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PROPOSITIONS 

1. MADS-domain proteins bind to their target genes in a stage-specific
combinatorial fashion.  
(this thesis)  

2. MADS-domain proteins act as pioneer factors.  
(this thesis)  

3. Since 62% of the human DNA is transcribed into RNA and only 5.5% 
of the RNA is translated into proteins (ENCODE Project Consortium, 2012), 
the central dogma, DNA-RNA-protein,represents mainly an exception. 

4. Defining proteins that are involved in overall plant development as 
flowering time  regulators is improper.  

5. 
  

 

6. The European Union was the best achievement of the 20th
century European governments. 

7. Due to the extreme role of planning in the Dutch life style, 
flexibility is lost. 
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CHAPTER 1

Introduction: 
When genetics meets epigenetics 

flowers arise
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Flowers are determinate structures necessary for reproduction of angiosperms. 

Angiosperms such as Arabidopsis thaliana have lifecycles characterized by the 

alternation of diploid sporophytic and haploid gametophytic stages. The plant undergoes 

several developmental changes that can be considered as phase transitions, before the 

sporophyte produces the spores, which develop into male and female gametophytes. The 

first developmental change is the transition from the initial juvenile vegetative stage into 

the adult vegetative phase. Plants in the juvenile phase are able to produce leaves and 

axillary buds, whereas the initiation of reproductive structures only occurs in the adult 

vegetative phase. The next phase transition is the switch from vegetative to reproductive 

growth, when, upon response to environmental signals, the vegetative shoot apical 

meristem (SAM) acquires the identity of an inflorescence meristem (IM) that will then 

produce floral meristems (FM). Arabidopsis floral meristems produce four concentric 

whorls of floral organs: four sepals, four petals, six stamens, and two fused carpels from 

the periphery to the center of the floral meristem. In contrast to the indeterminate SAMs 

and IMs, floral meristems are genetically programmed to terminate after the primordia of 

the carpels have been formed. Male reproductive development takes place in the third 

whorl stamens, which are composed of anthers supported on filaments. Inside the anthers 

the male gametophytes develop by two sequential processes: microsporogenesis and 

microgametogenesis. Ovules, which form in the fourth whorl, provide structural support 

to the female gametes and enclose them until seed development is complete. 

THE TRANSCRIPTIONAL REGULATION OF FLOWER DEVELOPMENT: 

FROM CLASSICAL GENETICS TO GENOME-WIDE APPROACHES. 

Developmental processes are controlled by tightly coordinated networks of regulators, 

known as gene regulatory networks (GRNs) that activate and repress gene expression 

within a spatial and temporal context. In Arabidopsis thaliana, the key components of the 

GRNs controlling major processes in plant reproduction, such as the floral transition and 

floral organ identity specification, were first identified in loss-of-function mutants that 

affect these processes (Blazquez et al., 2006). The interactions between these regulators 

began to be revealed later through genetic analyses, resulting in the first, mostly linear, 

GRN maps. These GRNs were enlarged by reverse genetics, analysis of protein-protein 

interactions, expression studies and protein-DNA binding profiles in wild type and mutant 
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plants, resulting in a hierarchical GRN in which master regulators target subsets of genes 

and downstream processes (Kaufmann et al., 2010a). 

GRN for floral transition 

Endogenous and environmental signals act as input into the decision to initiate flowering. 

Several pathways, including photoperiod, autonomous, vernalization, and gibberellin 

(GA) (Baurle and Dean, 2006; Simpson and Dean, 2002) converge on a small set of 

central flowering regulators, including CONSTANS (CO) and FLOWERING LOCUS C 

(FLC), that antagonistically regulate flowering (Figure 1) (Samach et al., 2000). FLC 

acts as a repressor of flowering and mediates the response to vernalization and 

autonomous pathways, while CO is a floral activator and controls the photoperiodic 

pathway. Both genes together regulate the expression of the downstream floral pathway 

integrator genes FLOWERING LOCUS T (FT), SUPPRESSOR OF OVEREXPRESSION 

OF CONSTANS 1 (SOC1), and LEAFY (LFY) (Blazquez and Weigel, 2000; Simpson and 

Dean, 2002). The gibberellin pathway influences the phase transition at the SAM by 

promoting the expression of SOC1 and LFY (Blazquez et al., 1998; Moon et al., 2003) 

and also acts upstream of FT in the leaf, providing evidence for crosstalk between the 

photoperiod and GA pathways (Porri et al., 2012).  

The FT protein stimulates flowering by moving from the leaf (where the light is 

perceived) to the SAM (where inflorescence and floral meristems are formed). Genetic 

and molecular studies indicate that the FT protein comprises part of the inductive signal 

known as florigen, which promotes flowering in response to photoperiod (Corbesier et 

al., 2007; Jaeger and Wigge, 2007). FT interacts at the SAM with the bZIP TF, 

FLOWERING LOCUS D (FD), to activate the expression of the floral meristem identity 

genes APETALA1 (AP1) and SOC1, which in turn activate LFY, promoting the floral 

transition (Wu and Gallagher, 2012). In addition to LFY, other genes such as AGAMOUS 

LIKE 24 (AGL24) also contribute to the up-regulation of AP1 (Grandi et al., 2012; 

Pastore et al., 2011). After successful initiation of the floral meristems, AP1 and LFY 

activate the organ identity genes, initiating floral organ development.  

Furthermore, the microRNAs miR156 and miR172 have been identified as important 

regulators of this developmental phase change. Members of the SQUAMOSA 

PROMOTER BINDING PROTEIN LIKE (SPL) TF family are targeted by miR156, 

whereas miR172 targets 6 APETALA2-LIKE (AP2-like) transcription factors (Wu and 
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Poethig, 2006; Wu et al., 2009). Levels of miR156 are high in the juvenile vegetative 

phase and decrease before onset of the adult vegetative phase, allowing the production of 

a subset of SPL proteins (SPL9, SPL10). These SPLs induce the expression of miR172 

genes, leading to a gradual increase in miR172 levels during the adult vegetative phase 

(Aukerman and Sakai, 2003; Jung et al., 2007; Schwarz et al., 2008; Wu and Poethig, 

2006; Wu et al., 2009). Increased levels of miR172, in turn, cause a down-regulation of 

AP2-like genes, which otherwise repress adult traits and flowering (Figure 1) making the 

plant competent to flower (Wu et al., 2009). 

Figure 1. GRN controlling the transition to flowering. The switch from vegetative to reproductive phase is 

triggered by endogenous and environmental stimuli, some examples of which are illustrated here. These 

signals  converge at  the  central  flowering  regulator genes FLC and CO  that antagonistically  regulate  the 

floral  integrator genes at  the SAM. The  floral  integrators activate  the meristem  identity genes AP1 and 

LFY,  subsequently  leading  to  activation  of  the  ABCDE  class  genes,  specifying  organ  identity.  The 

endogenous aging pathway  involves micro RNAs  (miRNAs). At early stages of development,  the  level of 

miR156 is high, maintaining the juvenile growth phase. As the plant ages, miR156 levels decrease, allowing 

the production of a subset of SPL proteins. These SPL proteins  induce  the expression of MIR172 genes, 

which  are  consequently  expressed  at  low  levels  in  the  juvenile  phase  and  steadily  increase  their 

expression levels in the adult phase. Elevated levels of miR172 cause down‐regulation of AP2‐like TF factor 

genes, which otherwise  repress  flowering. Arrows  indicate activation, blocked  lines  indicate  repression, 

left‐right arrows indicate a positive feedback loop.  
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GRN for floral organ development 

Floral organ identity is determined by the combinatorial action of floral homeotic genes. 

The way in which this limited set of genes acts to direct formation of the correct floral 

organs at the appropriate place in the flower is described by the classical ABC model (for 

reviews see: (Alvarez-Buylla et al., 2010; Causier et al., 2010; Immink et al., 2010; 

O'Maoileidigh et al., 2014). The ABC model was built on phenotypic observations of loss 

of function mutants that showed absence and conversions of floral organs. According to 

the ABC model, a combination of master regulators determines organ identity: the A-

class genes determine sepal identity; the combination of A and B-class genes promote 

petal identity; the combinations of B and C-class genes determine stamen identity, and C-

class genes determine carpel identity (Figure 2).  

 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The ABC‐model. Three classes of 

genes  determine  the  identity  of  the  4 

types  of  organs:  sepals,  petals,  stamens 

and carpels. 

 

 

In Arabidopsis, the A-class genes are the MADS-box TF-encoding AP1 (Mandel and 

Yanofsky, 1995) and APETALA2 (AP2), which encodes a member of the AP2/ERF 

(ethylene responsive factor) TF family (Jofuku et al., 1994; Okamuro et al., 1997). The 

B-class genes are APETALA3 (AP3) (Jack et al., 1992) and PISTILLATA (PI) (Goto and 
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Meyerowitz, 1994), both of which encode MADS-domain TFs. AGAMOUS (AG), another 

MADS-box gene, is the only member of the C-class (Yanofsky et al., 1990). The original 

ABC model was extended by the addition of D- and E-classes, which specify ovule 

identity (Pinyopich et al., 2003) and floral identity, respectively. The D-class genes 

include the MADS-box genes SEEDSTICK (STK) and SHATTERPROOF1 and 2 

(SHP1/2), which are redundantly required for the specification of ovule identity 

(Pinyopich et al., 2003).  Four SEPALLATA genes (SEP1-4), all of which encode MADS-

domain TFs, comprise the E-class (Ditta et al., 2004; Pelaz et al., 2000; Rounsley et al., 

1995) (Figure 2). Protein-protein interaction studies demonstrated that the ABCDE 

MADS-box TFs physically interact and bind DNA as tetramers, possibly establishing 

DNA loops in the promoters of their target genes to activate or repress their transcription 

(Egea-Cortines et al., 1999; Melzer and Theissen, 2009; Smaczniak et al., 2012b). The E-

class SEP proteins are necessary for the formation of higher order complexes involving 

the A-, B- and C-class TFs and hence mediate their organ identity functions (Honma and 

Goto, 2001; Pelaz et al., 2001). The resulting hierarchical GRN formed the basis of our 

understanding of flower development until the advent of new technologies described 

below. 

 

Novel insights into GRN structure and function.  

Recently, genome-wide molecular approaches, such as protein interaction assays, 

expression profiling and DNA-protein interaction studies have connected the nodes in the 

GRNs and added novel regulators, interactors and downstream targets (Hawkins et al., 

2010). In contrast to the earlier genetic networks described above, more recent versions 

show molecular interactions that are independent of single mutant phenotypes and are 

potentially more dynamic in time and space. The molecular interactions that were added 

are for example protein-protein interactions, which allow combinatorial action of multiple 

regulatory factors. In the case of TF complexes, their composition can be an important 

determinant of DNA binding specificity and affinity and thus interactions will affect 

target gene regulation. Another layer of molecular interactions recently added to the 

networks comprises genomic TF binding profiles, i.e. protein-DNA interactions.  Large-

scale expression analyses, preferably performed with inducible systems (Kaufmann et al., 

2010c; Wellmer et al., 2006), add transcriptional activity to the connections (‘edges’) 

between nodes in the network. These large-scale data sets have substantially increased the 
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network connectivity and revealed the shortcomings of the classical hierarchical 

networks. Current GRNs are composed of TFs regulating subsets of genes in a 

combinatorial fashion and contain multiple regulatory feedback loops, which blur the 

hierarchical structure (Kaufmann et al., 2010a).  

Remarkably, TFs act as process integrators and connect other developmental processes as 

hubs in the network (Pose et al., 2012). The TF target gene analyses have revealed 

unexpected connections between processes previously considered to be unrelated or only 

indirectly related, which could not have been predicted by classical genetic approaches. 

For example, target gene analysis of the SEP3 floral organ identity transcription factor 

revealed a connection with auxin signalling (Kaufmann et al., 2009). As another striking 

example, a recent study addressing the role of LFY revealed that in addition to its 

function in reproductive transition, it is also involved in pathogen responses (Winter et 

al., 2011). 

In the 1990s, binding of TFs to DNA sequences was studied by in vitro or heterologous in 

vivo methods, such as electrophoretic mobility shift assays (EMSA) and yeast 1-hybrid 

studies. Research performed in the group of Suzanna Schwarz-Sommer (Trobner et al., 

1992) showed that the Antirrhinum class B homeotic proteins DEFICIENS and 

GLOBOSA interact with each other and bind in vitro to their own promoters, thereby 

forming an auto-regulatory loop. More such auto-regulatory loops have been recently 

identified in GRNs, particularly associated with transcriptional regulation of MADS-box 

genes (Gomez-Mena et al., 2005). For instance, expression of the MADS-box gene SOC1 

is controlled by the SOC1 protein, which forms heterodimers with AP1 that suppress 

SOC1 expression following the successful transition to floral meristem identity (Immink 

et al., 2012).  

The development of chromatin immunoprecipitation (ChIP) was a major breakthrough in 

the study of DNA-protein interactions, since it allowed the identification of in vivo 

physical interactions between a TF and its target DNA (Gomez-Mena et al., 2005; Wang 

et al., 2002). The subsequent introduction of genome-wide arrays (ChIP-CHIP) (Zheng et 

al., 2009) or large-scale sequencing (ChIP-seq) (Kaufmann et al., 2010b) led to the 

identification of thousands of target genes for specific TFs. In the past 5 years many 

genome-wide TF-DNA binding profiles have been generated for TFs involved in plant 

reproduction (Table 1). The high numbers of interactions that were detected in ChIP-seq 

experiments revealed a much higher network complexity than expected and demonstrated 
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The ChIP-seq data also confirmed that most TFs involved in plant reproduction bind to 

their own locus, reinforcing the concept that auto-regulatory loops are a common 

mechanism of regulation in GRNs (Figure 3). For example, identification of the direct 

targets of LFY (Winter et al., 2011) and AP1 (Kaufmann et al., 2010c) revealed that LFY 

is able to promote AP1 transcription through direct regulation, and AP1 binds to LFY to 

form a positive feedback loop, leading to a strong and rapid up-regulation of both genes.  

Table 1. Overview of genome-wide protein-DNA binding profile studies for TFs involved in 

plant reproduction. 

Family Function Tissue Most relevant targets Reference

AGAMOUS AG
MADS-box 

transcription factor floral organ development
flow er buds 

stage 5
AG, CRC, SHP2, SPL, JAG, SEP3, AP1, 
AP3, SHP1, SUP, HEC1, HEC2, VDD

Ó’Maoiléidigha et al ., 
Plant Cell 2013

AGAMOUS-LIKE 15 AGL15 MADS-box 
transcription factor

floral transition embryonic 
culture tissue

FLC, SVP, LEC2, FUS3, ABI3, IAA30
   Zheng et al .,    
Plant Cell 2009

APETALA1 AP1
MADS-box 

transcription factor
Repressor of f loral 

transition

inflorescence 
meristem; 
f low ers at 

stage 2, 4 and 8

FD, FDP, LFY, SNZ, TOE1, TOE3, 
TEM1, TEM2, TFL1, SPL9, SPL15, 
SEP3, AP2

Kaufmann et al., 
Science 2010; ; 

Pajoro et al., 2014 
Genome Biology

APETALA2 AP2 AP2-like family
floral transition and f loral 

organ development inflorescences
AG, SOC1, SEP3, AP1, TOE3, AGL15, 
ARF3, SHP1, SHP2, AGL44, TOE1, 
RGA-like1, miR156, and miR172

Yant et al., Plant Cell 
2010

APETALA3 AP3 MADS-box 
transcription factor

floral organ development flow er buds 
stage 5

CRC, SEP3, SPL, AP1, SUP, AG, UFO, 
SHP2, RBE, HEC1, HEC2, ALC

West et al ., PNAS 
2012

FLOWERING LOCUS C FLC
MADS-box 

transcription factor flow ering time
12 days old 
seedlings

SOC1, FT, SEP3, CBF1, JAZ6, AGL16, 
SPL15, DIN10, SVP, SPL3, SMZ, TOE3, 
TEM1, FRI, CIR1, FIO1, LCL1, COL1

Deng et al ., PNAS 
2011

FLOWERING LOCUS M FLM 
MADS-box 

transcription factor flow ering time
15 days old 
seedlings

SOC1, ATC, TEM2, SMZ, SEP3, AP3, 
PI, RVE2, FIO1, SHP2, MIR156, AP2, 
MIR172, AP1

Pose et al. , Science 
2013

LEAFY LFY floral transition inflorescences
TFL1, AP1, AG, SEP4, LFY, SOC1, 
PRS, BB, GIS, GOA, STY2, ARR3, 
GA3OX2

 Moyroud et al ., Plant 
Cell. 2011

PISTILLATA PI MADS-box 
transcription factor

floral organ development flow er buds 
stage 5

CRC, SEP3, SPL, AP1, SUP, AG, UFO, 
SHP2, RBE, HEC1, HEC2, ALC

West et al ., PNAS 
2012

SCHLAFMUTZE SMZ AP2-like family repressor of f low ering seedlings FT, SMZ, SNZ, AP2, TOE3, SOC1, AP1, 
TEM1, FRI

Mathieu et al.,  PLOS 
Biology 2009

SEPALLATA3 SEP3
MADS-box 

transcription factor flow er development

inflorescences 
(stage1-12); 
f low ers at 

stage 2, 4 and 8

AP1, AP3, SEP1, SEP2, SEP4, AG, 
SHP1, SHP2, GA1, PIN4, PID, ARF3, 
ARG8, IAA4

Kaufmann et al., 
PLOS Biology 2009; 
Pajoro et al. , 2014 
Genome Biology

SHORT VEGETATIVE 
PHASE SVP

MADS-box 
transcription factor flow ering time

2 w eeks old 
seedlings

GI, PRR7,FLK, FLD, CLF,SWN,VNR2, 
PHYA, STIP, SVP, CLV1, CLV2, PHB, 
PHV, REV, ATHB8

Gregis et al ., 
Genome Biology 

2013

SHORT VEGETATIVE 
PHASE SVP

MADS-box 
transcription factor floral organ development

inflorescences 
(stage1-11)

SVP, CLV1, PHB, KAN1, ARF3, PIN1, 
WDR55

Gregis et al ., 
Genome Biology 

2013

SUPPRESSOR OF 
OVEREXPRESSION OF 

CONSTANS1
SOC1

MADS-box 
transcription factor flow ering time

transition 
apices

SOC1, CBF1, CBF2, CBF3, mir156, 
SVP, AGL15, AGL18, TEM2, TOE3, 
SMZ, SNZ, SEP3, SHP2, AP3, PI, SUP, 
ARF3

Immink et al . Plant 
Physiology 2012

Gene
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Figure 3.     Gene interaction network based on DNA‐binding profiles. TFs  involved  in plant reproduction 

(Table 1)  show a high overlap  in  target genes. Most TFs bind  to  their own  locus,  suggesting  that auto‐

regulatory  loops are a  common mechanism of  regulation. Many pairs of TFs  show a  reciprocal binding 

suggesting a mechanism of inter‐regulation. 

Through these genome-wide studies, in particular in combination with transcriptome 

analysis (Kaufmann et al., 2010c; Wuest et al., 2012), it also became apparent that some 

TFs act as both activators and repressors. For example, at early stages AP1 represses 

genes controlling flowering time, whereas at later stages it mainly acts as an activator of 

floral homeotic genes (Kaufmann et al., 2010c; Pajoro et al., 2014). A similar observation 

was made for the B-class genes AP3 and PI, which activate genes involved in 

organogenesis and repress those required for carpel development (Wuest et al., 2012). It 

is likely that the composition of the TF complexes and their ability to recruit co-factors 

act together to determine the DNA-binding specificity and the mode of transcriptional 
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action. Although the consensus binding site for MADS-domain proteins, the so-called 

CArG-box, was found at the centre of virtually all binding peaks obtained in ChIP 

experiments, certain sequence motifs within and flanking the CArG-box were 

preferentially enriched. This corroborates the idea that the DNA binding specificity is 

determined to a large extent by the composition of the TF complex.  Therefore, protein-

protein studies will be required to enable us to understand TF-DNA interaction specificity 

and hence why specific target genes are recognised by specific transcription factors. 

Recent large-scale protein-protein and proteomics studies have elucidated the 

composition of many MADS-domain protein complexes involved in flowering time 

control and floral organ development (Immink et al., 2009; Smaczniak et al., 2012a). The 

next challenge in these studies will be to unravel the binding specificity of these 

complexes and how this influences the dynamic control of target gene regulation.  

 

THE EPIGENETIC REGULATION OF FLOWER DEVELOPMENT. 

In the nucleus DNA is packed into chromatin and therefore, all functions of the genome 

occur in the context of chromatin, whose fundamental building block is the nucleosome. 

A nucleosome is constituted by 147 bp of DNA wrapped around a histone octamer, 

formed by two of each core histone H2A, H2B, H3 and H4, and one histone linker H1 

which is critical to the higher-order compaction of chromatin (Figure 4). Nucleosome 

stability and compaction are regulated by the combined effects of nucleosome-positioning 

sequences, histone chaperones, ATP-dependent nucleosome remodelers, histone variants 

and post-translational histone modifications. Dynamic post-transcriptional modifications 

of histones and histone tails, such as methylation, acetylation or ubiquitination, lead to a 

more or less compact chromatin structure that affects gene expression.  

Recent advances in genome-wide methods are revealing increasingly detailed profiles of 

the genomic distribution of nucleosomes, their modifications and their modifiers. The 

overall picture that is now emerging is one in which chromatin accessibility, directed by  

contributions from chromatin remodelers and chromatin modifiers, highly contributes to 

the regulation of transcription. Moreover, transcription factors have been found to interact 

with chromatin modifiers and chromatin remodelers suggesting that transcriptional and 
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epigenetic regulation may be interconnected (Efroni et al., 2013; Smaczniak et al., 2012b; 

Vercruyssen et al., 2014). 

 
Figure 4. The histone  code. The histone modifications  identified  in Arabidopsis are  indicated. For each 

histone modification the known writers, readers and erasers are shown (Johnson et al., 2004; Lanouette et 

al., 2014; Zhang et al., 2007). 

 

The histone code and histone modifications in flower development. 

Most research on the role of chromatin in epigenetic processes has focused on histone 

modifications and their regulation, leading to the so-called histone code (Strahl and Allis, 

2000) (Figure 4). Although the role of many histone modifications has been unravelled, 

the function of some is still unknown. Moreover, the analysis of histone modifications in 

Arabidopsis revealed that although the modifications are quite conserved among 

eukaryotes some difference can be observed (Johnson et al., 2004; Lanouette et al., 2014; 

Zhang et al., 2007). Post-transcriptional modification of histone tails has been shown to 

affect gene regulation (Strahl and Allis, 2000). In Arabidopsis, the best characterised 

modifications are the histone lysine methylations that occur at Lys4 (K4), Lys9 (K9), 

Lys27 (K27), and Lys36 (K36) of histone 3 (H3). For example H3K4me2 and 

H3K36me3 were found to be associated with active chromatin status, while H3K9me2 

and H3K27me3 are repressive marks (Berr et al., 2011; Liu et al., 2010). 
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Several Arabidopsis proteins involved in the regulation of histone modification have been 

characterised (Figure 4). The main actors are the Polycomb group (PcG) and Trithorax 

group (TrxG) proteins, which act antagonistically in gene regulation: PcG proteins 

maintain a repressive chromatin state, while TrxG proteins maintain an active chromatin 

state (Pien and Grossniklaus, 2007). 

The Polycomb Repressive Complex 2 (PRC2) catalyses the trimethylation of H3K27, 

while PRC1 recognises the H3K27me3 modified histones and catalyses H2AK119 

ubiquitination that drives a more compact chromatin status. In Arabidopsis, three PRC2-

like complexes have been identified, each acting at different developmental stages: the 

EMBRYONIC FLOWER (EMF), VERNALIZATION (VRN) and FERTILIZATION 

INDEPENDENT SEED (FIS) complexes (Hennig and Derkacheva, 2009; Pien and 

Grossniklaus, 2007). The EMF-complex plays a role during the vegetative phase, where it 

represses FT and AG (Goodrich et al., 1997; Jiang et al., 2008). The EMF-complex is 

composed of the proteins EMF2, FERTILIZATION INDEPENDENT ENDOSPERM 

(FIE), an MSI homolog and CURLY LEAF (CLF) or SWINGER (SWN). emf2 mutants 

skip the vegetative phase and flower soon after germination (Sung et al., 1992; Yang et 

al., 1995), consistent with a premature expression of flowering time genes. In the clf 

mutant, aberrations in flowers were observed, due to ectopic AG expression (Goodrich et 

al., 1997). Consistent with their antagonistic action to PcG complexes, two Arabidopsis 

Trx proteins, ATX1 (Alvarez-Venegas et al., 2003) and ULTRAPETALA1 (ULT1) 

(Carles et al., 2005), are involved in the activation of AG (Carles and Fletcher, 2009; 

Saleh et al., 2007). ATX1 is a histone methyltransferase and it establishes H3K4me3, a 

histone modification associated with transcriptionally active regions (Alvarez-Venegas et 

al., 2003). Loss-of-function of ATX1 leads to homeotic conversions of floral organs, such 

as the formation of stamenoid petals and carpelloid stamens, due to the down-regulation 

of homeotic genes, such as AP1, AP2, PI, and AG (Alvarez-Venegas et al., 2003). 

Homeotic conversions of floral organs were also observed in mutants of SDG8, a H3K36 

tri-methyltransferase  (Kim et al., 2005), showing carpelloid sepals and stamenoid petals. 

In this mutant a down-regulation of the homeotic genes AP1, AP3 and PI was observed 

(Grini et al., 2009). ChIP experiments revealed a lower level of H3K36me3 at the AP1 

locus, suggesting that SDG8 plays a role in the regulation of AP1 via the deposition of the 

active histone mark H3K36me3.  
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The action of chromatin remodeling complexes during flower development. 

Packaging of DNA into a nucleosome restricts DNA accessibility for regulatory proteins, 

but also provides an opportunity to regulate genomic processes, as transcription or DNA 

replication, through modulating nucleosome positions and local chromatin structure. To 

enable dynamic access to DNA and to alter nucleosome composition in chromosomal 

regions, cells have evolved a set of specialized chromatin remodelling complexes 

(chromatin remodelers). Chromatin remodelers are ATP-driven protein complexes that 

can alter the chromatin structure by sliding histone octamers, altering histone-DNA 

interactions or changing histone variants, leading to an increased/decreased accessibility 

of regulatory proteins to DNA elements. 

Based on the presence of distinct domains, chromatin remodelers can be divided into four 

families: the SWI/SNF (switching defective/sucrose non-fermenting) family, the ISWI 

(imitation switch) family, the CHD (chromo-domain, helicase, DNA binding) family and 

the INO80 (inositol requiring 80) family (Becker and Horz, 2002; Clapier and Cairns, 

2009; Tsukiyama, 2002). Although all families contain an ATP-domain, each family has 

a unique set of domains that allows specialisation in their functions. The members of the 

SWI/SNF family contain an HSA (helicase-SANT) and a C-terminal bromo-domain and 

are able to form different complexes, which have a broad range of functions in 

development. They can slide and eject nucleosomes, but lack roles in chromatin assembly 

(Mohrmann and Verrijzer, 2005). The ISWI family remodelers (Langst and Becker, 2001) 

are characterised by the presence of a SANT domain and a SLIDE domain (SANT-like 

ISWI), which together form a nucleosome recognition unit with the SANT domain 

interacting primarily with unmodified histone tails (Boyer et al., 2004). They are involved 

in transcriptional repression and activation, formation or maintenance of higher-order 

chromatin structure and DNA replication (Corona and Tamkun, 2004). The CHD family 

remodelers contain a tandem chromo-domain (chromatin organization modifier) and, in 

some cases, a DNA-binding domain (Marfella and Imbalzano, 2007; Woodage et al., 

1997). The CHD remodelers are involved in nucleosome spacing and sliding (Sims and 

Wade, 2011), for example, CHD1 (Konev et al., 2007) binds to H3K4me3 and is 

involved in transcription elongation and nucleosome assembly (Flanagan et al., 2005). 

The INO80 family remodelers (Bao and Shen, 2007)  are characterised by the presence of 

a “split” ATPase domain with a long insertion in the middle (Clapier and Cairns, 2009). 

Members of this family are the INO80 complex, involved in promoting transcriptional 
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activation and DNA repair, and the SWR1 complex, which replaces the H2A-H2B dimers 

with H2A.Z-H2B dimers (Mizuguchi et al., 2004).  

In Arabidopsis, there are 42 putative SWI2/SNF ATPase (Plant Chromatin Database, 

http://www.chromdb.org), many of which still remain uncharacterised (Kwon and 

Wagner, 2007; Reyes et al., 2002; Verbsky and Richards, 2001; Wagner, 2003). Among 

the ones with a proposed role during development are members of the SWI/SNF family, 

such as BRAHMA (BRM), SPLAYED (SYD), MINUSCULE1 (MINU1) and MINU2, 

members of the CHD family, such as PICKLE (PKL), PKL1 and PKL2 and two member 

of the INO80 family, INO80 and PHOTOPERIOD INDEPENDENT EARLY 

FLOWERING 1 (PIE1) (Farrona et al., 2004; Fritsch et al., 2004; Noh and Amasino, 

2003; Ogas et al., 1999; Sang et al., 2012; Wagner and Meyerowitz, 2002). Recently, two 

members of the ISWI family, CHR11 and CHR17, have been reported to play a role in 

development (Li et al., 2012; Smaczniak et al., 2012b). Loss of function of chromatin 

remodeller complex genes generally causes pleiotropic developmental defects in the 

plant, due to the general roles of these proteins. For example, loss of SYD causes defects 

in many different developmental pathways such as phase transitions, growth, patterning 

and stem cell maintenance (Wagner and Meyerowitz, 2002). In addition, SYD has been 

shown to play an important role in flower development as well: before floral transition 

SYD represses LFY, while after transition it activates B and C-class genes (Wagner and 

Meyerowitz, 2002). Next to SYD, also BRM plays a role in the activation of homeotic 

genes. In brm flowers lower expression of the C-class genes was observed, while the 

flower phenotype resembles a weak B-class mutant with sepaloid-petals and carpelloid-

stamens (Hurtado et al., 2006). Defects in floral organ development were also observed in 

chr11 chr17 double mutant (Smaczniak et al., 2012b), suggesting a role for these ISWI 

family remodelers in flower development. Moreover, mutation in PIE1, the Arabidopsis 

gene most homologous to SWR1, leads to the formation of extra petals (Noh and 

Amasino, 2003),  Formation of extra petals was also observed upon loss of function of 

other components of the SWR1 complex, such as SUPPRESSOR OF FRIGIDA 3 (SUF3) 

(Choi et al., 2005) and AtSWC6 (Choi et al., 2007; Lazaro et al., 2008), suggesting that 

the SWR1 complex may play a role in floral organ number determination. 

Although chromatin remodeler complexes can be recruited to the chromatin via specific 

protein domains, for example the bromo-domain binds to acetylated histones and the 

chromo-domain to methylated histones, these complexes usually lack specificity, as is 
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reflected in the pleiotropic effects observed in loss of function mutants. Thus, how can 

they play a role in gene regulation in a more specific manner?  Recent studies showed that 

transcription factors can interact with chromatin remodelers and histone modifiers (Efroni 

et al., 2013; Smaczniak et al., 2012b; Vercruyssen et al., 2014). These findings reveal a 

new picture of gene regulation in which transcription factors, chromatin remodelers and 

chromatin modifiers act in concert in the regulation of gene expression during 

development.  

AIM AND OUTLINE OF THE THESIS. 

The aim of this thesis was to investigate the dynamics of gene transcriptional regulation 

and the relationship between transcription factor DNA-binding and changes in chromatin 

structure during the formation of floral organs.   

In chapter 2¸ we reviewed the current knowledge about the mechanisms involved in 

transcriptional gene regulation during developmental switches in plants. Recent advances 

in genome-wide identification of target genes controlled by plant master regulators of 

transcription and their interactions with epigenetic factors provide new insights into 

regulatory mechanisms controlling switches in developmental programs and cell fates in 

complex organisms. 

In chapter 3 and chapter 4 we investigated the dynamics in transcriptional regulation 

and chromatin conformation in the context of flower development. Using genome-wide 

approaches we investigated the action of transcriptional master regulators during flower 

development. The protein DNA-binding behaviour of two MADS-domain proteins, AP1 

and SEP3, was studied at different stages of flower development. AP1 and SEP3 show 

stage specific binding events and they mainly act as activators during floral organ 

development. Additionally, we investigated changes in chromatin landscape by profiling 

chromatin accessibility and nucleosome positioning at different stages of flower 

development. Transcription factors bind to low nucleosome occupied regions and their 

binding precedes to changes in chromatin accessibility. Our results prime the idea that 

transcription factors can act as pioneers in gene regulation: they bind to DNA and recruit 

chromatin remodelers and modifiers to specific loci leading to a change in chromatin 

structure and hence gene expression. 
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Chapter 5 and chapter 6 describe the role of two MADS-domain protein target genes in 

flower development: STERILE APETALA (SAP) and WUSCHEL-RELATED 

HOMEOBOX 12 (WOX12), respectively. SAP is a target of many MADS-domain proteins 

such as APETALA1 (AP1), APETALA3 (AP3), PISTILLATA (PI), AGAMOUS (AG) 

and SEPALLATA3 (SEP3). SAP is strongly expressed in meristems and loss of function 

of SAP causes strong aberrations in flowers, such as reduction in petal and stamen 

numbers. Preliminary results indicate that SAP interacts with proteins of the SCF 

ubiquitin ligase complex, suggesting that SAP could act in the ubiquitination pathway. 

WOX12 acts downstream AP1 and ectopic expression of WOX12 leads to reduction of AG 

expression, suggesting a role for WOX12 in regulating the antagonistic interplay between 

the homeotic genes AP1 and AG.  

To conclude, in chapter 7 I discuss the results of this thesis and the future implications 

the work performed in this thesis may have.  
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ABSTRACT 
Unlike animals, plants produce new organs throughout their life cycle using pools of stem 

cells that are organized in meristems. Although many master regulators of meristem and 

organ identities have been identified, it is still not well understood how they act at the 

molecular level and how they can switch an entire developmental program in which 

thousands of genes are involved. Recent advances in the genome-wide identification of 

target genes controlled by plant transcriptional master regulators and their interactions 

with epigenetic factors provide new insights into general transcriptional regulatory 

mechanisms controlling switches of developmental programs and cell fates in complex 

organisms.  
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Organ development in plants is a continuous and flexible process, which is not restricted 

to the embryonic phase (Walbot and Evans, 2003). This plasticity in plant development is 

linked to the presence of pluripotent cells residing in meristems, which acquire different 

‘identities’ depending on the position in the plant and its developmental phase, thus 

leading to the production of different organ types. The switch from a vegetative shoot 

apical meristem to an inflorescence meristem, as well as the establishment of floral 

meristem and floral organ identities, are among the most well studied examples of 

developmental switches in plants (Figure 1), particularly in the model species 

Arabidopsis thaliana. These meristematic switches are controlled by multiple 

environmental and internal input pathways. Switches in cell identity do not only play a 

role in major phase transitions, but also occur during embryonic patterning, and more 

locally during organ differentiation. Positional information plays a crucial role in cell fate 

specification, and the plasticity of plant development is at least partially linked to the 

ability of cells to differentiate or dedifferentiate, depending on external signals and cell-

to-cell communication, which are mediated by hormones and other moving signaling 

molecules (Busch and Benfey, 2010). Cell-extrinsic signals have also shown to play a 

role in cell specification and lineage commitment in animal development (Graf and Enver, 

2009; Scheres, 2007).  

Figure 1: Phase changes in plant development. Root and shoot meristems are established during embryo 

development which occurs within the seed. The first shoot‐meristem marker to be expressed is WUSCHEL 

(WUS) in the 16 cell embryo (red). WUS expression defines the ‘quiescent centre’ of the shoot meristem, 

which contains the stem cells. The hypophysis (orange) will give rise to the quiescent organizing centre of 

the  root meristem.  In  the heart  stage embryo,  shoot and  root meristem are already established. After 

germination, the shoot apical meristem  (SAM) produces  leaves. Within the shoot meristem  (upper box), 
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the meristematic  region  is shown  in green,  the stem‐cell marker CLAVATA 3  (CLV3)  in purple, and WUS 

expression  in  red.  The  first  leaves  have  a  ‘juvenile’  appearance, while  later  produced  leaves  gradually 

develop more ‘adult’ characteristics (Willmann and Poethig, 2005). The change from adult to reproductive 

stage  is more  dramatic  in  flowering  plants.  In Arabidopsis,  it  is  triggered  by  floral  induction  pathways 

converging  in  the upregulation of SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1  (SOC1) and other 

factors  in  the  shoot  meristem,  which  triggers  the  conversion  from  a  vegetative  to  an  inflorescence 

meristem (IM) identity (Samach et al., 2000). The inflorescence meristem produces floral meristems (FMs) 

at its flanks, in which separate stem cell pools are established. Floral meristem identity genes repress IM 

identity  genes  and  activate  the  expression  of  floral  organ  identity  genes,  which  then  produces  the 

different types of floral organs: sepals and petals in the outer two whorls, respectively, as well as stamens 

(male reproductive organs) and carpels (female reproductive organs) in the inner two whorls. Upon floral 

organ differentiation, stem cell activity  in  the  floral meristem ceases and undifferentiated cells are only 

maintained in specific regions within the carpels, giving rise to ovules, which upon fertilization with male 

pollen form the next generation zygote.  

 

Pioneered by research in Drosophila melanogaster (Letsou and Bohmann, 2005), 

signaling cascades that control developmental switches in animals and plants have been 

shown to converge at the level of gene regulation; transcription factors can change entire 

developmental programmes, resulting in switches of cell and organ identities. Ectopic 

expression of key regulatory transcription factors can cause reprogramming of cell fate in 

animals, resulting in de-differentiation or conversion of one partially or fully 

differentiated cell type into another one (Graf and Enver, 2009). Aside from transcription 

factors, switches in cell identity and differentiation state were shown to be regulated at 

the level of chromatin structure. Accordingly, histone-modifying enzymes as well as 

ATP-dependent nucleosome-remodeling enzymes have been shown to control these 

processes in plants and animals (Desvoyes et al., 2010; Ho and Crabtree, 2010). 

The first glimpse on how developmental switches are controlled in plants appeared in the 

early 1990s when key regulatory genes controlling the transition from vegetative to 

reproductive growth were identified in the model species Arabidopsis thaliana and 

Antirrhinum majus. These encode transcription factors that specify the identities of IMs, 

FMs and floral organs (Causier et al., 2010). Genetic and molecular studies revealed not 

only antagonistic genetic interactions between transcription factors specifying alternative 

meristem identities, but also cooperation and re-inforcement of factors acting in the same 

identity switch. These studies also uncovered roles for heteromeric protein complexes in 

cell and organ identity specification. For example, the crucial role of heteromeric protein 

interactions of floral master regulators was consolidated in 2001 (Goto et al., 2001; 

Honma and Goto, 2001), when the ‘floral quartet model’ was proposed (Theissen, 2001). 

According to this model, floral organ identity regulators of the MADS-box family 
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assemble into organ-specific quarternary transcription factor complexes, thereby 

obtaining their regulatory specificity. Since then, many interactions between transcription 

factors acting in diverse developmental processes have been identified in different plant 

species, mainly using the yeast-two hybrid system. However, how transcription factors 

act and interact in planta, what their target genes are and how regulatory specificity is 

determined could not be resolved by these ‘classical’ types of studies. 

