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Insect - host interactions 

Signals, senses, and selection behaviour 

Mister Rector, ladies and gentlemen, 

The large majority of insect species escape our every-day attention with only few 

notable exceptions: the colourful butterflies and the buzzing bees, houseflies and 

mosquitoes. Entomologists are a special breed among biologists, intrigued as they are 

by these small organisms and much aware of the extraordinary richness of the insect 

fauna in terrestrial ecosystems. The number of insects and other terrestrial arthropod 

species is huge relative to other animal taxa (upto 100.000 specimens per m2 of soil is 

no exception; Paoletti et ai, 2007). More important than their diversity and numerical 

abundance, insects fulfil vital functions in plant reproduction in natural and agri

cultural ecosystems, in natural control of organisms harmful to mankind and in 

decomposition of organic matter (Schoonhoven et al., 2005; Chapman, 2013). The 

number of insect species dwelling on Earth has been estimated to be at least 5.000.000 

(Grimaldi and Engel, 2005). Approximately half of the 1.000.000 insect species 

taxonomically described depend on the photosynthetic capacity of plants to provide 

the nutrients they need to grow, develop and reproduce; these 500.000 plant-feeding 

species are collectively called herbivores; if we assume that also among the 4.000.000 

insect species yet to be discovered 50% is herbivorous, the number of herbivorous 

insect species would be 2.500.000. The other half either feed on other animals, 

including the large guilds of predators and parasitoids, or on decaying organic 

material. The number of higher plant species currently described is ca. 300.000. 

Knowing these numbers one might conclude that the study of insect - plant 

interactions is an insurmountable task to undertake, because the number of potential 

interactions is 750 billion. Fortunately evolution has come to the rescue of the 

entomologist intrigued by insect-plant interactions. The evolution of insect-plant 

interactions is ongoing since ca. 350 million years and has resulted in the high degree 

of host-plant specialism that we currently observe and that is the major biological 

feature of these interactions (Figure 1). 
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Figure i. Numbers of specialist and generalist plant-feeding insects in the eight most speciose insect 

orders. Averaged over the orders, over 8o% of plant-feeding insects are specialised feeders. 

Over 8o% of plant-feeding insects are highly specialised feeders: they confine their 

parasitic life style to plant species belonging to a single family of plants and in the 

large majority of cases even to a single plant species. An example of the latter is the 

butterfly featuring on the cover, the brimstone (Gonepteryx rhamni L.), a member of 

the family Pieridae; this species probably is the archetype for the generic English 

name 'butterflies' for the order of Lepidoptera, because it is seen flying very early in 

spring in western Europe, the males having a butter-yellow colour. The brimstone is 

associated with only two host plant species in the same genus, the alder and common 

buckthorns (Rhamnus frangula L. and R. cathartica L.; Rhamnaceae). On the other 

extreme of the discontinuous scale of specialisation are so-called generalist or 

polyphagous plant-feeding insects that consume the tissues of several hundreds of 

phylogenetically unrelated plant species, among which our most important crop 

plants. Notorious examples of these are the Helicoverpa and Spodoptera armyworms, 

belonging to the family Noctuidae, that consistently rank among the top 10 of 

agricultural pest species world-wide. Of all living herbivorous insects less than io% 

feeds on more than three different plant families. First I will discuss the various ways 

in which plant-feeding insects and their host plants interact. 

Oviposition behaviour 
I will discuss insect - plant interactions as they occur for three life stages of a 

butterfly and its host plants (Figure 2). Large Cabbage White butterflies (Pieris 

brassicae L.; Lepidoptera: Pieridae) overwinter as diapausing pupae and due to 

increasing daylength and rising temperatures in spring becomes active and eclose 

from their pupal case. After mating the female starts to search for host plants to lay 
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Fifth instar larva 

Figure 2. Life cycle of the Large Cabbage White butterfly Pieris brassicae. Top left: adult female, laying 

eggs at the underside of a cabbage leaf; top right: eggs and freshly hatched first instar caterpillars; bottom 

right: fifth (final) instar larva; bottom left: pupa (lateral view, ventral side up). 

her eggs. Being a specialist species, the female needs to locate a plant that belongs 

to the family Brassicaceae, the mustards and cabbages. In accomplishing this, the 

female butterfly uses optical and olfactory signals associated with plants: the green 

colour of leaves, the display of flowers, and the volatile compounds that are released 

by the entire plant, including its roots. The female is attracted by green objects and 

detects in flight plant volatiles with olfactory neurons in hair-like structures called 

sensilla on the antennae (Figure 3). 

