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1 Introduction

Inventory theory provides methods for managing inventories in different en-
vironments. An interesting class of production/inventory control problems is
the one that considers the single location, single product case under non-
stationary stochastic demand. In contrast to the production planning prob-
lem under deterministic demand (Wagner and Whitin [28]), different inventory
control policies can be adopted to cope with the stochastic version.

A policy states the rules to decide when orders have to be placed and how to
compute the replenishment lot-size for each order. For a discussion on inven-
tory control policies see Silver et al. [22]. One of the well-known policies that
can be adopted in inventory control is the replenishment cycle policy, (R,S).
Under the non-stationary demand assumption this policy takes the dynamic
form (Rn,Sn) where Rn denotes the length of the nth replenishment cycle,
and Sn the order-up-to-level value for the nth replenishment.

It is a known result (Scarf [20]) that such a policy is not optimal in term of cost
minimization, since non-stationary (sn,Sn) always dominates it even when a
delivery lag is considered (Kaplan [15]). However, as discussed in Tarim and
Kingsman [25], (R, S) provides an effective means of dampening the planning
instability. Furthermore, it is particularly appealing when items are ordered
from the same supplier or require resource sharing. In such a case all items
in a coordinated group can be given the same replenishment period. Periodic
review also allows a reasonable prediction of the level of the workload on the
staff involved and is particularly suitable for advanced planning environments.
For these reasons, as stated by Silver et al. [22], (R,S) is a popular inventory
policy.

Due to its combinatorial nature, (Rn,Sn) policy — even in the absence of
stochastic lead time — presents a difficult problem to solve to optimality
(Tarim and Kingsman [25]). Early work in the area have been carried out in
Askin [2], Silver [21] and a heuristic procedure was proposed by Bookbinder
and Tan [6]. Although many works in inventory control assume a penalty cost
parameter for penalizing stock-outs, in all the works cited here the cost is
minimized under a service level constraint, which is in practice a very pop-
ular measure, since it has been widely recognized that penalty costs, and in
particular the cost of loosing customer goodwill, are usually difficult to assess
(Bashyam and Fu [4]).

A common assumption, in practice very restrictive, in all these works is the
absence of delivery lag. A work on stochastic lead time in continuous-time
inventory models was presented in Zipkin [30]. Kaplan [15] characterized the
optimal policy for a dynamic inventory problem where the time lag in deliv-
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ery of an item is a discrete random variable with known distribution. Since
tracking all the outstanding orders by means of dynamic programming re-
quires a large multidimensional state vector, Kaplan assumes that orders do
not cross in time and supplier lead time probabilities are independent of the
size/number of outstanding orders (for details on order-crossover see Hayya et
al. [12]). Under these assumptions he was able to provide a solution method for
the problem and to derive the optimal policy. The first assumption is valid for
systems where supplier’s production system has a single-server queue struc-
ture operating under a FIFO policy. In Bashyam and Fu [4] a similar problem
— operating under (s, S) policy, having a service level constraint and allowing
orders to cross in time — is described and solved by means of a simulation
based approach. To the best of our knowledge, there is no complete approach
in the literature that addresses the (Rn,Sn) policy under stochastic supplier
lead time.

In this paper, we use a “stochastic constraint programming” approach to ad-
dress (Rn,Sn) policy under stochastic supplier lead time. Computing optimal
policy parameters under these assumptions is a hard problem from a compu-
tational point of view. We build on the work of Eppen and Martin [9] and
following a similar approach we develop a scenario based method [26,5] for
solving (Rn,Sn) under stochastic demand and supplier lead time. Efficient
methods for computing (Rn,Sn) policy parameters based on Constraint Pro-
gramming were proposed in Tarim et al. [27,24]. In this paper, under the same
assumptions, we develop a dedicated constraint that realizes a deterministic
equivalent modeling of chance-constraints [8] by employing a scenario based
approach [26]. A constraint programming (CP) [1] model is proposed and an
example is given where an inventory control problem is solved to optimality
under a given discrete stochastic supplier lead time with known distribution.

The paper is organized as follows. In Section 2 we provide some formal back-
ground related to the modeling techniques employed. In Section 3 we provide
a formal definition for the general multi-period production/inventory problem
with non-stationary stochastic demand and lead time. In Section 4 we extend
Tarim and Kingsman’s [25] model for the replenishment cycle policy in order
to consider a dynamic deterministic supplier lead time, which assumes that
orders may cross in time. In Section 5 former results are embedded in a sce-
nario based approach to solve the problem when a stochastic supplier lead
time with known probability mass function is given. In Section 6 a CP model
is proposed, which incorporates former results in a dedicated constraint able to
dynamically enforce the given service level constraint during search. Further-
more a demonstrative example is given in this section to clarify the approach.
In Section 7 an instance is solved under deterministic and stochastic supplier
lead times; solutions are then discussed. In Section 8 results are summarized
and directions for future research are given.

3



2 Constraint Programming

A Constraint Satisfaction Problem (CSP) [1,7,16] is a triple 〈V,C,D〉, where
V is a set of decision variables, D is a function mapping each element of V
to a domain of potential values, and C is a set of constraints stating allowed
combinations of values for subsets of variables in V .A solution to a CSP is
simply a set of values of the variables such that the values are in the domains of
the variables and all of the constraints are satisfied. We may also be interested
in finding a feasible solution that minimizes (maximizes) the value of a given
objective function over a subset of the variables. Alternatively, we can define
a constraint as a mathematical function: f : D1 × D2 × . . . × Dn → {0, 1}
such that f(x1, x2, . . . , xn) = 1 if and only if C(x1, x2, . . . , xn) is satisfied.
Using this functional notation, we can then define a constraint satisfaction
problem (CSP) as follows (see also [1]): given n domains D1, D2, . . ., Dn and
m constraints f1, f2, . . ., fm find x1, x2, . . ., xn such that

fk(x1, x2, . . . , xn) = 1, 1 ≤ k ≤ m; (1)

xj ∈ Dj, 1 ≤ j ≤ n. (2)

The problem is only a feasibility problem, and no objective function is defined.
Nevertheless, CSPs are also an important class of combinatorial optimization
problems. Here the functions fk do not necessarily have closed mathematical
forms (for example, functional representations) and can be defined simply by
providing the set S described above.

For key concepts in Constraint Programming (CP) such as constraint filtering
algorithm, constraint propagation and arc-consistency see [1,17].

In [29] and [26] a stochastic constraint satisfaction problem (stochastic CSP)
is defined as a 6-tuple < V, S,D, P, C, θ >. V is a set of decision variables and
S is a set of stochastic variables. D is a function mapping each element of V
and each element of S to a domain of potential values. A decision variable in
V is assigned a value from its domain. P is a function mapping each element
of S to a probability distribution for its associated domain. C is a set of
constraints. A constraint h ∈ C that constrains at least one variable in S is a
chance-constraint. θh is a threshold value in the interval [0, 1], indicating the
minimum satisfaction probability for chance-constraint h. Note that a chance-
constraint with a threshold of 1 is equivalent to a hard constraint.

