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Abstract
Paudel, Y. (2015). Structural variations in pig genomes. PhD thesis, Wageningen
University, the Netherlands

Structural variations are chromosomal rearrangements such as insertions-deletions
(INDELs), duplications, inversions, translocations, and copy number variations
(CNVs). It has been shown that structural variations are as important as single
nucleotide polymorphisms (SNPs) in regards to phenotypic variations. The general
aim of this thesis was to use next generation sequencing data to improve our
understanding of the evolution of structural variations such as CNVs, and INDELs in
pigs. We found that: 1) the frequency of copy number variable regions did not
change during pig domestications but rather reflected the demographic history of
pigs. 2) CNV of olfactory receptor genes seems to play a role in the on-going
speciation of the genus Sus. 3) Variation in copy number of olfactory receptor
genes in pigs (Sus scrofa) seems to be shaped by a combination of selection and
genetic drift, where the clustering of ORs in the genome is the major source of
variation in copy number. 4) Analysis on short INDELs in the pig genome shows that
the level of purifying selection of INDELs positively correlates with the functional
importance of a genomic region, i.e. strongest purifying selection was observed in
gene coding regions. This thesis provides a highly valuable resource for copy
number variable regions, INDELs, and SNPs, for future pig genetics and breeding
research. Furthermore, this thesis discusses the limitations and improvements of
the available tools to conduct structural variation analysis and insights into the

future trends in the detection of structural variations.
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1 General introduction

1.1 Introduction

Structural variations (SVs) are rearrangements in a genome such as insertions,
deletions, inversions, translocations, and copy number variations. SVs can
encompass millions of bases of DNA, containing genes and regulatory regions
(Sebat et al. 2004; lafrate et al. 2004; Tuzun et al. 2005; Redon et al. 2006).
Establishing a link between these SVs and phenotypic variations is a challenging job
for present-day genome research. While studies have found drastic effects of single
nucleotide polymorphisms (SNPs) on phenotypes (Hoekstra et al. 2006; Kijas et al.
2012), SNPs alone will not explain all the existing phenotypic diversity at inter and
intra-specific levels. Recent studies have generated high-resolution SV databases
and have shown that genomic variations other than SNPs play a prominent role in
diseases, complex traits, and evolution (Redon et al. 2006; Perry et al. 2007; Conrad
et al. 2006; Sudmant et al. 2010; Mills et al. 2011; Dennis et al. 2012; Durkin et al.
2012; Montgomery et al. 2013).

Based on differences in copy number of affected segments of DNA between/within
populations, SVs are divided into two main classes: unbalanced and balanced. Copy
number variations (CNVs) and segmental duplications are examples of unbalanced
SVs caused by insertion, deletion, and duplication events in a genome, where the
number of copies of a segment of DNA varies between/within populations. On the
other hand, inversions and translocations are examples of balanced SVs where the
number of copies of SV affected segments remain the same between/within
populations. Different SV formation mechanisms play a role in the generation of
different types of SVs (Mills et al. 2011; Gokcumen et al. 2013; Pang et al. 2013). A
comprehensive map of SVs in a genome is essential to understand their role in
relation to different phenotypes. Because of the variation in size and occurrence in
the genome, and the unclear mechanism in the formation of SVs, the identification

of SVs has been a challenge.
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1 General introduction

1.2 Mechanisms generating structural variation

Systematic and comprehensive estimation of SVs has been problematic and has
remained difficult, as the mechanisms that result in SVs are still not well
understood. Recently, three major DNA repair mechanisms have been proposed
that could be responsible for most of the rearrangement events in mammalian
genomes. Two of the mechanisms are based on recombination: non-allelic
homologous recombination (NAHR) and non-homologous end joining (NHEJ). The
third, fork stalling and template switching (FoSTeS), is based on replication (Figure
1.1) (Critchlow and Jackson 1998; van Gent et al. 2001; Inoue and Lupski 2002; Yu
and Lieber 2003; Lupski 2004; Lee et al. 2007; Gu and Lieber 2008). These
rearrangement mechanisms facilitated by DNA repair events probably account for

the majority of the SVs (Kidd et al. 2008; Mills et al. 2011).
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1 General introduction