The wall of an olfactory sensillum is perforated with minute holes, each of them 

measuring about 10 nanometer wide, over its entire surface. These pores allow the 

volatile molecules to enter the inside of the sensillum and after transport by odorant 

binding proteins (OBPs), to bind to receptor molecules in the membrane of the 

olfactory neuron. If the flux of molecules, that is the number of molecules binding 

receptor molecules per unit of time, is high enough, the detection threshold of the 

olfactory neuron is exceeded and the neuron will change the rate at which it 

generates action potentials that are conducted to the olfactory lobe of the butterfly 

brain (Figure 4). The pattern of electrophysiological activity received by the brain is 

assessed and is translated into a behavioural response along neural pathways that 

have begun to be mapped with respect to the antennal lobe and the mushroom 

bodies in the brain (Figure 4). Information from the hundreds of antennal sensilla 

harbouring several thousands of olfactory neurons is sorted into a much smaller 

number of processing units: in the antennal lobe of butterflies and moths between 60-

80 glomerular structures can be discerned. Along neural processing pathways that 

as yet are largely unknown, coordinated motor output is generated that we observe 
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as behaviour. The olfactory detection of plant volatiles may elicit the female to alight 

on a plant, depending on the composition and concentration of the volatile blend. 

For the Large Cabbage White female that is ready to lay eggs, it has been observed 

that she lands on more than a dozen plants before a cluster of eggs is deposited on 

one of them in a patch of host plants; this indicates that a notable investment in time 

and energy is made to select an oviposition site. Immediately after landing, she 

drums several times a second on the leaf surface with her forelegs. It is still debated if 

this causes mechanical damage to epidermal leaf cells, that would release dissolved 

compounds and to what extent sensory access is gained to polar compounds in the 

apolar matrix of the leaf epicuticle or in the epidermal or interior leaf cells. Scanning 

electron microscopy has not revealed apparent damage. The tarsi of the forelegs 

carry sensory hairs of ca. 30 micrometer long that have a single pore at their tip: these 

are taste sensilla (Figure 4). Every sensillum harbours four taste neurons. Such taste 

hairs occur on all six legs and the total number of tarsal taste neurons is ca. 2100, all 

of which project to the suboesophageal ganglion, a part of the brain situated below 

the foregut (Figure 4). A combination of phytochemical, behavioural and sensory 

approaches has been employed to analyse which chemical compounds produced by 

the plant act as signals affecting the selection behaviour of the female butterfly. 

Ion channels in 
neuron membrane 

Antenna Brain: olfactory lobe 

Figure 3. Antenna typical for a male moth (family Noctuidae), single antennal segment with rows of 

olfactory sensilla, schematic detail of single sensillum (longitudinal section). Circular inset: schematic 

detail of how pheromone molecules in the air outside the sensillum wall enter through minute pores 

(10 nanometer diameter) in the cuticle and bind to odor ant-binding transport proteins (BmorPBP) in 

the lymph surrounding the dendritic double-layered lipid membrane of an olfactory neuron. Two ion 

channels for sodium ions (Na*) and potassium ions (K*) are shown in the membrane. 
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Figure 4. Top left: drawing of adult female of the Large Cabbage White butterfly Pieris brassicae 

(lateral view). Circular inset: drawing of two distal segments of the tarsus of the foreleg; top right inset: 

scanning electron micrograph of a cluster oftrichoid taste sensilla; bottom right: schematic drawing of 

a single taste sensillum and the five neurons innervating the sensiUum; a glass capillary is positioned 

close to the sensillum tip pore, used for stimulating the taste neurons with molecules in solution. 

At the bottom right, an exemplary recording of electrophysiological activity (a series ofbiphasic 

action potentials) generated by the taste neurons is shown. The axons of the five neurons run to the 

suboesophageal ganglion (bottom left), located ventrally in the head, the centre for processing taste 

information. The suboesophageal ganglion is connected to the brain with neural connectives running 

around the oesophagus of the foregut. Antennal nerve, olfactory lobe and the cortex and neuropile of 

the mushroom body (the seat of insect memory) are shown also. 

The behavioural decision of acceptance or rejection for egg-laying depends in a 

surprisingly straight-forward way on the ratio between stimulatory and inhibitory 

inputs. This input - output approach is useful as it allows us to predict the 

behavioural effect of stimuli based on the electrophysiological activity they elicit and 

can be used for a pre-screening of active compounds. It reduces the outcome of 

processing in the brain to an arithmetic rule and makes no assumptions about the 

neural processes operating. Strong stimulatory input is generated by one of the four 

taste neurons (Figure 5) that responds to glucosinolates, a family of ca. 120 secondary 

plant compounds that are synthesised by species in the Brassicaceae, the favourite 

host-plant family of P. brassicae and other Pieris species. The glucosinolates are 

