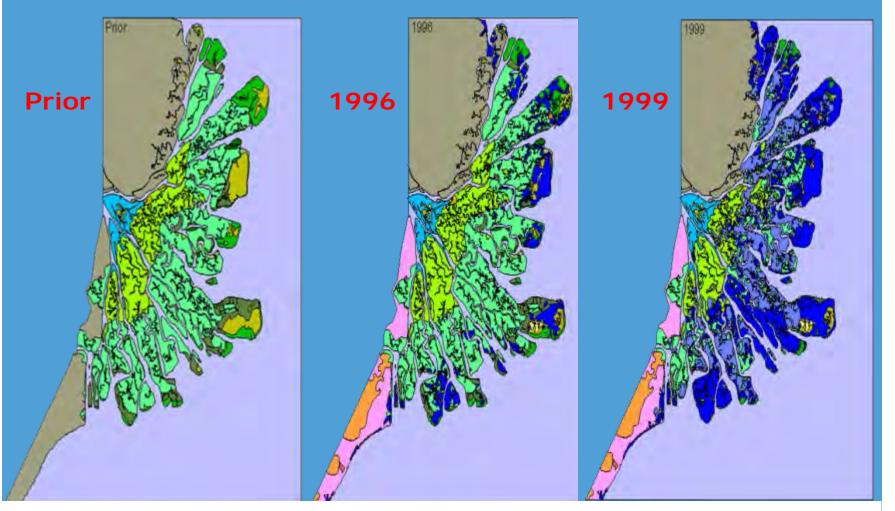
TRANSITION FROM EXTENSIVE TAMBAK TO SUSTAINABLE SILVO-SHRIMP CULTURE

Can this be achieved in

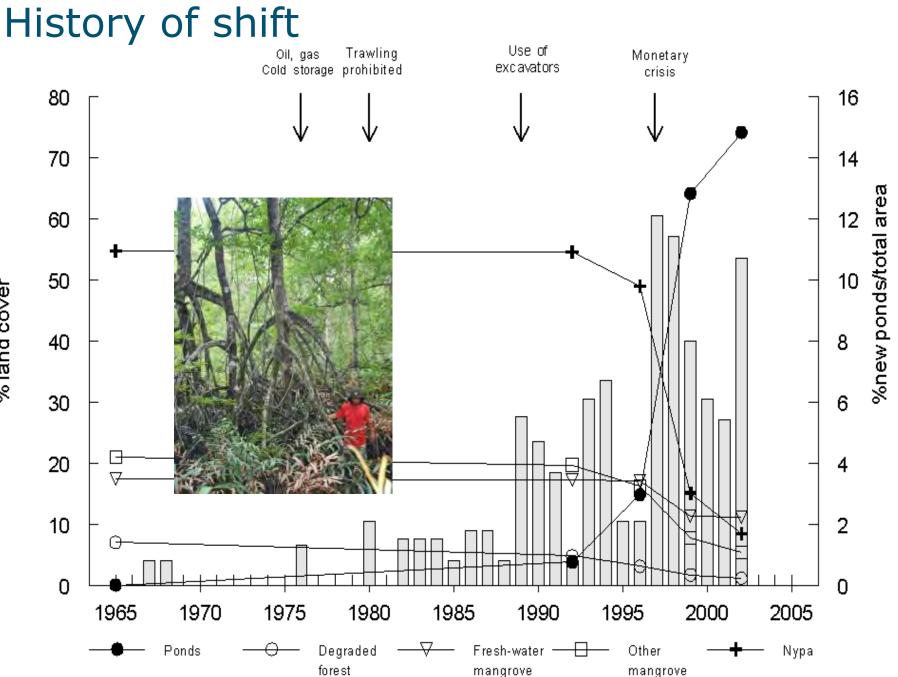
East Kalimantan's Mahakam delta?

18 March 2014, Roel H. Bosma

Coastal areas:

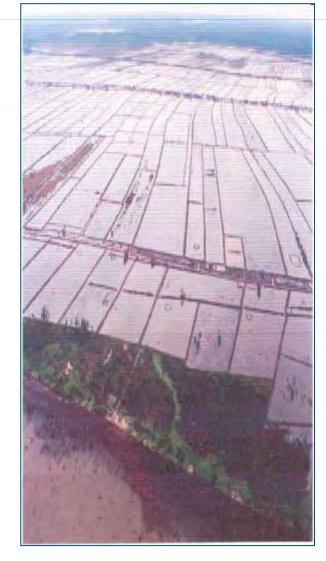

High productivity possible:

- Trade,
- Oil & gaz,
- Fisheries & Agriculture,
- Aquaculture.
- Heavily populated,
- Highly subject to changes,
 - often accentuated by Climate Change;
- Many users / interests => Competing Claims.


