
Spatial constraints and the organization

of the cytoskeleton

Ioana Cristina Gârlea
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1
Introduction

In this chapter we introduce the cytoskeleton and present its role
in the cell, as well as its interactions with other cell components.
We discuss the advantage of using bio-mimetic systems as simpli-
fied experimental models for the cell. Inspired by these systems
we also show how other bio-materials, such as viruses, can be used
to reproduce patterns created by the cytoskeleton leading to new
applications. Finally we give an overview of the models and tech-
niques that will be used in this thesis.
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Chapter 1. Introduction

1.1 The cytoskeleton in living cells

Cells contain a network of filamentous polymers localized in the cytoplasm,
called the cytoskeleton [1]. This network plays a crucial role in in the cell as
it acts as a scaffold, giving the cell mechanical support, and acts as tracks
for transport of components throughout the cell [2, 3]. The shape of the
cell is controlled by reorganization of the cytoskeletal filaments, enabling
the cell, for example, to migrate [4]. The cytoskeleton is also a key player
in cell division, where both the separation of the genetic material and the
separation of the mother cell into daughter cells depend on these filaments.

The structure of the cytoskeleton may differ between various organisms.
In plant and animal cells and, in general, in all cells with a membrane-bound
nucleus, called eukaryots, we find three distinct classes of cytoskeletal fila-
ments, namely, actin filaments, microtubules, and intermediate filaments.
Prokaryotic cells such as bacteria have homologues of these filaments that
perform similar functions to the their eukaryotic counterparts [5].

1.1.1 Components of the cytoskeleton

The classification of cytoskeletal polymers in eukaryotes is based on the
mechanical properties and structure of these filaments. One of the relevant
quantities to characterize the mechanical properties of these filaments is
the persistence length lp. This characterizes how stiff a polymer is. More
formally it is defined as the length L over which the tangent-tangent corre-
lations decay exponentially due to thermal fluctuations [6]. mathematically
this can be expressed as:

⟨t̂(L) · t̂(0)⟩ = e−L/lp , (1.1)

where t̂ is the unit vector tangent to the polymer chain. The persistence
length is proportional to the bending stiffness κB, the proportionality factor
being kBT (κB = kBT lp) where kB is the Boltzmann constant and T the
temperature [7]. At a more intuitive level a polymer that is shorter than
its persistence length will behave as a rigid rod. If it is much longer than
the persistence length, it will be fully elastic. In the intermediate regime,
when the two lengths are comparable, the behavior of the polymer is best
described by an elastic rod.
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1.1. The cytoskeleton in living cells

Microtubules are the stiffest of the cytoskeletal polymers. Their per-
sistence length is of the order of millimeters [8] and has been observed to
increase with the length of the microtubule [9]. Considering that a typical
animal cell diameter is in the order of 10s of microns, the microtubules are
often only several microns long. At this length scale microtubules behave
as rigid rods.

The basic structural units of microtubules are two globular proteins
from the tubulin family: α− and β− tubulin [10], which assemble to form
dimers. These dimers are organized longitudinally in straight protofila-
ments. A number of 13 protofilaments are arranged side by side creating
the hollow tube-like structure of the microtubules (see figure 1.1 (b)). The
outer diameter of this structure is ∼ 25 nm. The polymerization of mi-
crotubules is a highly dynamical process: after an initial nucleation phase,
tubulin dimers are rapidly added to one of the ends, called the plus end, of
the microtubule [11, 12]. Fast depolymerization also happens at the same
end, phases of grow and shrinkage alternating in time. It is possible to
prevent the depolymerization by using drugs such as taxol that stabilize
the structure of microtubules [13].

Actin filaments, also called F-actin, are much more flexible than micro-
tubules, having a persistence length of ∼ 17µm [14]. They are also thinner
than microtubules, with a diameter of ∼ 8 nm [15]. Actin filaments are
constituted of a protein called globular actin (or G-actin) that assembles
in a double helical structure (see figure 1.1 (a)). The polymerization of
actin filaments happens at one its ends (called the barbed end) and the
depolymerization at the other one (the pointed end). The polymerization
and depolymerization rates depend on the concentration of G-actin around
the filament. There is a regime in which these two rates become equal, the
number of monomers added being the same as the number of monomers
that disassemble from the filament, resulting in a constant filament length.
This steady state regime is called treadmilling [16].

Intermediate filaments are a diverse class of cytoskeletal filaments [17].
Examples include nuclear lamins, that are responsible for regulating the
shape of the nucleus, or keratins, which are found in epithelial cells, nails or
hair and have the role preventing the cell from deforming under mechanical
stress. Intermediate filaments typically have a rope-like structure. As their
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Chapter 1. Introduction

name implies, they have mechanical properties which are are in between the
ones of the other two classes of cytoskeletal polymers [18]. They are stiffer
than actin filaments but less rigid than microtubules. In this work will
focus on the organization of microtubules and actin filaments. However,
the models that we develop are general and thus could in principle also
apply to to intermediate filaments.

Figure 1.1: Schematic representation of actin filaments and microtubules:
(a)structure of actin filaments- globular actin is represented by purple
sphere, (b) structure of microtubules- α− and β− dimers shown as yellow
and orange spheres, (c) typical organization of these cytoskeletal polymers
in animal cells: actin filaments located in the cortical region and micro-
tubules aster with the centrosome at the core.
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1.1. The cytoskeleton in living cells

1.1.2 Functions of the cytoskeleton

In animal cells, the cytoskeleton fulfills many tasks. One of its main roles is
to control the shape of the cell [19]. The actin cortex, which is a network of
crosslinked actin filaments that are also attached to the membrane, makes
the cell harder to deform under external stress. In blood platelets, both
microtubules and actin form a ring in the equatorial zone of this discoidal
cell fragment [20]. By disassembling the microtubule ring the platelet looses
its discoidal shape becoming spherical [21]. Actin and microtubules are
also very important in cell division. The segregation of the chromosomes is
performed by a structure called a spindle that consist of two microtubule
asters. These asters position themselves at opposite poles of the mother cell,
capture the duplicated chromosomes and pull them apart, and transport
them to their end of the cell [22]. When this process is finished a ring of
actin filaments and myosin motors is assembled in the division plane [23].
This acto-myosin ring contracts and separates the cell in two. Actin is
also key player in migration. The way cells such as fibroblasts move is by
creating a lamlipodium in which actin filaments are polymerized against
the membrane pushing it forward [24]. Pulling against the substratum
on which they migrate is insured by transmembrane proteins connected
to actin stress fibers. Both actin and microtubules are used as tracks to
transport vesicles throughout the cell. This is achieved by motor proteins
bound on the vesicle that move on the cytoskeletal polymers.

1.1.3 Interactions that shape the cytoskeleton

Both actin filaments and microtubules grow in the cytosol, which is the
gel-like component of the cytoplasm, which is the whole content of the cell
enclosed by the cellular envelope, except for the nucleus. However they are
not the only cellular components that are present there, the cytoplasm be-
ing a rather crowded environment. The nucleus, or the vacuole in the case
of plant cells, takes up a considerable amount of space of the cytoplasm,
the cytosol filling only the space left by the other cell components. Actin
filaments and microtubules are forced to grow around these components.
Also, the density of cytoskeletal polymers in the cytosol can be quite high
and they have to find a way of packing themselves efficiently, often inducing
mutual alignment. As a result, the cytoskeleton permanently competes for
space inside the cell. In addition to this, the cytoskeletal polymers are sub-
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Chapter 1. Introduction

ject to confinement of the cell envelope. The cell envelope creates a physical
barrier between the cytoplasm and the exterior of the cell, constraining the
cytoskeleton to organize on the inside. As they grow, actin filaments and
microtubules are often pushing against the envelope and are pushed by each
other and by the other components against it. Therefore, confinement is a
key factor that shapes the organization of the cytoskeleton.

The typical organization of the cytoskeleton is different between plant
and animal cells. In plants the center of the cell is mostly filled with
vacuoles, the cytosol being localized mainly in the cortical region, just
beneath the cell wall. The wall is made out of cellulose and is too rigid
to be deformed by the forces created in the cell. Both actin filaments and
microtubules find themselves confined in this almost two dimensional region
between the vacuoles and the wall [25]. Microtubules, which are much stiffer
than actin filaments, are forced to follow the wall since they are physically
connected to it through protein linkers [26]. The density of microtubules
in this area is high therefore they align to each other. In animal cells the
cytosol is more evenly distributed in the cell volume. Microtubules typically
grow outwards from an organizing center called the centrosome located in
center of the cell, close to the nucleus. The centrosome is a ball of proteins
which is a few 100 nm in diameter. The microtubules grow radially from
the centrosome towards the periphery of the cell, creating an aster (see
figure 1.1 (c) ). This aster is subject to confinement since the tips of the
microtubules reach the cell membrane and push against it [27]. Unlike in
the case of plants, animal cells have a flexible membrane that separates
the cell volume from the extracellular matrix, microtubules can deform the
membrane. However this membrane is under tension and will exert a force
on the microtubules growing against it. This can bend the microtubules or
limit the length that they can have by affecting their growth since, when
a microtubule is growing against a physical barrier, rapid shrinkage occurs
more often than in the bulk [28]. Actin filaments are found throughout the
animal cell, but are more dense in the cortical region. There are regions in
which these filaments are densely packed such as lamelipodia or filopodia.
Lamelipodia are sheetlike membrane protrusion that the cell creates in
order to move. Inside these protrusions actin confined in an almost flat
space [29, 30, 31]. Filopodia are needle-like structures at the tip of a growing
neuron cell in which actin filaments align longitudinally [32].

Besides excluded volume interactions among the cytoskeletal polymers,
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1.2. Reconstructed systems

their dynamics or volume constraints imposed by the wall or the other
components that play a major role in the cytoskeleton organization, the
patterns formed by actin filaments and microtubules adopt in the cell are
also result of protein mediated iterations. Crosslinkers, molecular motors
and membrane liking proteins help organize the cytoskeleton and also en-
able it to perform functions such as contraction [33]. Crosslikers are a class
of proteins that attach to two cytoskeletal filaments at the same time creat-
ing a rigid bridge between them [34]. If crosslinked parallel filaments result
is a bundle which is stiffer than just the uncrosslinked filaments packed
next too each other. Examples of actin crosslinkers that form bundles are
α-actinin found in stress fibers [35] or fimbrin which is present in filopodia
[36]. Other crosslinkers such as filamin create networks by binding disor-
ganized actin filaments [37]. This happens mainly in the cortical region of
the cell. Molecular motors are proteins that can move along the filaments,
having a preferential direction of movement. If a cluster of these motors at-
taches to two antiparallel filaments simultaneously this generates a traction
force, since the motor move on the filaments in opposite directions pulling
them together [38]. Myosin II on actin filaments or cytoplasmic dynein on
microtubules perform these functions [39]. Membrane linkers can attach
cytoskeletal polymers to the membrane [40]. One example is spectrin that
attaches the actin cortex to the cell membrane [41].

1.2 Reconstructed systems

Cell are exquisitely complicated systems with a lot of processes happen-
ing at the same time. The organization of the cytoskeleton is the result
of the combined action of confinement, polymerization dynamics, molecu-
lar motors, crosslinkers and membrane interactions. But the way in which
each of these factors contributes is still not fully understood. Studying
the organization of the cytoskeleton in living cell (in vivo) can be thus
challenging, since it is hard to isolate these contributions. One way to
address this problem is by using reconstructed systems. This bottom-up
approach involves studying the factors that influence the cytoskeleton or-
ganization individually in a controlled environment (in vitro) and using the
knowledge gained in this way to rebuild the complete system step by step.
Understanding for example the effect of confinement on just plain actin
filaments and microtubules permits a better understanding of crosslinked
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Chapter 1. Introduction

bundles in confinement.

In cells, both actin filaments and microtubules are subject to confine-
ment. The simplest system to study the effect of confinement on the or-
ganization cytoskeleton polymers is just by enclosing them in a container
with rigid wall. To get meaningful results the size of the container should
be at the cell length scale (10s of microns). To simplify the problem even
further it is useful to look at quasi two dimensional geometries, making
containers with one dimension much smaller than the other two. This ge-
ometry is relevant for the organization of lamelipodia which is essentially
an almost flat protrusion where actin filaments are densely packed. The
use of photolithographic techniques permits to fabricate containers at this
length scale. The experiments of Soares et al [42] showed that actin en-
closed in shallow chambers (which are 10s of microns in length but only a
few micros deep) align to the wall of the confining container. Furthermore,
if the density of actin filaments is high enough, the filaments self-organize,
aligning along the longest distance available in the the container.

In animal cells the membrane is flexible, being essentially just a lipid
bilayer. In this case, bio-mimetic systems such as giant unilamelar vesicles
are a useful tool to study the cytoskeleton organization and the membrane-
cytoskeleton interaction [43, 44]. There are a variety of techniques for cre-
ating giant unilamelar vesicles [45]. These unilamelar vesicles, also called
liposomes, are composed of a droplet of buffer containing the proteins of
interest (G-actin, tubulin or motors) enclosed by a bilayer of lipids (see
figure 1.2 (b)). The cytoskeleton polymers grow inside the liposome, self-
organizing. This allows to study the effect of confinement on the organi-
zation of actin filaments and cross-linked bundles of actin filaments. This
system is also particularly useful to study the actin cortex behavior since
actin-membrane proteins can be embedded in the lipid bilayer [46]. As com-
pared to a supported bilayer, where the actin network is bound to a flat
bilayer sitting on a surface, liopsomes offer more insight on the cytoskeleton
organization since actin-membrane binding is sensitive to curvature [47].

Emulsion droplets are another example of bio-mimetic system [48]. Just
as liposomes, they are composed of a droplet of buffer containing the pro-
teins but here, the shell is made of a single layer of lipids. The droplets
are immersed in an oil bath (see figure 1.2 (a)). The oil-lipid interface is
much stiffer than the water-lipid interface making the droplet harder to
deform by cytoskeleton growing inside. This makes it an interesting sys-
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1.3. Biological control and biomimetic applications

Figure 1.2: Bio-mimetic systems: (a) schematic representation of an emul-
sion droplet (b) and of a liposome.

tem for studying microtubules. Microtubules are stiff polymers and, when
enclosed in a liposome, they create tube like protrusions [49, 50]. This is
not the typical situation that we see in cells. There, we more often ob-
serve relatively small deformations of the membrane and also bending of
the microtubules, which is not happening in vesicles since the resistance
of the naked bilayer is too small to bend microtubules. In cells, the actin
cortex and other proteins bound to the membrane reinforce the membrane.
Therefore, emulsion droplets are ideal systems for studying both plain mi-
crotubules and microtubule asters in confinement.

1.3 Biological control and biomimetic applications

Understanding the organization of the cytoskeleton, and what the factors
are that influence it, is not only a matter of scientific curiosity. Knowing
the role of the various factors such as confinement, dynamics or motor pro-
teins in the organization permits influencing this organization. Since the
way the cytoskeletal filaments are organized enables them to fulfill their
task in the cell, disrupting their organization prevents them from com-
pleting their function. This leads to being able to exert control over the
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Chapter 1. Introduction

cell. For example microtubule dynamics is essential for cell division [51].
Stabilizing them with taxol prevents the cell to divide, this mechanism be-
ing used in cancer treatment where it stops cancer cells from multiplying
[52]. Besides controlling the processes that naturally occur cell, changing
cytoskeletal polymers can also be used for new functions. Addition of sper-
mine induces a conformational change in microtubules, reorganizing them
into inverted tubulin tubules [53]. This exposes binding sites, which are
normally inaccessible since they are hidden inside the microtubule, offering
new interaction possibilities.

From a physical point of view, the cytoskeletal filaments are just poly-
mers. They can be several microns long and are thin having a diameter
of only 9 nm for actin filaments and 25 nm for microtubules. They also
have a relatively stiff, they persistence length being higher than their aver-
age length. Furthermore, actin and tubulin have been studied extensively
and there is a lot of knowledge on the binding site of these proteins. Also
lot of cross-linkers and membrane attaching proteins have been purified
from cells. This makes them ideal building blocks. Actin filaments can
be successfully used for coating the exterior of microbubbles, increasing
the stiffness and elasticity of these structures and reducing gas permeation
[54].

From a material science perspective the high persistence length makes
actin filaments and microtubules interesting as liquid crystals. If these
filaments are only few microns long they are basically stiff rods, but never-
theless have an aspect ratio in the order of 100. The typical liquid crystal
mesogens have much smaller aspect ratio and are of maximum a few 100nm
in length [55]. Since the effect of a wall extends into the bulk only over the
length scale of the liquid crystal particles, studying the confinement effect
in such liquid crystal is experimentally challenging. Cytoskeletal filaments
can be confined into micron-sized containers making it a interesting system
to study. Another bio-mesogen that has similar aspect ratio is the filamen-
tous bacteriophage fd. This rod-like virus has a length of 0.88µm and a
diameter of 6.6nm [56]. The persistence length of the wild type virus is
2.8µm which can be increased to 9.9µm by a one point mutation (fdY21M)
in its coat-protein [57]. Furthermore, the fd virus has the advantage of
being highly monodisperse [58] which is hard to achieve with cytoskeletal
filaments. This makes it the perfect system to study confinement of liquid
crystals leading to new applications.
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1.4. Models for the cytoskeleton: from liquid crystals to polymers

1.4 Models for the cytoskeleton: from liquid crys-
tals to polymers

Designing a universal model that would predict the organization of the
cytoskeleton is unfortunately not possible since the interactions of these
polymers among themselves and with the other cell components are too
complex and also happen at quite different length scales. However, as is
done experimentally with the reconstructed system, we can model a very
simple system in order to understand what are the interactions that are
relevant for one particular aspect of the organization of the cytoskeleton.
Comparing the outcome of the model with experimental data validates
the assumptions on which the model relies. This enables us to predict
the organization for a wider range of parameters. Understanding simple
systems and being able to predict their behavior enables us to build further,
using the knowledge gained to understand more complex systems.

One of the first questions that arises is how the polymer-polymer inter-
action contributes to the the organization of the cytoskeleton. Since one
of the important properties of the cytoskeletal filaments is that they are
extended objects, occupying a volume, steric repulsion should play a role.
Considering that the persistence length of both actin filaments and micro-
tubules is higher than the contour length of these filament, they behave to
a certain extent as rigid rods. From liquid crystal physics we know that
a fluid composed of asymmetric particles such as rods will self-organize,
the patterns formed depending on the density of the particles [59]. For
low densities there will be no organization, the particles pointing in ran-
dom directions, forming a so called isotropic phase. Above a critical value
of the density, the system will self-organize in a nematic phase, that is
characterized by the fact that all particles point, on average, in the same
direction. For further increase of the density, one more degree of organiza-
tion will arise: in addition to pointing in the same direction the particles
also organize in layers. This type of organization is called a smectic phase.
The transition density can be predicted, in the limit of thin long rods, by
the Onsager model [60]. For shorter rods, Monte Carlo simulations proved
useful [61]. Bulk experiments of actin filaments indeed show isotropic and
nematic phases [62].

In confinement, the bulk organization of hard rods will be altered by the
presence of the walls. In the vicinity of the wall the particles will tend to

15



Chapter 1. Introduction

align to it [63, 64]. At the same time, if density is high enough, the rod will
align to each other. In a container all walls will create preferential directions
of alignment which will compete. This mismatch can create a continuous
distortion in the direction of alignment of the liquid crystal. There are three
basic type of distortions: splay, twist, and bend [65]. Another possibility
to accommodate different orientation in a nematic is by creating defects,
also called disclinations. Defects are characterized by a singularity in the
orientation field. The most common type of defects are the point ones.
They are classified according to their topological charge (see figure 1.3).
Disclination lines are bounded by two defect points with topological charge
+1/2 and −1/2, whereas disclination walls are believed to be unstable.

+1 -1/2+1/2-1+1

Figure 1.3: Particle orientations around the most common disclination
point types and their respective topological charge.

To investigate the organization of stiff rods in confinement we use hard
body Monte Carlo simulations [66]. This algorithm allows to start with
a random configuration of the system and by small changes converges to-
ward the equilibrium configuration. In the case of hard body Monte Carlo
the steps are infinitesimal rotations and translations of the particles. The
hard interaction between two object is characterized by in infinite energy
when the two objects overlap and is zero otherwise, therefore, when moving
particles, they are not allowed overlap with each other or with the walls.
Since rigid rods are mathematically best described as spherocylinders, a
tube caped with two hemispheres, and spherocylinders have the property
that all points on their surface are at one radius distance from the center
line of this object, deciding whether two such objects overlap is a matter
of computing the distance in between their center lines [67]. The simplest
geometry for the confining container is a shallow cuboidal box. This of-
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1.4. Models for the cytoskeleton: from liquid crystals to polymers

fers an almost two dimensional confining volume with planar walls. We
will look at hard rods confined in such geometry and how the mismatch
different preferential directions of alignment created by the walls is solved
by disclinations in Chapter 2. Using the same method, in Chapter 3, we
study the organization of hard rods in a round container and the effect of
introducing a volume inaccessible to particles inside this container.

To gain more insight on the effect of confinement in quasi two dimen-
sional systems on the isotropic to nematic transition we also use a modified
Onsager model. The bulk model of this microscopic theory is valid in the
assumption that the rods are long (L/D ≫ 1, where L is the length of
the rod and D its diameter). The self-alignment of the rods is due to
their excluded volume. The excluded volume of two extended objects de-
scribed by their center of mass is the volume around the center of one of the
objects that the center of the other particle cannot occupy. For two long
rods the excluded volume a function of the angle between their orientations
(γ(ω̂, ω̂′)):

E
(
ω̂, ω̂′) = 2L2D sin γ

(
ω̂, ω̂′)

The free energy in terms of the density ρ contains an ideal contribution and
one due to excluded volume:

βF [ρ] =

∫
drdω̂ρ (r, ω̂) {log (Vρ (r, ω̂))− 1}+

1

2

∫
drdω̂

∫
dr′dω̂′ρ (r, ω̂) ρ

(
r′, ω̂′)E (

ω̂, ω̂′)
The ideal part is minimized by an isotropic distribution of the particles
whereas the excluded volume contribution is lowest when particles are
aligned. For low a density the first term will be dominant but as the
density increases the second one will play the main role. In confinement,
in addition to the two bulk terms, we add the contribution of the quasi
2D geometry and the confinement effect of the lateral walls. The solutions
minimizing this modified free energy functional are presented in the second
part of Chapter 2.

Another approach to look at the organization of confined liquid crystals
is constructing a continuum mean-field model (Landau-de Gennes [55]). In
Chapter 4, we design such a microscopic theory which has the same degrees
of freedom as the macroscopic tensor order parameter. This order param-
eter contains information about both the average direction of alignment
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of the particles as well as about how strongly ordered the system is. The
confinement is introduced by including an wall anchoring term in the free
energy functional.

Approximating cytoskeletal polymers with rigid rods holds in the limit
in which the polymers are short compared to their persistence length as
it is the case for example in lamelipodia. When cytoskeletal filaments ex-
tend from one end of the cell to the other they often bend under the force
exerted by the membrane, their behavior is closer to an elastic rod. How-
ever, microtubules also exert forces on the membrane, deforming it. If the
membrane is stiff enough these deformations are small, the membrane be-
ing ellipsoidal instead of spherical. In Chapter 5 we study the mechanical
interplay between membrane deformation and the bending of the enclosed
microtubules. The equilibrium configuration of this system is reached when
the bending energy of both the microtubules and the membrane is mini-
mized. We can tackle this problem in two steps: first we find the minimum
energy configuration of the polymers as a function of the surface deforma-
tion and then, using the bending energy obtained in the first step and the
membrane bending energy, we can find the minimum of the system. For
the first step we use a Monte Carlo approach growing bond by bond of one
semi-flexible polymer enclosed in a rigid shell. This technique allows us to
generate an ensemble of polymers from which bending energy as a function
of the shape of the enclosing surface can be extracted. This can then be
used in a later stage together with the bending energy of the surface which
is computed analytically.

Another situation in which the membrane is involved in organizing the
cytoskeleton is the positioning of microtubules asters. As they grow, the mi-
crotubules which are growing from the centrosome push against the mem-
brane before they start to buckle. Microtubules can also slide along the
membrane and, if cortical motors are bound to the membrane they attach
to the microtubules resulting in pulling forces. The combination of these
three mechanisms center the aster [68]. Since, in cell division, a spindle that
consists of two microtubule asters plays the main role, the exact positioning
of two asters is crucial. We expect that two asters enclosed by a membrane,
would both center, if there would be no interaction between them. How-
ever, during division, asters position themselves at opposite poles of the
cell. This implies that there is also repulsion between them. To prove the
hypothesis that this repulsion is due to steric effects, in Chapter 6, we look
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1.4. Models for the cytoskeleton: from liquid crystals to polymers

at the excluded volume of two aster. Unfortunately it is not possible to
compute analytically the excluded volume of two asters but, using again a
Monte Carlo technique and assuming hard body interaction, we can com-
pute the insertion probability as a function of the separation between the
asters. The insertion probability can be directly related to the repulsion
force. In steady state, the position of the aster is given by the balance
between centering and repulsion.
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2
Filaments in square confinement

In cells actin filaments are subject to confinement and, in regions such
as lamellipodia, the confinement becomes extreme, densely packed fil-
aments being squeezed in an almost 2 dimensional volume. The pat-
terns emerging are the result of a competition between mutual align-
ment of the filaments and alignment to the confining walls. Since the
size of the lamellipodia is several times smaller than the persistence
length of actin filaments, they can to a certain approximation, be
modeled as rigid rods. Thus, using Monte Carlo simulations we study
rod-like lyotropic liquid crystals confined to a square slab-like geome-
try with lateral dimensions comparable to the length of the particles.
We observe that this system develops linear defect structures upon
entering the planar nematic phase. These defect structures flank a
lens-shaped nematic region oriented along a diagonal of the square
box. We interpret these structures as a compromise between the 2-
fold order of the bulk nematic phase and the 4-fold order imposed by
the lateral boundaries. A simple Onsager-type theory that effectively
implements these competing tendencies is used to model the phase
behavior in the center of the box, and shows that the free-energy
cost of forming the defect structures strongly offsets the transition-
inducing effects of both the transverse and lateral confinement.
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Chapter 2. Filaments in square confinement

2.1 Introduction

Cells are rather crowded environments and both actin filaments and mi-
crotubules are forced to organize in the available space, competing with
the other cellular components [69]. Therefore confinement is one of the
key players in cytoskeleton organization. In lamelipodia, actin filaments
are enclosed in a sheet-like protrusion of the cellular membrane [30, 31].
Inside this almost 2D region the density of the filaments is high enough so
the self-alignment influences the organization. The length of the filaments
is comparable to the size of the lamellipodia confinement [29] and smaller
than the persistence length. In this regime, actin filaments behave like a
liquid crystal composed of rod-like particles.

