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Abstract 
Monitoring forest cover change in near real-time is crucial for timely detection of deforestation. 

Integration of remote-sensed medium-resolution optical and SAR data can lead to denser time-

series in tropical regions with high cloud cover, and thus potentially improve detection speed and 

accuracy. I developed methods for near real-time deforestation monitoring with integrated multi-

temporal Landsat NDVI and ALOS PALSAR L-band HVHH backscatter ratio. Change detection was 

based on BFAST monitor and data-driven thresholds; fusion was performed at data- and decision 

level. The methods were validated with 3-monthly reference from an evergreen plantation site on 

Fiji (2859 ha). Impact of increased cloud cover was studied by testing the methods also with an 

artificially increased level of missing NDVI data. NDVI – HVHH data fusion at decision-level with 

threshold-based change detection was found to improve the detection accuracy and speed slightly, 

when using the original NDVI data (ca. 53% missing data): The overall accuracy with fused data 

reached 94.4%, compared to 93.8% when using the only SAR data. The detection time-lag could be 

reduced by 0.2 month at equal accuracy. For 90% missing optical data, the advantages of data-

fusion were even smaller. Motivated by short-comings of the common accuracy measures for multi-

temporal near real-time change detection, I also propose a statio-temporal change detection 

accuracy assessment method.  

Keywords: Multi-sensor data fusion, ALOS PALSAR, Landsat, Time series, Change detection, Near 

real-time, Deforestation, Sensor interoperability, BFAST monitor, MulTiFuse, Multi-temporal change 

validation 
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BFM BFAST monitor 
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ETM+ Landsat Enhanced Thematic Mapper 
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MAD median absolute derivation  
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NDVI90MD NDVI data with 90% missing data level  
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RS remote sensing 
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1 Introduction 
Monitoring forest cover change in near real-time (NRT) is crucial for timely detection of 

deforestation (Lynch et al. 2013; Xin et al. 2013). These alerts can support law enforcement and 

thereby contribute to the reduction of illegal deforestation (Assunção, Gandour, and Rocha 2013; 

Wheeler et al. 2014).  

Remote sensing (RS) based time series are the only data streams that can provide repetitive 

observations of vast forest areas (Lynch et al. 2013). The ‘near’ real-time aspect of RS-based 

monitoring depends on the revisiting time of the sensor and the data availability. In order to 

minimize the change detection lag, every incoming satellite observation should be analysed 

promptly when it is acquired. 

1.1 Background 

Current operational RS-based NRT monitoring systems for tropical forest are the Brazilian Real Time 

System for Detection of Deforestation (DETER, http://www.obt.inpe.br/deter/) and the Forest 

Monitoring for Action (FORMA) system employed by the World Resources Institute Global Forest 

Watch platform (http://www.globalforestwatch.org). Both systems use coarse optical data (MODIS-

like) as RS-input. This renders fortnightly updates. However, small scale changes are missed due to 

the coarse spatial resolution (Anderson et al. 2005; Hammer, Kraft, and Wheeler 2009; Wheeler et 

al. 2014).  

At medium (Landsat-like) resolution, RS-imagery has successfully been used for detecting smaller 

scale tropical forest cover changes (De Sy et al. 2012). Landsat imagery is commonly used for 

regional mapping of forest cover changes (De Sy et al. 2012; Hansen and Loveland 2012; Lu, Li, and 

Moran 2014) and in operational annual mapping of deforestation (the Brazilian PRODES system, 

Wheeler et al. 2014). However, missing data due to persistent cloud cover is a limiting factor for 

monitoring tropical areas (Lehmann et al. 2012; Verbesselt, Zeileis, and Herold 2012; Walker et al. 

2010), where cloud cover rates of more than 80% are common (Herold 2009). This reduces the 

number of valid observations per year and thus often inhibits rapid change detection. Additionally, 

clouds that are not masked out completely often lead to errors through change commission (Reiche 

et al. accepted; Zhu and Woodcock 2014a). Using multi-temporal cloud filtering can reduce this 

problem (Zhu and Woodcock 2014a; Zhu and Woodcock 2014b), but typically increases change 

detection lag (Reiche et al. accepted). 

Data from spaceborne SAR sensors is not impaired by cloud cover and is therefore seen as the ideal 

complement for optical data in tropical forest monitoring (Herold 2009; Lu, Li, and Moran 2014; De 

Sy et al. 2012; Walker et al. 2010). Compared to C- and X-band, L-band penetrates deepest into the 

canopy and is more sensitive to forest cover changes (Luckman et al. 1997). In particular, L-Band 

backscatter from the ALOS PALSAR sensor has successfully been used for forest cover mapping 

(Attarchi and Gloaguen 2014; Erasmi and Twele 2009; Kuplich 2006; Vaglio Laurin et al. 2013; 

Walker et al. 2010; Wijaya and Gloaguen 2009). Together with the follow-up mission ALOS-2 

PALSAR-2 it’s the only available spaceborne L-Band system. Results indicate the suitability of 

PALSAR backscatter for operational tropical deforestation monitoring (Almeida‐Filho et al. 2009) 

http://www.obt.inpe.br/deter/
http://www.globalforestwatch.org/
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with accuracy comparable to Landsat based monitoring (Walker et al. 2010). Before the failure of 

ALOS in 2011, Brazil planned to launch an ALOS PALSAR based NRT deforestation monitoring system 

for the Amazon to complement their optical monitoring systems (Butler 2010). ALOS PALSAR was 

the first SAR mission with a repetitive global observation strategy. However, this comprises only a 

few observations per location annually (Rosenqvist et al. 2014), falling behind the revisit rate of 

optical sensors at comparable spatial resolution. 

1.2 Problem Definition  

Recently, a number of time series based approaches for NRT change detection has been developed 

(see e.g. Hammer, Kraft, and Wheeler 2009; Verbesselt, Zeileis, and Herold 2012; Zhu and 

Woodcock 2014a; Zhu, Woodcock, and Olofsson 2012). This follows a general trend towards multi-

temporal change detection, exploiting the full temporal detail of the RS-based data streams 

available today (Hansen and Loveland 2012). Some of these approaches are fully data-driven and 

therefore require no training data or detailed knowledge of the expected change. This makes them 

more widely applicable (Verbesselt, Zeileis, and Herold 2012; Zhu and Woodcock 2014a). However, 

all introduced approaches were implemented solely with data from a single optical sensor (Reiche 

et al. accepted).  

Monitoring deforestation in NRT using a single optical or SAR sensor at Landsat-like spatial 

resolution is limited by the relatively low number of valid observations per year in the available time 

series. This leads to late detection of changes. Integrating SAR and optical data can generate 

temporally finer time series and therefore decrease the delay of change detection (Hussain et al. 

2013; Lehmann et al. 2012; Reiche et al. accepted; Zhang 2010).  

Integration of SAR with Landsat data has been shown to improve tropical land and forest cover 

mapping (Vaglio Laurin et al. 2013; Walker et al. 2010; Wijaya and Gloaguen 2009; Erasmi and 

Twele 2009; Kuplich 2006; Attarchi and Gloaguen 2014). However, fusion of SAR and optical RS time 

series is not trivial, challenges include the need for accurate co-registration, different temporal and 

spectral variations in the time series and images acquired on different dates (Reiche et al. 

accepted). The use of SAR – optical integration for multi-temporal forest cover change detection is 

thus seen as an advanced technique with a research need (Hussain et al. 2013) for which only few 

approaches exist (see e.g.: Lehmann et al. 2012; Reiche et al. accepted). 