For example: Mahakam delta' shift to aquaculture

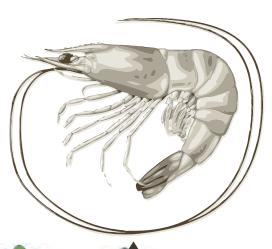
Regression of mangrove ecosystem in Mahakam Delta (Bourgois *et al.*, 2002) (blue colour = shrimp ponds)

% land cover


Other drivers of shift

- Mangrove's open access
- and Weak institutions;
- Investors => land owners

=>Care-takers for ponds = immigration of poor


- Since 2006 many abandoned after:
 - Repeated failing shrimp harvest
 - Destructed dykes.

Low production in Mahakam delta

- No intensification => low yield & shrimp diseases
- Average yield of tiger prawn <50 kg/ha/yr due to:</p>
 - Pond design (large, mostly shallow),
 - Many ponds located on peat soil,
 - Pond management weak,
 - No extension services (training),
 - Frequent disease => harvest once on 3-4.

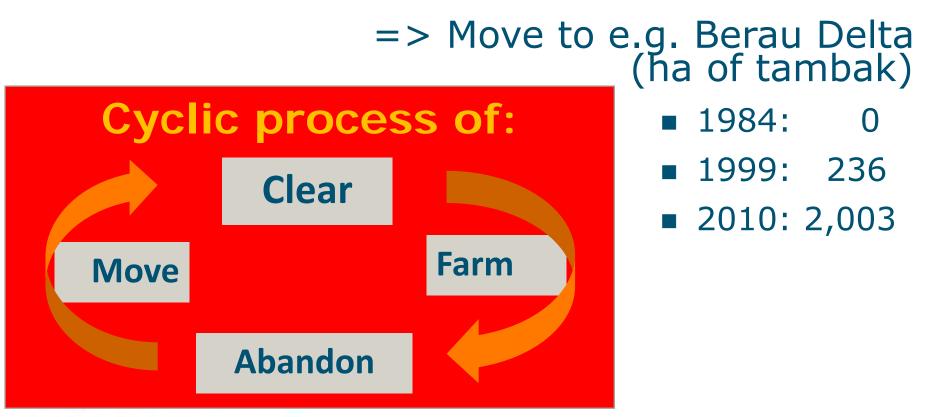
Low yield drives a vicious circle

To survive farmers / care-takers collect:

- Spotted shrimp: 49 kg/ha/yr,
- Crab: 11 kg/ha/yr,
- Milkfish: 70 kg/ha/yr.
- Some innovate:
 - Stock crab,
 - Produce naked crab.

But many

- Chronic poor
- or abandon = failed gold-rush.
- Low education, low demand non-educated labour



Part of a vicious circle

Mahakam delta

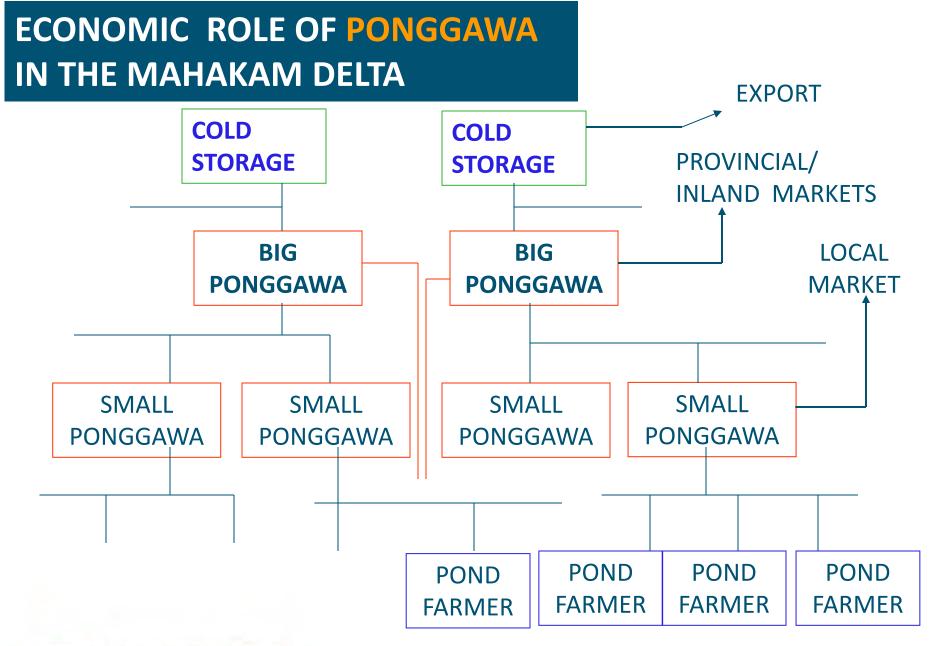
- 1999: 75% = ponds
- 2006: 1/3 ponds non-productive
- 2008: 54% = ponds