In [29] a policy based view of stochastic constraint programs is proposed.
The semantics is based on a tree of decisions. Each path in a policy repre-
sents a different possible scenario (set of values for the stochastic variables),
and the values assigned to decision variables in this scenario. To find satisfy-
ing policies, backtracking and forward checking algorithms, which explores the
implicit AND/OR graph, are presented. Such an approach has been further in-
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vestigated in [3]. An alternative semantics for stochastic constraint programs,
which suggests an alternative solution method, comes from a scenario-based
view [5]. In [26] the authors outline this solution method, which consists in
generating a scenario-tree that incorporates all possible realizations of discrete
random variables into the model explicitly. The great advantage of such an
approach is that conventional constraint solvers can be used to solve stochas-
tic CSP. Of course, there is a price to pay in this approach, as the number of
scenarios grows exponentially with the number of stages and such a growth is
particularly affected by random variables that contain a wide range of values
in their domain.

3 Problem Definition

We consider a finite planning horizon of N periods and a demand dt for each
period t ∈ {1, . . . , N}, which is a random variable with probability density
function gt(dt). We assume that the demand occurs instantaneously at the
beginning of each time period. The demand we consider is non-stationary,
that is it can vary from period to period, and we also assume that demands
in different periods are independent.

In the following sections we will consider two different cases, respectively: a
deterministic lead time of length Lt for an order placed in period t ∈ {1, ..., N}
and a stochastic lead time lt with probability mass function ft(lt) for an order
placed in period t ∈ {1, ..., N}. Note that {lt} are mutually independent and
each of them is also independent of the respective order quantity. A fixed
delivery cost a is incurred for each order and a variable unit cost v. A linear
holding cost h is incurred for each unit of product carried in stock from one
period to the next. We assume that it is not possible to sell back excess items to
the vendor at the end of a period and that negative orders are not allowed, so
that if the actual stock exceeds the order-up-to-level for that review, this excess
stock is carried forward and not returned to the supply source. However, such
occurrences are regarded as rare events and accordingly the cost of carrying
excess stocks and the positive effect on the service level of subsequent periods
is ignored. As a service level constraint we require the probability that at the
end of each and every period the net inventory will not be negative set to be
at least a given value α. Our aim is to minimize the expected total cost, which
is composed of ordering costs, unit costs and holding costs, over the N -period
planning horizon, satisfying the service level constraints.

The actual sequence of ordering and delivery to be considered can be arbitrary
as Kaplan notices in [15]. In the following we will adopt the same sequence
of action he describes, since it handles all the deliveries symmetrically and
allows for some delay in the arrival deliveries at the beginning of a period. The
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sequence is therefore as follows. At the beginning of a period, the inventory
on hand after all the demands from previous periods have been realized is
known. Since we are assuming complete backlogging, this quantity may be
negative. Also known are orders placed in previous periods which have not
been delivered yet. On the basis of this information, an ordering decision is
made for the current period. All the deliveries that are to be made during
a period are assumed to be made immediately after this ordering decision
and hence are on hand at the beginning of the period. A further discussion
that states the convenience of this sequence of events can be found in Kaplan
[15]. To summarize there are three successive events at the beginning of each
period. First, stock on hand and outstanding orders are determined. Second,
an ordering decision is made on the basis of this information. Third, all supplier
deliveries for the current period, including possibly the most recent orders, are
received.

4 Dynamic Deterministic Lead Time

In this section we focus on the general multi-period production/inventory
problem with stochastic demands and dynamic deterministic lead time. The
reader may also refer to [11] about this topic. This problem can be formulated
as finding the timing of the stock reviews and the size of the respective non-
negative replenishment orders, Xt in period t, with the objective of minimizing
the expected total cost E{TC} over a finite planning horizon of N periods.
Since a dynamic deterministic lead time Lt ≥ 0 is considered in each period
t = 1, . . . , N , an order placed in period t will be received only at period t+Lt.
Depending on the values assigned to Lt it may be obviously not possible to
provide the required service level for some initial periods. In general we will
be able to provide the required service level α starting from the period t for
which the value t + Lt is minimum. Let M be this period. Notice also that it
will never be optimal to place any order in a period t such that t + Lt > N ,
since such an order will not be received within the given planning horizon.
The problem can be formulated as a chance-constrained programming model
(see Bookbinder and Tan [6]),

min E{TC} =
∫

d1

∫

d2

. . .
∫

dN

N∑

t=1

(aδt + vXt + h ·max(It, 0))

×g1(d1)g2(d2) . . . gN(dN)d(d1)d(d2) . . . d(dN)

(3)
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subject to,

δt =

{
1, if Xt > 0
0, otherwise t = 1, ..., N (4)

It = I0 +
∑

{i|i≥1,Li+i≤t}
Xi −

t∑

i=1

di t = 1, ..., N (5)

Pr{It ≥ 0} ≥ α t = M, ..., N (6)

It ∈ Z, Xt ≥ 0, δt ∈ {0, 1} t = 1, ..., N (7)

where we comply with the notation used in [6],

dt : the demand in period t, a random variable with probability density
function, gt(dt),

a : the fixed ordering cost (incurred when an order is placed),
h : the proportional stock holding cost,
v : the unit variable cost of an item,
Lt : the deterministic delivery lead time in period t, Lt ≥ 0
δt : a {0,1} variable that takes the value of 1 if a replenishment occurs in

period t and 0 otherwise,
It : the inventory level (stock on hand minus back-orders) at the end of

period t,
I0 : the initial inventory,
Xt : the size of the replenishment order placed in period t, Xt ≥ 0,

(received in period t + L).

Let us denote the inventory position (the total amount of stock on hand plus
outstanding orders minus back-orders) at the end of period t as Pt. It directly
follows that

Pt = It +
∑

{i|1≤i≤t,Li+i>t}
Xi. (8)

where Pt is the inventory position in period t and it is assumed P0 = I0. We
now reformulate the model using the inventory position,

min E{TC} =
∫

d1

∫

d2

. . .
∫

dN

N∑

t=1


aδt + vXt + h ·max(Pt −

∑

{i|1≤i≤t,Li+i>t}
Xi, 0)




× g1(d1)g2(d2) . . . gN(dN)d(d1)d(d2) . . . d(dN)

(9)
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subject to,

δt =

{
1, if Xt > 0
0, otherwise t = 1, ..., N (10)

Pt = I0 +
t∑

i=1

(Xi − di) t = 1, ..., N (11)

Pr{Pt ≥
∑

{i|1≤i≤t,Li+i>t}
Xt} ≥ α t = M, ..., N (12)

Pt ∈ Z, Xt ≥ 0, δt ∈ {0, 1} t = 1, ..., N. (13)

By using the expectation operator E{·}, since {dt} are assumed to be mutually
independent, we may rewrite the objective function as

min E{TC} =
N∑

t=1


h · E



max(Pt −

∑

{i|1≤i≤t,Li+i>t}
Xi, 0)



 + a · δt + v ·Xt


 .

(14)
When a stock-out occurs, all demand is back-ordered and filled as soon as
an adequate supply arrives. However, the probability that net inventory will
not be negative is set normally quite high by the management, so that the
cost of back-orders can be ignored in the model. Moreover, Bookbinder and
Tan discuss that the term E{max(It, 0)} may be approximated by E{It},
in view of these remarks. Therefore in our model we approximate the term
E{max(Pt−∑

{i|1≤i≤t,Li+i>t} Xi, 0)} with the term E{Pt−∑
{i|1≤i≤t,Li+i>t} Xi}.