SAR – optical data fusion can be performed at data-, feature- or decision-level (Pohl and Van 

Genderen 1998): 

 Data-level refers to integration of measured physical parameters at pixel-level 

 Feature-level fusion means integration of regions or objects derived from the individual 

sources 

 In decision-level fusion the different data-sources are processed individually and only the 

derived information (e.g. Land-Cover changes) is integrated.  

While data-level fusion methods dominate in forest classification (see e.g. Attarchi and Gloaguen 

2014; Kuplich 2006; Vaglio Laurin et al. 2013), other approaches such as feature- and decision-level 

fusion have also been applied successfully in change detection (Lehmann et al. 2012; Reiche et al. 

2013).  
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Reiche et al. (accepted) present a pixel-based data-level fusion approach (MulTiFuse) to integrate 

optical and SAR data for forest cover change detection. The times-series are related and fused using 

an optimized weighted regression model, followed by unsupervised change detection using the 

BFAST monitor (BFM) algorithm developed by Verbesselt et al. (2012). Lehmann et al. (2012) derive 

multi-temporal forest probability maps from ALOS PALSAR and Landsat time series and integrate 

them at decision-level using a Bayesian framework. However, neither approach is geared towards 

NRT monitoring: the former is only applicable if observations before and after the change event are 

available, while the latter is updated only annually and requires the full temporal data for each pixel 

as training data. 

1.3 Research Objective and Research Questions 

The objective of my thesis is to develop an approach for integrating Landsat NDVI (NDVI) and 

PALSAR HVHH backscatter ratio (HVHH) time series for NRT deforestation detection.  

1. Which pixel-based multi-temporal change detection method is better suited for RS based 

NRT deforestation monitoring with NDVI and HVHH time series: i) BFM or ii) data-derived 

thresholds? 

2. How can HVHH - NDVI data fusion at A) data-level and B) decision-level be applied for 

deforestation monitoring in NRT?  

3. Can the developed fusion approach improve the spatial and temporal accuracy of NRT 

deforestation monitoring compared to using single-sensor data? 

4. How are the results of monitoring with fused and single-sensor data affected by increased 

levels of missing data in the optical time series?  
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2 Data 

2.1 Study Area and Reference Data 

The study area comprises the 14059 ha Lololo plantation lease, a managed softwood plantation 

located in the North West of Viti Levu Island, Fiji (Lat. 17.32° S, Lon. 177.37° E). Evergreen Pinus 

caribea is harvested in cycles of 15 – 20 years; complete stands are logged and then replanted. This 

clear-cut logging was used here as a proxy for deforestation. 

As reference data I used detailed inventory data provided by Fiji Pine Ltd. It covers quarterly 

harvesting from 2000 to 2013 and planting activity from 1975 onwards. A forest cover map for 

01/2008 was derived, covering 2859 ha of stands planted before 01/2000 and not logged until 

01/2008. As shown in Figure 1, about 50 percent of this area is logged during the study period from 

01/2008 to 09/2010, while the other 50 percent remain standing. 

 
Figure 1: Overview of study area : Fiji Pine Lololo plantation lease. Reference data for harvested stands (with 
harvesting year and quarterly period) and stable forest are depicted in different colours. 
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2.2 Remote Sensed Data 

 
Figure 2: Number of observations per year for the RS-data: Landsat 7 ETM+ (WRS Path 75, Row 72) and ALOS 
PALSAR FBD (Track 310, Frame 6830) for 2000-2012 

The RS-data comprises two time series stacks: Landsat NDVI and ALOS PALSAR Fine Beam Double 

(FBD) HVHH ratio backscatter for the years 2000 to 2012, Figure 2 depicts the images per year for 

each sensor.  

Both time series stacks were provided pre-processed as described in Reiche et al. (under review). 

For the Landsat data this includes cloud masking with Fmask (Zhu and Woodcock 2012) and 

atmospheric correction using Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS, 

Masek, J.G. et al. 2013). The original data NDVIorg has on average 53% missing data (MD) per pixel 

over the study area, caused by cloud masking and the Landsat 7 Scan Line Corrector failure. In order 

to study the effects of increased cloud cover, additional MD was introduced by random exclusion of 

observations, leading to data with 90 percent MD per pixel (NDVI90MD).  

For the ALOS PALSAR data the standard pre-processing (multi-looking, radiometric calibration, 

topographic normalization and geocoding) was followed by adaptive multi-temporal SAR filtering in 

order to reduce speckle (Quegan and Yu 2001). The 25m PALSAR pixels were resampled to match 

the 30 m Landsat pixels, to enable data fusion. Areas with missing data due to layover and shadow 

effects were excluded from the analysis. 

 

0
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3 Methods 

3.1 Overview 

The research comprised the simulation of NRT scenarios (see Section 3.2), pixel based development 

and testing of NRT change detection (research question 1, see Sections 3.3) and data fusion 

methods (research question 2, see Sections 3.4). The methods were validated area-wide with the 

reference data (see section 3.5). I compared validation results of integrated and single sensor 

monitoring (research question 3) at different levels of missing optical data (research question 4). In 

an iterative process the validation results were used to further develop the most promising 

methods (see Figure 2 for a schematic illustration).  

All developing steps were conducted in R (R Development Core Team 2013), supported by ArcGIS 

and Google Earth for visualization.  
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Figure 2: Schematic representation of research methods. The steps are described in more detail in the 
indicated sections. 
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3.2 Near Real-time Scenarios 

NRT was simulated by starting with only the RS-data acquired before 01/2008. Proceeding 

chronologically, the respective next acquired RS-image, regardless if it was NDVI or HVHH, was 

added to the respective time series stack. With each new image, fusion and change detection was 

applied per pixel. This was repeated until the end of the study period 09/2010. 

3.3 Time Series Change Detection 

Two multi-temporal change detection methods were explored: i) change detection using BFM and 

ii) data-driven thresholds. Both take advantage of the large drop in the NDVI and SAR backscatter 

ratio signal commonly associated with deforestation or clear-cut logging as in this case (Reiche et 

al., 2013). Appendix Table 1 lists the parameterization of the different change detection algorithms. 

Method Data driven threshold BFM 

NDVI threshold(s) Threshold calculated with on eq. (1), 

k ϵ {1.5, 2, 2,5, 3, 4.5, 4, 4.5, 5} 

-0.05 

HVHH threshold(s) k ϵ {1.2, 1.4, 1.6, 1.8, 2, 2.2, 2.4} -1 

Minimal no. historical 

observations 

{2, 3} 2 

Maximal no. confirming 

observations n 

6 6 

Additional parameters - h=0.25 – 1, depending on hist. 
length;  
order=1;  
formula= response ~ 1 
history= {all observations,  

 the previous 10 observations, 

 all observations after 01-2005} 

Table 1: Parameter settings for the change detection methods 

3.3.1 BFAST Monitor (BFM) Change Detection 

BFM is an automated time series change detection method with NRT detection capabilities 

developed by Verbesselt et al. (2012). It is based on the more generic change detection approach 

Break For Additive Season and Trend (Verbesselt, Hyndman, Newnham, et al. 2010; Verbesselt, 

Hyndman, Zeileis, et al. 2010; de Jong et al. 2011). BFM estimates a seasonal-trend model of a time 

series based on a stable historical period and detects abrupt changes in a subsequent monitoring 

period for observations differing significantly from the model.  

Modelling a seasonal trend was not possible, since the time series are too scarce and the NDVI and 

HVHH time series show no clear seasonal variation (see Figure 3 for an example from both sensors). 

The simple model was shown to be suitable for the study area by Reiche et al (accepted). For 

detected breaks in the time series, BFM provides the time and magnitude of change. To extract 

clear-cut harvesting, I selected breaks with a negative magnitude below -0.05 for NDVI and below -1 

for HVHH, based on values derived in Reiche et al. (accepted).  

