram which can be used to predict the technical functionality and 

nutritional value of e.g. lupin fractions versus molecular purity and nativity. A hypothetical 

example of such a diagram is depicted in Fig 35. The technical functionality of a protein-

Figure 35 Schematic diagram of technical functionality 
(green line and green dotted line) and cost for ingredient 

production (orange dashed line) as a function of purity (%)
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enriched lupin fraction may follow an S-shaped curve (green line), where molecular 

purity can be greatly reduced without compromising on technical functionality, or a steep 

descending curve towards reduced molecular purity (dotted green line), which means that 

technical functionality will suffer a lot from a small decrease in molecular purity. Such a 

diagram requires experiments that explore the relation between technical functionality and 

molecular purity, but also nutritional value and nativity.

We showed in chapter 6 that not extracting the oil did not impose risk from a chemical 

stability point of view; lipid and protein oxidation marker values of all fractions obtained 

with the AF process were all below the acceptability levels. Oil bodies are known to be well 

protected by a dense layer of phospholipids and protein and there are several anti-oxidative 

components naturally present in lupin seeds, such as phenolic compounds, carotenoids and 

tocopherols that may protect the oil bodies from oxidation (Sbihi et al., 2013). However, the 

chemical stability of the fractions over longer times (upon storage) should be investigated, 

especially when kept in a wet state. 

An important further issue for the use of lupin seeds and functional fractions derived thereof 

is their allergenic potential. The allergenic lupin protein shows cross-reactivity with peanut 

protein, which is a serious and frequently occurring allergy (Sirtori et al., 2011). Identifying 

the allergenic protein and reducing the allergenic potential is a topic of investigation 

(Alvarez-Alvarez et al., 2005; Sirtori et al., 2011). Alvarez-Alvarez et al. (2005) studied the 

effect of microwave cooking, extrusion and autoclaving on the allergenic potential and 

found that the allergenic potential was reduced after an autoclave treatment at 138°C for 20 

min. Even though autoclaving was a promising method to reduce the allergenic potential of 

lupin protein, further investigations are needed, especially on the functionality, nutritional 

value and protein digestibility after such a treatment.

The concept of functionality-driven fractionation is a useful concept towards full use of 

raw materials, less water and energy consuming processes, and the use of less chemicals 

and organic solvents. The concept is not only useful for the fractionation of lupin seeds, but 

also for other food (oil-rich) legumes and pulses (de Moura et al., 2008; Latif and Anwar, 

2011; Latif et al., 2008; Rosenthal et al., 1998), and for non-food crops, like the rubber 

seed kernel (Widyarani et al., 2014). A combination of dry and AF processes with the use of 

water and temperature may be very promising to obtain functional fractions. The design of 

fractionation processes depends on the relation between technical functionality, nutritional 

value and molecular purity for the main fraction of interest. Lupin seeds are relatively 

low in anti-nutritional factors because sweet varieties have been developed, while the 
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presence of phenolic compounds did not trouble either the fractionation processes itself, 

or the oxidative stability of the products. However, for crops with higher concentrations of 

phenolics, e.g. glucosinolates and erucic acid in canola, complexes of phenols and proteins 

may be formed that darken the products and are responsible for undesirable flavours and 

lower nutritional value (Aider and Barbana, 2011). The fate of these micro-nutrients should 

thus be taken into account as well.
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Appendix A

Calculations on cooling duty

We assumed there are three processes that require cooling: (1) mixing flour with water 

and NaOH, (2) mixing protein-rich supernatant with HCl, and (3) rinsing the protein pellet 

with water. 

Temperature differences assumptions: (1) from 15°C to 4°C, (2) from 5°C to 4°C, and (3) 

from 5°C to 4°C. The following formula was used to calculate the cooling duty supplied by 

the cooler per ton protein isolate. 

where Qcool is the cooling duty (kJ), m is the mass (kg), cp the heat capacity (kJ/kg·K) and ΔT 

the temperature difference (K). 

