

Breeding for milk quality

Bart Buitenhuis

What is milk quality?

- 1. Milk should be produced by healthy cows → scc < 500,000 cells/mL
- 2. General milk quality should be at a high level.....

What is the milk used for?

- a. Cheese production
- b. Yoghurt/milk
- c. Infant formula
- d. Whey products

Pictures: www.arla.dk; http://www.mejeri.lf.dk;

Milk quality is related to:

- 1. Technological properties e.g. coagulation
- 2. Content of the milk
 - a. Fatty acids
 - b. Proteins
 - c. Minerals
 - d. Metabolites
 - e. Vitamins
 - f.

Breeding for milk quality

- 1. Variation (phenotypic, genetic)
- 2. Within breed variation
- 3. Between breed variation

Pictures: Viking Genetics

DK-SE milk genomics project

 DK-SE milk genomics project focussed on 1,200 cows divided over 3 breeds (~400 cows/breed):

Danish Holstein Swedish Red

Danish Jersey

- Assess the phenotypic and genetic variation
- Detection of SNPs/Genes

Pictures: Viking Genetics

Technological properties

Rennet coagulation time (cheese)

Variables	DH	DJ	SR	Influence of breed
RCT	1013ª	944 ^b	1233 ^c	***

Curd firming rate (yoghurt)

Variables	DH	DJ	SR	Influence of breed
CFR	8.97ª	21.63 ^b	9.49 ^a	***

Poulsen et al. 2013. JDS 96: 4830-4842

Technological properties

2% of the Danish Holstein cows and 16% of the Swedish Red cows were unable to form a gel and categorized as non-coagulating

Heritability RCT: 0.28 (DH) ¹; 0.45 (DJ) ¹; 0.53 (SR)²

Heritability CFR: 0.15 (DH) 1; 0.75 (DJ) 1; 0.62 (SR)2

Fatty acid profile phenotypic variation

Poulsen et al. 2012. JDS 95: 6362 -6371

Fatty acid profile phenotypic variation

Slide: Lotte Bach Larsen

Poulsen et al. 2012. JDS 95: 6362 -6371

Fatty acid profile genetic variation

- There is genetic variation for the fatty acid profile in
 - Danish Holstein¹ and Danish Jersey (unpublished)
- Performed a genome scan (bovine HD SNP array) for
 - Fat %
 - 16 individual FA
 - 4 FA index traits
 - 3 groups of FA

Pictures: Viking Genetics

Fatty acid profile genetic variation¹

Within breed genomic correlation between FA is similar between Danish Holstein and Danish Jersey

¹Buitenhuis et al. BMC Genomics (accepted)

Fatty acid profile genetic variation¹

prediction

Conclusion

- Profound differences between and within breeds for technological properties and fatty acid profile of the milk
- Danish Holstein and Danish Jersey show the same genomic correlation structure for FA in the milk
 - DGAT and SCD were found significant in both breeds for fat% and C14:1, respectively
- Possible to select for specific milk properties, but is dependend on the economic value