Genome-wide approaches for target gene identification provided new insights into 

mechanisms of gene regulation by transcriptional key regulators. A number of studies 

used inducible versions of transcription factors and the global analysis of gene expression 

changes upon induction (Gomez-Mena et al., 2005; Ito et al., 2004; Kaufmann et al., 

2010; Morohashi and Grotewold, 2009; Wellmer et al., 2006). Recent genome-wide 

analysis of in vivo DNA-binding sites of transcription factors using chromatin 

immunoprecipitation (ChIP) techniques, like ChIP-SEQ and ChIP-CHIP (Farnham, 

2009), provided powerful approaches to identify potential direct target genes. 

In this Review, we first introduce recent findings on direct downstream targets of key 

regulatory transcription factors controlling developmental switches in plants, and how 

autoregulation and cross-regulation in the transcriptional regulatory network controls 

developmental switches. We then discuss the emerging concept that developmental 

transitions are regulated by interplay of transcription factor complexes and proteins 

shaping chromatin structure. This provides insights into mechanisms underlying the 

action and functional specificity of different transcription factor complexes and chromatin 

regulators in the control of developmental switches in plants.  

GLOBAL GENE REGULATION BY TRANSCRIPTION FACTORS  
During developmental transitions and cell fate specification in higher eukaryotes, changes 

in expression of many genes need to be coordinated to initiate the correct differentiation 

programs and to suppress earlier or ‘inappropriate’ programmes. This global regulation is 

the task of transcriptional master regulators. The term ‘master regulator’ was first 

introduced in 1985 and applied to regulators of mating type in yeast (Herskowitz, 1985). 

It was later adopted to transcriptional regulators in metazoan (Halder et al., 1995; 

Weintraub et al., 1989) and plant (Meyerowitz, 2002) development. Initially, master 

regulators were thought to control a limited set of ‘second-level’ transcription factors, 
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which in turn regulate the expression of downstream target genes that are more involved 

in cellular responses, such as cell cycle, metabolic processes and intra-cellular signaling 

processes (Figure 2) (Garcia-Bellido, 1975; Gehring and Ikeo, 1999; Yu and Gerstein, 

2006). The structure of regulatory networks turned out to more complex than initially 

anticipated after target genes of transcription factors were identified (Akam, 1998), and in 

particular when the results of genome-wide target gene identification approaches became 

available. It appeared that the master regulators directly control more genes than initially 

anticipated. They control not only the ‘second-level’ transcription factors but also genes 

encoding structural proteins, other signaling molecules (e.g. involved in hormonal 

pathways) and enzymes. Most likely, subsets of these transcriptional cascades are 

regulated by different combinations of transcription factors, some of which are also 

regulated by the ‘master regulator’, resulting in a more complex transcriptional network 

(Figure 2). In this model, combinatorial transcription factor interactions can create 

flexibility and specificity in the regulation of subsets of target genes. The transcriptional 

cascades are also characterized by multiple feedback and feedforward loops (Alon, 2007; 

Jothi et al., 2009), creating a more ‘democratic’ network structure (Bar-Yam et al., 2009). 

Figure 2: Models on the action of developmental ‘master regulators’. A. The classical model suggested a 

strictly hierarchical network,  in which master regulators activate a  (small) set of second  level regulatory 

genes who control the expression of genes producing distinct morphologies, e.g. encoding enzymes and 

structural proteins. B. Identification of downstream targets of individual transcription factors suggested a 

more complex network, in which master regulators can control genes at different levels in the hierarchy. 

The master  regulators appear  to  regulate hundreds of genes directly. C. Genome‐wide  identification of 

targets  of  multiple  transcription  factors  suggests  a  complex  combinatorial  regulation  of  subsets  of 

downstream  targets,  as well  as multiple  cross‐regulatory  loops. Note  that  transcription  factors  control 

genes that can be acting either upstream or downstream in the developmental pathway. 
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Orchestration of gene expression during developmental switches.  

Genome-wide DNA-binding sites and direct target genes of several key regulatory 

transcription factors with roles in plant development have been reported recently (Table 

S1). The results shed light on ‘global’ regulatory networks controlling switches in 

meristem and organ identity, as well as ‘local’ networks that specify cell fate and terminal 

differentiation during organ development. 

Stem cell identity in plants and animals is controlled by the interplay of intercellular 

signaling and transcriptional regulation (Scheres, 2007). The homeobox transcription 

factor WUSCHEL (WUS) has an instructive role in stem cell identity specification in 

embryos and its maintenance in the stem cell niches in shoot meristems. Analysis of 

direct WUS target genes revealed multiple regulatory links to hormonal signaling, cell 

division control, as well as feedback control on the receptor complex that restricts stem 

cell proliferation and WUS expression (Busch et al., 2010). The findings emphasize the 

complexity of intercellular communication and transcriptional feedback in stem cell 

specification in plants. 

Transcription factors control developmental phase switches by orchestration of gene 

expression changes within meristems in order to repress previous developmental 

programs and to establish new ones. By that, they specify shoot growth and which types 

of lateral organs are produced. Several transcription factors have been described that act 

as key switches in meristem identity during transition from vegetative to reproductive 

growth (Figure 3).  

Figure 3: Regulatory network  focusing on  the genes  that are discussed  in  this  review. The  regulatory 

network  summarizing  the  major  regulators  acting  as  suppressors  or  activators  in  the  consecutive 

developmental stages from a vegetative meristem to the formation of the flower. All factors indicated are 

transcription factors, except FT, which is a mobile protein produced in leaves and transported to the SAM, 
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where  it  interacts with  the bZIP  transcription  factor  FD  (Corbesier  et  al.,  2007; Wigge  et  al.,  2005)  to 

mediate the switch to IM identity. The factors are positioned in the pathway where they act for the first 

time, e.g AP1  is required for floral meristem  identity specification and floral organ  identity specification. 

Various  external  (photoperiod,  temperature)  and  internal  (autonomous,  age,  hormones)  conditions 

regulate the floral transition from vegetative to inflorescence meristem. These inputs into the network are 

combined at  the  level of  the so‐called  floral  integrators  (SOC1, AGL24, FT, LFY), and ultimately regulate 

the expression of the floral meristem  identity genes (AP1, SVP and LFY). Subsequently, SEP3 is activated 

by  AP1  and  act  in  the  flower  as  the main  component  of  protein  complexes  that  specify  floral  organ 

identities.  The  floral organ  identity  genes  (SEP3, AP1, PI, AP3  and AG)  are  controlled by  the meristem 

identity genes. The SVP node  is duplicated  in  the  figure because of  its dual  role  in  floral  transition and 

meristem  specificiation.  Abbreviations:  SMZ  SCHLAFMUETZE;  AGL15  AGAMOUS‐LIKE  15;  SVP  SHORT 

VEGETATIVE PHASE; AP2 APETALA2; FLC FLOWERING LOCUS C; SOC1 SUPPRESSOR OF OVEREXPRESSION 

OF  CONSTANS1;  SPL9  SQUAMOSA  PROMOTER  BINDING  PROTEIN‐LIKE  9, AGL24 AGAMOUS‐LIKE  24;  FT 

FLOWERING  LOCUS  T;  FD  FLOWERING  LOCUS  D;  LFY  LEAFY;  AP1  APETALA1;  SEP3  SEPALLATA3;  PI 

PISTILLATA; AG AGAMOUS; AP3 APETALA3. * AP2 family member. ** MADS family member. 

 

The switch from vegetative to IM identity is controlled by floral pathway integrators, 

which integrate the “input” of different environmental and internal signaling pathways. 

Floral integrators activate the expression of FM identity genes in the flanks of the IM. 

The MADS domain transcription factor APETALA1 (AP1) establishes FM identity and 

consequently plays a role in initiation of sepals and petals within the flower (for review, 

see (Causier et al., 2010)). AP1 acts partially redundantly with a closely related gene, 

CAULIFLOWER (CAL)(Kempin et al., 1995). AP1 has about 2000 genomic binding sites 

in the earliest stages of FM initiation (Kaufmann et al., 2010) and at this developmental 

stage it acts mostly as a transcriptional repressor to downregulate the ‘previous’ 

developmental program of the meristem. Among its many targets, AP1 downregulates its 

own activators, such as FD (Abe et al., 2005), SPL9 (Wang et al., 2009) and the floral 

integrator SOC1 (Liu et al., 2007). However, it also upregulates genes such as the master 

regulator LEAFY (LFY) (Lee et al., 2008), which acts together with AP1 in FM identity 

specification (Parcy et al., 1998; Weigel et al., 1992)  (Kaufmann et al., 2010; Liljegren 

et al., 1999). Later in FM development, AP1 activates the expression of genes that are 

involved in downstream processes such as floral organ initiation, probably together with 

its MADS family interaction partner SEPALLATA3 (SEP3). SEP3 interacts with many 

MADS-domain transcription factors (Honma and Goto, 2001; Immink et al., 2009) and is 

a global regulator of floral organ identities (Honma and Goto, 2001; Pelaz et al., 2000) in 

a largely redundant fashion with 3 other SEP paralogs (Pelaz et al., 2000). SEP3 also 

binds thousands of regions in the genome (Kaufmann et al., 2009). All floral organ 

identity genes are also expressed at later stages and modulate aspects of organ 
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differentiation that are linked to their ‘identity’, which is reflected in the large functional 

range of their target genes (Gomez-Mena et al., 2005; Ito et al., 2007; Ito et al., 2004; 

Kaufmann et al., 2009).  

Another example for a transcription factor that plays a role in identity specification in the 

meristem is APETALA2 (AP2). AP2 is the founding member of the plant-specific AP2-

like transcription factor family. Next to its role as a repressor of floral transition, AP2 

promotes sepal and petal identity specification in the outer two whorls of the flower, and 

it plays a role in stem cell maintenance by promoting WUS expression (Drews et al., 1991; 

Ohto et al., 2009; Wurschum et al., 2006; Yant et al., 2010). These roles are reflected in 

its genomic binding sites and direct target genes. AP2 has about 2000 genomic binding 

sites and can repress the floral transition by direct transcriptional repression or indirect 

repression through the activation of other repressor genes or miRNAs, forming a network 

with other key regulators (Yant et al., 2010). AP2 is member of a subfamily of AP2-like 

genes whose partially redundantly acting members are regulated by miR172 (Wu et al., 

2009) (Box 1). For example, its paralog SCHLAFMÜTZE (SMZ) acts as a repressor of 

the transition to flowering, sharing more than one quarter of its direct target genes with 

AP2 (Mathieu et al., 2009; Schmid et al., 2003). 

Meristem and organ identity genes establish basic developmental decisions in meristems, 

whereas lateral organ development is triggered by transcription factors that repres 

meristematic fate and activate differentiation programmes (Ha et al., 2007). During organ 

growth, local switches in individual cell fates then lead to organ patterning and terminal 

cell differentiation. The specification of cellular identities during organ growth requires a 

meticulous balance of cell specification versus maintenance of cell division potential 

(Gutierrez, 2005). Accordingly, cell cycle control genes are not only targeted by 

meristematic regulators, but are also identified among direct targets of transcription 

factors specifying trichomes and guard cells of stomata in the epidermis of above-

ground organs: The R2R3 MYB transcription factor MYB FOUR LIPS appears to repress 

several core cell cycle genes (Xie et al., 2010), while the interacting transcription factors 

GLABRA1 (GL1) and GLABRA3 (GL3) initiate endoreduplication and thereby terminal 

differentiation of trichomes by activation of cell cyle modulators (Morohashi and 

Grotewold, 2009). While GL1 and GL3 have both several hundred genomic binding sites, 

they only share about 20 direct target genes, likely reflecting additional independent 

functions and interaction partners. The tight links between cell division and cell fate 



Regulation of transcription in plant 

 

 
42 

 

specification are also reflected in the target genes of the interacting GRAS transcription 

factors SHORTROOT (SHR) and SCARECROW (SCR). These factors together control 

formative cell divisions generating the ground tissue in the root and were found to 

activate specific core cell cycle genes (Sozzani et al., 2010).  

 

Combinatorial interactions between transcription factors.  

In all genome-wide target gene analyses, many direct regulatory links between 

transcription factors acting in the same or somehow related developmental pathways can 

be found, emphasizing the role transcriptional networks in developmental switches and 

cell fate specification. Heteromeric protein interactions have been identified for a number 

of transcription factors controlling meristem identity switches (Gregis et al., 2006; Lee et 

al., 2008), meristematic functions (Cole et al., 2006; Rutjens et al., 2009) and 

differentiation (Cui et al., 2007; Kim et al., 2008; Wenkel et al., 2007; Zhao et al., 2008). 

The consequences of protein interactions for the regulation of target gene expression are 

just starting to be elucidated. 

Transcription factor interactions potentially influence DNA-binding site selection in vivo. 

This has been suggested to play a role in target gene selection of SEP3 complexes based 

on genome-wide binding data in wildtype and a floral homeotic mutant (Kaufmann et al., 

2009). Combinatorial interactions can also influence the association with cofactors 

affecting the transcriptional response. For instance, AP1 interactions with SOC1, SVP 

and AGL24 have been proposed to be involved in gene repression via recruitment of 

transcriptional co-repressors in floral meristem initiation (Gregis et al., 2006, 2008), 

whereas the interaction of AP1 and SEP3 appears to be required to activate genes in floral 

organogenesis.  

Combinatorial interactions also play a role in development of trichomes. According to the 

current model, they are specified by a transcription factor complex consisting of different 

types of regulators (Zhao et al., 2008) (TTG1 (WD40), GL1 (MYB), GL3 and/or EGL3 

(bHLH)). According to the current model, this complex activates its own inhibitor, which 

can move to neighoring cells and competes out GL1 in the complex, rendering the 

complex inactive in trichome specification and thereby contributing to the regular spacing 

of trichomes in the leaf epidermis (Zhao et al., 2008).  
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Box 1. Combinatorial interactions by MADS-domain proteins and promoter structure. 

The spatiotemporal regulation of gene expression during eukaryotic development is controlled by a 

complex interplay of cis-regulatory modules in core promoters and enhancers. The current model 

of enhancer action involves the binding of activating transcription factors to enhancer sequence 

elements, subsequent recruitment of additional coactivators and loop formation towards the core 

promoter, by which the transcription by RNA polymerase II is activated (Visel et al., 2009). 

Although DNA-binding sites of transcription factors are enriched in the proximal promoter 

regions of genes, they can also occur more distantly upstream, within introns or even downstream 

of target genes. Surprisingly, many target gene loci contain multiple binding sites for the same 

factor, for instance covering larger regions upstream and/or downstream of the gene. This is 

particularly notable for DNA-binding sites of MADS-domain proteins (Kaufmann et al., 2009; 

Kaufmann et al., 2010; Zheng et al., 2009). Binding of transcription factors to multiple sequence 

elements suggest that transcriptional control is a quantitative process allowing the modulation of 

transcriptional activity by varying the number of transcription factor molecules independently 

bound to the DNA (Gertz et al., 2009; Segal and Widom, 2009). Alternatively, multiple binding 

sites are required to enable a conformational change of the DNA allowing the formation of DNA 

loops. Recent models also support a role for chromatin structure and the formation of large DNA 

loops in the process of transcription by RNA-polymerase complexes (Lanzuolo et al., 2007), which 

may occur in localized ‘transcription factories’ (Cook, 2010; Fraser and Bickmore, 2007). 

DNA-looping has been observed for MADS-domain protein complexes composed of two 

dimers that bind two binding sites in the same promoter region (Egea-Cortines et al., 1999; 

Theissen, 2001). In vitro DNA binding studies have shown that a minimum distance between the 

binding sites is required (Melzer et al., 2009), and that the formation of heteromeric higher-order 

complexes can stabilize the binding to DNA (Egea-Cortines et al., 1999). While loop formation has 

only been tested for DNA sites within appr. 100 bp distance of each other in vitro, loops could 

potentially also bridge larger distances in vivo. 

The flexibility of the DNA that allows the looping depends on the nucleosome density of the 

chromatin. The optimal separation distances for looping-mediated interactions in vivo is estimated 

to be in the range of several tens of kb in condensed chromatin fibers (Rippe, 2001). Accordingly, 

nucleosome density around the transcription factor binding sites needs to be low to facilitate the 

looping at shorter distances. Besides the distance between the interacting sites, also the helical 

phasing of the DNA is critical to ensure the proper orientation of the DNA-bound interacting 

proteins facing to each other (Melzer et al., 2009). 

Characteristics of loop formation could also contribute to the functional specificity of different 

MADS-domain protein complexes, as well as differences in DNA-bending by MADS dimers 

(Riechmann et al., 1996; West et al., 1998). Reorganization of promoter structure by MADS-

domain transcription factors is thus one possible mechanism by which these proteins fundamentally 

change the expression of developmentally tightly controlled genes. 
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While individual members of the complexes can potentially bind to target gene promoters 

on their own, all members of the complex are required to control the expression of a 

specific set of target genes. Small changes in the composition of these protein complexes 

may drastically affect the binding to promoters of target genes or the transcriptional 

response and thereby promote or repress a specific developmental program. 

Understanding the dynamics of these interactions and their trancriptional ‘output’ is a 

major challenge for future studies.  

Combinatorial regulation of gene expression does not require a strong direct interaction 

between transcription factors in target gene promoters, also proteins that bind their sites 

individually or cooperate upon DNA-binding can influence gene expression in a 

combinatorial fashion. Identification of cis-regulatory modules that specify distinct 

spatiotemporal expression patterns, similar to the way that has been used in Drosophila 

(Zinzen et al., 2009), is expected to contribute to our understanding of interconnections 

between different types of regulators of cell identity in plants. 

 

Feedback and feedforward regulation.  
A remarkable feature of developmental regulatory networks in animals and plants is the 

presence of multiple and complex auto- and cross-regulatory loops of master regulators 

(Graf and Enver, 2009). These loops, which often require formation of heteromeric 

transcription factor complexes, can confer robustness to switches in developmental 

programs (Kitano, 2004; Lenser et al., 2009). Cross-antagonism of competing 

transcription factors has been proposed to be a driving force of cell lineage specification 

in animals (Graf and Enver, 2009). Also in plants, negative cross-regulation between 

antagonistically acting transcription factors acting in identity specification appears to be a 

common theme. Examples are the antagonism of transcription factors specifying the root 

and the shoot pole in the embryo (Smith and Long, 2010), antagonistic regulation of FM 

an IM identity genes (Liljegren et al., 1999), the mutual repression of genes maintaining 

meristematic identity and genes triggering differentiation (Ha et al., 2003; Jun et al., 2010) 

and the mutual repression of genes specifying abaxial and adaxial organ identities (Wu et 

al., 2008). Remarkably, coordinated regulation by microRNAs and their target 

transcription factors has important roles in cross-antagonistic loops during developmental 

transitions and cell type specification (Box 2). 
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In positive autoregulatory loops, the gene products activate the expression of the 

corresponding genes, ensuring maintenance of gene expression. A classical example is 

the autoregulation of the obligate heterodimers of class B homeotic proteins that specify 

petal and stamen identities (Schwarzsommer et al., 1992). Also, other transcription 

factors specifying meristem and organ identities can control their own transcription 

(Gomez-Mena et al., 2005; Kaufmann et al., 2009).  

Cross-regulatory interactions between proteins can be accompanied by direct protein 

interactions, particularly among members of the MADS-box transcription factor family. 

The requirement for two or even more proteins to interact with each other in order to 

establish a positive feedback loop ensures that a specific developmental program is only 

activated in the presence of all involved factors.  

A common feature of master regulators acting in the same switch is that they can 

upregulate each other’s expression, e.g. SOC1 and AGL24 (which interact at protein level) 

(Lee et al., 2008; Liu et al., 2008; Michaels et al., 2003); AP1 and LFY (Kaufmann et al., 

2010; Liljegren et al., 1999). Re-inforcing positive feedforward loops are found during 

meristem identity specification as well as linking meristem and organ identity genes. 

When one or more FM or IM meristem identity genes become mutated, the balance in the 

regulatory network becomes disturbed, and the meristem can switch from FM/IM identity 

back to a more vegetative state during development (Melzer et al., 2008; Okamuro et al., 

1996), often depending on environmental condition. This process is called floral 

reversion. 

Another type of regulation found among transcription factors controlling developmental 

switches are negative feedback loops of consecutively acting proteins. These loops ensure 

the suppression of the preceding program once the activator of the next program is 

induced. By this, a switch in developmental programs is established and reversion to the 

previous stage is blocked. Examples are negative feedback loops during establishment of 

the FM (Kaufmann et al., 2010; Liu et al., 2007). Negative feedback loops can also 

dampen effects of stochastic fluctuations in protein levels, for instance in stem cell 

homeostasis (Kim et al., 2008).  
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Box 2: Regulation of developmental switches and cell fate specification by plant microRNAs 

MicroRNAs control major developmental phase transitions in plant life as well as cell fate specification 

in different tissues. One important feature is their ability to simultaneously target several, often 

evolutionarily related, transcription factors. Another emerging feature is their ability to move between 

cells, thereby controlling cell fate in a non-cell autonomous manner.  

For example, the juvenile-to-adult phase transition in Arabidopsis is regulated by the sequential action of 

miR156, which targets 10 SPL transcription factors, and miR172, which targets six AP2 transcription 

factors. miR156 and miR172 show complementary temporal expression patterns in Arabidopsis and in 

maize (Chuck et al., 2007; Wang et al., 2009; Wu et al., 2009). miR156 acts during the juvenile phase to 

repress the transition to adult phase. In contrast, miR172 shows abundant expression in the adult phase. 

Two targets of miR172, TARGET OF EAT1 and 2, repress adult characteristics of leaf morphology. In 

order to trigger transition from juvenile to adult phase, two targets of miR156, SPL9 and SPL10, directly 

activate the expression of a locus encoding miR172, while at the same moment negatively regulating 

their own expression by direct upregulation of miR156. This negative regulation can be overcome by 

input from the photoperiodic flowering pathway, which results in a rapid increase of SPL expression. 

Next to the activation of miR172, SPL transcription factors directly contribute to the transition to 

flowering by direct activation of floral integrators and floral meristem identity genes (Yamaguchi et al., 

2009).  

MicroRNAs also participate in cross-antagonistic regulation of transcription factors specifying different 

cell fates. For instance, radial patterning of the shoot and abaxial/adaxial patterning of the leaf are 

regulated by miR165/166, which target members of the HD-ZIP family of transcription factors(Emery et 

al., 2003; Williams et al., 2005). Data from root development show that miR156/166 expression is 

upregulated by SHR/SCR in the endodermis, from where it moves to the stele where it forms a gradient 

to repress HD-ZIP family members in a dose-dependent manner (Carlsbecker et al., 2010). Different 

levels of HD-ZIP activity appear to specify different cell fates in the vasculature. This movement of 

miR165/166 is opposite to that of SHR, which is produced in the central vascular tissue and moves to the 

endodermis, where it is transported to the nucleus by its interaction partner SCR. This bi-directional 

gradient reminds of morphogen gradients establishing and consolidating cell fate decisions in 

Drosophila embryo development (Scheres, 2010). Another example of a microRNA function is the 

establishment of boundaries between meristematic growth and organogenesis by miR164 (Laufs et al., 

2004; Mallory et al., 2004). 

MicroRNA gradients also play roles in organ patterning in the flower. Next to its role in floral transition 

in Arabidopsis, miR172 accumulates in the centre of floral meristems, where it restricts the accumulation 

of AP2 and thereby specifies the boundary between perianth and reproductive organs (Aukerman and 

Sakai, 2003; Wollmann et al., 2010). In Antirrhinum and Petunia, the conserved miR169 is required for 

threshold-dependent activation of MADS-box genes that specify reproductive organ identities. miR169 

accumulates in the centre of the floral meristem, and represses NF-YA, which is a repressor of 

reproductive MADS-box gene expression (Cartolano et al., 2007). 

Several other roles of microRNAs in hormonal responses and morphogenesis have been described, and 

have been reviewed comprehensively elsewhere (Nag and Jack, 2010). 
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INTERPLAY WITH CHROMATIN ASSOCIATED-PROTEINS  
The transcriptional activity of eukaryotic genes is determined by the combined action of 

transcription factors and chromatin modifying proteins. Accordingly, transcription factors, 

histone-modifying enzymes as well as ATP-dependent nucleosome remodeling 

complexes have been shown to coordinate differentiation programs during plant and 

animal development. Major classes of chromatin organizing proteins are conserved 

between plants and animals (www.chromdb.org). Linked to the evolution of complex 

body plans and developmental programs in plants and animals, chromatin-regulating 

protein families have expanded independently in these two groups of higher eukaryotes 

(Chen et al., 2009; Flaus et al., 2006; Hennig and Derkacheva, 2009). Global changes of 

chromatin structure have been associated with initiation of differentiation or re-

programming, and with local chromatin changes during cell fate specification within 

developing organs (Exner and Hennig, 2008). However, the regulatory interplay between 

transcription factors and chromatin regulators is only starting to be unraveled. Below, we 

will give examples for molecular links between transcription factors and chromatin 

regulators in the control of developmental switches and differentiation in plants. 

Regulatory interplay of chromatin organizers and transcription factors.  

Chromatin-associated proteins play roles in the tissue-specific activation and repression 

of genes, as well as in maintenance of expression states across cell divisions (‘cellular 

memory’). The role of chromatin organizers in coordinating developmental switches and 

cellular specification can often be related to their role in repressing or activating identity-

instructive transcription factors.  

Nucleosome remodeling and assembly complexes have diverse roles in the transcriptional 

regulation of patterning genes in plants (Table S2), since nucleosomes modulate the 

accessibility of DNA for transcription factors and the basic transcriptional machinery. 

During DNA replication, proper nucleosome deposition is essential for maintaining the 

right expression of patterning genes. Mutants of core components of the nucleosome 

assembly factor CAF-1 (fas-1 and fas-2) show de-regulation of expression of the stem 

cell factors WUS and SCR in the shoot and root meristems, respectively (Exner et al., 

2006; Kaya et al., 2001; Ono et al., 2006). Nucleosome sliding by SWI/SNF-type 

remodelers BRAHMA and SPLAYED has roles in meristem maintenance, major 

developmental phase transitions and the regulation of floral organ identity genes (Bezhani 
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et al., 2007; Farrona et al., 2004; Hurtado et al., 2006; Kwon et al., 2005; Tang et al., 

2008; Wagner and Meyerowitz, 2002). Deposition of the histone variant H2A.Z by the 

conserved SWR1 complex mediates globally developmental response to changes in 

temperature, for instance by triggering floral induction via regulation of the floral inducer 

FT (Kumar and Wigge, 2010).  

At the ‘local’ level of a single cell, the end of mitosis and beginning of G1 of the next cell 

cycle are important moments for cell fate decisions, this is the moment when cell fate 

regulators are induced or remain switched off (Desvoyes et al., 2010). Accordingly, study 

of the GLABRA2 locus indicated local changes in chromatin structure associated with 

activation of this locus triggering the induction of root hairs (Costa and Shaw, 2006). 

These are likely linked with changes in nucleosome deposition by CAF-1 (Costa and 

Shaw, 2006) and in the histone methylation state at the GL2 locus (Caro et al., 2007). 

The ‘cellular memory’ of gene expression states is provided by histone-modifying 

enzymes, which play important roles in global and local changes in cell fate during plant 

development. Histone acetylation is a dynamic and reversible modification and high 

levels of acetylation are linked with activation of gene expression via changes in DNA 

accessibility. Acetylated histones are also recognized by certain types of nucleosome 

remodelers. The important roles of histone acetylation in cell fate decisions are for 

instance reflected in mutants of the histone acetyl transferase GCN5, which forms SAGA-

like complexes in Arabidopsis (for review, see (Servet et al., 2010b)). Among other 

functions, GCN5 is required for PLETHORA-mediated root stem cell regulation (Kornet 

and Scheres, 2009), for restricting the expression domains of WUS and of floral organ 

identity genes (likely indirect), as well as for cell differentiation in leaves (Bertrand et al., 

2003; Servet et al., 2010b). 

The PcG protein complex PRC2 mediates trimethylation of histone H3 lysine 27 

(H3K27me3) (Kuzmichev et al., 2002), a mark that is recognized by PRC1 in animals 

and a TERMINAL FLOWER 2 (TFL2)/LHP1 -containing complex in plants. This mark 

labels transcriptionally repressed genes and thereby creates a cellular memory. PcG 

complexes are required for the repression of meristematic factors in differentiating organs 

(Schubert et al., 2006). Their role appears thus to be different from that in animals 

(Aichinger et al., 2009), where PcG proteins are required for maintenance of the 

pluripotent state. PcG complexes were also shown to play roles in the maintenance of 

major developmental phases (Table S2) (Hennig and Derkacheva, 2009).  
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During vegetative phase and in the switch to reproductive phase, PcG protein complexes 

do not only repress (precocious) expression of reproductive identity genes, but they also 

down-regulate the expression of floral repressors upon retrieval of environmental stimuli. 

Genetic and biochemical studies support the existence of several PRC2-like complexes 

with partially overlapping biological functions (Chanvivattana et al., 2004). PcG 

repression might also create a threshold for transcriptional activation which ensures that 

genes are not induced under low inductive conditions and therefore play a more dynamic 

role in the regulation of at least some of their targets (Adrian et al., 2009).  

In animals, the repressive action of PcG complexes is counteracted by trithorax group 

(TrxG) proteins (Poux et al., 2002), which set H3K4me3 (Klymenko and Muller, 2004), a 

mark that is mostly found around the start site of transcriptionally active genes. The 

occurence and potential roles of ‘bivalent’ H3K27me3/H4K4me3 marks, which poise 

genes for activation in animal stem cells, remain to be further investigated in plants 

(Zhang et al., 2009). The TrxG homolog ATX1 (Alvarez-Venegas and Avramova, 2001; 

Tamada et al., 2009) , which has shown histone methyltransferase activity (Saleh et al., 

2008), and related proteins (Tamada et al., 2009) have been associated with a TrxG-like 

functions in plants. Two other factors have been suggested to act as TrxG proteins: the 

SAND-domain transcriptional regulator ULTRAPETALA1 (ULT1), which interacts with 

ATX1 (Carles and Fletcher, 2009) and the (CHD)-type nucleosome remodelers 

PICKLE (PKL) and PICKLE-RELATED 2 (PKR2) (Aichinger et al., 2009) (Figure 4). 

Loss of the nucleosome remodeling factor PKL results in reduced expression of many 

PcG target genes (Aichinger et al., 2009). PKL has multiple roles in development, it acts 

as a repressor of embryonic traits and appears to be involved in the activation of floral 

organ identity genes. In line with a TrxG-like function of PKL, floral organ identity genes 

appear to be directly antagonistically regulated by PKL and PcG proteins. At a 

mechanistic level, PKL might shift nucleosomes in target gene core promoters in the 

absence of PcG proteins and thereby allow transcriptional activators to access their 

binding sites in opened chromatin. Chromatin-modifying enzymes and core members of 

nucleosome remodeling complexes often have broad expression patterns during plant 

development. However, changes in the expression of specific subunits of chromatin 

organizer complexes can drastically change their activity. For instance, the vernalization-

induced addition of a single subunit is required for efficient repression of the floral 

repressor FLOWERING LOCUS C (FLC) (De Lucia et al., 2008). Genes encoding certain 
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members of PcG protein complexes are themselves under epigenetic control, which 

suggest that cross-regulatory mechanisms can control chromatin organizer activity 

(Aichinger et al., 2009; Vielle-Calzada et al., 1999).  

Protein interactions between transcription factors and chromatin organizers.  

If chromatin regulators control partially different sets of target genes during distinct 

developmental phases, how are they ‘actively’ recruited to specific genomic loci? The 

currently most widely accepted view is that chromatin regulatory proteins are recruited by 

the action of tissue-specific transcription factors (for review, see (Ho and Crabtree, 2010; 

Schwartz and Pirrotta, 2007)) and/or RNA molecules (for review, see (Henderson and 

Jacobsen, 2007)).  

All except 3 of the loci of transcriptional regulators indicated in Figure 3 have been 

found to be marked by H3K27me3 (Zhang et al., 2007b). In order to establish the 

negative and positive regulatory interactions between master regulators controlling 

meristematic switches in plants, interplay with chromatin organizers thus appears to be 

likely. Several protein interactions between plant transcription factors and histone 

modifying enzymes have been described so far. MADS-box transcription factors 

controlling the transition to flowering have been shown to interact with chromatin 

regulators (Hill et al., 2008; Liu et al., 2009b): SVP can interact with the PcG protein 

TFL2/LHP1. SOC1, AGL24 and AGL15 can interact with a member of the Sin3/histone 

deacetylase (HDAC) complex (Hill et al., 2008; Liu et al., 2009a). The repressive 

activities of complexes consisting of transcription factors and chromatin modifiers were 

shown to prevent the premature activation of the floral organ identity factors SEP3 in 

early floral meristems, in that way inhibiting premature differentiation of cells in the 

floral meristem (Liu et al., 2009a). These interactions could also play a role in the global 

repression of target genes during floral meristem initiation by AP1 (Gregis et al., 2006, 

2008), since AP1 has been shown to interact with SVP, SOC1 and AGL24 (de Folter et 

al., 2005; Gregis et al., 2006, 2008) (Box 1). In addition, AP1 gradually downregulates 

the expression of SVP, SOC1 and AGL24, thereby eventually releasing the inhibitory 

effects of these proteins on SEP3 and possibly other target genes (Kaufmann et al., 2010). 

A second mechanism by which the MADS-domain protein complexes can repress the 

expression of target genes in early flower development is via their interaction with a 

general co-repressor complex consisting of SEUSS (SEU) and LEUNIG (LUG) (Gregis 
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et al., 2006; Sridhar et al., 2006). SEU shares homology with transcriptional co-regulators 

in animals (Franks et al., 2002). The LUG protein is similar to Groucho (Gro)-like co-

repressors in animals and yeast (Conner and Liu, 2000; Liu and Karmarkar, 2008). These 

cofactors are recruited to their regulatory targets by interacting with DNA-bound 

transcription factors, since they do not possess a DNA-binding domain. LUG has been 

shown to directly interact with components of the MEDIATOR complex and with the 

class 1 histone deacetylase HDA19, and its repressor activity depends on histone 

deacetylase activity (Gonzalez et al., 2007). SEU/LUG transcriptional co-repressor 

complexes could thus mediate target gene repression via histone modifications, which 

appears to be a general mechanism of eukaryotic co-repressor function (Perissi et al., 

2010). The best studied target of a MADS/co-repressor complex is the AG locus (Sridhar 

et al., 2006) (Figure 4). 

Groucho-type co-repressors have shown to have a variety of roles in cell fate specification 

and developmental patterning. For instance, co-repressor TOPLESS (TPL) has a basic 

role in specification of the shoot pole by repression of root ‘identity’ genes in embryos, 

forming a complex with the AUX/IAA factor IAA12/BODENLOS (BDL) and the auxin 

response factor MONOPTEROS (MP) (Szemenyei et al., 2008). TPL interacts, like LUG, 

with HDA19 (Long et al., 2006).  LUG and its close homolog, on the other hand, also 

interact with YABBY transcription factors specifying abaxial cell identities and 

morphology of developing organs (Navarro et al., 2004; Stahle et al., 2009). General co-

repressors are thus major components of antagonistic relationships of transcription factors 

specifying that specify cell fates during plant development. 

While interactions of transcription factors and chromatin modifiers in target gene 

repression have been described, the interplay between these two types of regulators in 

gene activation during plant development is much less well understood. One example 

indicating a possible direct combined action of transcription factors and chromatin 

regulators is the activation of KNUCKLES (KNU) by AG, which apparently requires 

rounds of cell division after initial AG binding to the locus (Sun et al., 2009). A related 

mechanism involving the requirement of cell divisions might in part account for the 

observed delay of gene activation during early floral meristem development. 

Understanding the molecular dynamics of epigenetic changes and the role of transcription 

factors in epigenetic programming and re-programming in plants remains a major 

challenge for the future. 
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Figure 4: Interplay between transcription factors and chromatin regulatory proteins in the regulation of 

AGAMOUS expression. A. Most regulatory elements controlling AG expression are located in its 2nd intron 

(Sieburth and Meyerowitz, 1997). Early studies have identified two enhancers, one acting in stamens and 

another one acting in the early activation and in carpels (Deyholos and Sieburth, 2000). AG is repressed in 

vegetative tissues, in early floral meristems (stage 1‐2) and the outer whorl organs. AG is activated at later 

stages of floral meristem development in the central domain that give rise to the stamens and the carpels. 

B. In vegetative tissues, AG is stably repressed by the action of a PRC2‐like PcG complex containing CURLY 

LEAF (CLF) (Schubert et al., 2006), FERTILISATION INDEPENDENT ENDOSPERM (FIE), EMBRYONIC FLOWER2 

(EMF2), MULTICOPY SUPPRESSOR OF ira1 (MSI1) and possibly other, yet to be identified components. The 

PCR2 complex catalyses trimethylation of histone H3 at lysine 27 (H3K27me3). H3K27me3 is recognized by 

LIKE HETEROCHROMATIN PROTEIN 1/TERMINAL FLOWER LIKE 2 (LHP1/TFL2) (Gaudin et al., 2001; Turck et 

al., 2007), which then binds to the AG locus (Turck et al., 2007). LHP1 is essential for the repression of at 

least a  subset of  the PcG  target genes,  suggesting a PcG‐like  function.  It has been proposed  to be  the 

functional  analog  of  PRC1‐analogous  complexes, which  in  animals  catalyse H2AK119u  (for  review,  see 

(Hennig and Derkacheva, 2009)). C. In early floral meristems and in petals and sepals, AG is repressed by 

the  combined  action  of  several  transcription  factors.  The MADS‐domain  transcription  factors AP1  and 

SEP3 can interact with the co‐repressor SEUSS (SEU) which forms a complex with LUG (Sridhar et al., 2006) 

to  recruit  histone  deacetylase  19  (HDA19)  (Gonzalez  et  al.,  2007).  A MADS‐domain  protein  complex 

containing  AP1  and  SVP  has  been  proposed  to  repress  precocious  AG  expression  in  early  stages  of 

meristem development via recruitment of TFL2 (Gregis et al., 2008). The transcription factor APETALA2 is 

also  required  for AG  repression  in young  floral meristems as well as  in petals and  sepals  (Drews et al., 

1991),(Yant  et  al.,  2010).  Also  the  BELL1‐like  homeobox  protein  BELLRINGER  (BLR)  is  required  for  AG 

repression in inflorescence and early floral meristems (Bao et al., 2004). BLR binds to sequence elements 

overlapping with  the  region most strongly bound by CLF  in vitro, however  in vivo binding has not been 

shown so far. Other factors have been described as AG repressors, however it is not known whether this 

regulation  is direct. D. At  the  stage when  the organ  identities  are being determined, AG  expression  is 

activated  in  parts  of  the  floral  meristem  that  develop  into  stamens  and  carpels.  SEP3  activates  AG 

expression and may also  interact with the AG protein conferring a positive autoregulatory control of AG 

expression (Gomez‐Mena et al., 2005),(Kaufmann et al., 2009). In wild‐type inflorescences, SEP3 has two 

binding  sites  in  the  AG  locus  (Kaufmann  et  al.,  2009):  one  binding  site  is  located  upstream  the 

transcription start site and another one is present in the second intron at about 5 kb distance. This makes 

it possible that a loop between these two sites is formed by quarternary complexes containing SEP3 and 

AG, ultimately  leading  recruitment of activating  facors close  to  the  transcriptional start site. The SAND‐

domain protein ULT1  contributes  to  the  early  activation of AG  in  floral  stem  cells by  antagonizing  the 

repressive action of PcG proteins (Carles and Fletcher, 2009). Since ATX1 and ULT1 interact in planta, ULT1 

could recruit ATX1 to target loci, for instance AG, via its DNA‐binding SAND domain and thus enable ATX1 

to  set  H3K4me3  (Carles  and  Fletcher,  2009;  Sommer  et  al.,  1990)  (Alvarez‐Venegas  et  al.,  2003).  The 

CHD3‐type  chromatin  remodeling  factor  PKL  (Ogas  et  al.,  1999)  and  its  paralog  PKR2  have  also  been 

shown to contribute to AG activation, also antagonizing the action of PcG proteins (Aichinger et al., 2009). 

