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Objectives 
From this chapter the reader should gain knowledge of: 

• the characteristics of linear programming 
• the formulation of a linear programming model 
• the solving procedure 
• the assumptions used 

The method is introduced by a simplified example and further illustrated with an application 
to optimizing a dairy herd calving pattern. 

6.1 Introduction 
Being managers, farmers need to allocate limited resources to competing activities in the 
best possible way. The allocation problem can be solved by analysing a large number of 
alternatives, using techniques such as partial and whole-farm budgeting. With the budgeting 
procedure, however, each single plan has to be identified and evaluated by detailed 
calculations. For complex problems, such calculations are time-consuming and become 
tedious and burdensome. Moreover, it is only by chance that the plans chosen for budgeting 
analysis include the optimal one. 
Linear programming uses the same type of information as is done in the budgeting 
procedure, but the mathematical technique involved guarantees that the optimal plan is 
determined. The essential characteristics of a linear programming model are that ( 1 ) there 
is a function to be maximized or minimized, (2) there are limited resources that can be 
used to satisfy the objective, and (3) there are several ways of using the resources (Heady 
& Chandler, 1958). In agriculture, linear programming is most extensively used in 
determining least-cost rations and in planning the farm business organization (Boehlje & 
Eidman, 1984). In determining the least-cost ration, the objective can be to minimize the 
cost of meeting the nutritional requirements of a certain type of livestock while using 
particular feed ingredients. In planning the farm business, land, labour and machinery and 
equipment resources are allocated to competing activities such as production of different 
crops and different types of livestock production in order to maximize income. 
The method of linear programming is first introduced and illustrated with an example. 
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Assume that at the start of the grazing season, all beef cattle on a farm are treated with an 
anthelmintic. For years the farmer has used anthelmintic A. Recently, anthelmintic B has 
come on the market. Anthelmintic A costs US$2 per animal and B US$6. The firms that 
produce the anthelmintics have carried out experiments to estimate the effect of applying the 
anthelmintics. According to these experiments, A leads to an increase in live weight of 20 
kg, while B leads to an increase of 40 kg, if compared with animals that have not been 
treated. Although the veterinarian is enthusiastic about anthelmintic B, the farmer is a bit 
reluctant to use it because of the higher costs. The farmer decides that (s)he wants to 
maximize the total effect of the therapy, but does not want to spend more than US$600 on 
anthelmintics. Furthermore, the number of animals to be treated should not exceed 150. 
This problem can be formulated as a linear programming problem. It refers to a situation 
of allocating limited resources (money, number of treatments) to competing activities (treat 
ment with anthelmintics A and B) in order to maximize a certain objective (the total effect 
of the treatment). To formulate the mathematical model of the problem, let Xj and X2 
represent the number of treatments with A and B respectively. Let Z be the resulting effect 
on extra live weight gain for the herd as a whole; x^ and X2 are the decision variables 
(activities) for the model. The relationship between Z and x j and X2 is as follows: Z = 
20xj + 40x2- The objective is to choose the values of xj and X2 so as to maximize Z, subject 
to the restrictions on their values imposed by the farmer. Thus the mathematical formulation 
of the problem is as follows: 

subji 

Maximize Z = 20x 

ect to the restrictions 

2xj + 6x2 
x l + x2 
xj > 0 , x 2 > 0 

! + 40x2 

<600 

< 150 

It is necessary to define the decision variables to be nonnegative. This small problem has 
only two decision variables, and therefore only two dimensions, and hence a graphical 
procedure can be used to solve it. This procedure involves constructing a two-dimensional 
graph with xj and X2 as the axes. The first step is to identify the values of xj and x 2 that are 
permitted given the restrictions. This is done by drawing the lines that border the range of 
permissible values. The graphical representation of the linear programming problem is 
given in Figure 6.1. First, each restriction is treated separately. Resulting from the restriction 
on the amount of money to be spent on the treatments (ie, US$600), 300 animals can be 
treated with A, 100 animals with B, or any linear combination of A and B. This is depicted 
in Figure 6.1 as line CC'. The constraint on the total number of animals to be treated results 
in 150 animals treated with A, 150 animals treated with B or any linear combination of A 
and B (line DD'). If all constraints are considered simultaneously, any points inside the 
area or at the boundary of OCED' are feasible combinations of treatments with A and B. 
This area is known as the 'feasible set'. 
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X2(B) 