The cooling duty was corrected for the efficiency of the cooler with:

where the efficiency of the cooler was assumed to be 0.5.

Mass fraction on dried material (-)

Protein Oil Carbohydrates Mineral residue Water

Conventional 
wet 

fractionation

Fibre-rich pellet 0.23 0.00 0.68 0.04 0.05

Soluble solids fraction 0.28 0.00 0.59 0.08 0.05

Oil 0.00 1.00 0.00 0.00 0.00

Aqueous 
fractionation

Fibre-rich pellet 0.12 0.16 0.65 0.02 0.05

Soluble solids fraction 0.37 0.00 0.50 0.08 0.05

Dry and 
aqueous 

combination

Coarse fraction 0.32 0.06 0.51 0.02 0.10

Fibre-rich pellet 0.20 0.26 0.47 0.02 0.05

Soluble solids fraction 0.64 0.00 0.22 0.10 0.05

Table A1 Composition of  by-product streams

Q Q
efficiencycooler

cool=

Q m c Tcool p= ⋅ ⋅∆
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Appendix B

Particle size distribution (nm) of a filtered lupin protein isolate dispersion.

Standard chemical exergy (MJ/kg)

Water (liquid) 0.0499

Water (vapour) 0.5272

Protein 22.61

Oil 43.09

Carbohydrates 17.64

Mineral residue 0.04

Hexane 47.7

Hydrochloric acid (powder form) 2.3

Sodium hydroxide (powder form) 1.9

Table A2 Standard chemical exergies
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The growth in the world population requires an increase in the production of protein-

rich foods from plant-based materials. Lupin seeds have potential to become a novel plant 

protein source for food products because they are rich in protein (about 37 wt%) and they 

can be grown in moderate temperature climates as in north-western Europe. Besides a 

high protein content, lupin seeds are rich in dietary fibres (soluble and insoluble), contain 

about 7-10 wt% oil, and are low in starch. To optimally use the proteins present in lupin, a 

fractionation process has to be developed. For other legumes, refining of protein is usually 

performed through wet fractionation techniques. However, wet fractionation techniques 

are resource-intensive and herewith the sustainability of increasing the use of plant-based 

materials for foods decreases.

The aim of this thesis is to obtain understanding of the production of functional, protein-

rich material from lupin seeds with reduced environmental impact. In this thesis, it is shown 

that focus on functionality rather than (molecular) purity can lead to simplified fractionation 

processes, which is a concept referred to as functionality-driven fractionation. The influence 

of these simplifications on protein functionality and on physical and chemical stability of 

the protein isolates is explored. Furthermore, we performed a sustainability assessment of 

fractionation processes.

Conventionally, protein isolates are produced with wet fractionation processes, based 

on differences in solubility of the components of seeds. Conventional wet fractionation 

includes an oil extraction step, which requires the use of organic solvents, and repeated pH 

shifts, leading to chemical and water consumption. Chapter 2 compares conventional wet 

fractionation and aqueous fractionation processing (being conventional wet fractionation 

in which the de-oiling step is excluded) to obtain lupin protein isolates (LPIs). The aqueous 

fractionation process led to LPIs with slightly altered composition, mainly due to the inclusion 

of 2 wt% oil. Nevertheless, the functionality of the aqueous fractionated LPI was similar to 

that of the conventional wet-fractionated LPI. The separation efficiency and protein solubility 

of the aqueous fractionated LPI were influenced by higher extraction temperatures. A post-

process heat treatment was also effective in altering the LPIs protein solubility and water 

holding capacity, which is interesting for high-protein foods with different functionality 

requirements. 