Confinement in not only relevant for biological polymers with liquid
crystalline behavior but also for other organic and inorganic mesogens.
Most applications of liquid crystals require these materials to be con-
fined to cells with boundaries specifically treated to orientationally “an-
chor” the mesogenic molecules, allowing the optical properties of the cell
to be controlled [70]. In spite of the fact that the typical dimensions of
these cells is continuously shrinking (current state-of-the-art displays em-
ploy ∼ 70µm pixels), commercially employed thermotropic mesogens typ-
ically have lengths ≤ 2nm, so that a continuum description, in which the
finite size of the particles is ignored, suffices to predict the relevant orienta-
tional patterns [71, 72]. Nature, however, provides us with lyotropic meso-
gens such as the cytoskeletal filaments F-actin and microtubules, which are
generically confined to cellular (sub)volumes with dimensions comparable
to that of the particles themselves [69, Chap. 16]. This opens up the pos-
sibility to address the fundamental question of liquid-crystalline behaviour
in the regime where particle size is important: What is the interplay be-
tween boundary effects and mutual interactions when these share the same
length scale? Recent experiments on F-actin in photolithographically cre-
ated micrometer-sized slablike geometries show that intriguing ordering
patterns can be observed, even at densities far below that of the bulk tran-
sition, that clearly reveal the tug-of-war between alignment with the lateral
boundaries and mutual alignment [42]. Both these tendencies derive from
the same source: the gain in translational entropy associated with reduction
of excluded volume, either with the wall or between the particles, will, with
increasing density, outweigh the decrease in orientational entropy due to or-
dering. However, F-actin has two main drawbacks: the in-situ polymerized
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filaments, are likely to be widely polydisperse, and its persistence length
of ∼ 16µm is itself of the order of both the filament length as well as the
confinement dimensions, making it likely that enthalpic effects associated
with bending also come into play.

Here, we therefore turn to computer simulations to address this question
in a systematic manner in the simplest setting, focussing on the same finite
planar geometry of the experiments described in [42]. We thus consider a
system of length-monodisperse perfectly rigid hard rods in a cuboidal cell
with a height significantly smaller than the length of the particles, and a
square lateral cross-section, with side length comparable to the length of
the particles. We find that in this geometry the system undergoes a tran-
sition at a density ∼ 25% below that of the the 3D bulk isotropic-nematic
transition. The ordered phase is characterized by a lens-shaped nematic
region oriented along one of the diagonals with +1/4 disclination lines in
the corners, and, strikingly, flanked by two disclination walls emerging from
the two corners of the other diagonal. This latter phenomenon is a clear
signal of the non-trivial impact of finite particle-size.

Although earlier simulation studies have been reported for hard rods
in a slab-like geometry [64, 73], these studies employed periodic boundary
conditions in the lateral direction, and hence lack the requisite wall-bulk
competition effect. Intriguingly, the experiments on vibro-fluidized assem-
blies of metal rods in planar geometries [74] do consider the same geometry
and with hindsight [74, Fig. 4a] also suggests the presence of the linear
defect structures. However, these authors argued that the patterns they
observed are consistent with continuum elasticity theory in the same ge-
ometry, where no defects other than the +1/4 point singularities in the
corners of the diagonal ordering axis have been reported. Moreover, as a
rigorous link between vibrated granular media to the statistical physics of
thermally excited systems is lacking, we are at present unable to gauge
how far these two systems are truly analogous. A very recent theoretical
study by Chen [75], which considers the solution of the 2D Onsager theory
for infinitely thin needles confined to a square, does not seem to reproduce
the linear defect structures, but rather suggests that the particles are at
least partially aligned to the cross-diagonal as well, for which we find no
evidence.
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Chapter 2. Filaments in square confinement

2.2 Hard-particle simulations

2.2.1 Simulation method

To determine the organization of rigid rods confined into a quasi two-
dimensional square container we use a hard-particle Monte Carlo technique.
The rigid rods are geometrically described by spherocylindrical particles of
diameter D and cylinder length L (see figure 2.1(a)). A convenient way to
characterize the particles is using their aspect ratio L/D. The aspect ratios
covered in the simulations was 10 - 38. For comparison, the typical aspect
ratio of an actin filament is of the order of 100. We adopt the diameter
of the particles as unit of length, all distances being expressed in terms
of this unit length. The position of the center of mass for each particle
is given by the vector ri. The unit vector ui describes the orientation of
the particle. Because of the geometry of the particles the system has the
symmetry ui ←→ −ui. The confining container is a cuboidal volume with
rigid walls (see figure 2.1(b)). The length of the square base of the cuboidal
simulation volume was fixed to W = 73 units, and the height H to either
3 or 6 units. We also consider the equivalent planar geometry by setting
H = 1. In both cases for which H ̸= 1, the length of the particles is higher
than the height, precluding rotations out of plane, thus defining a quasi-2D
geometry. We take the z-axis of our reference frame along the height, and
align the remaining two axes with the side walls.

W
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y

D

L

ui

z

x

y

ri

(a) (b)

Figure 2.1: Geometrical parameters: (a) sketch of one particle showing
the quantities used to describe its geometrical characteristics; (b) sketch of
the simulation system.

The interactions between the particles are steric, being described by the
potential:
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2.2. Hard-particle simulations

Uij =

{
∞ if particles i and j overlap
0 otherwise

, (2.1)

which is fully specified by the purely geometrical condition of no overlap.
Spherocylinders are have the property that all points of there surface are
located at a distanceD/2 from the symmetry axis of the cylinder. Therefore
determining the overlap of two such objects amounts to determining the
minimum distance between the two line segments that are the center lines.
If the two this distance is lower than D the spherocylinders overlap. A
complete algorithm can be found in [67]. The particle-wall is also steric.
Determining the overlap between a particle and the walls of the box is much
easier than determining the particle-particle overlap. Since spherocylinders
are linear objects it is enough to check that both ends of the center line of
the cylinder are located inside the container at a distance larger than the
radius from the wall.

The simulation method is a standard Metropolis Monte Carlo scheme
[66]. At each step particles are allowed to translate and to rotate. For
convenience, the particles are initially arranged in a regular pattern. We
checked that the initial configuration has no effect on the final pattern,
the result being the same as for a random starting configuration. The
most computationally demanding step in our algorithm is the inter-particle
overlap check. In order to speed up the simulation we use a Verlet list
scheme [76]. This allows us to decrease the number of overlap checks per
step, since only particles located in the vicinity of the particle that we
attempt to move are considered, and not all the particles in the container.
After the equilibration of the system (less than 10% of the total simulation
time), we sample configurations that are independent. The distance, in
Monte Carlo “time”, between two independent configurations is chosen to
be the mean diffusion time of particles over half the container size. We
typically use 1000 configurations per simulation from which we extract the
parameters of interest, averaging over these parameters to obtain the final
results.
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2.2.2 Tensor order parameter

Apart from the standard second rank tensor order parameter Q [77]

Q =
1

N

⟨∑
i

(
3

2
ûi ⊗ ûi −

1

2
13

)⟩
, (2.2)

which provides a global measure of the order in our system and is used to
monitor the equilibration of the system, we also employ a spatially resolved
version, providing local information on the orientational order, defined as

Qk =
1∑
i

lki

⟨∑
i

lki

(
3

2
ûi ⊗ ûi −

1

2
13

)⟩
, (2.3)

where k labels a specific subvolume, i enumerates the particles in the sys-
tem, each with its orientation specified by the unit vector ûi, l

k
i is the

length of particle i inside the subvolume k, 13 is the 3D unit tensor, and
the angular brackets denote equilibrium averaging. In practice, we found
that height-spanning rectangular subvolumes of footprint 3.5 × 3.5 units,
were an optimal compromise between resolution and computational effort.
The use of the length lki measured along the cylindrical part of the parti-
cles, instead of the more formally correct weighting by the volume fraction
that particle i occupies in subvolume k, is a computationally convenient ap-
proximation, whose error is expected to be small for the highly elongated
particles we consider. A frame-independent measure of the local degree
of alignment is obtained by considering the largest positive eigenvalue λk+
of Qk, which ranges from 0 for a 3D fully disordered isotropic system, to
1 for a fully aligned system. The corresponding eigenvector n̂k

+ of Qk,
commonly called the director and defined up to its sign, points along the
average direction of the preferred alignment.

2.2.3 Results

Changing the volume fraction of the particles — η = ρVpart, with ρ the
number density and Vpart = 1/4πD2L+ 1/6πD2 — we generically observe
three types of orientational patterns within the simulation volume. All of
them are in-plane structures, characterized by a smallest eigenvalue of Q
of λ− ≃ −1/2. For small volume fractions, we observe local alignment of
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2.2. Hard-particle simulations

the rods along the four side walls (fig 2.2 (a), (d), and (g)). Moving to
the middle of the volume the degree of order rapidly falls off, with the
center essentially fully isotropic in-plane corresponding to λ+ ≃ 1/4. In
this regime, the wall induced ordering appears dominant.

Figure 2.2: Distinct states of the system: isotropic with wall alignment
(a,d,g), lens-shaped nematic (b,e,h), and smectic(c,f,i). (a-c) Snapshots of
typical configurations (top view). Color code corresponds to the minimum
angle between the long axis of the rod and the x axis (scale bar on the right
hand side). (d-e) Local orientation of the particles; Color code corresponds
to the minimum angle between the local director n̂k

+ and the x axis (scale
bar on the right hand side).(g-i) Local degree of order of the system λk+.
All results presented in this figure are obtained for H = 3 and L/D = 20.
Volume fractions are η = 0.075 for (a), (d), and (e), η = 0.175 for (b), (e),
and (h), and η = 0.3 for (c), (f), and (i).
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At higher volume fractions, the system becomes smectic (see fig 2.2 (c),
(f), and (i)), with the number of smectic layers dependent on the aspect
ratio of the particles. For the particle lengths considered we observed from
2 up to 4 smectic layers (see fig 2.3). The distance separating the layers also
depends on the ratio between the particle length and the box size. Here the
excluded-volume driven mutual alignment mechanism is able to overcome
the barrier caused by disaligning the particles at the two side walls along
the smectic director.

Figure 2.3: Number of smectic layers confined in a box with H = 3 and
W = 73 for different particle length: (a) 4 layers for L/D = 15 at η = 0.35,
(b) 3 layers for L/D = 20 at η = 0.3 and (c) 2 layers for L/D = 25 at
η = 0.24.

At intermediate values of the volume fraction, the competition between
the globally incompatible 4-fold ordering induced by the side walls and
2-fold nematic order due to mutual alignment leads to a compromise struc-
ture. We observe a lens-shaped nematic domain along one of the diagonals
(see fig 2.2 (b)). This domain is flanked by two wall defect structures
emanating from the corners of the other diagonal. As we approach these
corners, the degree of order drastically decreases (see fig 2.2 (h)). Crossing
the defect wall, the preferred direction of the particles makes a finite jump
(see fig 2.2 (e)). The results in figure 2.2 (d-i) are obtained by averaging
over the local orientation of the particles and the local degree of order of
independent configurations from the same simulations. We observed that
these patterns are very stable and with statistical errors typically two orders
of magnitude smaller than the quantity being measured in each subvolume,
except for the subvolumes that contain the disclinations, where the fluctu-
ations are much more prominent.
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2.2.4 Disclination walls

A disclination (as defined by de Gennes and Prost [55], pg 166) is a discon-
tinuity in the orientation of the nematic director filed. The discontinuity
can be located at a single point (point disclination), on a line (line disclina-
tion), or a surface (sheet or wall disclination). For a point disclination, the
topological charge is given by the angular variation (divided by 2π) of the
nematic director along a closed curve around this point. A line disclination
can be constructed out of a line of point disclinations, and by extension this
has the same strength as the points. The same definition can be extended to
walls, in case the angular variation is limited in one direction. The pattern
characterized by the lens-shaped nematic stabilized by defect structures is
an in-plane phase which is indicated by λ− ≃ −0.5. The three dimensional
arrangement of the particles is essentially the repetition of this planar pat-
tern on the z-axis, the planar line defects creating a wall. We therefore look
at the variation of the nematic director in neighboring subvolumes on our
square mesh. To properly characterize these disclination walls, we define
an angular deficit parameter δ on the lattice dual to our square mesh of
subvolumes. If n̂1, n̂2, n̂3 and n̂4 are the four directors of the subvolumes
that surround a point on the dual lattice in a fixed either clockwise- or
anticlockwise order (see figure 2.4 (b)), then the angular deficit is defined
as

δ = min∠
(
n̂1, n̂2

)
+min∠

(
n̂3, n̂4

)
, (2.4)

where the angle chosen is the minimal one obtained when the otherwise
arbitrary signs of the director are varied. For a homogeneous nematic
state this parameter vanishes. For the case of a gradual distortion, say a
bend deformation, the parameter should vary smoothly. At any kind of
singularity, however, the parameter provides a localized signal. As figure
2.4 (b) shows, the parameter is high along the disclination walls, with
a maximum in the corners, corresponding to the almost π/2 difference in
angle caused by the wall induced ordering. As one moves along the diagonal,
the particles on either side gradually splay away from the alignment at the
wall, causing δ to decrease to a minimum, when the edge of the lens-shaped
nematic domain is reached. Note that δ also picks up a signal at the +1/4
strength disclinations in the corners of the nematic domain, but this effect
does not penetrate very far into the bulk.
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Figure 2.4: (a) Representation of the quantities used to compute the angular
deficit parameter. The color of the square subvolumes codes the angle of the
directors (shown as back lines) with the Ox-axis, according to the scale bar
on the right. The dots represent points on the dual lattice, the red dot
corresponding to the labeled directors. (b) Disclination parameter δ scaled
by its maximum value π (color code given by the scale bar on the right).
System parameters: H = 3, L/D = 20 and volume fraction η = 0.175.

2.2.5 Isotropic-nematic transition

The tensor order parameter defined in equation (2.2) characterizes the sys-
tem as a whole, its highest eigenvalues giving the overall degree of order
and the corresponding eigenvector (n̂) showing the average orientation di-
rection. In the confined isotropic phase we see that n̂ covers all angles in
the plane from −π/2 to π/2, being homogeneously distributed (see figure
2.5, left panels). The same behavior characterizes the bulk system, the
confinement effect being unnoticeable in this parameter. This behavior is
due to the the 4-fold symmetry of the system, the particles aligning to one
wall being ”canceled out” by the one aligned to the perpendicular wall. As
the density increases the system spends more time in a given configuration,
the switching between configurations occurring less often (see figure 2.5,
central panels). When the lens-shaped nematic is formed the the average
orienetaion of the systems foms an angle of −π/4 or π/4 with the x-axis,
depending on which diagonal the system chooses (see figure 2.5, right pan-
els).
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2.2. Hard-particle simulations

Figure 2.5: Average direction of alignment during the course of a simulation
(upper panels) and histogram of angles between the orientation and the x-
axis (lower panels) for different densities. All data in this figure is obtained
for L/D = 20, H = 3 and, W = 73).

To gain more insight on the nature of the transition from the isotropic
to the nematic state it is useful to look at the local degree of alignment
(λk+). In the confined isotropic organization only the middle of the slab
is actually in an almost planar isotropic phase, as next to the wall the
particles are always aligned (see figure 2.6 (a)-(c)). As the density increases
the degree of order both in the middle of the container and along the wall
increases. However the wall alignment increases faster with density than
the alignment in the middle. Both diagonals are symmetric, the degree of
order being low along them. When the lens shape nematic is formed along
one of the diagonals, the symmetry is broken, one of the diagonals being
highly ordered (see figure 2.6 (e),(f)).

To quantify the density dependence of development of order in our sys-
tem, we study the value of the order parameter λmid

+ of the subvolume
exactly in the middle of the slab, i.e. the point farthest removed from the
strong boundary-induced ordering at the side walls, which is high irrespec-
tive of the density. We tracked λmid

+ for particles of aspect ratio L/D = 15,
20 and 25, for a range of volume fractions, spanning the isotropic, nematic
and smectic regimes. In order to optimally isolate the influence of con-
finement and remove the known dependence of the mutual interactions on
particle length, we scale all volume fractions by the value of the packing
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Chapter 2. Filaments in square confinement

Figure 2.6: Local degree of alignment (λk+) for densities (η) increasing
from (a) to (e). (a), (b) and, (c) correspond to phases characterized by
an isotropic organization in the middle of the slab and wall alignment; (d)
and (e) show lens-shaped nematic along one of the diagonals and defect
walls along the other diagonal (L/D = 20, H = 3 and, W = 73).

fraction at the bulk isotropic-nematic, which we obtain from the simula-
tions of Bolhuis and Frenkel [78], which defines the reduced volume fraction
η̄ = η/ηc (3D). Under this scaling the three curves indeed collapse reason-
ably well onto a single master curve (see figure 2.7).

At low volume fractions we expect the system to have an isotropic
in-plane distribution, corresponding to λmid

+ ≃ 1/4. The fact that the sim-
ulation data only reproduce this expected value at slightly higher volume
fractions is due to the unavoidable undersampling of contributing configu-
rations at low volume fractions. At a reduced volume fraction η̄c ≃ 0.75 we
observe a strong first-order jump to a value λmid

+ ≃ 0.8. Beyond this point,
λmid
+ increases, gradually saturating towards its maximal value λmid

+ . 1,
with only a small dip observed at reduced volume fraction η̄s ≃ 1.5, which
marks the transition to the smectic state, in which the particles have to
rotate from the box diagonal to either of the two shorter symmetry axes.

32



2.2. Hard-particle simulations

æ

æ
æ

ææ
æ

æ

æ

æ

æ

æ
æ
æ
ææ
ææ
æææ

æ æ
æ

æ æ

à

à

à

à
à

à

àà

à
à

à

à
à
ààà

à àà
à ààà à

à à
à à à

ò

ò

ò

ò

ò
ò
ò
ò
ò ò

ò ò ò

ò ò
ò ò ò

0.5 1.0 1.5 2.0
Η
—

0.0

0.2

0.4

0.6

0.8

1.0
Λ+
mid

Isotropic Nematic Smectic

Figure 2.7: Local degree of order λmid
+ in the middle of the slab as a function

of the density scaled by the bulk isotropic-to-nematic transition density.
Simulation results at H = 3 for L/D = 15 (green circles), L/D = 20
(purple squares) and L/D = 25 (red triangles). The green, purple and
red dashed vertical lines located between η̄ = 1.5 and 1.7 correspond to the
nematic to smectic transition observed in the simulation in confinement for
rods with L/D = 15, 20 and 25 respectively (from left to right). The black
dashed line at η̄ = 1.0 marks the bulk isotropic-nematic transition.

2.2.6 Results for 2D system (H = 1)

In order to check whether the effects reported above survive in the limit
of a true 2D system, we also performed simulations by setting H = 1. In
this system in which the particles are fully confined to the plane we again
observe the same three distinct states: an isotropic phase with wall align-
ment in the vicinity of the boundary, a lens-shaped nematic and a layers
arrangement. The density dependence of these states and the behavior of
the order in the middle of the slab is very similar to the quasi-2D case
(see figure 2.2.6 (a)). Most importantly, the lens-shaped nematic is again
is stabilized by linear defects, which in this geometry are now pure line
defects.
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Figure 2.8: Results for 2D system (box-height H = 1 and L/D = 20):

(a) λmid
+ versus 2D packing fraction η ≡ ND(πD/4 + L)

W 2
(where N is the

number of particles), showing the location of the I-N transition (left-hand
dotted vertical line) and the 2D smectic transition (right-hand dotted ver-
tical line). (b) snapshot at η = 0.41 (c) local order parameter (d) defect
parameter (e) orientation pattern.

2.3 Onsager-type microscopic toy model

A notable result of our simulations is that the isotropic-nematic ordering
transition takes place at a value of the density relatively close to that of
the homogeneous bulk. The results of Cosentino et al. [73] suggest that the
transverse slab-like confinement strongly induces the in-plane ordering tran-
sition, which in their case happens at a reduced volume fraction η̄c ≃ 0.25,
this value being fairly insensitive to the height of the slab, only increas-
ing slightly when true 2D confinement is approached, where the nature of
the transition changes to one driven by the condensation of bulk topolog-
ical defects. Moreover, one also expects that by itself the pre-alignment
effect caused by the interactions with the side walls would also facilitate
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2.3. Onsager-type microscopic toy model

the transition. Our results, however, indicate that, in the strong lateral
confinement limit, nematic in-plane order is inevitably accompanied by the
appearance of extended defect structures. These defects obviously carry a
free-energy penalty, which potentially offsets the order-promoting effect of
the transverse and lateral confinement.

To illustrate the effect of these competing mechanism, we designed an
Onsager-type [60] microscopic toy model that implement all the relevant
effects, albeit in an effective manner. We thus consider a monodisperse
system of highly elongated hard rods of length L≫ D. In addition to the
ideal term, the free energy should include four other contributions. The
first contribution comes from the excluded volume effect, the packing of
rods being more efficient, at high densities, as the rods align to each other.
The mutual excluded volume at fixed relative orientations in this limit given
by E (ω̂, ω̂′) = 2L2D sin γ (ω̂, ω̂′), where γ (ω̂, ω̂′) is the angle between two
rods with orientations ω̂ and ω̂′. The second contribution is due to the
confinement of the particles in a quasi- 2D geometry: the particles have a
limited out-of plane rotation set by the depth of the confining container.
To mimic the confinement due to the finite height of the system, we impose
a potential βW∥ (ω̂) = ξ∥P2 (ẑ · ω̂) , with P2 the second-rank Legendre poly-
nomial, and the prefactor is chosen to be ξ∥ =

(
L2/H2

)
, which matches

the width of the Boltzmann weight of this potential to the maximal out-
of-plane angle the rods can adopt, and any other non-dimensional factors
are absorbed into the inverse temperature scale β. The third contribution
comes from the confinement imposed by the lateral walls, which forces the
particles aligning to each of them. By symmetry, the effect of the side walls
should be 4-fold symmetric in terms of the in-plane azimuthal angle φ. We
implement this by adding the potential βW⊥ (ω̂) = −ξ⊥R4

4 (ω̂) ∝ cos (4φ),
where Rm

l (ω̂) is a real spherical harmonic (see Appendix 2.5.1 for details)
and ξ⊥ is a free parameter. Finally, the forth contribution we include is a
penalty associated with the defect structures, which we take to be propor-
tional to the magnitude of in-plane order measured by the standard biaxial

order parameter T =

√⟨
R2

2

⟩2
+

⟨
R−2

2

⟩2
, and whose strength is set by the

free parameter ξd. This leads to the following free energy functional in
terms of a normalized orientational distribution function ψ (ω̂):
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βF [ψ]

N
≡ Φ [ψ] =

∫
dω̂ψ (ω̂) {logψ (ω̂)− 1}+

ρL2D

∫
dω̂

∫
dω̂′ψ (ω̂)ψ

(
ω̂′) sin γ (ω̂, ω̂′)+

ξ∥

∫
dω̂ψ (ω̂)R0

2 (ω̂)− ξ⊥
∫
dω̂ψ (ω̂)R4

4 (ω̂)+

+ ξd

{(∫
dω̂ψ (ω̂)R2

2 (ω̂)

)2

+

(∫
dω̂ψ (ω̂)R−2

2 (ω̂)

)2
} 1

2

,

where ρ is the number density.

To obtain the orientational distribution function (further abbreviated
as ODF) that minimizes the above free energy, we consider the stationarity
equation

δ

δψ (ω̂)
Φ [ψ] = βµ, (2.5)

where the chemical potential µ serves as a Lagrange multiplier enforcing
the normalization of the ODF. Explicitly the stationarity equation becomes

logψ (ω̂) + η

∫
dω̂′ sin γ

(
ω̂, ω̂′)ψ (

ω̂′)+ ξ∥R
0
2 (ω̂)

− ξ⊥R4
4 (ω̂) + ξd


⟨
R2

2

⟩√⟨
R2

2

⟩2
+

⟨
R−2

2

⟩2R2
2 (ω̂)

+

⟨
R−2

2

⟩√⟨
R2

2

⟩2
+

⟨
R−2

2

⟩2R−2
2 (ω̂)

 = βµ. (2.6)

We now note that the excluded volume interaction term is symmetric under
the inversion of the direction of the particles, as well as all the additional
terms, so in the expansion of the ODF

ψ (ω̂) =

∞∑
l=0

l∑
m=−l

ψlmR
m
l (ω̂) (2.7)
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we can ignore terms with l odd. Moreover, because of its global rotational
invariance the excluded volume term is agnostic about the value of m,
and the additional terms only couple to even values of m so without loss of
generality we can also restrict ourselves to m even. For numerical purposes,
rather than working with the expansion Eq. (2.7), it is more convenient to
work with a cumulant representation

ψ (ω̂) = exp

 l∗∑′

l=0

l∑′

m=−l

clmR
m
l (ω̂)

 =

1

Z [clm]
exp

 l∗∑′

l=2

l∑′

m=−l

clmR
m
l (ω̂)

 , (2.8)

where l∗ is a cut-off and the primes denote restriction to even values in the
summations and the normalization is simply

Z [clm] =

∫
dω̂ exp

 l∗∑′

l=2

l∑′

m=−l

clmR
m
l (ω̂)

 . (2.9)

Note that this representation guarantees positivity of the ODF, and requires
far fewer terms to describe strongly peaked distributions. Inserting into the
stationarity equation Eq. (2.6) and projecting out the coefficient using the
orthogonality relations Eq. (2.19), we find

4π

2l + 1
clm + η

∫
dω̂Rm

l (ω̂)

∫
dω̂′ sin γ

(
ω̂, ω̂′)ψ (

ω̂′)+
4π

2l + 1
ξ∥δl,2δm,0 +

4π

2l + 1
ξ⊥δl,4δm,4+

4π

2l + 1
ξdδl,2δm,2

⟨
R2

2

⟩√⟨
R2

2

⟩2
+

⟨
R−2

2

⟩2+
4π

2l + 1
ξdδl,2δm,−2

⟨
R−2

2

⟩√⟨
R2

2

⟩2
+

⟨
R−2

2

⟩2 = 0. (2.10)

We can expand

sin γ
(
ω̂, ω̂′) = ∞∑′

l=0

slR
0
l

(
ω̂, ω̂′) , (2.11)
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where following Kayser and Raveche [79] ( see also [80], entry 7.132)

4π

(4n+ 1)
s2n =

∫
dω̂ sin γ

(
ω̂, ω̂′)P2n

(
ω̂ · ω̂′)

= 2π

∫ 1

−1
dx

√
1− x2P2n (x)

= −2ππ
4
41−2n 1

n

(
2n− 2
n− 1

)
1

n+ 1

(
2n
n

)
, (2.12)

so that

s2n = −2π 4n+ 1

n (n+ 1)
4−(2n+1)

(
2n− 2
n− 1

)(
2n
n

)
. (2.13)

We now note that (see Eq. (2.20))∫
dω̂Rm

l (ω̂)R0
l′
(
ω̂, ω̂′) = 4π

2l + 1
δl,l′R

m
l

(
ω̂′) , (2.14)

so that for l even∫
dω̂Rm

l (ω̂)

∫
dω̂′ sin γ

(
ω̂, ω̂′)ψ (

ω̂′) =∑
l′ even

sl

∫
dω̂′

∫
dω̂Rm

l (ω̂)R0
l′
(
ω̂, ω̂′)ψ (

ω̂′) =
4π

2l + 1
sl

∫
dω̂′Rm

l

(
ω̂′)ψ (

ω̂′) ≡ 4π

2l + 1
sl ⟨Rm

l ⟩ (2.15)

so that for l ≥ 2

clm + ηsl ⟨Rm
l ⟩+ ξ∥δl,2δm,0 − ξ⊥δl,4δm,4

+ ξd

δl,2δm,2

⟨
R2

2

⟩√⟨
R2

2

⟩2
+
⟨
R−2

2

⟩2 + δl,2δm,−2

⟨
R−2

2

⟩√⟨
R2

2

⟩2
+

⟨
R−2

2

⟩2
 = 0.

(2.16)

We can determine fairly accurate solutions to this functional equation
by making a cumulant expansion of ψ (ω̂) in terms of real spherical har-
monics up to rank l = 4. The resulting set of coupled equations for the
expansion parameters is then solved by a relaxation procedure (for details
please consult the appendix 2.5.1). In figure 2.9 we demonstrate that the
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2.3. Onsager-type microscopic toy model

simulation results are readily fitted using a Least Mean Square fit by the
parameters ξ⊥ = 0.07 for L/D = 15, 25 and ξ⊥ = 0.08 for L/D = 20, and
ξd = 0.01. We also note that the term representing the transverse confine-
ment, either by itself, or in conjunction with the one describing the coupling
to the lateral walls, lowers the transition density to . 50% of the bulk value.
The system, however, is very sensitive to the defect term, which, although
small in amplitude, raises the transition density to the observed value.

