Occurrence of *Alternaria* mycotoxins in food products in the Netherlands

Patricia López¹, Dini Venema¹, Theo de Rijk¹, André de Kok², Jos Scholten², Hans Moï³, Monique de Nijis¹

Background

The European Food Safety Authority (EFSA) concluded in their Scientific Opinion in 2012, in which they that *Alternaria* toxins are of high concern for public health. They can induce harmful effects in animals, including carcinogenic and teratogenic effects. *Alternaria* toxins can contaminate cereals, oilseeds and various fruits and vegetables such as apples, tomatoes, citrus fruits and olives.

On May 29, 2012, the European Standing Committee advised to the Member states to collect data on the occurrence of the *Alternaria* toxins (figure 1): alternariol (AOH), alternariol monomethyl ether (AME), tenuazonic acid (TeA), tentoxin (TEN) and altenuene (ALT) in food commodities.

Objective

- Adaptation of an existing LC-MS/MS method to determine 5 *Alternaria* toxins (figure 1) in various food commodities.
- Perform a survey (95 samples) to gain insight in the levels of *Alternaria* toxins in fresh apples, tomatoes, citrus, figs, olives, sunflower seeds, cereals, apple juices and tomato sauces, purchased in the Netherlands.

Results:

Results of the survey for the occurrence of Alternaria mycotoxins.

Table 2. Results of the survey for the occurrence of Alternaria mycotoxins.

<table>
<thead>
<tr>
<th>Product</th>
<th>Number of samples</th>
<th>Concentration (µg/kg)</th>
<th>ALT</th>
<th>AME</th>
<th>AOH</th>
<th>TEN</th>
<th>TeA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh apples (N=11)</td>
<td>0.5-8</td>
<td><0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Olives (N=10)</td>
<td>0.5-8</td>
<td><0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Figs (N=5)</td>
<td>0.5-8</td>
<td><0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sunflower seeds (N=5)</td>
<td>0.5-8</td>
<td><0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fresh herbs (N=15)</td>
<td>0.5-8</td>
<td><0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fresh tomatoes (N=10)</td>
<td>0.5-8</td>
<td><0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apple juices (N=7)</td>
<td>0.5-8</td>
<td><0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tomato sauce (N=8)</td>
<td>0.5-8</td>
<td><0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cereals (N=14)</td>
<td>0.5-8</td>
<td><0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LC conditions: Shimadzu Prominence

- Waters Atlantis T3 3 µm, 3.0x100 mm
- T column: 35 °C
- Mobile phase A: water + 1mM NH₄COOH 84/16/1 (v/v/v), shaken head-over-head for 1 h and centrifuged at 3000 rpm for 10 min. 0.5 mL of the supernatant was filtered and analysed.

Extraction procedure

2.5 g of sample were extracted with 10 mL of acetonitrile/water/formic acid 84/16/1 (v/v/v), shaken head-over-head for 1 h and centrifuged at 3000 rpm for 10 min. 0.5 mL of the supernatant was filtered and analysed.

Results: Survey in the Netherlands

Figure 1. Chemical structure of the Alternaria toxins in the study.

Figure 2. Chromatogram for mixed standard of 1ng/mL for AOH, AME, ALT and TEN and 5 ng/mL for TeA.

Conclusions

- AOH, AME, TeA, and TEN were detected in one or more food commodities, while ALT was not detected in any of the samples.
- TeA was found in 27% of samples and at high concentrations.
- Regular occurrence in cereals, tomato sauces, figs, wine and sunflower seeds.
- Incidental occurrence in fresh apples, citrus fruits, tomatoes and olives.

Acknowledgment: This research was financially supported by the Dutch Ministry of Economic Affairs.

¹RIKILT Wageningen UR
²Ministry of Economic Affairs
³Netherlands Food and Consumer Product Safety Authority

Contact: patricia.lopezsanchez@wur.nl
www.wageningenur.nl/en/Expertise-Services/Research-Institutes/rikilt.htm

©2019 Wageningen University and Research