The general chance constrained programming formulation given above can be
modified to incorporate the inventory control policy adopted. In this paper we
adopt the “replenishment cycle policy”, which is equivalent to Bookbinder-
Tan’s “static-dynamic uncertainty strategy”. The replenishment cycle policy
(ie, (R, S) policy) is static in the sense that the replenishment periods are
determined once and for all at the beginning of the planning horizon, and
dynamic as the order quantities are decided only after observing the realized
demand. In what follows –based on [25], in which lead times are ignored– we
formulate the replenishment cycle policy under dynamic deterministic lead
times, Lt.

Consider a review schedule, which has m reviews over the N period planning
horizon with orders placed at {T1, T2, . . . , Tm}, where Ti > Ti−1, Tm ≤ N −
LTm . For convenience T1 is defined as the start of the planning horizon and
Tm+1 = N +1 as the period immediately after the end of the planning horizon.
The review schedule may be generalized to consider the case where T1 >
1, if the opening stock I0 is sufficient to cover the immediate needs at the
start of the planning horizon. The associated stock reviews will take place at
the beginning of periods Ti, i = 1, . . . ,m. In the considered dynamic review
and replenishment policy clearly the orders Xi are all equal to zero except
at replenishment periods T1, T2, . . . , Tm. The inventory level It carried from
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period t to period t + 1 is the opening stock plus any orders that have arrived
up to and including period t less the total demand to date. Hence is given by

It = I0 +
∑

{i|LTi
+Ti≤t}

XTi
−

t∑

k=1

dk, t = 1, . . . , N. (15)

Let us define

p(t) = max
{
i|∀j, j ≤ i, Tj + LTj

≤ t, i = 1, . . . ,m
}

. (16)

The inventory level It at the end of period t (Eq. 15) can be expressed as

It = I0 +
p(t)∑

i=1

XTi
+

∑

{i|i>p(t),LTi
+Ti≤t}

XTi
−

t∑

k=1

dk, t = 1, . . . , N. (17)

We now want to reformulate the constraints of the chance constrained model
in terms of a new set of decision variables RTi

, i = 1, . . . , m. We define

Pt = RTi
−

t∑

k=Ti

dk, Ti ≤ t < Ti+1, i = 1, . . . , m (18)

where RTi
can be interpreted as an order-up-to-position which stock should be

raised after placing an order at the ith review period Ti, and RTi
−∑t

k=Ti
dk

is the end of period inventory position. We can now express the whole model
in term of these new decision variables RTi

, which are related to the inventory
position in period Ti. The new problem is therefore to determine the number
of reviews, m, the Ti, and the associated RTi

for i = 1, . . . , m.

If there is no replenishment scheduled for period t, then Rt equals the opening
inventory position in period t. It follows that the variable Rt must be equal to
Pt−1 if no order is placed in period t and equal to the order-up-to-position if
there is a review in period t. We can express this using the following constraints

Rt = Pt + dt, t = 1, . . . , N (19)

Rt ≥ Pt−1, t = 1, . . . , N (20)

Rt > Pt−1 ⇒ δt = 1, t = 1, . . . , N. (21)

The values for the order-up-to-position variables, Rt, are then those that give
the minimum expected total cost E{TC}. The desired opening stock positions,
as required for the solution to the problem, will then be those values of Rt,
for which δt = 1. It is now clear that Constraints 4 and 5 can be replaced by
Eq. 19, 21 and 20.
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Let us now express Eq. 17 using RTi
as decision variables

It = RTp(t)
+

∑

{i|i>p(t),LTi
+Ti≤t}

(
RTi

−RTi−1
+ dTi−1

+ . . . + dTi−1

)
−

t∑

k=Tp(t)

dk,

t = 1, . . . , N.

(22)

As already mentioned, α is the desired minimum probability that the net
inventory level in any time period will be non-negative. M is by definition the
first period at which the inventory can be controlled. Keeping this in mind we
require

Pr {It ≥ 0} ≥ α, t = M, . . . , N. (23)

which implies, by substituting It with the right term in Eq. 22,

GS


RTp(t)

+
∑

{i|i>p(t),LTi
+Ti≤t}

(RTi
−RTi−1

)


 ≥ α,

t = M, . . . , N.

(24)

where S =
∑t

k=Tp(t)
dk−∑

{i|i>p(t),LTi
+Ti≤t}(dTi−1

+ . . . + dTi−1) and, as given in

[6], Gd1+d2+...+dt(.) is the cumulative distribution function of D(t) = d1 + d2 +
. . . + dt.

We now express the whole model in terms of the new set of variables Ri. Since
we consider expectations P̃i and d̃i, it follows that Ri = P̃i + d̃i and also that
the term Xt in the objective function can be expressed as Rt − P̃t−1. We re-
place the service level constraint 6 using the new formulation in Eq. 24. We
should note that v

∑N
t=1

(
Rt − P̃t−1

)
in the objective function can be rewritten

as v
∑N

t=1 d̃t + v · PN , where
∑N

t=1 d̃t is obviously a constant of the problem.
The resulting model is as follows,

E{TC} =

v
N∑

t=1

d̃t + min




N∑

t=1


h ·


P̃t −

∑

{i|1≤i≤t,Li+i>t}
(Ri − P̃i−1)


 + a · δt


 + v · P̃N




(25)

subject to,

{T1, . . . , Tm} = {t ∈ {1, . . . , N}|δt = 1}
Eq. 24, t = M, . . . , N
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Rt > P̃t−1 ⇒ δt = 1, t = 1, . . . , N (26)

Rt ≥ P̃t−1, t = 1, . . . , N (27)

Rt = P̃t + d̃t, t = 1, . . . , N (28)

Rt ≥ 0, P̃t ≥ 0, δt ∈ {0, 1} t = 1, . . . , N (29)

So far we treated the replenishment cycle policy formulation of the produc-
tion/inventory problem under non-stationary stochastic demand, dt, and dy-
namic deterministic lead time, Lt. We now recall that a deterministic equiva-
lent formulation of this problem under the same policy, non-stationary stochas-
tic demand, dt, and deterministic but constant lead time, L, was proposed in
[23]. According to this formulation and from the results presented here, when
the lead time is deterministic and constant, it is easy to see that Eq. 24 be-
comes

GdTp(t)
+dTp(t)+1+...+dt(RTp(t)

) ≥ α, t = L + 1, . . . , N. (30)

We adopt the following change of variable: Tp(t) = Ti. Since the lead time
is deterministic and constant Ti will be equal to Tp(t) for every t such that
Ti ≤ t < Ti+1 + L. It directly follows that

GdTi
+dTi+1+...+dt(RTi

) ≥ α, Ti ≤ t < Ti+1 + L. (31)

By defining k = t− L we can rewrite the former expression as

GdTi
+dTi+1+...+dk+L

(RTi
) ≥ α, Ti ≤ k < Ti+1 (32)

and therefore, since P̃k = RTi
−∑k

n=Ti
d̃n, it follows,

P̃k ≥ G−1
dTi

+dTi+1+...+dk+L
(α)−

k∑

n=Ti

d̃n, Ti ≤ k < Ti+1. (33)

G−1 is an ”inverse function”, such that G−1
D(t)(α) = u means α = GD(t)(u) =

Pr{D(t) ≤ u}. We assume that G is strictly increasing, hence G−1 is uniquely
defined. The right-hand side of Eq. 33 can be calculated off-line and memorized
in a table once the form of gt(·) is selected. Let

Φ[i, j] = G−1
di+di+1+...+dj+L

(α)−
j∑

k=i

d̃k. (34)