Figure 2.9: Local degree of order λmid
+ in the middle of the slab as a function

of the density scaled by the bulk isotropic-to-nematic transition density.
Simulation results at H = 3 for L/D = 15 (green circles) (a), L/D = 20
(purple squares) (b) and, L/D = 25 (red triangles) (c) and model fit curve
in the same color as simulation data. The black dotted line at η̄ = 1.0 marks
the bulk isotropic-nematic transition. The gray vertical lines correspond,
from left to right, to the location of the transitions in the model for ξd = 0,
ξd = ξ⊥ = 0, and the bulk isotropic-nematic transition.
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2.4 Conclusion

Our results complement a number of studies that have appeared of hard
rods confined to 2D circular disks — simulations with homeotropic bound-
ary conditions [81], density functional theory [82] and very recently simu-
lations with both homeotropic and planar boundary conditions [83] — or a
3D spherical volume [84] with planar degenerate boundary conditions. We
note that in all these cases one expects to find stable configurations either
a single (homeotropic b.c.) or a polarly opposite pair of disclination points
(planar b.c). These defects structures, however, are purely topological in
origin, and well-described by continuum theory in limit of strong anchoring
and weak elastic effects (see e.g. [85]), and hence are not dependent on the
finite size of the particles. The same holds for more complex situations,
such as rods on the surface of a sphere [81, 86] and liquid crystals between
concentric spherical shells [87, 88].

This highlights the non-trivial nature of the stable linear defect struc-
tures we have observed. Experimental validation of these results clearly
raises the challenge of producing sufficiently rigid monodisperse colloidal
rods of the right dimensions and the ability to resolve orientational pat-
terns at submicron resolutions. Also, from a theory perspective the proper
approach is, as yet, probably lacking, as the results of [75] suggest that
we are dealing with a phenomenon that requires a beyond-second-virial-
coefficient-level density functional theory. Finally, it is interesting to see
what the implications of these findings are for other confinement geome-
tries.

2.5 Appendix:

2.5.1 Modified real spherical harmonics

To obtain a suitable basis set for expanding real orientational distributions
in our mean field model, we start from the definition of the complex spher-
ical harmonics using the Condon-Shortley normalization [89]

Cm
l (ω̂) =

√
4π

2l + 1
Y m
l (ω̂) . (2.17)

Real versions of these functions are then defined through
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Rm
l (ω̂) =


C0
l (ω̂) m = 0

1
2

√
2 {Cm

l (ω̂) + Cm
l (ω̂)∗} m > 0

1
2i

√
2
{
C

|m|
l (ω̂)− C |m|

l (ω̂)∗
}

m < 0

(2.18)

The orthogonality relations for these functions are simply∫
dω̂Rm

l (ω̂)Rm′
l′ (ω̂) =

4π

2l + 1
δl,l′δm,m′ . (2.19)

and the harmonic addition theorem becomes

R0
l

(
ω̂ · ω̂′) = l∑

m=−l

Rm
l (ω̂)Rm

l

(
ω̂′) (2.20)

Parametrizing the unit sphere with the standard spherical angles, ω̂ =
(sin θ cosφ, sin θ sinφ, cos θ), we list these functions for l,m even, up to
l = 4

R0
0 (ω̂) = 1 (2.21)

R−2
2 (ω̂) =

1

2

√
3 sin2 θ sin 2φ (2.22)

R0
2 (ω̂) =

1

2

(
3 cos2 θ − 1

)
(2.23)

R2
2 (ω̂) =

1

2

√
3 sin2 θ cos 2φ (2.24)

R−4
4 (ω̂) =

1

8

√
35 sin4 θ sin 4φ (2.25)

R−2
4 (ω̂) = −1

4

√
5(7 cos4 θ − 8 cos2 θ + 1) sin 2φ (2.26)

R0
4 (ω̂) =

1

8
(35 cos4 θ − 30 cos2 θ + 3) (2.27)

R2
4 (ω̂) = −

1

4

√
5(7 cos4 θ − 8 cos2 θ + 1) cos 2φ (2.28)

R4
4 (ω̂) =

1

8

√
35 sin4 θ cos 4φ (2.29)

The standard second rank order parameter tensor Q can then be ex-
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pressed in terms of the functions as

Q =
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We first try to find the fm
′

j′ considering that the expansion goes only
up to order 4 (j′ ≤ 4).

For j′ = 0 and m′ = 0 we have

f00 − 2
√
πlog(Z) + 2nλ2

∫
dω̂′ e

∞∑
j=0

m=j∑
m=−j

fjmYjm(ω̂′)

Z
c0
√
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βµ

N
2
√
π,

which, upon using the normalization condition, reduces to:

f00 − log(Z) + 2nλ2c0 =
βµ

N

for j′ = 2:
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∫
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∞∑
j=0

m=j∑
m=−j

fjmYjm(ω̂′)

Z
c4
4π

9
Y4m′(ω̂′)− α2λ2

2
δm′4

√
7π

5
= 0.

42



3
Circular confinement

We study the effect of closed curved walls on the organization
of rigid rods by enclosing them in a cylindrical container with
height much smaller than the length of the particles. Particles
adopt a planar bipolar organization with the location of the pair
of antipodal disclination points varying with density and aspect
ratio of the particles. Upon changing the topology of the container
by introducing a hole in the middle, the system switches from a
bipolar structure to one stabilized by domain walls, the number of
domains depending on the diameter of inner hole. Our results are
in good agreement with experimental data of fd-viruses confined
to micron-sized chambers.
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3.1 Introduction

The typical shape of a cell is often rounded, creating a confining volume
with non-planar walls [69]. The cytoskeletal filaments that are in the vicin-
ity of the wall are forced to organize following its curvature. In the limit
that the filaments are short compared to their persistence length, they be-
have like a rigid rod. For microtubules this is usually the case at the length
scale of the cell, since their persistence length is of the order of millimeters
[8] and the cell is only 10’s of microns in diameter. For actin filaments,
which have a persistence length of ∼ 17µm [14], the rigid rod approxima-
tion is only strictly valid when they are enclosed in a sub-cellular volume.
An example of such a volume are cellular blebs. These spherical membrane
protrusions of the order of microns in diameter enclose actin cortex [90].
Inside the blebs the actin filaments, even if they are crosslinked, do not
seem to bend but are forced to arrange following the surface. Aligning of
the cytoskeletal filaments to a curved surface is also relevant in the cyto-
plasm when these filaments have to grow around other cellular components
like the nucleus, which is usually spherical, or the more complex shaped
vacuoles. These components disrupt the bulk organization of the filaments
creating a sort of defect.

Cytoskeletal filaments in the cytoplasm can be thought of as a fluid com-
posed of rigid elongated particles, and their behavior is similar to a certain
extent to a liquid crystal. To understand their organization when confined
by curved walls it is useful to turn to liquid crystal physics. Liquid crystals
confined to various curved geometries have been studied due to their many
optical applications [91]. The best know example is the polymer-dispersed
liquid crystal (PDLC) where spherical droplets containing nematic liquid
crystals are dispersed in a rigid polymer matrix [92]. The organization of
a nematic with planar anchoring in a droplet exhibits a bipolar structure
with two disclination points of topological charge +1 at the surface [93].
For details about topological defects see section 1.4. In a PDLC the axes
defined by the two disclination points in each droplet are overall isotropi-
cally distributed making the material opaque. If the polymer matrix and
the nematic droplet have matching refractive indexes the material is then
turned transparent upon applying an electric field which orients all the ne-
matic droplets with their symmetry axis along the field. This phenomenon
is now commercially used for electrically controllable light scattering win-
dows [94]. The organization of a liquid crystal on the surface of a sphere is
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characterized by four disclination points of charge +1/2 [95]. On a spherical
shell, when the liquid crystal is confined in between two concentric spherical
surfaces, the organization is characterized by two pairs of point disclina-
tions of topological charge +1 located on the inner and outer surface, four
1/2 defects on the outer surface or two 1/2 and a +1 defect, the number of
pairs varying with the thickness of the cortex [87, 96, 97]. Cylindrical con-
finement can be achieved by using membranes having cylindrical pores or
carbon nanotube cavities and, for planar anchoring, a planar bipolar con-
figuration and an escaped-twisted structure are found [98, 99]. The planar
bipolar structure, which is characterized by two +1/2 defects, appears in
3D as a line of defects running parallel to the capillary wall. There are no
experiments or theoretical work in the literature which deal with a liquid
crystal confined in a tube-like geometry (between two cylindrical surfaces).
This would be the uniaxial analogue of the spherical shell and we expect
that interesting defect structures arise.

All the results mentioned above however are obtained in the regime
that the mesogens are much smaller than the size of the confining vol-
ume. In this regime the details of individual particles are irrelevant, and
the behavior of the liquid crystal is well described by a continuous field.
When the particle size is only a few times smaller than the radius of cavity
in which it is enclosed, we expect finite size effects to play a role leading
to the emergence of new structures. Simulation of rigid rods confined in
a disk have showed that, in addition to the expected bipolar structure,
a metastable configuration with 3 disclination points of topological charge
+1/2 on the surface and one of charge −1/2 in the center appears [82]. The
development of photolithographic techniques allows fabrication of shallow
disk-like boxes which can be as small as a few microns in diameter [42] and
the use of fd-viruses, which are spherocylindrical and almost a micron in
length, as mesogens[56] opens a new avenue for experimental investigation
of ultraconfined liquid crystals in curved geometries. Here we use computer
simulations to address the organization of anisotropic liquid crystalline par-
ticles with planar anchoring confined in container with dimensions only a
few times larger than the length of the particles. First, we focus on a
cylindrical geometry of the confining container, with the height of the con-
tainer much smaller then the length of the particles. We look at how the
two dimensional bipolar structure behaves if the system becomes three di-
mensional and also how this pattern is influenced by the density and the
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asymmetry of the particles. By introducing an excluded area in the center
of the container we look at how the system deals with a change in topology,
by first considering an annulus-shaped planar system and then by adding
a third dimension. We show that in this strong confinement regime novel
equilibrium structures become accessible, which are the direct result of the
finite size of the particles.

3.2 Simulation method

To investigate the organization of liquid crystalline particles confined to
curved geometries we use a standard hard body Monte Carlo technique.
The particle are represented by spherocylinders, with diameter D and
length L, the diameter being used as unit length. We considered particles
having an aspect ratio, L/D, of 15, 20 and 25. Each particle is character-
ized by the position of its center of mass ri and its unit orientation vector
ui. We confine the particles in a cylindrical box with the height of the
cylinder Lz, smaller than its radius R and then the length of the particle
(see figure 3.1(a)). For all our simulations we fixed R = 40 and choose
Lz = 1, 3 or 6, the case Lz = 1 corresponding to the pure 2D system. For
Lz = 3 and Lz = 6 the particle cannot fully rotate out of plane. The z-axis
of the reference frame is taken along the symmetry axis of the cylinder.
We change the topology of the system by inserting in the middle of our
cylindrical container another cylinder with the same hight Lz as the initial
one but with radius Rin < R, the symmetry axis of the two cylinders co-
inciding (see figure 3.1(b)). Particles are then not allowed to occupy the
volume inside this inner cylinder. This insertion corresponds to creating a
hole in the middle of the initial container, the base of the container now
being a annulus. We performed simulations for various Rin ranging from 1
to 20, which corresponds to half the radius of the outer cylinder.

The Monte Carlo technique we use, also described in the previous chap-
ter, involves trial rotations and translations of the particles. Since the in-
teraction between particles and between a particle and the walls of the
container are hard, such move is allowed if particles do not overlap with
each other and they do not cross the wall. The overlap criteria between the
wall and a shperocylindrical particle are presented in the Appendix 3.6 for
both the simple cylindrical container and the annulus-based one.
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Figure 3.1: Sketch of the confining containers: (a) disk geometry and (b)
annular geometry

To characterize the system we use a standard second rank tensor order
parameter. This provides information on the equilibration of the system,
but in order to study the patterns of the confined liquid crystal we need a
spatially resolved version of the tensor order parameter. To construct this
local version, we divide the container in small cuboid sub-volumes which
have a square base located on the base of the confining container and the
same height as the container (see figure 3.2 (a)). We define the local version
of the tensor order parameter as:

Qk =
1∑
i

lki

⟨∑
i

lki

(
3

2
ûi ⊗ ûi −

1

2
13

)⟩
, (3.1)

where the index i counts the particles and k the subvolumes. It often
happens that the particles are shared between more subvolumes, crossing
the separation walls, therefore in this averaging we need to account for the
length lki of particle that is actually enclosed in each subvolume (see figure
3.2(b)). The highest eigenvalue of the tensor order parameter gives the
degree of order, ranging between 0 and 1, and the corresponding eigenvector
the average direction of alignment n̂.

To characterize the defects we use an angular defect parameter δ, mea-
suring the variation in the direction of alignment around a point. This
parameter is defined as:

δ = min∠
(
n̂1, n̂2

)
+min∠

(
n̂3, n̂4

)
, (3.2)
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where n̂j are orientations of neighboring sub volumes (for more details see
previous chapter, section 2.2.4).

In the square confinement, the preferential directions of alignment are
imposed by the geometry of the confining container. Due to the high sym-
metry in the circular geometry, there is no such preferential direction a
priori. For example, in the case of a cylindrical box, all bipolar configu-
rations are equivalent, regardless of the angle that the line defined by the
two defects makes with the x-axis. In the course of a simulation the pat-
tern therefore rotates around the symmetry axis of the confining box. We
compute the degree of order and the average orientation not on the basis
of a single configuration but as an average of independent configurations
sampled throughout the simulation time. If we average over these configu-
rations without accounting for the location of the defects, the patterns will
be washed out. Averaging, for example, over bipolar configurations with
the pair of antipodal defects homogeneously distributed around the box
results in an overall isotropic-like configuration. To prevent this problem
we come up with a strategy for locating the defects and then rotate the
configurations in such way that the defects are located always at the same
spot. Due to the rotational symmetry of the confining container, in both
the disk and the annular geometry, along its center line, we expect the
defect structures, if any, to be located radially. Therefore it is convenient
to divide the container into into circular sectors (see figure 3.2 (c)). In
each of these sectors we compute the average orientation of the particles n.
The minimum angle between the average orientation and the radial unit
vector to the center of the circular sector r will run from 0 to π/2, with
0 corresponding to particles arranged radially and π/2 to particles aligned
to the wall. A sharp drop in this minimum angle with respect to the polar
angle of the confining container indicates the presence of a defect structure.
As a example, for the 3-fold structure that we see by eye in the configura-
tion shown in figure 3.2 (a) and (c), we observe, in panel (d) of the same
figure, 3 sharp minima corresponding to the angles where the nematic-like
domains meet. Extracting these local minima for each configuration, which
correspond to the location of the defects, allow us to monitor the location
of these defects over the course of the simulation (see figure 3.2 (e)). The
three defect structures seem to move synchronously, the pattern rotating
as a whole, in both directions, around the symmetry axis of the container.
By taking the a single configuration as reference (for example the first one
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3.2. Simulation method

Figure 3.2: (a) Top view of the confining container divided into cuboid sub-
volumes (b) Top view of a subvolume (c)Top view of the confining container
divided into circular sectors (d) Minimum angle between average orienta-
tion angle of the particles and the radial direction versus the polar angle of
the confining container (e) Location of the defects, expressed in terms of
the polar angle of the container, over the course of the simulation, from the
equilibration point on (f) Rotation angle for each configuration
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after we consider that the system has equilibrated) we compute the angle θm
by which we need to rotate the other configurations we use in the averaging
in order to obtain equivalent configurations, with the defects overlapping.
This rotation angle is plotted in figure 3.2 (f) as function of the simulation
time (expressed in Monte Carlo steps). After rotating the configurations
we perform the averaging by using the division into cuboid subvolumes.
We do not compute the tensor order parameter in the circular sector based
subvolumes, but prefer the cuboid one, because, in the circular sectors we
have no way of differentiating a point defect from a disinclination wall.

3.3 Disk geometry

In the disk geometry we observe four type of planar orientational patterns
depending on packing fraction of the particles in the container (defined
as η = ρVpart, where Vpart = πD2(1/4L + 1/6D) is the volume of the
spherocylidrical particles and ρ = N/Vcont = N/(πR2Lz) is the number
density) and on their aspect ratio. We see a two types of bipolar structures:
one where the two poles are located at a certain distance from the circular
wall (BI), the wall being coated with a nematic film, and one where the
poles are situated at the wall (BB). The two other patterns do not exhibit
poles. The third pattern type (BO) resembles a bipolar arrangement where
the poles have been expelled from the container. The last type of pattern
(B∞) is characterized by a parallel arrangement of the particles, and can be
considered the limit case when the defects have moved to infinity. Figure
3.3 illustrates the four types of patterns observed.

To characterize the patterns observed we perform averages over inde-
pendent configurations sampled from the same simulation, extracting the
local orientation and the degree of local order. We compute the disclination
parameter from the angle between the local orientation and the x-axis of
the reference frame, scaling it by π, which corresponds to its highest value.
Results for the four representative types of organizations of spherocylin-
drical particles confined in cylindrical containers observed are presented in
figure 3.4. We see that the pattern BI , where the poles are located inside
the container, exhibits a highly ordered region next to the wall where par-
ticles are arranged parallel to it. The order in the middle of the container
is lower than next to the wall with two dips corresponding to the poles.
The poles correspond to disclination points of topological charge +1/2, as
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3.3. Disk geometry

Figure 3.3: The four patterns observed in the disk geometry classified by
the location of the disclination points (illustration-upper row and snapshot
of representative configurations- lower row). For all the simulations shown
in this figure the hight of the box was Lz = 6 and its radius R = 40. The
packing fraction and the aspect ratio were (from left to right): (1) L/D = 15
and η = 0.16; (2) L/D = 15 and η = 0.20; (3) L/D = 20 and η = 0.20;
(4) L/D = 25 and η = 0.20. The color of the particles is give by the angle
between its orientation and the x-axis (scale bar on the right hand side).

can be seen from the disclination parameter which is almost 1. The pattern
BB, having poles located on the boundary, is highly ordered everywhere ex-
cept at the poles. The orientation of the particles follows the bend lines
connecting the pair of antipodal 1/2-disclination points. For the BO type
of organization the middle of the container contains a nematic phase, with
particles highly aligned along a diameter of the container, acting as a sym-
metry axis. These virtual defects are the planar equivalent of the virtual
boojums in the nematic droplets [85, 100]. Close to the wall we see a bend
in the nematic director towards the symmetry axis. The organization looks
similar to the pattern in the central region of the BB type, therefore we
can think of it as a bipolar structure with virtual poles located outside the
container. The last pattern, B∞, is a purely nematic arrangement entirely
aligned along one diameter chosen randomly. For the last two types of or-
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ganization the order decreases in the region where the nematic director is
perpendicular to the wall. This effect is due to the particles occasionally
being trapped between the wall and the nematic, which are aligned to the
wall and hence perpendicular to the nematic.

Figure 3.4: Local orientation of the particles (upper row), local order (mid-
dle row) and disclination parameter (lower row) corresponding to the four
types of organization observed. The black lines show the orientation and
the color corresponds to the angle between the orientation and the x-axis
(scale bar on the right hand side). For both the order and the disinclination
parameter, having values between 0 an 1, the value is given by the color bar
on the right hand side. The simulation parameters are the same as for the
previous figure.

The aspect ratio of the particles and the packing fraction influence the
location of the defect points. By increasing the packing fraction, keeping
all the other parameters constant, the location of the defects moves from
inside the container to its boundary, then outside the container until the
nematic director shows no sign of bending (see figure 3.5). The increase of
particle aspect ratio also leads to movement to the defects outwards. The

52



3.3. Disk geometry

thickness of the container does not seem to influence the location of the
defects, the difference in patterns between containers with height Lz = 3
and Lz = 6 being present for only one set of parameters (L/D = 20 and
η = 0.16) in the range considered. The packing fractions were chosen to be
around the bulk isotropic-to-nematic transition, the values at coexistence
being approximately ηc = 0.22 to ηc = 0.25 for L/D = 15, ηc = 0.17 to
ηc = 0.21 for L/D = 15 and ηc = 0.14 to ηc = 0.17 for L/D = 25 [78].
We found that, in confinement, for the packing fractions for which in the
bulk system would be in an isotropic phase, bipolar structures with defects
inside as well as on the boundary of the container are already formed. The
local degree of order in this phases is much higher than we expect for an
isotopic phase, these patterns being highly aligned. Compared to the B∞
pattern where we see no confinement effect on the liquid crystalline orga-
nization, the BI and BB patterns exhibit a distorted nematic phases. In
the bulk coexistence region we see bipolar patterns with boundary discli-
nation points and patterns characterized by virtual defects located outside
the wall of the container. For all the values of the packing fraction that
in bulk correspond to the nematic regime, we find parallel arrangement in
confinement, the bulk liquid crystalline organization being unperturbed by
the walls.

Figure 3.5: The organizational patters obtained as function of box hight
(Lz), packing fraction (η) and aspect ratio (L/D) of the particles (R = 40).
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The bipolar structure is the result of confinement and particle-particle
interaction, of a competition between alignment to the wall and self-align-
ment of the particles. Next to a planar wall a liquid crystal with planar
anchoring, even for packing fraction below the isotropic to nematic transi-
tion, aligns to it creating a nematic film of the order of one particle length
in thickness coating the wall [64]. In our geometry, for lower packing frac-
tions, a layer of particles is follows, with the wall the bipolar pattern being
formed in the central region of the container. By increasing the packing
fraction we strengthen the particle-particle alignment. This pushes the de-
fects outwards until the particles are completely aligned to each other, a
regime in which the confinement effect is unnoticeable. The movement of
the defect points outwards with the increase in aspect ratio of the particles
is due to the lowering of the bulk isotropic to nematic transition density
with increasing aspect ratio. At the same packing fraction rods with higher
aspect ratio have a higher tendency to align.

Similarly to the square slab-like geometry we presented in the previous
chapter, the confinement lowers the packing fraction at which the isotropic
to nematic transition occurs compared to the bulk. In figure 3.6 we show
that the degree of local order in the center of the container is almost perfect
at η = 0.20, whereas in the bulk at this packing fraction we still see an
isotropic phase [78].

Figure 3.6: Evolution of the local order parameter as a function of packing
fraction for Lz = 3, R = 40 and L/D = 15.
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3.4 Annular geometry

The organization of a liquid crystal confined to a surface or enclosed in
a cavity must follow the topological constrains of the confining geometry.
The total topological charge of the defects in the liquid crystal should be
equal to total topological charge of the surface of volume, since the topo-
logical charge of a vector field on a closed surface must be the same as the
Euler characteristic of the surface (Poincare’s theorem) [101, 102]. For a
polyhedral surface, such as, for example a cube, the Euler characteristic χ
can be calculated as:

χ = V − E + F, (3.3)

where, V is the number of vertexes, E the number of edges and F the
number of facets. A cube has χ = 2. The Euler characteristic of an
arbitrary surface the can be found by polygonalizing the surface. A disk
has Euler characteristic χ = 1 and thus the total topological charge must
be +1, which can be achieved, in the case of planar wall anchoring, by
two +1/2 defects (bipolar structure) or a single +1 defect. This latter
structure would correspond to particles arranged following concentric circles
with the defect located in the center of the disk a particles, but is not
observed experimentally due to the finite length of the mesogens. When
we change the topology of the surface by opening a hole, we change its
Euler characteristic and therefore the total topological charge. An annulus
has Euler characteristic χ = 0, which should correspond to a defect-free
configuration. For planar wall anchoring, particles following concentric
circles equally following the two boundary circles potentially offers a defect-
free configuration. Another possibility to obtain a zero topological charge
could be having pairs of plus and minus defects, but unless some other
effects come in to play the number of defects is usually minimal, as they
have a free-energy cost associated with them [103].

In order to study the effect of the change in topology of the confining
container, we first turn to the two-dimensional case, by considering a con-
tainer of Lz = 1. The packing fraction η is expressed in terms of the 3D
container with unit height. This can be converted to the two dimensional
equivalent area fraction using η2D = η (L+ 2/3)/(1 + 4L/π). We start by
opening a round hole in the middle of a disk, obtaining an annulus, taking
the radius of the inner opening from Rin = 1 to Rin = 20, which represents
up to half the outer radius of the container R = 40. Figure 3.7 presents the
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Figure 3.7: Representative organization in planar confinement (Lz = 1).
For all the simulations particles had L/D = 15 and the packing fraction
was η = 0.40.
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representative patterns obtained. We observe that, for inner radius in the
order of a few particle diameters, the bipolar structure characteristic to disk
confinement is undisturbed. By increasing this radius further the system
self-organizes in three equally-sized domains distributed around the inner
hole. Inside the domains particles form a nematic phase. These domains
are separated by a disclination line which is bordered by two point defects:
a +1/2 located on the exterior wall on the container and a −1/2 positioned
on the inner circular wall. The sum of the topological charges of the point
disclination is zero, matching the Euler characteristic of the disk. Upon
crossing the line separating the domains the orientation of the particles
changes abruptly and the local order is low compared to the order in the
middle of the domains. Increasing the inner radius even further leads to
particle adopting a configuration characterized by four domains of equal
sizes, forming a square around the hole. The separation between the do-
mains is no longer a line both starting and ending in a disclination point
as was the case of the three fold pattern but rather a the planar equivalent
of a wall-like structure. This type of disclination is also characterized by
a low local order and a variation in the particle orientation on either side
separating structure. In the disclination parameter they appear as radial
maxima, extending from the interior to the exterior wall. The four-fold
symmetry changes to a five-fold, then to a six, seven and eight-fold pattern
as a function of the radius of the inner opening. These higher symmetry or-
ganizations exhibit the same characteristics as the 4-fold one, the domains
being separated similar structures.

By increasing the hight of the confining container to Lz = 3 and Lz =
6 we observe a similar behavior with the two dimensional system: as a
function of inner radius increase we see the formation of planar structures
equivalent to the ones in the annulus confinement (Lz = 1). For a small
opening of up to Rin = 2 − 3, in a three dimensional case as well, the
system seems unaffected by the presence of this defect, the pattern being
the same as in the cylindrical confinement. For higher inner radii, a three-
fold symmetrical pattern forms (see figure 3.8): three nematic domains
separated by wall like structures. At the end of each separation wall there
are disclination points with −1/2 (on the inner cylinder) and +1/2 (on the
outer cylinder). The difference in particle orientation angle upon crossing
the wall is ≈ π/3. For higher inner radii of the inner cylinder the number
of nematic domains increases. In figure 3.8 we show also example of a four
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Figure 3.8: Representative types of organization in annular based con-
tainers characterized by 3-fold, 4-fold and 5-fold symmetry. Simulation
parameters for each column (from left to right): (1) Lz = 6, L/D = 15,
η = 0.20 and Rin = 5; (2) Lz = 6, L/D = 25, η = 0.20 and Rin = 15; (3)
Lz = 3, L/D = 25, η = 0.20 and Rin = 15.
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and five-fold symmetrical patterns. As in the two dimensional case, the
domains are separated by disclination walls with no point defects at the
ends. The angular variation of the orientation upon crossing the wall is
≈ π/4 for the pattern exhibiting four domains and ≈ π/5 for the one with
for domains. All the disclinations appear more pronounced in the three
dimensional containers due to the increased number of particles in each
subvolume that we use for computing the local orientation and order. The
disclination points appearing at the at the end of the wall in the 3-fold
pattern result from particles being able to fit radially in the container. As
the inner cylinder’s radius increases this is no longer possible and, therefore,
we do not see them in the higher-fold patterns.