The gelling properties of the aqueous fractionated LPI were benchmarked against soy 

protein isolate (SPI) in chapter 3. Generally, SPI formed firm gels while LPI formed weak 

and deformable gels. Microscopic images and static light scattering measurements showed 

that both protein isolates form particle gels, but LPI particles swelled less upon heating 
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than SPI particles. Even prolonged heating with the aim to improve unfolding of lupin 

proteins, resulted in deformable gels. The difference in the gelling properties of LPI and 

SPI could be related to the higher sulfhydryl reactivity of LPI than of SPI and the increased 

sulfhydryl reactivity of LPI after heat treatment. The latter indicated that LPI particles were 

not able to form (new) disulphide bonds to strengthen the particle network. The opposite 

behaviour was observed for SPI, where the sulfhydryl reactivity decreased upon heating, 

indicating the formation of new disulphide bonds that strengthened the network. Even 

though LPI seems less useful for semi-solid food products (as a single ingredient in water), 

it offers opportunities for high-protein food products that require a low viscosity after heat 

treatment.

The environmental impact of various lupin fractionation processes is discussed in chapter 

4. The fractionation processes that were included in the evaluation were dry fractionation, 

conventional wet fractionation, aqueous fractionation and combinations thereof. We 

performed a sustainability assessment with the use of mass, energy, and exergy balances. 

Exergy is a thermodynamic state variable that describes the potential work that can be 

performed with a specific stream. Indicators such as exergy efficiency and exergy losses 

were used to calculate and visualize inefficiencies in processes or the conversion of raw 

materials. Dry fractionation was found to be the most sustainable route to obtain protein-

enriched flours. Conventional wet and aqueous fractionation processes were used to further 

increase the protein content of lupin flour or the protein-enriched flour. Wet fractionation 

required more energy and resulted in higher exergy losses than aqueous fractionation 

because of the de-oiling step. Both conventional wet and aqueous fractionation processes 

involve high water consumption and energy consumption for drying of the fractions, leading 

to high exergy losses. A route to reduce water consumption and exergy losses is combining 

dry and aqueous fractionation processes to obtain LPIs. The consumption of energy can be 

further reduced by concentrating the LPI to higher protein concentrations instead of drying. 

Finally, a key factor in improving the exergetic efficiency of all fractionation processes was to 

valorise all the by-products obtained, e.g. lupin oil, the soluble solids fractions, the fibre-rich 

pellet and the coarse fraction.

Replacing drying steps with concentration steps resulted in ‘wet’ LPI dispersions. The 

technical functionality of wet LPIs produced with aqueous fractionation was compared 

with the technical functionality of the freeze-dried LPIs. Chapter 5 reports on the viscosity, 

solubility and swelling properties of wet and freeze-dried LPIs. Wet LPIs had a higher 

solubility than freeze-dried LPIs, which was attributed to protein aggregation leading to the 
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large protein particles found in the freeze-dried LPI as evidenced by microscopic images 

and static light scattering measurements. The viscosity and swelling capacity of wet LPI 

dispersions increased after heat treatment at 100°C while the viscosity and swelling capacity 

of the freeze-dried LPI dispersion remained similar. The freeze-drying process thus induced 

protein aggregation, creating heat-stable particles that did not swell extensively after heat 

treatment. Freeze-dried LPIs may be interesting for high-protein beverages that require low 

viscosity after heat treatment, while wet LPIs may be interesting for higher viscosity dairy 

alternatives.

The LPI prepared with aqueous fractionation contains about 2 wt% oil, with a high level of 

poly-unsaturated fatty acids, which may thus be prone to lipid oxidation and consequently 

protein oxidation. If LPIs are to be produced with simplified fractionation processes that omit 

the extraction of oil, the chemical stability of the LPIs needs to be assured. Lipid and protein 

oxidation marker levels were determined for fractions obtained with aqueous fractionation 

at two extraction temperatures (4°C and 20°C), as is described in Chapter 6. Primary and 

secondary lipid oxidation marker values and protein oxidation values were found to be below 

the acceptable values for both extraction temperatures. A heat treatment that was applied 

to reduce the activity of lipoxygenase, decreased oil and protein recovery and increased 

lipid oxidation marker values. Therefore, cooling of the process and an intermediate heat 

treatment are not necessary, herewith reducing the environmental impact of the aqueous 

fractionation process that can be performed at 20°C.