By employing the table presented in Eq. 34, the whole model under determin-
istic and constant lead time, L, can be easily expressed using a CP formulation
similar to the one presented in [27]. The whole model is

E{TC} =

v
N∑

t=1

d̃t + min




N∑

t=1


h ·


P̃t −

t∑

i=t−L+1

(Ri − P̃i−1)


 + a · δt


 + v · P̃N


 (35)
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subject to,

Rt > P̃t−1 ⇒ δt = 1 t = 1, . . . , N (36)

Rt ≥ P̃t−1 t = 1, . . . , N (37)

P̃t ≥ Φ[ max
j∈{1..t}

{j · δj}, t] t = 1, . . . , N − L (38)

Rt = P̃t + d̃t, t = 1, . . . , N (39)

Rt ≥ 0, P̃t ≥ 0, δt ∈ {0, 1} t = 1, . . . , N (40)

where elements in matrix Φ are indexed using the element constraint [13].
Obviously if we want to invert the cumulative distribution function in Eq.
24 as in the constant lead time case, the dimension of the table where the
buffer stock levels are stored has to increase, since many decision variables
take part in the computation of the stock-out probability. Instead of building
this matrix, it may be therefore convenient to develop a dedicated constraint
for the CP formulation of the model. In fact, in CP relations between decision
variables can be expressed by means of dedicated constraints that may include
customized algorithms to generate parameters and verify complex conditions
like Eq. 24. In this constraint we simply wait for a partial assignment of
decision variables {δt} and, by using Eq. 24, we dynamically generate during
the search deterministic equivalent constraints in a way similar to the one
presented in the example above. These deterministic constraints are enforced
to guarantee the required service level under the given partial replenishment
plan.

5 Non-stationary Stochastic Lead Time

We now consider the general multi-period production/inventory problem with
non-stationary stochastic demand and lead time. As in Eppen and Martin [9],
we consider a discrete stochastic lead time with probability mass function fi(·)
in each period i = 1, . . . , N . This means that an order placed in period i will
be received after k periods with probability fi(k). Since fi(k) is discrete we
shall assume that there is a maximum lead time L for which

∑L
k=0 fi(k) = 1,

i = 1, . . . , N . The probability of observing any lead time length p > L will be
always 0. Therefore the possible lead time lengths are limited to S = {0, . . . , L}
and the probability mass function is defined on the finite set S. Depending
on the probabilities assigned to each lead time length by the probability mass
function, it may not be possible to provide the required service level for some
initial periods. In general, reasoning in a worst case scenario, it will always
be possible to provide the required service level α starting from period L + 1.
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The chance-constrained programming model is given below,

min E{TC} =
∫

d1

. . .
∫

dN

∑

l1

. . .
∑

lN

T∑

t=1

(v ·Xt + a · δt + h · It)

f1(l1)f2(l2) . . . fN(lN)× g1(d1)g2(d2) . . . gN(dN)d(d1)d(d2) . . . d(dN)

(41)

subject to,

It = I0 +
∑

{i|i≥1,li≤t−i}
(Xi − dt) t = 1, . . . , N (42)

δt =

{
1, if Xt > 0
0, otherwise t = 1, . . . , N (43)

Pr{It ≥ 0} ≥ α t = L + 1, . . . , N (44)

It ∈ Z+
0 , Xt ≥ 0, δt ∈ {0, 1} t = 1, . . . , N (45)

where

li : the lead time length of the order placed in period i, a discrete
random variable with probability mass function fi(·).

We now reformulate the model using the inventory position,

min E{TC} =

∫

d1

. . .
∫

dN

∑

l1

. . .
∑

lN

N∑

t=1


aδt + vXt + h ·


Pt −

∑

{i|1≤i≤t,li>t−i}
Xi







f1(l1)f2(l2) . . . fN(lN)× g1(d1)g2(d2) . . . gN(dN)d(d1)d(d2) . . . d(dN)

(46)

subject to,

δt =

{
1, if Xt > 0
0, otherwise t = 1, ..., N (47)

Pt = I0 +
t∑

i=1

(Xi − di) t = 1, ..., N (48)

Pr{Pt ≥
∑

{i|1≤i≤t,li>t−i}
Xi} ≥ α t = L + 1, ..., N (49)

Pt ∈ Z+
0 , Xt ≥ 0, δt ∈ {0, 1} t = 1, ..., N. (50)

Let us define the cumulative distribution function Fi(k) =
∑k

p=0 fi(p), k ≥ 0.
Given the probability mass function fi(li) and since li is a discrete random
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variable it directly follows

t∑

i=1

Fi(t− i)Xi =
t∑

i=1

t−i∑

p=0

fi(p) t = 1, . . . , N. (51)

By recalling that {dt} are assumed to be mutually independent, we may
rewrite the objective function as

min E{TC} =

N∑

t=1

(
h · E

{(
Pt −

t∑

i=1

(1− Fi(t− i))Xi

)
+ v ·Xt

}
+ a · δt

)
(52)

Also in this case we want to adopt a replenishment cycle policy and we want to
express the whole model in terms of the new set of variables Ri, so that order
quantities have to be decided only after the demand in the former periods have
been realized. The analysis developed in the former section for the replenish-
ment condition (Eq. 43) and inventory conservation constraints (Eq. 42) still
holds, since it refers to the opening-inventory-position, which by definition
is not affected by the lead time length. So it is clear that these constraints
can be replaced by Eq. 19, 21 and 20. Since we are considering expectations,
the term Xt in the objective function can be expressed as Rt − P̃t−1. As we
did in the dynamic deterministic lead time case, we now have to express the
service level constraint as a relation between the opening-inventory-positions
such that the overall service level provided at the end of each period is at
least α. In order to express this service level constraint we propose a scenario
based approach over the discrete random variables li, i = 1, . . . , N . Let us
recall that in a scenario based approach [5,26], a scenario tree is generated
which incorporates all possible realization of discrete random variables into
the model explicitly. A path from the root to an extremity of the event tree
represents a scenario ω ∈ Ω, where Ω is the set of all possible scenarios. To
each scenario a given probability is associated. If Si is the ith random vari-
able on a path from the root to the leaf representing scenario ω and ai is the
value given to Si in the ith stage of this scenario, then the probability of this
scenario is given by Pr{ω} =

∏
i Pr(Si = ai). Within each scenario, we have a

conventional (non-stochastic) constraint program to solve. All we have to do
is replacing the stochastic variables by the values taken in the scenario and
ensure that the values found for the decision variables are consistent across
scenarios as certain decision variables are shared across scenarios.

In our problem we can divide random variables into two sets: the discrete
random variables {li} which represent lead times and the continuous random
variables {di} which represent demands. We deal with each set in a sepa-
rate fashion, by employing a scenario based approach for the discrete random
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variables and a deterministic equivalent modeling approach for the continu-
ous random variables. This is possible since, as we have already remarked,
under a given scenario ω discrete random variables are treated as determinis-
tic values. The problem is then reduced to the general multi-period produc-
tion/inventory problem with dynamic deterministic lead time and stochastic
demand, for which we have already presented in the former section a determin-
istic equivalent model that is able to represent the chance-constraints involving
continuous random variables {di}.