In the annular geometry the excluded area in the middle of the container
leads to the formation of nematic domains stabilized by wall disclinations.
The particles try to follow both circular walls but, due to the length of the
particles being comparable to the container size, this becomes more of a
discrete packing problem than a continuum one. The number of domains
seems to be imposed by the radius of the inner cylinder which also has a
higher curvature then the outer one. We can therefore construct a simple
geometrical argument. For a given particle length L we can construct a
triangle, a square, a pentagon or in general any n-gon with sides equal to
the particle length. The radius of the circle inscribed in this n-gon is given
by:

Rin =
L

2 tan(π/n)
. (3.4)

The rod packing around this circle is optimal and outer rods could just
follow the direction given by these central ones. We checked, for rods of
aspect ratio L/D = 15 the correspondence of this geometrical relation
(see figure 3.9). For the two dimensional case the correspondence is is
almost perfect. For the three dimensional case (Lz = 3 and 6) the number
of domains is lower than the value predicted by the above relation and
becomes lower with increasing container height.

3.5 Conclusion

Using Monte Carlo simulations we investigated the organization of rigid
rods confined in curved wall containers. In the disk geometry we observed

59



Chapter 3. Circular confinement

Figure 3.9: Number of domains observed as a function of inner radius Rin

(L/D = 15 and R = 40). The vertical dotted delimit the Rin intervals
in which we expect to find the number of domains shown in the illustra-
tions bellow determined according to the relation 3.4. The symbols next to
each illustration are used to show the number of domains observed in each
simulation.

bipolar patterns with the disclination points moving from the interior to
the exterior of the container with density increase. The location of the
disclination points is imposed by the competition between wall alignment
and particle mutual alignment. In the annular geometry we find that, above
a critical diameter of the inner hole, the system switches from the bipolar
organization featured in the disk geometry to a pattern characterized by
three domains separated by disclination walls. By increasing the inner
cylinder diameter we see an increase in the domain numbers up to eight.
The patterns are a result of the finite size of the particles, and by a simple
geometrical argument, we can relate the number of possible domains to the
radius of the inner cylinder.

Our simulation results match preliminary results of experiments of fd-
viruses confined in microchambers [104]. In the disk geometry bipolar pat-
terns were with observed as well as undisturbed nematic (B∞ pattern). In
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the annular geometry, the bipolar and the 3-fold symmetric pattern appear.
Additionally, an infinite symmetric pattern occurs predicted by mean field
theory is observed in the in the limit that the annulus becomes very thin
( Rin/R ≈ 0.7). This results are in reasonable good agreement with our
simulations considering the condition of the experiments are different: fd-
virus have an aspect ration of ∼ 130 and the confining containers had from
10 up to 100 particle length in diameter. We found no evidence, in neither
the simulations nor in the experiments, of a 3-fold symmetric pattern in
the disk geometry that [82] reports as metastable. The opening of the hole
which changes the topology of the container is essential for the formation
of disclination walls.

3.6 Appendix: Overlap criteria

3.6.1 Disk geometry

Let us consider a spherocylinder with length L and diameter D = 2r.
The coordinates of its center of mass are given by r = (rx, ry, rz) and its
orientation by the unit vector u = (ux, uy, uy). We want to determine if
the spherocylinder is fully located inside the confining cylindrical container
with radius R and hight Lz. The symmetry axis of the cylinder coincides
with the z-axis and one of the disks that caps it is located in the xOy
plane (see figure 3.10). Since a spherocylinder has the property that all
the points on its surface are located at one radius distance from its center
line the overlap criteria amount to determining whether this central line
is located further than one radius from any wall. If the central line of the
spherocylinder is closer than one radius from any wall then it overlaps with
the container. the problem can be simplified even further: the container
has a convex geometry therefore if the two ends of the spherocylinder are
inside, the whole object will be inside.

It is convenient to decouple the problem in two components: one dealing
with the overlap with the disk caps and one dealing with the circular wall.
For a spherocylinder, the projection of one end of the cylinder’s center line
on our Cartesian coordinate system is:

61



Chapter 3. Circular confinement

Figure 3.10: Illustration of a spherocylinder enclosed in a cylindrical con-
tainer with the relevant geometrical parameters.

prx1 = rx +
L

2
ux,

pry1 = ry +
L

2
uy,

prz1 = rz +
L

2
uz, (3.5)

and for the other end we have:

prx2 = rx −
L

2
ux,

pry2 = ry −
L

2
uy,

prz2 = rz −
L

2
uz. (3.6)

The non-overlap condition with the end-disks is simply given by both
z-projections of the two ends of the spherocylinder being further inside the
cylinder than r from this two disks (which are located at z = 0 and z = Lz).
For circular wall it is enough to check that,in the xOy plane, the two ends
of the spherocylinder are inside a circle with radius R− r (see figure 3.11).
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Figure 3.11: Top view of the cylindrical box. The dashed circle has radius
R − r and encloses the area in the xOy plane that the end-points of the
center line of the spherocylinder are allow to occupy in order not to overlap
with the container.

Mathematically, the above conditions can be written as follows:

r < prz1 < Lz − r,
r < prz2 < Lz − r,

pr2x1 + pr2y1 < (R− r)2,
pr2x2 + pr2y2 < (R− r)2. (3.7)

Thus, a spherocylinder will be inside our cylindrical container if all these
inequalities are satisfied.

3.6.2 Annular geometry

If inside the cylindrical container we insert another cylindrical object with
the same high Lz and the same symmetry axis as the initial cylinder, we
obtain a tube-like volume having an annulus as base. The inner cylinder
has radius Rin (see figure 3.12). Particles are not allowed to overlap with
this inner cylinder.
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Figure 3.12: Illustration of a spherocylinder enclosed in a container with
annular geometry.

In order to determine if a spherocylinder is enclosed in such container,
without overlapping with any of the wall, the set of inequalities (3.7) for
the overlap with the outer walls must be obeyed. Additionally, the central
line of the spherocylinder must be outside the inner cylinder at at least one
radius r distance from it. The area in the xOy plane that the two ends of
the central line of the spherocylinder are now allowed to occupy is bounder
by two circles: one of radius R − r and one of radius Rin + r (see figure
3.13). The two end of the central line of the spherocylinder are outside the
inner cylinder if the following inequalities are satisfied:

pr2x1 + pr2y1 > (Rin + r)2

pr2x2 + pr2y2 > (Rin + r)2. (3.8)

These conditions are necessary, but not sufficient, to determine the
overlap. The two ends can be outside the inner cylinder but the body of the
spherocylinder can still go through the walls. Therefore we need to check if
the distance between the center line and the inner wall is higher than one
radius r. This problem is equivalent with determining if the support line
of the central line is further than Rin + r from the center of the container.
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Figure 3.13: Top view of the annular container. The area between the
dashed circles (of radius Rin + r- the inner one and R − r-the outer one)
can be occupied by the end of the central line of the spherocylinder.

This distance is given by:

d =
|ryux − rxuy|√

u2x + u2y

, (3.9)

and if d2 > (Rin+r)
2 there is no overlap. When d2 < (R1+r)

2 we may have
an overlap. This overlap only happens when the particle has both ends in
the box and but it completely crosses the inner cylinder. If a particle is, for
example, radially arranged in the box with both ends inside the container,
the distance d = 0 but there is no overlap. Therefore we need to check if
the intersection point of the perpendicular from the center of the container
to the support central line of the the spherocylinder is actually part of line
segment or only of the central line. This intersection point reads:

(xD, yD) =

(
uy(rxuy − ryux)

u2x + u2y
,
ux(ryux − rxuy)

u2x + u2y

)
. (3.10)

and the the parametric equation of the segment of the central line as:

(x, y) =

(
rx +

L

2
ux − tlux, ry +

L

2
uy − tluy

)
. (3.11)

where t ∈ [0, 1]. Equating the above two relations we obtain:

t =
rxux + ryuy
L(u2x + u2y)

+
1

2
(3.12)
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If 0 < t < 1 than a part of the particle is inside the cylinder in the center
of the box, this being not allowed.
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4
Rectangular confinement: a
mean-field theory approach

When mesogens are much smaller then the distance over which the
nematic field strength is expected to vary, liquid crystals are well
described by continuum theories. We design a novel microscopic
mean-field theory in terms of both the scalar order parameter and
the nematic director, which combines the virtues of the classical
Oseen-Frank elastic theory with the ability of allowing the magni-
tude of the local order to vary of the Landau-de Gennes theory. By
including a wall coupling term, we apply this theory to a nematic
enclosed in a 2D rectangular container, with a tunable interaction
with walls. In the regime where wall alignment competes with the
mutual alignment of the particles, smooth patterns, displaying
only continuous splay- and bend-type distortions of the nematic
field are preferred, but structures exhibiting one or two disclina-
tion points are also observable, but have significantly higher free
energy than the defect-free state.
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4.1 Introduction

The size of the liquid crystalline particles relative to the length over which
their preferred orientation varies plays an important role in deciding which
approach is more suited to model the system. In confinement, the size of
the container imposes the length scale at which variation in particle orien-
tation occurs. In the previous two chapters we studied the regime where
the length of the particles was only a few times smaller than the size the
confining container. Each container wall imposes a preferential direction
of alignment, and the enclosed nematic liquid crystal is forced to organize
accommodating these orientations imposed by the wall. The mismatch
between the competing directions of alignment makes particles change ori-
entation over small distances, the nematic director varying drastically over
a few particle lengths. At this length scale the details of the individual par-
ticles are important, and the disclinations observed are clearly a finite size
effect. In this regime hard body Monte Carlo simulations are an effective
tool to address the confined nematic organization.

Although cytoskeletal polymers in cells can grow to a length comparable
to the cellular diameter [69], they are subject to dynamical polymerization
processes, involving among others de novo nucleation, growth and shrink-
age, and even severing. For microtubules these dynamical processes result
in an exponential steady-state length distribution in bulk [105], with a max-
imum length imposed by the cell boundary in confinement [106]. For actin
filaments, the length distribution, measured in vitro, is exponential as well
[107]. Hence the majority of these polymers are relatively short, only a
small fraction of them reaching lengths comparable to the cell size. Thus,
understanding confinement at a scale where particles are much smaller then
the confining volume is also a relevant problem. E.g. it has been suggested
that in assays involving strongly length-polydisperse actin filaments con-
fined to microchambers, the short filaments could act as depletion agents
with respect to the longer ones, possibly leading to the observed bundling
of the longer filaments [42].

However, in the case where the mesogens are much smaller than the
container in which they are enclosed, the Monte Carlo simulation technique
becomes time-inefficient due to the large number of particles involved. For
this regime we expect that the nematic director will change orientation over
distances much larger than the particle size, and the behavior a the nematic
liquid crystal is then well captured by continuum theories[55], in which the
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system is described by the average orientation of the particles and the local
amount of order.

The simplest continuum theory is due to Oseen [108] and Frank[109].This
elastic theory is formulated in therm of the nematic director n. The ne-
matic organization is given by global minima of the elastic free energy, E[n],
which takes the form:

E[n] =
1

2

∫ ∫ ∫
V
(K1(∇ · n)2 +K2(n · ∇ × n)2r

+K3(n×∇× n)2) dV, (4.1)

where K1, K2 and, K3 correspond to so-called splay, twist and bend dis-
tortions respectively. This free energy is subject to boundary conditions,
e.g. for a confined liquid crystal with planar anchoring to the wall the
nematic director is fixed to be tangent to the wall.

However, this elegant formalism has a few shortcomings. The theory
itself is formulated only in terms of the nematic director and thus consider
the scalar order parameter to be constant. This excludes e.g. the presence
of disclinations, and the only kind of changes in the nematic field that it
can account for are continuous distortions such as bends or splays. Fur-
thermore, it considers only strong anchoring to the wall. One also expects
that for a weaker coupling to the wall, the system could trade off anchoring
energy in order to relax elastic distortions in the bulk.

Another well-known continuum theory is the phenomenological Landau-
De Gennes theory of liquid-crystalline phase transitions. This theory is
based on the generic Landau theory [110] of phase transitions. The Lan-
dau theory is written in terms of an parameter η which characterizes the
symmetry of phase order the system. In the less ordered phase η = 0, this
typically occurring at a high temperature T . As the system cools down
the order parameter increases, the system being more ordered. Near the
transition from the disordered to the ordered state, the orderparameter η
is small, making it possible to express the thermodynamic potentials as a
low-order expansion in the order parameter as:

G(T, η) = G(T, 0) + αη +
1

2
Aη2 +

1

3
Bη3 +

1

4
Cη4 + ..., (4.2)

where α, A, B and C are functions of temperature. P.G. de Gennes showed
that the free energy density of an uniaxial nematic can be written as as a
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expansion up to 4-th order in components of second-rank tensorial order
parameter Q as:

f = fi +AQαβQβα −
1

3
BQαβQβγQγα +

1

4
C(QαβQβα)

2 (4.3)

where fi is the free energy density of the isotropic phase and A, B and C are
temperature dependent [111]. The order parameter tensor Q, which is fully
charcterized by being real, symmetric and traceless, contains information
about both the degree of order and the direction of alignment. While this
theory now explicitly allows for singularities, where the magnitude of the
ordering vanishes, it still suffers from the defect that the magnitude of the
ordering is not strictly bounded from above, as it does not correctly account
for the non-linearities beyond the vicinitity of the phase transition.

Therefore, we set out to formulate a microscopic mean-field theory
which nevertheless is specified completely in terms of the macroscopic ten-
sor order parameter. The new theory should keep the virtues of the Landau-
De Gennes formalism, allowing for both the nematic director and the order
parameter to vary, and thus making possible the emergence of disclinations.
However, since it is derived it from microscopic theory, our theory is con-
sistent for all values of the order parameter. The theory is constructed in
arbitrary dimensions and is later particularized to 2D systems, since we
apply it to a nematic confined to a shallow rectangular well. If the depth
of the well is smaller then the particle length, precluding out of plane ro-
tation, we expect that the the organization of the nematic it encloses is
also planar. Considering the system to be homogeneous over the depth
of the well, leads us to explore the equivalent planar problem. The wall
coupling is introduced by adding an wall anchoring term to the free energy.
We find that the minimum energy configurations, for the regime where the
anchoring energy competes with the elastic contributions, are the same as
the ones predicted by the Oseen-Frank theory, but patterns with one or two
disclination points are also stable. Patterns exhibiting disclination points
have been observed in experiments on fd-viruses confined in shallow rectan-
gular wells. When the elastic contribution dominates the anchoring effects
the nematic aligns along the longest wall, which has also been observed
experimentally.
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4.2 Definition

The goal is to create a microscopic theory for a nematic liquid crystal that
has as its its fundamental degrees of freedom a quantity directly identifiable
as the macroscopic order parameter Q. We introduce a mean-field density-
functional

βF [ρ(1)] =

∫
drdω̂ρ(1)(r, ω̂)

{
logVTρ(1)(r, ω̂)− 1

}
+

1

2

∫
dr1dω̂1

∫
dr2dω̂2ρ

(1)(r1, ω̂1)ρ
(1)(r2, ω̂2)W (r1, ω̂1; r2, ω̂2) (4.4)

We choose the interparticle interaction (which is expressed in units of kBT ),
to be the simplest one expressible as a quadratic in terms of the microscopic
“anistropic polarizability” tensor. In three dimensions this tensor has the
form:

q(ω̂) =
1

2
(3ω̂ ⊗ ω̂ − I), (4.5)

with ω̂ = (cos θ sinϕ, sin θ sinϕ, cosϕ), whereas in 2D it reads:

q(ω̂) = (2ω̂ ⊗ ω̂ − I), (4.6)

with ω̂ = (cos θ, sin θ). Hree θ denotes the polar angle, ϕ the azimuthal one
and I the unit matrix of size 3 or 2 respectively. This leads to

W (r1, ω̂1; r2, ω̂2) = W(0)(r1 − r2) + q(ω̂1) : W
(2)(r1 − r2)+

W(2)(r1 − r2) : q(ω̂2) + q(ω̂1) : W
(4)(r1 − r2) : q(ω̂2) (4.7)

where the general form of the tensors W(k) is given by

W (0)(s) = w(0)(s) (4.8)

W (2)
µν (s) = w(2)(s)̂sµŝν

W (4)
µνστ (s) = w

(4)
0 (s)(δµσδντ + δµτδνσ)+

w
(4)
2 (s)(̂sµδνσ ŝτ + ŝνδµσ ŝτ + ŝµδντ ŝσ + ŝνδµτ ŝσ)+

w
(4)
4 (s)̂sµŝν ŝσ ŝτ

where we have used the shorthand notation notation s = sŝ = r−r′ for the
interparticle separation vector. The derivation of this effective interaction
is discussed in the Appendix 4.10.1 of this chapter.
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Chapter 4. Rectangular confinement: a mean-field theory approach

4.3 The reduced functional

We will confine ourselves to phases with a spatially homogeneous density
distribution. We therefore introduce the local orientational distribution
function ψ(r, ω̂), which we will further abbreviate as ODF, through

ρ(1)(r, ω̂) = ρψ(r, ω̂), (4.9)

with the constant number density ρ = N/V , where N is the number of
particles and V the volume of the system. The free energy as a functional
of the ODF then reads

βF [ψ] = N log νTρ+
1

2
ΩdNρw(0) + ρ

∫
drdω̂ψ(r, ω̂) logψ(r, ω̂)

+
1

2
ρ2

∫
drdr′Q(r) : W(4)(r− r′) : Q(r′) (4.10)

where Ωd is the area of the unit ball of dimension d, and the overbar
denotes radial averaging, i.e.

f =

∫ ∞

0
dr rd−1f(r). (4.11)

The local order parameter tensor is defined as

Q(r) =

∫
dω̂q(ω̂)ψ(r, ω̂). (4.12)

Note that in the case of phases with a spatially homogeneous density dis-
tribution the coupling of the individual particle orientations to the inter-
particle separation vector, as described by the W(2) terms in the interac-
tion, does not play a role.

To obtain the free energy as a functional of the local order parameter
tensor only, we perform a constrained minimization keeping the value of
the local order parameter fixed through a lagarange multiplier field that
can also be interpreted as an external field. The idea is that the intrinsic
free energy of system in an equilibrium with an external field that causes
a certain deviation from the field-free equilibrium ODF can be interpreted
as the non-equlibrium free energy of the distorted state. This procedure
which has been reinvented in the literature under various names and guises,
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4.3. The reduced functional

is an expression of the central tenet of density functional theory viz. the
one-to-one correspondence between external field and equilibrium densities.
As the average energy in our toy model already depends only on Q we can
simply maximize the entropy, i.e. we consider the following stationarity
condition

δ

δψ(r, ω̂)

{
ρ

∫
drdω̂ψ(r, ω̂) logψ(r, ω̂) +

∫
drµ(r)

{
1−

∫
dω̂ψ(r, ω̂)

}
−

ρ

∫
drΛ(r) :

{
Q(r)−

∫
dω̂q(ω̂)ψ(r, ω̂)

}}
= 0 (4.13)

Performing the variation and eliminating the field µ(r) which takes of
the normalization of the ODF we get

ψ(r, ω̂) =
exp {−Λ(r) : q(ω̂)}

ζ(r)
(4.14)

where the normalization factor is given by

ζ(r) =

∫
dω̂ exp {−Λ(r) : q(ω̂)} (4.15)

The field Λ(r) now has to be chosen such that the constraint

Q(r) =

∫
dω̂q(ω̂)

exp {−Λ(r) : q(ω̂)}
ζ(r)

(4.16)

is satisfied. Let us denote the solution to this problem by Λ Q(r). The
constrained free energy is then given by

βF [Q] = −ρ
∫
dr log ζ Q(r)− ρ

∫
drΛ Q(r) : Q(r)+

1

2

∫
drdr′Q(r) : W(4)(r− r′) : Q(r′) + βF0, (4.17)

where βF0 = N log νTρ+
1
2ΩdNρw(0). The non-constant terms of the above

expression of the free energy do not depend on explicitly on dimensionality,
taking the same form for both two and three dimensions. It is now easy
to verify that varying this functional with respect to Q yields the usual
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Chapter 4. Rectangular confinement: a mean-field theory approach

selfconsistency condition. Indeed,

δβF [Q]

δQ(r)
= ρ

δΛ Q(r)

δQ(r)
:

{∫
dω̂q(ω̂)

e−Λ Q(r):Q(r)

ζ Q(r)
−Q(r)

}

− ρ
{
Λ Q(r)− ρ

∫
dr′W(4)(r− r′) : Q(r′)

}
= 0

The first term is zero due to the constraint condition, leaving the standard
prescription for the equilibrium mean-field

Λ Q(r) = ρ

∫
dr′W(4)(r− r′) : Q(r′) (4.18)

which could also have been obtained by minimizing the finctional Eq. (4.10)
directly with respect ψ(ω̂), showing that the constrained variation followed
by a relaxation of the constraints yields the same result as expected.

4.4 Describing perturbations around the uniaxial
equilibrium state

We are now going to look at the free energy cost of perturbations around
the uniaxially aligned nematic equilibrium state. For simplicity we consider
only perturbations that correspond to a local reorientation of the preferred
frame. Thus

Q(r) = Ω (r) ·Q(0) · Ω−1 (r) (4.19)

where Ω (r) is a rotation matrix and Q(0) the order parameter tensor for
the homogeneous nematic state introduced in the previous section. We
first note the first two terms in the free energy functional trivially remain
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4.5. The effective interaction

constant under such a local rotation. Consider

ζ(r) =

∫
dω̂ exp {−Λ(r) : q(ω̂)}

=

∫
dω̂ exp

{
−Ω(r) ·Λ(0) · Ω−1 (r) : q(ω̂)

}
=

∫
d
{
Ω−1 (r) · ω̂

}
exp

{
−Ω(r) ·Λ(0) · Ω−1 (r) : Ω (r) · q(ω̂) · Ω−1 (r)

}
=

∫
d
{
Ω−1 (r) · ω̂

}
exp

{
−Λ(0) : q(ω̂)

}
=

∫
dω̂ exp

{
−Λ(0) : q(ω̂)

}
= ζ(0) (4.20)

so that

Q(r) =

∫
dω̂q(ω̂)

exp {−Λ(r) : q(ω̂)}
ζ(r)

=

∫
dω̂q(ω̂)

exp
{
−Ω(r) ·Λ(0) · Ω−1 (r) : q(ω̂)

}
ζ(0)

=

∫
d
{
Ω−1 (r) · ω̂

}
Ω(r) · q(ω̂) · Ω−1 (r)

exp
{
−Λ(0) : q(ω̂)

}
ζ(0)

= Ω(r) ·
∫
dω̂q(ω̂)

exp
{
−Λ(0) : q(ω̂)

}
ζ(0)

· Ω−1 (r)

= Ω (r) ·Q(0) · Ω−1 (r) (4.21)

so that we only need to consider the interaction term.

4.5 The effective interaction

4.5.1 The square gradient expansion

Consider ∫
drdr′Q(r) : W(4)(r− r′) : Q(r′)

=

∫
dRdsQ(R+

1

2
s) : W(4)(s) : Q(R− 1

2
s) (4.22)

where R = 1
2 (r+ r′) is the center of mass coordinate and s the previously

defined separation vector. As we are primarily interested in case where the
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Chapter 4. Rectangular confinement: a mean-field theory approach

orientational distortions vary only slowly on the molecular scale, we can
simplify the effective interaction (4.22) can further written by expanding
Q in to second order in the derivatives as:∫

dRds(Q(R) +
1

2
∇Q(R) · s) : W(4)(s) : (Q(R)− 1

2
∇Q(R) · s). (4.23)

We first evaluate the integral over the separation vector s, dropping, for the
moment, the dependence on the center of mass coordinate R and explicitly
rewriting the contractions using Einstein’s summation convention:∫

ds(Q+
1

2
∇Q · s) : W(4)(s) : (Q− 1

2
∇Q · s) =

=

∫
ds(Qµν +

1

2
∂λQµνsλ)W

(4)
µντσ(s)(Qτσ −

1

2
∂βQτσsβ), (4.24)

where

W (4)
µντσ(s) = w

(4)
0 (s)(δµσδντ + δµτδνσ) + +w

(4)
2 (s)(ŝµδνσ ŝτ

+ŝνδµσ ŝτ + ŝµδντ ŝσ + ŝνδµτ ŝσ) + w
(4)
4 (s)ŝµŝν ŝσ ŝτ . (4.25)

The remaining integrals over the separation vector can be worked out an-
alytically both in 2 dimensions as well as in 3 dimensions. The relevant
details are given in Appendix 4.10.2.

4.5.2 The planar case

We are interested to apply this formalism to a nematic enclosed in a quasi
two dimensional container. If the geometry is such that the depth of the
container is much smaller than the other two dimensions and small com-
pared to the length of the particles we expect an in-plane arrangement of
the nematic. We therefore restrict ourselves to the planar problem, working
out the explicit form of the effective interaction term in two dimensions.
Note that the three dimensional effective interaction can be explicitly deter-
mined in a similar manner. In two dimensions, upon integration, the terms
containing odd number of separation vectors will give vanishing contribu-
tions (see appendix 4.10.2). Keeping only the terms with even numbers of
components of s, the equation 4.24 becomes:

∫
ds QµνW

(4)
µντσ(s)Qτσ −

1

4

∫
ds ∂λQµνsλW

(4)
µντσ(s)∂βQτσsβ. (4.26)
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By integrating the above relation over the separation vector s we obtain:

QτσQτσ

[
4π(w̄1

0 + w̄1
2) +

π

2
w̄1
4

]
+ ∂µQτσ∂µQτσ

(
−πw̄3

0 −
π

4
w̄3
2 −

π

16
w̄3
4

)
+∂µQµσ∂τQτσ

(
−π
4
w̄3
2 −

π

8
w̄3
4

)
++∂µQτσ∂τQµσ

(
−π
4
w̄3
2 −

π

8
w̄3
4

)
.

The complete calculation can be found in the appendix (4.10.3). Including
again the dependence on the center of mass gives us the following form for
the effective interaction term:

∫
dR

{
Qτσ(R)Qτσ(R)

[
4π(w̄1

0 + w̄1
2) +

π

2
w̄1
4

]
+ ∂µQτσ(R)∂µQτσ(R)(

−πw̄3
0 −

π

4
w̄3
2 −

π

16
w̄3
4

)
+ ∂µQµσ(R)∂τQτσ(R)

(
−π
4
w̄3
2 −

π

8
w̄3
4

)
+∂µQτσ(R)∂τQµσ(R)

(
−π
4
w̄3
2 −

π

8
w̄3
4

)}
The last last term can be partially integrated twice:

∫
dR∂µQτσ(R)∂τQµσ(R) =

∫
dAn̂µQτσ(R)∂τQµσ(R)−∫

dRQτσ(R)∂µ∂τQµσ(R) =

∫
dAn̂µQτσ(R)∂τQµσ(R)

−
∫
dAn̂τQτσ(R)∂µQµσ(R) +

∫
dR∂τQτσ(R)∂µQµσ(R),

which allows us to recast the interaction term as:

∫
dR

{
Qτσ(R)Qτσ(R)

[
4π(w̄1

0 + w̄1
2) +

π

2
w̄1
4

]
+ ∂µQτσ(R)

∂µQτσ(R)
(
−πw̄3

0 −
π

4
w̄3
2 −

π

16
w̄3
4

)
+ ∂µQµσ(R)∂τQτσ(R)(

−π
2
w̄3
2 −

π

4
w̄3
4

)}
+

∫
dA [n̂µQτσ(R)∂τQµσ(R)

−n̂τQτσ(R)∂µQµσ(R)]
(
−π
4
w̄3
2 −

π

8
w̄3
4

)
(4.27)
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4.6 The planar free energy functional

Recalling from section 4.3, the general form of the free energy given by eq.
(4.17) can be expressed as:

βF [Q] = −ρ
∫
dr log ζ Q(r)− ρ

∫
drΛ Q(r) : Q(r) +

+
1

2
ρ2

∫
drdr′Q(r): W(4)(r− r′) : Q(r′) + βF0 (4.28)

For the planar case, the second term in the above expression can be rewrit-
ten (also using the results in appendix 4.10.4) as:∫

drΛQ(r) : Q(r) = 2

∫
drΛQ(r)Q(r)(cos2(2α(r)) +

sin2(2α(r))) = 2

∫
drΛQ(r)Q(r), (4.29)

which, together with the results in the previous section, allows us to rewrite
the planar free energy functional as:

βF [Q] = −ρ
∫
dr log (2πI0 [2Λ(r)])− 2ρ

∫
drΛQ(r)Q(r) +

+
1

2
βρ2

∫
dR

{
Qτσ(R)Qτσ(R)

[
4π(w̄1

0 + w̄1
2) +

π

2
w̄1
4

]
+ ∂µQτσ(R)∂µQτσ(R)(

−πw̄3
0 −

π

4
w̄3
2 −

π

16
w̄3
4

)
+∂µQµσ(R)∂τQτσ(R)

(
−π
2
w̄3
2 −

π

4
w̄3
4

)}
+

+

∫
dA [n̂µQτσ(R)∂τQµσ(R)− n̂τQτσ(R)∂µQµσ(R)]

(
−π
4
w̄3
2 −

π

8
w̄3
4

)
+ βF0.