compounds that have a defensive function against plant-feeding animals, bacteria 

and fungi, except for a small number of specialised species that have evolved 

different biochemical mechanisms to detoxify these molecules (Hopkins et al. 2009). 
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Figure 5. Schematic drawing of four taste neurons housed in one taste sensillum on the tarsus of a 

butterfly (cf. Figure 4). In the top the class of plant compounds to which each neuron responds is indicated 

at the tip of the dendrites; for one of the neurons the proper ligands are unknown. The axons run into the 

suboesophageal ganglion of the central nervous system (CNS; cf. Fig. 4). The effect of neuron activity on 

butterfly oviposition or feeding behaviour is indicated: -: inhibitory effect; + and ++: stimulatory effects. 

Different Pieris species differ in their sensitivity profiles to glucosinolates and also 

at the sub-species level sensitivity profiles differ significantly (Du et al, 1995). Strong 

inhibitory input is provided by a second type of taste neuron in the tarsal sensilla. 

This neuron responds to cardenolides, a small family of steroidal compounds that 

only occur in a few genera of the Brassicaceae, such as wild mustards (Erysimum 

spp.) that are not accepted for oviposition despite producing glucosinolates (Du et al, 

1995). This allows the female to avoid exposing her offspring, the larvae hatching 

from the eggs, to the toxic cardenolides. The taste system of the larvae, consisting 

of only 120 neurons, has similar neuron types that detect glucosinolates and 

cardenolides (Van Loon and Schoonhoven, 1999; Schoonhoven and van Loon, 2002). 

The neural encoding underlying this discriminatory behaviour combines labelled-

line and across-fibre coding principles (van Loon et ah, 2008). The butterfly taste 

system is also involved in associative learning between leaf colour and stimulatory 

or inhibitory taste cues (Smallegange et ai., 2005). 

The integration of information gathered by its visual, olfactory and taste systems 

enables the insect to make more subtle decisions than acceptance or rejection. Within 

the range of plants that are acceptable in a no-choice situation, female insects show a 

preference hierarchy when given a choice and also within a plant species or cultivar 

females display selectiveness. We know that females respond to differences in plant 

physiological condition related to plant nutrient status, photosynthetic capacity, 

plant hormone status, past feeding damage and presence of conspecific eggs. 
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However, which phytochemical differences are detected by the butterfly 

chemosensory systems to guide behavioural selection defies our current 

understanding. Considerable phenotypic plasticity has been found for insect taste 

neurons as a result of exposure to different diets (Schoonhoven and van Loon, 2002; 

Zhou et ai, 2009; 2010). As the complexity of the non-volatile metabolome of the 

plant escapes exhaustive chemical characterisation, the way forward to understand 

how the taste system encodes the chemical profile of the plant is to offer the complex 

natural stimulus itself (Van Loon et ai, 2008). Renewed attention for insect taste 

is warranted. 

Plant responses to insect eggs: the initial phase in insect - plant 
interactions 
The next phase in the insect-host-plant interaction is that of egg contact with the 

plant. For several insect species the deposition of chemical markers on the substrate 

on or in which eggs are laid was known (Nufio and Papaj, 2001) and indications 

for the use of host-marking pheromones that deter oviposition by females visiting 

such occupied substrates have also been found for cabbage white butterflies 

(Schoonhoven, 1990). A long search for the chemical nature of the active molecules 

yielded extremely effective deterrent compounds present in the accessory glands of 

the female reproductive system (Blaakmeer et ai, 1994a). Follow-up experiments, 

however, on the mobility and stability of these molecules in the leaf made their role 

unlikely. Since then it has become clear that despite the apparently harmless nature 

of the eggs, their presence is noted by the plant and it is the plant response to eggs 

that constitutes the signal to females (Blaakmeer et al., 1994b; Fatouros, 2012; Little 

et ai, 2007). Within a few hours, changes in the expression of genes involved in plant 

defence take place, leading to an early alert of imminent damage that will only 

commence several days later, the time needed for the embryo to develop to a neonate 

caterpillar hatching from the egg (Fatouros et al., 2008; Gouhier-Darimont et al., 2013; 