Consider a review schedule Z, which has m reviews over the N period planning
horizon with orders placed at {T1, T2, . . . , Tm}, where Ti > Ti−1, Tm ≤ N . For
convenience T1 is defined as the start of the planning horizon and Tm+1 = N+1
as the period immediately after the end of the planning horizon. The review
schedule may be generalized to consider the case where T1 > 1, if the opening
stock I0 is sufficient to cover the immediate needs at the start of the planning
horizon. The associated stock reviews will take place at the beginning of pe-
riods Ti, i = 1, . . . , m. In the considered dynamic review and replenishment
policy clearly the orders Xi are all equal to zero except at replenishment peri-
ods T1, T2, . . . , Tm. The inventory level It carried from period t to period t + 1
is the opening stock plus any orders that have arrived up to and including
period t less the total demand to date. A scenario ωt is a possible lead time
realization for all the orders placed up to period t in the given review schedule
Z. Let Ωt be the set of all the possible scenarios ωt. The first observation we
need is related to the definition of p(t) (Eq. 16). We have defined Tp(t) as the
latest period before period t in the planning horizon, for which we are sure
that all the former orders, including the one placed in Tp(t) if there is any,
have been delivered within period t. Under the assumption that the probabil-
ity mass function fi(·) is defined on a finite set S, p(t) provides a bound for
the scenario tree size. In fact if the possible lead time lengths in S are 0, . . . , L,
the earliest order that is delivered in period t with probability 1 under every
possible scenario ωt is the latest placed in the span 1, . . . , t − L. Therefore
since each scenario ωt identifies the orders that have been received before or
in period t, it directly follows that the number of scenarios in the tree that is
needed to compute the buffer stocks for periods t− L, . . . , t under any possi-
ble review schedule Z is at most 2L, when we place L + 1 orders in periods
t − L, . . . , t, but it may be lower if less reviews are planned. Under a given
review schedule Z and a scenario ωt the service level constraint for a period
t can be easily expressed by means of Eq. 24. It follows that the service level
constraint is always a relation between at most L + 1 decision variables Pi

that represent the closing-inventory-position (or equivalently Ri which are the
order-up-to-position) of the replenishment cycles covering the span t−L, . . . , t.
Let pω(t) be the value of p(t) under a given scenario ωt when a review schedule
Z is considered. In order to satisfy the service level constraints in our original
model, we require that the overall service level under all the possible scenarios
for each set of at most L + 1 decision variables is at least α or equivalently,
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by using Eq. 24

∑

ωt∈Ωt

Pr{ωt} ·GS


RTpω(t)

+
∑

{i|i>pω(t),(lTi
|ωt)≤t−Ti}

(RTi
−RTi−1

)


 ≥ α,

t = L + 1, . . . , N,

(53)

where S =
∑t

k=Tpω(t)
dk −∑

{i|i>pω(t),(lTi
|ωt)≤t−Ti}(dTi−1

+ . . . + dTi−1). Therefore

the complete model under the replenishment cycle policy can be expressed as

E{TC} =

v
N∑

t=1

d̃t+min

[
N∑

t=1

(
h ·

(
P̃t −

t∑

i=1

(1− Fi(t− i))(Ri − P̃i−1)

)
+ a · δt

)
+ v · P̃N

]

(54)
subject to,

{T1, . . . , Tm} = {t ∈ {1, . . . , N}|δt = 1}
Eq. 53, t = L + 1, . . . , N

Rt > P̃t−1 ⇒ δt = 1 t = 1, . . . , N (55)

Rt ≥ P̃t−1 t = 1, . . . , N (56)

Rt = P̃t + d̃t t = 1, . . . , N (57)

Rt ≥ 0, P̃t ≥ 0, δt ∈ {0, 1} t = 1, . . . , N. (58)

6 Stochastic Lead Time: a CP Implementation

In this section we present a CP formulation for the (Rn,Sn) problem under
stochastic lead time. Results from the former section will be employed in
the CP formulation. In order to model the service level constraint (Eq. 53)
we presented in the former section, a new constraint serviceLevel(·) will be
defined. Such a constraint is needed to dynamically compute the correct buffer
stock positions on the basis of the current replenishment plan, that is {δt}
assignments. Without loss of generality we will consider here a different and
simpler objective function. In such a function we will charge a holding cost
at the end of each period based on the current inventory position, rather
than the current inventory level. This will reflect the fact that we charge
interests not only on the actual amount of items we have in stock, but also on
outstanding orders. It should be noted that it is possible to build a CP model
that considers the original objective function. We chose not to implement this
function in our tool. In fact, in the research project carried out for a leading
international telecommunications company that motivated this research we
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were explicitly required to charge holding cost on the inventory position and
not on the inventory level. Doing so often make sense since companies may
assess holding cost on their total invested capital and not simply on items in
stock. A further and detailed justification for this can be found in [14] 2 .

The CP model that incorporates our dedicated chance constraint and the
objective function discussed is therefore

min E{TC} =
N∑

t=1

(
a · δt + h · P̃t

)
+ v · P̃N (59)

subject to,

P̃t + d̃t − P̃t−1 > 0 ⇒ δt = 1 t = 1, . . . , N (60)

δt = 0 ⇒ P̃t + d̃t − P̃t−1 = 0 t = 1, . . . , N (61)

P̃t + d̃t − P̃t−1 ≥ 0 t = 1, . . . , N (62)

serviceLevel(δ1, . . . , δN ,

P̃1, . . . , P̃N ,

g1(d1), . . . , gN(dN),

f(·), α)

(63)

P̃t ≥ 0, δt ∈ {0, 1} t = 1, . . . , N. (64)

It must be noted that the domain size value for the P̃t variables, exactly as
in the zero lead time case, is limited and more precisely it is equal to the
amount of stock required to satisfy subsequent demands till the end of the
planning horizon, meeting the required service level when only a single re-
plenishment is scheduled at the beginning of the planning horizon. In what
follows we describe the signature of the new constraint we have introduced.
serviceLevel(·) describes a relation between all the decision variables in the

2 In this work the author considers a holding cost based on the inventory position
rather than on-hand inventory in their order-up-to policy. He underlines how a hold-
ing cost based on inventory position provides a simple and more accurate expression
for inventory holding costs in the combined manufacturing and warehouse divisions.
In fact he observed that the order of a part initiates a succession of charges which
are incurred throughout the lead time (direct material cost, direct labor cost and
overheard cost). Certain inventory carrying costs are based on these charges – in-
terest on investment and risk of obsolescence – and they are accrued from the time
an order is placed to the manufacturing division. On the other hand other inven-
tory carrying costs are accrued from the time the finished part is delivered to the
warehouse (warehousing costs). The author suggests that a precise expression for
the inventory carrying costs which reflected all these consideration would be very
complex. Therefore, when interest and risk of obsolescence comprise a large portion
of the total carrying cost, using a model which incurs carrying cost from the time
an order is placed rather then from the time is delivered may be the correct choice
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model. It also accepts as parameters the distribution of the demand in each
period; the probability mass function of the lead time, which is assumed to be
the same for all the periods; and the required service level. In order to enforce
this constraint we consider every group of consecutive replenishment cycles
that cover at least L + 1 periods (that is the one of interest plus L former
periods). Each group must have the smallest possible cardinality in term of
replenishment cycle number. Obviously, to identify this group of cycles, we
have to wait that a subset of consecutive δt variables is assigned. Then, in
order to verify if the service level constraint is satisfied for the last period in
this group, we check that for each replenishment cycle in the group identified
at least one decision variable P̃t is assigned. If this is the case the partial pol-
icy for the span is completely defined and, by recalling that Rt = P̃t + d̃t, its
feasibility can be checked by using the condition in Eq. 53. If the condition
is not satisfied we backtrack. Notice that such a condition involves only the
periods we identified in the group defined, this means that our constraint is
able to detect infeasibility of partial assignments. A high level pseudo-code for
the propagation logic of the global chance-constraint described is presented in
Algorithm 1. Note that to keep the description of the algorithm simple we as-
sume here a stochastic lead time l with probability mass function f(l) in every
period. The maximum lead time length is L. It should be also emphasized
that, during the search, any CP solver will be able to exploit constraint prop-
agation and detect infeasible or suboptimal assignments with respect to other
constraints in the model. Furthermore many infeasible or suboptimal solutions
may be pruned by using respectively dedicated forward checking techniques
like the one described in [29] or cost-based filtering methods [10,24].