3.3.2 Threshold-Based Change Detection  

Data driven thresholds were statistically derived per pixel time series Xi and time point tc from the 

historical time series and the stable forest data, using equation (1). A potential change was detected 

if an observation fell below a sensor-specific threshold relative to the time-series median. 
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Comparable methods with a more complex time series model have been used for multi-temporal 

forest cover change detection (see e.g. Zhu and Woodcock 2014a). 

Since the data is not normally distributed and has many outliers, I used median and median 

absolute derivation (MAD, see equation 2) as robust measures of centre and variability. Both 

measures are more robust towards outliers than the arithmetic mean and the standard derivation 

respectively and do not require the assumption of normality (Leys et al. 2013). 

The variability of stable was derived study-area wide, based on the area-wide observations of stable 

forest until the start of the monitoring period (historical stable forest). For NDVI, the 25 percent of 

the pixels with the highest standard derivation were excluded to reduce the effect of remaining 

clouds on the derived threshold. 

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑋𝑖(𝑡𝑐) = 𝑚𝑒𝑑𝑖𝑎𝑛𝑋𝑖(𝑡<𝑡𝑐) − k × 𝑀𝐴𝐷ℎ𝑖𝑠𝑡.𝑠𝑡𝑎𝑏𝑙𝑒 𝑓𝑜𝑟𝑒𝑠𝑡  

With threshold factor k 

 

(1) 

 

𝑀𝐴𝐷 = b ×  𝑀𝑒𝑑𝑖𝑎𝑛(|𝑋𝑖(𝑡) − 𝑀𝑒𝑑𝑖𝑎𝑛 (𝑋𝑖(𝑡))|)  

Constant b was set to 1.4826, resulting in MAD ≈  𝜎 for normally distributed data 

(see Leys et al. 2013). 

  

(2) 

 

 

Leys et al. (2013) propose k=2.5 as a rule of thumb to detect outliers. In this study, 

recommendations for the value of k are derived empirically based on the validation results. See 

Table 1 for the used factors. 

3.4 Single-sensor Monitoring and Data Fusion 

The development of a SAR – optical data integration method covered two general, predefined 

approaches: A) data-level fusion and B) decision-level fusion. For comparison, monitoring was also 

performed with both single-sensor time series. 

3.4.1 Single-Sensor Monitoring 

Both change detection methods were applied to the NDVI and HVHH time series stacks separately. 

Each detected break was verified by applying change detection to the n following observations after 

removing the preceding observation(s) where breaks were detected. Change was confirmed if all n 

observations were also detected as breaks in the modified time series. In this way false detection 

caused by remaining clouds and other artefacts could be reduced, based on the same principle as in 

recently proposed multi-temporal cloud masking approaches (Zhu and Woodcock 2014b). However, 

with the numbers of confirming breaks n also the time-lag of change confirmation inevitably 

increases. 

3.4.2 Data-Level Fusion 

For data-level fusion the MulTiFuse method by Reiche et al. (accepted) was adapted for NRT 

monitoring: 

1. For each incoming image, MulTiFuse was applied per pixel to determine the correlation of SAR 

backscatter and NDVI time series. When a statistically significant correlation was found, the 
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time series were fused using the MulTiFuse method resulting in a single time series for the 

overlapping period. 

2. Change detection was applied per pixel on the fused time series if available. If not available, the 

single-sensor time series with the last available observation was used for change detection. 

Each detected break was flagged as potential change event. 

3. Detected breaks were confirmed with the subsequent n following observations, as described 

above for the single-sensor monitoring. 

4. The results of the method validation were used to empirically evaluate the performance of the 

approach with different threshold parameter n. 

The advantage of data-level fusion is that no decision rules are needed, if the data is fused 

successfully at data level. 

3.4.3 Decision-level Fusion 

For decision-level fusion a novel method was developed, based on integration of the change 

detection results from the separate sensors: 

1. For each incoming image, change detection was applied per pixel on the respective SAR 

backscatter ratio or NDVI time series. For threshold-based change detection, different 

thresholds k were used depending on the sensor. 

2. To confirm detected changes, the next incoming observations of either time series were used. 

This results in potential change events with a list of properties: 

1) The detecting sensor(s). 

2) The number and sensor type(s) of confirming observations (see above). 

3) The time between the first detection and the confirming observation(s) in the different 

time series. 

3. In order to fuse the results of the change detection, I developed decision tree classifiers based 

on the first two properties above: 

Decision tree 1):  Changes were confirmed if the number of confirming observations 

exceeded threshold n. 

Decision tree 2):  As decision tree 1) but with different thresholds nTOTAL for the total 

number of confirming observations and nHVHH in the HVHH time-

series. Detected changes events were confirmed when either of the 

thresholds was reached. 

With these classifiers the detection results from both time series were integrated, resulting in 

single fused change detection per pixel.  

4. The different decision trees with different combinations of parameters kNDVI, kHVHH, nTOTAL, and 

nHVHH were empirically evaluated with the results of the method validation.  

3.5 Method Validation 

Since only pixels with available reference data were used for the method development (wall-to-wall 

reference data), the validation became a map-comparison and no uncertainty was introduced by 

sampling (Stehman 2009). To asses spatial accuracy, classical accuracy measures were calculated: 

the confusion matrix, overall accuracy (OA), change omission error (OE) and commission errors (CE) 

(Congalton 1991; Foody 2002; Olofsson et al. 2014). With 50 percent of the monitored area being 

stable forest, the OA was influenced about equally by change omission and commission. 
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Crucial for NRT monitoring is the time-lag of confirming detected changes. This was assessed by 

calculating the mean time-lag (MTL) between time point of confirming change and reference data 

change for pixels with correct change detection (see Reiche et al. accepted).  For some application it 

the time-lag of first detection could also be relevant, it is equal to the calculated time-lag of 

confirmation with n=1. 

Pixels for which a change was detected before or long after the reference data change were 

classified as change commission error1. This corresponds to a NRT monitoring approach where 

changed pixels are labelled as “non-forest” and not further monitored. For these pixels the 

detection of the real change is not possible anymore. To take into account the sparse time series 

and minor errors in the reference data, changes detected within a tolerance window of 6 month  

before and 24 month after the referenced change time were counted as correct. Since the early-

detected pixels are correctly labelled “non-forest” at the end of the monitoring period, one could 

also classify them as correctly detected. This gives a better comparison to bi-temporal change 

detection which never takes into account the time-point of change, but neglects the temporal 

errors of over-sensitive change detection. Since the temporal aspects are crucial in NRT monitoring, 

this second validation approach was only calculated to show the effect of both approaches. 

                                                            
 

1 This means that OA may be influenced by CE stronger than by OE, since more pixels are treated as if their reference 
status would be stable forest. 
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4 Results & Discussion 

4.1 Change Detection 

4.1.1 BFAST  Monitor Change Detection 

 
Figure 3: Example for BFM vs threshold-based change detection , using the single sensor time series (top: 
HVHH, bottom: NDVIorg). In both BFM detected the second sig. lower observation as break. Threshold detection 
with the respective optimal settings (see Section 4.2.1) shows faster detection with HVHH, and the same result 
as with BFM NDVIorg,, mind the higher n. Clearly visible are artefacts in the NDVI from remaining clouds (red 
circles). 

Figure 3 shows an example of BFM and threshold-based change detection using a pixel with a 

change in 02/2009 and single sensor NDVIorg and HVHH time series. As typically for BFM, the first 

observation with a significantly lower value than the history was not detected as a break in both 

time-series. This prevents early detection in the NDVI time series with artefacts from remaining 

clouds (red circles).  