Shift back or transform,

Recovery of functioning mangrove ecosystem:

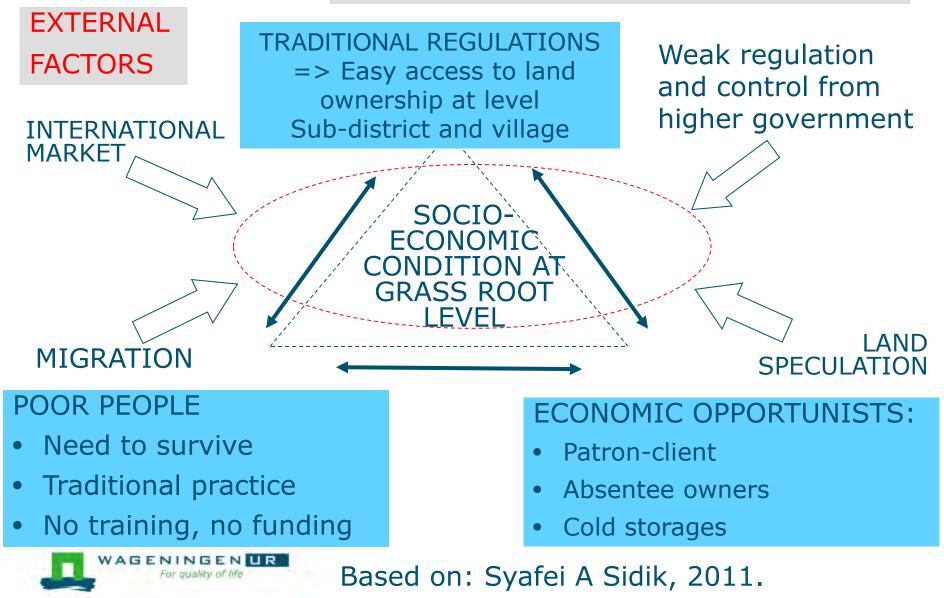
More then 20 years, but no full recovery unless

Breaking some dykes


Planting trees

Can we

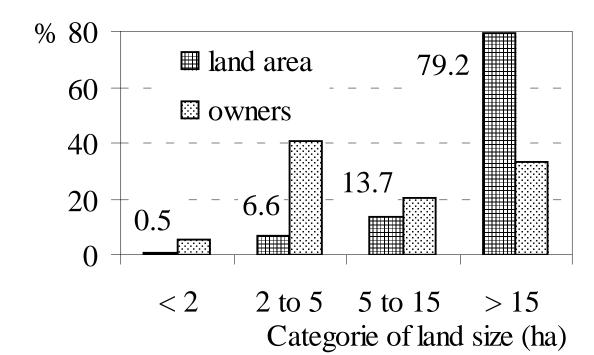
prevent this happening in other deltas?
 transform into sustainable livelihood system?



For quality of life

Based on: Syafei A Sidik, 2011.

The institutional triangle accelerating mangrove conversion


SOCIAL & POLITICAL SITUATION

Power and livelihoods

Distorted power reflected in land ownership

- 1st arriving who were successful
- Owners of excavators: investors, village leaders

• One of 3 villages limited land distribution to 4 ha.