Chapter 7 concludes with a general discussion of all results presented in the thesis. It starts 

with summarizing the main findings, after which potentials and bottlenecks of the novel 

fractionation processes are discussed. The chapter ends with a future outlook on further 

scientific research on functionality-driven fractionation processes and possible applications.

The results presented in this thesis provide steps towards more sustainable production of 

functional fractions for food applications obtained with simplified fractionation processes. 

This work provides future perspectives for functionality-driven fractionation processes 

that may be extended to other legumes and pulses as well. This approach leads to the 

development of ingredients and fractions of seeds and legumes that can be used for plant-

based food products.
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De groeiende wereldbevolking vereist een toename in de productie van eiwitrijke 

levensmiddelen. Een groot gedeelte van de eiwitten in het humane dieet zijn afkomstig van 

dieren en zuivel, zoals vlees, kaas en melk. Voor de productie van dierlijk eiwit zijn veel meer 

water, grondstoffen en land nodig dan voor de productie van plantaardige eiwitten. Dit is niet 

efficiënt en daarom zouden er meer plantaardige eiwitten in het humane dieet moeten zitten. 

Een goede kandidaat voor een nieuwe plantaardige eiwitbron is lupine. De zaden van lupine 

zijn peulvruchten met een relatief hoog eiwitgehalte van 37g/100g. Lupinezaden bevatten 

ook oplosbare en onoplosbare vezels, 7-10g olie /100g, en nauwelijks zetmeel. Een extra 

voordeel is dat  lupines kunnen groeien in een gematigd klimaat zoals in Noordwest Europa. 

Om de eiwitten uit lupinezaden goed te benutten, zijn er efficiënte fractioneringsprocessen 

nodig. Voor andere peulvruchten, zoals soja, worden de eiwitten vaak gefractioneerd 

met behulp van natte scheidingstechnieken. Deze natte scheidingstechnieken verbruiken 

veel chemicaliën, organische oplosmiddelen, water, en energie en hierdoor worden de 

milieuvoordelen van het gebruik van plantaardige materialen voor levensmiddelen teniet 

gedaan. 

Het doel van het in dit proefschrift beschreven onderzoek is om functionele, eiwitrijke fracties 

uit lupinezaden te verkrijgen met processen die een lagere impact op het milieu hebben. 

In dit proefschrift wordt aangetoond dat focus op functionaliteit in plaats van moleculaire 

zuiverheid kan leiden tot simpelere fractioneringsprocessen, of functionaliteits-gedreven 

fractionering. De invloed van simpelere fractioneringsprocessen op eiwitfunctionaliteit en 

op fysische en chemische stabiliteit van de eiwitisolaten is onderzocht. Daarnaast hebben 

we een duurzaamheidsanalyse uitgevoerd voor de verschillende fractioneringsprocessen. 

Normaliter worden eiwitisolaten geproduceerd met klassieke natte scheidingsprocessen 

die zijn gebaseerd op oplosbaarheidsverschillen van de componenten van zaden of 

bonen. Klassieke natte scheidingsprocessen voor oliehoudende zaden bestaan uit een 

olie-extractiestap, waarvoor een organische oplosmiddel nodig is, en herhaalde pH-

verschuivingsstappen, waarvoor chemicaliën en water benodigd zijn. Hoofdstuk 2 vergelijkt 

het klassieke natte scheidingsproces met een waterige scheidingsproces (gedefinieerd 

als de klassieke methode, maar zonder een olie-extractiestap) om lupine-eiwitisolaten te 

maken. Het waterige scheidingsproces resulteerde in eiwitisolaten met 2g olie /100g. De 

functionaliteit van deze eiwitisolaten was vergelijkbaar met die van het klassieke eiwitisolaat. 

De scheidingsefficiëntie en de oplosbaarheid van de eiwitisolaten werd beïnvloed door hogere 

extractietemperaturen. Een verhittingsstap als nabehandeling veranderde de oplosbaarheid 

en het waterbindend vermogen van de eiwitisolaten, waardoor de mogelijkheden voor 
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toepassing van dit lupine-eiwitisolaat in tal van levensmiddelen verder vergroot is. 