It is convenient to redefine the constants as follows:

k := −2βρ
[
4π(w̄1

0 + w̄1
2) +

π

2
w̄1
4

]
,

k1 :=

(
πw̄3

0 +
π
8 w̄

3
2

)[
4π(w̄1

0 + w̄1
2) +

π
2 w̄

1
4

] ,
k2 :=

(
π
8πw̄

3
2 +

π
16 w̄

3
4

)[
4π(w̄1

0 + w̄1
2) +

π
2 w̄

1
4

] .
By using the explicit values of the components of the two dimensional
Q, the free energy takes the form (see appendix 4.10.5 for details of the
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summations):

βF [Q] = −ρ
∫
dr log (2πI0 [2Λ(r)])− 2ρ

∫
drΛ(r)Q(r) +

ρ

∫
dr

(
−1

2
kQ2 +

1

2
k(k1 + 3k2)

[
(∂xQ)2 + 4Q2(∂xα)

2 +

+ (∂yQ)2 + 4Q2(∂yα)
2
]
+4kk2Q(∂xQ∂yα− ∂yQ∂xα))

+ρ

∫
dA 2kk2Q

2(ny∂xα− nx∂yα) + βF0. (4.30)

4.7 The homogeneous solution

In the two dimensional fully homogeneous case the tensor order parameter
no longer depends on spatial position, and takes on the simple form:

Q = Q

(
1 0
0 −1

)
. (4.31)

Since the derivatives of the tensor order parameter are identically zero, the
free energy can be written as follows:

βF [Q] = −ρV log (2πI0 [2Λ])− 2ρV ΛQ+

βρ2V Q
[
4π(w̄1

0 + w̄1
2) +

π

2
w̄1
4

]
︸ ︷︷ ︸

≡w

+βF0,

where V denotes the volume.

Minimizing the free energy with respect to the scalar oder parameter Q
gives us:

δβF [Q]

δQ
= 0⇒ −N δ log (2πI0 [2Λ])

δQ
− 2NΛ− 2NQ

δΛ

δQ
+ 2βρNwQ = 0

which can be further rewritten as:

− 2N

(
1

I0 [2Λ]

δI0 [2Λ]

δ(2Λ)
+Q

)
δΛ

δQ
− 2NΛ + 2βρNwQ = 0 (4.32)
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Using relation (9.6.27) from Abramovitz & Stegun [112],

δI0 [2Λ]

δ(2Λ)
= I1 [2Λ] ,

the bracket in 4.32 vanishes, which leaves us with the simple solution Λ =
βρwQ . The scalar order parameter is thus:

Q =
I1 [kQ]

I0 [kQ]
, (4.33)

where k ≡ −2βρw.

To solve this last equation for the case where Q≪ 1, close to the phase
transition point, we make the following expansions:

Q = ϵQ1 + ϵ2Q2,

k = k∗ + ϵk1 + ϵ2k2,

rewriting equation 4.33 as:

ϵQ1 + ϵ2Q2 =
I1

[
(k∗ + ϵk1 + ϵ2k2)(ϵQ1 + ϵ2Q2)

]
I0 [(k∗ + ϵk1 + ϵ2k2)(ϵQ1 + ϵ2Q2)]

ϵQ1 +O(ϵ2) =
I1

[
k∗Q1ϵ+O(ϵ2)

]
I0 [k∗Q1ϵ+O(ϵ2)]

.

By Taylor expanding we get:

ϵQ1 +O(ϵ2) =
I1 [0]

I0 [0]
+
I ′1 [0] I0 [0]− I ′0 [0] I1 [0]

I20 [0]
k∗Q1ϵ+O(ϵ2)

=
1

2
k∗Q1ϵ+O(ϵ2).

where we have used I0 (0) = 1, I1 (0) = 0 and I ′1(0) =
1

2
(see formula

(9.6.26) from Abramowitz& Stegun [112]). We thus predict that the critical
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4.8. Rectangular confinement

value of the coupling parameter is given by k∗ = 2. It is also possible to
solve equation 4.33 numerically by a relaxation technique. In figure 4.1 we
can see that the transition indeed occurs at k = 2.

2 4 6 8 10
k0.0

0.2

0.4

0.6

0.8

1.0
Q

Figure 4.1: Plot of the scalar order parameter as function of parameter k.
Note that the transition from the disordered phase to the ordered one occurs
at k = 2.

4.8 Rectangular confinement

The free energy functional of our model (given in equation 4.30) describes
the bulk behavior of a liquid crystal. To mimic confinement we add an
anchoring therm to this free energy. We choose an anchoring free energy
of the form:

βFS [ρ
(1)(r), ω̂] =

∮
∂A

dsfS(b̂(R),Q(R)), (4.34)

where the local anchoring energy term is chosen to reproduce the classic
Rapini-Papoular expression [113],
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fS(n̂(R),Q(R)) =
1

2
√
2

WQ(R) : n̂(R)⊗ n̂(R)√
Q(R) : Q(R)

(4.35)

=
W

2
(n̂(R) · ω̂(R))2 + constant, (4.36)

where n̂(R) is the outward unit normal and ω̂(R) the local director. For
W > 0 this term favors alignment parallel to the wall, the energy being
minimized by an wall tangential organization.

This free energy functional can not be minimized analytically. We there-
fore solve it numerically by discretizing the tensor order parameter on a
square lattice covering the rectangular container. We make use of a adap-
tive simulated annealing technique [114]. In addition to the global minima
our free energy function has a number of local minima. By using a stan-
dard Monte Carlo technique the system would most likely relax to one of
these local minima. The simulated annealing technique, however, allows
us to cool the system progressively. In this way, in the beginning of the
relaxation procedure a lot of non energetically favorable moves happen,
allowing the system to escape from the local minima. The temperature
is then progressively lowered during the course of the minimization, and
the number of moves increasing the energy steadily decreases. We use an
adaptive technique, where, in addition to progressively cooling the system
we also make smaller and smaller Monte Carlo trial moves as the system
approaches its minima. This allows to speed up the relaxation procedure.

For the numerical minimization we choose k = 2.5 which, in the bulk
corresponds to Q ≈ 0.6, so that patterns observed are not an artifact of
the order saturation. This point is in fact just above the bulk isotropic to
nematic transition. For the range of parameters in which the elastic energy
competes with the boundary alignment we find two basic orientational pat-
terns. The minimum energy configuration, which we call the D pattern,
is characterized by alignment along the walls of the container competing
with alignment along one of the diagonals in the central region. At the end
of this diagonal spay occurs. On the other diagonal the nematic creates a
bend to accommodate the two preferential directions of alignment given by
the perpendicular walls (see figure 4.2).
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Figure 4.2: The D pattern in boxes with different aspect ratio. All results
were obtained for k = 2.5, k1 = k2 = 10−5 and, W = 0.5.

The other basic pattern, called U, is characterized by splays in two
adjacent corners of the container, in between which the nematic field creates
a u-like bend (see figure 4.3). In the rectangular geometry the two adjacent
corners are always along the longest side of the container such that the
region in which the nematic is aligned to the wall is increased, resulting
in a lower free energy. As expected, the order in both these two patterns
corresponds to the bulk value throughout the domain, being lower just in
the corners.
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Figure 4.3: The U pattern in boxes with different aspect ratio. All results
were obtained for k = 2.5, k1 = k2 = 10−5 and, W = 0.5.

Occasionally, we also find these patterns with one or two disclination
points. We denote these patterns corresponding to their continuously dis-
torted counterpart as D∗

1 and U∗
1 for the ones containing one defect point,

and as D∗
2 and U∗

2 for the ones containing two such defects (see figure 4.4).
Besides the variation in the orientation around these disclination points we
see a drop in scalar order parameter.
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Figure 4.4: Patterns with one or two disclination points. All results were
obtained for k = 2.5, k1 = k2 = 10−5 and, W = 0.5.

To compare the free energies, we use the system with no elastic coupling
(i.e. k1 = k2 = 0) as a reference. In the square geometry, the D state has
the minimum free energy. The U pattern has a 20% higher free energy.
In the presence of point defects these free energy differences increase even
further, the U∗

1 configuration with one point defect being 23% higher in
energy and the D∗

2 state which contains two point defects is 40% higher.
In the rectangular geometry, the free energy between the D and U states
decreases with increasing container aspect ratio as the director field will
almost everywhere be parallel the longest wall, effectively decoupling the
two end walls, which each impose a free energy cost.

85



Chapter 4. Rectangular confinement: a mean-field theory approach

Figure 4.5: The L pattern in boxes with different aspect ratio. All results
were obtained for k = 2.5, k1 = 10−5, k2 = 10−3 and, W = 0.5.

If we increase the elastic constants significantly, the bulk effects domi-
nate the boundary effects and we predict the appearance of the L state, in
which the director field is uniform and aligned with the longest axis of the
domain (see figure4.5). In this case, we find that at the ‘misaligned’ walls
the system accommodates the mismatch with the boundary potential by
significantly decreasing the degree of local order.
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4.9 Discussion

We designed a microscopic mean-field model which can accommodate both
order and orientation variation. We can apply it to a confined nematic
liquid crystals by introducing in our free energy a boundary according term.
This term allows us to control the strength of the anchoring and does not
require fixing the orientation on the boundary, as it is the case with the
Oseen-Frank elastic model. For a rectangular geometry of the confining
container, we find that, in the regime where the wall anchoring energy
competes with the elastic contribution, the minimum energy configurations
are characterized by continuous distortions such as bends or splays. This
match the predictions of the Oseen-Frank elastic model. In addition to these
continuously deformed configurations, we find that patterns containing one
or two defect points are also stable, but have higher energy. For higher
anchoring the system sacrifices order along the short wall to align along
the longest one, this type of pattern being also forbidden in the Oseen-
Frank model. In experiments of colloidal suspensions of fd-viruses confined
to shallow rectangular chambers all the patterns predicted by our model
appear [115].

4.10 Appendix

4.10.1 Derivation of the effective interaction

The most general interaction expressible as a quadratic in the microscopic
polarizability tenor q is conveniently written as

W (r, ω̂; r′, ω̂′) = W(0)(r− r′)+

q(ω̂) : W
(2)
1 (r− r′) +W

(2)
2 (r− r′) : q(ω̂′) + q(ω̂) : W(4)(r− r′) : q(ω̂′)

This expression already takes care of translation invariance. We still need
to insure that it is properly symmetric under the interchange of the two
sets of particle coordinates and that the W(k) actually are tensors of the
proper rank. First, we need to introduce a shorthand notation for the
separation vector s = sŝ = r1− r2. The tensors can now be built using the
standard isotropic tensors δµν and ϵµντ , the unit vector pointing along the
separation vector ŝ and scalars which can be a function of the magnitude
s of the interparticle separation. The basis for the zero’th rank tensors is
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trivially given by a constant. A basis for the second rank tensors is given
by

δµν (4.37)

ŝµŝν (4.38)

A basis for the fourth rank tensors constructed from these ingredients
is given by

δµνδστ (4.39)

ŝµϵνστ (4.40)

ŝµŝνδστ (4.41)

ŝµŝν ŝσ ŝτ (4.42)

and all other inequivalent tensors obtained by permuting the indices of the
above. Since all contractions are performed on the symmetric tensors q and
I, the relevant tensors can, without loss of generality, be taken to be sym-
metric in the indices that are contracted. Particle interchange symmetry
implies that:

(i) W
(2)
1 = W

(2)
2 = W(2) ,

(ii) W(4) must be symmetric under the interchange of the first two indices
with the second two,

(iii) all tensors must be invariant under the substitution ŝ→ −ŝ.

Together these requirements lead to the following general form

W(0)(s) = w(0)(s) (4.43)

W(2)(s) = w
(2)
0 (s)δµν + w

(2)
2 (s)̂sµŝν (4.44)

W(4)(s) = w(4)
a (s)δµνδστ + w

(4)
b (s) {δµσδντ + δµτδνσ}+ (4.45)

w(4)
c (s) {ŝµŝνδστ + δµν ŝτ ŝσ}+

w
(4)
d (s) {ŝµδνσ ŝτ + ŝµδντ ŝσ + ŝνδµσ ŝτ + ŝνδµτ ŝσ}

+w(4)
e (s)̂sµŝν ŝτ ŝσ

Finally, because q is traceless, all contraction with the unit tensor van-

ish, so that we can set w
(2)
0 (s) = w

(4)
a (s) = w

(4)
c (s) = 0, leaving the five

independent contributions shown in Eq. (4.8).
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4.10.2 Integrals over the orientation of the separation vec-
tors

In two dimension the separation vector has the form ŝ = (cos θ, sin θ). The
integral over the orientation of one component of this vector will be:

∫
dŝ ŝµ =

∫ 2π

0
dθŝµ =


∫ 2π

0
dθ cos θ = 0 for µ = 0∫ 2π

0
dθ sin θ = 0 for µ = 1

∫
dŝ ŝµ = 0 (4.46)

The integral of a product of two components of ŝ is:

∫
dŝŝµŝν =



∫ 2π

0
dθ cos2 θ = π for (µ, ν) = (0, 0)∫ 2π

0
dθ cos θ sin θ = 0 for (µ, ν) ∈ {(0, 1), (1, 0)}∫ 2π

0
dθ sin2 θ = π for (µ, ν) = (1, 1)

∫
dŝŝµŝν = πδµν (4.47)

For a product of three such components the integral will be:

∫
dŝ ŝµŝν ŝτ =



∫ 2π

0
dθ cos3 θ = 0 for (µ, ν, τ) = (0, 0, 0)∫ 2π

0
dθ cos2 θ sin θ = 0 for (µ, ν, τ) ∈ {(0, 0, 1),

(0, 1, 0), (0, 0, 1)}∫ 2π

0
dθ cos θ sin2 θ = 0 for (µ, ν) ∈ {(0, 1, 1),

(1, 0, 1), (1, 1, 0)}∫ 2π

0
dθ sin3 θ = 0 for (µ, ν, τ) = (1, 1, 1)

∫
dŝ ŝµŝν ŝτ = 0 (4.48)

89



Chapter 4. Rectangular confinement: a mean-field theory approach

Integrals of four components give:

∫
dŝ ŝµŝν ŝτ ŝσ =



∫ 2π

0
dθ cos4 θ =

3π

4
for (µ, ν, τ, σ) = (0, 0, 0, 0)∫ 2π

0
dθ sin4 θ =

3π

4
for (µ, ν, τ, σ) = (1, 1, 1, 1)∫ 2π

0
dθ cos2 θ sin2 θ =

π

4
for (µ, ν, τ, σ) ∈ {(0, 0, 1, 1),

(0, 1, 0, 1), (1, 0, 0, 1), (1, 1, 0, 0), (1, 0, 1, 0), (0, 1, 1, 0)}
0 otherwise

This last result can be rewritten as:∫
dŝ ŝµŝν ŝσ ŝτ =

π

4
(δµνδστ + δµσδντ + δµτδνσ) (4.49)

The integral of products five ŝ components will be 0:∫
dŝ ŝµŝν ŝσ ŝτ ŝβ = 0 (4.50)

For products of six components:

∫
dŝ ŝµŝν ŝσ ŝτ ŝβ ŝλ =



∫ 2π

0
dθ cos6 θ =

5π

8
for all indices equal to 0∫ 2π

0
dθ sin6 θ =

5π

8
for all indices equal to 1∫ 2π

0
dθ cos2 θ sin4 θ =

π

8
for any 2 indices equal to

0 and the rest of them equal to 1∫ 2π

0
dθ cos4 θ sin2 θ =

π

8
for any 2 indices equal to

1 and the rest of them equal to 0
0 otherwise

It is more convenient to write the result in terms of Kronecker deltas
as follows:∫

dŝ ŝµŝν ŝσ ŝτ ŝβ ŝλ =
π

8
(δµν(δστδβλ + δσβδτλ + δσλδτβ) +

δµσ(δντδβλ + δνβδτλ + δνλδτβ) + δµτ (δνσδβλ + δνβδσλ +

δνλδσβ) + δµβ(δνσδτλ + δντδσλ + δνλδστ ) + δµλ(δνσδτβ +

δντδσβ + δνβδστ )) (4.51)
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4.10.3 Planar effective interaction term: the integral over
the separation vector

The only two terms in the effective interaction giving non-vanishing con-
tribution upon integration over the separation vector s are:

∫
ds QµνW

(4)
µντσ(s)Qτσ −

1

4

∫
ds ∂λQµνsλW

(4)
µντσ(s)∂βQτσsβ. (4.52)

By inserting the explicit form of W
(4)
µντσ(s), given by (4.25), the first

term in the above relation is becomes:

∫
ds QµνW

(4)
µντσ(s)Qτσ =

∫
ds Qµνw

(4)
0 (s)(δµσδντ + δµτδνσ)Qτσ +

+

∫
ds Qµνw

(4)
2 (s)(ŝµδνσ ŝτ + ŝνδµσ ŝτ + ŝµδντ ŝσ + ŝνδµτ ŝσ)Qτσ +

+

∫
ds Qµνw

(4)
4 (s)ŝµŝν ŝσ ŝτQτσ,

which can be further rewritten as:

∫
ds 2w

(4)
0 (s)QτσQτσ +

+

∫
ds w

(4)
2 (s) (Qµσ ŝµŝτ +Qσν ŝν ŝτ +Qµτ ŝµŝσ +Qτν ŝν ŝσ)︸ ︷︷ ︸

4Qµσ ŝµŝτ

Qτσ +

+

∫
ds w

(4)
4 (s)Qµν ŝµŝν ŝσ ŝτQτσ.

In polar coordinates this last result reads:

∫
ds s

[
2w

(4)
0 (s)QτσQτσ

∫ 2π

0
dθ + 4w

(4)
2 (s)

∫ 2π

0
dθ Qµσ ŝµŝτQτσ+

+ w
(4)
4 (s)

∫ 2π

0
dθQµν ŝµŝν ŝσ ŝτQτσ

]
.
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Making use of the results in appendix 4.10.2 we get:∫
ds s

[
4πw

(4)
0 (s)QτσQτσ + 4πw

(4)
2 (s)QµσδµτQτσ+

π

4
w

(4)
2 (s)QµνQτσ(δµνδστ + δµσδντ + δµτδνσ)

]
=∫

ds s
[
4πw

(4)
0 (s)QτσQτσ + 4πw

(4)
2 (s)QτσQτσ+

π

4
w

(4)
2 (s)(QµµQττ +QσνQνσ +QτνQτν)

]
.

Since Q is traceless, the sum Qµµ = 0. The final result for the first
term in 4.52 is:

QτσQτσ

[
4π

∫
ds s(w

(4)
0 (s) + w

(4)
2 (s)) +

π

2

∫
ds sw

(4)
4 (s)

]
. (4.53)

For the second thern in 4.52 we follow the same procedure, first inserting

the explicit form of W
(4)
µντσ(s):

−1

4

∫
ds ∂λQµνsλW

(4)
µντσ(s)∂βQτσsβ =

= −1

4

∫
ds s2∂λQµν ŝλW

(4)
µντσ(s)∂βQτσ ŝβ =

= −1

4

∫
ds s2∂λQµν ŝλ

[
w

(4)
0 (s)(δµσδντ + δµτδνσ) +

+w
(4)
2 (s)(ŝµδνσ ŝτ + ŝnuδµσ ŝτ + ŝµδντ ŝσ + ŝνδµτ ŝσ) +

+ w
(4)
4 (s)ŝµŝν ŝσ ŝτ

]
∂βQτσ ŝβ.

By going again to polar coordinates we obtain:

−1

4

∫
ds s3

∫ 2π

0
dθ

[
2w

(4)
0 (s)∂λQστ∂βQστ +

+2w
(4)
2 (s)(∂λQµσ ŝλŝµŝτ ŝβ∂βQστ + ∂λQσν ŝλŝν ŝτ ŝβ∂βQστ +

+∂λQµτ ŝλŝµŝσ ŝβ∂βQστ + ∂λQτν ŝλŝν ŝσ ŝbeta∂βQστ ) +

+w
(4)
4 (s)∂λQµν∂βQτσ ŝλŝµŝν ŝσ ŝτ ŝβ

]
. (4.54)
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Upon performing the dθ integration the later relation becomes:

−π∂λQστ∂βQστδλβ

∫
ds s3w

(4)
0 (s)− π

16
[∂λQµτ (δλµδτβ + δλτδµβ +

+δλβδµτ ) ∂βQστ + ∂λQσν(δλνδτβ + δλτδνβ + δλβδντ )∂βQστ +

+∂λQµτ (δλµδσβ + δλσδµβ + δλβδµσ)∂βQστ + ∂λQτν (δλνδσβ+

+δλσδνβ + δλβδνσ) ∂βQστ ]

∫
ds s3w

(4)
2 (s)− π

32
∂λQτν∂βQστ

[δλµ(δνσδτβ + δντδσβ + δνβδστ ) + δλν(δµσδτβ + δµτδσβ + δµβδστ ) +

+δλσ(δµνδτβ + δµτδνβ + δµβδντ ) + δλτ (δµνδσβ + δµσδνβ + δµβδνσ) +

+ δλβ(δµνδστ + δµσδντ + δµτδνσ)]

∫
ds s3w

(4)
4 (s),

which can be rewritten as:

−π∂βQστ∂βQστ

∫
ds s3w

(4)
0 (s)− π

16
(∂µQµσ∂τQστ + ∂τQµσ∂µQστ +

+∂βQµσ∂βQσµ + ∂νQσν∂τQστ + ∂τQσν∂νQστ + ∂βQσν∂βQσν +

+∂µQµτ∂σQστ + ∂σQµτ∂µQστ + ∂βQµτ∂βQµτ + ∂νQτν∂σQστ +

+∂σQτν∂νQστ + ∂βQτν∂βQντ )

∫
ds s3w

(4)
2 (s)− π

32
[∂µQµν∂βQστ

(δνσδτβ + δντδσβ + δνβδστ ) + ∂νQµν∂βQστ (δµσδτβ + δµτδσβ + δµβδστ ) +

+∂σQµν∂βQστ (δµνδτβ + δµτδνβ + δµβδντ ) + ∂τQµν∂βQστ (δµνδσβ +

+ δµσδνβ + δµβδνσ) + ∂βQµν∂βQστ (δµνδστ + δµσδντ + δµτδνσ)]∫
ds s3w

(4)
4 (s) =

= −π∂βQστ∂βQστ

∫
ds s3w

(4)
0 (s)− π

4
(∂µQµσ∂τQστ + ∂τQµσ∂µQστ +

+∂τQµσ∂τQσµ)

∫
ds s3w

(4)
2 (s)− π

32
[∂µQµσ∂τQστ + ∂µQµτ∂σQστ+

+∂µQµβ∂βQσσ + ∂νQσν∂τQστ + ∂νQτν∂σQστ + ∂νQβν∂βQσσ +

+∂σQνν∂τQστ + ∂σQτν∂νQστ + ∂σQβν∂βQνσ + ∂τQνν∂σQστ +

+∂τQσν∂νQστ + ∂τQβν∂βQντ + ∂βQνν∂βQσσ + ∂βQσν∂βQσν +

+ ∂βQτν∂βQντ ]

∫
ds s3w

(4)
4 (s).
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The last result can be further simplified to :

−π∂βQστ∂βQστ

∫
ds s3w

(4)
0 (s)− π

4
(∂µQµσ∂τQστ + ∂τQµσ∂µQστ +

+∂τQµσ∂τQσµ)

∫
ds s3w

(4)
2 (s)− π

32
[4 ∂µQµσ∂τQτσ + 4 ∂µQτσ∂τQµσ+

2 ∂µQτσ∂µQτσ + 4 ∂µQµσ∂σ Qττ︸︷︷︸
=0

+∂µ Qνν︸︷︷︸
=0

∂µQσσ︸︷︷︸
=0

∫
ds s3w

(4)
4 (s).

By rearranging the terms we get:

∂µQτσ∂µQτσ

(
−π

∫
ds s3w

(4)
0 (s)− π

4

∫
ds s3w

(4)
2 (s)− π

16

∫
ds s3w

(4)
4 (s)

)
+

+∂µQµσ∂τQτσ

(
−π
4

∫
ds s3w

(4)
2 (s)− π

8

∫
ds s3w

(4)
4 (s)

)
+

+∂µQτσ∂τQµσ

(
−π
4

∫
ds s3w

(4)
2 (s)− π

8

∫
ds s3w

(4)
4 (s)

)
.

We introduce the following notation:∫
ds skw(4)

p (s) ≡ w̄k
p , (4.55)

and rewrite the result as:

∂µQτσ∂µQτσ

(
−πw̄3

0 −
π

4
w̄3
2 −

π

16
w̄3
4

)
+ ∂µQµσ∂τQτσ(

−π
4
w̄3
2

π

8
w̄3
4

)
+ ∂µQτσ∂τQµσ

(
−π
4
w̄3
2 −

π

8
w̄3
4

)
. (4.56)

Putting the results 4.53 and 4.56 together gives us the following form
for the planar effective interaction (4.52)

QτσQτσ

[
4π(w̄1

0 + w̄1
2) +

π

2
w̄1
4

]
+ ∂µQτσ∂µQτσ(

−πw̄3
0 −

π

4
w̄3
2 −

π

16
w̄3
4

)
+ ∂µQµσ∂τQτσ

(
−π
4
w̄3
2 −

π

8
w̄3
4

)
+∂µQτσ∂τQµσ

(
−π
4
w̄3
2 −

π

8
w̄3
4

)
. (4.57)
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4.10.4 The explicit value of ΛQ(r)

In order to write the free energy functional in two dimensions we need know
the explicit form of the field Λ Q(r). Let us make the following ansatz:

ΛQ(r) = ΛQ(r)

(
cos(2α(r)) sin(2α(r))
sin(2α(r)) − cos(2α(r))

)
. (4.58)

This ansatz should obey the constraint :

Q(r) =

∫
dω̂q(ω̂)

exp {−ΛQ(r) : q(ω̂)}
ζ Q(r)

, (4.59)

where

ζ Q(r) =

∫
dω̂ exp {−ΛQ(r) : q(ω̂)}, (4.60)

and the two dimensional polarizability tensor is:

q(ω̂) = 2 ω̂ ⊗ ω̂ − I =
(

2ω2
1 − 1 2ω1ω2

2ω1ω2 2ω2
2 − 1

)
.