Resulting from these characteristics of the algorithm, the validation for BFM shows a relative 

conservative detection with low change commission and high MTL (see Figures 6, 8 & 13 for 

validation results with different methods). One confirming break (n = 1) gives the highest OA and 

smallest MTL for HVHH and NDVIorg/90MD. 
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4.1.2 Threshold-Based Change Detection 

 

Figure 4: Distribution of historical stable forest observations for A) NDVI and B) HVHH.  The median (solid lines) 
and an example threshold calculated with k=2 and the area wide historical stable forest data (dashed line) are 
shown. 

Figure 4 shows the distribution of NDVI and HVHH values of the area-wide historical stable forest 

areas. Even after filtering for clouds by excluding pixels with high variation, distribution of NDVI 

values showed negative skew, indicating remaining cloud artefacts. 

Thresholds MAD from this data 0.644 for HVHH and 0.086 for NDVI. 
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Figure 5: Stepwise threshold-based monitoring of a NDVIorg time series with different values for threshold 
parameters k and n. Higher thresholds parameters increase the detection lag, but avoid early detection. 

Figure 5 depicts an example of stepwise NRT monitoring of a NDVIorg time series. Clearly visible are 

remaining clouds. Low thresholds k and n lead to too early detection (solid line), medium thresholds 

to correct detection (dashed line) and high thresholds to slightly late detection (dotted line).  
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Figure 6: OA, OE, CE and MTL (month) for NDVIorg and NDVI90MD and all tested different change thresholds k 
and n. Black: BFM change detection results for comparison. 

Figure 6 shows the validation results (OA, CE and OE and MTL) of threshold-based change detection 

using single-sensor NDVI at all tested thresholds, BFM results are added for comparison. Clearly 

visible is a trade-off between change CE and OE for both thresholds k and n: For small k and small n, 

CE is relatively high and OE low, resulting in sensitive detection. For high k and nm CE is relatively 

low and change omission high, resulting in more conservative detection.  

Resulting from this trade-off, OA first increases and then decreases again with higher thresholds k 

and n. The maximal OA is reached with higher thresholds for NDVIorg than for NDVI90MD (see Figure 

6, top Panel). As expected, the MTL increases with both n and k (Figure 6, bottom panel). Therefore, 

there is a trade-off between high OA (with low CE) and fast detection (with low OE) when trying to 

maximize OA and minimize MTL. 

The same trade-offs (between CE and OE and between OA and MTL) also occurred with HVHH data 

and data fusion (see Figure 8, Figure 13 and Appendix Table 1).  
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For time-series with few observations (NDVI90MD and HVHH), the described relationships don’t hold 

for higher n, since not enough confirming breaks can be found (see Figure 6, right panel and 

Appendix Table 1). 

4.1.3 Discussion of Change Detection 

For HVHH and NDVI90MD the results of threshold-based change detection were better than those of 

BFM; especially MTL is lower (see Figure 13 6, 8n and 13). The more conservative BFM detection is 

better suited for the outliers in the dense time-series: For NDVIorg single-sensor monitoring BFM 

gives the highest OA, and the overall highest OA is achieved with decision-level fusion using BFM for 

NDVIorg and threshold-based detection for HVHH (see Section 4.2.3). However, in both cases this 

comes at the cost of a higher MTL.  

In the current BFM implementation, the width of the moving window for break detection depends 

on the number of historical observations (for details see Verbesselt, Zeileis, and Herold 2012). If the 

monitoring window is too wide, one significantly lower observation in the monitoring window is 

often not enough to exceed the detection threshold. This explains the late detection. Shortening 

the history period can help to reduce the window size, however thereby valuable information is 

discarded and false detection rates increase, leading to a lower spatial accuracy (OA < 0.8 when 

NDVIorg starting only in 2005). If BFM was adjusted to allow flexible monitoring window sizes 

independent of the number of historical observations, the speed of detection could possibly be 

improved. 

The threshold-based detection on the other hand was relatively fast but sensitive to artefacts in the 

NDVI data. Best results for NDVIorg were achieved with 2-3 confirming observations which is in line 

results of previous studies that used subsequent observations to confirm detected changes in NDVI 

time-series (Reiche et al. accepted; Zhu and Woodcock 2014a). Since I use a very simple model (i. e. 

the median) for the stable forest fewer historical observations are required than with approaches 

more complex models such as BFM or the Continuous Change Detection presented by Zhu and 

Woodcock (2014a). However, the simple model may be less suited for environments with strong 

seasonality or trends, more subtle changes or different harvesting methods or when using sensors 

less sensitive to forest cover-change, e.g. C-band SAR.  

The thresholds are derived from area-wide historical data, differing from BFM and the approache of 

Zhu and Woodcocks (2014a) which use only the historical data of each pixel. Therefore training 

areas are necessary to apply the proposed threshold-method method to other sites. The required 

historical data of stable forest should typically be available in NRT monitoring applications. With 

more historical observations available than in this study, pixel-based threshold calculation could 

also be possible. Moreover, the threshold factors k and n requires recalibration for different sites. 

Contrasting that, in Zhu and Woodcock (2014a) the detection accuracy was reported to be robust to 

different thresholds for NDVI and n > 2.  

Since I focused on NRT application where the detection speed is crucial, I selected change detection 

based on data-driven thresholds for further development. For the two sensors and the fused data I 

selected the best thresholds parameters k and n using the validation. BFM was used for NDVIorg and 

in combination with threshold-based detection in the decision-level fusion. 
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4.2 Single-sensor Monitoring and Data Fusion 

A) Reference

 

B) HVHH, k=2.2, n=1

 
 

C) NDVIorg, k=3.5, n=2

 

 

D) NDVI90MD, k=3.5, n=1

 
 

E) Decicison-level fusion with NDVIorg  
kNDVI=4.5, kHVHH=2.2, nTOTAL=2, nHVHH=1 

 

 

F) Decicison-level fusion with NDVI90MD  
kNDVI=4.5, kHVHH=2.2, nTOTAL=2, nHVHH=1 

 
 

 
Figure 7: Result maps (detail from the North of the study area) , showing A) the reference data harvesting periods and 
change detection time of confirmed changes with threshold-based change detection using B) HVHH, C) NDVIorg and D) 
NDVI90md; E) Decision-level fusion with NDVIorg and F) NDVI90MD. For HVHH, the change dates are quite uniform due to the 
few observations. NDVIorg shows more CE than the HVHH and fusion results, NDVI90MD also has a lot of OE. For dec. level 
fusion with NDVIorg the relatively fast detection is visible, with NDVI90MD results are very similar to the HVHH results 
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4.2.1 Single-Sensor Monitoring 

The NDVI data showed remaining cloud artefacts (see e.g. Figure 5), higher variance in the 

magnitude of the change than the HVHH time series and quicker recovery after harvest. Therefore, 

when using only NDVI data, there is a lot of CE (see Figure 7 C) and the trade-off between OA and 

MTL is strongly expressed as can be seen in Figure 6. When using more conservative detection (high 

thresholds, BFM), the detection lag and change omission are considerably higher than the results of 

using only HVHH, even at 60% MD where the NDVI series is denser (see Figure 13 A for comparison 

of HVHH and NDVI results). Figure 5 illustrates this trade-off with an example, were the sensitive 

settings lead to early detection and the conservative settings to late detection.  

 
Figure 8: Trade-off between A) OA and MTL B) OE and CE for HVHH single-sensor monitoring with threshold-
based change detection at different k (labels in the plot) and n=1 and 2. The result of BFM change detection 
are shown for comaprison (black). 