De jure versus de facto property rights

- Before 2000, laws not effective to control mangrove conversion.
- Pond occupation by Surat Pernyataan Penguasaan Tanah Negara (SPPT) from local leaders based on traditional property rights.
- > => government "no power" to control this *de facto* land occupation by farmers even if *de jure* their ownership on the land is illegal.
- Other reasons for "a weak power" to control the delta:
 - 1. Potentially huge income for farmers, traders and officers;
 - 2. No alternative employments for pond farmers if moved;
 - 3. High cost for compensation of moving farmers from the delta.
- What GO and NGOs are trying:
 - 1. Restore mangrove by developing silvo-aquaculture system,
 - 2. Province GO proposed to National Ministry of Forestry to change delta's status from 100 % KBK (Forest Cultivation Area) to 50% KBK and 50% KBNK (Non-Forest CA).

Shift back and transform to sustainable livelihood

Full recovery of mangrove ecosystem on peat soil

- Nypah palm => sugar
- Sago palm
- Needs assistance & research (selection).

Elsewhere: Silvo-aquaculture, mangrove-shrimp

- Design: empang tradisionel / komplagan / other.
- Better management:

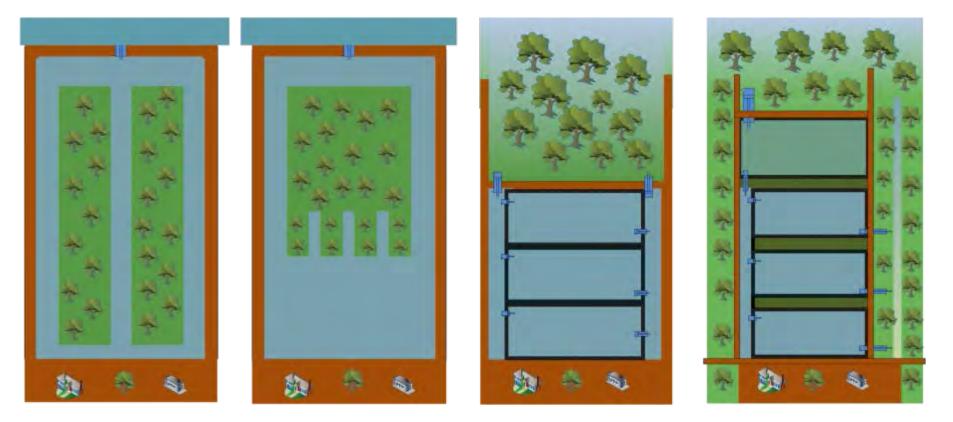
extensive systems produce < 300kg/ha.

Learn from experiences

Mekong delta: large areas of mangrove-shrimp farms

- 50 to 70% mangrove on farm, but most on platforms
- (Semi-)extensive shrimp production
 - 175 400 kg / ha
 - Other products double income
- Good livelihoods if >=10 ha.

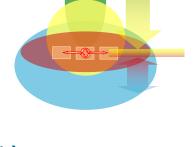
- Limited ecosystem services, just like Indonesian type 1:
 - No frequent inundation of mangrove
 - Disconnected from aquatic resources.
 - => low significance for <u>habitat</u>,
 - <u>regulating</u>, <u>supporting</u> and <u>cultural</u> services


Green water shrimp systems in PH

Tilapia (+ sea-bass) in storage/filter ponds: Reduction of loss from disease (25%) Improved growth rate (>10 %) => Higher margins.

Sample of 60 farmers in 4 provinces: in 2008: 25 % practiced GW system in 2010 : an estimated 75 %. Google

Mangrove-shrimp systems



- Mixed systems: (semi-)extensive shrimp culture (pond 30-50%).
- Separated mangrove-shrimp: mangrove cleans effluents.
- Ecologically integrated mangrove-shrimp systems (pond <50%).

Which system combines at best advantages of mangrove and shrimp?

Method:

- Cost Benefit Analysis (CBA)
 - Compares investments considering interest (inflation)
 - Thus discounts the cash flows using an interest rate.
- Calculates for a given number of years:
 - Internal Rate of Return (IRR) =
 - Discounted benefit relative to the investment (%).
 - Net Present Value (NPV) =
 - Value of expected cash flows, less cost of investment.
 - For various cost and price scenarios => sensitivity analysis.