Figure 1.1 A) Non-allelic homologous recombination (NAHR) showing an unequal crossing over between
flanking non-allelic homologous sequence blocks (noted as B), which results in reciprocal deletion and
duplication. B) Non-homologous end-joining (NHEJ) double-strand break repair mechanism where the
ends of DNA double-strand break is joined without any homologous fragments. C) Fork stalling and
template switching (FoSTeS) where, the DNA replication fork breaks off, the lagging strand (5')
disengages from the original template and switches to another replication fork via micro-homology
(MH) and restarts DNA synthesis on the new fork and can result in deletion and or duplication of that
sister chromosome.

NAHR occurs due to the alignment and subsequent crossover between two highly
similar non-allelic DNA sequences (Figure 1.1A) (Inoue and Lupski 2002; Lupski
2004). It has been suggested that repeats in the immediate vicinity and in the same
orientation on the same chromosome mediate duplication and/or deletion
(Edelmann et al. 1999; Shaw et al. 2002). Different studies have found an
enrichment of highly repeated elements around the flanking regions of CNVs
and/or segmental duplications, supporting the importance of NAHR as a prevalent
mechanism for the formation of CNVs (Redon et al. 2006; Kidd et al. 2008; Sudmant
et al. 2010; Bickhart et al. 2012; Paudel et al. 2013). NAHR between genomic
intervals flanked by inverted repeats are suggested to create inversions (Lupski
1998; Stankiewicz and Lupski 2002; Carvalho et al. 2011). Similarly, NAHRs between
sequences on different chromosomes help to create chromosomal translocations

(Lupski 1998; Stankiewicz and Lupski 2002).

NHEJ is another DNA repair mechanism that aims to repair DNA double strand
breaks caused by ionizing radiation or reactive oxygen (van Gent et al. 2001; Yu and
Lieber 2003; Agarwal et al. 2006; Gu and Lieber 2008). Like NAHR, NHEJ does not
need homologous DNA segments near the breakpoints (Figure 1.1B). NHEJ is
considered an imperfect DNA repair mechanism as in most cases it causes either a
deletion or an insertion of several nucleotides (Gu and Lieber 2008; Lieber 2010).
Breakpoints of NHEJ-mediated genomic rearrangements often occur in the vicinity
of repetitive elements such as Alu, LINE, LTR, MIR, and MER2 DNA elements (Nobile
et al. 2002; Toffolatti et al. 2002).

13



1 General introduction

The third DNA repair mechanism, fork stalling and template switching (FoSTeS), is a
repair mechanism that is induced by single strand breaks during the DNA
replication process (Lee et al. 2007). This repair mechanism does not require
extensive sequence homology (Figure 1.1C). In this mechanism, “the DNA
replication fork can stall, the lagging strand disengages from the original template
and switches to another replication fork and restarts DNA synthesis on the new
fork by priming it via the micro-homology between the switched template site and
the original fork” (Lee et al. 2007). Among the three DNA repair mechanisms, NAHR

accounts for most of the rearrangements in a genome (Gu et al. 2008).

1.3 Implication of structural variation in disease

Structural variations comprise a considerable proportion of variation among
individuals within a species/population and have been found to influence disease
phenotypes by altering dosage sensitive genes, disrupting functional genes, and
other molecular mechanisms (Bassett 1998, 2003; Antshel 2007; Salmon Hillbertz
et al. 2007; Wright et al. 2009; Mefford et al. 2010; Brouwers et al. 2012). In the
majority of cases, SVs have been found to be benign, resulting in only minor or no
phenotypic variation (Giuffra et al. 2002; Dumas et al. 2007; Perry et al. 2007;
Dennis et al. 2012). However, recent studies on human diseases have provided
insight into the functional impact of SVs by associating SVs with complex traits such
as autism (Antshel 2007; Eliez 2007), schizophrenia (Bassett 1998, 2003; Arinami
2006), Parkinson (Pankratz et al. 2009), Alzheimer (Brouwers et al. 2012), and
epilepsy (Mefford et al. 2010). SVs, especially CNVs, have not only been found to be
associated with diseases but also with susceptibility or resistance to different
complex traits/syndromes such as AIDS (Gonzalez et al. 2005), Crohn disease
(Ogura et al. 2001; Parkes et al. 2007), glomerulonephritis (Fanciulli et al. 2007),