Detection with HVHH was not impaired by remaining clouds, therefore CE is low (see result map in 

Figure 7 B).  

Figure 8 A) depicts the OA and MTL validation results for single-sensor monitoring using HVHH with 

n=1 and 2, and all tested k values. The trade-off between OA and MTL is clearly visible. MTL 

increases steeply with higher n since the time series is scarce. The highest OA (0.938) was achieved 

with threshold-based change detection using n = 1 and k = 2.2.  

With higher n, there were insufficient observations for multiple confirmations, which increased the 

change omission (See Figure 8 B, for n=3 OE =0.49, vs 0.08 for n=1, k=2.2). If only forest-stands 

harvested in 2008 are used, this effect is strongly reduced (OE of 0.17 for n=3).  
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4.2.2 Data-Level Fusion 

 
Figure 9: Data vs decision-level fusion using NDVIorg.  Change is omitted when monitoring the time series fused 
at dat level (dark red), since the correlation with gradually changing values does not represent the change. 
(The fused time-series shonw here is the result of data-level fusion with all data avilable until 2009-11-08, the 
date of the change detection of dec. level fusion (dashed line). HVHH and NDVI correlation p-value < 0.001, 
R2=0.638.) 

The adaption of data-level fusion with MuTiFuse for NRT monitoring showed three main problems:  

Data-level fusion with MultTiFuse doesn’t take into account the higher reliability of the SAR data. 

The same thresholds are used irrespective of the original source for each observation. Therefore 

artefacts in the NDVI data could increase change commission rates. This could have been adapted; 

however this would make the method almost equivalent to decision-level fusion. 

For more gradual changes, a significant correlation between the time-series was found based on 

mixed observations between forest and no-forest, resulting in a fused time-series that does not 

clearly show the drop in the signal. This leads to a late detection compared to using the HVHH time-

series. Figure 9 shows an example of this effect, where the fused time-series doesn’t represent the 

drop in HVHH signal. For comparison the detection with decision-level fusion is shown. 

Unexpectedly, for about 30% of the pixels significant and high correlation between the HVHH and 

NDVI time series was found before the referenced change. This is caused by artefacts in short and 

scarce time series, and leads to similar problems as the cases with gradual change described above. 
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Figure 10: Validation results for data-level vs decision level fusion with threshold-based change detection with 
different nTOTAL (NDVIorg/HVHH, k=4.5/22, nHVHH=1). Data-level fusion shows higher errors and MTL.  

As a result, data-level fusion using MulTiFuse gave worse results than the decision-level fusion, with 

larger MTL lower OA, mainly due to higher CE. Figure 10 shows a comparison of the validation 

results of data-level-fusion and decision-level fusion. CE , OE and MTL increase with n, because of 

the scarce HVHH time-series. Decision level fusion can avoid this by using different nTOTAL and nHVHH 

(see the following section). 

4.2.3 Decision-Level Fusion 

 
Figure 11: Example of earlier detection with decision-level fusion.Comparison of decision-level fusion 
compared to single-sensor HVHH monitoring with A) NDVIorg and B)NDVI90MD. The change is detected at the 
second sig. lower NDVI observation in A) and at the first HVHH break in B). (Threshold-based change detection 
with k=4/2.2, n=2/1 NDVI/HVHH for fusion, and k=2.2, n=1 for single-sensor HVHH. NDVI and HVHH scaled by 
range for plotting, mind the different axis. 

Figure 7 E) shows a result map for decision-level fusion with threshold-based change detection 

using NDVIorg and kNDVI=4.5, kHVHH=2.2, nTOTAL=2, nHVHH=1. Comparison with single sensor monitoring 
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(Figure 7 B: HVHH and C: NDVIorg) shows an earlier detection, lower CE than with NDVIorg and lower 

OE than the HVHH results. These effects can be explained by the characteristics of the time series: 

Figure 11 A) shows an example pixel comparing decision-level to HVHH monitoring (same settings 

as above), the change is detected through the denser NDVI time-series, which decreased the 

detection-lag compared to using HVHH only. Figure 12 A) illustrates a different effect which lead to 

lower OE with decision-level fusion compared to using only HVHH: change was detected through 

the NDVI, while the HVHH change magnitude was too small for detection. The time-lag is high, since 

the high HVHH observations prevent change confirmation with 2 NDVI observations. 

 
Figure 12: Example for lower reduced OE with decision-level fusion at different MD levels: A) NDVIorg and B) 
NDVI90MD. Change is omitted when using only HVHH data, since the change magnitude is unusually small. 
(Threshold-based change detection, parameters see legend). 

Both effects are reflected in the validation results: The left panel of Figure 13 A) shows a 

comparison of OA and MTL of decision-level fusion vs. single-sensor monitoring for selected change 

detection methods at NDVIorg. Decision-level fusion gave higher OA and smaller MTL compared to 

using HVHH only, and much better results than using only NDVIorg. Again there was a trade-off 

between a low MTL and high OA for different change detection parameters. The left panel of Figure 

13 B) shows the trade-off between OE and CE for NDVIorg. Decision-level fusion shows a higher CE 

but lower OE than HVHH single-sensor monitoring.  
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Figure 13: A) OA vs. MTL and B) OE vs. CE for single-sensor and decision-level fusion, threshold and BFM 
change detection with selected parameters with the best results at different NDVI MD levels. Decision-level 
fusion gave the highest OA at lower MTL with NDVIorg, with NDVI90MD the differences between fusion and using 
only HVHH are very small. Fusion shows a higher CE but lower OE than the HVHH results at both MD levels. 
Some NDVI90MD results lie outside the plot limits, which were chosen in order to show more detail.  

The highest overall OA with threshold-based change detection was achieved decision-level fusion 

with kHVHH=2.2, kNDVI=4.5 and nHVHH=1, nNDVI=2 (decision tree 2). Both threshold parameters were 

higher for the NDVI than for HVHH. This prevented errors from noise in the NDVI to increase CE. 

Consequently SAR data dominated the detection, 63.8 percent of the changes were detected by 

one conforming break in the HVHH time series.  

Decision-level fusion with BFM for NDVIorg (n=3) and threshold-based detection for HVHH (k=2.2, 

n=1) gave the overall highest OA of 94.4%. The more conservative change detection for NDVI 

filtered out change commission, however as expected at the cost of a higher time-lag. 
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When using decision tree 1) with the same threshold n for both time series , the results are slightly 

worse, since more errors from the NDVI time series are in cooperated in the fused result. With 

NDVIorg, the highest OA for this decision tree is 0.922 with an MTL of 3.45 Month, achieved with 

BFM and n = 1. 

4.2.4 Effects of Increased Missing Data in the NDVI Time Series 

Increased md had a strong effect on change detection when using the optical data only: comparison 

of result maps C) and D) in Figure 7 reveals a much higher change omission with NDVI90MD. The 

validation shows distinctly lower OA accuracy (0.762 vs. 0.911) and higher MTL (8.2 vs 5.4 Month) at 

90% MD compared to 60% MD (using the change detection with the respective highest OA). Figure 

6 shows a comparison of OA, OE, CE, and MTL for single-sensor monitoring using NDVI at different 

MD levels. At 90% MD, threshold detection performs better than BFM, since the sparser time series 

also contains less remaining clouds. CE stays lower at more sensitive threshold factors. 

The main effect of increased MD on decision-level fusion is illustrated by an example in Figure 11 

where A) shows earlier detection with two confirming NDVI observations at 60% MD. In Figure 11 B) 

with 90% MD the change is detected later through one HVHH break, because the thinned out NDVI 

time series reveals the change even later than the HVHH time-series.  