6.0.1 An example

We assume an initial null inventory level and a normally distributed demand
with a coefficient of variation σt/d̃t = 0.3 for each period t ∈ {1, . . . , 5}.
The expected values for the demand in each period are: {36, 28, 42, 33, 30}.
The other parameters are a = 1, h = 1, v = 0, α = 0.95(zα=0.95 = 1.645).
We consider for every period i in the planning horizon the following lead
time probability mass function fi(t) = {0.3, 0.2, 0.5}, which means that we
receive an order placed in period i after t ∈ {0, . . . , 2} periods with the given
probability (0 periods: 30%; 1 period: 20%; 2 periods: 50%). It is obvious that
in this case we will always receive the order at most after 2 periods. In Table
1 (Fig. 1) we show the optimal solution found when our chance constraint is
used to dynamically generate buffer stock levels. We now want to show that
order-up-to-positions computed in this example by using condition 53 satisfy
every service level constraint in the model. We assume that for the first 2
periods no service level constraint is enforced, since it is not possible to fully
control the inventory in the first 2 periods. Therefore we enforce the required
service level on period 3, 4 and 5, that is constraint 53 for t = 3, . . . , N . Let
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Algorithm 1: propagate

input : δ1, . . . , δN , P̃1, . . . , P̃N , α, d1, . . . , dN , l, L, N

begin
cycles ← {};
pointer ← 1;
periods ← 0;
for each period i in 2, . . . , N do

if δi is not assigned then
cycles ← {};
periods ← 0;
pointer = −1;

else if δi is assigned to 1 then
if pointer 6= −1 then

cycle ← a replenishment cycle over {pointer, ..., i− 1};
add cycle to cycles;

if periods ≥ L then
checkBuffers();

pointer ← i;
periods ← periods + 1;

else
periods ← periods + 1;

if pointer 6= −1 then
cycle ← a replenishment cycle over {pointer, ..., N};
add cycle to cycles;

if periods ≥ L then
checkBuffers();

end

Policy cost: 356
Period (t) 1 2 3 4 5
d̃t 36 28 42 33 30
Rt 125 124 129 87 55
δt 1 1 1 1 1
Shortage probability − − 5% 5% 5%

Table 1
Optimal solution.

us verify that the given order-up-to levels satisfy this condition for each of
these three periods. Since we know the probability mass function f(·) for each
period in the planning horizon we can easily compute the probability Pr(ωt)
for each scenario ωt ∈ Ωt. We have four of these scenarios for each period
t ∈ {3, . . . , N}, since we are placing an order in every period:
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Procedure checkBuffers

begin
cycle ← the last element in cycles, a replenishment cycle over {i, . . . , j};
if no decision variable P̃i, . . . , P̃j is assigned then

return;
counter ← 1;
for each period t covered by cycle do

formerCycles ← cycles;
remove cycle from formerCycles;
coveredPeriods ← the number of periods covered by cycles in
formerCycles;
head ← first element in formerCycles;
headLength ← periods covered by head;
if counter < L then

while coveredPeriods− headLength + counter ≥ L do
remove head from formerCycles;
head ← first element in formerCycles;
headLength ← periods covered by head;

else
formerCycles ← {};

condition ← true;
for each cycle c in formerCycles do

let {m, . . . , n} be the periods covered by c;
if no decision variable P̃m, . . . , P̃n is assigned then

condition ← false;

if condition then
if Eq. 53 for period t in cycle and former replenishment
cycles in formerCycles is not satisfied then

backtrack();

counter ← counter + 1;

end

• S1, Pr{S1} = 0.15 = (0.3+0.2)0.3; in this scenario at period t all the orders
placed are received. That is the order placed in period t − 1 is received
immediately (probability 0.3), or after one period (probability 0.2), while
the order placed in period t is received immediately (probability 0.3)

• S2, Pr{S2} = 0.35 = (0.3 + 0.2)(0.2 + 0.5); in this scenario at period t we
don’t receive the last order placed in period t. That is the order placed in
period t − 1 is received immediately (probability 0.3), or after one period
(probability 0.2), while the order placed in period t is not received immedi-
ately, therefore it is received after one period (probability 0.2), or after two
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Fig. 1. Optimal policy under stochastic lead time, fi(t) = {0.3, 0.2, 0.5}.
periods (probability 0.5)

• S3, Pr{S3} = 0.35 = 0.5(0.2 + 0.5); in this scenario at period t we don’t
receive the last two orders placed in periods t and t − 1. That is the order
placed in period t−1 is received after two periods (probability 0.5), and the
order placed in period t is not received immediately, therefore it is received
after one period (probability 0.2), or after two periods (probability 0.5)

• S4, Pr{S4} = 0.15 = 0.5 · 0.3; in this scenario at period t we don’t receive
the order placed in period t− 1 and we observe order-crossover. That is the
order placed in period t − 1 is received after two periods (probability 0.5),
and the order placed in period t is received immediately (probability 0.3)

In the described scenarios every possible configuration is considered. We do
this without any loss in generality. In fact if some of the configurations are
unrealistic (for instance if we assume that order-crossover may not take place)
we just need to set the probability of the respective scenario to zero. Now it is
possible to write condition 53 for each period t ∈ {3, . . . , N}. Let us consider
period 3:

Pr{S1} ·G
(

129− 42

0.3
√

422

)
+ Pr{S2} ·G

(
124− (28 + 42)

0.3
√

282 + 422

)
+

Pr{S3} ·G
(

125− (36 + 28 + 42)

0.3
√

362 + 282 + 422

)
+

Pr{S4} ·G
(

125 + (129− 124)− (36 + 42)

0.3
√

362 + 422

)
= 94.60% ∼= 95%

(65)

where G(·) is the standard normal distribution function. This means that the
combined effect of order delivery delays in our policy, all possible scenarios
taken into account, gives a no stock-out probability of about 95% for period
3. Let us consider period 4:

Pr{S1} ·G
(

87− 33

0.3
√

332

)
+ Pr{S2} ·G

(
129− (42 + 33)

0.3
√

422 + 332

)
+

Pr{S3} ·G
(

124− (28 + 42 + 33)

0.3
√

282 + 422 + 332

)
+

Pr{S4} ·G
(

124 + (87− 129)− (28 + 33)

0.3
√

282 + 332

)
= 94.89% ∼= 95%.

(66)
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Period (t) 1 2 3 4 5 6 7 8
d̃t 15 18 13 33 30 18 23 15

Table 2
Forecasts of period demands.
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Fig. 2. Optimal policy under no lead time.