De geleringseigenschappen van de eiwitisolaten verkregen met waterige scheiding 

werden vergeleken met die van soja-eiwitisolaten in hoofdstuk 3. Over het algemeen 

vormen soja-eiwitisolaten sterke gelen terwijl lupine-eiwitisolaten zwakke en vervormbare 

gelen vormen. Beide eiwitisolaten vormen deeltjesgelen, waarin de lupine-eiwitdeeltjes 

minder zwellen dan de soja-eiwitdeeltjes. Zelfs bij een langer durende verhittingsstap met 

als doel om de lupine-eiwitten meer te laten ontvouwen, resulteerde in vervormbare gels. 

Het verschil in geleringseigenschappen kon worden gerelateerd aan de hogere reactiviteit 

van de zwavelgroepen van lupine-eiwitisolaat in vergelijking met soja-eiwitisolaat; de 

activiteit van de zwavelgroepen van lupine-eiwitisolaat nam toe tijdens verhitting en dat 

van soja-eiwitisolaat nam af. Dit kan erop wijzen dat lupine-eiwitisolaat geen nieuwe 

zwavelbruggen kan vormen om het gelnetwerk te versterken, terwijl soja-eiwitisolaat 

wel nieuwe zwavelbruggen vormt om het gelnetwerk te versterken. Hierdoor lijkt lupine-

eiwitisolaat minder geschikt voor semi-vaste levensmiddelenproducten (als enig ingrediënt 

in water), maar het biedt wel mogelijkheden voor eiwitrijke levensmiddelen waarbij een 

lage viscositeit na verhitting gewenst is.

De milieueffecten van verschillende fractioneringsprocessen voor lupine zaden is 

bediscussieerd in hoofdstuk 4. De geëvalueerde fractioneringsprocessen zijn: droog 

fractioneren, klassieke natte scheiding, waterige scheiding en combinaties hiervan. Een 

duurzaamheidsanalyse is uitgevoerd met behulp van massa-, energie- en exergiebalansen. 

Exergie is een thermodynamische toestandsvariabele die het potentiele werk dat een 

productstroom kan geven beschrijft. Indicatoren zoals de exergetische efficiëntie en het 

exergieverlies zijn gebruikt om inefficiënties in processen te berekenen en visualiseren. 

Droog fractioneren was de meest duurzame route om eiwit-verrijkte bloemen te verkrijgen. 

Klassieke natte en waterige scheidingsprocessen waren nodig om de eiwitconcentratie van 

lupine bloem of de eiwit-verrijkte bloem verder te verhogen. De olie-extractiestap in klassieke 

natte scheiding verhoogde het energieverbruik en resulteerde in hogere exergieverliezen 

dan waterige scheiding. Het watergebruik en de energieconsumptie van beide natte 

scheidingsmethoden zijn hoog, omdat de fracties na fractionering gedroogd moeten 

worden. Dit leidt tot hoge exergieverliezen. De waterconsumptie en exergieverliezen kunnen 

worden gereduceerd door droge en waterige scheidingsprocessen te combineren voor de 

productie van eiwitisolaten. De energieconsumptie kan verder worden verlaagd door de 

eiwitisolaten niet te drogen, maar te concentreren naar een eiwitconcentratie relevant voor 

eiwitrijke levensmiddelen. Tenslotte, bleek dat alle bijproducten van de processen moeten 
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worden gevaloriseerd, zoals de lupine olie, de oplosbare eiwitten en suikers die niet in het 

eiwitisolaat terechtkomen, het vezelrijke pellet en de grove fractie (verkregen door droge 

fractionering) om de exergetische efficiëntie van het scheidingsproces te optimaliseren.