Hilker and Meiners, 2010). The eggs are meticulously placed on the plant surface 

using a cement-like substance produced by the accessory glands. Little is known 

about the nature of putative elicitors associated with insect eggs that induce the 

enhanced expression of genes in the salicylic acid hormonal pathway of signal 

transduction in the plant: are these contained in the secretions from the accessory 

glands or is there diffusion of compounds from the egg into the leaf? In the inter

actions between two Pieris butterfly species and black mustard (Brassica nigra L.) and 

other wild Brassica species a hypersensitive response to the eggs is observed that is 

rare in insect-plant interactions, however, well-known from microbial pathogen -

plant interactions. It is of interest to identify the origin and chemical nature of the 

elicitors and the receptors of the plant that mediate the hypersensitive response to 

compare these with those involved in such responses to fungal pathogens. In the egg 
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phase we have identified a role of an anti-sex pheromone (benzylcyanide) that the 

male transfers to the female during mating. When this compound is applied on the 

leaf surface at natural concentrations, leaf surface chemistry changes so as to arrest 

minute egg parasitoid wasps of the family Trichogrammatidae, important biological 

control agents that are world-wide successfully employed in agriculture. These 

studies on interactions preceding and following oviposition, the behaviour crucial 

for insect reproduction, reveal the intricacy of the interactions mediated by chemical 

signals. 

Whereas it has been common practice in insect-plant studies that the egg phase 

was skipped and actively feeding caterpillars were put on the plant to initiate the 

interaction, we recently discovered unprecedented species-specific effects of eggs by 

increasing plant defence against caterpillars (Pashalidou et al., 2013). Studies of the 

interactions occurring in the egg phase that started in laboratory and greenhouse 

have been expanded to studies in the field and have revealed a novel plant defence 

strategy of 'reproductive escape', by which black mustard plants accelerate seed 

development even before the young caterpillars reach the flowers (Lucas-Barbosa 

et al., 2013; Pashalidou et al., 2013). Paying explicit attention to the initial phase of 

the insect-plant interaction has brought us a number of important new insights 

and have yielded new challenging questions. 

Plant responses to cell damage: induced direct defence 
We have arrived at the moment in the life cycle of the butterfly at which the neonate 

caterpillar crawls from the egg shell (Figure 2), consumes it and then starts its 

voracious leaf feeding. The neonate caterpillar has a body mass of 0.2 milligrams; 15 

days later it has grown to a pupa weighing 500 milligrams, a factor 2.500 increase: no 

other animal organism is growing this fast. During this growth process the caterpillar 

puts through plant biomass that amounts up to five times its own body mass per day. 

As soon as the caterpillar starts chewing the leaf, plant cells are ruptured, leading to 

wound reactions. These wound reactions involve a dynamic cascade of molecular 

responses in which the expression of hundreds of genes is changing, as has been 

demonstrated by micro-array studies in several insect-plant interactions (Reymond 

et ah, 2004, Broekgaarden et al., 2007). To trigger a full-blown plant response, the 

combination of mechanical damage done by the chewing mouthparts and the 

recognition of molecules released by the insect, conveniently called 'spit factors', is 

required. Molecules in the secretions deposited by the insect's mouthparts onto the 

wounded plant tissue act as elicitors of the plant's reaction. The chemical nature of 

the elicitors identified thus far is remarkably diverse: macromolecules such as 

enzymes, peptides and small molecules such as fatty acid-amino acid conjugates or 

benzylcyanide (Maffei et al., 2012). The biosynthetic origin of these elicitors is 

unknown in most cases: they may be secreted by salivary glands, by other glands 
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associated with mouthparts or may come with regurgitation of digestive fluids in the 

insect's foregut that contain plant compounds and their breakdown products and 

likely also compounds secreted by microbes living in the gut; there is a chemical 

mini-universe to be unravelled here. An important aspect of these induced plant 

responses is that they do not only occur locally at the site of damage but are 

translocated systemically throughout the plant. In this way, leaves or fruits that have 

not yet been damaged display increased resistance. 

Understanding the signal-transduction pathways that occur in the plant is currently 

very actively being pursued in insect-plant research. At least three different hormone-

mediated signalling pathways play a role in response to insect feeding: the jasmonic 

acid or octadecanoid pathway is activated in response to chewing insects, the 

salicylic acid pathway and the ethylene pathways are more strongly activated by 

piercing-sucking insects such as aphids and whiteflies. More recently involvement of 

other plant hormones have been found to act as modulators of jasmonate-mediated 

responses (abscisic acid, auxin , gibberellins) (Pieterse et ai, 2012). These pathways do 

not function independently from each other but are intertwined through cross-talk. 

An example of negative cross-talk is that prior aphid infestation of a cabbage plant 

leads to induced susceptibility to caterpillars. Aphid-infested plants have 10 times 

lower jasmonic acid concentrations (Soler et al., 2012). 

To unravel and manipulate the complex signalling network that plants have evolved 

to resist insect attack we have adopted the model plant Arabidopsis thaliana (L.) 