Let us consider period 5:

Pr{S1} ·G
(

55− 30

0.3
√

302

)
+ Pr{S2} ·G

(
87− (33 + 30)

0.3
√

332 + 302

)
+

Pr{S3} ·G
(

129− (42 + 33 + 30)

0.3
√

422 + 332 + 302

)
+

Pr{S4} ·G
(

129 + (55− 87)− (42 + 30)

0.3
√

422 + 302

)
= 94.53% ∼= 95%.

(67)

We showed that the given solution satisfies the required service level for every
period t ∈ {3, . . . , N}.

7 Experiments

In this section we will solve to optimality an 8-period inventory problem un-
der stochastic demand and lead time. Different lead time configurations are
considered. The stochastic, deterministic and zero lead time cases are com-
pared. As in the previous example we assume an initial null inventory level
and a normally distributed demand with a coefficient of variation σt/d̃t = 0.3
for each period t ∈ {1, . . . , 8}. The expected values {d̃t} for the demand in
each period are listed in Table 2. The other parameters are a = 30, h = 1,
v = 0, α = 0.95(zα=0.95 = 1.645). Initially we consider the problem under
stochastic demand and no lead time, an efficient CP approach to find pol-
icy parameters in this case was presented in [27,24]. Obviously our approach
is general and can provide solutions for this case as well, although less effi-
ciently. The optimal solution for the instance considered is presented in Fig.
2, details about the optimal policy are reported in Table 3. We observe 5
replenishment cycles, policy parameters are: cycle lengths= [1, 2, 1, 2, 2] and
order-up-to-positions= [72, 42, 49, 65, 52]. The shortage probability is at most
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E{TC}: 303 Average Inventory Level: 18.5
Period (t) 1 2 3 4 5 6 7 8
Rt 22 42 24 49 65 35 52 29
δt 1 1 0 1 1 0 1 0
Shortage probability 5% 0% 5% 5% 0% 5% 0% 5%

Table 3
Optimal policy under no lead time.
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Fig. 3. Optimal policy under deterministic one period lead time.

E{TC}: 456 Average Inventory Level: 25.7
Period (t) 1 2 3 4 5 6 7 8
Rt 59 44 64 105 72 72 54 31
δt 1 0 1 1 0 1 0 0
Shortage probability − 0% 5% 5% 0% 5% 0% 5%

Table 4
Optimal policy under deterministic one period lead time, notice that the service

level in the first period can obviously not be controlled.

5%, therefore the service level is met in every period. The E{TC} is 303 and
the average inventory level for the policy, computed by simulating demands
and lead times according to the given probability distribution function and
probability mass function respectively, is 18.5 units. Since we will consider a
lead time of at most 2 periods in our examples, in order to make comparisons
meaningful between different instances, for the deterministic lead time cases
we computed the average inventory level over 6 periods starting from period
L + 1, where L is the lead time length, for the stochastic lead time cases we
computed again the average inventory level over 6 periods, but starting from
period L̃ + 1, where L̃ is the average lead time length.

We now consider the same instance, but with a deterministic lead time of one
period. The optimal solution is presented in Fig. 3, details about the optimal
policy are reported in Table 4. We observe now only 4 replenishment cycles,
policy parameters are: cycle lengths= [2, 1, 2, 3] and order-up-to-positions=
[59, 64, 105, 72]. Again the shortage probability is at most 5% in every period,
which means that the service level constraint is met. The E{TC} is 456 and the
average inventory level for the policy is 25.7 units. Therefore we observe now
an expected total cost that is 50.5% higher than the zero lead time case. The
replenishment plan is significantly affected by the lead time both in term of
replenishment cycle lengths and order-up-to-positions. The average inventory

23



0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9

Period

In
v

e
n

to
ry

 p
o

s
it

io
n

Fig. 4. Optimal policy under deterministic two periods lead time.

E{TC}: 602 Average Inventory Level: 23.2
Period (t) 1 2 3 4 5 6 7 8
Rt 59 84 119 106 92 72 54 31
δt 1 1 1 0 1 1 0 0
Shortage probability − − 5% 5% 0% 5% 5% 5%

Table 5
Optimal policy under deterministic two periods lead time.

Lead Time Ĩ EĨ{TC}
0 18.5 261.0
1 25.7 274.2
2 23.2 289.2

Table 6
Deterministic lead time. Average inventory levels and respective expected total

cost.

level observed is higher than the one in the zero lead time case.

When a deterministic lead time of two periods is considered, as the reader may
expect, we observe again higher costs and a different replenishment policy. The
optimal solution is presented in Fig. 4, details about the optimal policy are
reported in Table 5. The number of replenishment cycles is now again 5,
policy parameters are: cycle lengths= [1, 1, 2, 1, 3] and order-up-to-positions=
[59, 84, 119, 92, 72]. The service level constraint is met in every period. The
E{TC} is 602 and the average inventory level for the policy is 23.2 units.
This means that we observe a cost 98.6% and 32.0% higher than respectively
the zero lead time case and the one period lead time case. The replenishment
plan is again completely modified as a consequence of the lead time length.
The average inventory level observed is slightly lower than in the former cases.
This is due to the fact that in this replenishment plan we schedule 5 orders,
while in the optimal replenishment plan under a deterministic lead time of
one period only 4 orders are planned.

In Table 6 we report the expected total cost EĨ{TC} computed with respect
to the average inventory level Ĩ for the three cases presented so far.

We now concentrate on two instances where a stochastic lead time is considered
and we compare results with the former cases. Firstly we analyze a stochastic
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Fig. 5. Optimal policy under stochastic lead time, fi(t) = {0.2(0), 0.6(1), 0.2(2)}.
E{TC}: 532 Average Inventory Level: 32.8
Period (t) 1 2 3 4 5 6 7 8
Rt 50 72 101 88 79 72 54 31
δt 1 1 1 0 1 1 0 0
Shortage probability − − 5% 5% 3% 5% 5% 5%

Table 7
Optimal policy under stochastic lead time, fi(t) = {0.2(0), 0.6(1), 0.2(2)}, in periods
{1, 2} the inventory cannot be controlled.

lead time with probability mass function fi(t) = {0.2(0), 0.6(1), 0.2(2)}. That
is an order is received immediately with probability 0.2, after one period with
probability 0.6, and after two periods with probability 0.2. The optimal so-
lution is presented in Fig. 5, details about the optimal policy are reported in
Table 7. The number of replenishment cycles is again 5 as in the two period
lead time case, policy parameters are: cycle lengths= [1, 1, 2, 1, 3] and order-
up-to-positions= [50, 72, 101, 79, 72]. Therefore we see that the number and
the length of replenishment cycles does not change from the deterministic two
period lead time case, although we observe lower order-up-to-positions as we
may expect since the lead time is in average one period therefore lower than
in the former case. Also the cost reflects this, in fact it is 11.6% lower than in
the two period deterministic lead time case. On the other hand we observed
an average inventory level of 32.8, obviously affected by the uncertainty now
associated with the lead time. It should be noted that the uncertainty of the
lead time plays a significant role, in fact although the average lead time is one
period, the structure of the policy resembles much more the one under a two
period deterministic lead time than the one under a deterministic one period
lead time. Moreover the expected total cost is 16.6% higher than in this latter
case.