Het vervangen van een droogstap door een concentratiestap resulteert in een ‘natte’ 

eiwitisolaat-dispersie. De technische functionaliteit van de natte eiwitisolaten verkregen 

met waterige scheiding is vergeleken met die van gevriesdroogde eiwitisolaten. Hoofdstuk 

5 beschrijft de viscositeit, de oplosbaarheid en het zwellingsgedrag van de natte en 

gevriesdroogde eiwitisolaten. Natte eiwitisolaten hadden een hogere oplosbaarheid dan 

gevriesdroogde eiwitisolaten, wat was toegekend aan een verhoogde eiwitaggregatie 

door drogen dat resulteerde in grote eiwitdeeltjes in de gevriesdroogde eiwitisolaten. 

De viscositeit en het zwelgedrag van natte eiwitdispersies nam toe na verhitting bij 

100°C terwijl de viscositeit en het zwelgedrag van gevriesdroogde eiwitisolaten gelijk 

bleef na verhitting. Het vriesdrogen veroorzaakte dus eiwitaggregatie, wat resulteerde in 

hittestabiele eiwitdeeltjes die niet veel zwollen bij verhitting. Gevriesdroogde eiwitisolaten 

kunnen interessant zijn voor eiwitrijke drankjes die een lage viscositeit na verhitting dienen 

te hebben, terwijl natte eiwitisolaten interessant zijn voor zuivelalternatieven waarbij een 

hogere viscositeit nodig is .

Het met waterige scheiding verkregen eiwitisolaat bevat ongeveer 2g olie /100g. De 

olie bevat een hoge concentratie meervoudig onverzadigde vetzuren, die de olie gevoelig 

maakt voor olieoxidatie en verder eiwitoxidatie kan initiëren. Echter voor toepassing 

dient de chemische stabiliteit van de eiwitisolaten gegarandeerd kunnen worden. 

Daarom zijn de olie- en eiwitoxidatiemarkers voor de fracties verkregen met waterige 

scheiding op twee extractietemperaturen (4°C en 20°C) bepaald in hoofdstuk 6. Primaire 

en secundaire olie-oxidatiemarker waarden en eiwitoxidatiemarker waarden waren 

voor beide extractietemperaturen binnen de toegestane waarden. De toepassing van 

een verhittingsstap om de activiteit van het van nature in lupinezaden aanwezige enzym 

lipoxygenase te reduceren verlaagde de olie- en eiwitopbrengst en verhoogde de olie-

oxidatiemarker waarden. Daarom lijken een gekoeld proces (4°C) en een verhittingsstap 

niet nodig voor het verkrijgen van stabiele eiwitisolaten met behulp van waterige scheiding. 

Hiermee worden de milieueffecten van een waterig fractioneringsproces verder verlaagd.

Hoofdstuk 7 sluit af met een algemene discussie over de in dit proefschrift gepresenteerde 

resultaten. Het begint met het samenvatten van de belangrijkste resultaten, waarna 

de mogelijkheden en knelpunten van de nieuwe fractioneringsprocessen worden 

bediscussieerd. Het hoofdstuk eindigt met een toekomstvisie voor verder wetenschappelijk 
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onderzoek naar functionaliteits-gedreven fractioneringsprocessen en mogelijke applicaties.

De resultaten van dit proefschrift verschaffen inzichten voor duurzamere 

productie van functionele fracties voor levensmiddelen verkregen met versimpelde 

fractioneringsprocessen. Dit werk geeft toekomstperspectieven voor functionaliteits-

gedreven fractioneringsprocessen die mogelijk kunnen worden uitgebreid naar andere 

peulvruchten. Op deze wijze kunnen ingrediënten of fracties van zaden en peulvruchten 

worden ontwikkeld die een vervanging van dierlijke componenten door plantaardige 

alternatieven verder mogelijk maakt. 



156 Jacqueline Berghout

Acknowledgements
About the author

List of publications
Overview of completed training activities



157Functionality-driven fractionation of lupin seeds

Acknowledgements
About the author

List of publications
Overview of completed training activities



158 Acknowledgements

Abstract
Tadaa! Four years of work written down. Actually, this thesis is only a part of all the 

work. It does not include all the research performed during those four years, it does not 

include the television performances, and it does not cover all of the people that directly or 

indirectly contributed to this work. Here, the importance of having great people around you 

is emphasized.  