and psoriasis (Huffmeier et al. 2010).

14



1 General introduction

1.4 Impact of structural variation on phenotypic traits in
domestic animals

Generations of selective breeding of species such as cattle, horse, goat, sheep, dog,
and pig for certain traits of interest has resulted in many different varieties or
breeds. This process of artificial selection of certain traits of an animal that
ultimately benefits the interests of humans is called domestication. Interest in SV
detection has recently been extended to domesticated animals to understand the
impact of SVs on genomes, which causes variation in phenotypes in these animals
(Fadista et al. 2008; Nicholas et al. 2009; Chen et al. 2009b; Bae et al. 2010; Fadista
et al. 2010; Fontanesi et al. 2010; Liu et al. 2010; Ramayo-Caldas et al. 2010;
Alvarez and Akey 2011; Bickhart et al. 2012; Kijas et al. 2012; Esteve-Codina et al.
2013; Paudel et al. 2013). Some of these studies suggest a role for SVs in several
important phenotypic traits in animals that were preferentially selected during the
domestication and subsequent breeding process. For example, white coat color in
some widely used pig breeds, is caused by a duplication involving the KIT gene
(Wiseman 1986; Giuffra et al. 2002). The high copy number of amylase genes in
domesticated dogs, compared to its wild counterpart, lead to adaptation to food
that is rich in starch (Axelsson et al. 2013). The dorsal hair ridge phenotype in dogs
(due to the duplication of the FGF3, FGF4, FGF19 and ORAOV1 genes) is another
example of the effect of genomic SVs, which were selected in some domestic dog
breeds (Salmon Hillbertz et al. 2007). The peacomb phenotype of chicken
(reduction of the size of comb and wattles), an adaptive trait in cold climates as it
reduces heat loss and makes chicken less susceptible to frost, has been linked to a
duplication near the SOX5 gene (Wright et al. 2009). Another example in chicken is
the partial duplication of the PRLR and SPEF2 genes at the late feathering locus
which causes a delay in the emergence of flight feathers at hatch (Elferink et al.
2008). These examples demonstrate that the genomic SVs can have phenotypic
consequences associated with traits beneficial for humans and positively selected

during domestication.
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1 General introduction

1.5 Impact of structural variation on genome evolution
and speciation

Structural variations such as CNVs can play a role in creating new functions for
genes, altering gene dosage, reshaping gene structures, and/or modifying the
regulatory elements that control gene expression (Long 2001; Otto and Yong 2002;
Kondrashov and Kondrashov 2006; Innan and Kondrashov 2010; Dennis et al.
2012). Therefore, understanding the evolution of genomic SVs is vital for
understanding how SVs contribute to the evolution of an organism (Long 2001;
Otto and Yong 2002; Kondrashov and Kondrashov 2006; Innan and Kondrashov
2010). Dumas et al. observed a higher rate of copy number gain regions
encompassing genes compared to copy number losses in primates and proposed
that positive selection is involved to explain this observation (Dumas et al. 2007).
The authors further suggested that studies on human lineage specific CNVs, may
reveal the evolutionary process driving the emergence of human-specific traits
such as cognition (Dumas et al. 2007). Recently, Dennis et al., (2012) have
identified a region containing the SRGAP2 gene in the human genome, which was
partially duplicated around three million years ago (mya) thereby creating a novel
gene function associated with cognitive abilities in humans. Another region in the
human genome shows a SV that overlaps with AQP7, a gene whose protein is
involved in the transport of water and glycerol. SV in human at this region suggests
positive selection for thermoregulation by increasing of sweating in human, an
important human specific trait (Dumas et al. 2007). Similarly, the salivary amylase
gene, AMY1, which is positively correlated with the levels of salivary amylase
protein and the amount of starch in the human diet, has also been found positively
selected in different human populations (Perry et al. 2007). In addition, in other
organisms such as flies (Drosophila melanogaster), a positive selection of CNV gain
regions has been observed. This CNV region encompasses a gene involved in toxin-