150 

The final step is to identify the point in this region that maximizes the value of Z. The 
optimal combination of the number of treatments A and B depends on their relative 
efficiency. Two animals treated with A will have the same total weight gain as one animal 
treated with B. The line FF' in Figure 6.1 denotes those combinations of xj and x 2 that 
generate a total effect of 2000 kg. With line FF' moving to the right, higher levels of total 
weight gain are obtained. In case of minimization the line FF' has to be moved into the 
direction of lower levels of Z. The line is moved to the right until it touches the farmost edge 
of the feasible set point E). Combinations of numbers of treatments are not possible beyond 
this point because adequate quantities of the money and/or animal resources are not 
available. If we draw a line from point E to each axis of the graph, they indicate that 75 
treatments with A and 75 treatments with B will maximize the effect of the total treatment 
(Z = 75 x 20 + 75 x 40 = 4500 kg). When more constraints and decision variables are added, 
the example becomes a multidimensional problem that will be impossible to represent 
graphically. The underlying principle of the optimization procedure of linear programming, 
as illustrated in this simplified example, remains the same, however. 
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6.2 Linear programming models in general 

6.2.1 General formulation 

With the above-mentioned simplified example in mind, we will now give the general 
formulation of the linear programming model. A linear programming model has the 
objective to select the values for xj, x2,..., xn (the decision variables or activities) so as to 

Maximize or Minimize Z = cjxj + c2x2 + ... + cnxn 

subject to the restrictions 

a l l x l + a 1 2 x 2 + " + a l n x n^ b l 
a2 ix 1+a 2 2x 2 + ... + a 2 nx n<b 2 

a ml x l + am2x2 + - + amnxn s bm 
andxj >0, x2>0,. . . , x n >0 

The function being maximized or minimized, Cjxj + c2x2 + ... + cnxn, is called the 
objective function, with x: being the decision variables. The restrictions are normally 
referred to as constraints. The first m constraints, representing the total usage of resource 
bj, are called functional constraints. Similarly, the x; > 0 restrictions are called nonnegative 
constraints. The model may also include 'greater than or equal to' constraints, as well as 
equality constraints. The input constants, aj;, bj and c;, are referred to as parameters of the 
model. 

The basic structure of any linear programming model is a matrix, with the columns in that 
matrix being the processes or activities and the rows the resource constraints. Three general 
types of constraints are usually included: 

• real constraints which limit physical resource availability; 
• institutional and subjective constraints which reflect limits imposed by the outside 

institutions or personal preferences of the operator; and 
• accounting constraints which are used to keep track of resources or will provide structure 

to the model. 

A linear programming problem has different types of solutions. The feasible solution is a 
solution for which all constraints are satisfied. The feasible region is the collection of all 
feasible solutions. It is possible that there is no feasible solution to a problem. This would 
be the case if in the linear programming example from the previous section at least 110 
animals were treated with anthelmintic B. If there are feasible solutions, linear programming 
should find which one is best, measured against the value of the objective function of the 
model. An optimal solution is a feasible solution that results in the most favourable value 
of the objective function. So, the optimal solution maximizes or minimizes the objective 
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function over the entire feasible region. Most problems will have just one optimal solution. 
It is possible, however, to have more than one. This would be so in the example above if 
the effectiveness of treatment B was modified such that all points on line segment EC' in 
Figure 6.1 would be optimal. 

6.2.2 Solving procedure 
For the sake of convenience, a precise set of mechanical rules has been developed to solve 
a linear programming model. These rules specify each step that is to be taken during the 
solution process, and are actually a trial-and-error procedure for problem solving. However, 
they have been constructed in such a way that each trial results in an improved answer. 
The rules also guarantee that, if an optimal value exists, it will be found within a finite 
number of steps (Heady & Chandler, 1958). 

The mechanical rules for solving linear programming problems are collectively known as 
the simplex method. The previously discussed characteristics of a linear programming 
model and the example presented will be used to provide a basic understanding of the 
simplex procedure]. 
It was shown earlier that the optimal combination of treatments with A and B occurred at the 
boundary of the feasible set at the point of intersection between the constraints with respect 
to the maximum amount of money to be spent and the maximum number of animals to be 
treated. This intersection is referred to as a 'corner point'. It can be proven mathematically 
that the optimal solution will always be at a corner point. Thus, to determine the optimum, 
the only points that need to be investigated during the trial-and-error process of the simplex 
method are the corner points at the boundary of the feasible set. This is exactly how the 
mechanical rules of the simplex procedure operate: they search the corner points of the 
boundary of the feasible set in a sequential fashion. For example, the procedure starts at 
the original corner point of Figure 6.1 and moves along the axis of treatment with A to the 
corner point denoted by D'. Profit is evaluated at that point and then the next corner point 
of the feasible space, corner point E, is investigated. Once corner point E has been 
evaluated, the simplex method investigates the possibility of moving to corner point C. 
Since corner point C has a lower objective function value than corner point E, the procedure 
will stop and declare corner point E the optimum. The mechanical rules of the simplex 
method are structured such that each following corner point should result in a higher value 
of the objective function. Once a corner point that has a lower value is reached, further 
investigation is unnecessary because no other corner point in the feasible set has a higher 
value of the objective function, so an optimal solution has been found. 
Information on the economic contribution of the various resources to the measure of 
performance (Z) is extremely useful. The simplex method provides this information in the 
form of shadow prices for the respective resources. 