The  bZIP  transcription  factor  PERIANTHIA  (PAN)  contributes  to AG  activation  in  specific  regions  of  the 

floral meristem (Das et al., 2009; Maier et al., 2009). Also the floral meristem  identity factor LEAFY (LFY) 

and  the  stem  cell  regulator  WUSCHEL  (WUS)  have  been  proposed  the  contribute  to  AG  activation 

(Lohmann et al., 2001), however the binding of these transcription factors to the AG locus was not shown 

in vivo so far. 
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CONCLUSIONS AND PERSPECTIVES 

Recent technological advances enable us to study the action of transcription factors in the 

direct regulation of gene expression. These led to novel understanding of developmental 

processes in plants and animals. Transcription factor networks are highly organized: 

Complex regulatory loops between transcription factors and combinatorial interactions 

control the expression of target genes. Regulatory loops in transcription factor networks 

ensure ‘sharp’ transitions in developmental programs, but also the stable maintenance of 

developmental programs by feedforward and autoregulatory loops. 

Developmental switches require changes in chromatin organization. Recent results 

indicate that transcription factors and chromatin regulators act in union in the control of 

gene expression during development. Yet, many questions in this field remain to be 

answered. How generally important are direct protein interactions between transcription 

factors and chromatin regulators? While at least some plant transcription factors have 

shown to interact with histone-modifying proteins to repress gene expression, the role of 

such interactions in gene activation remains to be elucidated. Dissection of the 

transcriptional responses linked to cis-regulatory elements and chromatin status at 

specific genomic loci, as done for the FT locus recently (Adrian et al., 2010), is one step 

towards unraveling the molecular mechanisms of target gene regulation by transcription 

factors and chromatin regulators. 

Transcription factors acting in developmental transitions directly control the expression of 

a large number of genes, only a fraction of which also appear as targets of the PcG/TrxG 

system. Thus, it can be expected that there are multiple mechanisms by which these 

transcription factors can control gene expression, involving involve nucleosome 

remodeling or other processes. 

The first global comprehensive studies on in vivo DNA-binding sites and target genes of 

key developmental transcription factors have provided a wealth of information about the 

topology of the transcriptional networks. However, how combinatorial interactions 

between proteins affect DNA-binding and transcriptional regulation need to be studied 

further. To decipher this regulatory code, more systematic studies of transcription factor 

binding sites and transcriptional response are needed. Technically challenging in vivo 

approaches such as sequential ChIP (Geisberg and Struhl, 2004) and/or the use of 

mutants in which one of the interacting factors is eliminated can shed light on the role of 

combinatorial transcription factor interactions. The assembly of these complexes and 
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hence the transcriptional output is highly dynamic and cell-type specific. Approaches to 

analyze gene regulation in a cell-type specific manner are just beginning to be explored 

(Deal and Henikoff, 2010) (Jiao and Meyerowitz, 2010; Sozzani et al., 2010). In order to 

understand the nature of combinatorial interactions, a challenge is to identify interaction 

partners of endogenously expressed transcription factors in planta. Both biochemical and 

sophisticated imaging-based technologies offer potential to study the developmental 

dynamics of protein interactions. 

The important role for the higher-order organization of chromatin in the control of 

eukaryotic gene expression has also emerged in recent years. Biochemical techniques to 

study chromatin loops such as 3C- and ChIP-based technologies are just starting to be 

used in plants (Louwers et al., 2009). In the future, these methods will help us 

understanding the dynamics of chromatin organization during developmental switches, as 

well as the role of master regulatory transcription factors in this process. 
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GLOSSARY 
Pluripotent cell: An undifferentiated cell that has the potential to adopt different 

identities. In plants, pluripotent cells are found in meristems and there are stem-cell like 

populations in shoots, roots and leaves. 

Meristem: A tissue in plants consisting of pluripotent cells. In apical meristems, cell-to-

cell signaling establishes and maintains a zone that contains the stem cells, which is 

separated from the peripheral zone in which differentiation is eventually initiated. Other 

types of meristems give rise to the vascular and epidermis, or enable secondary growth. 

Shoot apical meristem: is the meristem that forms all major above-ground plant organs. 

It is established during embryogenesis. During plant development, it changes from a 

juvenile to a vegetative, and then to an inflorescence and floral identity. 

Inflorescence meristem: Type of shoot apical meristem that gives rise to floral 

meristems at its flanks. 
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Floral meristem: shoot meristem that gives rise to floral organs: sepals, petals, stamens 

and carpels. 

Histone-modifying enzyme: Enzymes that can modify specific sites in histones. 

Common modifications are (de-) methylation, acetylation, ubiquitination, sumoylation, 

phosphorylation or proline isomerization. 

Nucleosome-remodeling enzyme: protein complexes complexes that can establish, 

remove, or change the positions of nucleosomes on the DNA. 

MADS-box family: A family of transcription factors that is present in all major groups of 

eukaryotes. The family is named after the founding members MCM1 from 

Saccharomyces cerevisiae, AGAMOUS from Arabidopsis thaliana, DEFICIENS from 

Antirrhinum majus and SRF from humans. 

ChIP-SEQ: Chromatin immunoprecipitation followed by next generation sequencing. 

Technique that is used to identify DNA-binding sites of transcription factors or other 

DNA-binding proteins (e.g. histones). After crosslinking of protein-DNA interaction, 

isolation and fragmentation of the chromatin, genomic regions that are bound by a protein 

are isolated using specific antibodies. Protein-bound DNA is then sequenced. 

ChIP-CHIP: See ChIP-SEQ. Instead of sequencing of immunoprecipitated DNA, it is 

hybridized to genomic tiling arrays to identify DNA-binding sites of the protein. 

Direct target gene: A gene whose expression at any moment or in any tissue is 

controlled by a transcription factor via direct binding of the factor to cis-regulatory 

elements of that gene.  

Autoregulation:A mechanism in which a molecule (such as a. transcription factor) 

regulates its own production. The process can involve interaction with other 

molecules/proteins. 

Floral pathway integrator: A protein that can integrate the inputs of the different 

enviromental and internal floral induction pathways and transmit the information to their 

downstream targets, such as floral meristem identity genes, at the shoot apex. Their 

combined action controls flowering time. The transcriptional regulators SOC1, LFY, FT 

and FD are ‘classical’ floral pathway integrators. 

Trichome: epidermal outgrowths (hairs) of different types and functions. In Arabidopsis, 

trichomes are unicellular. 
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Stomata: A pore found in the epidermis of leaves and in several other above-ground 

plant organs. Stomata are surrounded by pairs of specialized epidermal cells called guard 

cells.  

Homeotic mutant: A mutant in which one organ type is replaced by a different organ 

type.  

Floral reversion: reversion of a meristem from a reproductive state back to a vegetative 

state caused by mutations in regulatory genes, e.g. a floral meristem to an inflorescence 

meristem or an inflorescence meristem back to a vegetative meristem. Leads to the 

formation of shoots instead of flowers and ‘aerial’ rosettes instead of shoots. 

(CHD3)-type nucleosome remodeler: ATP-dependent chromatin remodeling factor of 

the chromodomain/helicase/DNA-binding domain (CHD3) subfamily. Usually act as part 

of multi-subunit complexes. In mammals and flies, they are involved in transcriptional 

repression by nucleosome remodeling and histone deacetylation. Also have been shown 

to be involved in activation of transcription. 

Vernalization: Induction of the transition from vegetative to reproductive plant growth 

by a prolonged period of cold (winter). 

Sequential ChIP: Identification of binding sites that are common to two proteins (e.g. 

two types of modified histones or transcription factors). Involves two rounds of 

immunoprecipitation using separate antibodies against the proteins of interest. 

DESCRIPTION OF ADDITIONAL TABLES 

The following additional tables are available online.  

http://www.nature.com/nrg/journal/v11/n12/suppinfo/nrg2885.html 

Table S1. Genome-wide target gene studies of developmental transcription factors in 

Arabidopsis.  

Table S2: Examples for chromatin modifying and remodeling complexes with roles in 

developmental switches 
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ABSTRACT 
Development of eukaryotic organisms is controlled by transcription factors that trigger 

specific and global changes in gene expression programs. In plants, MADS-domain 

transcription factors act as master regulators of developmental switches and organ 

specification. However, the mechanisms by which these factors dynamically regulate the 

expression of their target genes at different developmental stages are still poorly 

understood.  

We characterized the relationship of chromatin accessibility, gene expression and DNA-

binding of two MADS-domain proteins at different stages of Arabidopsis flower 

development. Dynamic changes in APETALA1 and SEPALLATA3 DNA-binding 

correlated with changes in gene expression, and many of the target genes could be 

associated with the developmental stage in which they are transcriptionally controlled. 

We also observe dynamic changes in chromatin accessibility during flower development. 

Remarkably, DNA-binding of APETALA1 and SEPALLATA3 is largely independent of 

the accessibility status of their binding regions and it can precede increases in DNA 

accessibility. These results suggest that APETALA1 and SEPALLATA3 may modulate 

chromatin accessibility, thereby facilitating access of other transcriptional regulators to 

their target genes.  

Our findings indicate that different homeotic factors regulate partly overlapping, yet also 

distinctive sets of target genes in a partly stage-specific fashion. By combining the 

information from DNA-binding and gene expression data, we are able to propose models 

of stage-specific regulatory interactions, thereby addressing dynamics of regulatory 

networks throughout flower development. Furthermore, MADS-domain TFs may regulate 

gene expression by alternative strategies, one of which is modulation of chromatin 

accessibility.  
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INTRODUCTION 
Stem cells residing in meristems enable plants to produce new organs throughout their 

lives. Vegetative meristems in the shoot apex produce leaves, while reproductive 

meristems produce flowers or floral organs. The identities of different types of floral 

organs (sepals, petals, stamens and carpels) are established by homeotic MADS-domain 

transcription factors (TFs) via modification of the leaf developmental programme 

(Honma and Goto, 2001). Homeotic genes become activated in floral meristems through 

regulators that specify floral meristem identity. An important regulator of floral meristem 

identity in Arabidopsis is the MADS-box gene APETALA1 (AP1), which has an 

additional role as homeotic regulator of sepal and petal identity (Mandel et al., 1992). 

Homeotic proteins specify different floral organ identities in a combinatorial fashion, 

mediated by protein interactions and formation of heteromeric quaternary protein 

complexes (Coen and Meyerowitz, 1991; Smaczniak et al., 2012b; Theissen, 2001) . 

Homeotic genes can also enhance or repress each other’s expression, resulting in a 

complex transcriptional regulatory network. Mediators of higher-order complex 

formation are the largely redundantly acting members of the SEPALLATA MADS-

domain subfamily, SEPALLATA 1 to 4 (SEP1-4) (Ditta et al., 2004; Honma and Goto, 

2001; Pelaz et al., 2000). Therefore, these proteins have an important role in the 

specification of floral organ identities. Members of the MADS-domain TF family also act 

in many other developmental processes in plants, regulating directly and indirectly the 

expression of thousands of genes in the genome (for review, see (Kaufmann et al., 2010a; 

Smaczniak et al., 2012a)). Floral MADS-domain TFs are found in larger protein 

complexes together with chromatin remodelling and modifying proteins, as well as with 

general transcriptional co-regulators (Smaczniak et al., 2012b; Sridhar et al., 2006). 

These interactions are important for the regulation of gene expression by the MADS-

domain factors (Smaczniak et al., 2012b; Sridhar et al., 2006; Wu et al., 2012). The 

expression of floral homeotic MADS-box genes is also regulated at the level of chromatin 

structure: outside the flower and at the earliest stages of floral meristem development, 

these genes are repressed by Polycomb group (PcG) protein complexes that act in concert 

with earlier acting MADS-domain TFs and other transcriptional regulators (Liu et al., 

2009). The physical and genetic interactions between MADS-domain proteins and 

chromatin regulatory factors suggest an important role of these TFs in controlling 
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chromatin dynamics during plant development. To gain a genome-wide perspective on 

the developmental dynamics of gene regulation in plants, we studied MADS-domain TF 

occupancy, chromatin accessibility and gene expression changes at different stages of 

Arabidopsis flower development. Our findings suggest that MADS-domain TFs may 

induce changes in chromatin accessibility, and thereby they are able to set appropriate 

chromatin landscapes for following regulatory processes leading to meristem and organ 

differentiation during flower development. By combining DNA-binding data and 

expression data, we established stage-specific gene regulatory interactions in floral 

morphogenesis. 

 

RESULTS 
Developmental dynamics of floral gene regulation.   

We studied global changes in chromatin accessibility, gene expression and DNA-binding 

of two MADS-domain TFs at different stages of flower development (Figure 1). To 

obtain sufficient stage-specific plant material, we used an inducible system for 

synchronized flower development based on a chemically inducible version of the AP1 TF 

expressed under the control of its own promoter in the ap1 cal mutant background 

(pAP1:AP1-GR ap1 cal line).  

 

Figure  1.  Overview  of  the  experimental  set  up.  Using  a  system  for  synchronized  floral  induction 

(pAP1:AP1:GR ap1 cal), different developmental stages were analysed: meristem specification (stage 2; 2 

days  after  induction),  organ  specification  (stage  4‐5;  4  days  after  induction)  and  organ  differentiation 

(stage 7‐8; 8 days after induction). Around day 4, organ identity genes specify the floral whorls within the 

meristem, and sepal growth has been initiated. At day 8, sepals are largely differentiated, and the organs 

in the inner whorls are being formed. The experimental techniques used at each time point are indicated 

in  the  lower  part  of  the  figure.  For  illustrative  purposes,  images  of wild  type  floral meristems  of  the 

respective stages (colour) are indicated above the graph. 
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We analysed different floral stages during which floral meristem specification (day 0-2), 

floral organ specification (day 4) and floral organ differentiation (day 8) take place 

(Smyth et al., 1990). In order to study chromatin accessibility at these different stages, we 

made use of DNase-seq (Song and Crawford, 2010). Furthermore, we performed ChIP-

seq experiments to identify stage-specific DNA-binding sites (BSs) of the two MADS-

domain TFs, AP1 and SEP3. SEP3 is a direct target gene of AP1 and becomes strongly 

expressed around floral stage 3, when the sepal primordia arise (Kaufmann et al., 2010c). 

Genome-wide expression analyses were performed in order to detect changes in gene 

activity between different floral stages. 

The ChIP-seq experiments generated high confidence sets of TF-bound regions for each 

factor and timepoint (see Table S1 for an overview and a list of TF-bound regions). Many 

TF binding events were common to the different timepoints (Figure 2A), this result also 

holds when we analysed each biological ChIP-seq replicate independently (Figure S1). 

For example, 67% of AP1 target genes and 90% of SEP3 target genes identified at day 4 

are also present in the day 8 dataset (Figure S2A). We also observed a number of stage-

specific binding events and potential direct target genes, for example 21% of putative 

AP1 target genes at day 4 were not found at any other timepoint (Figure S2A). DNA-

binding of TFs is not a none-or-all phenomenon; rather, quantitative differences in TF 

occupancy can influence transcriptional behaviour (Segal and Widom, 2009). Therefore, 

we studied quantitative changes in AP1 and SEP3 binding levels between different 

timepoints (Bardet et al., 2012; He et al., 2011). By comparing ChIP-seq peak scores as a 

measure of relative binding levels, we identified several hundred genomic regions with 

changes in TF occupancy (fold-change (FC) ≥ 2; Figure 2B and Table S2). In case of 

significant AP1 binding sites, 26% show differences between days 2 and 4, and 42% 

between days 4 and 8. For SEP3 binding levels, 1118 (17%) genomic regions showed 

changes between days 2 and 4 and 1003 (12%) between days 4 and 8 (Figure 2B).  

To investigate whether differences in AP1 and SEP3 binding are associated with stage-

specific functions of these TFs, we analysed the overrepresentation of GO categories in 

the different datasets. GO enrichment analysis revealed that genes involved in pattern 

formation, meristem maintenance, organ formation and polarity are mostly bound by AP1 

and SEP3 at early developmental stages (Figure S2B). For example, STERILE APETALA 

(SAP) a regulator of floral organ patterning (Byzova et al., 1999), and FILAMENTOUS 

FLOWER (FIL) (Sawa et al., 1999) and ASYMMETRIC LEAVES 1 and 2 (Xu et al., 
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2003), genes controlling axis specification, are among those genes. On the other hand, 

genes involved in hormonal signalling are more strongly bound at later developmental 

stages (Figure S2B). The results of stage-specific ChIP-seq experiments, in combination 

with gene expression data, therefore allow to identify stage-specific regulatory 

interactions. 

 
Figure  2.  Developmental  dynamics  of  MADS‐domain  TF‐bound  genomic  regions.  A.  Proportion  of 

overlapping AP1 or SEP3 BSs between different timepoints depending on their rank (1=highest rank). Only 

peaks 3  kb upstream  to 1  kb downstream of genes were  considered. B. Changes  in AP1 and  SEP3 BSs 

between consecutive timepoints. “Increasing peaks” are genomic regions with a peak score at least 2‐fold 

higher  while  “decreasing  peaks”  are  genomic  regions  with  a  peak  score  at  least  2‐fold  lower  when 

compared with the previous timepoint. Only significant peaks  (FDR<0.001) near genes  in at  least one of 

the timepoints are considered. C. Summary of AP1 and SEP3 BSs at GRF loci. Each locus has a number of 
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columns depending on the number of different AP1 or SEP3 BSs at any timepoint. For each column, “–“ 

indicates  that  the  region  was  not  bound  and  "+"  that  it  was  bound  (FDR<0.001);  two  consecutive 

timepoints are coloured in grey when the ChIP‐seq score of the earlier timepoint is at least 2‐fold higher 

than  at  later  timepoint  and  in  blue  when  it  is  2‐fold  lower.  D.  Floral  phenotypes  of  miRNA396 

overexpression lines using 35S promoter or pANT promoter, which drives strong expression in floral organ 

primordia. One sepal and petal were removed to uncover organs from inner whorls. Arrow indicates petal‐

stamen  organs,  asterisk  indicates  conversion  of  floral  organs  into  filament,  arrowhead  indicates  ovary 

composed of a single valve  in the mutant flowers.  In the column chart, data are represented as means, 

100  flowers of each genotype were assessed. ***  indicates  significant difference at p‐value < 0.001 by 

unpaired  Student’s  t  test.  E. Mean  change  of  log10  fold  expression  of  genes  in  vicinity  (up  to  1  kb 

upstream of start or in the gene body) of different classes of AP1‐ and SEP3‐bound genomic regions. Only 

genes  that were differentially expressed among  the  time points  considered were used  (Table S4). Bars 

correspond to standard error of mean. 

 

Among the potential direct target genes of AP1 and SEP3, there is overrepresentation of 

specific TF families, and the degree of overrepresentation for a given family may vary 

between timepoints (Table S3), suggesting stage-specific regulatory interactions. A 

family that is overrepresented among both AP1 and SEP3 targets at 2, 4 and 8 days (p-

value < 0.05) is the GROWTH REGULATING FACTOR (GRF) family (Table S3).  

In particular, all 9 GRF family genes are significantly bound by SEP3 (FDR < 0.001), 

although a quantitative difference in binding levels was observed, and 5 of them are 

bound by AP1 (Figure 2C).GRF genes have well-known roles in leaf growth (Rodriguez 

et al., 2010), but no known function in the determination of flower organ identity. Seven 

out of the nine Arabidopsis GRF genes (GRF1,2,3,4,7,8,9) contain a target site for 

miR396 (Jones-Rhoades and Bartel, 2004; Rodriguez et al., 2010). The floral phenotypes 

of plants overexpressing miR396a from the 35S or pANT promoters largely resemble the 

phenotype of a weak ap1 mutant allele, ap1-3, suggesting a role of these genes down-

stream of AP1. In ap1-3 flowers, as well as in miR396a overexpression lines (Figure 

2D), the second floral whorl is often occupied by petal-stamen mosaic structures 

(Bowman et al., 1993; Mandel et al., 1992). Plants overexpressing miR396a show also a 

reduction in carpel number (Figure 2D). Severity of the mutant phenotype directly 

correlates with the level of reduction in GRF transcript abundance (Figure 2D and 

Figure S2C). In summary, these results indicate that, apparently redundant GRF family 

members are regulated in different ways, and that the phenotype that was observed in the 

miRNA-directed knockdown lines probably reflects the combined function of these 

family members in floral meristem patterning and in floral organ differentiation.  
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We next investigated the relationship at genome-wide level between changes of MADS-

domain TF binding and changes in the expression of closely adjacent genes (i.e. genes 

with a binding site within a region 1 kb upstream of the start of the gene or in the gene 

body) (Figure 2E). We observed a correlation between changes in binding and changes in 

expression. Genes located near regions with decreasing TF-binding preferentially showed 

a reduction in their expression level, whereas increased TF binding was associated with 

an increase in the expression of nearby genes (Figure 2E).  

In summary, AP1 and SEP3 binding sites overlap substantially between timepoints, but 

there is also an important number of BSs specific for each TF at each timepoint. 

Moreover, we observed that dynamic changes in AP1 and SEP3 DNA-binding correlate 

with changes in gene expression.  

 

 

Overlap and differences between AP1 and SEP3 binding and potential direct target 

genes. 

We found a significant overlap for AP1 and SEP3 target genes (Figure 3A and Figure 

S3A), which is in agreement with previous observations that were made using different 

plant materials, antibodies for the AP1-GR fusion protein, and timepoints (Kaufmann et 

al., 2010c). In agreement with the fact that SEP3 and AP1 form higher-order protein 

complexes with the B-class homeotic proteins APETALA3 (AP3) and PISTILLATA (PI), 

we observed a clear overlap between sets of potential direct target genes (Figure S3B) 

(Wuest et al., 2012).  

Results from Drosophila have shown that while many TFs have common binding sites in 

the genome, quantitative differences in binding levels correlate with the specific 

biological functions of different factors (MacArthur et al., 2009).  Quantitative 

comparison of genomic regions that are bound by both AP1 and SEP3 at the same 

timepoint shows that between 70% and 80% of the regions have peaks of similar height 

for both TFs (Table S2).  
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Figure 3. Overlap and differences between AP1 and SEP3 binding. A. Overview of AP1 and SEP3 common 

target  genes obtained  from  the  ChIP‐seq datasets  at  the  same  timepoints.  The  figure  shows  the  ratio 

between  the  observed  number  of  common  target  genes  divided  by  the  expected  number  when  the 

location of AP1 and SEP3 BSs are  independent,  this expected number was estimated by multiplying  the 

proportion of AP1 BSs by the proportion of SEP3 BSs and by the total number of BSs. The x‐axis and y‐axis 

represent  the  threshold  values  for  declaring  a  given  region  as  significantly  bound  by  AP1  and  SEP3, 

respectively.  B. Changes in AP1 and SEP3 binding at common timepoints. “Higher AP1 peaks” are genomic 

regions with AP1 peaks that are at least 2‐fold higher than the SEP3 peaks, while “higher SEP3 peaks” are 

genomic  regions  with  AP1  peaks  at  least  2‐fold  lower  than  the  SEP3  peaks.  Only  significant  peaks 

(FDR<0.001) located in a region comprising 3 kb upstream and 1 kb downstream of a gene are considered. 

(Table S2). C. AP1 and SEP3 binding profiles for selected target genes. SHN1 is an example of an AP1 target 

gene  that  is most strongly bound at day 4, whereas TGA9, a gene  involved  in anther development, and 

CRC, a gene involved in carpel development, are preferentially SEP3 targets.  
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Nevertheless, depending on the time point, from about 8% to 2% of all bound regions are 

preferentially bound by AP1 while a higher number of regions are more strongly 

occupied by SEP3 (FC ≥ 2; Figure 3B). For example, SHINE 1 (SHN1), a regulator of 

epidermal cell morphology of floral organs (Shi et al., 2011), is preferentially bound by 

AP1 at day 4. In contrast, CRABS CLAW (CRC), which is involved in specifying abaxial 

cell fate in carpels and in nectary formation (Bowman and Smyth, 1999), and TGACG 

(TGA) MOTIF-BINDING PROTEIN 9 (TGA9), which is involved in anther formation 

(Murmu et al., 2010) are preferentially bound by SEP3 (Figure 3C). These genes are 

significantly up-regulated throughout all stages of flower development in the gene 

expression microarray data (Table S4) and in quantitative PCR experiments (Figure 

S3C). Thus, differences in quantitative levels of TF occupancy may help to explain 

target-gene specificity of floral homeotic protein complexes. 

Dynamics of chromatin accessibility during flower development.  

Mapping of DNase I hypersensitive sites (DHSs) is a well-established method to identify 

the location of active gene regulatory elements (Wu, 1980). The DNase I enzyme 

preferentially digests DNA in regions of low nucleosome occupancy, and DNase I digest 

of chromatin followed by deep sequencing identifies open or accessible genomic regions 

at genome-wide scale. DHSs have been found to be correlated with genomic regulatory 

features such as transcription start sites (TSSs), enhancers and TF binding sites (Natarajan 

et al., 2012). Focussing on genomic regions nearby genes (3 kb upstream of the start of 

the gene and 1 kb downstream of the end of the gene), we found that the overall number 

of high-confidence (FDR<0.01) DHSs at the different timepoints after AP1 induction 

varies between 5680 and 8789 (Table S5). We observed a high overlap (98.7%) between 

the DHSs identified at day 8 compared with the 41193 previously identified DHSs in 

wild-type inflorescences (stages 1-11) (Zhang et al., 2012), the larger number of DHSs in 

wild-type inflorescences may be a consequence of using tissue that represents a mixture 

of different stages. Whereas the majority of DHSs were invariant across consecutive 

timepoints (FC<√2), 1370 quantitative changes in chromatin accessibility (measured as 

changes in DHS peak score) were detected. While there were only a small number of 

changes in DHS peak score comparing the different meristematic stages, the transition to 

organ differentiation (day 4 to 8) was found to be associated with the most changes in 

chromatin accessibility. There were significantly more differences between day 4 to 8 
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than between the earlier timepoints (p < 2.2e-16, χ2 test) (Table S6). 1304 DHSs (11.8% 

of all DHSs detected at days 4 and 8) show quantitative differences in DHS peak score 

between days 4 and 8, with a slight preponderance of changes leading to increased 

accessibility (Figure 4A). Distinct clusters of differentially expressed genes were 

identified: those specific to early meristematic stages (cluster 1 and 2), transiently 

activated (cluster 6) or repressed (cluster 4) and genes that are specific to later floral 

stages (cluster 5) (Figure 4B). The trends in gene expression are reflected in concordant 

changes in chromatin accessibility: for example, genes that are expressed predominantly 

during meristematic stages of flower development (cluster 2), show over-representation 

of decreasing DHSs towards later stages (day 8). On the other hand, genes that are 

specifically activated later during floral organ development (cluster 5) show preferentially 

concordant increase in accessibility (Figure S4A). These data support the idea that 

changes in accessible genomic regions are linked with different sets of genes being active 

in meristematic cells versus differentiating tissues. 

Next, we studied the relationship between changes in accessibility level of AP1- or SEP3-

bound regions and expression of closely adjacent genes. Change in chromatin 

accessibility between meristematic tissues and differentiating floral organs is related with 

a corresponding change of expression of nearby genes (Figure 4C). This relation is 

statistically significant for both AP1- and SEP3-bound loci comparing days 2 to 4 and 

days 4 to 8 (p<0.001; χ2 test), where the proportions of up-regulated genes are larger for 

regions with increased accessibility, and the proportions of down-regulated genes are 

correspondingly smaller.Using members of the GRF family as an example, we analysed 

how variations in chromatin accessibility were associated with differences in 

spatiotemporal gene activity. GRF8 shows an increased SEP3 BS between days 4 and 8 

and GRF8 chromatin becomes more accessible in differentiating floral organs (day 8) 

(Table S6). GFP reporter gene analyses show that the GRF8 protein is, in contrast to 

other factors such as GRF2 and 5, not expressed in flower meristems, and its expression 

increases in differentiating organs (Figure 4D, and Figure 4E). 

General meristematic regulators are found among genes with a decrease in both 

accessibility and expression, such as SHOOT MERISTEMLESS (STM) (Figure 4E).  
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Figure  4.  Dynamics  of  chromatin  accessibility  in  Arabidopsis  flower  development.  A.  Quantitative 

changes  in DHSs between  IM and day 2, 4 and 8 after flower  induction for genomic regions detected as 

open  chromatin  at  any  timepoint  and  located nearby  genes  (3  kb upstream  to  1  kb downstream of  a 

gene). B. K‐means cluster analysis of differentially expressed genes. All the genes detected as differentially 

expressed (BH < 0.05 and FC >1.8) in at least one timepoint comparison (IM vs 2d, 2d vs 4d, and 4d vs 8d) 

are represented. C. Percentage of genes in vicinity of AP1 or SEP3 and different classes of DHS, classified 

according to their expression change between days. Numbers above the bars show the total number of 

genes in the group. In all four cases there is a significant change of fractions across categories of DHS (χ2 

test,  p  <  0.001). D.  Confocal  images  of  expression  patterns  of  pGRF::GRF‐GFP  fusions  in  inflorescence 

meristems and during flower development. Expression patterns are summarized in schematic drawings on 

the  right.  Numbers  indicate  floral  stage  according  to  Smyth  et  al.  1990  (Smyth  et  al.,  1990),  IM: 

inflorescence meristem, se: sepal, pe: petal, an: anther and ca: carpel. E. Examples of TF gene  loci  that 

have DHSs with decreasing accessibility  (top) and  increasing accessibility  (center) after  flower  induction. 

Genes involved in meristem identity like STM, BREVIPEDICELLUS (BP) and CAL show decreasing DHS peaks. 

On  the other  side, genes  involved  in  flower organ  initiation and determination  like SEP3, PHV and ALC 

show  increased DHSs.  In  the bottom part of  the  figure are  shown  the accessibility profiles  for AtGRF2, 

AtGRF5  and  AtGRF8  loci  are  shown. DNaseI  hypersensitivity  profiles  at  AtGRF2  and AtGRF5  loci  don’t 

change during time while an increase in accessibility is found for AtGRF8 locus between day 4 and 8. 

 

These data are consistent with previous findings, which report STM expression mainly in 

meristems, while the expression is later restricted to cells in the gynoecium, which give 

rise to ovules (Long et al., 1996).  A decrease in chromatin accessibility and expression is 

also found for loci that control early patterning processes in floral meristems, such as 

AINTEGUMENTA-LIKE 6 (AIL6), CAULIFLOWER (CAL) (Figure 4E) and STERILE 

APETALA (SAP). These data are corroborated by previous studies that reported 

predominant expression of AIL6 (Nole-Wilson et al., 2005), SAP (Byzova et al., 1999) 

and CAL (Kempin et al., 1995) in meristems and young developing floral organ primordia 

(Table S6 and Table S4).Among the genes that show an increase in accessibility during 

flower development are a number of genes with specific roles in floral organ 

development, as well as more general regulators of organogenesis and growth. For 

example, the SEPALLATA3 locus is among the earliest genes with increased accessibility 

(day 2). Other examples for genes with increased accessibility at day 4 include patterning 

genes like PHAVOLUTA (PHV) (Figure 4E). All these genes show a corresponding 

increase in expression. Among the genes that show predominantly increased accessibility 

from day 4 to day 8 (Table S6) are for example TFs known to be involved in the 

formation of carpels, ovules and seeds, like ALCATRAZ (ALC) and NGATHA3 (NGA3) 

(Figure 4E and Table S6). In accordance with the idea that different promoter elements 

may control different aspects of gene regulation, we found that at a subset of those loci, 
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individual DHSs change in opposite fashion: some DHS peaks increase, while others in 

the same promoter decrease (Figure S4B). 

In summary, we found that changes in chromatin accessibility occur mainly between days 

4 and 8 and that they correlate with changes in gene expression.  

 

Footprints of MADS-domain TF binding sites in flower development. 

The binding of a TF protects the DNA from DNase I digestion, creating a specific 

‘footprint’ (Neph et al., 2012). We analysed footprint patterns caused by protection of 

DNA upon AP1 or SEP3 binding. The time-series ChIP-seq data indicate that AP1 and 

SEP3 show quantitative differences in TF occupancy levels at different developmental 

stages (Figure 2). As MADS-domain TFs assemble into protein complexes in a 

combinatorial fashion, these differences may reflect changes in complex composition 

resulting in changes in DNA-binding specificity. In line with previous results (Kaufmann 

et al., 2009; Kaufmann et al., 2010c), de novo identification of DNA sequence motifs in 

genomic regions bound by AP1 and SEP3 resulted mainly in motifs representing CArG 

boxes (Figure S4C). The generic CArG-box motif (hereafter named ‘CArG box 1’), 

which was identified both in the AP1 and the SEP3 datasets, possesses [A/T] stretches of 

variable length outside the central CC[A/T]6GG core. Thus, for AP1 and SEP3 we 

identify a longer consensus sequence than the canonical CArG-box motif: 

TTxCC[A/T]6GGxAA. A second CArG motif, lacking an [A/T] stretch on one side of the 

CArG-box, was identified in SEP3-bound regions (hereafter named ‘CArG box 2’). The 

generic CArG-box 1 has a footprint with a central dip corresponding to the region that is 

highly protected to the cutting of DNase I, indicating a possible contact between the 

protein and the nucleotide at that position (Figure 5A). In contrast, CArG-box 2 shows a 

footprint that suggests exposure of the DNA in the centre of the CArG-box (Figure 5B). 

By comparing the frequency of footprints at different developmental stages (Figure 5, 

left panels), we found that the genomic sequences corresponding to CArG-box 1 are 

similarly bound at all developmental stages. In contrast, those corresponding to CArG-

box 2 show increasing frequencies of footprints at day 8 compared to earlier timepoints. 

This suggests that CArG-box 2 is more predominantly (though not exclusively) bound by 

SEP3 complexes lacking AP1 later in flower development. Indeed, among genes with the 

CArG box 2, we found an overrepresentation of GO categories involved in late 

reproductive processes, such as carpel, stamen and anther development (Figure S4D).  
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Figure 5. DNase I footprints created by TF binding at different timepoints of flower development. CArG 

box motifs were identified by MEME‐ChIP in the AP1 and SEP3 peak regions (full list of motifs identified by 

MEME‐ChIP  in  Figure  S4C).  Footprints  for  selected motifs  are  shown  in  the  right part of  the  figure. A. 

CArG‐box 1 produces footprints at similar frequency at every timepoint. B. CArG‐box 2, identified only in 

the SEP3 ChIP‐seq data, shows an increased footprint frequency at day 8. C. An example of GA‐rich motif, 

which produces more frequently footprints at early timepoints of flower development.  

 

In summary, our data suggest that different CArG motifs are characterized by different 

footprint profiles and show temporal differences in their occupancy in flower 

development. The stage-specific enrichment of CArG motifs suggests a role in of 
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combinatorial protein interactions in the spatiotemporal dynamics of AP1 and SEP3 

DNA-binding.  

In agreement with previous findings (Zhang et al., 2012), we also identified GA-rich 

sequence motifs in the genomic regions bound by AP1 and SEP3 (Figure S4C). 

Candidate proteins that bind to this motif are the BASIC PENTACYSTEINE (BPC) 

transcriptional regulators, which control multiple aspects of plant development (Monfared 

et al., 2011). Recently it was shown that BPC proteins interact with MADS-domain 

proteins to regulate their target genes (Simonini et al., 2012). For this motif, footprints are 

most frequently detected in the day 2 and 4 datasets (p ≤ 0.01, χ2 test), i.e. during early 

stages of floral meristem development (Figure 5C). Thus, our data suggest a 

developmentally dynamic function of the GA-rich motif. However, its exact role and 

which factors bind to this motif remain to be determined. 

 

MADS-domain TFs can bind in poorly accessible chromatin regions and their binding 

precedes changes in chromatin accessibility. 

In order to understand the dynamic relationship between chromatin accessibility and 

MADS-domain TF binding, we tested whether TF-bound genomic regions reside within 

DHSs (Figure 6). At the earliest timepoint after floral induction, day 2, the vast majority 

of AP1 and SEP3 bound regions (73% and 68%, respectively) do not reside in DHSs. 

However, the overlap increases at later timepoints as development progresses. At day 4, 

over 50% of the sites bound by AP1 or SEP3 reside in DHSs, a fraction that increases to 

about 75% at day 8 (Figure 6A). We see a significant relation between change in binding 

and accessibility of sites between 4 and 8 days. This relation is mainly explained by an 

overrepresentation of sites with both decreased binding and decreased accessibility 

(Table S7). 

Under the hypothesis that MADS-domain TFs have a role in the modulation of chromatin 

accessibility, we should expect that quantitative changes in MADS-domain TF DNA-

binding should precede corresponding changes in chromatin accessibility during 

development (but not vice versa).  

In agreement with this idea, we found that increase in levels of DNA-binding by AP1 or 

SEP3 from day 2 to day 4 correlates more strongly with corresponding changes in 

chromatin accessibility from day 4 to day 8, rather than simultaneous changes in 

accessibility from day 2 to day 4 (Figure 6B and Table S7). 
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Figure 6. MADS‐domain TF binding determines chromatin accessibility changes. A. Overlap between AP1 

and SEP3‐bound genomic regions and DHSs at the different timepoints after floral induction. Graph shows 

percentage of bound  regions. While at day 2 most of  the BSs  identified at  that  timepoint are  in closed 

chromatin, at day 8 most BSs are  in open chromatin regions. Significant AP1 and SEP3 BSs  located 3 kb 

upstream and 1 kb downstream of genes are considered. B. Change  in AP1 and SEP3 binding precedes 

change  in  chromatin  accessibility.  Regression  lines  with  regression  coefficients  (Pearson  correlation) 
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between change in AP1 and SEP3 binding from day 2 to day 4 and change in DHSs between the different 

timepoints. A correlation is found only between change in AP1 and SEP3 binding from day 2 to day 4 and 

change  in DHS from day 4 to day 8. The correlation  is stronger when only closed regions (FDR > 0.04) at 

day  4  are  considered.  Correlation  is  obtained  considering AP1  or  SEP3 BSs  located  in  a  range of  3  kb 

upstream and 1 kb downstream of at  least one gene. C. Examples of AP1 and SEP3 targets where DNA‐

binding events in closed chromatin at day 4 precede a more open chromatin state at the later stage. 

 

The same result was observed when we analysed each biological ChIP-seq replicate 

independently (Figure S5). This delay in change in chromatin accessibility suggests that 

MADS-domain TFs may act as pioneer factors (Zaret and Carroll, 2011) that directly or 

indirectly trigger changes in chromatin state during flower development.  