Heynh., a small weedy member of the Brassicaceae family and a suitable host plant 

for Pieris species as well as for another specialist herbivore, the Diamondback moth 

(Plutella xylostella L.; Lepidoptera: Yponomeutidae), a specialist herbivore yet a top-10 

agricultural pest species. Arabidopsis thaliana was the first plant species for which the 

full genomic sequence became available and a large community of plant scientists 

freely exchange a large collection of mutants modified in all kinds of traits. Gene 

expression studies on Arabidopsis - insect interactions have revealed the complex 

genetic regulation of the responses to insect feeding and have given indications 

which metabolic pathways are up- or downregulated. We have focussed on 

expression of key regulatory genes in the jasmonic and salicylic acid pathways and 

the consequences of changes in expression of these genes for the biosynthesis of 

glucosinolates and of herbivore-induced plant volatiles, including volatile 

breakdown products of glucosinolates. In response to caterpillar feeding the 

biosynthesis of the sub-group of indole-glucosinolates is up-regulated, an 

observation that has also been made for Brassica species (Gols et ai, 2008; Kos et ai, 

2012a). Increased tissue concentrations of glucosinolates have little consequence for 

the specialist Pieris and Plutella caterpillars but do negatively affect growth of the 

generalist Mamestra caterpillars (Poelman et al., 2008). The specialists possess 
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specialised detoxification routes that divert the breakdown of the toxic glucosinolates 

to less toxic compounds (Hopkins et al., 2009). In studies of ecotypes that differed in 

glucosinolate levels, performance of a specialised aphid was actually higher on an 

ecotype with higher total glucosinolates contents but larvae of a hoverfly (Diptera: 

Syrphidae), a common predator of aphids, had reduced performance (Kos et al., 

2012b). This is an illustration of the commonly found phenomenon that specialist 

herbivorous insects sequester secondary plant metabolites to exploit them for their 

own defence (Figure 6). 

Adult female 
specialists are 

attracted by 
ITCs and nitriies; 

upon alighting 
they are stimulated 

t o oviposit 
when tasting 

glucosinolates 

Leaf feeding results —-- '", 
in both local and systemic * 

emission of iTCs and nitnles • 
into the plant's headspace • 

Specialist parasitoids 
use plant-produced 
iTCs and nitriies 

Predators and parasitoids 
attac k herbivores, w hic h 
regurgitate and/or bleed 
deterrent glucosinoiates and 
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;~"*Tïigher levels of especially 
-*»indole g'lucosinolates, 

Which do not give rise to 
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Figure 6. Illustration of the induction by plant-feeding insects of the three major groups of glucosinolates, 

defensive plant metabolites characteristic for the family Brassicaceae, the emission of their volatile 

breakdown products, isothiocyanates (ITCs) and nitriies, and their effects on behaviour of herbivorous 

and carnivorous insects. Taken from Hopkins et al. (200g). 
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Glucosinolates function in direct plant defence but have low or negligible 

effectiveness against specialists. This does not mean, however, that it is impossible 

to find resistance to specialist herbivorous insects. Recent experiments on the 

Arabidopsis - Pieris brassicae interaction demonstrated that overexpression of the 

transcription factor MYB75 resulted in re-channelling of flavonoid biosynthesis that 

revealed the importance of a flavonoid glucoside in resistance (Onkokesung et ai, 

unpubl.). In a recently started research programme natural genetic variation in 

resistance of 360 accessions of Arabidopsis thaliana to the combination of herbivory, 

fungal infection and drought is screened with the aim to identify putative genes and 

signalling pathways leading to increased resistance to such combined stresses. 

Plant responses to cell damage: induced indirect defence 
mediated by plant volatiles 
Responses of plants to cell damage also involves the release of volatiles into the 

atmosphere. Such volatiles may be exploited as signals through olfactory detection 

by herbivores and other organisms. Much information has become available on the 

changes in volatile emission that occur after tissue damage. Both qualitative and 

quantitative changes in the composition of the volatile blend are found and occur 

with different time courses depending on the biosynthetic origin of the compounds: 

(1) six-carbon alcohols, aldehydes and acetates known as green leaf volatiles; (2) 

mono-, sesqui- and homoterpenes and (3) benzenoid compounds such as 

methylsalicylate. Natural enemies of herbivores respond sensitively to herbivore-

induced plant volatiles and orient themselves to the damaged plant. This 

phenomenon has become known as 'recruitment of bodyguards' by the plant, and 

is common in tritrophic interactions between plants, plant-feeding insects and their 

natural enemies. Little is known about the composition of the minimal volatile blend 

required to elicit the same degree of attraction of predators and parasitoids as exerted 

by an herbivore-damaged plant; identifying the relevant chemicals has turned out to 

be extremely difficult with only few exceptions (Dicke et ai., 2009). 