'No time will be devoted to discussing this method in detail. Those who are interested may consult numerous 

works which provide detailed discussions on this procedure along with examples that can be solved by hand (see, 

for example, Heady & Chandler, 1958; Boehlje & Eidman, 1984; Dent et al, 1986; Hillier & Lieberman. 1990). 

73 



Chapter 6 

The shadow price for resource i (denoted by yj) measures the marginal value of this 
resource, that is, the rate at which Z would be increased by (slightly) increasing the amount 
of this resource (bj). 
The shadow prices for the anthelmintic problem are calculated as follows: 

y j = 5 is shadow price for resource 1 
y2 = 10 is shadow price for resource 2 

where these resources represent the maximum amount of money the farmer wants to spend 
on anthelmintics and the maximum number of animals to be treated. These numbers can 
be verified by checking in Figure 6.1 that individually increasing each bj by 1 would indeed 
increase the optimal value of Z by 5 and 10 respectively. For example, the optimal 
solution, (75, 75) with Z - 4500, changes to (76Vi, 74Vi) with Z = 4510 when b 2 is 
increased by 1 (from 150 to 151), so that 

y2 = AZ = 4510-4500= 10 

The kind of information provided by shadow prices is especially valuable to the 
management when it considers reallocations of resources within the organization. It is also 
helpful when an increase in bj can be achieved only by purchasing more of the resource. For 
example, suppose that Z represents profit and the unit profits of the activities include the 
costs of all the resources consumed. Then a positive shadow price of yj for resource i means 
that the total profit Z can be increased by yj by purchasing one more unit of this resource 
at its regular price. Alternatively, if a premium price has to be paid for the resource, then yj 
represents the maximum premium that will be worth paying. So, based on the shadow prices 
of a certain resource, it may be decided to increase its amount. 

Sensitivity analysis can be used to identify the most sensitive parameters. One parameter 
at a time is changed and its influence on the optimal solution determined. Typically, more 
attention is given to performing sensitivity analysis on the bj and c; parameters than to that 
on the aj; parameters. In many cases, a;: values are determined by the technology being 
used, so there may be relatively little (or no) uncertainty about their final values. Parametric 
programming involves the systematic study of how the optimal solution changes if many 
of the parameters change simultaneously over some range. This technique can be used to 
study the effects of trade-offs in parameter values. 

Because of their mechanical nature, the rules representing the simplex method have been 
computerized so that only the model of the problem needs to be developed and submitted 
to the computer for 'number-crunching' (optimal solution and sensitivity analysis). Various 
software packages that can carry out these tasks on mainframe and personal computers are 
available. Some examples are XA (Sunset Software Technology, San Marino, Ca, USA), 
UNDO (The Scientific Press, Palo Alto. Ca., USA), MICRO-LP (Scicon Ltd, Milton 
Keynes, UK) and OMP (Beyers & Partners nv, Brasschaat, Belgium). 
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6.3 Assumptions of linear programming 
Several assumptions are used in linear programming. Four basic assumptions are essential 
to determine whether linear programming is applicable to a particular problem and whether 
it will provide a meaningful and precise answer (Heady & Chandler, 1958; Boehlje & 
Eidman, 1984; Hillier & Lieberman, 1990). 

Additivity and linearity in input and output coefficients 

The additivity assumption specifies that the total amount of resources used for two or more 
activities must be the sum of the amounts of resources used for each separate activity. The 
same assumption applies to products produced. The implication of this is that interaction 
between activities is not allowed. If necessary, this can be included by adding a new process 
that reflects the complementarity between two activities (eg, crop rotation). 
The assumption of linearity follows directly from that of additivity. Linearity implies that 
multiplying all inputs used in an activity by a constant results in a constant change in the 
output ofthat process. Thus, the production function for an activity is linear. To reflect 
nonlinear production relationships, these relationships are approximated by linear segments, 
with each linear segment representing a separate activity or decision variable. The 
assumptions of linearity and additivity refer to relationships between activities. 