Among the genes for which AP1 and/or SEP3 may act as ‘pioneer factors’ are 

SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1),  SHATTERPROOF 2 (SHP2) 

and GRF8 (Figure 6C). In all three gene loci at day 4, regions are bound by AP1 and/or 

SEP3, while these regions are hardly or not accessible but become accessible at a later 

timepoint. SOC1 is a special case since it is active in IMs, repressed in young floral 

meristems (stage 1-4) and later becomes expressed again in whorls 3 and 4, and it 

maintains expression during differentiation of stamens and carpels (Samach et al., 2000). 

Also, the expression of SHP2 and GRF8 increases at later developmental stages (Table 

S4 and Figure 4D). 

In conclusion, we observed that DNA-binding of APETALA1 and SEPALLATA3 can 

occur in regions of low accessibility (DHS), and that it can precede increase in DNA 

accessibility. 

 

DISCUSSION 

Plant development is controlled by the combined action of chromatin regulators and 

transcription factors. Here, we address the question of how this dynamic interplay is 

achieved at the molecular level using flower development as a model system. We 

characterize changes in MADS-domain TF occupancy, chromatin accessibility and gene 

expression. Our results provide insights into the mechanisms by which MADS-domain 

TFs exert their master regulatory functions in meristem and organ differentiation in 

plants. 
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Developmental regulation of gene expression at the chromatin level. 

Data from the animal field show that developmental control of gene expression is tightly 

linked with dynamic changes in chromatin accessibility. Given that multicellular 

development originated independently in plants and animals, we aimed to understand how 

dynamic the chromatin accessibility landscape is during plant development, and how this 

reflects changes in developmental gene expression that are associated with this process. 

In summary, we observed a number of quantitative changes in chromatin accessibility in 

the course of flower development, mostly in the transition from meristematic stages to 

floral organ differentiation. These changes can reflect the establishment of multiple new 

cell types during flower differentiation, and be linked with the activation of regulatory 

regions driving cell-type specific expression patterns of genes. It can also be related to the 

fact that during floral organ morphogenesis, gene activation is more frequent than down-

regulation of genes (Kaufmann et al., 2010c; Wellmer et al., 2006). Changes in DHSs 

globally correlate with changes in gene expression, although not all gene expression 

changes are associated with a change in chromatin accessibility. These findings suggest 

that there are multiple mechanisms by which developmental changes in gene expression 

are controlled, and that developmental changes in gene expression are partly manifested 

in changes in chromatin structure in plants. 

MADS-domain TFs regulate target gene expression in a dynamic fashion. 

Although many MADS-domain TF-bound regions are occupied by these factors 

throughout flower development, we did observe dynamic quantitative changes in 

occupancy levels at a number of binding sites. Binding site dynamics reflect regulatory 

dynamics of genes with stage-specific functions in flower development, such as floral 

meristem patterning and organ growth. In line with previous results (Kaufmann et al., 

2009; Kaufmann et al., 2010c; Wuest et al., 2012), our data suggest that floral MADS-

domain TFs can act as repressors or as activators of gene expression. Given that many 

genes show no quantitative change in MADS-domain TF binding but they are 

differentially expressed throughout flower development, it appears that MADS-domain 

TF binding alone per se is not sufficient to explain changes in their gene expression, or 

that there is a delay in the regulatory response, e.g. due to the mechanisms by which gene 

expression is regulated. It is possible that promoter binding by MADS-domain TFs is a 

prerequisite for regulatory response, but that additional factors are needed to generate 
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cell-type or stage-specific gene expression patterns. This finding is supported by the fact 

that SEP3 and AP1, like other MADS-domain TFs, show relatively broad expression 

patterns in meristems and developing floral organs, and are thereby expressed in a variety 

of cell types, while the gene expression patterns of their targets need to be more tightly 

controlled, as we could show for GRF genes.  

 

DNA-binding of MADS-domain TFs may trigger changes in chromatin accessibility. 

A result of the combined analysis of MADS-domain TF binding dynamics and chromatin 

accessibility is that MADS-domain TFs select their binding sites largely independently of 

chromatin accessibility, and that binding of AP1 to DNA precedes opening of the 

chromatin. These results suggest that a mechanism by which AP1 regulates gene 

expression is through increasing accessibility of cis-regulatory regions. While this is the 

first report proposing such a mode of action for a plant TF, a similar mode of action has 

been previously described for animal TFs that trigger reprogramming of cell fate, such as 

Oct4, Sox2, Klf4 and c-Myc (Soufi et al., 2012). Previous results have shown that floral 

homeotic MADS-domain proteins form larger complexes together with ATP-dependent 

nucleosome remodelers and with histone-modifying enzymes in planta (Smaczniak et al., 

2012b; Wu et al., 2012). Taken together, MADS-domain proteins may act as ‘pioneer 

factors’ that trigger changes in chromatin accessibility. Given the important roles of 

MADS-domain proteins as master regulators of developmental switches and floral organ 

specification, this is an intriguing mode of action. But how do these proteins target 

different regulatory regions at different stages of development? Based on the different 

properties of CArG boxes that we found for SEP3 and AP1, we propose that different 

higher-order MADS-domain protein complexes have different affinities for specific 

‘types’ of CArG boxes. Thereby, changing MADS-domain TF occupancy at individual 

sites could modulate chromatin accessibility in a stage- or organ-specific manner. 

 

CONCLUSION 

In conclusion, our work represents a first step to a better understanding of the dynamics 

of regulatory networks in plants. By combining the information from DNA-binding and 

gene expression data, we are able to propose models of stage-specific regulatory 

interactions (Figure 7). Our findings suggest that different homeotic factors regulate 
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partly overlapping, yet also distinctive sets of target genes in a partly stage-specific 

fashion. Furthermore, MADS-domain TFs may regulate gene expression by alternative 

strategies, one of which is modulation of chromatin accessibility. Future research needs to 

reveal which target genes are specifically regulated by a certain homeotic protein 

complex, and by which exact molecular modes of action different sets of target genes can 

be modulated in specific ways.  

Figure  7.  Stage‐specific  regulatory  networks.  Putative  target  gene  networks  at  different  floral  stages  
reflecting preferential binding of AP1 and SEP3 at different  timepoints  (Figure 2) and making use of GO 

category  enrichment  analysis  for  differentially  bound  genes  across  the  time  points  (Figure  S2B). 

Here,  we  focused  on  a  selection  of  representative  GO  categories:  meristem  development,  meristem  

maintenance, regulation of  flower  development,  axis  specification and floral  organ development  (sepal, 

petal, stamen and carpel development). We  included only genes that belong to these categories and that 

were  found to be preferentially bound by either AP1 or SEP3 on a comparison of  floral stages 4 and 7/8 

(corresponding  to  day  4  and  day  8  in  our  data).  Black  line  indicates  common  targets,  while  pink  line  

indicates  AP1‐specific  targets,  and  green  line  indicates  SEP3  targets.  Dashed  lines  are  used  to  indicate 

gene  with  significant  (FDR  <  0.001)  TF‐binding  peak,  while  solid  lines  for  genes  with  higher  peak  

respectively at stage 4 or stage 8. In grey are genes not bound at the specific stage. In red are represented 

up‐regulated genes while in blue down‐regulated genes from day 4 to 8. 
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MATERIALS AND METHODS 

Plant material. All plants were grown at 20 °C under long day condition (16 h light, 8 h 

dark). Plants for ChIP-seq and DNase-seq were grown on rock-wool, whereas plants for 

gene expression analysis were grown on soil. 

Tissue collection. For DNase-seq and ChIP-seq experiments: pAP1:AP1-GR ap1-1 cal-1 

plants were dipped after bolting (2 cm to 5 cm height) in the DEX- induction solution (2 

µM Dexamethasone, 0.01% (v/v) ethanol, and 0.01% Silwet L-77) daily. First induction 

was performed 8 hours after lights on and daily induction at 4 hr after lights on. Material 

was collected before DEX-induction, as well as at 2 days, 4 days and 8 days after the first 

treatment (8 h after lights on). Two biological samples were generated for each timepoint. 

For gene expression profiling experiments: Approximately 4 week-old pAP1:AP1-GR 

ap1-1 cal-1 plants were used. For each sample, inflorescence tissue from ~25 plants was 

collected using jeweler’s forceps as previously described (Wellmer et al., 2006). Four 

biologically independent sets of samples were generated for each experiment. For 

induction, inflorescences were treated with a DEX-induction solution, or with an identical 

mock solution that lacked dexamethasone. Using plastic pipettes, the solutions were 

directly applied onto the inflorescences so that the cauliflower-like structures were 

completely drenched. As for the DNase-seq and ChIP-seq experiments, after the first 

induction, daily induction was performed 4h after lights on, and material was collected at 

the corresponding time-point 8hr after lights on. Material was collected immediately after 

solution application (0 days, mock), and at 2 days, 4 days and 8 days after the first 

treatment. 

DNase-seq experiments. Nuclei isolation was performed according to (Zhang et al., 2007) 

with minor modifications. Tissue was ground in liquid nitrogen. For each timepoint, 0.2 g 

of plant material was used. Ground material was resuspended in 2 ml of cold modified 

Honda buffer (HBM: 25 mM Tris, 0.44 M sucrose, 10 mM MgCl2, 10 mM β-

mercaptoethanol, 2 mM spermine, and 0.1% Triton) and filtrated through a 55 μm 

membrane. The membrane was washed with 1 ml HBM buffer. The filtrate was applied to 

a sucrose 2.5 M /40% Percoll gradient and centrifuged 30 min 2500 xg at 4 °C. Nuclei 

were collected in the interphase and washed with 10 ml cold HBB (HBM without 

spermine) and 10 ml cold HBC (HBB with 20% glycerol). Between each wash, nuclei 
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were centrifuged for 10 min 1000 xg at 4C. DNA digestion was performed according to 

(Hesselberth et al., 2009) with minor modifications. Nuclei were resuspended in 2.5 ml 

buffer A (15 mM Tris-HCl (pH 8.0), 15 mM NaCl, 60 mM KCl, 1 mM EDTA (pH 8.0), 

0.5 mM EGTA, 0.5 mM spermidine and 11% sucrose) and divided into 12 1.5ml tubes 

(aliquots of 200 μl). To each aliquot, 200 μl of 2x reaction buffer (Buffer A with 12 mM 

CaCl2, 150 mM NaCl) was added. Nuclei were mixed by inversion. DNase I was added 

(Roche Applied Science, Cat.no.04716728001) to attain final concentrations of 110U-

90U-70U-50U-35U-20U-15U-10U-7.5U-5U-2.5U-0U. Samples were incubated for 10 

min at 37 °C in a thermomixer. The DNase reaction was terminated by adding 400 μl of 

stop buffer (50 mM Tris-HCl (pH 8.0), 100 mM NaCl, 0.1% SDS, 100 mM EDTA (pH 

8.0), 10 μg/ml Ribonuclease A, 1 mM spermidine, 0.3 mM spermine) and incubating at 

RT for 15 min. To each sample, 10 μl of 20 μg/ml proteinase K was added. After O/N 

incubation at 55 °C, samples were centrifuged for 10 min at 13.000 xg. An aliquot of 10 

μl of each sample were run on a 1% agarose gel. Samples that were not completely 

digested were selected for library preparation (Figure S3E). DNA was precipitated by 

adding 0.9 volumes of isopropanol. The precipitated DNA was dried and left to resuspend 

in 100 μl HPLC water O/N at 4 °C. DNA was purified with QIAGEN PCR purification 

kit (Cat.no.28104). Two biological replicates for each timepoint were sequenced on 

Illumina HighSeq2000. 

ChIP-seq experiments. ChIP experiments were performed following a previously 

published protocol (Kaufmann et al., 2010b) using an anti-GR antibody (Glucocorticoid 

Receptor alpha Polyclonal antibody (PA1-516, Thermo Scientific), to precipitate AP1-

GR), or a peptide SEP3 antibody (Kaufmann et al., 2009). 0.75 g of plant material were 

used for each biological replicate. ChIP experiments performed using pre-immuneserum 

were used as negative control for each timepoint. Two biological replicates for each 

experiment were sequenced on Illumina GAII or MySEQ.  

DNase-seq and ChIP-seq data analysis. Basecalls was performed using CASAVA 

version 1.7 for AP1 4 and 8 days ChIP-seq experiments days, while CASAVA version 

1.8 was used for all the other analysis. Sequence reads reported by the Illumina’s 

CASAVA v1.8 pipeline as low quality reads were removed from further analysis. 

CASAVA v1.7 does this automatically. FASTQ files were mapped to the Arabidopsis 
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thaliana genome (TAIR10, http://www.arabidopsis.org/ ) using Bowtie (Langmead et al., 

2009) version 0.12.7, allowing up to 3 mismatches. Sequence reads mapped to 

mitochondrial and chloroplast chromosomes or mapping on multiple locations were 

removed. An overview of sequencing data is reported in Table S8. Reproducibility 

between biological replicates was assessed using the Pearson correlation coefficient 

(PCC) for the genome-wide reads distribution at each pair of replicates on a single 

nucleotide resolution, for this, we used the script ‘correlation.awk’ provided by (Bardet et 

al., 2012), the results were: PCC>0.99 for DNase-seq experiments, and 0.80<PCC<0.977 

for ChIP-seq experiments. Because of the high reproducibility of the data, FASTAQ files 

for replicates of the same experiment were combined. We used MACS 2.0.10 (Zhang et 

al., 2008) with default parameters except --mfold which was set to ‘2,20’) to identify 

significant BSs for ChIP-seq experiments and significant DNase I hypersensitive sites 

(DHSs) for DNase-seq experiments . We used a cut-off of FDR≤0.01 and FDR≤0.001 (--

qvalue parameter in MACS) for DNase-seq and ChIP-seq experiments, respectively. 

Genomic regions were associated with genes if located 3 Kb upstream of the start of the 

gene up to 1 Kb downstream of the end of the gene using the function distance2Genes in 

the Bioconductor package CSAR (Muino et al., 2011) for genes annotated in TAIR10. 

Quantitative comparison of ChIP-seq and DNase-seq experiments. We followed the 

Bardet et al. (2012) protocol for the quantitative comparison. Namely, we created an 

aggregated list of ChIP-seq and DHSs peaks in a region ± 75 bp around the peak summit, 

and then scored each one of those regions by the highest mapped read count normalized 

by total number of mapped reads in the library. This score was subsequently scaled by the 

score in the corresponding control sample in the same region. Quantile normalization 

implemented in the preprocessCore R package (Bioconductor; 

http://www.bioconductor.org/ ) was then applied independently to all DNase-seq and to 

all ChIP-seq score values.  

Changes in DHSs and putative TF BSs across the different time stages were quantified by 

means of (fold-change ratio). We classified regions as invariant when the fold-change 

was ≤ √2 for DNase-seq data, and ≤ 2 for ChIP-seq data. Otherwise the region was 

classified as being an increasing or decreasing region according to the sign of the log2. 

The simultaneous analysis of dependence between chromatin accessibility changes, and 

TFs binding changes and of the influence of these factors on changes in gene expression 
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(Figure 2E, 4C) was done by the chi-square test in Genstat 15. DNA sequences and 

overlapping regions were extracted using BEDTools (Quinlan and Hall, 2010).   

Motif analysis and DNase I cleavage. For motif identification sequences of ChIP-seq 

peaks ±50 bp around the peak summits, were submitted to MEME-ChIP (Machanick and 

Bailey, 2011) after processed with RepeatMasker (http://repeatmasker.org); we used 

default parameters for MEME-ChIP except the motif site distribution (‘-mod’) parameter 

that was set to any number of repetitions (anr). Motif occurrences were found in TF BSs 

(located 3 Kb up to 1 Kb downstream of genes annotated in TAIR10) using FIMO (Grant 

et al., 2011) at p-value < 1e-5, and the DNase I cuts ±100 bp around the motif matches at 

the same time stage were submitted to CENTIPEDE (Pique-Regi et al., 2011) together 

with the proximity to the nearest TSS and the FIMO log-likelihood score ratio to infer TF 

binding by digital genomic footprinting. Then, each site was classified according to its 

posterior probability (pp) into 3 classes: footprint (pp ≥ 0.9), no footprint (pp ≤ 0.1), and 

unclear bound state (0.1 < pp < 0.9). For visualization of the average DNase I cleavage in 

Figure 5 in a window ±500 bp around the footprint, running-median smoothing was 

applied (width of median window equal to 5).  

Information from The Plant Transcription Factor Database (http://plntfdb.bio.uni-

potsdam.de/v3.0/) was used to identify overrepresented TF families. GO 

overrepresentation analysis was performed using the Cytoscape plugin BINGO (Maere et 

al., 2005). 

RNA preparation for microarray experiments. Total RNA was isolated from tissue 

samples using the Plant Total RNA kit (Sigma-Aldrich) according to the manufacturer’s 

instructions. Quality of RNA samples was evaluated using a Bioanalyzer and a RNA 

Nano 6000 kit (Agilent). RNA concentrations were determined using a Nanodrop ND-

1000 spectrophotometer (Thermo Fisher Scientific). 

Microarray setup and experiments. Agilent microarrays were designed using the eArray 

software pipeline (https://earray.chem.agilent.com/earray/ ) and TAIR genome annotation 

v8, and contain probes corresponding to 28,327 annotated genes (see (Kaufmann et al., 

2010c). Microarrays were used following manufacturer's instructions.  RNA samples 

were labelled with fluorescent dyes using the Quick Amp Labeling Kit (Agilent). 

Microarray hybridizations (65ºC, 16h) and washes were performed with Agilent reagents 
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and following standard protocols. Microarrays were scanned using an Agilent DNA 

Microarray Scanner, and data were acquired using Agilent's Feature Extraction Software. 

Four independent sets of biological samples were used for the experiments. The dyes used 

for labelling RNA from a given time point were switched in the replicate experiments to 

reduce dye-related artefacts. Samples were co-hybridized as follows: 0 days to 2 days, 2 

days to 4 days, and 4 days to 8 days, resulting in a total of three hybridizations per set, 

and two biological replicate sets labelled with each dye polarity.  

Gene expression microarray data analysis. Feature extraction software pre-processed 

data from the Agilent microarrays were imported into the Resolver gene expression data 

analysis system version 7.1 (Rosetta Biosoftware, Seattle, WA) and processed as 

described (Samach et al., 2000). Resolver uses a platform-specific error model-based 

approach to stabilize the variance estimation to improve the specificity and sensitivity in 

differential gene expression detection (Weng et al., 2006). The data from the four 

biological replicates of each condition were combined, resulting in an error-model 

weighted average of the four. The p-values for differential expression calculated by 

Resolver were adjusted for multi-hypothesis testing using the Benjamini & Hochberg 

procedure, as implemented in the Bioconductor multtest package in R 

(http://www.bioconductor.org/packages/bioc/stable/src/contrib/html/multtest.html). 

Genes for which the Benjamini & Hochberg-adjusted p-value was <0.05 in at least one of 

the comparisons (i.e., time-points), and that passed an absolute fold-change (FC) cut-off 

of 1.8, were considered as differentially expressed (Table S4). Genes that were detected 

as differentially expressed were subjected to cluster analysis using the k-means algorithm 

implemented in Resolver (partitioning into different numbers of clusters was tested, and 

k=6 was selected for producing the most consistent clusters (Figure 4B).  

Isolation of RNA and real-time PCR analysis.  Total RNA was extracted using Invitek Kit 

according to the manufacturer’s protocol. DNase I digestion was performed on total RNA 

using DNase I from Invitrogen. RNA integrity was checked on 1% (w/v) agarose gels 

before and after DNase I treatment. Absence of genomic DNA was confirmed 

subsequently by qRT-PCR using primers, which amplify an intron sequence of the gene 

At5g65080 (Forward 5′-TTTTTTGCCCCCTTCGAATC-3′ and reverse 5′-

ATCTTCCGCCACCACATTGTAC-3′). First-strand cDNA was synthesized from 4 µg 
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of total RNA using TaqMan kit (Roche) cDNA Synthesis Kit following the 

manufacturer’s protocol. The efficiency of cDNA was estimated by qRT-PCR using two 

different primer sets annealing 5’- and 3’- ends of a control gene, glyceraldehyde-3-

phosphate dehydrogenase (GAPDH=At3g26650), respectively GAPDH3’: fw 5’-

TTGGTGACAACAGGTCAAGCA-3’; rev 5’-AAACTTGTCGCTCAATGCAATC-3’ 

and GAPDH5’: fw 5’-TCTCGATCTCAATTTCGCAAAA- 3’ and rev 5’-

CGAAACCGTTG ATTCCGATTC-3’.  

Transcript levels of each gene were normalized to ACTIN2 gene (5’- TCCCTCAG 

CACATTCCAGCAGAT-3’ and reverse 5’-AACGATTCCTGGACCTGCCTCATC-3’). 

Large-scale qRT-PCR for 1.880 TFs was performed as described previously (Balazadeh 

et al., 2008; Caldana et al., 2007), using an ABI PRISM 7900HT sequence detection 

system (Applied Biosystems Applera, Darmstadt, Germany). Amplification products 

were visualized using SYBR Green (Applied Biosystems). 

MIR396 constructs and GFP fusion reporter gene constructs. 35S:miR396a was 

generated by fusing 400 bp of MIR396a precursor to the 35S promoter in the pCHF3 

binary plasmid (Jarvis et al., 1998). ANT:miR396a was generated by replacing the 35S 

viral promoter in the previous vector with the ANT promoter (5.8 kb upstream regulatory 

sequences) (Wang et al., 2008). 

AtGRF2,  AtGRF5,  AtGRF7 and AtGRF8 genomic regions were amplified by PCR using 

the following primers:  

AtGRF2 fw: 5’-AACATTTGGTTGGTAATGTCAGCGT-3’  

rev: 5’-GGTTGTGTAATGAAAGTAATCGCCA-3’,  

AtGRF5 fw: 5’-GTATGTTCAAATAATGTGAATCGTGG-3’  

rev: 5’-GCTACCTGAGAAAATAAATTTAAACT-3’  

AtGRF7 fw: 5’-GAATCTTGTTCTTCAGAAAGATGAAC-3’  

rev: 5’-AACCTGGCTGCTTTCGTCGGAC-3’ 

AtGRF8 fw: 5’-GTTTGTTTGTTACATTGCCGTTT-3’  

rev: 5’-GCTTGAGCTTCTGCTGCA-3’.  

The PCR fragments were cloned into the GATEWAY vector pCR8/GW/TOPO from 

Invitrogen and transferred via LR reaction into the destination vector pMDC107 (Curtis 

and Grossniklaus, 2003). Expression vectors were introduced into Arabidopsis thaliana 
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ecotype Col-0 by floral dip transformation (Clough and Bent, 1998). Transformant plants 

were select on MS medium with Hygromycin (10ug/ml). 

Confocal Scanning Laser Microscopy (CSLM). GFP tagged protein localization was 

observed trough CSLM on Leica SPE DM5500 upright microscope using a ACS APO 

40x/1.15 oil lens and using the LAS AF 1.8.2 software. FM4-64 dye was added to 0.1% 

agar at a concentration of 5μM and used as staining for cell membranes. GFP and FM4-

64 dye were excited with the 488-nm line of an Argon ion laser. The GFP emission was 

detected at a bandwidth of 505-530 nm, while FM4-64 dye and chloroplast auto 

fluorescence were detected at a bandwidth of 650 nm. After acquisition optical slices 

were median filtered and three-dimensional projections were generated with LAS AF 

1.8.2 software package. 
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SUPPLEMENTAL DATA 

 
Figure S1. Proportion of overlapping AP1 or SEP3 BSs between different  timepoints depending on  their 

rank (1=highest rank) for pooled dataset and separate biological replicates. The figures were obtained  in 

the same way like Figure 2A. We have performed the analysis for the same data as reported in the main 

manuscript  (A)  and  for  each  replicate  independently  (B  and  C),  only  analyzing  replicates  1  for  each 

experiment (B) or only analyzing replicates 2 for each experiment (C). These figures shows that the rank‐

dependent pattern of overlap that we found is the same when combining the replicates or treating them 

independently. 
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Figure  S2. MADS‐domain  TF  binding  dynamics. A. Overview  of  AP1  and  SEP3  ChIP‐seq  datasets  from 

different  time points. The number of  target genes  that were unique  to, or  shared across,  the different 

time‐points  is  indicated  (Table S1). B. Gene ontology enrichment  for  increasing and decreasing AP1 and 

SEP3‐bound genomic regions. The heat map includes all overrepresented categories with at least 5 genes 

and p value <0.0001. Parental categories with more that 90% overlap with the child category have been 

removed. C. AtGRF expression levels in plants overexpressing miR396a.  
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Figure S3. AP1 and SEP3 specific binding. A. Overview of AP1 and SEP3 ChIP‐seq datasets from different 

time points. The number of BSs that were unique to, or shared across, the two TFs is indicated.  B. Venn 

diagrams show overlap  in potential direct target genes  (genes with peak between 3 kb upstream of the 

start of the gene and 1 kb downstream of the end of the gene) between AP1, SEP3, AP3 and PI ChIP‐seq 

datasets. C. qPCR  results  showing expression  level at different  time‐points  for  selected  target genes  in 

Figure 3. 
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Figure S4. Chromatin accessibility and TF expression at different stages of flower development. A. Venn 

diagram  showing  the  distribution  in  the  expression  cluster  2  and  cluster  5  genes with  increasing  and 

decreasing DHSs between 4 days and 8 days. B. Venn diagram shows genes with increasing and decreasing 

DHSs between 2 days vs 4 days and 4 days vs 8 days. 46 genes have both increasing and decreasing DHSs 

from day 4 to day 8. C. Full list of motifs identified by MEME‐ChIP in the AP1 and SEP3 peaks regions. Table 

shows  consensus  sequences  and  motifs  based  on  position‐specific  probability  matrices  that  were 

identified by MEME‐ChIP, and TFs that potentially recognize those motifs identified by TOMTOM. D. Gene 

ontology enrichment for SEP3‐bound genomic regions at day 8 with CArG‐box motif 1 and CArG‐box motif 

2.  The  graph  shows  terminal  overrepresented  categories  that  belong  to  “biological  regulation”  and 

“developmental process”. Only categories with at least 5 genes and p‐value < 0.05 were considered. E. Gel 

showing partially DNase I‐digested chromatin that was submitted for sequencing.   
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Figure S5. Change  in MADS‐DNA binding precedes change  in chromatin accessibility. The  figures were 

obtained  in  the same way as  for Figure 6B. The analysis was  repeated  for each  replicate  independently 

and for the combined analysis for both AP1 (A) and SEP3 (B). The results and conclusions are similar in all 

cases. 

 

 

 

DESCRIPTION OF ADDITIONAL TABLES 

The following additional tables are available online.  

http://genomebiology.com/2014/15/3/R41/additional 

 

Table S1. ChIP-seq peak calling for AP1 and SEP3 ChIP-seq at different timepoints. 

The table shows peaks with FDR<0.001 and nearby genes for each dataset. Nearby genes 

are genes with the compared peaks 3kb upstream of the start of the gene and 1kb 

downstream of the end of the gene. In the overview table (sheet: overview) are 

summarised the total number of peaks for each dataset and the number of peaks nearby a 

gene for FDR < 0.001. 
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Table S2. ChIP-seq quantitative comparison between AP1 and SEP3 binding at 

different timepoints and between the two transcription factors at the same 

timepoint. The table shows the list of genomic regions that are increasing, decreasing or 

invariant between the two compared timepoints. Only regions with a significant peak 

(FDR < 0.001) in at least one of the two datasets compared are considered. 

Table S3. Overrepresentation of TF families among significant (FDR < 0.001) 

potential direct target genes of AP1 or SEP3 at different timepoints. TF families that 

are overrepresented (p-value < 0.05) among either AP1 or SEP3 targets at least one 

timepoint are shown in the table.  

Table S4. Genes identified as differentially expressed after AP1 activation. 

Microarray results show genes that are differentially expressed between IM and day 2, 

days 2 and 4 and days 4 and 8. 

Table S5. DNase-seq peak calling for the different timepoints. The table shows DHSs 

with FDR<0.01 and nearby genes for each dataset. Nearby genes are genes with the 

compared peaks 3kb upstream of the start of the gene and 1kb downstream of the end of 

the gene. The total number of DHSs for each timepoint and the number of DHSs nearby a 

gene for FDR < 0.01 are summarised in the overview table.  

Table S6. DHS quantitative comparison between different timepoints. The table 

shows the list of genomic regions that are increasing, decreasing or invariant between the 

two compared timepoints. Only regions with a significant DHS (FDR < 0.01) in at least 

one of the two datasets compared are considered. 

Table S7. Number of genes in vicinity of different classes of BSs classified according 

to accessibility change. Numbers in yellow indicate cells in which significant deviations 

from independence are located.   

Table S8. Overview of sequencing data. Total number of reads obtained with Illumina 

sequencing, aligned reads, and uniquely aligned reads for each sample. 
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ABSTRACT 

Recent advances in genome-wide methods are revealing increasingly detailed profiles of 

the genomic distribution of nucleosomes, their modifications and their modifiers. The 

picture now emerging is one in which chromatin accessibility, governed by contributions 

from chromatin remodelers and chromatin modifiers, highly contributes to the regulation 

of transcription. MADS-domain proteins have been found to interact with chromatin 

modifiers and chromatin remodelers suggesting that transcriptional and epigenetic 

regulation may be interconnected. In this study we profile genome-wide nucleosome 

position at different stages of flower development. We found that nucleosome occupancy 

is dynamic during development and that changes in nucleosome occupancy happen 

prevalently in core promoter regions. Moreover, we observed low nucleosome occupancy 

in the proximity of transcription factor-bound regions, suggesting that transcription 

factors predominantly bind to nucleosome free regions.  



Chapter 4

115 

INTRODUCTION 

In the nucleus DNA is packed into chromatin and therefore, the chromatin landscape 

affects many DNA related processes, such as transcription. The fundamental building 

block of eukaryotic chromatin is the nucleosome. A nucleosome is constituted by 147 bp 

of DNA wrapped around a histone octamer, formed by two of each core histone H2A, 

H2B, H3 and H4. Dynamic post-transcriptional modifications of histones and histone 

tails, such as methylation, acetylation or ubiquitination, lead to a more or less compact 

chromatin structure that affects gene expression. Moreover, packaging of the DNA into 

nucleosomes restricts DNA accessibility for regulatory proteins but also provides an 

opportunity to regulate DNA-based processes through modulating nucleosome positions 

and local chromatin structure. In order to facilitate access to DNA and in order to alter 

nucleosome composition in chromosomal regions, cells have evolved a set of specialized 

proteins, the chromatin remodeling complexes (chromatin remodelers). Chromatin 

remodelers are ATP-driven protein complexes that can alter the chromatin structure by 

sliding histone octamers, modifying histone-DNA interactions or changing histone 

variants, leading to an increased or decreased accessibility of DNA elements to regulatory 

proteins. Although, chromatin remodeling complexes can be recruited to the chromatin 

via specific protein domains, for example the bromo-domain binds to acetylated histones 

and the chromo-domain to methylated histones, these complexes lack DNA-sequence 

specificity, as reflected in the pleiotropic effects observed in loss of function mutants 

(Kwon and Wagner, 2007). Thus, how can they act in specific gene regulation? Recent 

studies in Arabidopsis showed that transcription factors can interact with chromatin 

remodelers and histone modifiers (Efroni et al., 2013; Smaczniak et al., 2012; 

Vercruyssen et al., 2014). For example, MADS-domain proteins interact with SWI/SNF 

family members, such as BRAHMA (BRM) and SPLAYED (SYD) (Smaczniak et al., 2012; 

Wu et al., 2012).  SYD and BRM also play a role during floral organ development 

(Farrona et al., 2004; Fritsch et al., 2004; Noh and Amasino, 2003; Ogas et al., 1999; 

Sang et al., 2012; Wagner and Meyerowitz, 2002). Loss of SYD causes defects in many 

different developmental pathways such as developmental transitions, growth, patterning 

and stem cell maintenance (Wagner and Meyerowitz, 2002). SYD represses LFY before 

floral transition, and it activates B and C-class organ identity genes after the transition to 

flower (Wagner and Meyerowitz, 2002). Next to SYD, also BRM was found to play a role 
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in the activation of homeotic genes. In brm flowers lower expression of the C-class genes 

was observed. In agreement, loss of function of BRM causes homeotic floral organ 

conversions (Hurtado et al., 2006). Besides BRM and SYD, members of the ISWI family, 

such as CHROMATIN REMODELING 11 (CHR11) and CHR17, were found in the 

same complex with the MADS-domain proteins (Smaczniak et al., 2012). The defects in 

floral organ development  observed in chr11 chr17 double mutants (Li et al., 2012a; 

Smaczniak et al., 2012), suggest a role for these ISWI family remodelers in flower 

development. These findings reveal a new picture of gene regulation in which 

transcription factors and chromatin remodelers act in concert in the regulation of gene 

expression during development. Furthermore, changes in chromatin accessibility appear 

to follow DNA-binding of MADS-domain proteins (Pajoro et al., 2014), suggesting that 

transcription factors may recruit chromatin remodelers to specific loci to shape the 

chromatin landscape and alter nucleosome distribution.  Recent studies revealed that two 

MADS-domain protein interacting partners, CHR11 and CHR17, slide nucleosomes in 

the gene body and at cis-regulatory elements (Li et al., 2014). Despite some recent 

advances, our knowledge about the dynamics in nucleosome distribution during flower 

development is still very limited. In this chapter, we used the micrococcal nuclease 

digestion followed by deep sequencing (MNase-seq) assay to investigate the genome-

wide nucleosome distribution at different stages of flower development in Arabidopsis. 

We found that nucleosome occupancy is dynamic during flower development. Changes in 

nucleosome occupancy located predominantly nearby genes and are specific for the time 

intervals studied. Moreover, both up- and down-regulated genes are subject to changes in 

nucleosome occupancy and position. We then investigated the relationship between 

nucleosome occupancy, chromatin accessibility and transcription factor DNA-binding 

events. We observed that DNase I hypersensitivity sites (DHSs) and transcription factor 

DNA-binding events are mainly located in regions with low nucleosome occupancy.  

RESULTS 

Nucleosome occupancy profiles during flower development. 

We studied nucleosome occupancy at genome-wide scale at different stages of flower 

development, making use of an inducible system to obtain homogenous material 

(Wellmer et al., 2006). We performed MNase–seq experiments with three biological 
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replicates in inflorescence meristems (day 0), during floral meristem specification (day 

2), floral organ specification (day 4), and floral organ differentiation (day 8) (Figure 1).  

Figure 1. Experimental set up. A. Using a system for synchronized floral induction (pAP1:AP1:GR ap1 cal), 

we performed MNase‐seq at different developmental stages: meristem specification (stage 2; 2 days after 

induction), organ specification  (stage 4‐5; 4 days after  induction) and organ differentiation  (stage 7‐8; 8 

days after  induction). Around day 4, organ  identity genes specify  the  floral whorls within  the meristem, 

and sepal growth has been initiated. At day 8, sepals are largely differentiated, and the organs in the inner 

whorls are being formed. For illustrative purposes, images of wild type floral meristems of the respective 

stages (colour) are indicated above the graph.  

We treated nuclear chromatin with MNase, which preferentially cleaves the linker DNA 

between nucleosomes, leaving nucleosomal DNA intact, and therefore generating a 

nucleosome footprint. We isolated and sequenced mononucleosomal DNA for each 

sample (Figure 2). 

We sequenced our samples on Illumina HiSeq2000 and obtained between 65 and 144 

million reads per sample (Table S1). Considering only uniquely aligned reads and after 

removing clonal reads, our final coverage was between 11 and 18 fold as average per 

sample (Table S1). We detected nucleosome occupancy in each sample using the 

DANPOS pipeline (Chen et al., 2013a; Chen et al., 2013b; Li et al., 2012b) and identified 

around 200,000 nucleosomes (pv<0.001) at each time point. Considering a size of about 

150 bp per nucleosome, approximately 22 % of the Arabidopsis genome appeared to be 

packed into nucleosomes (Table 1). To assess the reproducibility of our experiment we 

calculated the Pearson’s correlation (PCC) between the three biological replicates, which 

revealed a good correlation (0.79 < PCC < 0.84) between the biological replicates at all 

time points (Table S2). Remarkably, we also observed a high correlation between 

samples from different time points (Table S2), which might be due to a largely stable 

nucleosome positioning throughout flower development.  
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Figure  2.  Experimental work  flow.  After 

nuclei isolation the chromatin is subject to 

MNase  digestion.  This  enzyme 

preferentially  cleaves  linker  DNA,  leaving 

nucleosomal  DNA  intact.  Chromatin  is 

digested  with  different  concentration  of 

MNase,  the  mononucleosomal  DNA 

fraction  is  purified  from  gel  and 

sequenced,  leading  to  identification  of 

nucleosome occupancy along the genome.  
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Table 1. Number of nucleosomes assessed at the different stages of flower development. 

Time 
point 

Nucleosome 
number 

Day 0 204,509 
Day 2 210,866 
Day 4 201,189 
Day 8 203,983 

Previous studies, conducted in yeast and human, indicate that nucleosome positions have 

a conserved pattern relative to the gene structure. When nucleosome density is plotted as 

a function of distance relative to the transcription start site (TSS), a -1 nucleosome is 

positioned close to the TSS from -307 bp to -111 bp, a +1 nucleosome is positioned from 

-5 bp to +144 bp and a 100-bp nucleosome free region (NFR) is found between the -111 

and -5 position (Chen et al., 2013a; Jiang and Pugh, 2009). Moreover, following the +1 

nucleosome, multiple nucleosomes are well positioned along the gene body.  

We analysed the nucleosome distribution relative to the TSS of all annotated Arabidopsis 

genes at different time points during flower development (Figure 3A).  

We observed similar patterns in nucleosome occupancy flanking the TSS to the ones 

previously reported for yeast and human, with conserved nucleosomes at +1 and -1 and 

clear positioned nucleosomes in the gene body, while an NFR was observed  in a region 

up to 100 bp upstream the TSS. This result confirms the quality of our data and suggests 

that nucleosome positions relative to the TSS are conserved in different organisms 

(Figure 3A).  

Looking at nucleosome position around the TSS, we observed a clear nucleosome pattern 

in the gene body of VERDANDI (VDD), SEPALLATA1 (SEP1) and SHOOT 

MERISTEMLESS (STM) (Figure 3B). At the same loci nucleosomes at +1 and -1 

positions were identified. Remarkably, the nucleosome in position -1 at the VDD locus, as 

well as the nucleosome in position +1 at the SEP1 locus, seem to be depleted when 

comparing the early time points to the latest time point, indicating dynamics in 

nucleosome occupancy during flower development. 

To further verify the reproducibility of our experiment we looked at nucleosome 

occupancy around the TSS for each biological replicate (Figure S1). We observed similar 

patterns between the biological replicates at each the time points confirming the high 

reproducibility of our experiments. 
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Figure  3.  Nucleosome  profiles  during  flower  development.  A.  Nucleosome  occupancy  around  the 

transcription start site (TSS) at the different time points. The average signal for all the annotated genes is 

plotted in the graphs. Conserved nucleosomes at position +1 and ‐1 were observed. An NFR was observed 

immediately  upstream  the  TSS,  and  a  clear  nucleosome  pattern  was  found  in  the  gene  body.  B. 

Nucleosome  occupancy  profile  for  selected  genes  at  different  time points  during  flower  development: 

VERDANDI  (VDD), SEPALLATA1  (SEP1) and SHOOT MERISTEMLESS  (STM). Arrows  indicate  the conserved 

nucleosomes at position +1 (red) and ‐1 (blue). 