Using the polar orientation ω̂ = (cos θ, sin θ) the above expression can be
rewritten as:

q(θ) =

(
2 cos2(θ)− 1 2 cos(θ) sin(θ)
2 cos(θ) sin(θ) 2 sin2(θ)− 1

)
=

=

(
cos(2θ) sin(2θ)
sin(2θ) − cos(2θ)

)
.

We start by computing the exponent in 4.60:

−ΛQ(r) : q(ω̂) = −Λµν(r)qµν(θ) = −Λ11(r)q11(θ)− Λ12(θ)q12(θ)−
−Λ21(r)q21(θ)− Λ22(r)q22(θ) = −Λ(r)(cos(2α(r)) cos(2θ) +

+ sin(2α(r)) sin(2θ) + sin(2α(r)) sin(2θ) + cos(2α(r)) cos(2θ)) =

= −2Λ(r)(cos(2α(r)) cos(2θ) + sin(2α(r)) sin(2θ)) = −2Λ(r) cos(2θ − 2α(r)),

which allows us to rewrite 4.60 as:

ζ Q(r) =

∫ 2π

0
dθ e−2Λ(r) cos(2θ−2α(r)).
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In this last integral we make a variable shift θ′(r) = 2θ − 2α(r) obtaining:

ζ Q(r) =
1

2

∫ 4π−2α(r)

−2α(r)
dθ′(r) e−2Λ(r) cos(θ′(r)).

Note that the result is invariant under contour rotation. By using relation
(9.6.16) from Abramowitz & Stegun [112] we get:

ζ Q(r) = 2πI0 [2Λ(r)] , (4.61)

where I0 is the modified Bessel function.
The tensor of the right hand side of 4.59 is symmetric and traceless.

The 11-component, which is also equal to minus the 22-component, can be
written as:

1

ζ Q(r)

∫ 2π

0
dθ cos(2θ) e−2Λ(r) cos(2θ−2α(r)),

while the other two equal components (12 and 21) read:

1

ζ Q(r)

∫ 2π

0
dθ sin(2θ) e−2Λ(r) cos(2θ−2α(r)).

Using again the same variable sift as before gives us:

1

2 ζ Q(r)

∫ 4π−2α(r)

−2α(r)
dθ′(r) cos(θ′(r) + 2α(r))e−2Λ(r) cos(θ′(r)),

and respectivly:

1

2 ζ Q(r)

∫ 4π−2α(r)

−2α(r)
dθ′(r) sin(θ′(r) + 2α(r))e−2Λ(r) cos(θ′(r)).

The last two expression can be recast in the following form:

1

2 ζ Q(r)

∫ 4π−2α(r)

−2α(r)
dθ′(r)

[
(cos(θ′(r)) cos(2α(r))− sin(θ′(r)) sin(2α(r)))

e−2Λ(r) cos(θ′(r))
]
=

cos(2α(r))

2 ζ Q(r)

∫ 4π−2α(r)

−2α(r)
dθ′(r) cos(θ′(r))e−2Λ(r) cos(θ′(r)) −

−sin(2α(r))

2 ζ Q(r)

∫ 4π−2α(r)

−2α(r)
dθ′(r) sin(θ′(r))e−2Λ(r) cos(θ′(r)),
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and

1

2 ζ Q(r)

∫ 4π−2α(r)

−2α(r)
dθ′(r)

[
(sin(θ′(r)) cos(2α(r)) + cos(θ′(r)) sin(2α(r)))

e−2Λ(r) cos(θ′(r))
]
=

cos(2α(r))

2 ζ Q(r)

∫ 4π−2α(r)

−2α(r)
dθ′(r) sin(θ′(r))e−2Λ(r) cos(θ′(r))

︸ ︷︷ ︸
≡A

+

+
sin(2α(r))

2 ζ Q(r)

∫ 4π−2α(r)

−2α(r)
dθ′(r) cos(θ′(r))e−2Λ(r) cos(θ′(r))

︸ ︷︷ ︸
≡B

.

The integral A vanishes for symmetry reasons. To obtain the result of
the integral B we will use the relation (9.6.19) from Abramowitz & Stegun
[112]to obtain

B = −4πI1 [2Λ(r)] .

Finally, the result for the tensor on the right hand side of 4.59 is:

− I1 [2Λ(r)]

I0 [2Λ(r)]

(
cos(2α(r)) sin(2α(r))
sin(2α(r)) − cos(2α(r))

)
. (4.62)

Since

Q(r) = Q(r)

(
cos(2α(r)) sin(2α(r))
sin(2α(r)) − cos(2α(r))

)
, (4.63)

in order for the constraint 4.59 to be obeyed, we should have:

Q(r) = −I1 [2Λ(r)]
I0 [2Λ(r)]

. (4.64)

4.10.5 Computing the sums over components of Q

The free energy functional is written is terms of summations over com-
ponents of the tensor order parameter and their derivatives. For the two
dimensional case, using the explicit value of these components and per-
forming the summation simplifies the form of the free energy functional.

QτσQτσ = Q11 +Q12 +Q21 +Q22 = Q2(cos2 2α+ sin2 2α+

+sin2 2α+ cos2 2α) = 2Q2 (4.65)
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∂µQτσ∂µQτσ = 2(∂xQ11)
2 + 2(∂xQ12)

2 + 2(∂yQ11)
2 + 2(∂yQ12)

2 =

= 2
[
(∂x(Q cos 2α))2 + (∂x(Q sin 2α))2 + (∂y(Q cos 2α))2 + (∂y(Q sin 2α))2

]
=

= 2
[
(∂xQ cos 2α− 2Q sin 2α∂xα)

2 + (∂xQ sin 2α+ 2Q cos 2α∂xα)
2+

+(∂yQ cos 2α− 2Q sin 2α∂yα)
2 + (∂yQ sin 2α+ 2Q cos 2α∂yα)

2
]
=

= 2
[
(∂xQ)2 cos2 2α+ 4Q2 sin2 2α(∂xα)

2 − 4Q cos 2α sin 2α∂xQ∂xα+

+ (∂xQ)2 sin2 2α+ 4Q2 cos2 2α(∂xα)
2 + 4Q cos 2α sin 2α∂xQ∂xα+

(∂yQ)2 cos2 2α+ 4Q2 sin2 2α(∂yα)
2 − 4Q cos 2α sin 2α∂yQ∂yα+

+ (∂yQ)2 sin2 2α+ 4Q2 cos2 2α(∂yα)
2 + 4Q cos 2α sin 2α∂yQ∂yα

]
=

= 2
[
(∂xQ)2 + 4Q2(∂xα)

2 + (∂yQ)2 + 4Q2(∂yα)
2
]

∂µQµσ∂τQτσ = ∂xQ11∂xQ11 + ∂xQ12∂xQ12 + ∂xQ11∂yQ21 +

+∂xQ12∂yQ22 + ∂yQ21∂xQ11 + ∂yQ22∂xQ12 + ∂yQ21∂yQ21 +

+∂yQ22∂yQ22 = (∂xQ11)
2 + (∂xQ12)

2 + 2∂xQ11∂yQ21 + 2∂xQ12∂yQ22 +

+(∂yQ21)
2 + (∂yQ22)

2 = (∂xQ cos 2α− 2Q sin 2α∂xα)
2 +

(∂xQ sin 2α+ 2Q cos 2α∂xα)
2 + 2(∂xQ cos 2α− 2Q sin 2α∂xα)(∂yQ sin 2α+

+2Q cos 2α∂yα) + 2(∂xQ sin 2α+ 2Q cos 2α∂xα)(−∂yQ cos 2α+ 2Q sin 2α∂yα) +

+(∂yQ sin 2α+ 2Q cos 2α∂yα)
2 + (∂yQ cos 2α− 2Q sin 2α∂yα)

2 =

= (∂xQ)2 + 4Q2(∂xα)
2 + 2(2Q cos2 2α∂xQ∂yα− 2Q sin2 2α∂yQ∂xα+

−2Q cos2 2α∂yQ∂xα+ 2Q sin2 2α∂xQ∂yα) + (∂yQ)2 + 4Q2(∂yα)
2 =

= (∂xQ)2 + 4Q2(∂xα)
2 + 4Q(∂xQ∂yα− ∂yQ∂xα) + (∂yQ)2 + 4Q2(∂yα)

2

nµQτσ∂τQµσ − nτQτσ∂µQµσ = nxQ11∂xQ11 + nxQ12∂xQ12 +

+nxQ21∂yQ11 + nxQ22∂yQ21 + nyQ11∂xQ21 + nyQ12∂xQ22 +

+nyQ21∂yQ21 + nyQ22∂yQ22 − nxQ11∂xQ11 − nxQ11∂yQ21 −
−nxQ12∂xQ12 − nxQ12∂yQ22 − nyQ21∂xQ11 − nyQ21∂yQ21 −
−nyQ22∂xQ12 − nyQ22∂yQ22 = nx(Q21∂yQ11 +Q22∂yQ12 −
−Q12∂yQ22 −Q11∂yQ21) + ny(Q11∂xQ21 +Q12∂xQ22 −

−Q21∂xQ11 −Q22∂xQ12) = 2nx(Q21∂yQ11 −Q11∂yQ21) +

2ny(Q11∂xQ21 −Q21∂xQ11) = 2nx(Q sin 2α(∂yQ cos 2α− 2Q sin 2α∂yα)−
−Q cos 2α(∂yQ sin 2α+ 2Q cos 2α∂yα)) + 2ny(Q cos 2α(∂xQ sin 2α+ 2Q cos 2α∂xα)−

−Q sin 2α(∂xQ cos 2α− 2Q sin 2α∂xα)) = 2nx(−2Q2∂yα) + 2ny(2Q
2∂xα) =

= 4Q2(ny∂xα− nx∂yα)
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5
The mechanical interplay between

cytoskeletal filaments and cell
membrane as a driver for the

spatial organization of cells

The shape of animal cells is regulated by the interplay between the cytoskeleton
and the enclosing cellular membrane. Both F-actin and microtubules are rela-
tively stiff filamentous protein assemblies. In processes such as animal cell division
or cell migration, networks of these filaments dynamically reorganize themselves
in the intracellular space. On the one hand they exert forces on the membrane
and deform it. On the other hand, the membrane itself is under tension and will
therefore also exert forces on the cytoskeleton, thus constraining and influenc-
ing its organization. This mutual interplay of cytoskeleton and membrane shape
remains poorly understood, since it is hard to dissect in the crowded intracellu-
lar environment. However, bio-mimetic systems such as liposomes and emulsion
droplets encapsulating filaments are successfully used as minimal experimental
model systems to study this problem. Inspired by this synthetic biology approach,
we study the interplay between the organization of cytoskeletal filaments and the
shape of the confining membrane using computer simulations.
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5.1 Introduction

The mechanical interaction between the cytoskeleton and the cellular mem-
brane is crucial for living cells. This interaction defines the shape of the
cell and in turn constrains the spatial organization of the cytoskeleton. All
animal cells have a lipid bilayer membrane that separates the cytoplasm
from the extra-cellular space. Unlike plants and bacteria, animal cells do
not have a cell wall to rigidify the membrane, and thus can be deformed.
The enclosed cytoskeletal polymers grow against it and modify its shape.
However, the cytoskeletal filaments are flexible themselves, and when they
encounter the membrane they often bend. This interaction plays an im-
portant part in key processes such as migration and division. During mi-
gration, actin pushes against the membrane and creates thin protrusions
called lamellipodia [24]. The actin network is in turn forced to organize
itself inside this flat confining geometry. During cell division, microtubules
radiating outward from centrosomes exert forces on the membrane, and in
turn are acted upon by the membrane, causing them to bend or buckle.
Together these processes are responsible for the proper positioning and ori-
entation of the mitotic spindle [116]. By deforming the membrane, the
cytoskeleton creates an anisotropic geometrical environment, which in turn
influences the spatial organization of the filaments, thus contributing to cell
polarization. Strikingly, this interaction is also important not only in com-
plete cells, but also in cell fragments. An example is blood platelets: In the
inactivate state platelets have a discoid shape defined by a ring of strongly
bent microtubules located on the circumference of the disk [117, 118, 119].
The ring is essential for maintaining the discoidal shape, and disassembling
this ring makes the platelets become spherical [21].

Clearly, living cells are very complex systems containing many compo-
nents with complex interactions. The modern synthetic biology approach
aims to understand, and perhaps eventually build cells, by bottom-up engi-
neering of cells from a few essential components. Experiments along these
lines, like enclosing cytoskeletal filaments inside lipid vesicles, are proving
to be very useful for understanding the mechanical interaction between the
cytoskeleton and the membrane [120, 43, 44, 121]. This method is more
suited to study the actin cortex [46], since the forces that a single filament
applies to the membrane are generally small compared to the elasticity and
surface tension of the bilayer. To understand the mechanical interaction
between microtubules and membranes emulsion droplets offer a more ap-
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propriate set-up. Microtubules are stiffer than actin filaments and, when
pushing against just a naked bilayer, they can create large deformations.
Most experimental studies so far [50, 122, 49] focused on this regime, in
which the filaments are very stiff compared to the membrane. In a biolog-
ical context these large deformations are less common since the membrane
is reinforced by the actin cortex. Emulsion droplets are much stiffer than
liposomes due to the oil buffer in which they are immersed. This offers
a more relevant biological regime in which the stiffness of the membrane
and the filaments are comparable. It is thus a powerful tool to study self
organization of microtubules in confinement [123] and microtubule aster
positioning [48]. It can also be useful for studying actin bundles in con-
finement since actin filaments crosslinked, for example, with fascin reach
persistence lengths comparable to that of microtubules [124]. Experiments
by Feng-Ching Tsai (group of Prof Dr Gijsje Koenderink, AMOLF) show
that actin filaments bundled by fascin enclosed in emulsion droplets self or-
ganize, depending on their length, in either asters or circumferential rings
[125]. Microtubules confined to emulsion droplets exhibit more diversity
in the organization as a function of length as the experiments of Sophie
Roth (group of Prof Dr Marileen Dogterom, TU Delft) reveal [126]. Short
enough filaments remain straight and are evenly dispersed in the volume
of the droplet. However, if they are longer, such that they are effectively
constrained by the droplet walls, they form either a single bundle along a
diameter of the droplet or an aster-like structure in the equatorial plane.
Bipolar structures and patterns characterized by one circumferential ring
were also observed. The difference between the patterns formed by these
two cytoskeletal polymers is due to their bending stiffness compared to the
surface tension and the elasticity of the monolayer. The shape of a liposome
or of an emulsion droplet in the absence of any external forces is spherical
[127]. Actin bundles are less stiff and do not deform the droplet whereas
microtubules change the shape of the droplet into an ellipsoid, which is
either flattened (oblate) or elongated (prolate). This creates an asymmet-
ric confinement volume which exhibits preferential directions of alignment
giving rise to anisotropic structures such as bundles.

Inspired by these intriguing experimental results, we study the mecha-
nisms that dictate the mechanical interactions between the membrane and
the cytoskeletal filaments. So far, the theoretical studies [128, 129, 130] have
mostly focused on deformation of membranes by a rigid filaments. Studies
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of semiflexible polymers enclosed in spherical cavities deal with the regime
where the persistence length is low compared to the confining volume di-
mensions [131, 132] which is more relevant, for example, for chromatin pack-
ing inside the nucleus rather than for cytoskeletal filaments. Other studies
concentrate on a confined closed semi-flexible ring [133, 134, 135, 136, 137]
or analyze the regime in which the polymer confined by a soft membrane is
several times longer than the dimension of the confining volume [138, 139].
We aim to investigate the interplay between the forces applied by the cy-
toskeleton and the elastic response of the membrane in a biologically more
relevant regime, where these responses are comparable. We direct our at-
tention to the regime where the confined polymers have a length up to the
circumference of the droplet since this seems to correspond most closely to
the experimental situation.

The problem of mechanical interplay between the cytoskeletal polymers
and the confining membrane is rather complex, since it relies on the mini-
mization of both the the elastic energy of the cytoskeleton enclosed and of
the confining surface. This problem can be divided in several parts, em-
ploying a combination of computer simulations and elasticity theory. In
this chapter, using Monte Carlo simulation, we study the organization of
semiflexible filaments inside fixed ellipsoidal geometries. These simulations
allow us to determine the organization of the filaments for different geo-
metrical parameters of the confining surface. For each set of parameters
the filaments will adopt the most favorable configuration. The simulations
also enable us to study the influence of the total length of the filaments
and of their rigidity on the cytoskeletal organization as a function of the
asymmetry of the confining surface. The elastic energy of the membrane
and the surface tension can be computed analytically and, in combination
with the bending energy of the enclosed cytoskeleton — determined from
the curvature predicted by the simulations- gives the minimum energy of
the whole system. More details on this procedure will be given in the final
chapter.

5.2 Semiflexible polymers confined in ellipsoidal
volumes

Microtubules as well as bundles of actin crosslinked with fascin confined
in spheroidal volumes with an average diameter of 10-20 µm behave like
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an elastic rod. At this length scale the thermal fluctuations can be ig-
nored since the persistence length of these polymers or polymers bundles
is around two orders of magnitude higher than the maximum length avail-
able inside the confining volume. Microtubules or F-actin bundles are fairly
accurately described by semiflexible polymers. We model semiflexible poly-
mers as chains of spherocylindrical segments of length l and diameter D,
two neighboring segments sharing the same capping sphere (see figure 5.1
(a)). Each joint has a bending energy associated to it that is a function of
the angle between the segments. The total bending energy of the polymer
is a sum of the bending cost of all of its joints. For such a semiflexible chain
the bending energy can thus be written as:

UB =
κ

2l

n∑
i=2

θ2i−1,i (5.1)

where κ is the bending constant, θi−1,i the angle between two adjacent
segments and n the total number of segments. The bending constant κ can
be directly related to the persistence length via the following relation:

lp =
κ

kBT
(5.2)

where kB is the Boltzmann constant and T the temperature [7]. In the
absence of forces applied to it, the polymer will adopt a straight rod con-
figuration, corresponding to the minimum of the bending energy. As the
polymers are extended tree-dimensional objects, characterized by a thick-
ness and a total length, they will interact with each other and the enclosing
membrane via steric repulsion. In the experiments on reconstructed sys-
tems, the polymer density is very low (volume fraction of the polymers
in the droplets being ∼ 0.1% [126, 125]). Thus the polymer-polymer in-
teractions can therefore in first instance be neglected. We will study the
behavior of one single polymer, obtaining the multi-polymer patterns as a
superposition of single polymer configurations. The straight rod configura-
tion of a polymer can be maintained as long as there is enough space inside
the confining volume. When the polymer exceeds in length the diameter of
the confining volume it becomes constrained by the walls having to bend
in order to fit inside.

When F-actin bundles are confined in emulsion droplets, the shape of
the droplet remains spherical. However, for microtubules, slightly ellip-
soidal droplets (both oblate and prolate) were observed. This asymmetry
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of the confining volume gives rise to organizations that are unlikely to ap-
pear in the spherical geometry, such as single bundles or planar asters. To
understand how this asymmetry influences the organization of the polymers
inside, we design Monte Carlo simulations of semiflexible polymers enclosed
in rigid ellipsoidal surfaces. We obtain the ellipsoidal surface by deforming
a sphere into a rotation ellipsoid, which can be either oblate or prolate,
keeping the enclosed volume constant. The ellipsoids are fully described by
the lengths of the two symmetry axes Lz and Lx = Ly (see figure 5.1 (b)).
For the oblate geometry we have Lz < Lx, whereas the prolate geometry
obeys Lz > Lx. We define the asymmetry (also called the aspect ratio) as
the ratio of the two principal axis as:

λ =
Lz

Lx
. (5.3)

We analyze the regime where the parameter λ is between 0.5 and 2.

Figure 5.1: (a) Illustration of our semiflexible polymer. (b) Illustration of
the confining surface (left— oblate ellipsoid, center— sphere and right—
prolate ellipsoid).
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5.2.1 Simulation technique

We use a conformational-bias Monte Carlo technique [66] to grow a single
polymer at the time inside the confining surface. This technique of grow-
ing polymers bond-by bond is based on the Rosenbluth scheme [140] which
allows generation of ensembles of polymer conformations. However the con-
figurations generated by the Rosenbluth method are not necessarily a repre-
sentative sample of all the possible configurations. The conformational-bias
Monte Carlo technique introduces a bias in the acceptance rate which en-
sures that the sampling is done according to the Boltzmann weight of the
configuration.

The standard continuous conformational-bias Monte Carlo works as fol-
lows: assuming we have already grown i− 1 segments, for each new bond i
we want to grow we generate a set of k trail bonds, each trail bond being
generated according to the Boltzmann weight associated with the bending
energy. The probability to generate a bond with orientation b is:

pbondi (b)db = Ce−βubond
i (b)db = Ce−

lp
2l
θ2i−1,idb, (5.4)

where C is a normalization constant. In order to choose one of these k
bonds we use the external potential. Since we have steric repulsion both
in between the spherocylinders constituting the chain and in between the
polymer and the wall, the Boltzmann factor e−βuext

i (b) of a trial segment
will be 0 when the segment overlaps with another one or with the wall and
will be 1 otherwise. The overlap criteria between an ellipsoidal surface and
a rod is discussed in the appendix 5.5.1. The probability of choosing a bond
j out of our set is:

pexti (bj) =
e−βuext

i (bj)

wext
i (j)

, (5.5)

where

wext
i (j) =

k∑
m=1

e−βuext
i (bm) (5.6)

is defined as the Rosenbluth factor. The chosen bond becomes part of our
chain and we repeat the procedure until reach the desired length L = nl
of the polymer. For the full chain we compute the Rosenbluth weight as a
product of Rosenbluth factors of each segment:

W ext(new) =
n∏

i=1

wext
i (j). (5.7)
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The Rosenbluth factor of the initial segment is given by:

wext
1 (j) = ke−βuext

i (b1) = k. (5.8)

This procedure allows us to grow a new polymer. The acceptance rate of
this new configuration is:

acc(old→ new) = min(1,W ext(new)/W ext(old)) (5.9)

Therefore, if the new chain has a lower Rosenbluth weight, it is always
accepted, otherwise it is accepted with a probability that depends on the
ratio of their Rosenbluth weights. This procedure ensures that the ensem-
ble of polymers we generate is representative for the ensemble of possible
configurations [141].

Figure 5.2: (a) Probability distribution from which trial segments are choose
for two different persistence length. (b) Probability distribution associated
with the bending and biased distribution for lp = 200µm. The bias angle is
θ1 = 0.1. We only show the probability distributions up to θ = π/8, since
above this value, for the persistence lengths considered, they are zero.

The above procedure works very well for polymers that do not exceed in
length the diameter of the confining surface or for polymers with a persis-
tence length comparable to the distance available in the confining volume.
When the polymer becomes stiffer the probability distribution from which
we draw the new bonds becomes narrower (see figure 5.2 (a)), the angle
that the new bond make with the existing one becoming very small. Effec-
tively the polymer is almost straight. When the polymer is short enough
that it can fit inside the confining surface without bending, the technique is
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still efficient. However, when the polymer is longer than the minimum dis-
tance available it has to bend in order to fit. The probability of generating
bent polymers is low, but the straight configurations almost surely collide
with the wall and are therefore rejected. In this regime this simulation
technique becomes too costly, the computational time needed to generate
a representative ensemble being too high.

It is possible to modify the above scheme by introducing an additional
bias [142]. The idea is the following: instead of generating the new bonds
according to the Boltzmann weight associated with the bending energy we
generate them from a different distribution that is more likely to result in
accepted configurations. One of the problems of standard conformational-
bias Monte Carlo technique is that, in confinement, the polymer ”feels” the
wall only when it is at maximum one bond length away from it. This means
that, especially for stiff polymers, the chain grows more or less straight
towards the wall and in its close proximity, almost all the possible trial seg-
ments will go through the wall leading to the rejection of the whole polymer
(see figure 5.3 (a)). In order to avoid this problem, the bonds can be sam-
pled from a distribution that prefers segments to be closer in orientation to
the tangent to the wall as the distance to the wall becomes smaller. This
potential generates polymers that deflect from the wall (see figure 5.3 (b))
and is effective in a simple geometry, such a the cylindrical one. In the
case of long stiff polymers confined in ellipsoidal volumes computing the
distance from a point to the surface is computationally demanding. The
polymer will fit in the ellipsoid only if the angle between its segments is high
(see figure 5.3 (c)). We choose to sample the segments from the following
distribution:

pbiasi (θi−1,i) = C1e
− lp

2l
((θi−1,i−θ1)2+(θi−1,i)

2)/4, (5.10)

where C1 ensures the normalization and θ1 is a biasing angle. This distri-
bution is not peaked at 0 as the one corresponding to the bending energy,
but rather around a higher value of the angle (see figure 5.2 (b)), therefore
the segments generated according to it will have higher bending angles.
We need to correct for this bias, such that our ensemble of polymers is not
influenced by it. This is done by introducing an additional weight function
defined as:

gj =
pbondi (θi−1,j)

pbiasi (θi−1,j)
, (5.11)
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where j is the segment selected according to the external potential, as in
the standard technique, from the set generated through the additional bias.
The the total weight function of the polymer is product of the individual
weight functions of each segment:

G(new) =

n∏
j=1

gj . (5.12)

The final acceptance rate is now written as:

acc(old→ new) = min

(
1,
W ext(new)G−1(new)

W ext(old)G−1(old)

)
, (5.13)

where the Rosenbluth factors are computed in the same manner as before.

Figure 5.3: (a) Typical configuration of a polymer generated by confronta-
tional biased Monte Carlo (b) Deflection from the wall in the modified tech-
nique (c) Highly confined polymer. In all the illustrations the gray sphero-
cylinder represents a trial bond.
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5.3 Results

Depending on the shape of the confining membrane and on the length of the
cytoskeletal polymers we observe different patterns of organization for the
enclosed polymers. The shape of the confining surface is fully characterized
by the length of the two axis. The longest of these two axis, also called
the major axis, gives the maximum distance available inside the surface.
For polymers that are shorter than the major axis confining surface, which
we will further call short polymers, we observe patterns characterized by
straight configurations of the polymer. The polymers that exceed the length
of the major axis, which we call long polymers, form more bent patterns.
The asymmetry of the confining surface is essential for the formation of
the the of non-trivial patterns such as planar asters, bundles or confined
circles.

5.3.1 Short polymers

The short polymers are have enough space to fit inside the confining surface
without bending. Bending costs energy, and their most energetically favor-
able state, neglecting the thermal fluctuations, is a straight rod. Unless
there are other forces at play, the polymer is unlikely to bend. Therefore
we expect the polymers to look for the directions inside the volume which
offer them a distance at least equal to their length, similar to the organi-
zation of short rigid rod-like polymers. This is also what we observe in the
simulations of confined semiflexible polymers. As a function of the length
of the polymers, we find patterns characterized by isotropic organization,
asters, both three dimensional and planar, and bundles.

The isotropic organization is characterized by a homogeneous distribu-
tion, both in position and in orientation, of straight polymers throughout
the volume of the ellipsoid. This type of organization appears for all ge-
ometries of the confining surface provided that the length of the polymer
is a few times shorter than the diameter of the confining volume (for the
sphere) and shorter than the minor axis (for the ellipsoids). Figure 5.4
shows a composite of several of polymer configurations obtained for the
same parameters, in the three geometries considered. The upper and lower
image correspond to different projections of the same configuration.
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Figure 5.4: Isotropic organization of polymers in an oblate ellipsoid (Lx =
12.6µm and Lz = 6.3µm), a sphere (Lx = 10µm) and a prolate ellip-
soid (Lx = 7.95µm and Lz = 15.85µm). All polymers have L = 2.5µm
and D = 0.25µm. Each image shows a composite of 200 polymer con-
figurations. For convenience the polymers are shown three times as thick
as their real diameter. The different color of the polymers is used to bet-
ter distinguish them and it is not correlated with any other quantity. The
three surfaces presented enclose the same volume, the representations being
shown to scale.