Divisibility in resources and products 

The divisibility assumption is that activity units can be divided into any fractional level, so 
that noninteger values for the decision variables are permissible. Frequently linear 
programming is applied, even if an integer solution is required. If the solution obtained is 
a noninteger one, then the noninteger variables are merely rounded to integer values. 
However, the optimal linear programming problem is not necessarily feasible after the 
variables have been rounded. Even if it is feasible, there is no guarantee that this rounded 
solution will be the optimal integer one. Because the mathematical procedure requires 
complete divisibility of inputs and outputs, a practical interpretation of the results requires 
the judgment of the user. 

Finiteness 

This assumption sets a limit to the number of alternative processes and resource restrictions 
that can be included in the analysis. In fact, this number will depend on the software 
package used to solve the linear programming problem. Most packages will allow thousands 
of activities and restrictions. 

Single-valued expectations 

The single-valued expectations assumption essentially eliminates the important dimension 
of risk from linear programming analysis. This assumption specifies that resource supplies, 
input-output coefficients, and commodity and input prices must be known with certainty. 
Although many will argue that this assumption is unrealistic and makes the results suspect, 
it should not lead to rejecting linear programming altogether. First, the same assumption is 
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required in many other analysis procedures used in animal health economics, including 
partial budgeting and gross margin analysis. Second, prices and production coefficients 
can easily be varied in the linear programming framework, and this 'sensitivity analysis' can 
illustrate the resource allocation and income impacts of alternative sets of prices and 
production efficiencies. 

The assumptions in perspective 

A mathematical model is intended to be only an idealized representation of reality. 
Approximations and simplifying assumptions generally are required in order to keep the 
model tractable. It is very common in real applications that almost none of the four 
assumptions hold completely. If the assumptions of linear programming are considered too 
restrictive, techniques are available to relax them. Nonlinear, separable and quadratic 
programming techniques can be used to handle nonlinear functions. Integer programming 
can be used in situations where fractional amounts of inputs or outputs are not feasible from 
a technical nor from a practical point of view. Stochastic and quadratic programming 
procedures can be used to incorporate risk dimensions in the analysis, replacing the single-
valued expectations requirement. Applying these techniques results in increased complexity 
of model construction, reduced model size and higher costs of solving the model. 

In Chapter 19 you can find a computer exercise similar to the example given in the introduction 

of this chapter. You will practise the principles of linear programming by allocating the limited 

resources labour and grass to the competing activities sheep and cows in order to maximize the 

net returns. You have to define the restrictions to get a graphical representation of this 

problem. With the objective function you can find the optimal solution. Some sensitivity 

analyses can be carried out to see the effect of changes in net returns. The whole exercise takes 

approximately 40 minutes. 

6.4 A more realistic application to herd calving pattern 

6.4.1 Outline of the linear programming model 
Jalvingh (1993) developed a dynamic probabilistic simulation model for dairy herds. The 
model simulates the technical and economic consequences of decisions concerning 
production, reproduction, replacement and calving pattern and can be tailored to individual 
farm conditions. The user has, for instance, the possibility of comparing different calving 
patterns and studying the effects on gross margin and labour. From this comparison the 
user has to choose the calving pattern that suits the objectives best. This is not necessarily 
the optimal calving pattern for that specific farm. The optimal calving pattern of a herd can 
be derived by combining the results of the simulation model with linear programming. 
The basic ingredients of the linear programming are the technical and economic results of 
the twelve so-called single-month equilibrium herds (SME-herds). An SME-herd 
represents a herd in which all heifers calve in the same month. The resulting herd dynamics 
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are based on biological variables on the one hand (eg, conception rate and oestrus detection 

rate) and management strategies on the other (eg, insemination and replacement policy). 

Input variables of performance and prices are combined with the information on herd 

dynamics to obtain the technical and economic results of each SME-herd. The technical and 

economic results of any herd can easily be obtained by weighing the results of the twelve 

SME-herds according to the proportion of heifer calvings per month. The technical and 

economic results of the twelve SME-herds and the weighing of the SME-herds form the 

basic ingredients of the linear programming problem. The major results of the SME-herds 

are given in Table 6.1. The major input variables used to determine the results of the SME-

herds are in Appendix 6.1. 