Nucleosome occupancy dynamics during flower development. 

During development, nucleosome compositions along the genome are rearranged. Thus, 

we studied changes in nucleosome occupancy during flower development. We identified 

regions where nucleosome occupancy changed between day 0-2, day 2-4 and day 4-8 

using the DANPOS pipeline (Chen et al., 2013a; Chen et al., 2013b; Li et al., 2012b). We 

observed changes in nucleosome occupancy between all-time points: around 10,000 

regions (~5%) were dynamic (p-value < 1e-7) between 0 and 2 days and between 2 and 4 

days, while only around 3,000 (~1.5%) nucleosomes changed (p-value < 1e-7) between 4 

and 8 days (Figure 4A). We classified the changes as “nucleosome depleted regions” 

(Nucl.Dep), when the nucleosome occupancy was reduced compared to the previous time 

point, and “nucleosome gain regions” (Nucl.Gain), when the nucleosome occupancy was 

higher compared to the previous time point. We observed a prevalence of increased 

nucleosome occupancy between days 0-2 and days 4-8, and a prevalence in nucleosome 
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depleted regions between days 2-4 (Figure 4A). Most variations in occupancy occurred 

in the core promoter region (1 kb upstream of the TSS), although some changes were also 

observed in the gene body (Figure 4B-D). For example, dynamic nucleosomes were 

detected nearby key regulators of flower development such as AGAMOUS (AG) and 

APETALA3 (AP3). At both loci nucleosome depleted regions as well as nucleosome gain 

regions were observed in the promoter as well as in the gene body.  

Next, we studied the biological functions of genes that showed dynamics in nucleosome 

occupancy. As expected, Gene Ontology (GO) analysis showed an overrepresentation of 

genes involved in flower development and reproduction in most of the time point 

comparisons (Table 2). Remarkably, some categories showed time point-specific 

enrichment, for example, ‘regulation of cell cycle’ was overrepresented in the day 0-2 and 

2-4 comparisons, while differences in nucleosome occupancy were observed for genes 

involved in carpel and ovule development at the later time points. 

Besides AP3 and AG, we found also other known regulators of flower development 

among genes with dynamic nucleosomes. For example, between days 0 and 2 a 

nucleosome gain region was observed at the WUSCHEL (WUS) locus. An increased 

nucleosome occupancy was also detected around genes involved in the regulation of 

flowering time such as FLOWERING LOCUS C (FLC) and MIR172 between days 0 and 

2, SCHLAFMUTZE (SMZ)  between days 2 and 4, and FLOWERING LOCUS D (FD), 

AGAMOUS-LIKE 24 (AGL24), CAULIFLOWER (CAL) between day 4 and 8. In contrast, 

nucleosome depleted regions were detected at SEP1 and SEP2 loci. Interestingly, the 

chromatin remodeler BRM locus shows an increase in nucleosome occupancy in the core 

promoter between days 2 and 4 and another, nucleosome depleted region between days 4 

and 8 in the gene body.  

Remarkably, in each comparison between 70% and 80 % of the genes showed time point 

specific nucleosome occupied or depleted regions, and only a small portion of genes was 

affected throughout flower development (Figure 5A), among them we found the 

homeotic genes AGAMOUS (AG) and SEP3. Moreover, some genes showed nucleosome 

occupied as well as depleted regions in the same time interval at different genomic 

locations (Figure 5B), among them were AG (Figure 4C), FLOWERING LOCUS M 

(FLM) and SMZ. 
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Figure  4.  Changes  in  nucleosome  occupancy  during  flower  development.  A.  Number  of  all  dynamic  

nucleosomes  identified  with  DANPOS  during  flower  development  at  three  different  p‐value  cut  offs.  B. 

Changes  in  nucleosome  occupancy  around  the  TSS,  the  largest  changes  were  observed  in  the  core  

promoter up to 1 kb upstream of the TSS. C. Nucleosome occupancy  in grey and changes  in occupancy  in 

black for AGAMOUS (AG) and APETALA3 (AP3). * significant changes in nucleosome occupancy at p‐value < 

1e‐5. D. Number of dynamic nucleosomes nearby genes  (1kb upstream  the TSS and  the gene body)  for 

each  time  point.  Percentages  indicate  portion  of  nucleosome  nearby  genes  out  of  all  dynamic  

nucleosomes identified with DANPOS. 
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Table 2. Gene ontology (GO) enrichment analysis. 

For  the  analysis  genes with  changes  in nucleosome occupancy  at p‐value < 1e‐07 were used. Only GO 

categories  with  more  than  10  genes  and  p‐value  <  0.005  in  at  least  one  of  the  comparisons  are 

represented. In red are significant overrepresented categories and in blue are not significant ones. 
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Figure 5. Genes with dynamic nucleosomes  in promoter regions (1 kb upstream) and gene body. A.  In 

the Venn  diagrams  are  indicated  genes  that  showed  significant  (p‐value  <  1e‐7)  nucleosome  gain  and 

nucleosome depleted  regions at different  time points. Most of  changes  in nucleosomes are  time‐point 

specific. B. In the Venn diagrams are indicated genes that showed significant (p‐value < 1e‐7) increase of 

nucleosome  occupancy  and  nucleosome  depletion  at  each  time  point  comparison.  Few  genes  showed 

both gain and loss in nucleosome occupancy. 

Changes in nucleosome occupancy and gene expression. 

Flower development is a process associated with extensive changes in gene expression 

(Kaufmann et al., 2010; Wellmer et al., 2006). In a previous study we profiled changes in 

gene expression between the same stages of flower development analysed in this chapter 

(Pajoro et al., 2014; Chapter 3). Using a customized microarray, (Pajoro et al., 2014) we 

assessed changes in gene expression during various time intervals from inflorescence 

meristem to floral meristem specification (day 0-2), from floral meristem specification to 

floral organ specification (day 2-4) and from floral organ specification to floral organ 

differentiation (day 4-8) (Pajoro et al., 2014; Figure 1). We found 2,000-4,000 genes 

differentially expressed in the three comparisons, with a prevalence of up-regulated genes 

between day 0-2 and day 4-8 and a prevalence of down-regulated between day 2-4 

(Figure 6A).  
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Figure 6. Changes in nucleosome occupancy and gene expression. A. Number of genes that were found 

up or down‐regulated (fold change 1.8)  in each comparison   B. Number of genes that show a significant 

change in nucleosome occupancy at p‐value 1e‐05, 1e‐07 and 1e‐10 in a region 1 kb upstream of the gene 

and within the gene. C. Graphs show percentage of up‐ and down‐regulated genes for which nucleosome 

depleted  or  occupied  regions were  observed  at  p‐value  cut‐off    1e‐07.  Similar  results were  obtained 

selecting a different cut‐off, see Figure S2. Between day 0‐2 and day 4‐8 a higher percentage of up‐ and 

down‐regulated genes showed nucleosome occupied regions than nucleosome depleted regions while the 

opposite scenario was observed between day 2‐4 where a higher percentage of up‐ and down‐regulated 

genes  showed nucleosome depleted  regions. D. Number of nucleosomes  that  change  in position  at p‐

value  0.01. We  retrieved  dynamic  nucleosome  position  shifts  by  selecting  nucleosomes  that  moved 

between  50  bp  to  90  bp  between  the  two  time  points.  Between  60  %  and  75  %  of  the  significant 

nucleosome position shift events happened nearby a gene  (1 kb upstream  the TSS and gene body) and 

between  44 %  and  56 %,  depending  on  the  time  points  compared,  are  located  in  the  gene  body.  E. 

Nucleosome position shift events located in the promoter (1 kb upstream the TSS) and in the gene body of 

differentially expressed genes. In the graph, the numbers of up‐ and down‐regulated genes are shown for 

which a nucleosome changed in position either in the gene body or in the promoter between the two time 

points. Percentage indicates the fraction of differentially expressed genes with nucleosomes changes. 
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Since transcriptional regulation is associated with rearrangements of chromatin structure 

that include histone modifications and changes in nucleosome variants (Van Lijsebettens 

and Grasser, 2014), we investigated nucleosome dynamics nearby differentially expressed 

genes during flower development. First, we estimated the number of genes with dynamic 

nucleosomes in the promoter (1 kb upstream the TSS) and in the gene body for different 

p-value cut offs (Figure 6B). Then, we investigated whether there is a correlation 

between change in gene expression and nucleosome dynamics of differentially expressed 

genes (Figure 6C). We found that only a minority of differentially expressed genes 

associate with dynamic nucleosomes (p-value < 1e-07) and that nucleosome depleted 

regions as well as nucleosome gain regions are present nearby both up- and  down-

regulated genes. Though, we observed a prevalence of nucleosome gain regions in the 

day 0-2 interval and a prevalence of nucleosome depleted regions in the 2-4 interval, 

while no clear difference was observed for the day 4-8 comparison (Figure 6C).  

Besides change in occupancy, due to nucleosome eviction or deposition, nucleosomes can 

also change in position, due to nucleosome sliding. Therefore, we determined nucleosome 

position shifts at the different time points. We found between 1,500 and 3,500 

nucleosomes that shift from 50 bp to 90 bp (p-value < 0.01) for each time interval, the 

majority is located nearby genes with a prevalence in gene bodies (Figure 6D).  

Less than 10% of differentially expressed genes were subjected to nucleosome sliding. 

The majority of changes were in the gene body except for up-regulated genes between 2 

and 4 days, where we observed more changes in the promoter than in the gene body 

(Figure 6E).   

In conclusion, we could not observe a clear correlation between changes in gene 

expression and changes in nucleosome occupancy or position. 

 

Nucleosome occupancy around DNase I hypersensitivity sites. 

Cis-regulatory DNA elements such as promoters, enhancers and insulators can be 

detected by their characteristic sensitivity to the endonuclease DNase I digestion. In 

previous experiments we identified DNase I hypersensitivity sites (DHSs) at the same 

stages of flower development studied in this chapter (Pajoro et al., 2014; Chapter 3). By 

analyzing nucleosome occupancy around the previously identified DHSs, we found that 

the DHS summits are located in regions with low nucleosome occupancy (Figure 7).  
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 Figure 7. Nucleosome occupancy and DNase I high sensitivity sites (DHSs) during flower development.  

A. Nucleosome occupancy profile (average signal value) around the summit of all DHS identified at day 0. 

B. Nucleosome occupancy profile (average signal value) around the summit of all DHS identified at day 2. 

C. Nucleosome occupancy profile (average signal value) around the summit of all DHS identified at day 4. 

D. Nucleosome occupancy profile (average signal value) around the summit of all DHS identified at day 8. 

E. Nucleosome occupancy profile and DHSs profiles for selected genes at the different time points. Black 

blocks  represent  DHSs, while  in  grey  are  represented  nucleosomes. Most  of  the  DHSs  are  located  in 

nucleosome free regions.  

Interestingly, the MNase-seq signal was higher at the DHS summit than in the immediate 

surrounding regions (Figure 7A-D). This distinctive profile could be caused by the 

presence of a nucleosome in the DHS region, as can be observed for KNU, SOC1 and 

STM loci (Figure 7E). Similar profiles were observed in the ISWI mutants. ISWI family 

chromatin remodelers, CHR11 and CHR17, play a role in sliding nucleosomes along the 
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DNA. In chr11 chr17 an increased nucleosome occupancy in the middle of DHSs was 

observed (Li et al., 2014).  

MNase preferentially cleaves the linker DNA between nucleosomes, leaving nucleosomal 

DNA intact, and generating a nucleosome footprint. However when subnucleosome-sized 

fragments (<80 bp) are selected, MNase digestion can be used, similar to DNase I 

digestion, to generate the footprints of DNA-binding proteins (Carone et al., 2014). 

Therefore, the increased signal observed at the DHSs summit could be produced by the 

presence of other DNA-binding proteins, such as transcription factors that bound the 

DNA, protecting it from the digestion. Although we specifically selected for 

mononucleosomal-size fragments, we cannot exclude the presence of a fraction of 

subnucleosome-sized fragments in our samples that leads to the characteristic footprint 

profile of DNA-binding proteins.  

 

Nucleosome occupancy around MADS-domain protein binding sites. 
Recent studies revealed that MADS-domain proteins interact with chromatin modellers 

and modifiers (Smaczniak et al., 2012; Wu et al., 2012). We previously observed that 

changes in chromatin accessibility follow changes in MADS-domain DNA-binding 

(Pajoro et al., 2014). Taken together, these results suggest a role for MADS-domain 

proteins in shaping the chromatin landscape during plant development. Therefore we 

investigated the nucleosome occupancy and dynamics around MADS-domain protein 

binding events.  

In proximity of genes with a known role in flower development, AP1 and SEP3 binding 

sites co-localize with low nucleosome occupied regions as well as with regions where 

high nucleosome occupancy was detected. For example, AP1 and SEP3 binding events at 

SOC1 and SEP3 loci are located in nucleosome-free regions, while at PI, SEP4 and AG 

loci co-localize with nucleosome occupied region (Figure 8).  

We then analysed the genome-wide nucleosome occupancy levels around the summit of 

AP1 and SEP3 bound regions (Figure 9). A ‘valley’ is present around the summit of both 

AP1 and SEP3 bound regions at all the studied time points (Figure 9A-B). Interestingly, 

a region with higher nucleosome occupancy was present in the centre of the valley for 

AP1 bound regions (Figure 9A), which could represent either the binding of the TF as 

well as the presence of a nucleosome.  
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Figure 8. Nucleosome occupancy and AP1 and SEP3 DNA‐binding profile during flower development for 

selected  target  genes.  Nucleosome  occupancy  (grey),  AP1  binding  (purple)  and  SEP3  binding  (green) 

profiles for selected genes. Most of the binding events are in regions with low nucleosome occupancy (on 

the left), although some nucleosomes were detected in regions bound by AP1 and SEP3 (on the right). 
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Figure  9. Nucleosome  occupancy  (as  average MNase  signal  value)  at  TFs DNA‐binding  events  during 

flower development. A. Nucleosome occupancy around AP1 bound region summits at day 2, day 4 and 

day  8.  B.  Nucleosome  occupancy  around  SEP3  bound  region  summits  at  day  2,  day  4  and  day  8.  C. 

Nucleosome occupancy around AP3, PI and AG bound region summits D. Nucleosome occupancy around 

AP2 and LFY bound region summits. 
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Next, we looked at nucleosome occupancy around regions bound by other MADS-domain 

proteins such as AG (O'Maoileidigh et al., 2013), AP3 and PI (Wuest et al., 2012) 

(Figure 9C) and members of other transcription factor families such as AP2 (Yant et al., 

2010) and LFY (Winter et al., 2011) (Figure 9D). For all the transcription factors a valley 

was present around the centre of the peak summit, suggesting that transcription factors 

generally bind to nucleosome-depleted regions. 

Finally, we analysed nucleosome dynamics at AP1 and SEP3 bound loci. Remarkably, 

within regions bound by AP1 and SEP3 at day 4 we detected respectively 83 (0.43%) and 

768 (4%) nucleosome-depleted regions between 2 and 4 days. For example, we observed 

nucleosome-depleted regions within AP1 and SEP3 binding sites located nearby AG and 

AP3 loci at day 4 (Figure 8). 

DISCUSSION 

Nucleosome occupancy and dynamics during flower development. 

Transcription factors regulate gene expression and act in a complex chromatin 

environment. The structural unit of chromatin is the nucleosome. To gain a better 

understanding in the relationship between gene regulation and chromatin landscape 

during flower development, we studied nucleosome occupancy at different stages of 

flower development. We developed the MNase-seq technique to detect nucleosome 

occupancy and nucleosome dynamics in Arabidopsis. We observed that only a small 

portion of the genome (~22%) is stably occupied by nucleosomes during flower 

development. Similar findings in human nucleosome occupancy studies (Carone et al., 

2014), suggest a conservation between different organisms.  

Moreover, as previously observed in other organisms, such as human and yeast (Chen et 

al., 2013a; Jiang and Pugh, 2009), also in Arabidopsis flowers, nucleosome position is 

strongly conserved around the transcription starting site. 

Nucleosome turnover during gene transcription is a rapid mechanism that cannot be 

captured in a day-time frame (Kristjuhan and Svejstrup, 2004; Lee et al., 2004). In our 

study, the majority of dynamic nucleosomes are located in the core promoter region. 

Thus, the changes we observed may reflect more permanent alterations in chromatin 

structure that happen mostly at cis-regulatory elements.  
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Only a small portion (~5%) of nucleosomes is dynamic during flower development, 

indicating that we are dealing with a fairly stable nucleosome composition over a 0-8 

days interval. Nevertheless, the changes that we observed in nucleosome occupancy 

happen nearby genes with a known role in processes involved in flower development, 

such as floral whorl development or carpel, ovule and pollen development, suggesting 

that the changes are relevant for the action of the genes involved in these processes. 

Changes in genes expression do not correlate with nucleosome dynamics. 
In yeast, gene repression is associated with gain in nucleosome occupancy at 

corresponding loci while nucleosome depletion is observed nearby by up-regulated genes 

(Huebert et al., 2012). In our experiments, we observed nucleosome-depleted regions as 

well as nucleosome gain regions nearby both up- and down-regulated genes, indicated 

that there is no clear correlation between change in expression and nucleosome 

remodeling at corresponding loci. The lack of correlation between changes in gene 

expression and nucleosome occupancy could be attributed to the time intervals used in the 

study. Changes in nucleosome occupancy due to transcription may only be observed in 

short time intervals. In our experiment nucleosome dynamics may be due to changes at 

specific cis-regulatory elements instead of chromatin remodeling related to gene 

transcription. In agreement of this hypothesis most of the nucleosome dynamic regions 

were located in the promoters. 

 Cis-regulatory elements are prevalently located in nucleosome free 

regions. 

Cis-regulatory elements, defined as DHSs or regions bound by a transcription factor, 

appear to be generally nucleosome-depleted.   

Interestingly, we detected a higher level of occupancy at the summit of cis-regulatory 

regions compared to the immediate surrounding regions. This could indicate either the 

presence of a nucleosome or a DNA-binding protein complex that protects the DNA from 

MNase digestion, resulting in an higher signal at the summit of the region.  

MNase preferentially cleaves the linker DNA between nucleosomes, leaving nucleosomal 

DNA intact, and generating a nucleosome footprint. However, recent studies (Carone et 

al., 2014; Henikoff et al., 2011; Kent et al., 2011) showed that when subnucleosome-

sized fragments are selected, MNase digestion can be used to generate the footprints of 
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DNA-binding proteins. To recognize the presence of a nucleosome in cis-regulatory 

elements ChIP-seq experiments using antibody targeting histones could be performed. 

At early stages of flower development, during the meristem and organ specification 

phases, chromatin is subjected predominantly to local rearrangements, which is reflected 

in the higher dynamics in nucleosome occupancy observed between days 0-2 and 2-4. In 

contrast, at later stage of development, during organ differentiation, nucleosomes appear 

to be more static, when the highest dynamics in DHS is observed (Pajoro et al., 2014; 

chapter 3). Taken together these results suggest that chromatin is initially subject to 

rearrangements at nucleosome level followed by larger changes later on at the cis-

regulatory elements.  

In conclusion, the fact that we couldn’t detect high nucleosome occupancy prior 

transcription factor binding, indicate that MADS-domain transcription factors bind mostly 

to nucleosome free regions. Thus, MADS-domain transcription factors do not directly 

promote nucleosome eviction, as an active pioneer factor does (Drouin, 2014; Zaret and 

Carroll, 2011). Alternatively, active pioneer action of MADS-domain protein is a fast 

mechanism that can’t be detected at our experimental condition. Moreover the lack of 

tissue-specificity in our current experiment could mask pioneering action at a specific 

locus.  

Our previous studies showed that chromatin accessibility as cis-regulatory elements 

(identified by DHSs) increases upon MADS-domain transcription factor binding (Pajoro 

et al., 2014; chapter 3) and that MADS-domain proteins interact with chromatin 

remodelers  (Smaczniak et al., 2012), both characteristic features of  “pioneer factors” 

(Drouin, 2014; Zaret and Carroll, 2011). Taken together these observations suggest that 

MADS-domain proteins, upon binding to free nucleosome loci, affect chromatin 

accessibility at their binding sites by interaction with chromatin remodelers, therefore 

MADS-domain proteins may act as “pioneer factors”.  

 

MATERIALS and METHODS 

Tissue collection. Approximately 4 week-old pAP1:AP1-GR ap1-1 cal-1 plants were 

used. pAP1:AP1-GR ap1-1 cal-1 plants were dipped after bolting (2 cm to 5 cm height) in 

DEX- induction solution (2 μM Dexamethasone, 0.01% (v/v) ethanol, and 0.01% Silwet 
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L-77) daily. First induction was performed 8 hours after switching on the lights and 

subsequent daily induction at 4 hr after start of the light period. Material was collected 

just before DEX-induction, as well as at 2 days, 4 days and 8 days after the first 

treatment. Three biological samples were generated for each time point.  

MNase-seq experiments. Nuclei isolation was performed according to (Zhang et al., 2007) 

with minor modifications. Tissue was grinded in liquid nitrogen. For each time point, 0.2 

g of plant material was used. Grinded material was resuspended in 2 ml of cold modified 

Honda buffer (HBM: 25 mM Tris, 0.44 M sucrose, 10 mM MgCl2, 10 mM β-

mercaptoethanol, 2 mM spermine, and 0.1% Triton) and filtrated through a 55 μm 

membrane. The membrane was washed with 1 ml HBM buffer. The filtrate was applied to 

a sucrose 2.5 M /40% Percoll gradient and centrifuged 30 min 2500 xg at 4°C. Nuclei 

were collected in the interphase and washed with 10 ml cold HBB (HBM without 

spermine) and 10 ml cold HBC (HBB with 20% glycerol). Between each wash, nuclei 

were centrifuged for 10 min 1000 xg at 4C. DNA digestion was performed according to 

(Li et al., 2012b) with minor modifications. Nuclei were resuspended in 5 ml Wash 

Buffer (1mM Tris-HCl ph7.5, 5mM MgCl2, 60mM KCl, 0.5mM DTT, 15mM NaCl, 

300mM sucrose) and centrifuged 5 min 2500 xg at 4°C. 3. Pellet was washed with 5ml 

cold Reaction Buffer (1mM Tris-HCl ph7.5, 1mM CaCl2, 60mM KCl, 0.5mM DTT, 

15mM NaCl, 300mM sucrose) and centrifuged 5 min 2500 xg at 4°C. Nuclei were 

resuspended in 2 ml Reaction Buffer and divided into 10 1.5 ml tubes (aliquots of 200 μl). 

To each aliquot 0-0.2-0.4-0.6-0.8-1-1.5-2-3-5 U of S7 nuclease was added (Roche 

Applied Science, Catalog number 10107921001). Samples were incubated for 10 min at 

37°C in a thermomixer gently shaking (500rpm). The reaction was terminated by adding 

23μl of EDTA and incubating at RT for 5 min. To each aliquot, 350 μl Lysis Solution 

(1% SDS, 50mM Tris-HCl ph8, 20mM EDTA, 10mg/ml RNaseA) was added and 

samples were mixed by inversion. After adding 10 μl of 20 μg/ml proteinase K, samples 

were incubated O/N incubation at 37°C. Samples were centrifuged for 10 min at 13.000 

xg at RT. Supernatant was transferred to a new tube and 10 μl of each aliquot were run on 

a 1% agarose gel. Aliquots with manly (80%) mononucleosomal DNA were selected. 

DNA from selected aliquots was extract with chloroform-isoamylalcohol and precipitated 

by adding 0.9 volumes of isopropanol. The precipitated DNA was dried and left to 

resuspend in 100 μl HPLC water O/N at 4°C. 50μl were load on 2% agarose gel and 
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mononucleosomal DNA (bands at 150 bp) was excised and purified with QIAGEN gel 

purification kit. Libraries were prepared using TruSeq DNA sample preparation kit from 

Illumina following the manufacturer instructions. Three biological replicates for each 

time point were sequenced on Illumina HighSeq2000 in a 50 bp single-end run.  

MNase-seq data analysis. Basecalls was performed using CASAVA version 1.8. to obtain 

FASTQ files, later sequenced reads were mapped to the Arabidopsis thaliana TAIR10 

genome using Bowtie (Langmead et al., 2009) version 0.12.7, allowing up to 2 

mismatches. Low quality reads and duplicate reads were removed with samtools view 

(with –q parameter = 1) and samtools rmdup (Li et al., 2009). Only reads mapping in a 

single position in the genome were kept. An overview of sequencing data is reported in 

Table S1. Reproducibility between biological replicates was assessed using the Pearson 

correlation coefficient (PCC) for the genome-wide reads distribution at each pair of 

replicates after comparison to the control using 10 bp window, an overview is reported in 

Table S2. To identify nucleosome positions, we used DANPOS 2.1.4 (Chen et al., 2013b) 

with default parameters.  We used a cut-off of p-value 1e-05, 1e-07 and 1e-10 (−−testcut 

parameter in DANPOS) to identify region differentially occupied by nucleosomes.  

WigAnalysis function from DANTOOLS 0.2.1 (Chen et al., 2013b) was used to retrieve 

nucleosome occupancy profiles around the transcription starting site (TSS) or the DHS 

and transcription factor binding summits. 

Genomic regions were associated with genes if located 1 kb upstream of the start of the 

gene to the end of the gene using the function distance2Genes in the Bioconductor 

package CSAR (Muino et al., 2011) for genes annotated in TAIR10.  
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SUPPLEMENTAL DATA 

 
Table S1. Number of reads obtained for each sample. 3 biological replicates for each time 
point were sequenced on HiSeq2000. In the table are reported the total number of reads obtained 
from the sequencing, the number of reads that mapped to the Arabidopsis TAIR 10 genome and 
the number of reads left after removing duplicate reads with relative percentages. 

 
 
 
 
Table S2. Pearson correlation between the samples.  

 

SAMPLE

Total number 
of reads 

obtained from 
Hiseq2000 
sequencing

Number of reads 
aligned in A 

thaliana  genome 
(TAIR10) with 
good quality 

mapping

% 
mapped 
reads

Number of 
uniquely 

aligned reads 
(duplicates 
removed) 

% of 
unique 
reads

 coverage

genomic DNA 1 113,112,346 106,186,577 93.88% 43,812,510   39.87% 16.27        
genomic DNA 2 101,314,431 94,862,768 93.63% 39,335,438   40.11% 14.61        

day 0 bio repl 1 98,826,702 88,821,598 89.88% 39,530,869   41.35% 14.68        
day 0 bio repl 2 73,418,463 66,253,016 90.24% 32,913,743   46.36% 12.22        
day 0 bio repl 3 102,812,591 92,858,851 90.32% 41,313,239   41.49% 15.34        

day 2 bio repl 1 143,910,691 130,142,957 90.43% 48,574,217   34.80% 18.04        
day 2 bio repl 2 98,436,129 88,747,865 90.16% 38,598,933   40.49% 14.33        
day 2 bio repl 3 129,241,787 116,500,377 90.14% 46,111,197   36.98% 17.12        

day 4 bio repl 1 144,502,872 130,478,570 90.29% 47,440,960   44.57% 17.62        
day 4 bio repl 2 96,846,069 87,756,796 90.61% 39,277,069   41.89% 14.59        
day 4 bio repl 3 83,092,100 74,676,877 89.87% 34,175,273   42.68% 12.69        

day 8 bio repl 1 65,406,707 59,269,945 90.62% 30,063,679   47.41% 11.16        
day 8 bio repl 2 96,208,223 86,846,256 90.27% 37,662,724   40.42% 13.99        
day 8 bio repl 3 91,391,677 82,882,745 90.69% 37,342,272   42.16% 13.87        

TOT 1,438,520,788 1,306,285,198 90.81% 556,152,123 42.58% 206.54     

Repl 1 Repl 2 Repl 3 Repl 1 Repl 2 Repl 3 Repl 1 Repl 2 Repl 3 Repl 1 Repl 2 Repl 3
Repl 1 1 0.8 0.82 0.79 0.81 0.81 0.8 0.78 0.78 0.77 0.79 0.78
Repl 2 1 0.79 0.74 0.77 0.76 0.78 0.78 0.79 0.78 0.77 0.78
Repl 3 1 0.78 0.78 0.79 0.82 0.8 0.79 0.78 0.79 0.79
Repl 1 1 0.83 0.84 0.81 0.8 0.75 0.74 0.82 0.8
Repl 2 1 0.84 0.79 0.79 0.76 0.75 0.81 0.79
Repl 3 1 0.82 0.8 0.76 0.75 0.81 0.8
Repl 1 1 0.83 0.81 0.78 0.82 0.82
Repl 2 1 0.81 0.79 0.82 0.82
Repl 3 1 0.8 0.79 0.8
Repl 1 1 0.79 0.79
Repl 2 1 0.82
Repl 3 1

day 8

day 0

day 2

day 4

day 8

day 0 day 2 day 4
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Figure  S1. Nucleosome  distribution  in Arabidopsis  thaliana A.  Signal  periodicity  at  the  different  time 

points.  The  signal  periodicity  represents  the  distance  between  two  summits.  For  all  time  points  we 

observed an average of 180 bp. B. Nucleosome occupancy profile for three biological replicates at day 0 

before  normalisation  and  comparison  with  the  control.  C.  Nucleosome  occupancy  profile  for  three 

biological  replicates  at  day  2  before  normalisation  and  comparison  with  the  control.  D.  Nucleosome 

occupancy profile  for  three biological replicates at day 4 before normalisation and comparison with  the 

control. E. Nucleosome occupancy profile for three biological replicates at day 8 before normalisation and 

comparison with the control. 

 

 
Figure S2. Changes  in nucleosome occupancy and gene expression. Graphs show percentage of up‐ and 

down‐regulated genes  for which nucleosome depleted or gain  regions were observed at p‐value cut‐off 

1e‐05  and  1e‐10.  Up,  up‐regulated  genes;  down,  down‐regulated  genes;  Dep,  nucleosome  depletion 

events; Occ, increased nucleosome occupancy. 
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ABSTRACT 
Flower development is a key process for successful plant reproduction, which is tightly 

regulated at the genetic level. The backbone of the gene regulatory network controlling 

flower development has been unveiled in the past decades with genes that belong to the 

MADS-domain transcription factor family. Recent genome wide studies revealed a much 

higher complexity of the interconnections between the genes in the network than 

previously assumed. The genome wide approaches also allowed to identify many new 

genes with a putative role in flower development. In a previous study we investigated the 

dynamics in regulation of target genes of the MADS-domain transcription factors 

controlling flower development. In this chapter, we focus on the further functional 

characterisation of one of these target genes that has been found to be part of the network: 

STERILE APETALA (SAP). SAP is a target of many MADS-domain proteins including 

APETALA1 (AP1), APETALA3 (AP3), PISTILLATA (PI), AGAMOUS (AG) and 

SEPALLATA3 (SEP3). Expression analysis revealed that SAP is strongly expressed in 

inflorescence meristems and at early stages of flower development. Loss of function of 

SAP causes strong aberrations in flowers, such as reduction in petal and stamen numbers. 

Preliminary results indicate that SAP interacts with proteins of the SCF ubiquitin ligase 

complex, suggesting that SAP could act in the ubiquitination pathway.  
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INTRODUCTION 
Flower development is a key step for successful plant reproduction. During vegetative 

growth the apical meristem produces leaves, while during the reproductive phase it 

produces flowers. This developmental change requires changes in gene expression by the 

action of key regulators. In the past decades key regulators of floral organ specification 

have been identified by genetic studies (Bowman et al., 1989), leading to the inference of 

an elegant model, known as ABC model (Haughn and Somerville, 1988). The ABC 

model has later been extended to the ABCDE model (for review see (Causier et al., 2010; 

Pajoro et al., 2014a)). In this model, transcription factors of the MADS-domain family act 

in a combinatorial manner to define floral organ identity: A and E class genes promote 

sepal identity; A, B and E class genes determine petal identity; B, C and E class genes 

specify stamen identity; and the combination of C and E class gene functions confers  

carpel identity, while D and E class genes are responsible for ovule identity. The master 

regulators representing the Arabidopsis class A function comprise APETALA1 (AP1) and 

the non-MADS transcription factor APETALA2 (AP2) (Bowman et al., 1993; Mandel et 

al., 1992). The genes APETALA3 (AP3) and PISTILLATA (PI) have been identified to act 

as class B genes (Goto and Meyerowitz, 1994; Jack et al., 1992), while AGAMOUS (AG) 

is the class C gene in Arabidopsis (Yanofsky et al., 1990). Three D class genes 

SEEDSTICK (STK), and SHATTERPROOF 1 and 2 (SHP1, SHP2) are redundantly 

involved in ovule development (Pinyopich et al., 2003). Four E class genes 

SEPALLATA1-4 (SEP1-4) act redundantly and are required for the formation of all floral 

organs (Ditta et al., 2004; Pelaz et al., 2000; Pelaz et al., 2001). Once these key regulators 

of floral organ identity were identified, the next question was how these transcription 

factors interact with each other in order to determine floral organ identity in a 

combinatorial manner. Yeast two hybrid and protein-immunoprecipitation experiments 

revealed interactions among these transcription factors forming dimers and higher-order 

complexes (Egea-Cortines et al., 1999; Honma and Goto, 2001). These key regulators 

specify the identity and further differentiation of the organs to their final size, shape and 

function by controlling the expression of a large set of target genes. Target genes were 

identified by expression profiling and chromatin immunoprecipiation (ChIP), which 

provided information on the direct transcriptional regulation of downstream targets during 

early stages of flower development (Kaufmann et al., 2009; Kaufmann et al., 2010b; 
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O'Maoileidigh et al., 2013; Wuest et al., 2012). These approaches revealed that many 

transcription factors could act as transcriptional activators or repressors depending on the 

tissue type, stage of development as well as endogenous and exogenous signals. 

Furthermore, using an inducible system for synchronised flower development global 

changes in gene expression with high temporal resolution could be studied (Kaufmann et 

al., 2010b; Wellmer et al., 2006). These studies showed that the expression of genes is 

highly dynamic during flower initiation and floral organ development. To correlate 

dynamic changes in expression with changes in TF DNA-binding, we recently determined 

the dynamic binding profiles of two master regulators of flower development: AP1 and 

SEP3 (Pajoro et al., 2014b; Chapter 3). The ChIP-seq experiments at different stages of 

flower development revealed the STERILE APETALA (SAP) gene as dynamically bound 

by AP1 and SEP3 (Pajoro et al., 2014b). We found an increase in AP1 binding at the SAP 

locus from day 2 to day 4 after AP1 induction and a decrease in both AP1 and SEP3 

binding from day 4 to day 8. Other MADS-domain proteins, such as AG (O'Maoileidigh 

et al., 2013), PI and AP3 (Wuest et al., 2012) bind to the SAP locus at stage 4 of flower 

development. The sap mutant has previously been described to be strongly affected in 

flower and ovule development (Byzova et al., 1999). The sap mutant was identified in a 

transposon tagging screen. Mutant plants are bushy and sterile due to defects in 

megasporogenesis. Sap flowers lack petals and late arising flowers resemble an ap2 

mutant with conversions of sepals into carpelloid structures (Byzova et al., 1999).  

Based on this previous study, SAP appears to be another important player in establishing 

the body plan of the flower. Therefore, we decided to investigate the role of SAP at early 

stages of flower development in more detail and aim to understand its regulation by ABC-

class genes and its biological function. 

 

 

RESULTS  

The SAP locus 

In previous experiments (Pajoro et al., 2014b), Chapter 3) we identified genomic regions 

in the SAP locus bound by AP1 and SEP3 (Figure 1). Since the published mutant line 

(Byzova et al., 1999) was no longer available we searched for new mutant lines. We 

selected three lines that had T-DNA insertions in the intron and exons: sap-1 (SALK-
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129750), sap-2 (SALK-023467) and sap-3 (FLAG-359F07), respectively (Figure 1). The 

sap-1 and sap-2 T-DNA insertions are located in the 1st intron, and sap-3 has a T-DNA 

insertion in the 3’ UTR.  

 
Figure 1. Schematic representation of the SAP locus. Regulatory regions numbered from I to V have been 

identified  through AP1 and SEP3 DNA binding profiles,  in  the  figure  the SEP3 binding profile at day 4  is 

reported as example. The regulatory regions II and IV were found to be preferentially bound at day 4 by 

both AP1 and SEP3. AG binds to the regulatory region III and AP3 and PI bind to the regulatory region IV. T‐

DNA  insertions  in  corresponding mutant  lines  are  indicated by  a  triangle. Dashed  line  is  the promoter 

region, blocks are exons with coding region indicated by thicker rectangles, solid line is an intron.  

 

 

The sap mutant phenotype. 

The phenotype of all three homozygous T-DNA insertion lines was studied and compared 

to wild-type plants. All insertion lines were smaller and bushier compared to wild-type. 

Mutants were sterile with serrated leaves and reduced internode length (Figure 2A-D). In 

sap plants severe defects in flower development were observed (Figure 2E-L). Mutant 

flowers are smaller with a reduction in organ numbers (Figure 2H), aberrant stamens and 

longer style compared to wild-type (Figure 2G). A significant difference in petal 

numbers between the mutant lines was observed: strong reduction in petal number or 

completely apetala flowers were found in the sap-3 line as described by Byzova et al 

(1999), while the reduction in petal number was less in the sap-1 and sap-2 lines (Figure 

2H-L). Since sap-1 and sap-2 mutant alleles were alike only sap-2 was considered 

further. sap mutant plants show an extended longevity, most likely because these plants 

are sterile and continue to form flowers. 11 weeks old sap plants were bushy and stronger 

defects in the flowers were observed (Figure 3A). The late arising flowers showed a 

more severe phenotype than early formed flowers with a conversion of sepals into 

carpelloid structures and the formation of ectopic ovules (Figure 3B-E).   
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In conclusion, the phenotypes observed in the T-DNA insertion lines are in agreement 

with the phenotype previously reported by Byzova and colleagues (Byzova et al., 1999), 

although the phenotype of late arising flowers is likely not specific for the sap mutant but 

due to the sterility of the plants. 

Figure 2. sterile apetala mutant phenotype. Since sap‐1 and sap‐2 mutant alleles were alike only sap‐2 

flowers are  shown  in  the  figure. A.  sap‐2 mutant plant compared  to wild‐type. Mutant plant  is  smaller 

than wild‐type. All mutant plants are sterile. B. sap‐3 mutant plant compared to wild‐type. sap‐3 is smaller 

and more bushy than wild‐type due to the reduction in internode length. All mutant plants are sterile. C. 

sap‐2 mutant plant compared to wild‐type. sap‐2 has a smaller rosette and  leaves are serrated. D. sap‐3 

mutant  plant  compared  to  wild‐type.  sap‐3  has  a  smaller  rosette  and  leaves  are  serrated.  E.  sap‐2 

inflorescence. Siliques  fail  to elongate due  to  sterility. F.  sap‐3  inflorescence. Absence of petals  can be 

observed. G. Phenotypes observed in flowers of sap‐1, sap‐2 and sap‐3. sap flowers are smaller than wild–

type  flowers.  sap‐1  and  sap‐2 mutant  flowers  are  very  similar, while  a  stronger mutant  phenotype  is 
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observed in the sap‐3 mutant flower. In all mutant alleles the anther filaments do not fully elongate and 

anthers fail to release pollen. Mutant gynoecium has a longer style compared to wild type. Moreover, sap 

flowers  show  a  reduction  in petal  and  stamen numbers. Bar  = 1mm. H. Histogram  shows  the  average 

number  of  flower  organs  in  the  different  sap mutant  alleles  compared  to wild‐type  (n  =  40).  I.  sap‐2 

flower, one sepal has been removed to reveal inside organs. Reduction in petal numbers and aberrations 

in the anthers can be observed. Bar = 1mm.  J. sap‐3 flower. No petals are present, stamens show severe 

defects in the anthers and no pollen seems to be formed. The gynoecium has a longer style. Bar = 1mm. 