Olfactory basis of host selection by parasitoids 
The olfactory system of parasitoids is sensitive to a range of compounds resulting 

from different biosynthetic pathways as shown by on-line electroantennography 

linked to gas chromatography (Smid et ai, 2002). Hymenopteran parasitoids possess 

a special type of olfactory sensillum that is absent in Lepidoptera, the placoid 

sensillum, innervated by some 30 neurons that extend their dendrites in a cavity 

below the pore plate in the cuticle. The number of glomeruli in the antennal lobe of 

two Cotesia species is ca. 180, 2-3 times as many as the average number of glomeruli 

of Lepidoptera (Smid et ai, 2003). This suggests a higher diversity of response types 

in the antennal olfactory neuron population of the parasitoids than that of their hosts. 
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However, functional studies of olfactory neuron specificity and sensitivity in 

parasitoids are virtually absent in the literature. 

Host selection behaviour of many parasitoid species shows a high degree of 

selectiveness: after a first rewarding experience of oviposition into the host or even 

contacting host-derived products such as frass or silk, the parasitoid female displays 

an increased preference based on associative learning of volatile cues that signal the 

presence of this host species. The female wasps learn the difference between volatile 

blends emitted by different plant species or cultivars attacked by the same host, 

different developmental stages of the host (Dicke and van Loon, 2000; Dicke et al, 

2009) or between unparasitised hosts and hosts that have been parasitised before 

and therefore may have become less suitable (Fatouros et ai, 2005). Closely related 

parasitoid species that differ in their degree of host specialisation acquire memory 

at different rates (Smid et al, 2007). 

From laboratory and greenhouse to the field 
An important decision we took 10 years ago was to study tritrophic interactions 

under field conditions. In addition to cabbage (Brassica oleracea L.) we adopted black 

mustard (Brassica nigra Koch), an annual feral Brassica species. This fast-growing herb 

prompted us to include pollination biology and to address evolutionary mechanisms 

in multitrophic systems (Lankau et ai, 2008; Lucas-Barbosa et ai, 2013; Soler et al., 

2009). If we inspect cabbage or mustard plants growing in the field, a whole 

community of plant-feeding insects is found: other lepidopteran species, leaf-mining 

fly larvae, flea beetles and aphids; parasitoids and predators and flower visitors: 

plants are by default under multiple attack. A striking finding that came out of this 

field work is that herbivore attack early in the season has a strong influence on the 

community of insects that develops over the season (Poelman et ai, 2008; 2010). 

Fundamentally different feeding modes in plant-feeding insects 
Caterpillars, locusts, maggots and larvae and adults of beetles have biting-chewing 

mouthparts that tear off pieces of leaf and rupture plant cells. In contrast, aphids, 

whiteflies and other homopteran insects have piercing-sucking mouthparts and 

employ a completely different feeding mode that leaves plant cells intact (Figure 7). 

The very thin and flexible stylets, their diameter is a few micrometers, penetrate in 

between leaf cells and gelling saliva is secreted along the stylet pathway. The stylets 

are on their way to the vascular bundle of the plant's transport system and perform 

brief punctures through the membrane of cells without inflicting permanent injury. 

Femtoliter sap samples are transported to an interior taste organ located at the dorsal 

side of the pharynx. If the taste information is evaluated positively, the stylets move 

further until they reach the phloem, the plant tissue transporting the assimilates of 

photosynthesis. Once the membrane of a phloem sieve element has been punctured, 
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Figure 7. Aphid feeding. Overview of how aphids mouthparts move in between plant cells (lateral 

transverse view). The aphid labium rests on the leaf surface, gelling saliva (dark grey) has been secreted 

and the bundle of four stylets (black lines; diameter 2 micrometer) have been inserted in between 

epidermal and mesophyll cells and in between companion cells (CO of the phloem and have reached a 

sieve element (SE) of the phloem, in which photosynthetic assimilates are transported. The aphid briefly 

punctured the membrane of every cell along its way to the phloem (dark grey spikes along the salivary 

track). When the stylet tips reach the phloem, secretion of watery saliva starts (two-pointed vertical 

arrows in the sieve element). The arrow pointing to left indicates the direction of ingestion of phloem 

sap into the aphid foregut, while concurrently secreting watery saliva to prevent clogging of the pores 

of the sieve plate (light grey stippled line). (Courtesy of Dr. W.F. Tjallingii). 

a second type of 'watery' saliva is produced that contains effectors that suppress the 

wound reaction in the sieve element. The suppression is brought about by effector 

proteins that bind calcium ions, thus preventing the deposition of phloem proteins 

that would clog the pores in the sieve plate between phloem cells. Piercing-sucking 

insects cause increasing economic damage to food crops, an important reason being 

that they act as efficient vectors of a range of plant viruses and other plant pathogens. 