The linear programming problem uses the number of heifers calving per month as decision 

variables. The objective is to choose the number of heifer calvings per month so as to 

maximize gross margin of the resulting herd, with the restriction that the annual milk 

production of the herd should not exceed the available milk quota. The following linear 

programming problem can be formulated: 

12 
Maximize Z = X gmjXj 

i=l 

subject to 

12 
X mpjXj < quota 
i=l 

where 

Xj = number of heifers calving in month i; 

girij = gross margin of the SME-herd expressed per heifer calving, in case the 

heifer calves in month i (see Table 6.1); and 

mpj = milk production of the SME-herd expressed per heifer calving, in case 

the heifer calves in month i (see Table 6.1). 

As can be seen, the coefficients of the objective function and the constraint are derived from 

the results of the SME-herds. For that reason, the results of the SME-herds are expressed per 

calving heifer (Table 6.1). 

The optimal solution of the linear programming problem represents the optimal heifer 
calving pattern. The optimal herd calving pattern and the corresponding technical and 

economic results can be derived by weighing the results of the SME-herds according to 

the optimal heifer calving pattern. 

The linear programming problem just presented is referred to as set I. This set can be 

extended by adding other constraints. The optimal herd calving pattern was also determined 

for two different sets of additional constraints. 
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In set II, an additional restriction is used, which specifies that all replacement heifers 
entering the herd should come from heifer calves that were born in the herd 24 months 
before. This can be formulated in twelve constraints: 

12 
S fjXijXj ^x:, for all j 
i=l 

where 
Vjj = number of herd calvings in month j in SME-herd corresponding to one 

heifer calving in month i; and 
f: = factor representing the number of 24-month-old replacement heifers per 

calving in month j that becomes available in month j 2 years later (f: is 
set at 0.4 for all months). 

All replacement heifers are assumed to calve at the age of 24 months, but this age at first 
calving can easily be changed to include variation. 
A concentration of calvings within a few months results in a large variation in the monthly 
herd size. In set III, variation in monthly herd size is restricted by using a lower and upper 
limit between which monthly herd size is allowed to vary. The limits are formulated in terms 
of a proportion of the average annual herd size. In formula: 

12 12 
S nsijxi > Z min ahSjXj, for all j 
i=l i=l 

12 12 
X hSjjXj < X max ahSjXj, for all j 
i=l i=l 

where 
hsjj = herd size of SME-herd in month j , in case one heifer calves in month i; 
ahsj = average annual herd size in SME-herd, in case one heifer calves in month 

i (see Table 6.1); 
min = lower limit of the variation in herd size per month, expressed as a 

proportion of the average annual herd size; and 
max = upper limit of the variation in herd size per month. 

The lower and upper limits for variation in monthly herd sizes are set at 95 and 105% of 
the annual average herd size respectively. The constraints used in set II also hold for set III. 

6.4.2 Results 

The optimal heifer and herd calving patterns for the different sets of constraints are 
presented in Table 6.2, together with the technical and economic results of the herds. 
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Table 6.2 Results of the optimum herd calving pattern for different sets of constraints 

Milk production herd (kg) 

Calving pattern heifers (%) 
January 
February 
March 
April 
May 
June 
July 
August 
September 
October 
November 
December 

Calving pattern herd (%) 
January 
February 
March 
April 
May 
June 
July 
August 
September 
October 
November 
December 

Average number of cows 
Range herd size (% of average) 
Number of calvings 
Annual culling rate(%) 
Calving interval (days) 
Milk per averagi ; cow (kg) 
Average monthly deviation in base price milk 
(US$/100kg) 

Economic results (US$/100 kg of milk) 
Revenues 

Costs 

Gross margin 

- milk 
- calves 
- cullings 
- feed 
- heifers 

Gross margin herd (US$) 