 

Figure 3.  sap phenotype  in old 

plants  A.  11  weeks  old  sap 

mutant  plant  with  a  bushy 

appearance and  it  continues  to 

grow  while  no  seeds  are 

produced.  B.  sap‐2  late  arising 

flower. Flower shows a stronger 

phenotype with  conversions  of 

sepals  into carpelloid structures 

with ectopic ovule  formation C. 

sap‐3  late  arising  flower  with 

sepals converted  into carpelloid 

structures  and  ectopic  ovule 

formation.  Arrows  indicate 

ectopic  stigmatic  tissue.  * 

indicates  ectopic  ovule 

formation. 

 

SAP expression in mutant lines and wild-type. 

To confirm the reduction in SAP expression in the mutant lines we assessed the presence 

of SAP transcripts by real-time PCR (Figure 4A-B). We designed two different sets of 

primers: one pair of primers was designed to amplify a region spanning the 1st and 2nd 

exon to assess the absence of transcript in the sap-1 and sap-2 lines, the other couple of 

primers was designed at the 3’ UTR of the gene, to assess absence of the transcript in the 

sap-3 line. No transcript was detected in sap-1 (not shown) and sap-2 insertion lines 

(Figure 4A). We also observed a strong reduction in SAP expression in sap-3 plants 

using primers designed between the two exons, indicating that the T-DNA insertion in the 

3’ UTR causes instability of the mRNA and no transcript was detected with the pair of 

primers in the 3’ UTR (Figure 4B). 
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Figure  4.  SAP  expression  in wild‐type  and mutant  lines. A.  Reduction  of  SAP  expression  in  the  sap‐2 

mutant  line.  We  could  not  detect  any  expression  in  mutant  inflorescences  using  primers  designed 

between  the  two exons,  indicating  that  the presence of  the T‐DNA  insertion  abolished  SAP expression 

completely. Bars  indicate standard error calculated based on 3 biological replicates. B. Reduction of SAP 

expression  in the sap‐3 mutant  line. We could not detect any expression  in mutant  inflorescences using 

primers designed in the 3’UTR, while we observed a strong reduction in expression using primers designed 

between the two exons. These results indicate that the T‐DNA insertion in the 3’ÚTR causes instability of 

the mRNA. Bars indicate standard error calculated based on 3 biological replicates. 

Previous studies reported that SAP is strongly expressed in the inflorescence meristem, 

young flower buds and ovules (Byzova et al., 1999). In a developmental time-series (0-8 

days after AP1 induction) we found SAP expression to be down-regulated during floral 

organ development (Pajoro et al., 2014b) (Figure 5A). Moreover, we found that SAP is 

higher expressed in ap1 than in wild-type inflorescences (Figure 5B), suggesting that 

AP1 negatively regulates SAP.  

To study SAP expression in more detail, we generated a reporter construct for the SAP 

locus. We fused the SAP genomic region, consisting of 2 kb promoter region and the 

transcribed region of SAP (gSAP) to the green fluorescent protein (GFP). Ten gSAP:GFP 

T1 lines were studied, and two representative lines were analysed in more detail by 

confocal microscopy. Confocal imaging of gSAP:GFP showed nuclear localization of the 

GFP signal (Figure 5C-H). GFP signal was detected in the inflorescence meristem 

(Figure 5C) and in flower meristems until stage 5 (Figure 5C-D), while no GFP signal 

was observed in floral organs at later stages of flower development (Figure 5D). SAP 

seems to be most strongly expressed in the meristems. This result is in agreement with 
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previous RNA in situ hybridization studies, which reported SAP expression in 

inflorescence meristems and in flower buds from stage 1 to 6 (Byzova et al., 1999).   

To better characterize the upstream regulation of SAP we introduced the reporter gene 

gSAP:GFP in ap1 and ap1 cal mutants. We found that SAP is expressed more broadly 

and higher in ap1 than in wild-type flowers from stage 2 to stage 6 (compare Figure 5C 

and F). SAP ectopic expression was detected in sepalloid-leaves in ap1 flowers while no 

expression was detectable in wild-type sepals (Figure 5D, F-G). This result is in 

agreement with the qPCR analysis that showed higher SAP expression in ap1 mutant 

inflorescences than in wild-type inflorescences (Figure 5B). The findings suggest that 

AP1 may bind to the SAP locus to repress SAP expression in sepals. In contrast to later 

floral stages, SAP expression in the inflorescence meristem of ap1 appears to be the same 

as in wild-type flowers, which is in line with the lack of expression of AP1 in the 

inflorescence meristem (Mandel et al., 1992; Urbanus et al., 2009). SAP expression in the 

centre of the flower meristem of stage 2-6 floral buds, where AP1 is not expressed is most 

likely regulated by other MADS-domain TFs. Indeed, SAP is also bound by other 

transcription factors that regulate flower development and are expressed in the flower 

meristem, such as AP3, PI, AG and SEP3 (Kaufmann et al., 2009; O'Maoileidigh et al., 

2013; Pajoro et al., 2014b; Wuest et al., 2012).  

Next, we analyzed SAP expression profile in an ap1 cal mutant background and in the 

synchronized system for flower development (Wellmer et al., 2006). As expected, we 

observed strong expression in ap1 cal (Figure 5H) since the inflorescences of ap1 cal 

mutant plants are composed of indeterminate propagation of inflorescence meristems that 

fail to develop proper floral organs.  

Furthermore, we analysed the expression profile of SAP in the synchronised system for 

flower development, pAP1:AP1:GR ap1 cal (Figure 5I-K). We studied the expression 

profile before induction of flower development (Figure 5I), 1 day after induction (Figure 

5J) and 4 days after induction (Figure 5K). We observed that 4 days after induction, SAP 

expression is confined to the floral meristem which explains the lower level of expression 

detected in the microarray experiments (Figure 5A). 
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Figure 5. SAP expression profile at early  stages of  flower development  in wild  type, ap1 and ap1  cal 

background. A. SAP expression profile in the synchronised flower system at 0‐8 days after AP1 induction. 

RT‐qPCR was performed with 3 biological replicates for plants treated with DEX or mock B. SAP expression 

in  ap1  and wild‐type  inflorescences. Bars  indicate  SE  between  three  biological  replicates.  C.  gSAP:GFP 

expression  in  inflorescence meristem  (IM) and  flower buds until  stage 5  in a wild‐type plant  (Col‐0). D. 
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gSAP:GFP expression in a flower at stage 4: expression is observed only in the floral meristematic region, 

no expression was detected in sepals. E. gSAP:GFP expression in floral stage 8, no expression was detected 

at this stage. F. SAP expression  in ap1 mutant background. SAP  is more broadly and higher expressed  in 

ap1 flowers. GFP expression can be observed in the sepal‐leaf structures in ap1 flowers between stage 3 

and 6 (*). G. SAP expression in an ap1 mutant flower at stage 6. GFP signal was detected in the abaxial site 

of  the  sepaloid‐leaves  and  in  stamen  and  carpel primordia. H. gSAP:GFP  expression  in ap1  cal mutant 

background. I. gSAP:GFP expression profile in ap1 cal pAP1:AP1:GR mutant background before induction. 

J.  gSAP:GFP  expression  profile  in  ap1  cal  pAP1:AP1:GR mutant background  1  day  after  induction. GFP 

expression seems to decrease. K. gSAP:GFP expression profile in ap1 cal pAP1:AP1:GR mutant background 

4 days after induction. GFP expression was detected in meristematic tissues and not in developing sepals. 

Numbers  indicate  stage  of  flower  development  according  to  (Smyth  et  al.,  1990).  IM,  inflorescence 

meristem; FM, flower meristem; se, sepal; sl, sepaloid‐leaf ca, carpel; pe, petal; an, anther. Bars=50um.  

 

Molecular function of SAP.  

Finally, we were interested to study the molecular function of SAP. Due to the nuclear 

localisation of SAP:GFP (Figure 5), we hypothesised that SAP could act as DNA-

binding factor. To identify putative direct targets of SAP, we performed chromatin 

immunoprecipitation (ChIP) using the gSAP:GFP line. Based on the strong petal 

phenotype observed in the sap mutant plants, we decided to look for SAP binding to 

genomic loci involved in petal development, such as AP3 and SEP3. Next to these genes 

we examined binding events at the AG locus, since AG was previously found to be 

ectopically expressed in the sap mutant (Byzova et al., 1999). We performed ChIP-qPCR 

using specific primers for the AP3, SEP3 and AG loci. We could not observe any 

enrichment for the AP3 and AG loci, while for the SEP3 locus a low enrichment (P-

value=0.1) was observed in sample 1 (Figure 6). This result could be due to the fact that 

SAP is not binding to DNA, which is in agreement with the absence of a predicted DNA-

binding domain in the SAP protein. Alternatively, we selected the wrong genomic regions 

for our ChIP-qPCR. 

As SAP did not show significant DNA-binding to the examined loci, we had a closer look 

at the predicted domain organization of the protein. SAP contains a WD40 repeat-like-

containing domain (www.ebi.ac.uk/interpro), which is typically involved in protein-

protein interactions (Smith, 2008; Smith et al., 1999). Proteins containing WD40 repeats 

are known to serve as platforms for the assembly of protein complexes or mediators of 

transient interplay among other proteins. Thus, SAP could act as part of a protein 

complex; to investigate this hypothesis we performed a protein pull-down experiment to 

identify proteins that interact with SAP (Smaczniak et al., 2012).  
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Figure  6.  qPCR  on  selected  loci  after  chromatin  immunoprecipitation  (ChIP).  ChIP  experiments were 

performed with gSAP:GFP inflorescences using anti‐GFP antibody. Sample 1 inflorescences were fixed with 

FAA, while Sample 2 inflorescences were fixed with FAA and DMA. Enrichment was tested for AG, AP3 and 

SEP3 loci. RESPONSE REGULATOR 6 (ARR6) and HEAT SHOCK FACTOR 1 (HSF1) loci were used as negative 

control, since no enrichment  is expected at these  loci. No enrichment was  found  for AG and AP3  loci  in 

both  samples, while  a  low  enrichment was observed  for  the  SEP3  locus  in  sample  1. Bars  indicate  SD 

between two technical replicates. 

 

The results of the LC-MS-based complex isolation using the gSAP:GFP transgenic plants 

revealed ARABIDOPSIS SKP1-HOMOLOGUE 1 (ASK1) and ARABIDOPSIS SKP1-

HOMOLOGUE 2 (ASK2) as significantly enriched compared to the control sample 

(Figure 7 and Table 1).  

SKP1 is part of the Skp, Cullin, F-box protein complex (SCF-complex), an E3 ubiquitin 

ligase (Porat et al., 1998; Wang et al., 2006). SCF complexes act at the post-

transcriptional level by ubiquitinating proteins designated for degradation via the 26S 

proteasome. SCF-complexes are typically composed by four units: Cul1, Rbx1, Skp1 and 

a member of the F-box protein family. Rbx1, which contains the RING domain, and Cul1 

form a catalytic core of the complex, a variable F-box protein subunit binds the target 

protein, and Skp1 serves as bridge between the F-box protein and Cul1 (Shabek and 

Zheng, 2014; Zheng et al., 2002).  

F-box proteins that function in SCF-complexes are characterized by an amino-terminal F-

box motif that binds to Skp1 and by a C-terminal protein-protein interaction domain, such 

as Leucine-rich repeats (LRR), Kelch-repeats or Tryptophan-Asparagine-rich repeats 

(WD40), that binds substrate proteins to the complex. Remarkably, an F-box motif is 

predicted at the N-terminus of SAP (http://www.ebi.ac.uk/interpro/protein/Q9FKH1), 

suggesting that SAP may play the role of an F-box protein in such an SCF complex. 

Interestingly, CUL1 was also found between the top enriched proteins, although not 
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significant at FDR 0.01. The lower level of CUL1 enrichment can be explained by the 

indirect interaction between the F-box protein and the cullin.  

 

Table 1. Results of LC-MS-based complex isolation of gSAP:GFP inflorescence meristems.  

 
(*) indicates proteins significantly enriched at FDR0.01. 

 

 

 
Figure  7.  Protein  interaction  profile.  Scatterplot  of  gSAP:GFP  IP.  Protein  abundance  ratios  between 

sample and control plotted against the iBAQ intensities for a particular protein. In squares are significant 

enriched proteins at FDR 0.01.  

 

All Unique
AT5G35770 SAP * 5.58 29 29
AT1G75950 ASK1 * 4.97 9 5 SKP1 is core component of the SCF family of E3 ubiquitin ligases
AT5G42190 ASK2 * 4.88 11 7 SKP1 is core component of the SCF family of E3 ubiquitin ligases

GFP * 3.82 13 13
AT1G79930 HSP70-14 * 2.39 32 4 High molecular weight heat shock protein 70

Q93YS7 2.29 11 11 Putative WD-repeat membrane protein
AT2G04550 IBR5 * 2.15 4 4 Protein-tyrosine-phosphatase, IBR5 promotes auxin responses
AT5G62390 BAG7 2.07 10 10 BAG family molecular chaperone regulators
AT4G02570 CUL1 1.81 4 4 Encodes a cullin that is a component of SCF ubiquitin ligase complexes
AT5G64040 PSAN 1.78 3 3 Photosystem I subunit 
AT3G22330 RH53 1.68 5 5 DEAD-box ATP-dependent RNA helicase
AT4G14713 TIFY4 1.58 3 3 Plant-specific putative DNA-binding protein
AT5G25980 TGG2 1.47 17 14 Myrosinase, involved in glucosinoloate metabolism
AT2G29550 TUB7 1.45 22 3 Beta-ubulin

Peptide number
ATG Protein Log10 Ratio Description
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DISCUSSION 
The SAP genomic locus is bound by many key regulators of flower development, such as 

AP1, AP3, PI, AG and SEP3. Moreover, loss of function of SAP leads to severe 

aberrations in floral organs, such as the lack of petals and the conversion of sepals into 

carpelloid organs. Taken together these results indicate a fundamental role of SAP during 

early stages of flower development. We found that SAP is strongly expressed in 

meristematic tissues, while no expression was detected in floral organs. The 

characterisation of SAP expression in the ap1 mutant indicates that AP1 negatively 

regulates SAP expression in sepals. Moreover, the severe defects in petal and stamen 

development in the sap flowers, as well as previously reported binding of PI, AP3 and 

AG to the SAP locus suggest that SAP acts down-stream the homeotic genes in the 

regulation of flower organ development. However, more studies are needed to further 

characterize the cis-regulatory regions in the SAP locus and the regulation of SAP by 

MADS-domain transcription factors. Next, the result of our pull-down experiment 

prompted us to speculate about a mechanism for SAP: SAP may act at the post-

transcriptional level by being part of a SCF-complex together with ASK1/2 and CUL1 

(Figure 8). The ask-1 mutant shows severe defects in flower development such as 

reduction in petal number and defects in petal and stamen growth (Zhao et al., 1999). 

Similar to SAP, ASK1 is expressed in meristems and floral organ primordia (Porat et al., 

1998). The similarities between the loss of function mutants and the expression profiles of 

SAP and ASK1 suggest a genetic interaction between the two genes.   

In conclusion, SAP together with ASK1/2 and CUL could form an E3 ubiquitin ligase 

SCFSAP complex, and target proteins involved in organ development for ubiquitination. 

However, further experiments are needed to identify the proteins ubiquitinated by the 

SCFSAP complex and whether SAP can act as an F-box protein. 
Figure  8.  Model  of  SAP  mode  of  action. 

Ubiquitin  (Ub)  is  activated  by  the  ubiquitin‐

activating  enzyme  (E1)  and  then  transferred  to 

the  ubiquitin‐conjugating  enzyme  (E2).  The  E2 

interacts with  the ubiquitin‐ligase  (E3), here  the 

SCF  complex  (green),  through  a  RING‐protein 

RBX1.  SAP  may  be  part  of  an  SCF  complex 

composed by  the  SPK1 homologs ASK1 or ASK2 

and CUL1. SAP, as F‐box protein recognizes target 

proteins  for  ubiquitination.  The  ubiquitin  is 

transferred  from  the  E2  to  the  target  protein, 

which is then degraded via the proteasome. 



Chapter 5 

155 

MATERIALS and METHODS 
Plant material. All plants were grown at 20 °C under long day condition (16 h light, 8 h 

dark) on rock wool. Seeds of knock-out lines SALK_129750 (N663979) and 

SALK_023467 (N523467) were obtained from the Nottingham Arabidopsis Stock Center 

(NASC). Seeds of knock-out line FLAG_359F07 (DUPTV34T3) were obtained from 

INRA. 

Isolation of RNA and real-time PCR analysis.  Total RNA was extracted using the Invitek 

Kit according to the manufacturer’s protocol. DNase I digestion was performed on total 

RNA using DBase I from Ambion. RNA integrity was checked on 1% (w/v) agarose gel 

after DNase I treatment. First-strand cDNA was synthesized from  1 µg of total RNA 

using TaqMan kit (Roche) cDNA Synthesis Kit following the manufacturer’s protocol. 

For SAP expression 2 pairs of primers were used, one designed between the first and 

second exon (forward: 5’-GGAGAAGTTGACGCCATTGTTGC-3’ reverse 5’-

ACTCTGAGCCGTTGATGAAGCTGA-3’) and the second one designed in the 3’UTR 

region exon (forward: 5’-CAGGAGGGTGAGATTTACAAGG-3’ reverse 5’-TGAGAG 

AGCCCTAAACACAAGG-3’). 

GFP fusion reporter gene constructs. SAP genomic region was amplified by PCR using 

the following primers: forward: 5’-GAAAATGTACAGTCTTACGAGACCA-3’ reverse: 

5’- CAGTGCACCGAAATCCCATA-3’. The PCR fragment was cloned into the 

GATEWAY vector pCR8/GW/TOPO from Invitrogen and transferred via LR reaction 

into the pGREEN destination vector pGBGWG-AM884387 (Curtis and Grossniklaus, 

2003), Zhong et al., 2008). Expression vectors were introduced into Arabidopsis thaliana 

ecotype Col-0 by floral dip transformation (Clough and Bent, 1998). Transformant plants 

were selected on plates containing ½ Murashige-Skoog (MS) medium pH 6 with 10 

μg/ml phosphinothricin (ppt) and 0.7% Agar.  

Confocal Scanning Laser Microscopy (CSLM). GFP tagged protein localization was 

observed trough CSLM on Leica SPE DM5500 upright microscope using an ACS APO 

40x/1.15 oil lens and using the LAS AF 1.8.2 software. FM4-64 dye was added to 0.1% 

agar at a concentration of 5 μM and used as staining of cell membranes. GFP and FM4-64 

dye were excited with the 488-nm line of an Argon ion laser. The GFP emission was 

detected at a bandwidth of 505-530 nm, while FM4-64 dye and chloroplast auto-
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fluorescence were detected at a bandwidth of 650 nm. After acquisition, optical slices 

were median filtered and three-dimensional projections were generated with LAS AF 

1.8.2 software package. 

Chromatin immunoprecipitation (ChIP). ChIP was performed according to (Kaufmann et 

al., 2010a; Smaczniak et al., 2012b). Inflorescences from gSAP:GFP were collected on 

ice and fixed on ice with 1% FAA for 30 min or with 10 mM DMA for 30 min followed 

by fixation with 1% FAA for 30 min. After the ChIP, DNA fragments were amplified 

using the following primers and the enrichment was calculated using the non-targets 

HSF1 and ARR6.   

Gene ID Alias Forward primer 5’→ 3’ Reverse primer 5’→ 3’ 

AT4G17750 HSF1 gctatccacaggttagataaaggag gagaaagattgtgtgagaatgaaa 

AT5G62920 ARR6 gccaccatggtttcacatcatatc cctttgcaagaagatactctgagc 

AT1G24260 SEP3 aaacccagacgtgacttgtttgacg tgagaatcggacggctttgagg 

AT3G54340 AP3 caattgatttaagcagtgtc ggaaagtattgcctaatccatgaaag

AT4G18960 AG ctacgagcagcttatgccacca gagtaatggtgattgttaggttgc 

 

LC-MS-based complex isolation. Immunoprecipitation was performed using GFP 

antibody coupled to magnetic beads using inflorescence from gSAP:GFP ap1 cal plants. 

Experiment was performed according to Smaczniak et al., (Smaczniak et al., 2012a) on 

“crude extract” for 3 biological replicates for gSAP:GFP ap1 cal and ap1 cal as control.  
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ABSTRACT 
The WUSCHEL-related homeobox (WOX) genes play key roles in many developmental 

processes, from embryo formation to root and flower development. Flower development 

is a key step in plant reproduction, which is tightly controlled by . the master regulators of 

flower development. These master regulators have been identified and they are 

predominantly represented by transcription factors belonging to the MADS-domain 

family. Recently, MADS-domain protein DNA-binding profiles showed that many of the 

WOX genes are direct targets of MADS-domain proteins, among them is WOX12, which 

was also reported to be differentially expressed during flower development. In this 

chapter we focus on the functional characterisation of WOX12 and its role in Arabidopsis 

flower development. WOX12 acts downstream APETALA1 (AP1) and ectopic expression 

of WOX12 leads to reduction of AGAMOUS (AG) expression, suggesting a role for 

WOX12 in regulating the antagonistic interplay between the homeotic genes AP1 and AG. 

The phenotypes obtained by down-regulation and overexpression of WOX12 are 

consistent with a proposed role of this gene in defining the border between  AP1 and AG 

gene expression domains, exactly where WOX12 is expressed in the flower meristem. 
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INTRODUCTION 
Flower development is a fundamental process in the plant life cycle since the correct 

formation of flower organs is a prerequisite to produce seeds. In Arabidopsis, flowers are 

composed of four different types of organs arranged in concentric whorls: four sepals, 

four petals, six stamens and two fused carpels. In the 90s an elegant model, called ABC 

model, was proposed to explain the identity determination of these organs (Coen and 

Meyerowitz, 1991). According to the ABC model, the expression of A-class genes, such 

as APETALA1 (AP1) and APETALA2 (AP2), determines sepal identity in whorl 1, while 

the expression of C-class genes, such as AGAMOUS (AG), determines carpel identity in 

whorl 4.  B-class genes, represented by APETALA3 (AP3) and PISTILLATA (PI), specify 

the petals together with A-class genes in whorl 2 and the stamens in whorl 3 when 

expressed in combination with C-class genes (Bowman et al., 1989). The genes mention 

above represent the master regulators of flower development since they are necessary and 

sufficient to determine proper flower organ formation.  

In the past decades a number of genes that act downstream of these master regulators 

have been identified. However, only recently more global information became available 

about the complexity of the gene regulatory network that determines flower organ 

formation by genome-wide studies. DNA-binding profile experiments and transcriptome 

analysis revealed hundreds to thousands of direct target for each master regulator. Among 

the newly identified targets an overrepresentation of homeobox transcription factors was 

observed (Kaufmann et al., 2009; Kaufmann et al., 2010b; O'Maoileidigh et al., 2013; 

Pajoro et al., 2014; Wellmer et al., 2006; Wuest et al., 2012). 

In Arabidopsis, the homeobox transcription factor family consists of 110 genes that can 

be further subdivided into 14 subfamilies based on sequence similarity and unique 

domain architecture (Mukherjee et al., 2009). The homeobox transcription factors are 

distinguishable by the presence of a typical DNA-binding domain of 60 amino acids, 

known as homeodomain, which is characterized by a helix-loop-helix-turn-helix structure 

(Kamiya et al., 2003). Homeobox transcription factors are key regulators involved in the 

determination of cell fate and cell differentiation in both plants and animals. Many 

members of the WUSCHEL-related homeobox (WOX) subfamily (van der Graaff et al., 

2009), which forms a plant specific subgroup of the homeobox transcription factor 

family, were found as direct targets of the flower master regulators (Kaufmann et al., 
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2009; Kaufmann et al., 2010b; O'Maoileidigh et al., 2013; Pajoro et al., 2014; Wellmer et 

al., 2006; Wuest et al., 2012). The WOX subfamily is named after the founder gene 

called WUSCHEL (WUS). The WOX subfamily differs from the other homeobox 

members by the presence of a WUS-box motif, the presence of one or two extra residues 

between helix 1 and 2, and four or five extra residues between helix 2 and 3 (Mukherjee 

et al., 2009). The WOX subfamily includes 15 members, which differ in their expression 

pattern and their role in development (van der Graaff et al., 2009). Although WOX genes 

are mostly characterised for their functions during embryogenesis, many of the subfamily 

members play a role in flower development. Indeed, WUS, WOX2, WOX5, WOX8 and 

WOX9 are expressed during early embryogenesis and their specific expression profiles 

reflect their role in developmental processes such as apical-basal axis formation and the 

establishment of shoot and root meristems (Breuninger et al., 2008; Haecker et al., 2004; 

Lau et al., 2010; Mayer et al., 1998) 

A role during flower development has been shown for WUS, WOX1, WOX3, WOX6, 

WOX9, WOX13 and WOX14. WUS is essential to maintain stem cell homeostasis in the 

shoot apical meristem (SAM) and floral meristem (FM). It is part of the CLAVATA 

(CLV)-WUS feedback loop mechanism that maintains the stem cell niche in the meristem 

but also controls cell division activity by restricting the expression of WUS to the 

organising centre (Lenhard et al., 2001; Lohmann et al., 2001). WUS has besides its 

function as repressor of stem cell differentiation (Schoof et al., 2000), a role in floral 

patterning. It plays a key role in flower development by acting as activator of AG in the 

floral meristem (Lenhard et al., 2001; Lohmann et al., 2001). Ectopic expression of WUS 

leads to the formation of carpels and stamens in whorls 1 and 2 as a consequence of the 

expansion of AG expression in these whorls (Ikeda et al., 2009; Lenhard et al., 2001). At 

later stages of flower development, the flower becomes determinate by the loss of WUS 

expression, which is caused by the AG target KNUCKLES (KNU) that acts as an repressor 

of WUS (Sun et al., 2009). 

WOX1 and WOX3, the latter also called PRESSED FLOWER (PRS), are expressed at 

early stages of flower development (Matsumoto and Okada, 2001; Zhang et al., 2011). 

PRS is required for sepal development (Matsumoto and Okada, 2001) and acts 

redundantly with WOX1 in sepal and petal growth. Flowers of wox1 prs mutants have 

narrow sepals and petals (Vandenbussche et al., 2009). The phenotype observed in wox1 

prs double mutants suggests a role for WOX1 and PRS in polarity determination during 
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sepal and petal development. In line with this, WOX1 and WOX3 have also been found to 

determine abaxial/adaxial fate in leaves (Nakata et al., 2012). 

WOX6, also called PRETTY FEW SEEDS 2 (PFS2), is preferentially expressed in ovules, 

where it is needed for proper integument development. In pfs2 mutants, the integuments 

are abnormal and most of the embryo sacs show impaired development resulting in a 

reduced number of seeds (Park et al., 2005). pfs2 mutants also have defects in flowers 

having ragged and wavy petal margins. Ectopic expression of PSF2 leads to strong 

abnormalities in the flower, such as the formation of carpelloid stamens and reduction in 

petal size (Park et al., 2005). The defects observed in flowers ectopically expressing 

PSF2 are due to a reduction of AG expression in the floral primordia (Park et al., 2005). 

The expression profile of PSF2 and the phenotypes observed by ectopic expression of 

PFS2 suggest that, alike WUS and PRS/WOX3, PFS2 acts in the regulation of cell 

differentiation in the floral meristem, possibly in part through the regulation of AG.  

WOX9, also called STIMPY (STIP), is expressed in meristematic tissues, in flowers at 

early stages of development and in ovules (Wu et al., 2005). STIP plays an important role 

in meristem growth and maintenance. Loss of function of STIP leads to an arrest in 

meristem growth (Skylar et al., 2010; Skylar et al., 2011; Wu et al., 2005), while 

overexpression of STIP in a clavata3 mutant background results in a proliferation of extra 

inflorescence meristems leading to an inflorescence apex that resembles an ap1 cal 

mutant (Wu et al., 2005). 

WOX13 and WOX14 play a role during floral transition, while later in development, 

WOX13 is important for replum development and WOX14 is required for proper anther 

differentiation (Deveaux et al., 2008; Romera-Branchat et al., 2012).  WOX13 is 

expressed in inflorescence meristems, floral meristems and in floral buds before and after 

anthesis, and at lower levels in siliques, yet WOX13 loss-of-function causes defects in 

replum formation only. In wox13 mutants, repla are narrower and valve margins are wider 

and more lignified than in wild-type (Romera-Branchat et al., 2012). Ectopic expression 

of WOX13 causes aberrations in all flower organs (Romera-Branchat et al., 2012). 

WOX12 together with its close homolog WOX11 are involved in de novo root 

organogenesis when explants are grown in in vitro culture (Liu et al., 2014), however a 

role of these WOX genes in flower development has never been reported. 

Here we show that WOX12 is also involved in flower development. Previously, it was 

reported that WOX12 is directly activated by AP1 during the initiation of the floral 
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meristem (Kaufmann et al., 2010b). In more recent studies we found that WOX12 is 

differentially expressed throughout flower development and it is bound by both AP1 and 

SEPALLATA3 (SEP3) at different stages of flower development (Pajoro et al., 2014; 

chapter 3). In this chapter we show that WOX12 plays a role in the determination of floral 

organ identities. We found that WOX12 acts downstream of AP1 in petal identity 

specification and ectopic expression of WOX12 causes reduction in AG expression and 

subsequent modifications of third whorl organ identities.  

 

RESULTS 

The WOX subfamily. 

The WUSCHEL-related homeobox (WOX) genes are specifically expressed in plants and 

form a large subgroup of the homodomain (HD)-containing transcription factor gene 

family (Mukherjee et al., 2009). The WOX subfamily includes 15 members that differ in 

their expression patterns and play different roles during Arabidopsis development (Table 

1). The WOX subfamily can be subdivided into 3 clades based on phylogenetic analysis: 

the WUS clade, the ancient clade and the intermediate clade. The WUS clade includes 

WUS, WOX1, WOX2, WOX3, WOX4, WOX5, WOX6 and, WOX7; the intermediate clade 

includes WOX8, WOX9, WOX11 and WOX12, while the ancient clade includes WOX10, 

WOX13 and WOX14 (Figure 1A).  

In agreement with their role in flower development, WOX genes are target of 

transcription factors (TFs) involved in flower development such as AG, AP1, AP2, AP3, 

PI and SEP3 (Kaufmann et al., 2009; Kaufmann et al., 2010b; O'Maoileidigh et al., 2013; 

Wuest et al., 2012; Yant et al., 2010), while proteins involved in the regulation of 

flowering time, such as SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 

(SOC1), FLOWERING LOCUS M (FLM), FLOWERING LOCUS C (FLC) and 

SCHNARCHZAPFEN (SNZ) do not bind to these WOX genes (Deng et al., 2011; 

Immink et al., 2012; Pose et al., 2013) (Table 2). For example, WOX1 and WOX3, are 

bound by TFs with a known role in sepal and petal initiation and development, such as 

AP1, AP2, AP3, PI and SEP3. This finding is in agreement with the role of WOX1 and 

WOX3 in sepal and petal development (Vandenbussche et al., 2009). There are still some 

family members that are not bound by any of the studied TFs, which is in agreement with  
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Table 1. Arabidopsis thaliana WOX subfamily. 

LOCUS 
GENE 
NAME CLADE EXPRESSION DOMAIN FUNCTION REFERENCES 

AT2G17950 WUS WUS clade SAM, floral meristem, 
ovule and anther 

regulation of cell fates, ovule 
and anther development 

Brand et al., 2002; Laux et al., 
1996; Mayer et al., 1998; Gross-
Hardt et al., 2002; Deyhle et al., 

2007; Ikeda et al., 2009 

AT3G18010 WOX1 WUS clade lateral organ primordia, 
leaves and flowers 

lateral organ formation 
abaxial/adaxial polarity 
establishment in leaves 

Haecker et al., 2004; 
Vandenbussche et al., 2009; 

Zhang et al 2011; Nakata et al., 
2012 

AT5G59340 WOX2 WUS clade female gametophyte, 
embryo apical domain embryo patterning Haecker et al., 2004; Wu et al., 

2007; Breuninger et al., 2008 

AT2G28610 

WOX3 
(PRS) WUS clade lateral organ primordia, 

leaves 

lateral organ formation 
abaxial/adaxial polarity 
establishment in leaves 

Matsumoto and Okada, 2001; 
Haecker et al., 2004; 

Vandenbussche et al., 2009; 
Nakata et al., 2012 

AT1G46480 WOX4 WUS clade cambium cambium activity Ji et al., 2010; Hirakawa et al., 
2010; Suer et al., 2011 

AT3G11260 WOX5 WUS clade root QC, pollen stem cell maintenance 
pollen tube elongation 

Haecker et al., 2004; Dorantes-
Acosta et al 2006 

AT2G01500 

WOX6 
(PSF2) WUS clade 

Ovule, SAM, leaves 
primordia, inflorescence 

meristem, floral meristem, 
anthers, petals and 

carpels 

ovule patterning and 
differentiation, petal and leaf 

morphology 
Park et al., 2005 

AT5G05770 WOX7 WUS clade unknown unknown 

AT5G45980 

WOX8 
(STPL) Intermediate clade female gametophyte and 

embryo basal domain embryo patterning Haecker et al., 2004; Wu et al., 
2007; Breuninger et al., 2008 

AT2G33880 

WOX9 
(STIP) Intermediate clade 

female gametophyte and 
embryo basal domain 

inflorescence meristem, 
floral meristem, ovules 

embryo patterning Haecker et al., 2004; Wu et al., 
2007 

AT1G20710 WOX10 Ancient clade unknown unknown 

AT3G03660 WOX11 Intermediate clade 
procambium 

and xylem parenchyma 
cells 

root organogenesis Liu et al., 2014 

AT5G17810 WOX12 Intermediate clade 
procambium 

and xylem parenchyma 
cells 

root organogenesis Liu et al., 2014 

AT4G35550 WOX13 Ancient clade root, leaves, gynoecium, 
embryo siliques 

delays flowering promote 
replum formation 

Deveaux et al., 2008; Romera-
Branchat et al., 2013; 

AT1G20700 WOX14 Ancient clade root, vascular tissue 
stamens 

promotes flowering, stamen 
development, root growth, Deveaux et al., 2008 

 

 

the broad functions played by the WOX subfamily genes. Next, we investigated the 

binding of AP1 and SEP3 to WOX loci at different stages of flower development (Pajoro 

et al., 2014). We performed ChIP-seq experiments at different stages of flower 

development using an inducible system for synchronised flower initiation (pAP1:AP1:GR 

in ap1 cal). We identified AP1 and SEP3 target genes during meristem specification (day 

2), floral organ specification (day 4) and organ differentiation (day 8). Stage-specific 

binding events were observed for most of the family members (Figure 1B). For example, 

WOX1 and WOX12 were bound by both TFs at days 4 and 8, while WOX2 was only 

bound by SEP3 at day 8. Remarkably, only 3 genes were found to be bound at all stages: 

WOX3 was bound at all-time points by AP1, while WOX9 and WOX13 were bound at all-

time points by SEP3. Moreover, due to the higher resolution obtained in the stage specific 
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ChIP-seq experiments, not previously reported binding events could be identified, such as 

the binding of SEP3 to WUS, WOX2, WOX9, WOX12 and WOX13 (Table 2 and Figure 

1B). 

We investigated the changes in expression of the WOX subfamily genes during early 

stages of flowers development (Figure 1C). We profiled gene expression in the inducible 

system pAP1:AP1:GR ap1 cal before treatment (day 0) and 2, 4 and 8 days after DEX or 

mock treatments. WOX6 and WOX10 expression decreases from day 2 to day 4 and 

increases from day 4 to day 8. WOX8 and WOX12 expression increases between day 2 

and day 4. WOX1 expression increases at a later stage of development (Figure 1C).    

Figure 1. The WOX subfamily. A. Phylogenetic tree showing the WOX subfamily genes. The analysis was 

performed on the Phylogeny.fr platform (Dereeper et al., 2008) using entire coding sequences of all WOX 

subfamily members. Sequences were aligned with MUSCLE  (Edgar, 2004) and the phylogenetic tree was 

reconstructed using the maximum likelihood method implemented in the PhyML program (Guindon et al., 

2010). The WOX subfamily can be subdivided into 3 clades: the WUS clade (red), the ancient clade (green) 

and the  intermediate clade (blue). B. AP1 and SEP3 DNA binding profiles  in WOX  loci.    In purple are the 

AP1 binding profiles and  in green, the SEP3 binding profiles. From the top to the bottom binding events 

are  shown  at day 2, day 4  and day 8  for  each  transcription  factor  (Pajoro  et al., 2014). C. Changes  in 

expression of WOX subfamily genes during flower development. Fold change in expression, as assessed by 

qPCR,    represents  the  difference  in  expression  between  plants  treated with  DEX  compared  to  plants 

treated with mock solution at each time point.  
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Table 2. TFs binding to WOX loci. 

 
Dark cells in the table indicate significant binding events in WOX loci reported for AG (O'Maoileidigh et al., 2013), AP1 

(Kaufmann et al., 2010b) (Pajoro et al., 2014), AP2 (Yant et al., 2010), AP3 (Wuest et al., 2012), FLC (Deng et al., 2011), 

FLM  (Pose  et  al.,  2013),  LFY  (Moyroud  et  al.,  2011),  PI  (Wuest  et  al.,  2012),  SNZ  (Mathieu  et  al.,  2009),  SEP3 

(Kaufmann et al., 2009), (Pajoro et al., 2014), SVP (Gregis et al., 2013), SOC1 (Immink et al., 2012). 

 

WOX12 expression profile during flower development. 

WOX12 is bound and activated by AP1 during the first stages of floral meristem and 

floral organ development (Kaufmann et al., 2010b). To study the expression profile of 

WOX12 during flower development in more detail, we generated a reporter construct 

expressing the WOX12 protein C-terminally fused to the reporter GREEN 

FLUORESCENT PROTEIN (GFP). This reporter construct, gWOX12:GFP, consists of a 

5kb region upstream the ATG and the WOX12 genomic region up to the stop codon. 

Confocal microscopy analysis showed that gWOX12:GFP is initially expressed in the IM 

at the border of newly arising flower buds, while no expression was detected in the floral 

meristem (FM) during the first stages of flower development (up to stage 4; Smyth et al 

1990).  GFP signal was detected again in the central dome of flower buds at stage 4-5 of 

development (Figure 2A-B). In flowers from stage 5, gWOX12:GFP is expressed in the 

central domain in  a ring-like shape at the position where the stamen primordia will arise 

and no expression was observed in the developing sepals nor at the place where petal 

primordia emerge (Figure 2B). In flowers at stage 11 the expression was detected in 

anthers and  in the carpels (Figure 2C-E).  Expression in petals is only observed in 

flowers at stage 9, before petal elongation (Figure 2C-D).  At anthesis (stage 12), 

gWOX12:GFP is expressed only in the carpels where it is predominantly expressed in the 

valve margins (Figure 2F).  