Introduction
During a PhD trajectory, you learn about yourself, you are handed tools to develop yourself, 

you learn to become an independent researcher, and you learn to not do everything by 

yourself. This requires people around you that support you, coach you, advise you, people 

you look up to, people that remind you there is more to life than work, and people that 

simply make you feel happy. This part of the thesis focuses on the ingredients that were 

needed to successfully perform my research, write my thesis (ok yes, it is my writing), and 

made me smile and laugh.

Materials and methods  
(not in chronological order)

My supervisors: Atze Jan van der Goot and Remko Boom. The technicians: Jos, Maurice, 

Jarno, and Martin (and Harry Baptist). The APPI-team (Kasia, Pascalle, George, Maarten and 

Atze Jan), ISPT, the peas foundation, de vegetarische slager, the co-authors of the papers in 

this thesis (Paul, Claire, Costas), my Bachelor and Master thesis students (Robbin, Esther, 

Stefano, Steven, Marlous, Evelien, Cynthia, Suzanne). The opponents who approved my 

thesis. All FPE-colleagues. Karin Schroën, Lena, Francisco, my former housemate, colleague 

and friend Nicolas, Marta, Angélica, Jue, Laura, Ekaraj, Sami, Jorien, Rianne, Filippos. The BPE-

colleagues, especially Lenneke, Anne, Lenny, Jeroen, Guido, Ward, Kim. My Food Technology 

friends (Marieke, Thomas, Milou, Nicole, Pascalle, Jacob, Ids), my former housemates (Vera, 

Marjolein, Leo, Lies, Kwallie aka Pascalle), Karsten, Karin, my dance-colleagues, my family 

and last but definitely not least Jurian!

Results and discussion
Motivation, hard work, inspiring meetings, crazy ideas (that turned out just fine and lead 

to new results), good ideas, more work, new perspectives, nice collaborations, dancing, 

discussing research (especially in lekentaal), good food!, coffee, more coffee, lovely drinks, 

fun borrels, and lots of laughter! Oh and a written thesis of course.



159Acknowledgements

Conclusion
A PhD-thesis requires many people and above all, people that inspire you, motivate you, 

and laugh with you. Thank you all!

Recommendations
Uit onderzoek is gebleken dat onderzoeken veel leuker is dan antwoorden vinden  -  Loesje 

 Als de moed je in de schoenen is gezakt, ga dan eens op je kop staan - Loesje 

 

  

Jacqueline



160 Jacqueline Berghout



161About the author

About the author

Jacqueline Alida Maria Berghout was born in Alkmaar, The 

Netherlands, on May 8 1987. She went to GSg Schagen, 

where she obtained her VWO diploma in 2005, with a 

major in Natuur en Gezondheid (Nature and Health).

In 2005, she started her study Food Technology at 

Wageningen University. In her minor thesis project at the 

laboratory of Food Quality and Design of Wageningen 

University she worked on the effect of domestic cooking 

methods on bioactive compounds in broccoli and carrot. 

Jacqueline completed her major thesis at the Food Process 

Engineering group of Wageningen University, working on 

the visualisation of gluten aggregation in the shear-induced 

separation of wheat flour. During her internship at the 

Bioprocess department of CSIRO in Werribee, Australia, 

she worked on the development of stimuli-responsive 

resins for molecule separation. 

After completing her MSc studies, she continued working 

as a PhD at the Food Process Engineering group of 

Wageningen University on the project Functionality-driven 

fractionation of lupin seeds. 



162 Jacqueline Berghout



163List of publications

List of publications

Van der Zalm, E. E. J., Berghout, J. A. M., van der Goot, A. J., & Boom, R. M. (2012). Starch–

gluten separation by shearing: Influence of the device geometry. Chemical Engineering Sci-

ence, 73, 421–430.