We finally consider a different probability mass function for the lead time:
fi(t) = {0.5(0), 0.0(1), 0.5(2)}, which means that we maintain the same aver-
age lead time of one period, but we increase its variance. The optimal solution
is presented in Fig. 6, details about the optimal policy are reported in Ta-
ble 8. The number of replenishment cycles is still 5, policy parameters are:
cycle lengths= [1, 1, 2, 1, 3] and order-up-to-positions= [50, 72, 101, 79, 72]. Al-
though the average lead time is still one period, order-up-to-positions are
slightly higher than in the former case where the variance of the lead time was
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Fig. 6. Optimal policy under stochastic lead time, fi(t) = {0.5(0), 0.0(1), 0.5(2)}.
E{TC}: 562 Average Inventory Level: 35.5
Period (t) 1 2 3 4 5 6 7 8
Rt 53 79 107 94 87 72 54 31
δt 1 1 1 0 1 1 0 0
Shortage probability − − 5% 5% 0% 5% 5% 5%

Table 8
Optimal policy under stochastic lead time, fi(t) = {0.5(0), 0.0(1), 0.5(2)}.

Lead Time Ĩ EĨ{TC}
fi(t) = {0.2(0), 0.6(1), 0.2(2)} 32.8 346.8
fi(t) = {0.5(0), 0.0(1), 0.5(2)} 35.5 363.0

Table 9
Stochastic lead time. Average inventory levels and respective expected total cost.

lower. Also the cost reflects this, in fact it is 5.6% higher than in the former
case, but still lower than the expected total cost of the two period determin-
istic lead time case. Moreover we observed an average inventory level of 35.5,
again affected by the uncertainty associated with the lead time.

In Table 9 we report the expected total cost EĨ{TC} computed with respect to
the average inventory level Ĩ for the two cases where the lead time is stochastic.

To summarize, in our experiments we saw that supplier lead time uncertainty
may significantly affect the structure of the optimal (Rn,Sn) policy. Computing
optimal policy parameters constitutes a hard computational and theoretical
challenge. Under different degrees of lead time uncertainty, when other input
parameters for the problem remain fixed, order-up-to-positions and reorder
points in the optimal policy change significantly. Realizing what the optimal
decisions are for certain input parameters is a counterintuitive task. Our ap-
proach provides a systematic way to compute these optimal policy parameters.

7.1 Analyzing the cost associated with a set of optimal policy parameters

From the experiments presented interesting insights can be obtained by ob-
serving the behavior of the expected total cost and of the average inventory
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level for different lead time configurations. Let us firstly observe how the ex-
pected total cost changes when the lead time changes. For a deterministic
lead time, as we increase its value, the cost increases significantly when the
objective function considers the expected inventory position. Intuitively this
is due to the fact that every replenishment cycle covering periods i, . . . , j has
to cope not only with the uncertainty associated with periods i, . . . , j, but also
with the variability of the demand over j + 1, . . . , j + L − 1, where L is the
lead time length. In fact the order placed in period j + 1 will be received only
after L periods. When the expected inventory level is considered, the increase
ratio is lower, since we only pay the cost of the uncertainty associated with
the increased buffers and we do not charge holding cost on the outstanding
orders. When the lead time is stochastic and the expected inventory position
is considered, the optimal policy cost is affected by the expected value of the
lead time and by its variability. In fact in the last two examples presented
the stochastic lead time has the same expected value of one period, but in
the second example the variability is obviously higher. This directly trans-
lates into a cost difference where the lead time with probability mass function
{0.5(0), 0(1), 0.5(2)} results 5.6% more costly than the one with probability
mass function {0.2(0), 0.6(1), 0.2(2)}. Nevertheless in both the cases the cost
observed is lower than the one observed when the lead time is deterministic
and its value is two. This can be explained by the fact that the buffers re-
quired to guarantee a given service level under a deterministic two period lead
time represent a worst case scenario for every instance where the lead time
is stochastic and its length can be at most two periods. More formally this
directly follows from Eq. 24, which determines the minimum expected inven-
tory position required at the end of each replenishment cycle to guarantee the
given service level. Although, when holding cost is charged on the expected
inventory position, the behavior of the expected total cost is quite intuitive
and it easily follows from the formulas presented, a dedicated reasoning must
be given to explain the behavior of the average inventory level and of the
expected total cost when holding cost is charged on the expected inventory
level.

In the examples presented the reader may observe that a stochastic lead time
distributed as follows, {0.2(0), 0.6(1), 0.2(2)}, produces an expected total cost
E{TC} lower than the one produced by a deterministic lead time of two pe-
riods. In contrast, the average inventory level Ĩ — as well as the respective
expected total cost EĨ{TC} — associated with the optimal policy computed
for such a stochastic lead time is higher than the one obtained for a determin-
istic lead time of two periods. The reason for this is that, when we consider the
expected inventory level, under a deterministic lead time we keep high buffer
stocks, but we do not charge holding cost on outstanding orders, therefore the
impact on the holding cost will be limited to the increase in the required buffer
stocks. Under a stochastic lead time, the expected inventory level is affected by
the increased buffer stocks in a similar manner, but it is also directly affected
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by the lead time expected value and by its variability. In fact, whenever an
order has associated a short lead time, this will produce a high inventory level
carried over to next periods. These scenarios may obviously affect the average
inventory level of the optimal policy, while their effect on the expected inven-
tory position is limited to the increased buffer stock levels, since the holding
cost in this case is always charged also on outstanding orders. For instance a
stochastic lead time distributed as follows, {0.5(0), 0(1), 0.5(2)}, produces the
highest average inventory level — and expected total cost EĨ{TC} — among
all the instance we considered in our set of examples. This can be explained
by noticing that under a more variable lead time we will keep higher buffer
stocks, and often, when the realized lead time is low, a high inventory level is
accumulated and carried over to next periods before being consumed by the
demand.

In conclusion we emphasize that, given a certain lead time (deterministic or
stochastic), it may be relevant for certain firms to optimize the holding cost on
the expected inventory position rather than on the expected inventory level.
Nevertheless if we are interested in comparing the optimal policy cost for
different lead time lengths and lead time probability mass functions, then we
should note that the costs obtained with these two formulations do not follow
the same trend, and it is necessary to compare optimal costs obtained with the
specific formulation we wish to analyze. For instance if we optimize in terms
of the expected inventory position (E{TC}) the instance with a deterministic
lead time of two periods and the one with a stochastic lead time distributed
as follows, {0.5(0), 0(1), 0.5(2)}, our model suggests that a deterministic lead
time of two periods is more costly. In contrast, since both the optimal policies
place the same number of orders, by analyzing the average inventory level
computed for the two instances, it is easy to notice that, when the cost is
computed with respect to the expected inventory level (EĨ{TC}), then the
stochastic lead time results more costly.

8 Conclusions

A novel approach to compute (Rn,Sn) policy parameters under stochastic
lead time have been presented. We also showed how to model such a prob-
lem when a dynamic deterministic lead time is considered. The assumptions
under which we developed our approach for the stochastic lead time case
proved to be less restrictive than those commonly adopted in the literature
for complete methods. In particular we faced the problem of order-crossover,
which is a very active research topic as Riezebos show in [18] and [19]. Our ap-
proach merged well known concepts such as deterministic equivalent modeling
of chance-constraints [8] and scenario based approach [26] in order to produce
an effective way of solving (Rn,Sn) policy under stochastic lead time. Since
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we are employing CP to implement our approach we may benefit from special
purpose constraint propagation techniques and cost based filtering methods
that can certainly speed up the search process. Therefore in our future research
we aim to develop specific filtering algorithms able to significantly speed up
the search for the optimal (Rn,Sn) policy parameters under stochastic lead
time.
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