WUS WOX1 WOX2 WOX3 WOX4 WOX5 WOX6 WOX7 WOX8 WOX9 WOX10 WOX11 WOX12 WOX13 WOX14

2h
day 2
day 4
day 8

inflo
day 2
day 4
day 8

FLM
SOC1
SNZ

 SEP3

LFY
PI

SVP
FLC

AP1

AG

AP2
AP3
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Figure  2.  WOX12  expression  profile  during  flower  development.  A.  gWOX12:GFP  expression  in  an 

inflorescence  with  young  floral  buds  arising.  GFP  expression  was  detected  at  the  border  between 

inflorescence meristem  (IM)  and newly  formed  flowers. B.  gWOX12:GFP expression  in  a  flower bud  at 

stage 5. GFP expression  is detected  in  a  ring  shape  in  the  centre of  the  flower buds. No expression  is 

detected in sepals. C. gWOX12:GFP expression in a developing pistil and anthers in a flower at stage 11. D. 

gWOX12:GFP  expression  in  a  petal  in  a  stage  9  flower.  E.  stage  10  flower  where  GFP  expression  is 

detectable in the pistil and in the anthers.  F. gWOX12:GFP expression in a silique of a stage 12 flower. GFP 

expression is mainly detectable in the valve margins. Numbers indicate flower stages according to Smyth 

et  al.  (1990),  se=sepal,  pe=petal,  ,  an=anther,  fl=filament,  pi=pistil,  st=stigma,  vm=valve  margin. 

Bars=100um 

 

Regulation of WOX12 by MADS-domain transcription factors. 

Both AP1 and SEP3 bind to the WOX12 locus at different stages of flower development 

(Pajoro et al., 2014, chapter 3) and WOX12 is differentially expressed upon induction by 

AP1 (see Figure 1), suggesting that WOX12 acts downstream of AP1 in the regulation of 

flower development. To get insights into the regulation of WOX12 by AP1, we analysed 

the gWOX12:GFP expression profile in various homeotic mutant backgrounds (Figures 

3A-E). The GFP expression profiles in wild-type and ap1-10 plants were similar at the 

periphery of the IM where the newly arising buds appear, while broader expression was 
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observed at stage 5. In wild-type plants, WOX12 is expressed in a ring-like shape at the 

position where the stamens will emerge, however, in ap1, WOX12 seems to be broader 

expressed in this area. This difference in expression is consistent with the absence of petal 

primordia in ap1. The similar expression profile observed in the IM indicates that other 

genes are involved in WOX12 regulation (Figure 3 A-B). A candidate is CALIFLOWER 

(CAL), which is acting redundantly with AP1 in the regulation of flower initiation. 

Therefore, we analysed the WOX12 expression profile in the ap1 cal mutant. An ap1 cal 

inflorescence consists of a massive production of inflorescence meristems and no flowers 

are produced (Figure 3C). At early stages of flower development, gWOX12:GFP was 

expressed at the border of the inflorescence meristems in the ap1 cal mutant, similar to 

the pattern observed in wild-type inflorescence meristems. This suggests that WOX12 is 

expressed in the IM at positions where new FMs arise. Alternatively, WOX12 is 

expressed exactly at the border of any two meristems, independent whether it is an IM or 

a FM. In contrast to wild-type, no expression was detectable as a ring-like shape in the 

FM, which can be linked to the fact that flower development is arrested in the ap1 cal 

mutants (Figure 3C). Next, we analysed the gWOX12:GFP expression profile in the C-

class mutant ag. According to the ABC model the knock-out of C-class genes causes an 

expansion of the A-class gene expression domain (Gustafson-Brown et al., 1994). ag 

flowers are composed of only sepals and petals and no stamens or carpels are present. 

However, gWOX12:GFP expression was similar between wild-type and ag plants. 

Remarkably, as in wild-type, gWOX12:GFP is expressed in a ring-like shape in the 

central domain of ag flowers at stage 5. This result suggests that the expression in the 

central domain is not determined by the identity of the emerging organs, but is position-

specific. Finally, we studied the gWOX12:GFP expression profile in a ful mutant 

background (Figure 3E). In this mutant background the GFP signal was the same as in 

wild-type plants (Figure 3A and E).  In conclusion, the expression in the IM was not 

affected in the floral homeotic mutants, which is not surprising because AP1 and AG are 

not expressed in the IM, while FUL and CAL act redundantly with other genes. The 

difference observed in stage 5 flowers may be caused by the difference in flower 

morphology between wild-type and homeotic mutants, although the expression in a ring-

shape fashion appears to be independent of organ identity. 
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Figure 3. gWOX12:GFP expression profile  in wild‐type and homeotic mutants at early stages of flower 

development. A. gWOX12:GFP expression profile in wild‐type. B. gWOX12:GFP expression profile in ap1. 

C. gWOX12:GFP expression profile  in ap1 cal. D. gWOX12:GFP expression profile  in ag. E. gWOX12:GFP 

expression profile in ful. Bars=100 μm. 

 

 

The characterisation of WOX12 upstream regulatory elements. 

Our previous DNaseI-seq and ChIP-seq experiments suggest the presence of two cis-

regulatory regions in the WOX12 promoter (Pajoro et al., 2014; chapter 3) (Figure 1B; 

Figure 4A). To further characterise the role of these two putative regions, we cloned the 

WOX12 genomic locus (including coding sequence) in front of the GFP reporter using 

different promoter lengths: a long promoter of 5 kb that includes both cis-regulatory 

regions; a short promoter of 3 kb that includes only the cis-regulatory region “a” and a 

minimal promoter of 0.5 kb where both cis-regulatory elements have been deleted 

(Figure 4A). Arabidopsis plants were stably transformed with these constructs and the 

level of GFP expression in inflorescences of these plants were measured by qPCR 

(Figure 4B). GFP expression levels obtained with the long promoter and the short 

promoter were similar, while the level of GFP expression was highly reduced when using 

the minimal promoter. Next, we characterised the expression pattern at early stages of 

flower development. The long promoter (5 kb) gave GFP expression in the IM at the 

border between the IM and stage 2 flowers (see also Figure 2), no expression was 

detected in a floral meristem (FM) during the first stages of flower development (from 

stage 2 to stage 4), while GFP signal was detected again in a floral meristem of flower 

buds at stage 4-5 in a ring-like shape and no expression was observed in the developing 

sepals (Figure 4C). The GFP expression profile was broader in plants expressing the 

short promoter (3 kb). In those plants, additional GFP signal was often detectable in stage 

2 flowers and in sepal primordia of stage 3-5 flowers (Figure 4D). The ectopic 

expression observed in the sepals after deletion of the distal cis-regulatory region suggests 
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that TFs bind to this region to repress WOX12 expression in sepals. In plants expressing 

WOX12:GFP under the control of the basal promoter (500 bp) no GFP signal was 

detected (Figure 4E).  

 
Figure 4. Regulation of WOX12 expression. A.  Schematic representation of the WOX12 locus. Black boxes  

represent  coding  regions,  grey  boxes  represent  UTRs,  black  lines  depict  introns  and  the  dashed  line 

represents  the  promoter  region.  Black  arrow  indicates  the  coding  start  site  (CSS).  Peaks  “a”  and  “b” 

represent regions containing cis‐regulatory regions  identified  in DNAse I accessibility profile experiments 

(see chapter 3). The first cis‐regulatory region is located at 2.5 kb upstream the CSS while the second cis‐

regulatory element is located at 3.5 kb upstream the CSS. Above each regulatory region the transcription 

factors  are  indicated  that  have  been  reported  to  bind  to  that  region.  SEP3  binds  both  cis‐regulatory 

regions.  AP1  binds  to  the most  upstream  cis‐regulatory  region  (b)  in  inflorescence meristems  and  in 

flowers at stage 4 and 8 of development. Binding of AP1  to elements  in  region  (a)  is significant only  in 

inflorescence meristem  (AP1IM). The distal  region  (b)  is  also bound by PI  and AP2.   Red  lines  indicate 

CArG‐box  like elements. B. GFP expression  levels measured by qPCR. No quantitative differences  in GFP 

expression level was observed between long and short promoters. GFP expression is significantly lower in 

plants  with  the  basal  promoter  compared  to  the  long  and  short  promoters.  GFP  expression  was 

normalised  against  a housekeeping gene  (AT4G34270, TIP41). Values  are  reported  as means  and error 

bars  represent SE between 8 biological  replicates  for  the basal promoter and 19  for  the short and  long 
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promoters. C. Confocal  image of a  representative expression pattern observed  in plants expressing  the 

WOX12  locus  including a  long promoter  region  (5 kb  region upstream of  the CSS)  fused  to GFP. D. The 

same as C, but here the short promoter region (3 kb region upstream of the CSS) was used. Ectopic GFP 

signal was observed in arising sepals of flowers at stages 3‐5 of development. E. The same as C and D, but 

here a minimal promoter region (500 bp region upstream of the CSS) was used in the reporter construct. 

No GFP signal was detected in those plants. F. Confocal image of a representative GFP expression pattern 

observed in plants expressing the WOX12 locus including the short promoter region upon mutagenesis of 

the  CArG‐boxes  0,  I  and  II.  Substantially  lower  GFP  signals  were  detected  at  the  border  between 

inflorescence meristem  and  newly  formed  flowers,  and  in  floral meristems  of  flowers  at  stage  4  of 

development  when  compared  to  the  intact  short  promoter  shown  in  D.  G.  Confocal  image  of  a 

representative GFP expression pattern observed in plants expressing the WOX12 upon mutagenesis of the 

CArG‐box  I.  Higher  GFP  signals  were  detected  in  floral  meristems  of  flowers  at  stage  2  and  3  of 

development when compared to the  intact  long and short promoters shown  in C and D, respectively. H. 

Overview  of  the  changes  in  GFP  expression  pattern  upon  CArG‐box  mutagenesis.  The  graph  shows 

percentages of T1 plants that expressed GFP at the border between IM and newly arising buds, in FMs of 

flowers  at  stage  2‐3  of  development,  in  FMs  of  flowers  at  stage  4‐5  of  development,  and  in  sepal 

primordia. GFP expression patterns were characterised for 20 independent transgenic plants from each T1 

generation. Here, we considered the number of plants showing a particular spatial expression distribution, 

we did not include information about the level of expression.  

 

 

We then looked at transcription factors that bind to the WOX12 locus based on available 

data. APETALA2 (AP2) and the MADS-domain TFs AP1, SEP3 and PISTILLATA (PI) 

bind to the cis-regulatory elements in the WOX12 promoter region (Figure 4A) 

(Kaufmann et al., 2009; Kaufmann et al., 2010b; Pajoro et al., 2014; Wuest et al., 2012; 

Yant et al., 2010). Both cis-regulatory elements are bound by AP1 in inflorescence 

meristems of the ap1 cal mutant and by SEP3 in flowers at stage 4 and 8 of development 

(Pajoro et al., 2014). The cis-regulatory element “b” is also bound by AP2 and PI in 

inflorescences, and by AP1 in flowers of stage 4 and stage 8 of development. 

To characterise the role of MADS-domain proteins in the regulation of WOX12 

expression, we mutated the CArG-box like sequences present in the cis-regulatory 

elements. MADS-domain proteins bind to specific consensus sequences in the DNA 

called CArG-box. A CArG-box consist of a stretch of 10 nucleotides containing a core of 

six to eight “A/T” nucleotides flanked by either two or one “C” and “G”, respectively. 

One CArG-box-like sequence was identified in the cis-regulatory region “b” (named 

CArG-box III, Table 6) and two CArG-box-like sequences in the cis-regulatory region 

“a” (named CArG-box I and CArG-box II, Table 6). An additional CArG-box-like 

sequence was present in the first exon in a region bound by AP1 and SEP3 at stage 2 of 

flower development (named CArG-box 0). We mutated single and multiple CArG-boxes 
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in both long and short promoters (Figure 4G). Although in most cases the GFP 

expression patterns were not affected by the mutation of the CArG-boxes, we observed a 

higher frequency of plants expressing GFP in floral meristems (FM) of flowers at stage 2-

3 of development (Figure 4G) upon mutation of the CArG-box I (Figure 4H). 

Furthermore, we detected lower GFP expression at the borders between the IM and newly 

arising buds and in the FM at stage 4-5 when mutating the CArG-box 0, I and II in the 

short promoter (compare Figures 4D and F).  

The observation that mutation of CArG-boxes have only minor effects on spatial GFP 

expression patterns could have several explanations. An option is that the MADS-domain 

proteins bind to another CArG-box-like sequence after the elimination of the bound 

CArG-boxes by mutagenesis.  Recently, Mendes and colleagues showed that mutation of 

a CArG-box bound by SEP3 and STK in the VERDANDI (VDD) promoter leads to 

binding of a nearby CArG-box that was not previously bound (Mendes et al., 2013). 

Therefore, we searched for other CArG-box-like sequences in the WOX12 locus that 

could functionally replace the mutated CArG-boxes and we identified four of these 

alternative sites (see Table 6 in material and methods section). To test whether these 

CArG-boxes could be bound by either AP1 or SEP3, we performed Electrophoretic 

Mobility Shift Assay (EMSA) experiments. No in vitro binding of AP1 and SEP3 

homodimers or heterodimers to the DNA probes were observed suggesting that these 

alternative elements could not function as replacement for the mutated CArG-boxes 

(Figure 5A).  

 

 
Figure 5. EMSA experiment with AP1 and SEP3 binding to CArG‐boxes present  in the WOX12  locus. A. 

Analysis of binding of SEP3 homodimer to the alternative CArG‐box‐like sequences present in the WOX12 

locus. Lanes 1‐2: positive control,  lanes 3‐4: CArG box A,  lanes 5‐6: CArG‐box B,  lanes 7‐8: CArG box C, 

lanes  9‐10:  CArG‐box D.  Lanes  1‐3‐5‐7‐9  represent  the  negative  control where  the DNA was  incubate 
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without proteins. Lanes 2‐4‐6‐8‐10 show  the DNA  that was  incubated with SEP3. The band observed  in 

lane 2 represents the binding of a homodimer. The bands observed in lane 3 to 6  represent background 

binding  since  they are also present when  the DNA  is  incubated   without MADS –domain proteins. The 

same results were obtained when incubating the DNA with the heterodimer SEP3‐AP1 (results not shown).  

B. Analysis of binding of the SEP3 homodimer to DNA fragments containing the CArG‐boxes 0, I, II and III 

(lanes 1‐4, respectively). The band observed in lane 5 represents the binding of the SEP3 homodimer to a 

control DNA fragment (positive control), no SEP3 binding was observed for any of the other CArG‐boxes. 

The same results were obtained when  incubating the DNA with the heterodimer SEP3‐AP1 or the SEP3‐

AP1‐AP3‐PI complex (results not shown). 

 

This result suggests that the MADS-domain protein binding observed in previous ChIP 

experiments may not be direct. Indeed MADS-domain proteins are found to be part of 

bigger complexes, specifically AP1 interacts in vivo with other TFs such as KNAT3, 

BLH1, BLR, ARF2 and SPL8 (Smaczniak et al., 2012). Therefore, we tested the binding 

of AP1 and SEP3 to the CArG-box 0, I, II and III by EMSA (Figure 5B). None of the 

CArG-boxes was bound by either AP1 or SEP3 homodimers, neither by an AP1-SEP3 

complex indicating that AP1 and SEP3 do not bind directly to the proposed cis-regulatory 

elements, despite the ChIP peaks reported previously (Pajoro et al., 2014).   

 

Loss of function of WOX12 affects flower development. 

To investigate the role of WOX12 during flower development, we characterised the loss 

of function mutant allele wox12-1 (SALK_087882) (Liu et al., 2014). Next, we designed 

an artificial microRNA (amiRNA) (Schwab et al., 2006), which specifically targets the 

WOX12 locus (amiR-wox12). The WOX12ami was designed to target a region in the first 

intron of the gene and was expressed under the control of the constitutive Cauliflower 

Mosaic Virus 35S promoter (p35S) (Figure 6A). We confirmed a reduction in WOX12 

expression in inflorescences of the wox12-1 and the amiR-wox12 lines by qPCR analysis. 

We tested WOX12 expression levels using primers designed to amplify two different 

regions of the WOX12 locus. The first couple of primers amplifies a region in the first 

exon, which is the same region targeted by the amiRNA. The second couple of primers 

was designed at the end of the gene, flanking the second intron, which includes the T-

DNA insertion (Figure 6A). Expression analysis using these two primer sets revealed that 

approximately 20 % residual expression is left, but that these mRNAs most likely lack the 

third exon, encoding the C-terminal 5 amino acid residues (Figure 6B). Furthermore, we 
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could observe a substantial reduction in WOX12 expression in several lines expressing the 

WOX12ami transcript (Figure 6C).  

Figure  6.  Knockdown  of WOX12  causes  aberrations  in  flowers.  A.  Schematic  representation  of  the 

WOX12  locus. Dark  grey  blocks  represent  coding  regions while  dark  lines  represent  introns,  light  grey 

blocks represent 5’and 3’ UTR regions and the light grey line represents the promoter region. The artificial 

microRNA  (ami)  was  designed  to  target  a WOX12  specific  sequence  in  the  first  exon.  The  wox12‐1 

(SALK_087882)  line  has  a  T‐DNA  insertion  in  the  second  intron.  B.  WOX12  expression  in  wox12‐1 

inflorescences. No  transcript was  detectable  using  primers  flanking  the  second  intron  (black), while  a 

reduction  in  expression was  detectable  using  primers  in  the  first  exon  (grey). WOX12  expression was 

tested in 6 plants homozygous for the T‐DNA insertion. Bars indicate SE between two replicates for wild‐

type and 6 biological replicates for SALK_087882. C. WOX12 expression  in  inflorescences of amiR‐wox12 

plants. WOX12 expression was assessed  in 7  independent  lines. WOX12 was significantly  lower  in 6  lines 

overexpressing  the amiR‐wox12, although some differences  in  reduction  levels were observed between 

the  lines. Bars  indicate SD between  two  technical  replicates  for each   T1  line. D. Wild‐type Arabidopsis 

thaliana Col‐0 flower with one sepal and one petal removed. E. amiR‐wox12flower where the formation of 

a stamenoid petal can be observed (arrow). Sepal removed to allow the visualisation of the inner organs.  

F. ap1‐3  flower. Formation of a stamenoid petal can be observed  (arrow). Sepal  removed  to  reveal  the 

inner organs.   
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Next, we investigated the flower morphology by microscopic analysis. Arabidopsis 

flowers have a canonical body plan with 4 sepals, 4 petals, 6 stamens and 2 fused carpels 

forming one pistil (Figure 6D). We could observe defects in flowers of both wox12-1 and 

amiR-wox12 mutant lines, such as reduction in stamen number and the formation of 

stamenoid petals (Figure 6D-E and Table 4). These stamenoid petals are positioned in 

whorl 2 and replaces normal petals. These aberrations are rare (Table 4) and when they 

occur, only one petal in a flower is converted into a chimeric organ with stamenoid 

tissues. We observed a higher frequency of defected flowers in the amiR-wox12 line 

compared to wox12-1, probably due to the presence of a partially functional protein in 

wox12-1 (Table 4). Furthermore, in wox12-1 flowers we observed a significant reduction 

in stamen numbers compared to wild-type. In some mutant flowers only 4 or 5 stamens 

are produced, suggesting a role for WOX12 in stamen development or the initiation of 

whorl 3 primordia (Table 4). WOX12 is indeed expressed in the floral meristem in 

flowers at stage 5 when stamens are determined (Figure 2B). We also observed chimeric 

stamenoid petal organ formation (Figure 6E), which  resembles a phenotype observed in 

the weak ap1 mutant allele ap1-3  (Figure 6F), indicating a role for WOX12 downstream 

AP1 in the regulation of flower development.  

 

 

Table 4. Identity and numbers of floral organs in wild-type, ap1-3 and WOX12 mutant lines.  

 
Flowers from 2 months old plants were analysed at anthesis. A reduction in stamen numbers compared to 

wild‐type was observed in both wox12 mutant lines. In amiR‐wox12 flowers, and at a lower frequency in 

wox12‐1  flowers,  formation  of  stamenoid‐petal  organs  were  observed.  A  similar  phenotype  is  also 

observed  in  ap1‐3  flowers.  (*)  indicates  significant  differences  according  to  unpaired  t‐Test  at  p‐value 

<0.001. (“) indicates significant differences according to unpaired t‐Test at p‐value <0.05. 

 

Fourth whorl

sepal leaf‐sepal

petaloid 

sepals

carpelloid 

sepal petal

stamenoid 

petal stamen filament

petaloid 

stamen carpel

4 ± 0 0 0 0 4 ± 0 0 5.94 ± 0.24 0 0 2 ± 0 200

4 ± 0 0 0 0 3.99 ± 0.08 0.01 ± 0.08* 5.78 ± 0.45* 0 0 2 ± 0 170

#1 4 ± 0 0 0 0 4 ± 0 0 5.83 ± 0.50 0 0 2 ± 0 40

#2 4.03 ± 0.16" 0 0 0 3.93 ± 0.35" 0.10 ± 0.30* 5.6 ± 0.71* 0 0 2 ± 0 40

#3 4 ± 0 0 0 0 3.98 ± 0.16 0.03 ± 0.16" 5.73 ± 0.60* 0 0 2 ± 0 40

#4 4.03 ± 0.16" 0 0 0 3.95 ± 0.22" 0.05 ± 0.22" 5.33 ± 0.76* 0 0 2 ± 0 40

#5 4.05 ± 0.32" 0 0 0 4 ± 0 0 5.68 ± 0.47* 0 0 2 ± 0 40

#6 4 ± 0 0 0 0 4 ± 0.23 0.03 ± 0.16" 5.55 ± 0.60* 0 0 2 ± 0 40

#7 4 ± 0 0 0 0 4 ± 0 0 5.73 ± 0.53* 0 0 2 ± 0 26

0 2.57 ± 0.89* 0.23 ± 0.45* 0.10 ± 0.36* 3.76 ± 0.57* 0.18 ± 0.52* 5.99 ± 0.10 0 0 2.03 ± 0.3 100

N° flowers 

observed

WT Col‐0

Salk_087882

am
iR
‐w

o
x1
2

ap1‐3

First whorl Second whorl Third whorl
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Ectopic expression of WOX12 leads to reduction in AGAMOUS 
expression. 

We analysed the effects of WOX12 overexpression during Arabidopsis development with 

a main focus on flower development. qRT-PCR analysis showed that most of the obtained 

lines overexpress WOX12 in comparison with wild-type plants (Figure S1). The most 

prominent phenotypes observed in flowers of plants overexpressing WOX12 (WOX12-

OE) were a reduction in stamen numbers and the formation of petaloid-stamens in whorl 

3 (Figure 7A-B and Table 5). More rarely, the formation of an extra sepal is observed, 

resulting in two fused sepals (Table 5). The conversion of stamens into stamen-petal 

mosaic structures was previously reported in the weak ag mutant allele, ag-4 (Chen and 

Meyerowitz, 1999). AG is a key regulator of male and female reproductive organ 

development and the loss of AG function results in flowers forming only sepals and petals 

(Bowman et al., 1989). Therefore, we studied the expression of AG in WOX12-OE 

inflorescences by qPCR. We indeed found that AG is less expressed in WOX12-OE 

inflorescences than in wild-type inflorescences (Figure 7C). Taken together these results 

suggest that WOX12 play a role in the repression of AG.  

Table 5. Identity and numbers of defects observed in flowers of plants overexpressing WOX12. 

First whorl Second whorl Fourth whorl
sepal petal stamen filament petaloid-stamen carpel
4 ± 0 4 ± 0 5.94 ± 0.24 0 0 2 ± 0 200

#1 4 ± 0 4 ± 0 5.7 ± 0.66* 0 0.05 ± 0.22* 2 ± 0 20
#2 4 ± 0 4 ± 0 5.85 ± 0.37 0.05 ± 0.22* 0.05 ± 0.22* 2 ± 0 20
#3 4 ± 0 4 ± 0 5.9 ± 0.31 0 0.05 ± 0.22* 2 ± 0 20
#4 4 ± 0 4 ± 0 5.8 ± 0.52" 0 0 2 ± 0 20
#5 4.05 ± 0.22" 4.05 ± 0.22" 5.75 ± 0.55" 0 0.05 ± 0.22* 2 ± 0 20
#6 4 ± 0 4 ± 0 5.55 ± 0.51* 0 0.05 ± 0.22* 2 ± 0 20
#7 4 ± 0 4 ± 0 5.7 ± 0.66* 0 0 2 ± 0 20
#8 4 ± 0 4 ± 0 5.7 ± 0.66* 0 0.05 ± 0.22* 2 ± 0 20
#9 4.05 ± 0.22" 4.05 ± 0.22" 5.7 ± 0.66* 0 0.05 ± 0.22* 2 ± 0 20
#10 4 ± 0 4 ± 0 5.7 ± 0.66* 0.1 ± 0.31* 0 2 ± 0 20
#11 4 ± 0 4 ± 0 5.65 ± 0.67* 0.05 ± 0.22* 0 2 ± 0 20
#12 4.05 ± 0.22" 4 ± 0 5.75 ± 0.55" 0 0.1 ± 0.31* 2 ± 0 20
#13 4 ± 0 4 ± 0 5.9 ± 0.31 0 0 2 ± 0 20
#14 4 ± 0 4 ± 0 5.8 ± 0.52" 0 0.05 ± 0.22* 2 ± 0 20
#15 4.05 ± 0.22" 4 ± 0 5.8 ± 0.52" 0 0 2 ± 0 20
#16 4 ± 0 4 ± 0 5.75 ± 0.55" 0 0 2 ± 0 20
#17 4 ± 0 4 ± 0 5.85 ± 0.37 0 0 2 ± 0 20
#18 4 ± 0 4 ± 0 5.55 ± 0.51* 0.05 ± 0.22* 0.05 ± 0.22* 2 ± 0 20
#19 4 ± 0 4 ± 0 5.65 ± 0.67* 0 0 2 ± 0 20
#20 4 ± 0 4 ± 0 5.5 ± 0.76* 0 0 2 ± 0 20
#21 4 ± 0 4 ± 0 5.7 ± 0.66* 0 0 2 ± 0 20
#22 4 ± 0 4 ± 0 5.65 ± 0.67* 0 0.1 ± 0.31* 2 ± 0 20
#23 4 ± 0 4 ± 0 5.85 ± 0.37 0 0.05 ± 0.22* 2 ± 0 20
#24 4 ± 0 4 ± 0 5.95 ± 0.22 0 0 2 ± 0 20

Third whorl
N° flowers observed

WT Col-0

p3
5S

:W
O

X
12

Flowers from 2 months old plants were observed at anthesis. 20 flowers from 24 independent T1 plants 
overexpressing WOX12 were observed. (*) indicates significant differences according to unpaired t-Test at
p-value <0.001. (“) indicates significant differences according to unpaired t-Test at p-value <0.05.
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Figure  7.  WOX12  overexpression  causes  aberrations  in  flowers.  A.  Wild‐type  Arabidopsis  flower, 

composed of 4 sepals, 4 petals, 6 stamens and 2 fused carpels arranged in 4 concentric whorls. B. Flower 

from  a  plant  overexpressing WOX12. A  petaloid‐stamen  can  be  observed  (arrowhead). One  sepal was 

removed  to  reveal  the  inner  flower  organs.  C.  AGAMOUS  expression  is  lower  in  WOX12OE  plants 

compared to wild‐type. Bars indicate SE between 5 biological replicates.  

 

DISCUSSION 
WOX12 is a member of the homeobox gene family and it is expressed in the IM at the 

border of newly formed floral meristems. Furthermore, WOX12 becomes activated in the 

FM from stage 4 onwards at the position where the stamen primordia will emerge. Our 

mutant analyses point to a function of WOX12 in floral organ specification, which is in 

line with its expression in the FM. The expression at the border of newly arising floral 

meristems could not be associated with any phenotypic aberration in the overexpression 

or knock-down lines, suggesting that other genes are needed or act redundantly with 

WOX12 at this stage of development.  

 

Regulation of WOX12 expression during flower development.  

The characterisation of cis-regulatory regions in the WOX12 locus shows that the most 

upstream cis-regulatory element (‘b’, figure 4A) is needed to repress WOX12 in the sepal 

primordia. However, how and which TFs regulate WOX12 remains unclear. Our results 

suggest that the MADS-domain protein binding to the WOX12 locus is indirect or needs 

co-factors that are not present in our in vitro DNA-binding assays. MADS-domain 

proteins are able to interact with other transcription factors, especially AP1 was found to 

interact with other proteins (Smaczniak et al., 2012). Among the AP1 interacting proteins 

are SPL8 and BLR. BLR is expressed in IM and floral meristems and later on in carpels. 

A consensus for BLR binding is present in the WOX12 locus suggesting that BRL could 

mediate the AP1 binding to the WOX12 locus and act as a repressor of WOX12. SPL8 is 

expressed in sepals and an SBP binding sites is present in the WOX12 promoter region, 
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thus a complex SEP3-AP1-SPL8 could also be responsible for the suppression of WOX12 

expression in the sepal primordia. Alternatively, AP2 may regulate WOX12 expression in 

the sepal primordia, since binding to the most upstream cis regulatory region was reported 

(Yant et al., 2010). Further experiments, such as yeast-one-hybrid screens, are needed to 

identify regulators of WOX12. 

 

WOX12 acts downstream AP1 and is involved in the regulation of AG in 

flower development.  

Previous work has shown that the WOX12 locus is bound by the AP1 protein and WOX12 

is activated by AP1 during the first stages of flower meristem development (Kaufmann et 

al., 2010b). This gene is dynamically expressed throughout flower development, 

suggesting a role of this gene during floral organ formation. We found that WOX12 

down-regulation leads to defects in floral organ identity specification with the formation 

of stamenoid-petals. The phenotype observed upon down-regulation of WOX12 resembles 

a weak ap1 mutant confirming that WOX12 acts downstream AP1 in the regulation of 

proper floral organ formation and spatial patterning of organ identities (Figure 8). 

Notably, we found that ectopic expression of WOX12 leads to an opposite homeotic 

effect: it causes the formation of petaloid stamens in the third whorl. A similar phenotype 

was observed in the weak ag mutant allele, ag-4 (Chen and Meyerowitz, 1999; Sieburth 

et al., 1995). In agreement, we observed a reduction in AG expression in inflorescences 

ectopically expressing WOX12. Taken together these results suggest that WOX12 may 

play a role in the spatial regulation of AG. According to the ABC model, the A class 

genes, such as AP1 and AP2 act antagonistically with the C-class gene AG (Drews et al., 

1991). Thus, the ap1-3 phenotype is correlated with an expansion of the AG expression 

domain to the second whorl, resulting in the formation of stamenoid-petals. Similarly, the 

phenotype observed in the wox12 flowers could be explained by an expansion of the AG 

expression domain to whorl 2. In an opposite manner, the phenotype observed upon 

ectopic expression of WOX12 suggests an expansion of the A-class gene expression to the 

third whorl, with the consequent formation of petaloid-stamens.  

Remarkably, the phenotypes were very mild and only observed in a few flowers per 

inflorescence. For the knock-down line it is possible that the remaining expression or the 

expression of the C-terminally truncated protein is still partly functional and may be 
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enough for proper petal development in most flowers. Alternatively, other genes are 

(partly) redundant with WOX12. Overexpression of WOX12 reduces AG expression, but 

this may be insufficient or happen too late during organ formation to fully transform 

stamens into petals. Furthermore, the regulation of AG expression is complex, many 

transcription factors as well as chromatin remodelers have been shown to play a role in 

the regulation of AG expression (Kaufmann et al., 2010a). Therefore the repression of AG 

by WOX12 may be overcome by other regulators. 

It also remains unclear whether WOX12 regulates AG directly or indirectly through the 

activation of an AG repressor (Figure 8). WOX12 contains a WUS-box, which is a 

repressive protein domain (Ikeda et al., 2009) and therefore WOX12 may act directly as a 

repressor. Also other WOX family members such as WOX6 have been found to repress 

AG. Ectopic expression of WOX6 leads to strong abnormalities in the flower, such as the 

formation of carpelloid stamens (Park et al., 2005). 

The characterisation of the spatial and temporal expression of AG in flowers differentially 

expressing WOX12 will give a better understanding of the role of WOX12. In conclusion 

our results suggest that, like other WOX genes, WOX12 may act in the specification of 

organ identity through regulation of AG. Since the A class homeotic genes and AG 

control each other antagonistically, we hypothesise that WOX12 is involved in 

establishing the border between class A and C expression domains.  

Figure  8.  Model  of  WOX12 

regulation.  WOX12  acts 

downstream  AP1  during  flower 

development  and  represses AG 

expression.  

Binding  of  the  most  upstream 

cis‐regulatory  element  in  the 

WOX12  promoter  leads  to 

repression  of  WOX12 

expression in sepal primordia. 
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MATERIALS AND METHODS 

Plant material. All plants were grown at 20 °C under long day condition (16 h light, 8 h dark) on 

rock wool. Seeds of knock-out lines SALK_087882 was obtained from the Nottingham 

Arabidopsis Stock Center (NASC). Plants were genotyped for the presence of the T-DNA 

insertion using the following primers:   fw: 5’-AATGTCTGCAGAAATTAACCTCAAG-3’  rev: 

5’- TCGATCGAGAATGGTATAAAGTACC-3’; T-DNA: 5’-ATTTTGCCGATTTCGGAAC-3’. 

Isolation of RNA and real-time PCR analysis.  Total RNA was extracted using the Invitek Kit 

according to the manufacturer’s protocol. DNase I digestion was performed on total RNA using 

DBase I from Ambion. RNA integrity was checked on 1% (w/v) agarose gel after DNase I 

treatment. Absence of genomic DNA was confirmed subsequently by qRT-PCR using primers, 

which amplify an intron sequence of the gene At5g65080 (Forward 5′-

TTTTTTGCCCCCTTCGAATC-3′ and reverse 5′-ATCTTCCGCCACCACATTGTAC-3′). First-

strand cDNA was synthesized from  1 µg of total RNA using TaqMan kit (Roche) cDNA 

Synthesis Kit following the manufacturer’s protocol. The efficiency of cDNA was estimated by 

qRT-PCR using two different primer sets annealing 5’- and 3’- ends of a control gene, 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (At3g26650), respectively (GAPDH3’: 

forward 5’-TTGGTGACAACAGGTCAAGCA-3’ and reverse 5’-AAACTTGTCGCTCAATGCA 

ATC-3’) (GAPDH5’: forward 5’-TCTCGATCTCAATTTCGCAAAA-3’ and reverse 5’-CGAA 

ACCGTTGATTCCGATTC-3’). Primers used to detect WOX subfamily gene expression at 

different stages of flower development are listed in Table S1. 

To test WOX12 expression level in the SALK_087882 line and in the amiR-wox12 lines two pairs 

of primers were used, one designed in the first exon (forward: 5’-

CTTGCAGCAACAACGAGATT-3’ reverse 5’- AAGAGAGGCCGAGGAAAAAG-3’) and the 

second one designed between the second exon and the 3’UTR region (forward: 5’-

GATGAGTTTGGTTTCTTGATGC-3’ reverse 5’-GTTCCCACATAAAACAGCCAG-3’). 

GFP fusion reporter lines. WOX12 genomic region was amplified by PCR using the following 

primers: forward: 5’-CAGCTTTTAATGGGGCCTCTTTACTG-3’ for the 5 kb promoter, 

forward: 5’- CAATTTATCTGTTTAGTTTAACAAAAC-3’ for the 3 kb promoter, forward: 5’-

GGTGTTTTCAC AATTGCAT-3’ for the 500 bp promoter and reverse: 5’-

TGTCTGTCTCGGTACCTGTCGA-3’. The PCR fragment was cloned into the GATEWAY 

vector pCR8/GW/TOPO from Invitrogen. The CArG-box sequences were mutate via site-direct 

mutagenesis: the plasmid were amplified using mutated primers (see table S1) that introduced the 

desired changes; the amplified, containing the desired mutation, was circularized in a ligation 

reaction with T4 DNA Ligase. The constructs were transferred via LR reaction into the 
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destination vector pARC384 (Curtis and Grossniklaus, 2003). Expression vectors were introduced 

into Arabidopsis thaliana ecotype Col-0 by floral dip transformation (Clough and Bent, 1998). 

Transformant plants were selected on plates containing ½ Murashige-Skoog (MS) medium pH 6 

with 10ug/ml hygromicin and 0.7% Agar.  

Confocal Scanning Laser Microscopy (CSLM). GFP tagged protein localization was observed 

trough CSLM on Leica SPE DM5500 upright microscope using an ACS APO 40x/1.15 oil lens 

and using the LAS AF 1.8.2 software. FM4-64 dye was added to 0.1% agar at a concentration of 

5uM and used as staining of cell membranes, alternatively chloroplast auto-fluorescence was used 

as back-ground. GFP and FM4-64 dye were excited with the 488-nm line of an Argon ion laser. 

The GFP emission was detected at a bandwidth of 505-530 nm, while FM4-64 dye and 

chloroplast auto-fluorescence were detected at a bandwidth of 650 nm. After acquisition, optical 

slices were median filtered and three-dimensional projections were generated with LAS AF 1.8.2 

software package. 

Protein DNA-binding assay. EMSA experiments were performed as described in (Smaczniak et 

al., 2012). Complementary oligos were aligned to generate the probes (Table 6). The probes were 

cloned into pGEM-T vector and amplified with vector-specific florescent labelled primers. 

Proteins were produced in vitro using TNT SP6 High-Yield Protein Expression System from 

Promega. Detection was performed using Odyssey scanner. 

Table 6. Probes used in the EMSA experiment. 
sequence 5' → 3' description 
TGATTGAAATCTTTTTTTTGTTAATTATATA CArG-box A
TATATAAAATCTTTTTTTTGTTAATTATATA CArG-box B
TCCTAGACGTCTTATATATGAATCTAATAAA CArG-box C 
AGTGGTAGGTCTAATTTATGAGTATCCGATA CArG-box D 
GCTAATTACTTCCTTAATGGATCGTCGTCA CArG-box 0 
TAGAACGTAACATAAAAAAGGAAGAAAAAA CArG-box I 
CGTCCCAAAAGCAATTTTGGGATTGTGGTT CArG-box II 
AAAGAGAGTGGCTTAAAGGTAACTTTTGTG CArG-box III 

WOX12 knock-down lines. The artificial microRNA was generated as described in Schwab et al., 

2006. An online tool was used to designed specific oligos to generate the ami construct 

(http://wmd3.weigelworld.org/cgi-bin/webapp.cgi).   

oligo I: 5’-GATAATTAGCTGATAAGTTGCTCTCTCTCTTTTGTATTCC-3’,  

oligo II: 5’- GAGAGCAACTTATCAGCTAATTATCAAAGAGAATCAATGA-3’,  

oligo III: 5’- GAGAACAACTTATCACCTAATTTTCACAGGTCGTGATATG-3’,  

oligo VI: 5’- GAAAATTAGGTGATAAGTTGTTCTCTACATATATATTCCT-3’.  
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The final PCR product was then ligate into the GATEWAY vector pCR8/GW/TOPO from 

Invitrogen and transferred via LR reaction into the destination vector pB7WG2 (Curtis and 

Grossniklaus, 2003). Expression vector was introduced into Arabidopsis thaliana ecotype Col-0 

by floral dip transformation (Clough and Bent, 1998). Transformant plants were selected on plates 

containing ½ Murashige-Skoog (MS) medium pH 6 with 10ug/ml ppt and 0.7% Agar.  