response (Cyp6g1), contributing to a resistance to DTT (Emerson et al. 2008).
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1 General introduction

These examples of species specific gene duplication and positive selection of
specific regions further support the hypothesis that SVs encompassing functional
genes can be evolutionarily favored because of their adaptive value. Even though
the importance of SVs in speciation, particularly inversions, has been demonstrated
through detailed studies in flies (reviewed by (Noor et al. 2001)), the overall role of
other types of SVs in the process of speciation is still not clear. Most importantly,
the role of SVs in the process of speciation is another unexplored topic hindered by
the lack of data from evolutionarily closely related species in which speciation is

still ongoing.

1.6 Structural variation detection

1.6.1 Cytogenetic methods

Studies to detect SVs at the chromosomal level already started in the early 20th
century using cytogenetic approaches (Sturtevant 1920). Fluorescent In Situ
Hybridization (FISH) is an example of a cytogenetic approach developed in the early
1980s, which is still widely used to detect SVs (Langer-Safer et al. 1982). FISH is an
experimental protocol that has been used to detect not only the presence or
absence of specific DNA sequences on chromosomes but also to estimate the
guantity and location of those regions. Fluorescently tagged DNA sequences, which
bind to chromosomal segments with a high degree of sequence complementarity,
are used as probes, and a fluorescence-microscope is used to detect the presence
or absence of the fluorescent signal. In addition, multi-colour FISH or spectral
karyotyping (Speicher et al. 1996; Schrock et al. 1996) has been used in
chromosome painting methods where each chromosome is labelled with a
different fluorescent dye or combination of fluorescent dyes to scan a set of

metaphase chromosomes for large-scale rearrangements and translocations.
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1 General introduction

Although chromosome painting allows rapid estimation of large chromosomal
changes such as the presence or absence of specific variants, it is largely being used
to detect large variants. Moreover, FISH has been used as a complement to
sequencing approaches to determine the presence of SVs whose endpoints cannot

be well defined by sequencing approaches (Kidd et al. 2008).

1.6.2 Microarray-based methods
Microarrays have been used to detect and genotype SVs (Pinkel et al. 1998; lafrate

et al. 2004; Locke et al. 2004; Sebat et al. 2004). These methods use hybridization
between complementary DNA sequences as an indication for the presence or
absence and quantity of chromosomal sequences in a high throughput fashion
(Ylstra et al. 2006). Examples of microarray-based methods, notably array
comparative genomic hybridization (array CGH) and SNP genotyping arrays, will be

discussed in more detail in sections 1.6.2.1 and 1.6.2.2 respectively.

These microarray technologies provide no information on the location of
duplicated copies and are not able to resolve breakpoints at a base-pair level.
These technologies, however, offer a distinct advantage in terms of throughput and
cost which make arrays a favored tool to discover SVs (ltsara et al. 2009; Li and

Olivier 2013).

1.6.2.1 Array comparative genomic hybridization (array
CGH)

In array CGH, fluorescently labelled samples hybridize to a microarray with a set of
targets (typically long oligonucleotides) (Ylstra et al. 2006). The signal obtained
from the level of fluorescence is a measure for the number of DNA segments in the
qguery sample homologous to that target sequence. A reference or control sample
is used to normalize the fluorescent signal of the target segments, which
subsequently is used to identify potential gain and/or losses in a query genome. If

only one sample is used, it is difficult to find whether it is because of the loss in
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1 General introduction

reference sample or it is a real gain in the query sample. Thus, the effect of the
reference sample should be taken into consideration while interpreting results

from array CGH (Park et al. 2010).