I 

500000 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

100.0 
0.0 
0.0 
0.0 
0.0 

1.6 
0.9 
0.5 
0.6 
1.8 
4.9 

13.1 
43.2 
14.5 
10.2 
5.6 
3.1 

72.6 
87-117 

84.3 
31.7 
373 

6891 
0.73 

46.91 
3.41 
3.85 

12.45 
6.74 

34.98 

174913 

Set of constraints 
II 

500000 

0 0 
0.0 
0.0 
0 0 
00 
0.0 

23.9 
32.4 
37.2 
6.5 
0.0 
0.0 

2.1 
1.1 
0.6 
0.8 
2.1 
5.5 

16.4 
22.2 
25.5 
13.2 
6.6 
3.9 

72.1 
90-113 

83.7 
31.8 
372 

6932 
0.73 

46.87 
3.33 
3.86 

12.43 
6.72 

34.91 

174551 

III 

500000 

0 0 
0.0 
0.0 
0 0 
0 0 

13.7 
21.8 
23.7 
10.2 
19.6 
9.6 
0.0 

2.6 
1.5 
1.0 
1.6 
4.3 

10.6 
15.0 
16.4 
15.5 
16.8 
10.1 
4.6 

71.7 
95-105 

83.0 
32.0 
372 

6972 
0.59 

46.66 
3.31 
3.88 

12.36 
6.70 

34.78 

173922 
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As expected, the highest gross margin per 100 kg of milk is realized when only the milk 
production of the herd is restricted (set I). In that case, all heifer calvings take place in 
August, which could be expected from the information presented in Table 6.1. The resulting 
herd calvings, including heifer calvings, take place mainly from July to October. The 
proportional monthly milk production varies from 4.3% in June to 11.3% in September. The 
variation in monthly milk production is much smaller than the variation in monthly herd 
calvings. The monthly herd size, expressed as a percentage of the average annual herd 
size, varies from 87% in July to 117% in August. 
If the number of heifers calving per month is restricted by the number of heifer calves 
born in the herd in each month (set II), heifer calvings occur from August to October. 
The resulting herd calvings are still concentrated in the period from August to October. 
The gross margin is reduced by only US$0.07 per 100 kg of milk, which is US$362 at 
herd level. The reduction in gross margin is a result of the reduction in milk and calf 
revenues. The milk revenues are reduced because of the reduction in average-realized 
monthly deviation in the base price of milk, whereas the revenues from calves are reduced 
because of the reduction in the number of calvings in the herd. In set II, the monthly herd 
size varies from 90% in June to 113% in September of the average annual herd size (Table 
6.2). 
In set III, the monthly herd size is restricted to vary between 95 and 105% of the average 
annual herd size, resulting in an optimal heifer calving pattern that is spread over a longer 
period than in set II. The gross margin is reduced by US$0.20 per 100 kg of milk compared 
with set I, which equals US$991 at herd level. 
The optimal herd calving pattern can also be determined for herds with a lower reproductive 
performance, or different prices, performance etc. Only a few constraints have been 
demonstrated in this chapter. However, it is possible to include other constraints, such as 
restrictions on roughage supply or available labour, as well. The objective function of the 
problem can also be modified. Gross margin of the herd can be maximized while herd size 
rather than the annual milk production is restricted (ie, for a situation without a milk quota 
system). 

6.5 Concluding remarks 
Linear programming is a very useful tool in finding the optimal solution for complex 
problems. The technique has not much been applied yet in animal health economics. The 
reason for that might be unfamiliarity with the technique or that it is not considered useful. 
Linear programming has several clear underlying assumptions (limitations). Many 
modifications have been made to the technique to deal with these limitations, such as mixed-
integer, nonlinear and quadratic programming. As a result of the advances in computer 
technology (higher speed and larger memory capacities), computing facilities are now easily 
available for everybody. Furthermore, recently developed interactive menu-driven packages 
may greatly facilitate the application of these techniques. 
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Appendix 6.1 
See Jalvingh (1993) for more details on input variables and for a complete overview. The 
given input values are assumed to represent typical Dutch herds, but they can easily be 
modified to suit other farm and price conditions. 

Herd dynamics model 
Proportions of first inseminations for months 2 to 5 after calving are 44, 41,11 and 4% 
respectively. After second calving and later these proportions are 49, 38, 10 and 3%. 
Conception rate after insemination depends on lactation number. Conception rate per 
lactation number weighed according to an average herd composition results in 62%. Oestrus 
detection rate is 70%. Probability of involuntary disposal is 12% in lactation 1 and increases 
to 23% in lactation 10. 

Performance model 
In Table A6.1 the base prices of milk, calves, replacement heifers and carcass weight are 
presented, together with the monthly deviation in prices. In Table A6.2 energy content and 
price of grass, silage and concentrates are presented. In summer (May-October) cows feed 
on grass and concentrates. In winter the ration consists of silage and concentrates. 

Table A6.2 Energy content and prices of different kinds of feed 

Energy content (VEM)a Price (USS/IOOO VEM) 

Grass 951 0.122 
Silage 850 0.167 
Concentrates 1045 0.194 

a VEM = Dutch Feed Unit; 1000 VEM = 6.9 MJ NEL 
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