In some cases where change would be omitted with using HVHH only, the fusion gave correct but 

detection with NDVI observations (see Figure 12 B for an example). 

Figure 13 A) shows how both effects were reflected in the validation results. It depicts a comparison 

of OA and MTL of decision-level fusion and single-sensor monitoring at different MD levels for 

selected change detection parameters. With NDVI90M, the lag can’t be reduced compared to HVHH 

single-sensor monitoring. The maximal achieved OA of decision-level fusion is still higher than with 

HVHH single-sensor monitoring (0.9384 vs 0.9378), however this difference is hardly significant. The 

trade-off between OE and CE is visible in in Figure 13 B). 

The share of changes detected by one HVHH observation increased to 79.4 percent. 

4.2.5 Discussion of Sensor Characteristics and Data Fusion 

At low levels of missing data, the optical and SAR data have complementary characteristics: NDVIorg 

has a finer temporal resolution but yielded a lower spatial accuracy mostly due to remaining clouds. 

The HVHH data yielded higher OA, but has fewer observations per year. The higher accuracy 

achieved with PALSAR HVHH compared to NDVIorg confirms findings in Reiche (accepted). However, 

previous studies using both sensors for forest/non-forest discrimination achieved contrary results 

(Lehmann et al. 2012; Reiche et al. 2013; Walker et al. 2010). This could be attributed to the use 

temporal mosaics of multiple Landsat images to reduce missing data, while the NRT approach of 

this study uses each single image and has to deal with missing data internally, which causes most of 

the change commission. The same problem is encountered by of Zhu and Woodcock (2014a), they 

achieve an OA of 92.8% using NDVI with low cloud cover (< 20%) over a non-tropical site, with 

higher CE than OE, caused partially by remaining clouds . 

Because of the remaining clouds, the finer temporal density of the NDVIorg time series couldn’t yield 

the expected advantage in detection speed compared to HVHH. At least two observations have to 

be used for change confirmation to avoid commission of remaining clouds. Therefore, my results 
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indicate a clear advantage of well filtered PALSAR backscatter-ratio over Landsat NDVI for NRT 

monitoring of deforestation under cloudy conditions.  

Data-level fusion using MulTiFuse showed results comparable to Reiche et al. (accepted), however 

contrary to their findings, in my results MulTIFuse does not outperform single-sensor monitoring 

with HVHH. This is partly caused by different validation approaches: MulTiFuse doesn’t take into 

account the different reliability of the time-series, leading to early-detection through remaining 

clouds. This was counted as change commission in this work, but as correct in Reiche et al. 

(accepted, see Section 4.3). Moreover, MulTiFuse had inherent problems when applied to NRT 

monitoring, where forest and non-forest observations of both time series were not always 

available.  

Decision-level fusion did improve OA and detection speed when using NDVIorg since the 

complementing characteristics of optical and SAR data could be exploited. The best performing 

decision tree takes into account these different characteristics by using higher thresholds 

parameters kNDVI and nTOTAL for the less reliable NDVI time series. While some additional CE was 

introduced by using the NDVI, OE could be reduced compared to single-sensor HVHH monitoring. 

The effects were however smaller than expected, owing to the low reliability of the NDVI data. 

HVHH– NDVI90MD fusion results were almost identical to those of single-sensor HVHH monitoring. 

The sparser NDVI time series have no advantage over the HVHH data neither in density nor 

reliability. Reiche et al. (accepted) achieve better results with fusion even with NDVI90MD, again this 

is largely due to the different validation approaches. 

Because of the trade-off between fast detection and low change commission, there is not a single 

optimal parameter combination. Depending on the user requirements, faster, less accurate 

detection with low thresholds or more reliable yet slower detection with higher thresholds can be 

chosen. The results of both can also be combined to yboth early alerts and more reliable change 

detection. The approximate reliability of either method can be extrapolated from validation results.  

With a minimal MTL of around 3.5 month at OA above 90%, monitoring with decision-level fusion 

and single-sensor HVHH data gave updates much faster than the yearly updates of most previous 

change detection studies with Landsat-like resolution (Hansen and Loveland 2012) Zhu and 

Woodcock (2014a) unfortunately don’t  report the detection lag. Even when using only NDVIorg 

data, MTL is below 6 month. Numbers in Reiche et al. (accepted) are much lower because of their 

validation approach.  My MTL results can’t match the fortnightly updates of current operational 

NRT monitoring systems at coarser spatial resolution (Wheeler et al. 2014). Upcoming medium-

resolution SAR systems with finer temporal resolution (ALOSS-2, SAOCOM) should be able to 

decrease the time-lag significantly. 

4.3 Validation data and Methods 

The validation showed some problems in the reference data: along the borders of some polygons 

OE was especially high (see e.g. Figure 7 B, in the South-East corner). This indicates a systematic 

spatial error in the co-registration of either RS- or reference data. Further some pixels in the North-

West of the study area show a strong seasonal pattern, indicating a different land-cover than the 

expected evergreen forest. 
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Given the relative high OA when using the optimal methods, these problems appear to have low 

impact. Since the same reference was used for all methods, relative comparison is meaningful in 

any case. Therefore no further actions such as spatial buffering or comparison to higher resolution 

data were deemed necessary. 

 
Figure 14: Contribution of early-detected change to CE for the best performing threshold-based change 
detection parameters per data source using NDVIorg.  

Figure 14 shows the contribution of early-detected change to the CE for the different data sources, 

using the best performing threshold detection parameters. Especially when using NDVI only, early 

detection accounted for high shares of the commission error. When early-detected change was 

counted as correct as in Reiche et al. (accepted), OA increased (by 2-3 %) while MTL showed 

sometimes even negative values, especially for NDVI single-sensor monitoring. Figure 15 shows a a 

map detail displaying the lag of first detection in month for monitoring with NDVIorg. 

 
Figure 15: Map detail of lag of first detection.Negative lags (early detection) are displayed in red colours. 
Single-sensor NDVIorg monitoring, k=3.5, n=2  
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Figure 16: Example for time based validation of change detection for a NDVIorg time series and different 
parameter combinations A) k=4.5, n=3, B) k=2, n=3, C) k=2, n=2.F: Forest, NF: Non-Forest. 

Figure 16 illustrates how the validation status of a single pixel can change over time, depending on 

the change detection parameters. This temporal detail of the monitoring results is not represented 

by either of the validation approaches described above. The sparse literature on sub-yearly change 

detection doesn’t provide more adequate methods, the reported the lag-of detection (Reiche et al. 

accepted) or percentage of pixels  with detection after the reference time (Zhu, Woodcock, and 

Olofsson 2012) doesn’t take into account early detection. This calls for development of specialized 

spatio-temporal validation measures for multi-temporal and especially NRT change detection. 

A straightforward solution would be to treat monitoring results and referenced data as time series 

stacks of pixel classification states. Then one could derive the spatial accuracy measures for each 

point in time within the monitoring period, by comparing the corresponding layers of the result- 

and the reference-stack. The temporal resolution could be chose in accordance with the resolution 

of the reference data, for the data used herein this is 3 month. 

The results per point in time can then be averaged over the monitoring-period, to derive global 

validation results. The ratio in which change CE and OE influence the global OA depend on the 

average share of forest-and non-forest over time, rather than on ratio of stable-forest vs. change 

pixels. 