Comparison of four systems

- Farm area of 11 ha, incl. 1 ha service area.
- 1. Extensive system
 - tambak from Mahakam delta, Indonesia
 - timber from Vietnam and Indonesia.
- 2. Green water (GW) and
- 3. Intensive shrimp:
 - survey in PH (Bosma & Tendencia)
- 4. Mangrove semi-intensive shrimp

Description of systems

- Shrimp price 6.4 US\$/kg (in 2013 >10 US\$/kg);
- Extensive system: harvest of natural recruits;
- MPR-7 = Mangrove to Pond Ratio 7/1 => 8.75 ha / 1.25 ha;

GW = includes 1.25 ha of green-water / sedimentation pond.

	F	Production systems					
E	xtensive	MPR-7	Non-GW	GW			
Pond depth (m)	0.6	1.2	1.2	1.2			
Shrimp stocking density (n m ⁻²)	1	10	28	22			
Survival rate stocked shrimp	10%	80%	70%	90%			
Feed input (kg ha ⁻¹ cycle ⁻¹)	-	5,000	8,900	11,900			
Shrimp harvest weight (g)	25	25	28	32			
FCR (Feed Conversion Ratio)	-	1.42	1.68	1.91			
Total capital costs (US\$)	46,000	100,000	456,000	456,000			
Total operating costs (US\$)	4,200	16,100	338,000	321,000			
Total income in US\$ per ha	1,000	1,800	29,300	29,400			

Result Cost Benefit Analysis

				Production systems					
				Extensive	MPR-7	Non-GW	GW		
Profit excluding depreciation (\$)			7,800	5,100	13,000	32,000			
Profit including depreciation (\$)			7,500	5,000	12,000	31,000			
Rate of return on initial cost			17%	5%	3%	7%			
Rate of return on operating cost			185%	32%	4%	10%			
Pay-back	period (yr)		5.9	19.5	35.0	14.3		
Total shrir	np prod	uction (ton/11ha) 0.5	10.9	50.0	46.5		

Extensive system: high RRs even without 1st 3-5 good years,

• Very interesting for investors looking for short term benefit.

Income from mangrove-shrimp system intermediate, but

- without accounting its ecosystems services.
- Green-water system performs better:
 - improved survival and lower cost of chemicals.

Compared to intact mangrove

• Shrimp: 8000 to 30,000 US \$

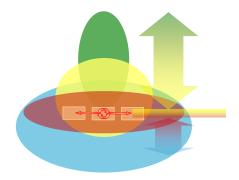
- Total Economic Value of Mangrove*:
 - Provision: 44 8,300 \$ int.
 - Habitat: 27 68,800 \$ int.
 - Regulating: 1,900 135,400 \$ int.
 - Cultural: 10 2,900 \$ int.
 - South Minahasa: 36,0000 \$ US **

* Russi et al. 2013; **Mankay et al. 2012

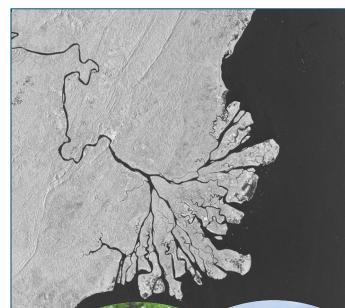

Conclusion - Take home message

- Maintain livelihoods for sustainability.
- Extensive: high RRs but all/most environmental services lost.
- Mangrove-shrimp income intermediate, but
 - Most services of mangrove forest maintained.
- Ratio total shrimp harvest from 11 ha:

 Extensive
 MPR 7/1
 Intensive
 1
 20
 90


 ESS 0
 7
 0
- For higher national GDP & sustainability
- Mangrove Green-Water Shrimp
- Prevent Mahakam scenario in other deltas

Recommendations


- GO and NGOs in area where mangrove was lost
 - Organise stakeholders.

- Support transformation smaller farms into silvo-aquaculture farms with mangrove, and filtration and shrimp ponds;
- Use farmers field-school approach of Mangrove Action project;
- Organise REDD⁺ income for forest between farms & on water-side.
- GO: strictly control settlement in functional mangrove forest
- Mahakam GO, give large owners forest title in exchange for:
 - Transforming their ponds in ecological mangrove-shrimp.
 - Or for restoring mangrove to cash REDD⁺.
- Certifiers should include off-farm mangrove in compliance.

Thank you and Success

My acknowledgements go to:

- Prof Syafei Sidik and
- colleagues from UnMul
- Partners/collaborators
- EU-Mangrove project
- Wageningen UR RESCOPAR project