Both notoriously polyphagous species such as the green peach aphid Myzus persicae 

Sulzer and the tobacco whitefly Bemisia tabaci Gennadius and specialist species 

such as the black currant-lettuce aphid Nasonovia ribisnigri Mosely are evolving an 

increasing number of biotypes that are insensitive to resistance mechanisms that 

resulted from long-term breeding programs in a range of food crops. The quantities 

of saliva that piercing-sucking species inject into phloem elements are minute and 

it is a considerable but unavoidable challenge to clarify the function of salivary 

components in the insect-plant interaction and to identify the target molecules in the 

phloem. The information available thus far suggests that aphid saliva contains dozens 

of peptides and proteins, among which enzymes that degrade plant macromolecules. 

One way forward is to employ transcriptomic analysis of the salivary glands and 

RNA-based silencing techniques to elucidate the function of individual genes. 
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Future directions in insect-plant research 
I have given you a condensed account of the intricate ways in which insects and 

plants interact in different phases of the insect life cycle. Attention in mechanistic 

research has shifted from studies of the sensory basis of behavioural selection by 

insects and its phytochemical basis to the molecular mechanisms operating in 

herbivore-induced responses of the plant. Recently renewed interest in the responses 

of the insect can be noted: how does it react behaviourally and metabolically to 

induced plant resistance and which selection mechanisms operate? What are the 

roles of elicitors and suppressors in insect saliva and which are the receptors in the 

plant? The effects of multiple herbivory in sequence or simultaneously need to be 

studied to gain a better understanding of the realistic conditions of multitrophic 

systems in nature. Which consequences does multiple herbivory have for plant 

resistance and what effects do we see for herbivore, parasitoid, predator and 

pollinator behaviour and performance? Major differences between biting-chewing 

and piercing-sucking herbivores and between generalist and specialist species are to 

be expected. How do plants respond to combinations of attackers i.e. insects, fungi 

and drought stress and can we find genetic variation for such combined stresses? 

The answers we find to these questions will find much-needed applications in plant 

breeding and biological control. 

Mosquito - host interactions: chemosensory ecology 
The interactions between blood-sucking mosquitoes and their animal and human 

hosts are evolutionary younger than those between insects and plants, however, they 

date back an estimated 100 million years, halfway the Cretaceous. Still today adult 

mosquitoes interact with plants as they feed on flower nectar as a vital source of 

carbohydrates; they likely evolved from piercing-sucking plant-feeding insects 

(Takken and Verhuist, 2013; Figure 8). The degree of host specificity observed in 

mosquito - host interactions is overall low compared to specialised insect-plant 

interactions, although some species are more anthropophilic than others and 

especially those species act as vectors of a range of infectious diseases, including 

malaria, dengue, West Nile and several others that show increases in incidence over 

the last decades. Among the primary signals that guide mosquitoes to their hosts is 

carbon dioxide exhaled by vertebrate hosts (Mboera et al, 1997). Body temperature 

and humidity have also been demonstrated to elicit mosquito approach and landing; 

these stimuli are sensed by specialised sensilla on the antennae (Wang et al, 2009). 

Since some 20 years it is firmly established that host-seeking by mosquitoes is to a 

large extent based on detection of host-produced odours. 
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Figure 8. Mosquito behaviour is affected by volatile compounds released from flowers (sources of 

sugar-rich nectar), blood hosts (e.g. human beings), and aquatic oviposition sites. Three behavioural 

phases are indicated and the type of information utilised by female mosquitoes to find resources vital 

to reproduce. (Courtesy of Dr. L.J. Zwiebel). 

Mosquitoes have olfactory sensilla on several appendages (Figure 9). Different from 

the relatively uniform morphology of the olfactory sensilla on the antenna of the 

Cabbage White butterfly discussed previously, the mosquito antenna has several 

antenna 

Figure 9. Scanning electron micrograph of mosquito head (bottom right corner) with appendages: 

antennae and mouthparts carrying sensilla for olfaction, taste, mechano-, thermo- and hygro-reception. 

(Courtesy of Dr. L.]. Zwiebel). 
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morphological types and subtypes, that also show different anatomy. It has been a 

major effort in our laboratory to make an electrophysiological inventory of the func

tional types associated with the morphological subtypes (Qiu et al., 2006; Suer et al., 

unpubl.). A panel of about 140 volatile compounds that have been reported from 

humans or animals and from the aquatic mosquito oviposition sites, have been tested 

for their effectiveness to elicit changes in electrophysiological activity. Thus far we 

have identified 25 response types based on the profile of activity resulting from 

exposure to these 140 compounds. This number comes close to the number of 

glomeruli found in the olfactory lobe of the mosquito brain (cf. Figure 4), suggesting 

that our inventory has come close to being complete. Several compounds in the panel 

did not elicit any response and have therefore been discarded for behavourial assays. 