The same global results could also be derived by directly comparing all time-space-points of the 

result- and reference-stack in a global spatio-temporal confusion matrix. A third way to arrive at the 

same global results would be to first derive the time-based confusion matrix per pixel and then 

averaging over space (for a demonstration of all three ways of calculating global accuracy see 

Appendix II: Calculating Spatio-Temporal Accuracy Measures). 
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5 Conclusions 
This thesis presents methods for NRT deforestation monitoring with integrated multi-temporal 

Landsat NDVI and PALSAR HVHH data. NDVI – HVHH data fusion was found to improve the 

detection accuracy and speed if the time series have complementing characteristics. This is the case 

for NDVIorg with about 50 percent missing data. However, the improvements compared to using 

only HVHH data are rather small, and limited mostly by remaining clouds in the NDVI time series. 

With 90% MD the NDVI time-series become too sparse for data fusion to show an advantage over 

using only SAR data. Nevertheless, these results confirm previous findings on the potential for SAR-

optical data fusion for multi-temporal forest change detection in the tropics (Lehmann et al., 2012; 

Reiche et al., accepted, 2013). For the first time a NRT monitoring approach is presented that 

highlights the higher detection speed achievable with data-fusion. Whether the advantages will 

justify data-fusion in operational monitoring systems depends mainly on the available data and 

cloud-handling methods.  

The overall better outcomes of monitoring with HVHH compared to NDVI emphasize the limitations 

of cloud-contaminated optical data for NRT monitoring of tropical forest and the big potential of 

upcoming L-band data-streams (ALOS-2 PALSAR-2, SAOCOM) for this purpose.  

Of the tested change detection methods, BFM gave better results with dense and noisy time series 

(NDVIorg) while threshold-based detection performed better with scarce time-series (NDVI90MD, 

HVHH). Regarding the relevance of the results, the threshold-based change detection was shown to 

perform well on the tested site, but may not be suited for sites with higher seasonality or more 

gradual forest cover changes. The decision-level fusion can also be combined with other change 

detection methods, even different detection methods per sensor are possible, as demonstrated in 

this work. Modelling seasonality would require denser time series those used herein. 

Decision level fusion performed well at low and high MD, MulTIFuse data-level fusion showed 

inherent problems with NRT application. 

Since there is a trade-off between OA and MTL and OE and CE, the optimal method and parameter 

combination depends on the user requirements: If the user is interested in a short time-lag and 

minimal error of omission (early alert scenario) a more sensitive approach is suitable, threshold-

based detection with relatively lower thresholds. This results in a smaller time-lag and lower overall 

accuracy. In a low risk scenario, where for example ground control is very resource intensive or 

there are negative consequences of wrong alerts, priority should lie on reducing change 

commission. Therefore a conservative detection with BFM and higher thresholds should be used. 

The different settings can however also be used in combination, labelling the detected changes 

accordingly. The early-alert labelled changes could be used as a first warning, while the better 

confirmed changes could trigger resource intensive responses. 

The presented decision-level fusion approach can be used to integrate a variety of RS-based time 

series with comparable spatial resolution. Whenever the data shows complementing characteristics 

(e.g. in temporal resolution and reliability), the decision-level fusion is likely to improve the results. 

Further research should include time series of different sensitivity e.g. C-band SAR (Mitchell et al. 
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2014), which is becoming increasingly relevant with the upcoming freely-available data from ESA 

Sentinel-1 featuring global coverage and about fortnightly revisits (Torres et al. 2012).  

Furthermore the decision-fusion approach presented here is not restricted to two time series but 

could be adapted to use an arbitrary number of data sources of comparable spatial resolution. It 

even allows integrating additional data sources into an operating monitoring system, and could 

withstand failure of one system. In this way it could set the base for a flexible near real-time 

monitoring framework that makes use of existing and upcoming medium resolution SAR and optical 

data streams.  

The question of spatially correct but temporally incorrect detections should be reported reveals a 

short-coming of the commonly used spatial accuracy measures for multi-temporal change detection 

and especially NRT monitoring. With multi-temporal change detection becoming more relevant, 

there is a need for more accurate spatio-temporal accuracy measures. I therefore propose an 

approach that validates each pixel not based on a single change detection result, but by comparing 

the pixels status at each time-point in the monitoring period to the reference data at the same 

point of time. 
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Appendix I: Result Table 
Data NDVI MD (%) Change dect. KNDVI kHVHH nTOTAL nHVHH OA CE OE MTL (Month) 

NDVI 60 bfm NA NA 1 NA 0.9109 0.1039 0.0883 5.42 

NDVI 60 bfm NA NA 2 NA 0.9068 0.0616 0.1428 7.52 

NDVI 60 bfm NA NA 3 NA 0.8794 0.0493 0.2151 9.75 

NDVI 60 threshold 1.5 NA 1 NA 0.3060 0.7597 0.0029 1.60 

NDVI 60 threshold 1.5 NA 2 NA 0.6966 0.4284 0.0258 2.88 

NDVI 60 threshold 1.5 NA 3 NA 0.8198 0.2711 0.0558 4.46 

NDVI 60 threshold 2 NA 1 NA 0.4386 0.6640 0.0107 1.91 

NDVI 60 threshold 2 NA 2 NA 0.7890 0.3155 0.0482 3.34 

NDVI 60 threshold 2 NA 3 NA 0.8653 0.1778 0.0983 4.93 

NDVI 60 threshold 2.5 NA 1 NA 0.5596 0.5691 0.0262 2.41 

NDVI 60 threshold 2.5 NA 2 NA 0.8410 0.2266 0.0828 3.81 

NDVI 60 threshold 2.5 NA 3 NA 0.8749 0.1161 0.1565 5.35 

NDVI 60 threshold 3 NA 1 NA 0.6726 0.4567 0.0533 2.99 

NDVI 60 threshold 3 NA 2 NA 0.8624 0.1546 0.1385 4.15 

NDVI 60 threshold 3 NA 3 NA 0.8630 0.0709 0.2303 5.82 

NDVI 60 threshold 3.5 NA 1 NA 0.7637 0.3379 0.0919 3.52 

NDVI 60 threshold 3.5 NA 2 NA 0.8599 0.0989 0.2107 4.70 

NDVI 60 threshold 3.5 NA 3 NA 0.8270 0.0452 0.3311 6.31 

NDVI 60 threshold 4 NA 1 NA 0.8125 0.2389 0.1514 4.18 

NDVI 60 threshold 4 NA 2 NA 0.8355 0.0582 0.3031 5.27 

NDVI 60 threshold 4 NA 3 NA 0.7774 0.0275 0.4501 6.99 

NDVI 60 threshold 4.5 NA 1 NA 0.8233 0.1587 0.2389 4.94 

NDVI 60 threshold 4.5 NA 2 NA 0.7877 0.0331 0.4253 5.93 

NDVI 60 threshold 4.5 NA 3 NA 0.7159 0.0144 0.5859 7.51 

NDVI 60 threshold 5 NA 1 NA 0.7992 0.1025 0.3554 5.83 

NDVI 60 threshold 5 NA 2 NA 0.7278 0.0208 0.5597 6.56 

NDVI 60 threshold 5 NA 3 NA 0.6530 0.0080 0.7196 8.01 

HVHH  bfm NA NA 1 NA 0.931 0.044 0.103 4.14 

HVHH  bfm NA NA 2 NA 0.874 0.005 0.259 8.24 

HVHH  bfm NA NA 3 NA 0.741 0.004 0.537 11.77 

HVHH  threshold NA 1.2 1 NA 0.807 0.297 0.011 2.75 

HVHH  threshold NA 1.2 2 NA 0.920 0.097 0.068 6.96 

HVHH  threshold NA 1.2 3 NA 0.833 0.032 0.330 10.37 

HVHH  threshold NA 1.4 1 NA 0.8680 0.2127 0.0180 2.91 

HVHH  threshold NA 1.6 1 NA 0.9078 0.1459 0.0284 3.11 

HVHH  threshold NA 1.8 1 NA 0.9285 0.1011 0.0417 3.25 

HVHH  threshold NA 2 1 NA 0.9366 0.0706 0.0608 3.43 

HVHH  threshold NA 2.2 1 NA 0.9378 0.049 0.083 3.58 

HVHH  threshold NA 2.2 2 NA 0.8980 0.003 0.210 7.95 

HVHH  threshold NA 2.2 3 NA 0.7630 0.000 0.492 11.03 

HVHH  threshold NA 2.4 1 NA 0.9347 0.0296 0.1085 3.70 

HVHH  threshold NA 2.6 1 NA 0.9275 0.0167 0.1360 3.82 

Dec. level fusion 60 bfm/ threshold NA NA 1 1 0.9235 0.1238 0.0274 2.98 

 Dec. level fusion 60 bfm/ threshold NA NA 2 1 0.9422 0.0795 0.0386 3.51 
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Data NDVI MD (%) Change dect. KNDVI kHVHH nTOTAL nHVHH OA CE OE MTL (Month) 