Berghout, J. A. M., Boom, R. M., & van der Goot, A. J. (2014). The potential of aqueous 

fractionation of lupin seeds for high-protein foods. Food Chemistry, 159, 64–70.

Pelgrom, P. J. M., Berghout, J. A. M., van der Goot, A. J., Boom, R. M., & Schutyser, M. A. 

I. (2014). Preparation of functional lupine protein fractions by dry separation. LWT - Food 

Science and Technology, 1–9.

Berghout, J. A. M., Boom, R. M., & van der Goot, A. J. (2015). Understanding the differenc-

es in gelling properties between lupin protein isolate and soy protein isolate. Food Hydro-

colloids, 43, 465–472.

Berghout, J. A. M., Pelgrom, P. J. M., Schutyser, M. A. I., Boom, R. M., & van der Goot, A. J. 

(2014). Sustainability assessment of oilseed fractionation processes: a case study on lupin 

seeds. Journal of Food Engineering, 150, 117-124. 

van der Goot, AJ., Pelgrom, P.J.M., Berghout, J.A.M., Geerts, M., Jankowiak, L., Hardt, N.A., 

Schutyser, M.A.I., Nikiforidis. C.V., Boom, R.M., Concepts for further sustainable production 

of foods. Submitted for publication.

Berghout, J.A.M., Venema, P., Boom, R.M., & van der Goot, A.J., Freeze-drying induces 

aggregation in lupin protein isolates. Submitted for publication.

Berghout, J.A.M., Marmolejo-Garcia, C., Berton-Carabin, C.C., Nikiforidis, C.V., Boom, R.M., 

& van der Goot, A.J., Aqueous fractionation yields chemically stable lupin protein isolates. 

Submitted for publication.



164 Jacqueline Berghout



165List of completed training activities

Overview of completed training activities
Discipline specific activities
Courses

Sensory Perception and Food Preference in Wageningen (NL) 2011

Sustainability Analysis in Food Production in Wageningen (NL) 2011

Food and Biorefinery Enzymology in Wageningen (NL) 2011a

Biorefinery for Biomolecules in Wageningen (NL) 2012

Food Structure and Rheology in Wageningen (NL) 2012

Industrial Proteins in Wageningen (NL) 2013a

Conferences
NPS (Annual Dutch Process Technology symposium) in Papendal (NL) 2011a

NPS in Utrecht (NL) 2014a

International Symposium on Food Rheology and Structure in Zurich (CH) 2012a

FoodBalt 2012 in Kaunas (LT) 2012

EFFoST in Montpellier (FR) 2012b

ECCE in Den Haag (NL) 2013b

General courses
VLAG PhD Week in Baarlo (NL) 2011

Teaching and Supervising Thesis Students in Wageningen (NL) 2011

Effective Behaviour in your Professional Surroundings in Wageningen (NL) 2012

Competence Assessment in Wageningen (NL) 2013

Scientific Writing in Wageningen (NL) 2013

Techniques for Writing and Presenting a Scientific Paper in Wageningen (NL) 2014

Career Orientation in Wageningen (NL) 2014

Optionals
ISPT team meetings in Amersfoort, Delft or Wageningen (NL) 2011-2014b

Working in Projects (by ISPT) in Amersfoort (NL) 2011

Workshop Visuals in Wageningen (NL) 2011

Scientific PhD excursion to the Baltic States and Finland in 2012a,b 

Scientific PhD excursion to Chile and Brazil in 2014b

Food Process Engineering Brainstorm Days in Wageningen (NL) 2011-2014b

a Poster
b Presentation



The work presented in this thesis has been carried out in the framework of the Institute for 
Sustainable Process Technology (ISPT) under the project “PI-00-03 IPS: Intensified Protein 
Structuring for More Sustainable Food.

This thesis was printed by Ridderprint, Ridderkerk, The Netherlands.

Edition: 200 copies

Photos on the cover and chapter pages were kindly provided by Karin Schröen.