The electrophysiological inventory was a necessary intermediary phase in a 

'discovery pipeline' of behaviourally active compounds that we set up together with 

two colleagues in the United States, in the framework of a large 5-year programme 

funded by the Bill and Melinda Gates Foundation that also involved partners in 

Tanzania, The Gambia and Kenya. At one end of the pipeline over 250.000 organic 

molecules were subjected to high-throughput assays using heterologous expression 

of the malaria mosquito's olfactory receptor proteins in human kidney cells, frog 

oocytes or Drosophila antennae. The malaria mosquito has 79 of such olfactory 

receptor (OR) genes in its genome, of which 54 were found to be functional. 

Molecules that were strong ligands for one or more of these receptors in one of the 

heterologous assays were then put to the test in our laboratory by electrophysio

logical assays on single olfactory sensilla on the mosquito antenna. Only if activity 

above a set threshold was found in this last assay, it was subjected to behavioural 

assays that are much more laborious. The rationale behind this large effort was that 

any molecule that would impact on the mosquito's olfactory physiology, either of 

natural or entirely synthetic origin, might have potential for disrupting mosquito 

host-seeking behaviour. The number of candidate compounds that we identified 

along this pipeline has been surprisingly low, suggesting a high degree of tuning 

to naturally occurring ligands. Another explanation is the fact that the 'discovery 

pipeline' at the molecular level was entirely based on the OR-gene family whereas 

since then a novel olfactory receptor family (ionotropic receptor- or IR-family) has 

been revealed in insects (Benton et ai, 2009). Our electrophysiological work has 

protected us from completely missing out ligands of the IRs. 

In parallel we proceeded with the identification of volatile compounds released by 

human hosts that cause attraction of mosquitoes, which has turned out to be a 

challenging enterprise. One reason is the high number of volatiles that is released by 

human hosts, a total of ca. 350 compounds has been reported. Another cause is the 

difficulty to retrieve volatiles from the human body and to obtain these without 
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chemical contamination, that can cause high variability inherent to the individuality 

of human behaviour. 

We have taken a variety of approaches combining volatile collection, electro-

physiology and behavioural assays to tackle these problems, focussing on the most 

important vector of malaria in Africa, Anopheles gambiae Giles sensu stricto (Diptera: 

Culicidae). An important step was made when we discovered that fresh human 

sweat was much less attractive for female mosquitoes in search of a blood meal than 

sweat incubated at human skin temperature for a day (Meijerink et ah, 2000). Main 

components of incubated sweat were ammonia and lactic acid (Braks et al., 2001). 

Based on odour collections from human volunteers, a range of carboxylic acids were 

found. We then combined ammonia, lactic acid and single carboxylic acids and 

systematically tested them at different concentrations in behavioural assays. In this 

way we arrived at a basic blend of three compounds, ammonia, lactic acid and 

tetradecanoic acid that showed a synergistic action and that we subsequently used as 

our basic blend upon which to build further in formulating an expanded attractive 

blend. Such blends have been evaluated in semi-field and in African villages and 

have shown a degree of attractiveness that competes with that of human beings 

(Mukabana et ai, 2oi2a,b). By now we have arrived at a blend of seven compounds, 

all of which are found in natural human emanations; leaving out any of these seven 

compounds results in significant loss of attractiveness. In parallel we followed a 

differential approach that is making use of the observation that human individuals 

differ significantly in attractiveness to malaria mosquitoes. Out of a population of 52 

male individuals a group of seven showed significantly lower attractiveness than the 

seven most attractive individuals. This difference was associated with significant 

differences in the composition of skin bacteria (Verhuist et al., 2010). These findings 

point to an added complexity of mosquito - host interactions: the role of skin 

microbiota. This in turn points to the involvement of the human immune system, in 

particular of variation in genes of the major histocompatibility complex (MHC) that 

have a role in determining the composition of skin microbiota (Verhuist et al., 2013). 

Currently we are putting the highly attractive blends we developed to the test in 

villages in Kenya to find out if deployment of odour-baited traps contribute to reduce 

malaria infection rate. We are also developing a push-pull approach by combining 

traps baited with attractive blends (pull) with dispensers that release spatial 

repellents (push) and the first results are promising. Another challenge ahead is 

tailoring attractive blends for other malaria vector species. The odour-based strategy 

for disrupting the behaviour of these important disease vectors is one of several 

approaches being studied in our laboratory to impact mosquito populations that 

together must lead to integrated vector management. 
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