Dec. level fusion 60 bfm/ threshold NA NA 3 1 0.9437 0.0695 0.0470 3.91 

Dec. level fusion 60 threshold 3 2.2 1 1 0.6802 0.4502 0.0235 1.97 

Dec. level fusion 60 threshold 3 2.2 2 1 0.8951 0.1583 0.0443 2.80 

Dec. level fusion 60 threshold 3 2.2 3 1 0.9300 0.0859 0.0583 3.48 

Dec. level fusion 60 threshold 3.5 2.2 1 1 0.7825 0.3290 0.0320 2.21 

Dec. level fusion 60 threshold 3.5 2.2 2 1 0.9192 0.1096 0.0540 2.96 

Dec. level fusion 60 threshold 3.5 2.2 3 1 0.9365 0.0666 0.0660 3.52 

Dec. level fusion 60 threshold 4 2.2 1 1 0.8528 0.2282 0.0409 2.50 

Dec. level fusion 60 threshold 4 2.2 2 1 0.9327 0.0781 0.0615 3.11 

Dec. level fusion 60 threshold 4 2.2 3 1 0.9396 0.0550 0.0718 3.54 

Dec. level fusion 60 threshold 4.5 2.2 1 1 0.8978 0.1503 0.0507 2.82 

Dec. level fusion 60 threshold 4.5 2.2 2 1 0.9389 0.0593 0.0688 3.29 

Dec. level fusion 60 threshold 4.5 2.2 3 1 0.9397 0.0503 0.0765 3.54 

Data-level fusion 60 threshold 4.5 NA 1 NA 0.8197 0.1335 0.2352 3.76 

Data-level fusion 60 threshold 4.5 NA 2 NA 0.8310 0.3083 0.0633 5.22 

Data-level fusion 60 threshold 4.5 NA 3 NA 0.7605 0.4798 0.0374 8.18 

NDVI 90 bfm NA NA 1 NA 0.7618 0.2868 0.2822 8.19 

NDVI 90 bfm NA NA 2 NA 0.7429 0.1520 0.4688 13.58 

NDVI 90 threshold 1.5 NA 1 NA 0.6477 0.4845 0.0677 6.41 

NDVI 90 threshold 1.5 NA 2 NA 0.8031 0.2042 0.2464 11.91 

NDVI 90 threshold 2 NA 1 NA 0.7236 0.3924 0.1100 6.72 

NDVI 90 threshold 2 NA 2 NA 0.8000 0.1351 0.3298 12.18 

NDVI 90 threshold 2.5 NA 1 NA 0.7654 0.3165 0.1692 7.04 

NDVI 90 threshold 2.5 NA 2 NA 0.7727 0.0903 0.4277 12.11 

NDVI 90 threshold 3 NA 1 NA 0.7818 0.2480 0.2463 7.32 

NDVI 90 threshold 3 NA 2 NA 0.7348 0.0626 0.5279 12.15 

NDVI 90 threshold 3.5 NA 1 NA 0.7796 0.1836 0.3349 7.50 

NDVI 90 threshold 3.5 NA 2 NA 0.6912 0.0454 0.6295 12.13 

NDVI 90 threshold 4 NA 1 NA 0.7538 0.1391 0.4410 7.83 

NDVI 90 threshold 4 NA 2 NA 0.6438 0.0323 0.7348 11.82 

NDVI 90 threshold 4.5 NA 1 NA 0.7128 0.1019 0.5611 7.99 

NDVI 90 threshold 4.5 NA 2 NA 0.6003 0.0225 0.8285 11.53 

NDVI 90 threshold 5 NA 1 NA 0.6664 0.0730 0.6773 8.19 

NDVI 90 threshold 5 NA 2 NA 0.5669 0.0178 0.8988 11.14 

Dec.Fusion 90 bfm/ threshold NA NA 1 NA 0.8575 0.2312 0.0424 3.28 

Dec.Fusion 90 bfm/ threshold NA NA 3 NA 0.9338 0.0755 0.0645 3.69 

Dec.Fusion 90 threshold 3 2.2 1 1 0.8652 0.2075 0.0478 3.12 

Dec.Fusion 90 threshold 3 2.2 2 1 0.9352 0.0638 0.0724 3.62 

Dec.Fusion 90 threshold 3.5 2.2 1 1 0.8983 0.1458 0.0572 3.19 

Dec.Fusion 90 threshold 3.5 2.2 2 1 0.9374 0.0566 0.0750 3.61 

Dec.Fusion 90 threshold 4 2.2 1 1 0.9171 0.1052 0.0655 3.28 

Dec.Fusion 90 threshold 4 2.2 2 1 0.9382 0.0524 0.0777 3.60 

Dec.Fusion 90 threshold 4.5 2.2 1 1 0.9293 0.0769 0.0707 3.38 

Dec.Fusion 90 threshold 4.5 2.2 2 1 0.9385 0.0497 0.0798 3.60 

Table 2: Validation results for selected settings which represent the general trends. 
Results plotted in Figure 13 are highlighted.  
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Appendix II: Calculating Spatio-Temporal Accuracy Measures 
 

Be xi the number of correctly classified space points at time i. Spatial overall accuracy at time i,  is then 

calculated as 𝑂𝐴𝑖 =
𝑥𝑖

𝑚
, with m being the total number of space-points (see e.g. Foody 2002 for 

calculation of space-based accuracy measures). 

Similarly, for yj being the number of correctly classified time points at location j, temporal overall 

accuracy for location j,  is calculated as 𝑂𝐴𝑗 =
𝑦𝑗

𝑛
, with n being the total number of time-points. 

Global OA can then either be calculated as average of all OAj over space or as average of all OAi over 

time: 𝑂𝐴𝑔𝑙𝑜𝑏𝑎𝑙 =
1

𝑛
∑ 𝑂𝐴𝑖 =𝑛

𝑖=1
1

𝑛
∑

𝑥𝑖

𝑚
=

1

𝑚 × 𝑛
∑ 𝑥𝑖

𝑚
𝑖=1

𝑛
𝑖=1 =

1

𝑁
∑ 𝑥𝑖

𝑚
𝑖=1  or similarly 𝑂𝐴𝑔𝑙𝑜𝑏𝑎𝑙 =

1

𝑁
∑ 𝑦𝑗

𝑚
𝑗=1 . 

Therefore ∑ 𝑦𝑗
𝑚
𝑗=1 =  ∑ 𝑥𝑖

𝑚
𝑖=1  = the total sum of time-space-points classified correctly. 

The time-based, space-based and global CE and OE or producer’s- and user’s-accuracies per class can be 

derived in similar ways, using the respective correct or incorrect pixels per map or reference class. 
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