1.6.2.2 Single nucleotide polymorphism (SNP) arrays

The SNP microarray platforms are also based on hybridization and basically with
little differences compared to aCGH platforms. In particular, probes on the array
have been designed to identify specific single nucleotide variations between DNA
sequences. This platform was originally designed to detect single nucleotide
variations but subsequently was used to identify copy number variants as well. The
abundance of SNP data from a large number of individuals, from efforts like the
International HapMap Consortium, motivated additional studies on CNV detection
(The International HapMap Project 2003). In this platform, the hybridization is
performed on a single sample per microarray and log-transformed ratios are
generated by clustering the intensities measured at each probe across many
samples (Cooper et al. 2008). Patterns of SNPs provide evidence for different types
of SVs, for example deletions appear as a run of null genotypes and do not fit the
expected Mendelian inheritance from parent-child trios (Conrad et al. 2006;
McCarroll and Altshuler 2007). Similarly, differences at the signal ratio between
test and reference samples suggest the copy number of a particular segment in the

query genome.

1.6.3 Sequence based approaches

Due to the advances in next generation sequencing (NGS) technology, DNA
sequencing has become the dominant approach to detect SVs. NGS platforms (eg.
lllumina HiSeq and lon Torrent) produce large amounts of data with various read
lengths and insert sizes. Most of the SV studies use available reference genomes to
align or assemble these reads while searching for regions with discordant

signatures or patterns. Such signatures of discordant mapping are then categorized
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1 General introduction

into different classes of SVs. Most of the current algorithms for SV discovery are
modeled on computational methods that were first developed to analyze capillary
sequencing reads and fully sequenced large-insert clones (Tuzun et al. 2005; Volik
et al. 2003). There are four different strategies which utilize an available reference
genome to align or assemble the sequencing reads and subsequently search for

SVs, which | will discuss in more detail in sections 1.6.3.1 to 1.6.3.4.
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Figure 1.2 Different sequenced based approaches to detect SVs. A) Read depth method, B) Paired-end
method, C) Split-read method, and D) assembly based approach.

1.6.3.1 Read depth approach
The availability of high coverage NGS data makes it possible to identify CNVs, based

on the read depth of the sequence. The read depth (RD) approach assumes that
the sequencing process is uniform and the number of reads mapping to a region
follows a Poisson distribution. This approach also expects to have mapping depth
comparable to the number of times a region appears in the donor genome. Hence,
by looking at the divergence from the distribution of the read depth in the
sequenced samples, deleted and duplicated regions are discovered (Bailey et al.

2002). Thus, a duplicated region will have a significantly higher read depth whereas
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1 General introduction

a deleted region will have a significantly lower read depth compared to the diploid

regions of the same individual (Figure 1.2A).

The RD methods partition the reference into non-overlapping windows, and use
reads mapped to each specific window as a proxy for the copy number of the
window (Alkan et al. 2009; Chiang et al. 2009; Yoon et al. 2009; Sudmant et al.
2010; Bickhart et al. 2012; Esteve-Codina et al. 2013; Paudel et al. 2013). For
example, Alkan et al., and Sudmant et al. used a set of known diploid regions in the
human genome as control windows and calculated the average read depth for
those regions. Similarly, in chapter 2, 3 and 4, we used 1:1 orthologous regions
between distantly related species, in this case pig, cow, and human, as
calibration/control region. The average read depth of those regions was used to
calculate copy numbers (CNs) of other windows (Paudel et al. 2013). Finally,
regions of gain and loss are extracted based on the copy number of each window.
Other methods such as CNV-seq use a similar technique to call copy number but
partition the reference genome in a sliding window (Xie and Tammi 2009). The RD
approach using NGS data was first applied to define rearrangements in cancer
genomes (Campbell et al. 2008; Chiang et al. 2009). It was later used to detect
segmental duplications and generate copy number maps in human genomes (Alkan
et al. 2009; Sudmant et al. 2010) followed by other mammalian genomes (Bickhart

et al. 2012; Axelsson et al. 2013; Esteve-Codina et al. 2013; Paudel et al. 2013).