Irrespective of their length, in the sphere geometry the polymers have
isotropically distributed orientations but, as their length approaches the
diameter of the sphere they tend to be more and more confined to the
diameter. As a result, all polymers cross the central region of the sphere,
their overlap resembling a three dimensional aster (see figure 5.5). As the
length of the polymers is closer to the diameter the aster is better localized,
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the intersection volume being smaller.

Figure 5.5: Three dimensional aster configurations for different polymer
lengths confined in a sphere of diameter Lx = 10µm. The images show a
composite of 100 configuration.

In the ellipsoid geometry, the asymmetry starts playing a role when the
polymers become longer than the minor axis. At this point the direction
of the minor axis becomes unfavorable, since the polymers would have to
bend in order to fit along it. This creates an anisotropy in the polymer
orientation. As the polymers become longer the directions offering enough
length for the polymer to fit straight inside the confining surface become
more and more confined around the major axis. In the prolate geometry the
polymers follow more the the major axis as their length becomes closer to
the length of this axis, their angle with the axis decreasing. This effectively
results in a bundle-like structure (see figure 5.6). The diameter of the
bundle decrees as a the polymer length increases. In the oblate geometry,
the maximum distance available is no longer offered by a single direction
as it is the case in the prolate ellipsoid, but by a full plane: the equatorial
plane. There is no preference in orientation along any of the diameters of
the equatorial plane. Polymers longer than the minor axis will be forced to
align more and more to this plane as their length becomes closer to the
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Figure 5.6: Bundle organization in an prolate ellipsoid (Lx = 7.95µm and
Lz = 15.85µm) for various polymer lengths. Each image is a composite of
100 polymers.

Figure 5.7: Planar aster in an oblate ellipsoid (Lx = 12.6µm and Lz =
6.3µm) for different lengths of the enclosed polymers, showing a composite
of 100 configurations.
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major axis until they are fully confined to this equatorial plane. The poly-
mers form an almost planar aster as whose thickness decreases as L→ Lx
(see figure 5.7).

To gain insight on the organization of the polymers we compute the
tensor order parameter for a fixed polymer length L and a fixed shape of
the confining surface characterized by the asymmetry λ. This quantity is
can be computed as an average over the ensemble of polymers of length L
enclosed by one particular surface. We typically use ensembles 104 differ-
ent polymer configurations with their respective weight for determining the
overall tensor order parameter as well as for the another quantities com-
puted in the rest of this section. This tensor can be written as average over
the polymer ensemble as follows:

Q =
1

n

⟨
n∑

i=1

(
3

2
ûi ⊗ ûi −

1

2
13

)⟩
, (5.14)

where n = L/l is the number of segments of length l composing our semi-
flexible polymer, ûi the orientation of each segment and 13 the 3× 3 unit
matrix. Its highest eigenvalue Q represents the degree of order and the
corresponding eigenvector n gives the direction along which the polymers
are oriented on average. For an ensemble of straight polymers all aligned
in the same direction the parameter Q = 1 whereas for an isotropic pattern
Q = 0. In plane isotropic organizations are characterized by two highest
eigenvalues both equal to Q = 0.25.

The organization in the spherical geometry, irrespective of the length
of the polymers, is characterized by the lack of order, Q = 0, (see figure
5.8 (a) and (b)). A small variation in the asymmetry of the surface induces
spontaneous organization of the enclosed polymers. For the oblate geom-
etry (λ < 1) as the polymer exceeds in length the minor axis, the order
parameter Q converges to 0.25 (see figure 5.8 (a)), its other two eigenvalues
being 0.25 and −0.5. This indicates an in-plane organization, where the
polymers have no apparent order within the planar phase. For λ > 1, which
corresponds to the prolate enclosing surface, the polymers start aligning to
each other as a function of L and become fully parallel as L → Lz (see
figure 5.8 (b)).

The preferential direction of alignment is different for the three types
of shapes considered. In figure 5.8 panels (c) and (d) we show the length
of the projection of the unit orientation vector n on the xy-plane nxy and
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Figure 5.8: Degree of order and orientation of polymers of different length
for different asymmetries of the confining surface (color scale the right hand
side) as a function of polymer length L. All the confining surfaces enclose
the same volume, λ = 1 corresponding to a sphere of diameter Lx = 10µm.
Top row shows the degree of order as a function of the length for oblate
confining ellipsoids (left) and prolate ellipsoid (right). In the middle row
we display the projection on the xy-plane nxy (left panel) and z-projection
nz (right panel) of the of the orientation n. The last row presents the
product between order Q and the nxy (left) and nz (right) projections.

of its z-projection (nz) respectively. In the sphere geometry both these pro-
jection show no trend, being randomly distributed. The polymers enclosed
in a surface with λ < 1 (oblate), if long enough, orient along the xy-plane,
whereas for λ > 1 (prolate) they align to the z-axis. These two directions
correspond to the maximum distance available in the considered geometry.
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In both the prolate and the oblate geometry the shorter polymers exhibit a
orientation pattern similar to the sphere case. In order to see trends in the
in the orientation we need to correlate the degree of order to the direction
of orientation. In figure 5.8 ((e) and (f)) we show the product between
order and the considered projections of the orientation. We see that align-
ment along the xy-plane arises in the oblate geometry and z-aliment in the
prolate.

The tensor order parameter gives information about the overall orienta-
tion of the polymers but does not characterize the local patterns. It gives,
for example, the same result for a random isotropic organization and for
a three dimensional aster, these two types of organization being indistin-
guishable if only this parameter is considered. To gain more insight into
the polymer organization, a measure of local polymer density is required.
We chose to use the average length of the polymer enclosed between two
parallel planes that are perpendicular to one of the coordinate axis and
denote this length by lx, ly or lz, according to the axis on which the sec-
tioning planes are perpendicular. We divide the volume of the ellipsoid
by equidistant panes with a width of ≈ 0.25µm. This type of measure
has the advantage that it can be directly related to the experimental data:
the imaging of droplets enclosing cytoskeletal polymers is usually done by
confocal microscopy, the resulting data being a collection of planar images
containing single optical sections of the droplet along one axis. The to-
tal fluorescence in each slice is directly proportional to the polymer length
comprised in the respective slice.

In the spherical geometry, the average length of the polymer, for poly-
mers several times shorter than the diameter, is the same for all the slices
(see figure 5.9). This indicates a isotropic distribution of the center of mass
of the polymers. As the polymer becomes longer its length in the central
region of the droplet increases and, as the polymer approaches the diameter
in length, a peak in the average length can be observed in this region. The
center of mass of the polymer becomes confined in an increasingly small re-
gion around the center as its length grows. This density profile matches an
aster configuration since all polymers cross the central region (correspond-
ing to the peak) and splay out towards the exterior resulting in a lower
average length in the peripheral sections. The profiles corresponding to
sections along the three coordinate axis exhibit the same features implying
that the structure is fully symmetric around the center of the droplet.
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Figure 5.9: Average length of the polymers in sections, corresponding to
each of the three coordinate axis, through a sphere of Lx = 10µm. The
different color of the curves codes the length of the polymer L.

Polymers shorter than the minor axis enclosed in an oblate ellipsoid
exhibit profiles similar to the the ones enclosed in a sphere. Above this
length the polymer lx and ly profile remain similar to the sphere case but lz
exhibits a hight peak in the central region of the droplet, around which the
length density is zero. The with of the peak decreases with L. This shows
that most of the polymers are confined in a thin slice in the equatorial
region. The observed profiles are consistent with a planar aster located in
the xy-plane.
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Figure 5.10: Average length of the polymers in sections, corresponding
to each of the three coordinate axis, through an oblate ellipsoid with Lx =
12.6µm and Lz = 6.3µm. The different color of the curves codes the length
of the polymer L.

In the prolate geometry the the profiles for lx and ly show a similar
behavior to the lz profile for the oblate indicating a packing of the polymers
in the middle of the xy-plane. For L > Lx the the average length lz becomes
constant throughout almost all the domain, its value matching the the
separation distance in between the sectioning planes. This indicates that
the polymer is parallel to the major axis. These average length profiles are
coherent with a bundle organization along the z-axis.
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Figure 5.11: Average length of the polymers in sections, corresponding to
each of the three coordinate axis, through an prolate ellipsoid with Lx =
7.95µm and Lz = 15.85µm. The different color of the curves codes the
length of the polymer L.

5.3.2 Long polymers

When polymers become longer then the maximum distance available inside
the confining volume, they are forced to bend. In a sphere, the maximum
distance available is along a diameter. Polymers exceeding in length the
diameter are forced to bend away from it (see figure 5.12). If the length
of the polymers is not much higher than Lx, it appears that both its ends
remain in contact with the surface at points situated on the same diameter.
In a sphere, there is no a priori preference for any diameter, therefore the
bent configurations are isotropically distributed. As L approaches (π/2)Lx

the polymer touches the confining surface over most of its length, its cur-
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vature becoming closer to the one of the surface. For L→ πLx we observe
the formation of rings just beneath the surface. All these bent configura-
tions leave the middle of the droplet free consistent with the experimental
observations [123].

Figure 5.12: Representative organization for different polymer lengths con-
fined in a sphere of diameter Lx = 10µm. The images show a composite of
50 configuration.

In the prolate geometry the maximum distance available is given by the
major axis of the ellipsoid. For polymers with L > Lz we first see, as a
function of L, a bending away from the major axis, the end of the polymer
remaining close to the end point of this symmetry axis. The overlay of
multiple such configurations results in a bipolar structure 5.13. For longer
polymers we observe the formation of elliptical rings. The polymers that
are shorter than the perimeter of the ellipse having the same major and
minor axis as the ellipsoid do not organize entirely following this ellipse.
Depending on their length the polymers pick an ellipse (or part of an ellipse)
with perimeter at most equal to their length which has the higher curvature
radius since that leads to minimum bending energy. They try to exploit
the less curved of parts membrane located around the equatorial plane but
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try to avoid the highly curved zones around the poles, organizing on ellipse
which have the minor axis the same as the confining ellipsoid but a shorter
major axis. These curves have a lower average curvature. This elliptical
ring does not necessarily have to be in the plane of the major axis, since
there are more directions inside the ellipsoid offering sufficient space.

Figure 5.13: Representative organization for different polymer lengths con-
fined in an prolate ellipsoid (Lx = 7.95µm and Lz = 15.85µm). Each
image is a composite of 50 polymers.

In the oblate geometry the filaments start bending out the equatorial
plane as L > Lx, the ends laying preferentially in this plane (see figure
5.14). The two ends appear to be on the same diameter of the equatorial
circle. All diameter of the this circle offer equivalent polymer configura-
tions, leading to an isotopic distribution in the xy-plane. This type of
organization also leaves an unoccupied volume in the center of the droplet.
As the length increases the polymers start following the surface, ultimately
forming circumferential rings. The circumferential rings are more confined
in the equatorial plane as L→ Lx.
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Figure 5.14: Representative organization for different polymer lengths con-
fined in an oblate ellipsoid (Lx = 12.6µm and Lz = 6.3µm). Images show
a composite of 50 configurations.

5.4 Discussion

Using Monte Carlo simulation, we investigated the organization of confined
cytoskeletal polymers as a function of their length and of the asymmetry
of the confining ellipsoidal surface. We find that even small asymmetries of
the membrane lead to drastic changes in the cytoskeletal organization: The
three dimensional aster observed in spherical geometry becomes planar if
the confining surface is an oblate ellipsoid. The homogeneously distributed
circumferential rings formed for long polymers confined in a sphere collapse
on top of each other as λ < 1. In prolate confinement, we find single bundles
and bipolar structures, which are not observable in the other geometries.
The overall type of organization does not depend strongly on the persistence
length of the polymer, the minimum energy configuration being the same.
For lower persistence length the thermal fluctuations are higher resulting
in more configurations close to the minimum energy one being accessible.

The patterns appearing in the simulations are very similar to the ones
observed in the preliminary experiments on emulsion droplets encapsulat-
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ing microtubules (experiments by Sophie Roth, Marileen Dogterom Group,
TU Delft) and actin filaments crosslinked with fascin (experiments by Feng-
Ching Tsai, Gijsje Koenderink Group, AMOLF). Actin filaments crosslinked
with fascin form bundles, and when confined in emulsion droplets, they
show a homogeneous distribution in the short filament regime, a three di-
mensional aster for the intermediate regime, and isotropically distributed
circumferential ring for long bundles. These patterns are in good agreement
with our simulation results for polymers enclosed in spherical surfaces, these
results being consistent with actin bundles not being stiff enough to de-
form the emulsion droplet. Microtubules enclosed in droplets show, besides
the homogeneous distribution appearing for short filaments, single bun-
dles, planar asters, single circumferential rings and bipolar structures. The
emulsion droplets in which these pattern are observed have an ellipsoidal
shape, but with only a small eccentricity. The patterns match our simula-
tion results for oblate and prolate geometries. In the above experiments the
deformation of the droplet is the result of the cytoskeleton pushing against
the membrane. To address experimentally the question how the shape of
the asymmetry in the membrane influences the organization cytoskeletal
filaments enclosed, it is possible to externally deform the droplets by con-
fining them in microchambers. Preliminary experiment by Nuria Taberner
and Sophie Roth (Marileen Dogterom Group, TU Delft) show the patterns
matching our simulation results.

We will discuss the next step of this project which is the minimization
of the total elastic energy (of the membrane and the enclosed cytoskeletal
polymers) in the concluding chapter.
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5.5 Appendix

5.5.1 Overlap criterion of a rigid rod with an ellipsoidal sur-
face

Since both the spherocylinder and the ellipsoidal surface that it encloses in
are convex bodies, it is sufficient to check if the two end of the spherocylin-
der are located inside the confining surface. All points on the surface of
the spherocylinder are at one radius r distance from the center line there-
fore the overlap criterion amounts to verifying whether the end points of
this center line are at a further than one radius r below the surface. This
is equivalent with checking if the two end points are inside a surface that
is characterized by all its points being at a distance r from the confining
surface. This type of surface is called a inner parallel body. The parallel
body of a sphere with radius R is a sphere with radius R − r. For the
non-overlap with a sphere, each of the two ends of the central line should
obey the following condition:

pr2x + pr2y + pr2z < (R− r)2, (5.15)

where prx, pry and prz are the projections of the end of the central line on
the three coordinate axes. The parallel body of an ellipsoid is unfortunately
not itself an ellipsoid, but a higher order surface. The two ellipsoids that we
consider as confining surfaces are oblate and prolate which are obtained by
rotating an ellipse around one of its symmetry axis. Due to this symmetry
we can consider the two dimensional equivalent problem of determining
the distance from a a point to an ellipse and the generalize it to three
dimensions. We know that any point (x, z) of an ellipse of axis Lx and Lz

obeys the following equation:

x2

(Lx/2)2
+

z2

(Lz/2)2
= 1. (5.16)

The perpendicular form a point (xp, zp) to the ellipse has the equation:

z

(Lx/2)2
(xp − x)−

x

(Lz/2)2
(zp − z) = 0 (5.17)

and, since we want this point to be at a distance r from the ellipse,

(xp − x)2 + (zp − z)2 = r2 (5.18)
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should be true. The pair (xp, zp) describes the curve located at a distance
r from the ellipse. Combining the last three equations results in a fourth
order polynomial equation. This equation can be solved analytically, but
the solutions are lengthy and complicated. Since the overlap check is done
frequently in our Monte Carlo algorithm, we want it to be as efficient as
possible, and using the above solutions most likely slows it down. An
approximation to the parallel curve is an ellipse with semi-axes shorter
with r than the ones of our initial ellipse. The equation of this curve can
be written as follows:

x2e
(Lx/2− r)2

+
z2e

(Lz/2− r)2
= 1. (5.19)

For a circle (Lx = Lz) the curves (xp, zp) and (xe, ze) coincide. As the
asymmetry increases or decreases the difference between the two curves
becomes higher. For all our simulation we use a confining surface that has
the same volume as a sphere of 10µm diameter, the asymmetry being be-
tween λ = 0.5 and λ = 2. In figure 5.15 we show the difference ∆ between
these two curves (defined as ∆ = ze − zp) for the two most asymmetric
ellipses considered as a function of the x-coordinate. The plot shows the
parameter ∆ for various thicknesses of the spherocylinder. Microtubules
have a diameter of 25nm, which corresponds to the red line on the plot.
We see that even for these very asymmetric ellipses the difference between
the exact curve and our approximation is less than one tenth of the radius
of the polymer. Compared to the size of the droplet these variations are
negligible. We can therefore consider that the two ends of the center line
spherocylinder should be inside the ellipsoidal surface obtained by rotating
the curve (xe, ze). Checking if the spherocylinder overlaps with the ellip-
soidal confining surface amount to verifying that each end of the center line
of the spherocylinder satisfies the following inequality:

pr2x + pr2y
(Lx/2− r)2

+
pr2z

(Lz/2− r)2
< 1. (5.20)

Note that, for a sphere the above relation becomes exact.
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Figure 5.15: Difference between the exact solution for the inner paral-
lel curve of an ellipsoid and the approximative solution (a) for an el-
lipse corresponding to the oblate ellipsoid (λ = 0.5, Lx = 12.6µm and
Lz = 6.3µm) (b) and for an ellipse corresponding to the prolate ellipsoid
(λ = 2, Lx = 7.95µm, and Lz = 15.85µm
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6
Steric repulsion of microtubule

asters

In cell division, the exact positioning of the two microtubule asters
is crucial for the proper separation of the daughter cells. The po-
sitioning of a single microtubule aster is the result of the com-
petition between the pushing forces exerted by the microtubule
on the cell membrane and pulling forces due to the microtubules
anchoring to the membrane through cortical motors. When two
asters are enclosed in the same cellular volume their interaction
leads to a spatial separation between their centers indicating an
effective repulsion between them. We study the repulsion between
two microtubule asters due to excluded volume interactions and
find that it indeed leads to a spatial separation that depends on
the density of microtubules in the asters and on their length.
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6.1 Introduction

Cell division in animal cells requires the formation of a mitotic spindle
which consists of two microtubule asters [69]. Each microtubule aster has
a spherical ball of proteins, called a centrosome, at its core from which
microtubule radiate outwards. The size and shape of the centrosome varies
somewhat during the cell division cycle but, for animal cells, the shape is
roughly spherical with diameter around 0.5 − 1µm [143, 144]. Interphase
cells, the typical cell configuration in which the cells spend most of their
time, contain usually just one microtubule aster. During cell division two
asters are created by first dividing the centrosome. This separation begins
at an early stage of cell division, but is fully completed only at the beginning
of the so-called M-phase, with microtubules growing out of the both cen-
trosomes. At this stage each chromosome has already duplicated, the cell
now containing two copies of the DNA. The nuclear envelope is then disas-
sembled and microtubules capture the chromosomes. In order that division
happens properly, the centrosomes need to move to opposite ends of the cell
creating the poles of the spindle. Then the chromosomes, which are now
all attached to microtubules growing from both spindle poles, need to be
be placed in the midplane between the poles, which is again a microtubule
dependent process. Once aligned in the middle plane, the chromosomes
are pulled by microtubules towards the poles, separating the duplicated
genome into two identical daughter genomes. Once in position, the nu-
clear envelope is reassembled around the daughter genomes. The division
cycle continues with the assembly of a contractile acto-myosin ring in the
plane perpendicular to the middle of the axis between the two poles, which
subsequently cleaves the daughter cells apart.

Throughout the division process the precise positioning of the two mi-
crotubule aster is crucial for creating functional daughter cells: it ensures
the proper separation of the genetic information and determines the po-
sition where the cells will separate [116]. Studying the positioning of mi-
crotubule asters in cells is challenging since it is the combined effect of
individual microtubule dynamics, the interaction of the asters with the
membrane, which acts as a confining space, but also attaches microtubules
via motor proteins. In addition to this, motor proteins in the cytoplasm,
the so-called cytoplasmic motors, also contribute to the positioning of the
spindle poles [145]. To understand the mechanics underlying aster posi-
tioning and the relative importance of each of the contributing factors, it is
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useful to use a bottom-up approach, first reconstructing a minimal system
and progressively adding more complexity to it. The first step in under-
standing spindle positioning is finding what parameters are relevant for the
positioning of a single confined microtubule aster. To study effect of con-
finement on a microtubule asters in vitro assays using microchambers and
emulsion droplets are employed to mimic real cells [146, 147, 48, 123]. Both
these assays offer rigid confining volumes: microchambers have hard walls
and the stiffness of the oil, in which the drops of buffer solutions containing
the aster are immersed, can be high enough that the lipid monolayer is
not deformed by the microtubules enclosed by it. The rigid walls therefore
allow to isolate the effect of a predefined shape of the confining volume,
without considering the membrane deformations (which occur in vesicle).
As already mentioned, the positioning of a confined aster is based on micro-
tubule dynamics. Microtubules are dynamical polymers, alternating phases
of growth and shrinkage. Growing microtubules generate a pushing force
[27, 148], while shrinking microtubules can exert pulling forces[149, 150].
When enclosed in an emulsion droplet, growing microtubules will exert a
pushing force against the membrane, and the shrinking ones will pull on
the membrane provided they are attached to cortical motors (see figure
6.1). The positioning of the aster is the result of the balance between these
forces and depends on the distribution of the microtubules at the cortex.
The cortical distribution is also influenced by microtubules sliding along
the membrane. These mechanisms together lead to the robust centering of
the aster [68, 151]. If no cortical motors are present and hence pulling is
absent, the centrosome is typically driven to the boundary of the droplet.

The next step towards reconstructing a spindle in vitro is confining two
microtubule asters in the same emulsion droplet. Experiments by Dr Sophie
Roth (group of Prof Dr Marileen Dogeterom, TU Delft), with whom we are
collaborating on a project out of which the work in this chapter is part,
have shown that a distinct spatial separation between the two centrosomes
always occurs. In the absence of cortical motors, the two centrosomes are
pushed to the cortex. This is consistent with the single aster case. When
motor are present, pulling contributes to centering of the asters. Naively,
we would expect that the two centrosomes are both found in middle of the
droplet, in contrast to the experiment. This leads us to believe that, in
addition to the centering mechanism known from the confined single aster,
there is also a repulsive force in between the two asters that contributes to
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the positioning. Since microtubule asters are spatially extended objects, we
hypothesize that this repulsion is the result of steric repulsion. Therefore
we study the repulsion between two microtubule asters due to excluded
volume interaction between the component microtubules.

Figure 6.1: Illustration of the main mechanisms involved in centering of a
confined microtubule aster.

6.2 Steric repulsion

Geometrically a microtubule aster can be described by a sphere of radius R
representing the centrosome and a number of N tube-like objects radiating
out of it which correspond to the microtubules. Since the persistence length
of the microtubules is two orders of magnitude higher than the typical
diameter of the emulsion droplets used in the experimental work on which
this chapter is based, their behavior can be well described by a rigid rod.
We therefore represented the microtubules by spherocylinders of diameter
D and length L with one end embedded in the centrosome.

The positioning of the two asters inside the confining surface is the
result of balance between the centering (induced by pulling and pushing
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forces) and the mutual repulsion. Both pushing and pulling are the result
of microtubule-membrane interaction. However, the repulsion involves only
the two asters. In order to interact the two asters need to be close enough
so they can touch each other. This occurs only in the lens-shaped volume
resulting from the intersection of the bounding sphere of the two asters (see
figure 6.2 (b)). For an aster we define the bounding sphere as the imaginary
spherical surface constructed around the center of the centrosome having a
radius Rb = Lmax+R, where Lmax is the length of the longest microtubule
in the aster. The lens shaped volume is located in the region between
the asters, away from the surface. The aster-membrane interaction and
the the aster repulsion can be therefore decoupled. We therefore study the
repulsion between the two aster in bulk, without considering the full system
which includes the membrane (see figure 6.2 (b)).

Figure 6.2: (a) Illustration of two asters confined in a spherical volume.
(b) Interaction volume of the two asters given by the intersection of their
bounding spheres.

6.2.1 Potential of mean force

Steric repulsion is due to objects occupying a certain amount of volume.
Around the center of mass of an object there is a excluded volume in which
the center of mass of another particle can never been found. The simplest
example is the case two identical spherical objects of radius Rs. Their ex-
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cluded volume is given by a sphere with the radius Rexcl = 2Rs, which
amounts to 8 times the volume of a single sphere. For other particles, such
as spherocylinders, it is also possible to compute this volume analytically
[152]. Unfortunately the asters described above are too complex geometri-
cal objects to allow an analytical calculation of their excluded volume. A
numerical approach to calculate the excluded volume is based on the Monte
Carlo technique. The strategy is the following: by keeping one object fixed
and repeatedly trying to insert the other object, the trial positions of its the
center of mass being homogeneously distributed in in a volume V around
the center of mass of the other object, the number of successful trials ns are
counted. A trial insertion is successful when the two objects do not overlap.
The number of successful trials over the total number of trials nt is equal
to the excluded volume Vexcl over the total volume (ns/nt = Vexcl/V ).

Since our aster in complex concave body the total excluded volume cal-
culated by the above described method does not offer so much information.
Unlike for the case of two hard sphere, where the interaction potential is
infinite inside the excluded volume sphere and zero outside, the potential
for asters will be a function of the distance between the centers of mass.
The microtubules splay out away from the centrosome, effectively leaving
more free volume between them, allowing for more possible insertions of the
other aster. Effectively the repulsion decreases as a function of distance,
behavior which is closer to a soft, deformable, particle than to a hard one.
Polymer coils are also highly complicated non-compact geometrical objects
interacting by steric repulsion. They can also be effectively modeled as soft
particles, their pair potential as a function center of mass separation dis-
tance being calculated through a Monte Carlo technique similar to the one
used for excluded volume estimation [153]. The idea is to insert the object
at a certain distance d from the center of mass of the other object and
count the overlaps at this particular distance. Repeating this procedure for
different separation distances allows to determine the insertion probability
as a function of distance p(d). The insertion probability can be related to
the potential of mean force via the simple relation:

U(d) = −kBT ln[p(d)], (6.1)

where kB is the Boltzmann constant and T the temperature [66]. From
this effective potential the repulsion force F (d) can be obtained by differ-
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entiating with respect to the separation distance d:

F (d) = −U ′(d). (6.2)

6.2.2 Numerical effective potential estimation

Using the Monte Carlo method described in the previous section we set out
to compute the effective potential due to steric repulsion as a function of
the separation between the center of mass of the two asters. We take the
radius of the sphere representing the centrosome R = 0.25µm, consistent
with the experiments according to which we construct our model. Rigid
microtubules of diameter D = 25nm are homogeneously distributed around
the centrosome. We consider two types of aster depending on the length dis-
tribution of the microtubules: one with equal length microtubules, which
we call a monodisperse aster, and one where the microtubules are expo-
nentially distributed, characterized by a mean length Lm (see figure 6.3).
Notice that the aster having an exponential distribution of microtubule
lengths has a much lager bounding sphere due to a few long microtubules,
but is less dense than the monodisperse one. Considering monodisperse
asters is a simplification of the real situation where microtubules have an
exponential length distribution [105], but provides a useful reference case.
To determine the insertion probability we keep one aster fixed and insert
another one with the same characteristics– same number of microtubules,
distribution and length– at points homogeneously distributed on the sur-
face of a sphere with radius d. The trial aster is also rotated prior to inser-
tion. We count the number of overlaps (noverlap) and compute the insertion
probability as p(d) = 1− noverlap/nt, where nt is the total number of trial
insertions (typically nt = 106). The insertion probability depends on the
particular realization of the two asters, we therefore repeat the calculation
for 10 pairs of different asters, estimating the errors.