WOX12 overexpression lines. WOX12 coding sequence was amplified using the following 

primers: forward: 5’-CACCATGAATCAAGAAGGTGCTTCACATAG-3’ reverse 5’- TCATGT 

CTGTCTCGGTACCAG-3’. The PCR product was then ligate into the GATEWAY vector 

pENTRY TOPO from Invitrogen and transferred via LR reaction into the destination vector 

pB7WG2 (Curtis and Grossniklaus, 2003). Expression vector was introduced into Arabidopsis 

thaliana ecotype Col-0 by floral dip transformation (Clough and Bent, 1998). Transformant plants 

were selected on plates containing ½ Murashige-Skoog (MS) medium pH 6 with 10ug/ml ppt and 

0.7% Agar.  

Phylogenetic analysis. The analysis was performed on the Phylogeny.fr platform (Dereeper et al., 

2008) using the entire coding sequences of all WOX subfamily members as input data. Sequences 

were aligned with MUSCLE v3.7, with MUSCLE default settings (Edgar, 2004). After alignment, 

ambiguous regions (i.e. containing gaps and/or poorly aligned) were removed with Gblocks 

v0.91b (Castresana, 2000) using the following parameters: minimum length of a block after gap 

cleaning: 10; no gap positions were allowed in the final alignment; all segments with contiguous 

non conserved positions bigger than 8 were rejected; minimum number of sequences for a flank 

position: 85%. The phylogenetic tree was reconstructed using the maximum likelihood method 

implemented in the PhyML program v3.0 (Guindon et al., 2010). The HKY85 substitution model 

was selected assuming an estimated proportion of invariant sites and 4 gamma-distributed rate 

categories to account for rate heterogeneity across sites. The gamma shape parameter was 

estimated directly from the data. Reliability for internal branch was assessed using the aLRT test 

(SH-Like). Graphical representation and edition of the phylogenetic tree were performed with 

TreeDyn v198.3 (Chevenet et al., 2006). 
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SUPLEMENTAL DATA 

 
Figure S1. WOX12 expression in OE lines. Level of WOX12 expression in inflorescences of 24 T1 plants was 

measured by qPCR. All plants showed higher expression level than wild‐type (on the right). 

 

Table S1. Primers used in the study 

 

gene atg code forward primer reverse primer

WUS AT2G17950 TCCCAGCTTCAATAACGGGAAT GCCATTAGAAGCATTAACAACACC

WOX1 AT3G18010 GCGACACGCAACCAGAGAAACCTT AACGAGCATTGTGCTCCACCCGTA

WOX2 AT5G59340 GCTAGGCAACGCCAAAAGC TGTGGAGGAGGCGATTGAAG

WOX3 AT2G28610 TCAGGGAACTGGAGTAGGAGAAGC TCTTCAGCTCCACTTTTGGTGCAG

WOX4 AT1G46480 TGAGAGAACCAATGGTGGAGAAGG TCAAATCCCCAGCTCCTACATGTC

WOX5 AT3G11260 GGCAGAAACGTCGTAAAATCTCCA TCCTCTTGACAATCTTCTTCGCTT

WOX6 AT2G01500 CGACCACAGCCACAGCATGAATTA TTTACCAACCTCTGATGCCCTCTG

WOX7 AT5G05770 TGCCGGAAAATCTCCACCGTCAAG TCGGCGAGGCTTAGAAAGATCTGT

WOX8 AT5G45980 TCCTTTTCCTCAGATCGGATACCA TTTGAATCTCCTCTCTAGGTGGGT

WOX9 AT2G33880 TCAGGATGTGAAGTGGAGAGGAGT GGAGGATTCACCATCCCGGAGTTA

WOX10 AT1G20710 GCAACCTCCGACAACGACAATTAC TCCCTAAATCAGGACTCGGGAACA

WOX11 AT3G03660 TTCAAAACCGGCGGTCAAGGT GCTAGAAGTGTTGGTGGTTGCGT

WOX12 AT5G17810 CGAACAAGAAGGGTTTATGACGGT TCAGTGGGAAGAGGAAGACCAGAG

WOX13 AT4G35550 ACGGCACCATTTGTGAGCGTCT GCACGATGCCCACCTTTTCTCTTA

WOX14 AT1G20700 TCTCATCAGGAGTGAGGCCAATGG TCCACCGATGCCTAGTCGATATCC

Primer mutation

PDS5419 CArG‐box I

PDS5420 CArG‐box I

PDS5421 CArG‐box II

PDS5422 CArG‐box II

PDS5423 CArG‐box III

PDS5424 CArG‐box III

PDS6415 CArG‐box 0

PDS6416 CArG‐box 0

CACAAAAGTTACGTTTAACCCACTCTCTTTG

AATCCTCGTACAGTTTCTGCCTGATC

sequence 5'‐‐> 3'

TAAGTTGCTACAACTTCCAAACCCCAAATCAATCTCG

AGCTAATTACTTTCTCAACGGCTCGTCGTCATC

WOX family gene expression primers

WOX12 mutagenesis primers

TTTTTTCTTCGTTTTTTATCTTACGTTCTATTG

GGACAAGGAGCTAGAGAAGTTATAAAAGAC

AACCACAATCCGAAAATTCCTTTTGGGACG

TTGGATGATGGGAAGTGGATAGAGATCGTA
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During the life cycle, a plant undergoes a series of developmental changes. Each 

developmental change is controlled at the level of gene expression by the combined 

action of chromatin regulators and transcription factors (TFs). Using flower development 

as a model system, we studied the dynamics of TF DNA binding and chromatin 

accessibility.  

After the initiation of the reproductive phase, a group of undifferentiated cells at the flank 

of the inflorescence meristem forms the flower meristem. The flower meristem gives rise 

to the four organ types that constitute the mature flower: the sepals, the petals, the 

stamens and the carpels (Smyth et al., 1990).  MADS-domain TFs play a key role in 

floral organ specification, and a particular combination of these TFs specifies each organ 

type (Bowman et al., 1989). MADS-domain TFs can act as activators as well as 

repressors of transcription, for example AP1 acts predominantly as repressor during 

flower initiation (Kaufmann et al., 2010b)  and as activator at later stages of flower 

development (Pajoro et al., 2014b; chapter 3). Moreover, we found that MADS-domain 

proteins, such as APETALA1 (AP1) and SEPALLATA3 (SEP3), select their binding 

sites, and thereby their target genes, in a partly stage-specific fashion. 

Next, we addressed the question of how stage-specific binding is realised at the molecular 

level in a chromatin context. We characterized changes in chromatin accessibility in 

relation to MADS-domain protein occupancy and gene expression. Our results provide 

insights into the mechanisms by which MADS-domain TFs exert their master regulatory 

functions in meristem and organ differentiation in plants (chapter 3 and chapter 4).   

Throughout our study we also identified new players in the floral gene regulatory network 

and characterized downstream regulators of floral organ development, such as the GRF 

family members (chapter 3), STERILE APETALA (SAP, chapter 5) and WUSCHEL 

RELATED HOMEOBOX 12 (WOX12, chapter 6). 

Dynamics of gene regulatory network underling flower development. 

The introduction of next-generation sequencing and genome-wide approaches has 

changed our view on gene regulation and gene regulatory networks (GRNs). We moved 

from linear genetic interactions towards global highly connected gene networks (chapter 

2, Kaufmann et al., 2010a; Pajoro et al., 2014a). Many genome-wide expression profiles 

have become available as well as protein-DNA binding profile data that rapidly increased 
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our knowledge of transcriptional regulation and network wiring. Developmental 

processes are characterised by continuous changes in cell fate, growth and direction, 

which has to be preceded by dynamics in regulatory circuits. Therefore, a main question 

of my research was how GRNs change during flower development. Protein-DNA binding 

experiments were mostly performed with mixed tissues and cannot reveal the dynamics of 

the GRNs. Therefore, to address this question we characterized protein-DNA binding 

dynamics of the two MADS-domain proteins, AP1 and SEP3, in the synchronised floral 

induction system, ap1 cal pAP1:AP1:GR (Wellmer et al., 2006). Although many MADS-

domain TF-bound regions are occupied by these factors throughout flower development, 

we observed stage-specific binding events. Binding site dynamics reflect regulatory 

dynamics of genes with stage-specific functions in flower development, such as floral 

meristem patterning and organ growth (chapter 3). 

In our time-series experiment, many genes show no quantitative change in AP1 or SEP3 

binding but they are differentially expressed throughout flower development, indicating 

that either single TF binding alone per se is not sufficient to explain changes in gene 

expression or other TFs determine gene expression changes. Alternatively, there is a 

delay in the regulatory response. It is possible that promoter binding by MADS-domain 

TFs is a prerequisite for regulatory response, but that additional factors are needed to 

promote gene expression. MADS-domain TFs are indeed part of protein complexes that 

include chromatin remodelers as well as other TFs (Smaczniak et al., 2012; Wu et al., 

2012). In this scenario, the analysis of additional protein-DNA binding profiles in a stage-

specific manner will give a better understanding of the regulation of gene expression and 

the dynamics of the GRN structure underling flower development. 

Characterisation of new players in the control of flower development. 

The isolation of developing flowers of specific stages increased the sensitivity of our 

ChIP-seq experiments, thereby enabling us to identify novel target genes with a role in 

flower development, such as the GRF family genes (chapter 3), SAP (chapter 5) and 

members of the WOX family (chapter 6). 

The GRF TF family genes act redundantly in flower development in such a way  that 

down-regulation of multiple members of the family is required to reveal defects in floral 

organ formation. Downregulation of all the family members leads to reduction in floral 
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organ numbers and homeotic conversion of floral organs, such as the formation of 

petaloid stamens. Although they mostly act redundantly during floral organ development, 

some GRFs show differences in their expression profiles. For example, GRF2 is 

expressed prevalently at early stages of development, while GRF8 is predominantly 

expressed at later stages of development. The dynamics in gene expression coincides with 

changes in binding behaviour of MADS-domain TFs. SEP3 binds to all the GRF loci, 

while AP1 only to a subset of the family members, reflecting the more organ-specific 

function and more confined expression profile of AP1 compared to SEP3. For example, 

SEP3 but not AP1 binds to the GRF8 locus. Moreover, while SEP3 binding to the GRF2 

locus is stronger at early stages of flower development, binding to the GRF8 locus is 

stronger at later stages of flower development. 

In summary, our results indicate that different, apparently redundantly acting GRF family 

members are regulated in different ways, and that the phenotype that was observed in the 

miRNA-directed knockdown lines probably reflects the overlapping function of these 

family members in floral meristem patterning and in floral organ differentiation.  

Next to the GRF family, other families of TFs were found to be overrepresented 

among MADS-domain protein target genes, such as the WOX family (chapter 6). The 

role of some WOX genes in flower development has been previously reported, for 

example, WUS plays a key role in the regulation of AG expression in the floral meristem 

(Lenhard et al., 2001; Lohmann et al., 2001), while WOX1, WOX3 and WOX6 play a role 

in petal growth (Park et al., 2005; Vandenbussche et al., 2009). In this thesis, we focused 

on the characterisation of WOX12. WOX12 was initially identified as target gene of AP1 

at the early stages of floral meristem formation (Kaufmann et al., 2010b). AP1 binding to 

the WOX12 locus and the change in expression upon AP1 induction, suggest a role of 

WOX12 in flower development. Next, in ChIP-seq experiments conducted at different 

stages of flower development we observed binding of both AP1 and SEP3 during floral 

whorl specification (day 4) and during floral organ growth (day 8), indicating a role of 

WOX12 at later stages of flower development (Pajoro et al., 2014b). Finally, binding of 

homeotic proteins APETALA2 (AP2) and PISTILLATA (PI) to the WOX12 locus was 

also reported (Wuest et al., 2012; Yant et al., 2010), highlighting a likely role in flower 

development.  

The characterization of WOX12 overexpression plants and knock-down mutant lines 

indicates that the main role of WOX12 consists in the determination of the boundary 
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between whorls 2 and 3. WOX12 is indeed expressed in a ring-like fashion in the flower 

meristem at stage 4 and 5. Moreover, WOX12 downregulation leads to defects in floral 

organ identity specification with the formation of stamenoid petals, while ectopic 

expression of WOX12 leads to an opposite effect: it causes the formation of petaloid 

stamens in the third whorl. Finally, the reduction of AG expression in inflorescences 

ectopically expressing WOX12, suggest that WOX12 plays a role in the spatial regulation 

of AG.  

WOX12 is also expressed in flowers at other developmental stages, such as at stage 1 and 

2 in the flower meristem, at stage 9 in petals, at stage 10 and 11 in anthers and carpels and 

at stage 12 and 13 in the valve margins of the silique. We did not observe any aberrant 

phenotype in the knock-down lines in these tissues, suggesting possible redundancy with 

other genes. The diverse expression profile of WOX12 at different floral developmental 

stages point towards a coordinated control by MADS-domain TFs and other 

transcriptional regulators to establish cell-type specific gene expression patterns. In 

agreement with this hypothesis, WOX12 expression was not abolished in any of the 

homeotic mutants we analysed neither upon mutagenesis of the cis-regulatory elements 

that are putatively responsible for MADS-domain protein binding.  

The regulation of WOX12 is also an example of tissue specific and temporal mode of 

action of MADS-domain proteins. While AP1 activates WOX12 at flower meristem 

initiation (Kaufmann et al., 2010b), the lack of WOX12 expression in sepal primordia at 

stage 3-5, and the ectopic WOX12 expression observed in sepals upon AP1-bound region 

deletion indicate a repressive action of AP1 in sepal at the later developmental stage. This 

tissue- and stage-specific regulation may be achieved via the interaction with different 

TFs in each tissue and developmental stage. 

Among dynamically bound target genes we did not only found TFs but also genes 

that possibly act at the post-transcriptional level such as SAP (Byzova et al, 1999).  SAP 

was found to be preferentially bound by AP1 at stage 4 and SAP expression decreased 

after AP1 induction. Moreover, we observed higher level of SAP expression in ap1 

inflorescences than in wild-type and the in planta expression profile showed ectopic 

expression of SAP in ap1 leaf-like sepals, indicating a repressive action of AP1 at the SAP 

locus (chapter 5). A role for SAP in flower development was previously reported: 

phenotypical characterisation of the loss of function mutant indicates a role of SAP in 

petal and ovule development, however the mechanism of action remained unclear 
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(Byzova et al., 1999). Our results suggest that SAP acts at the post-transcriptional level 

by being part of an SCF-complex together with ASK1/2 and CUL1. However, further 

experiments are needed to identify the proteins ubiquitinated by the SCFSAP complex and 

to elucidate the exact role in this complex. Loss of function of SAP does not exclusively 

affect flower development; sap plants appear bushy and have curly leaves, indicating a 

broader role of SAP in plant development. 

In conclusion, advances in genome-wide studies resulted in the confirmation of 

previously known genetic interactions at the molecular level, but also identified many 

novel regulatory interactions. The characterisation of new factors and interactions can 

reveal new regulatory mechanism of flower development. 

Profiling chromatin landscape during flower development.  

Recent studies of TF DNA-binding profiles and gene expression analyses have shown 

that there is only a weak correlation between binding of a TF and changes in expression 

of its target genes (O'Maoileidigh et al., 2014), indicating that single TF binding events 

are not the only cause of gene regulation. Data from the animal field show that 

developmental control of gene expression is tightly linked with dynamic changes in 

chromatin accessibility. With that in mind, we aimed to understand how changes in the 

chromatin accessibility landscape during flower development can reflect changes in gene 

expression.  

We characterised changes at cis-regulatory elements, via DNase I-seq, and profiled 

nucleosome occupancy through MNase-seq, at different stages of flower development. 

We observed a number of quantitative changes in chromatin accessibility at cis-regulatory 

elements, mostly in the transition from meristematic stages to floral organ differentiation. 

An opposite scenario was observed for changes in nucleosome occupancy: nucleosomes 

appear to be more dynamic during meristematic stages than comparing to floral organ 

differentiation phase. These observations lead us to the hypothesis that cell programming 

initiate with changes in nucleosome occupancy and result in different DNA accessibility 

at cis-regulatory elements between meristematic and differentiated cells.  

Remarkably, changes in nucleosome occupancy involve mainly single nucleosomes and 

are prevalently localised in promoter regions. Similar findings have been reported 

recently in mouse and human cell studies. During the transition from pluripotent to 
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somatic cell identities, changes in nucleosome occupancy affect single nucleosomes and 

co-localize with binding sites of pluripotency and reprogramming proteins (West et al., 

2014). 

The highest nucleosome dynamics, which was observed at promoter regions close to the 

transcription start site (TSS) could be caused either by chromatin remodelling at cis-

regulatory elements upon binding of TFs (Li et al., 2012) or to changes in chromatin 

structure during gene transcription (Lee et al., 2004). The characterisation of plant 

chromatin states revealed that also histone marks typically associated with active 

transcription, such as H3K4me2, H3K4me3 and H3K36me3 as well as the histone variant 

H2A.Z peak upstream the TSS (Sequeira-Mendes et al., 2014). 

While changes in DNA hypersensitivity sites (DHSs) globally correlate with changes in 

gene expression, no clear correlation was observed between changes in nucleosome 

occupancy and gene expression, with both up-and down-regulated genes showing gain as 

well as loss in nucleosome occupancy. Therefore, if changes at DHSs can reflect the 

establishment of multiple new cell types during flower differentiation, and be linked with 

the regulation of gene expression, changes in nucleosome occupancy may be hallmark of 

reprogramming. 

In conclusion, our findings suggest that there are multiple mechanisms by which 

developmental changes in gene expression are controlled, and that developmental 

changes in gene expression are partly manifested in changes in chromatin structure in 

plants. 

MADS-domain TFs may act as pioneer factors. 

A result of the combined analysis of MADS-domain TF binding dynamics and chromatin 

accessibility is that MADS-domain proteins bind preferentially to nucleosome depleted-

regions and that their binding to DNA is followed by opening of the surrounding 

chromatin (Figure 1).   

While chapter 3 (Pajoro et al., 2014b)  is the first report proposing such a mode of action 

for a plant TF, a similar mode of action has been previously described for animal TFs that 

trigger reprogramming of cell fate, such as FoxA, Oct4, Sox2, Klf4 and c-Myc (Drouin, 

2014; Zaret and Carroll, 2011). These TFs have been defined as “pioneer factors”. 
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Pioneer factors can play a passive or active role in gene activation (Drouin, 2014; Zaret 

and Carroll, 2011). In their passive role, binding of a pioneer factor to a cis-regulatory 

element reduces the number of additional factors required for efficient transcriptional 

response (Carroll et al., 2005). This passive mode is supported by the observation that 

binding event of a single TF often does not cause change in gene expression and that 

multiple proteins are often required for transcriptional competence. On the other hand, the 

active role of pioneer factors is accomplished through alteration of the chromatin 

structure that facilitates binding of other TFs (Cirillo and Zaret, 1999). For example, in 

vitro studies showed that FoxA binds the target sites in highly compacted chromatin and 

thereby, increasing chromatin accessibility (Cirillo et al., 2002). The FoxA C-terminal 

domain binds to histones and is necessary for chromatin opening in vitro (Cirillo et al., 

2002). In vivo nucleosome occupancy studies showed that Foxa2 is required for 

nucleosome depletion during embryonic stem cell differentiation (Li et al., 2012). 

Moreover, it was shown that nucleosome depletion during embryonic stem cell 

differentiation involves SWI/SNF and INO80 chromatin remodelling complexes (Li et 

al., 2012).   

In a similar manner we observed an increase in chromatin accessibility upon binding of 

MADS-domain protein in vivo, suggesting that MADS-domain proteins trigger changes 

in chromatin accessibility. The characterisation of nucleosome occupancy around MADS-

domain protein binding sites shows that, differently from FoxA, MADS-domain proteins 

bind predominantly to nucleosome depleted regions, indicating that MADS-domain 

proteins may not be able to displace nucleosomes and suggesting that chromatin 

remodelling proteins may be required for changes in chromatin accessibility. In 

agreement with this hypothesis, previous results have shown that floral homeotic MADS-

domain proteins form larger complexes together with ATP-dependent nucleosome 

remodelers and with histone-modifying enzymes in planta (Smaczniak et al., 2012; Wu et 

al., 2012). 

Alternatively, active pioneer action of MADS-domain protein is a fast mechanism that 

cannot be detected with our experimental conditions and temporal resolution. Moreover, 

the lack of cell-type specificity in our current experiment could mask pioneering action at 

a specific locus. It should be noted that, due to the fact that mixed cell types were used in 

the nucleosome profiling, the cell-type specific changes in nucleosome occupancy may be 

underestimated. In addition to the measurements of nucleosome density, most 
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measurements (such as gene expression, MADS-domain protein binding levels, etc.) in 

this study were conducted with mixed cell types. Although we were dealing with a highly 

synchronised system, the comparisons between time points could not capture differences 

in individual cell types. Cell type-specific measurements will be necessary to better 

elucidate the MADS-domain protein mode of action. 

Figure 1. MADS-domain TFs mode of action. MADS domain proteins (green) bind to their target sites, the 

CArG-box sequences (red), prevalently in nucleosome depleted regions. MADS-domain TFs interact with 

chromatin remodellers (blue) to modify the chromatin landscape at their binding site surroundings. 

Chromatin becomes more accessible at MADS-domain TF bound regions and other TFs (yellow) may also 

bind to the DNA. 
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Given the important roles of MADS-domain proteins as master regulators of 

developmental switches and floral organ specification, their pioneer behaviour is an 

intriguing mode of action. But how do these proteins select regulatory regions at different 

stages of development? Based on the different properties of CArG-boxes that we found in 

SEP3- and AP1-bound regions (chapter 3), we propose that different MADS-domain 

protein dimers have different affinities for specific ‘types’ of CArG-boxes.  

Another layer of specificity may be achieved via the modulation of higher-order complex 

formation. Developmental stage-specific change in chromatin conformation can lead to 

the formation of a specific higher-order complex that can drive gene activation. For 

example, a change in chromatin conformation of the TFL1 locus is associated with gene 

repression (Liu et al., 2013). New techniques, such as chromatin capture (Stadhouders et 

al., 2013) and ChIA-Pet (Zhang et al., 2012), can be used to describe cis-regulatory 

element interactions and characterise the proteins involved in gene regulation.   

Perspectives 

Information on epigenetic regulation of gene expression remains poorly represented in the 

current GRN models. Another complexity concerns spatial and temporal determinants. 

We know that genes can have different functions, depending on the tissue and stage at 

which they are expressed. For example, AP1 acts as a repressor of flowering time genes 

during flower initiation, while at later stages it activates genes involved in organ 

formation.  Information about tissue and stage-specific gene expression (Jiao and 

Meyerowitz, 2010; Wellmer et al., 2006) and protein-DNA binding (Gregis et al., 2013; 

Pajoro et al., 2014b) generates a better understanding of gene function and network 

dynamics. Most likely, more tissue and stage-specific information about protein-DNA 

binding will become available in the near future and will allow reconstruction of tissue 

and stage-specific GRNs. To achieve this resolution, novel technologies such as the 

INTACT system (Deal and Henikoff, 2011)  and single cell approaches (Shapiro et al., 

2013) will be important.  

Combined analysis of  TF DNA-binding profiles and gene expression revealed a weak 

correlation between binding of a TF and changes in expression of its target genes 

(O'Maoileidigh et al., 2014). An explanation could be that multiple TF binding events or 

co-factors are needed for gene regulation. In such a scenario only a specific combination 
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of TFs binding will trigger changes in expression. Sequential ChIP analysis (Oh et al., 

2012) or binding assays in mutant backgrounds (Kaufmann et al., 2009) could be used to 

identify TF co-occupancy and obtain a better insight into the regulation of gene 

expression. Another explanation could be that a single binding event to a cis-regulatory 

element is not sufficient to drive expression and a conformational change of the DNA or 

chromatin. For instance, conformational changes are triggered by the binding of STK to 

multiple sites in the promoter of its target gene VERDANDI (Mendes et al., 2013) and 

conformation change in gene looping of TFL1, FT  and FLC locus regulates gene 

expression (Cao et al., 2014; Jegu et al., 2014; Liu et al., 2013).   

In conclusion, advances in genome-wide studies resulted in the confirmation of 

previously known genetic interactions at the molecular level, but also identified many 

novel regulatory interactions. We are just at the beginning of the genome-wide 

characterisation of GRNs and new factors and interactions are undoubtedly waiting to be 

discovered. A challenge for the near future will be to unravel the spatial and temporal 

regulation of the genes in the current networks.  
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SUMMARY

During the life cycle, a plant undergoes a series of developmental phase changes. 

The first phase change is the transition from the initial juvenile vegetative stage into the 

adult vegetative phase. During the juvenile phase plants produce leaves and axillary buds, 

whereas during the adult phase the initiation of reproductive structures occurs. The next 

developmental change is the switch from vegetative to reproductive growth, when the 

shoot apical meristem acquires the identity of an inflorescence meristem that will then 

produce floral meristems. Arabidopsis floral meristems produce four concentric whorls of 

floral organs: sepals, petals, stamens and carpels. Each developmental change is 

controlled by coordinated network of regulators, known as gene regulatory networks 

(GRNs), which determine the transcription of a specific set of genes. The aim of the study 

presented in this thesis was to understand the dynamics of GRNs during floral organ 

development in Arabidopsis and correlate the binding of key regulatory MADS domain 

transcription factors with the accessibility of the chromatin in a genome-wide context.  

In chapter 1 and 2 we reviewed the current knowledge on the regulation of 

transcription in the model plant Arabidopsis thaliana. In chapter 1 we mainly focus on 

how the view of the  GRN underling flower development has changed during the last 

decades, while in chapter 2 we more broadly revised the mechanisms that control 

developmental switches in plants. The recent introduction of next-generation sequencing 

and genome-wide approaches has changed our view on gene regulation and GRNs. We 

moved from linear genetic interactions towards global highly connected gene networks. 

The high numbers of interactions that were detected in protein-DNA binding profiles 

revealed a much higher network complexity than previously anticipated and demonstrated 

that  master regulators of development  not only control another layer of regulators, but 

also genes encoding structural proteins, enzymes and signalling proteins. Moreover, most 

transcription factors bind to their own locus, highlighting that auto-regulatory loops are a 

common mechanism of regulation. 

The discovery of interactions between transcriptional master regulators with epigenetic 

factors provides new insights into general transcriptional regulatory mechanisms. 

Switches of developmental programmes and cell fates in complex organisms are 
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controlled at the level of gene expression by the combined action of chromatin regulators 

and transcription factors.  

Although many master regulators of meristem and organ identities have been 

identified, it is still not well understood how they act at the molecular level and how they 

can switch an entire developmental program in which thousands of genes are involved. 

Using flower development as a model system, in chapters 3 and 4 we investigated 

general concepts of  transcription regulation by analysing the dynamics of protein-DNA 

binding, chromatin accessibility and gene expression.  

 Using an inducible system for synchronised flower formation, we characterised DNA-

binding profiles of two MADS-domain transcription factors, APETALA1 (AP1) and 

SEPALLATA3 (SEP3), at three stages of flower development. Our study revealed that 

these MADS-domain proteins, select their binding sites, and thereby their target genes, in 

a partly stage-specific fashion. By combining the information from DNA-binding and 

gene expression data, we proposed models of stage-specific GRNs in flower 

development. Since developmental control of gene expression is tightly linked with 

dynamic changes in chromatin accessibility, we identified DNase I hypersensitive sites 

(DHSs, chapter 3) and we characterised nucleosome occupancy (chapter 4) at different 

stages of flower development. We observed dynamics in chromatin landscape manifested 

in increasing and decreasing DHSs as well as in changes in nucleosome occupancy and 

position. 

Next, we addressed the question how MADS-domain protein stage-specific binding is 

achieved at the molecular level in a chromatin context. In the nucleus the DNA is 

wrapped around histone octamers to form nucleosomes, which are then packed into 

highly dense structures, and hence transcription factor binding sites may not be easily 

accessible. A result of the combined analysis of MADS-domain binding and chromatin 

dynamics is that MADS-domain proteins bind prevalently to nucleosome depleted 

regions, and that binding of AP1 and SEP3 to DNA precedes opening of the chromatin, 

which suggests that these MADS-domain transcription factors may act as so-called 

“pioneer factors”. 

The isolation and analysis of developing flowers of specific stages increased the 

specificity of our genome-wide experiments, enabling the identification of novel actors in 

the GRN that regulates flower development. In this thesis we characterised the role of 
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some novel regulators in more detail: in chapter 3 we focussed on the GROWTH 

REGULATING FACTOR (GRF) family genes; in chapter 5 we investigated the action of 

STERILE APETALA (SAP); and in chapter 6 we elucidated the regulation and the role of 

a member of the WUSCHEL-related homeobox (WOX) family, WOX12. GRF family 

genes are dynamically bound by AP1 and SEP3 at the different stages of flower 

development. All family members are bound by SEP3, while only a subset of the genes is 

bound by AP1. The defects in floral organs observed upon down-regulation of these 

genes highlight their role down-stream of MADS-domain transcription factors. In 

addition to  AP1 and SEP3, SAP is also a target of other MADS-domain proteins, such as 

APETALA3 (AP3), PISTILLATA (PI), and AGAMOUS (AG). SAP is strongly 

expressed in meristems and loss of function of SAP causes strong aberrations in flowers, 

such as a reduction in petal and stamen numbers. We found that SAP interacts with 

proteins of the SCF ubiquitin ligase complex, suggesting that SAP could act in the 

ubiquitination pathway.  

WOX12 down-regulation leads to defects in floral organ identity specification with the 

formation of stamenoid-petals, while ectopic expression of WOX12 leads to an opposite 

effect: it causes the formation of petaloid-stamens in the third whorl. WOX12 acts 

downstream of AP1. Ectopic expression of WOX12 leads to reduction of AG expression, 

suggesting a role for WOX12 in the antagonistic interplay between the homeotic genes 

AP1 and AG.  

In chapter 7 we discuss the findings of this thesis. Taken together, the work 

performed in this thesis increased our knowledge on the GRN that regulates flower 

development and on the mode of action of MADS-domain transcription factors. We 

hypothesise that MADS-domain proteins may act as pioneer factors, proteins that access 

and remodel condensed chromatin. However, differently from other pioneer factors, 

MADS-domain transcription factors do not actively deplete nucleosomes, but instead  

they interact with chromatin remodelers to shape chromatin landscape. Given the 

important roles of MADS-domain proteins as master regulators of developmental 

switches, their pioneer behaviour represents an intriguing mode of action. 





SAMENVATTING

Planten ondergaan een serie aan ontwikkelingsfases tijdens hun levenscyclus. De 

eerste faseverandering is de overgang van het initiële juveniele vegetatieve stadium naar 

het volwassen vegetatieve stadium. Tijdens het juveniele stadium produceert de plant 

bladeren en okselknoppen, terwijl in het volwassen stadium reproductieve groei wordt 

geïnitieerd. De daaropvolgende ontwikkelingsovergang is de faseverandering van 

vegetatieve naar reproductieve groei. Tijdens deze overgang verwerft het scheut apicale 

meristeem (SAM) de identiteit van bloeiwijze-meristeem welke bloemen produceert. De 

bloem meristemen in Arabidopsis produceren bloemorganen in vier concentrische ringen: 

kelkbladeren, kroonbladeren, meeldraden en vruchtbladeren. Elke ontwikkelingsfase 

wordt gecontroleerd door een gecoördineerd netwerk van regulatoren, bekend als gen 

regulatie netwerken (GRN) die de expressie van een specifieke set genen beïnvloeden. In 

dit proefschrift vergroten we de kennis van de dynamiek van het GRN dat de 

ontwikkeling van bloemorganen in Arabidopsis reguleert. Daarnaast correleren we de 

DNA-binding van MADS-domein eiwitten aan de toegankelijkheid van het chromatine in 

een genoom-wijde context.  

In hoofdstuk 1 en 2 geven we een overzicht van de huidige kennis van 

transcriptionele regulatie in de modelplant Arabidopsis thaliana. In hoofdstuk 1 besteden 

we vooral aandacht aan hoe het beeld van GRN tijdens bloemontwikkeling is veranderd 

tijdens de laatste decennia. Hoofdstuk 2 geeft een breder overzicht van de mechanismen 

die ontwikkelingsovergangen reguleren in planten. De recente introductie van het nieuwe-

generatie sequencen en de genoomwijde aanpak heeft onze blik op genregulatie en GRN 

veranderd. Lineaire genomische netwerken zijn overgegaan in veel bredere netwerken 

met een groot aantal interacties. Het grote aantal aan interacties die we detecteren met 

eiwit-DNA bindingsprofielen toont aan dat de complexiteit van netwerken veel hoger is 

dan voorheen geanticipeerd was. Deze bindingsprofielen laten zien dat sleutel regulatoren 

van ontwikkeling niet alleen andere lagen van regulatoren controleren, maar ook genen 

die coderen voor structurele eiwitten, enzymen en signaaleiwitten. Ook binden de meeste 

transcriptiefactoren hun eigen locus; dit onderstreept dat auto-regulatie een 

veelvoorkomend fenomeen is. 
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De ontdekking dat transcriptionele sleutel regulatoren interacties kunnen aangaan 

met epigenetische factoren geeft nieuwe inzichten in algemene trancriptionele 

mechanismen. Veranderingen van ontwikkelingsprogramma’s en celidentiteit in 

complexe organismen zijn gereguleerd op het niveau van genexpressie via het 

gecombineerde werk van chromatine regulatoren en transcriptiefactoren.  

Hoewel de meeste sleutel regulatoren van meristeem- en orgaanidentiteit zijn 

geïdentificeerd, is nog niet bekend hoe deze op moleculair niveau werken en hoe deze 

sleutel regulatoren in staat zijn volledige ontwikkelingsprogramma’s, waarin duizenden 

genen betrokken zijn, te veranderen. Door het gebruik van bloemontwikkeling als model 

systeem, in hoofdstuk 3 en 4, wordt transcriptionele regulatie onderzocht middels de 

analyse van dynamische eiwit-DNA binding, chromatine toegankelijkheid en 

genexpressie.  

Het gebruik van een induceerbaar mechanisme voor bloemformatie maakte het 

mogelijk de DNA-bindingsprofielen van twee MADS-domein transcriptiefactoren, 

APETALA1 (AP1) en SEPALLATA3 (SEP3), te karakteriseren tijdens drie stadia van 

bloem ontwikkeling. Onze studie laat zien dat deze MADS-domein eiwitten voor een deel 

hun DNA bindingsplaatsen en daarbij de genen die ze reguleren specifiek kiezen voor een 

bepaald ontwikkelingsstadium. Door data van DNA-binding en genexpressie te 

combineren hebben we een model ontwikkeld van stadium-specifieke GRN tijdens 

bloemontwikkeling. Omdat stadium-specifieke genexpressie sterk verbonden is met 

dynamische veranderingen in chromatine toegankelijkheid hebben we DNase I 

hypersensitieve plekken (DHP, hoofdstuk 3) en nucleosoom bezetting (hoofdstuk 4) 

onderzocht tijdens verschillende stadia van bloemontwikkeling. We hebben aangetoond 

dat dynamiek in het chromatine landschap zich manifesteert als verhogingen en 

verlagingen van DHP en ook veranderingen in nucleosoom bezetting en positie.   

In een volgende stap hebben we op moleculair niveau bestudeerd hoe de status 

van chromatine van invloed is op hoe MADS-domein eiwitten stadium-specifieke binding 

bereiken. DNA in de celkern is gewonden rond nucleosomen bestaande uit een achttal 

histonen, welke vervolgens nog compacter zijn georganiseerd. Door deze compacte 

organisatie zijn bindingsplaatsen van transcriptiefactoren slecht toegankelijk. Resultaten 

van de gecombineerde analyse van MADS-domein DNA-binding en chromatine 

dynamiek laten zien dat MADS-eiwitten bij voorkeur binden aan regio’s met weinig 
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nucleosomen en dat de DNA binding van AP1 en SEP3 vooraf gaat aan opening van het 

chromatine. Dit suggereert dan deze MADS-domein eiwitten acteren als zogenaamde 

“pionier factoren”. 

Doordat we specifieke stadia van bloemontwikkeling hebben gebruikt voor de 

analyse is de specificiteit van ons genoom-wijde experimenten vergroot. Deze 

specificiteit maakt het mogelijk om nieuwe factoren in het GRN van bloemontwikkeling 

te identificeren. In dit proefschrift karakteriseren we de rol van aan drietal nieuwe 

regulatoren in meer detail: in hoofdstuk 3 richten we ons op GROWTH REGULATING 

FACTOR (GRF) family genen; in hoofdstuk 5 bestuderen we de actie van STERILE 

APETALA (SAP); en in hoofdstuk 6 verduidelijken we de regulatie en de rol van een lid 

van de WUSCHEL-gerelateerde homeobox (WOX) familie, WOX12. GRF familie genen 

zijn dynamisch gebonden door AP1 en SEP3 op verschillende stadia van bloem 

ontwikkeling. Alle (WOX)-familieleden zijn gebonden door SEP3, terwijl maar een deel 

van de genen is gebonden door AP1. Het belang van deze doelgenen van MADS-domein 

eiwitten wordt onderschreven doordat verminderde expressie van de GRF genen 

resulteert in bloemorgaan defecten. SAP is naast een doelgen van AP1 en SEP3 ook een 

doelgen van andere MADS-domein eiwitten zoals APETALA3 (AP3), PISTILLATA (PI) 

en AGAMOUS (AG). SAP komt sterk tot expressie in het meristeem. Functionele 

mutanten van SAP zorgen voor sterke afwijkende bloemen, zoals bloemen met een 

verminderd aantal kroonbladeren en meeldraden. We hebben aangetoond dat SAP 

interacties aangaat met eiwitten van het SCF ubiquitine ligase complex, suggererend dat 

SAP een functie heeft in eiwit  afbraak. 
Een verminderde WOX12  expressie leid tot defecten in de specificatie van bloemorgaan 

identiteit met als resultaat de formatie van meeldraad-achtige kroonbladeren. Daarentegen 

leidt ectopische expressie van WOX12 tot een tegenovergesteld effect: de formatie van 

kroonbladeren-achtige meeldraden. WOX12 wordt gereguleerd door AP1 en ectopische 

expressie van WOX12 leidt tot reductie van AG expressie, dit suggereert een rol voor 

WOX12 in het antagonistische samenspel tussen de homeotische genen AP1 en AG. 

In hoofdstuk 7 worden de bevindingen van het proefschrift besproken. 

Samenvattend, het werk uitgevoerd voor dit proefschrift vergroot onze kennis van het 

GRN dat bloemformatie reguleert en de werkingswijze van MADS-domein 

transcriptiefactoren. We komen met de hypothese dat MADS-domein eiwitten een functie 
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hebben als pionier factoren; eiwitten die DNA in dicht chromatine kunnen binden en de 

toegankelijkheid ervan kunnen modeleren. Maar anders dan andere pionier factoren 

worden nucleosomen niet actief verminderd door MADS-domein transcriptie factoren. Ze 

gaan daarentegen interacties aan met zogenaamde “chromatin remodelers” om het 

chromatine landschap te modeleren. Het belang van MADS-domein eiwitten als sleutel 

regulatoren van ontwikkelingsprocessen en hun rol als pionier factoren geeft hun 

intrigerende manier van werken aan. 
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