Although the RD approach is the only sequence-based method for accurate
prediction of absolute CNs (Alkan et al. 2009; Sudmant et al. 2010; Bickhart et al.
2012; Esteve-Codina et al. 2013; Paudel et al. 2013), the breakpoint resolution is
often poor. There are several limitations of the RD method. It is limited to the
detection of CNVs, for example, SVs other than CNVs such as inversions,
translocations, and novel insertions are not possible to assess with this approach.

The high sequence similarity of repetitive regions in the genome is another
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1 General introduction

drawback of this approach. The challenge here is to deal with the adequate
allocation of reads to those regions. To avoid this, the highly repetitive regions are
masked prior to the alignment. Similar to the array CGH methods, it cannot provide
the location of novel duplicated regions. A further weak point is the well-known
bias of sequencing platforms towards the GC composition of the sequences. This
bias needs to be properly addressed before calling CN. The final limitation of this
approach is the sequence coverage, since the RD based methods depend on the
signal-to-noise ratio, where the noise is primarily derived from the stochasticity of
the RD, increased sequence coverage improves sensitivity, break point, and

ultimately CN estimation.

1.6.3.2 Paired-end method

The paired-end method is an approach where paired-end reads are aligned against
the reference genome and the discordantly aligned paired-end reads, in terms of
orientation and position, are considered to detect SVs. In theory, using this
approach most of the SVs can be identified. Paired-end reads that map too far from
each other on the reference genome indicate that the region between mates is
(partially) deleted, and those found being mapped too close indicate an insertion
relative to the reference genome (Figure 1.2B). Similarly, the inconsistent
orientation of the paired-end reads can represent inversions and tandem
duplications (Tuzun et al. 2005; Korbel et al. 2007; Kidd et al. 2008, 2010). Paired-
end reads with pairs mapped on different chromosomes indicate the presence of
translocations (Tuzun et al. 2005) whereas, novel insertions are discovered when
only one end of paired-end reads cluster and the other ends do not align to the

reference.
The accuracy of the predicted SVs using the pair-end method is highly dependent
on the quality of reads, distribution of the insert size of read libraries, the mapping

quality and the quality of the reference sequence.
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Many different tools have been developed to detect SVs using the paired-end
method. Some tools allow uniquely mapped reads only, like GASV (Sindi et al.
2009), PMer (Korbel et al. 2009), and Breakdancer (Chen et al. 2009a), whereas
others allow multiple alignments of the paired-end reads to the reference genome
such as VariationHunter (Hormozdiari et al. 2010). Two different strategies have
been implemented to detect SVs using the paired-end method. The first is the
cluster-based strategy implemented by PEMer, GASV, BreakdancerMAX and
VariationHunter. In this approach, a fixed set of discordant mappings is selected
that supports the same potential SV event, also called ‘valid cluster’ and predictions
are made based on these clusters (Medvedev et al. 2009). A cluster should include
a minimum of two paired-end reads to ensure the accuracy of the predication of
breakpoints and the SV size (Medvedev et al. 2009). The second strategy,
implemented by MoDILI(Lee et al. 2009), is called the model-based approach,
which adopts a probability test to discover SVs by comparing the observed length
distribution of paired-end reads at a particular location to the expected genome

wide distribution of the insert length (Lee et al. 2009).