As a function of separation distance between the center of mass of the
two asters, the insertion probability starts at zero for low d, corresponding
to the inaccessible volume, then gradually increases to 1, where all inser-
tions are successful (see figure 6.4). For monodisperse asters the increase
in microtubule number, at the same L, extends the inaccessible volume,
the curve becoming much steeper. As the aster becomes denser the profile
resembles a step function, which corresponds to the insertion probability
for two hard spheres. In this regime, the asters effectively behave as two
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Figure 6.3: Illustration of monodisperse aster with L = 2.5µm (a) and of
an aster with microtubules having an exponential length distribution (with
mean microtubule length Lm = 2.5µm) (b). The centrosome is depicted in
yellow and the microtubules in orange. Both aster contain the same number
of microtubule N = 100 and are drawn to scale.

spheres of radius L + R: the microtubules are so closely packed that the
space between the is not sufficient for the microtubules of the other aster to
fit into it. For the asters with exponential length distribution the profiles are
less steep and inaccessible separation distance shorter (see figure 6.4 (b)).
This is due to the shorter microtubules in one of the asters which leave
directions open for the longer microtubules in the other aster, facilitating
interdigitation. Note also that the interaction extends over a larger distance
due to the few long microtubules. The error bars are larger for the asters
with exponential length distribution, since there is more variability between
the different realizations. The increase in microtubule length leads to a
lees abrupt curve for the insertion probability and to an higher inaccessible
separation distance (see figure 6.4 (c) and (d)). However, the separation
distance represents a lower fraction of the radius of the bounding sphere of
the aster as the length of the microtubules grows. This can be understood
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as the microtubules splay out towards the exterior of the aster. For the
same microtubule density there is effectively more free space in between
the microtubules in the bigger asters. All the results show a much larger
inaccessible volume than just the one given by the two centrosomes which
corresponds to a sphere of radius 2R.

Figure 6.4: Insertion probability as a function of separation for monodis-
perse asters– panels (a)and (c)– and asters with exponentially distributed
length of the microtubules–panels (b) and (d). (a) and (b) show different
number of microtubules N for the same microtubule length L = 5µm or
mean length Lm = 5µm. Panels (c) and (d) present the results for dif-
ferent microtubule length or mean length, respectively for asters containing
N = 100 microtubules. The error bars for the monodisperse asters are
smaller than the symbols.

The effective repulsion potential determined from the insertion probabil-
ity is shown in figure 6.5. Bellow a certain separation distance all the curves
go asymptotically to +∞. This vertical asymptote marks separation dis-
tance dh bellow which the interactions become hard. The effective potential
shows that the two asters can be effectively described by a spherical rigid
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core of radius dh/2 from which the microtubules grow. For monodisperse
asters a shoulder-like structure can be observed in the effective potential at
d ≈ L + 2R (see figure 6.5 (c)). This is the effect of excluded volume in-
teraction between the microtubules and the centrosome of the other aster.
For dense asters this feature in not observable, since in this regime most of
the overlaps occur in between microtubules, the microtubules rarely reach-
ing the other centrosome. The repulsion force computed from the effective
potential for d > dh is lower than a 1 pN. Compared to the centering forces
which were estimated to be in the order of 100 pN [68, 151], the contribution
of this part of the effective potential is negligible.

Figure 6.5: Effective potential as a function of separation for monodisperse
asters– panels (a)and (c)– and asters with exponentially distributed length
of the microtubules–panels (b) and (d). Parameters are the same as for
figure 6.4.
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6.3 Discussion

We investigate the positioning of two microtubule asters enclosed in the
same spherical volume due to steric repulsion. Since the interaction volume
of the two asters is located away from the membrane the steric repulsion can
be determined without considering the confining surface. Using a Monte
Carlo technique, we compute the effective repulsion potential between the
two asters, finding that there is a minimum distance of approach of the
two asters. Above this distance the interaction is weak compared to the
centering forces. In confinement, in the absence of pulling forces, we expect
to find the asters on the boundary. When pulling is also present we predict
that the asters will position themselves in the central region, separated by a
distance which depends on the number of microtubules and on their average
length. This behavior is consistent with the experimental evidence. This
hard repulsion due to the effective core is probably not the only repulsion
mechanism. The microtubules are likely to exert pushing forces on the core
of the other aster increasing the separation. Furthermore the presence of
an hard aster core could influence the number of microtubules from the
other aster reaching the membrane, thus anisotropically modulating the
pushing forces. This would lead to a change in the force balance which
could influence the aster positioning. This opens new exciting directions in
investigating positioning of confined asters.
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7
General Discussion

In this final chapter we summarize the results obtained in the pre-
vious chapters and also put these findings in a biological context.
We also give some possible new research directions that the present
work opens.
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7.1 Biological context

The present work tries to answer a number of open questions on how the
cytoskeleton contributes to the spatial organization of cells. The cytoskele-
ton is involved in cellular process that lead to significant changes in the cell
shape and architecture. These process are crucial for the survival of the
cell. One example is cell migration where actin filaments, one of the main
components of the cytoskeleton, continuously reorganize inside a flat mem-
brane protrusion called lamellipodium [154]. There, the actin filaments are
responsible for pushing the membrane forward enabling the cell to move.
Another example is cell division where the correct separation of the genetic
information and the proper positioning of the division plane are ensured by
microtubules, the other main cytoskeletal component [116], whereas actin
filaments constructs a ring which separates the daughter cells [23]. The
precise mechanisms underlying these two processes and the role played by
the cytoskeletal polymers is still poorly understood.

Cells are exquisitely complex systems with a lot of processes taking
place simultaneously. Isolating one single process and studying the role of
each component in vivo is thus experimentally challenging. One way to
gain more understanding into the role of cytoskeleton in the spatial organi-
zation of the cell and studying its interactions with other cell components is
the bottom-up approach, which involves reconstructing a minimal system
and progressively adding more complexity. Reconstructed systems such
as microchambers, emulsion droplets and liposomes offer the possibility of
studying the behavior of cellular components such as the cytoskeleton in a
controlled environment.

7.2 Rigid confinement

One of the first questions that arises is how the cytoskeletal polymers deal
with confinement, since this factor is always present in the cell: the cel-
lular volume is separated from the outside environment by an envelope
that forces the cytoskeleton to organize inside of it. Plants have rigid
walls, whereas animal cells have a deformable membrane. The simplest
reconstructed system to study cytoskeleton confinement is a fully closed
microchamber with planar walls. Experiments on actin filaments in such
in vitro assays show that, provided the density is high enough, the filaments
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follow the walls, but also self-align along the longest distance available in-
side the confining volume [42]. This type of confinement would mimic well
the confinement inside a lamellipodium.

7.2.1 Planar confining walls

Inspired by these experimental findings,we investigate, in Chapter 2, the
organization of rigid filaments confined is a slab-like geometry. Our choice
to model the actin filaments as rigid is based on the relative size of the the
lamelipodia comped to the actin persistence length. The filaments are long
compared to the chamber hight precluding out of plane rotation. We mod-
eled this system as a confined liquid crystal. Using Monte Carlo simulation
of rigid rods we find that the organization of the liquid crystal is the results
of the two competing alignment tendencies: on the one hand particles align
to the walls and on the other hand they tend to self align. At low particle
densities the former contribution is dominant, whereas in the high density
regime the self-alignment becomes significant. In the intermediate regime
these two tendencies compete the particles following all the four side walls,
but also creating a nematic phase along one of the diagonals of the con-
tainer. This alignment competition leads to the to the formation of wall
defects on the other diagonal, this being the first observation of such a de-
fect structure. The nematic phase forms at lower densities than we would
expect from the bulk simulations. We therefore construct a Onsager-like
toy model to understand this density decrease. Our results suggest that
confinement lowers the transition density, which is partially compensated
by the presence of the defect structures.

Our findings show that, in confinement, the organization of rigid rod-
like mesogens, such as actin filaments confined in lamelipodia, is the result
of a competition between wall alignment and mutual alignment. For actin
filaments polydispersity is likely to smoothen out the wall defects. How-
ever, from a liquid crystal perspective, the defect walls are relevant in the
context of continuously shrinking display pixel sizes. It would be interest-
ing to to address the question whether this kind of wall defect structures
appear in other confining geometries featuring planar wall. The pattern
we observed is symmetric along the diagonals which leads us to believe
that in a triangular container — half of our square one — the defect wall
should still be present. It would be also interesting to study how charac-
teristics of this wall such as its length is influenced by the opening angle of
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the triangular container, if the structure is present in this geometry. This
could open new perspectives for investigating the organization of nematics
in containers with higher order polygons as base.

7.2.2 Curved confining walls

Adding more complexity to the system, in Chapter 3, we study the effect
of a curved wall on the organization of confined rigid filaments. We find
find that the mesogens form the bipolar pattern expected from topological
arguments. The location of the point defects can be controlled by varying
density or the length of the particles. The location of the defect points
ranges from inside the container at a finite distance to the wall, to defects
located outside the container, similar to the virtual boojums for the nematic
droplets [85, 100]. When in the middle of this flat cylindrical container
we open a hole, changing its topology, the particles reorganize drastically:
they form a number of nematic domains separated by wall structures. The
number of domains depends on the length on the particles and the radius
of the inner hole. In a cellular context the introduction of an excluded area
inside the confining volume can be justified by the presence other cellular
components that the cytoskeletal polymers are forced to grow around.

Other confining geometries with curved walls could be relevant for the
organization of cytoskeletal polymers. In the divisions of animal cells a
bipolar structure called a spindle is formed. The spindle is has a lens shape
and inside it multiple rigid microtubules compete for space. Even if this
structure does not really have a confining envelope, its shape is highly
conserved. Using the same technique, the organization inside a lens-shaped
container could be addressed.

7.3 Addressing confinement with a mean-field type
theory

In Chapters 2 and 3 we focused on the regime in which the rigid particles
are of the same order as the confining volume. The patterns observed are
the result of a finite size effect. At this length scale Monte Carlo simu-
lations are an effective tool. When particles are much smaller than the
confining volume the system is well described by continuum theories, since
the nematic field is expected to change over distances comparable to the
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confinement. The existing continuum theories describing liquid crystals
however have some shortcomings: the Oseen-Frank theory assumes a con-
stant order parameter throughout the domain, which excludes singularities,
whereas the Landau-De Gennes theory is only valid close to the isotropic
to nematic transition. In Chapter 4 we construct a novel mean-field theory
where both the scalar order parameter and the nematic director are allowed
to vary, and which is valid for all values of the density or the temperature.
We apply this theory to nematic enclosed in a flat rectangular box finding
that the minimum energy patterns are characterized by continuum distor-
tions such as splays and bends. Point defects may also arise increasing the
energy of the configuration. Our results are in good agreement with exper-
iments on fd-viruses (which can be used effectively as rod-like mesogens)
confined in similar geometries [115]. The problem discuss in this chapter
is the limiting case (when the length of the particles is much smaller than
the confinement size) of the system considered in Chapter 2. In this regime
wall defects are not present, indicating that they are due to the finite size
of the mesogens.

Figure 7.1: Minimum energy configuration of liquid crystal confined in a
container with annular geometry. Parameters are the same as for figure
4.2.

The mean-field model we constructed can be successfully applied to
other quasi 2D confined liquid crystalline systems. It can useful for the
round or annular geometry discuss in Chapter 3, as comparison to the
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Monte Carlo simulations. For the annular geometry preliminary results
(shown in figure 7.1) indicate that in the continuum limit the wall defects
vanish, the nematic director following the walls. This pattern is similar to
a the one appearing around a point defect of topological charge +1 (see
figure 1.3) located in the center of the container, point which is located
outside the container.

Our mean-field theory is by no mens restricted to two dimensional sys-
tems or to planar wall anchoring. It would be interesting to apply our
model to problems that have preoccupied the the liquid crystal community
for a long time and for which solutions yielded by the different models are
known. Such a problem is, for example, the organization of the director
field around a colloidal particle with radial anchoring immersed in a ho-
mogeneous nematic. There it is expected to find a singular ring of a −1/2
disclination in the equatorial plane [155].

7.4 Membrane deformation versus cytoskeleton
bending

In animal cells, where the membrane is deformable, the shape of the cell is
the result of a mechanical interplay between the cytoskeletal filaments and
the membrane. Experimentally, this problem is addressed in reconstructed
systems. Starting from such in vitro experiments, we propose to study
this interplay in two steps, finding first the configuration of a cytoskeletal
polymers as a function of the membrane shape and then, by an energy
minimization where we use the results obtained in the first step, finding
the most favorable configuration of the full system (membrane and poly-
mers together). In Chapter 5, using a conformational-biased Monte Carlo
technique, we determine the shape of polymers enclosed in an ellipsoidal
surface. We find that, even for small asymmetries of the confining surface
the organization of the polymers changes significantly. Patterns observed
include bundles, planar asters, circular and ellipsoidal rings.

The next step in understanding the mechanical interplay between mem-
brane deformational and cytoskeletal organization is to correlate the total
elastic energy of the pattern observed in simulation with the surface tension
and elastic energy stored in the monolayer. The energy of the whole sys-
tem, composed of membrane and enclosed polymers, should be minimized.
This minimization will probably exclude the additional patterns seen in
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simulations that are not experimentally observed, such as the ellipsoidal
rings.

Figure 7.2: Elastic shell enclosing a polymer with length comparable with
its diameter. Note that the surface adopts a lemon shape configuration. For
a prolate ellipsoidal geometry surface tension is also needed. Configuration
obtained using LAMMPS.

Another approach to this problem is to try to minimize both the energy
of membrane and of the polymers at the same time. To this end open
source software can be useful. An example of such a software that can
handle both membranes and polymers is LAMMPS, a classical molecular
dynamics code. The membrane is constructed out of a spherical particles
which are linked by an elastic potential, whereas the polymers are strings
of spheres with a bending cost associated to them. In figures 7.2 and 7.3
we show two representative configurations obtained by using this software.
Unfortunately, this kind of software is only based on energy constraints, and
thus it does not keep the enclosed volume constant. From the perspective
of our model system (the emulsion droplet), this is unrealistic. However
this kind of tools could be useful for a qualitative, rather than qualitative
comparison to the results obtained by the other method described in this
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section.
Generally, structures such as single bundles or asters contain cross-

linking proteins, but our simulations show that the presence of cross-linkers
is not essential for their formation. They can emerge from purely mechan-
ical interactions. However, it would be interesting to address the role of
motor proteins and crosslinkers in the stability of the patterns. To this end
Cytosim software offers the ideal tool [156].

Figure 7.3: Elastic shell enclosing a polymer with much longer than the
diameter of the confining surface. The membrane has an oblate shape.
Configuration obtained using LAMMPS.

7.5 Positioning of microtubule asters

In Chapter 6 we investigated the repulsion between two microtubule asters
due to steric interactions. We find that there is a minimum distance of
approach between the two asters, consistent with experimental observations
[126]. Effectively the aster behaves like a hard sphere with a diameter much
higher than the one of the centrosome, but lower than the diameter of the
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full aster. This effective diameter depends on the microtubule density in
the asters and on their mean length.

The currently employed theoretical models designed to predict the po-
sitioning of a single microtubule aster enclosed by a rigid surface only ac-
count for pushing and pulling as force generation mechanisms, allowing
also sliding of the microtubules along the membrane [151, 68]. The steric
repulsion is probably not the only repulsive mechanism at work when two
asters inside the same confining surface. Additionally there will most likely
be a repulsion due to microtubules growing, and hence generating pushing
forces, against the other aster. Also, the presence of the other aster may
modify the microtubule distribution reaching the cortex, which in turn can
lead to a positional change of the asters. Both these mechanism deserve
further investigation and, if relevant, should be included in the current
theoretical models.

7.6 Final remarks

The present work casts light on a few aspects of the cytoskeleton organiza-
tion when subject to confinement and on how the cytoskeleton contributes
to the organization of the cell. It is by no means complete, however, it
opens a number of new research directions which can lead to a better un-
derstanding of the cytoskeleton but also to new perspectives in the field of
confined liquid crystals.
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Summary

The shape of animal cells is in controlled by a network of filamentous poly-
mers called the cytoskeleton. The two main components of the cytoskele-
ton are actin filaments and microtubules. These polymers continuously
reorganize in order to performed their diverse cellular functions. For ex-
ample, in processes such as cell migration actin filaments grow against the
membrane, creating flat protrusions called lamellipodia. The lamellipodia
enable the cells to move over surfaces. Microtubules are a key player in
the cell division mechanism. There, the proper separation of the genetic
material between the two daughter cells is controlled by two microtubule
asters. The positioning of these two asters also determines the location
where the cells will physically separate. Both migration and division are
crucial processes for the cell, however the mechanisms underlying these
processes are still poorly understood. The organization of the cytoskeleton
in cells, and thus their functioning as cell shapers, is an interplay between
mutual interaction, confinement and protein mediated interactions. Since
cells are exquisitely complex systems, experimentally, the bottom-up ap-
proach proves useful in understanding the contribution of each of these
interactions on the cytoskeleton organization. This approach is based on
the idea of reconstructing a minimal system and adding more complexity
to it as our understanding of this system increases.

Starting by a bottom-up approach, as it is done in experimental sys-
tems, we study various aspects of confinement and mutual interactions on
cytoskeleton organization. The simplest system in which these two inter-
actions are expected to compete is when dense enough rigid cytoskeletal
polymers are confined. Experimentally, this question is addressed by con-
fining these polymers in microchambers which are small compared to the
persistence length of the enclosed polymers. In Chapter 2, using Monte
Carlo simulations, we investigate the organization of rigid polymers con-
fined in shallow square containers, this geometry being simplified model
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of a lamellipodium. We find that, in the regime where the confinement
effect, which causes wall alignment of the polymers, competes with the
self-aligning tendency of the polymers, the organization is characterized by
a nematic droplet aligned along a diagonal and wall aligned polymers. The
pattern is stabilized by linear defect structures.

By the same methods, in Chapter 3, we study rigid polymers in curved
wall confinement, finding that the bipolar structure appearing in the disk
geometry is drastically modified by the opening of a hole in the middle of
the container. Unexpectedly, in this annular geometry, the organization is
characterized by highly aligned domains separated by radial defect walls.
The patterns observed are the result of the finite size of the particles.

When the rigid polymers are small compared to the confining volume,
their orientation is expected to vary over lengths which are much larger
than the length of the polymer. In this regime the system is well described
by continuum theories. Since currently employed continuum models ei-
ther exclude the emergence of singularities by the way they are constructed
(Oseen-Frank model) or are valid only in for a limited density range around
the transition from an unordered to an ordered system (Landau-De Gennes
model), in Chapter 4, we construct a mean-field model combining the
virtues of these two models. We apply this model to a system of rigid
small polymers enclosed in rectangular shallow container (geometry similar
to the one in Chapter 2), finding that patterns which are minimizing the
energy of the system are characterized by continuum variation of the ori-
entation. However, our model also yields patterns containing point defects
which have slightly higher energy.

So far we have considered only rigid cytoskeletal polymers, however at
the length scale of the cell the polymers are better described by an elastic
rod. In Chapter 5 we study the configurations adopted by a cytoskeletal
polymers when enclosed by a rigid ellipsoidal membrane. We find that,
compared to the spherical confinement, the change in shape of the confin-
ing membrane leads to non-trivial organization of the enclosed polymers.
Among the patters observed are single bundles, planar asters, circular and
elliptical rings. In reconstructed systems such as emulsion droplets the cy-
toskeletal polymers push against the membrane, deforming it but, since
the membrane is under tension, it also constrains them to bend. Determin-
ing the polymeric configurations as a function of the confining surface is
the first step towards understanding this mechanical interplay between the
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cytoskeleton and the the membrane.
For proper cell division, a precise positioning of the two microtubule

asters involved is required. The positioning of the two asters is based on
pushing and pulling forces generated by the microtubule-membrane inter-
action. Experimental evidence shows that, in reconstructed systems, a
spatial separation between the two asters in always present. Therefore, in
Chapter 6, we investigate the steric repulsion between two asters finding
that it indeed leads to a spatial separation.

The models that we developed in this thesis are a starting point for
understanding the cytoskeletal organization and its role in the cell. In the
last Chapter of this thesis we give some directions that the present work
opens.
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Samenvatting

Samenvatting

De vorm en de werking van dierlijke cellen wordt in belangrijke mate
bepaald door een netwerk van lange polymeren van eiwiteenheden, genaamd
het cytoskelet. De twee belangrijkste componenten van het cytoskelet
zijn actinefilamenten en microtubuli. Deze polymeren reorganiseren zich
voortdurend om hun veelzijdige functies in de cel uit te kunnen voeren. In
processen zoals celmigratie, groeien actinefilamenten tegen het celmembraan
aan, en creëren daardoor platte uitsteeksels, die lamellipodia worden ge-
noemd. De lamellipodia zorgen ervoor dat cellen over oppervlakken kun-
nen bewegen. Microtubuli spelen een sleutelrol in het celdelingsmecha-
nisme. Tijdens dit proces wordt de scheiding van het genetisch materi-
aal tussen twee dochtercellen uitgevoerd door twee zogenaamde asters van
microtubuli. De plaatsing van deze asters bepaalt vervolgens ook de lo-
catie waar de dochtercellen van elkaar gescheiden worden door afsnoering.
Hoewel zowel migratie als deling cruciale processen zijn voor de cel, zijn
de mechanismen die ten grondslag liggen aan deze processen niet volledig
bekend. De organisatie van het cytoskelet in cellen, en dus ook hun functie
als “vormgevers” van de cel, is een samenspel tussen hun onderlinge in-
teracties, de ruimtelijke opsluiting die ze ondervinden en wisselwerkingen
met andere eiwitten. Omdat cellen enorm complexe systemen, blijkt een
zogenaamde “bottom-up” experimentele werkwijze zeer nuttig te zijn om
de specifieke inbreng van elk van deze wisselwerkingen op de organisatie
van het cytoskelet te ontleden. Deze aanpak is gebaseerd op het recon-
strueren van een minimaal systeem, om vervolgens stapsgewijs steeds meer
complexiteit toe te voegen, zodat gaandeweg ons begrip van het systeem
toeneemt.

In dit proefschrift starten we ook met een van bottom-up werkwijze,
en bestuderen de verschillende aspecten van ruimtelijke opsluiting en wis-
selwerkingen op de organisatie van het cytoskelet. We gaan er van uit dat
we de competitie tussen deze interacties al in het meest simpele systeem,
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bestaande uit stijve cytoskeletpolymeren samengepakt in een beperkte ruimte,
kunnen bestuderen . Empirisch wordt deze vraag geadresseerd door poly-
meren in virtuele microkamers op te sluiten, die klein zijn vergeleken met
de persistentielengte van de opgesloten polymeren. In hoofdstuk 2 onder-
zoeken we door middel van Monte Carlo simulaties de organisatie van rigide
polymeren die opgesloten zijn in ondiepe, vierkante containers, een geome-
trie die te zien is als een versimpeld model van een lamellipodium. We ont-
dekten dat wanneer het opsluitingseffect, dat uitlijning van de polymeren
aan de muur veroorzaakt, in competitie is met de neiging van de polymeren
om zich parallel aan elkaar te organiseren, er nieuwe ruimtelijke patronen
ontstaan. De ruimtelijke organisatie wordt gekarakteriseerd door een ne-
matische druppel, gericht langs een van de diagonalen van het vierkant
terwijl verder de polymeren opgelijnd zijn aan de wanden. Om dit patroon
te stabiliseren vormen zich lineaire defectstructuren.

In hoofdstuk 3 bestuderen we met dezelfde methoden rigide polymeren
in een container met gekromde wanden, en zien dat de bipolaire structuur,
die verschijnt in een schijfgeometrie, drastisch verandert door het openen
van een gat in het midden van de container. In deze ringvormige geome-
trie, is de organisatie onverwachts gekarakteriseerd door sterk uitgelijnde
domeinen, die van elkaar gescheiden worden door radiële defectmuren. De
zo geobserveerde patronen zijn het directe resultaat van de eindige grootte
van de deeltjes.

Wanneer de inflexibele polymeren klein zijn in vergelijking met de afme-
tingen van het volume waarin ze zijn opgesloten, verwachten we dat hun
voorkeursorintatie slechts varieert over lengteschalen die veel groter zijn
dan de lengte van het polymeer. In dit regime wordt het systeem goed
beschreven door bestaande continuümtheorieën. Aangezien de continuüm-
modellen die tegenwoordig worden gebruikt, ofwel het ontstaan van sin-
gulariteiten uitsluiten door de manier waarop ze zijn geconstrueerd (bijv.
het Oseen-Frank model), ofwel alleen een sterk gelimiteerde gebied van
dichtheden bestrijken rond de overgang van een ongeordend naar een geor-
dend systeem (het Landau-de Gennes model), construeren wij in hoofdstuk
4 een gemiddeld-veld model, dat de voordelen van deze twee type modellen
combineert. We passen dit model toe op een systeem van rigide, kleine
polymeren die opgesloten zijn in een rechthoekige, ondiepe container (de
geometrie is vergelijkbaar met de geometrie beschreven in hoofdstuk 2),
en we vinden dat de patronen, die de vrije energie van het systeem mini-
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maliseren, gekarakteriseerd worden door een continue verandering van de
orintatie. Evenwel levert ons model ook patronen op met puntdefecten die
een lichtelijk hogere energie hebben.

Tot nu toe hebben we alleen stijve polymeren van het cytoskelet in
beschouwing genomen. Echter, op de lengteschaal van de cel, kunnen
de polymeren beter worden beschreven door als vervormbare elastische
staven. In hoofdstuk 5 bestuderen we configuraties die worden aangenomen
door de nu buigbare cytoskeletspolymeren, wanneer deze worden opges-
loten in een onbuigzaam, ellipsoidaal membraan. We zien dat, in vergeli-
jking met de cirkelvormige opsluiting, de verandering in de vorm van het
membraan leidt tot een niet triviale organisatie van de opgesloten poly-
meren. De geobserveerde patronen bestaan uit enkele bundels, planaire
asters, cirkelvormige en ellipsvormige ringen. In gereconstrueerde syste-
men, zoals emulsiedruppels, duwen de polymeren van het cytoskelet tegen
het membraan, en vervormen het, maar aangezien het membraan onder
spanning staat, dwingt het ook op zijn beurt de polymeren tot buigen.
Het vaststellen van de polymeerconfiguraties als een functie van de vorm
van het opsluitende oppervlak, is een eerste stap tot het begrijpen van de
mechanische wisselwerking tussen het cytoskelet en het membraan.

Om een juiste celdeling te bewerkstelligen, is een precieze plaatsing van
de twee betrokken microtubulusasters nodig. De precieze plaatsing van
de twee asters is het resultaat van zowel duw- als trekkrachten die gepro-
duceerd worden door de microtubulus-membraanwisselwerking. Empirisch
bewijs laat zien dat in gereconstrueerde systemen er altijd een ruimtelijke
scheiding optreedt tussen de twee asters. Daarom bestuderen we in hoofd-
stuk 6 de sterische afstoting tussen twee asters, en laten zien dat deze
inderdaad leidt to een eindige afstand tussen de asters, die mede bepaald
wordt door de lengte en dichtheid van microtubuli in de asters.

De modellen die we hebben ontwikkeld in dit proefschrift zijn een begin-
punt voor het begrijpen van de organisatie van het cytoskelet en haar rol in
de cel. In het laatste hoofdstuk van dit proefschrift beschrijven we enkele
deuren naar toekomstig onderzoek die dit huidige werk heeft geopend.
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