1.6.3.3 Split-read method

The split-read method allows to accurately detecting breakpoints of small
insertions and large deletions at single base pair resolution. It only considers the
paired-end reads for which one of the mates does not align or only partially aligns
to the reference genome. The unaligned or partially aligned paired-end reads are
re-aligned to the reference genome by splitting them into multiple fragments
(Figure 1.2C). This realigning step therefore provides the precise start and end
positions of the insertion or deletion event. This approach is not suitable to detect

large insertion events in a genome.
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1 General introduction

The Pindel algorithm is the first algorithm to use the split-read approach to identify
breakpoints of large deletions (1-10 kilobases) and small insertions (1-20 bases)
from NGS data (Ye et al. 2009). It utilizes the paired-end reads approach to reduce
the computational challenge of the locally gapped alignment of short sequences to
the reference genome. For that, it first searches for the unaligned or partially
aligned paired-end reads. The properly aligned reads of a pair are used as an
anchor and a pattern growth approach is applied to determine the optimal
alignment of split reads in minimum (the 5' end of the input reads) and maximum

locations (the 3' end of the input reads).

1.6.3.4 Assembly approach

In the genome assembly approach, a query genome is assembled using short reads
generated by NGS tools. In theory, de novo assembly of the query genome and a
comparison to the reference genome can detect all forms of SVs present in the
guery genome. Recently, with the improvement of sequencing tools to generate
longer and more accurate read fragments, this approach has emerged as a
powerful method to detect SVs, however, available assembly algorithms are
limitation in this approach. Most of the assembly based approaches use a
combination of de novo assembly and local genome assembly to generate contigs
(Figure 1.2D). These contigs are then compared to a reference genome to infer SVs.
Some recent studies have implemented the local assembly approach to discover
novel insertions in the human genome (Kidd et al. 2008, 2010). In these studies,
researchers extracted the unmapped ends of paired-end reads. By using mapped
ends of the paired-end reads as an anchor to the reference, the other reads were
assembled to create larger fragments as contigs and referred to as novel insertions
because they were absent in the reference genome (Hajirasouliha et al. 2010;

Wang et al. 2011; Igbal et al. 2012).
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1 General introduction

Comparing the de novo assembled genome to a very high quality reference genome
can ideally yield all types of variations that occur in a query genome. However, due
to the limitations of this approach such as the read length, sequence quality and
computation power, the assembly approach has not been widely adopted yet. The
de novo assembly algorithms such as EULER-USR (Chaisson et al. 2009), ABySS
(Simpson et al. 2009), SOAPdenovo (Luo et al. 2012) and ALLPATHS-LG (Maccallum
et al. 2009) use NGS data to assemble query genomes however, none of them are
designed to detect SVs. Tools such as NovelSeq (Hajirasouliha et al. 2010), CREST
(Wang et al. 2011), and Cortex (Igbal et al. 2012) have been developed to utilize

assembly based approaches to detect different forms of SVs.

1.7 Objectives and thesis outline

Few studies have used NGS data to understand the dynamics of SVs such as CNVs
during the process of domestication and speciation (Bickhart et al. 2012; Axelsson
et al. 2013; Sudmant et al. 2013). CNV studies in domesticated animals could not
resolve the questions related to the impact of CNVs on the domestication process
due to the lack of ancestral wild populations and proper samples from different
biogeographic regions. Similarly, due to the absence of samples of evolutionarily
closely related sub-species, no clear impact of CNVs on the process of speciation

has been documented.

Pigs were domesticated several times, independently, from local wild populations
in Asia and Europe (Larson et al. 2005; Megens et al. 2008). Due to the extensive
selective pressures, differences in SVs in genomes between wild and domestic
populations from the Eurasian region might reflect not only selection but also
biogeography and domestication history of pigs. We have sequenced individuals of
different populations of both wild and domestic pigs from Asia and Europe, which
gave us a unique opportunity to understand the impact of different selection

pressure on genomes. Similarly, we have sequenced different morphologically
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1 General introduction

defined species of the genus Sus from Island of South East Asia, i.e. Java, Borneo,
Sulawesi, and The Philippines. These morphologically defined species are still
capable of producing fertile offspring and the process of differentiation is ongoing
(Blouch and Groves 1990), which gave us an opportunity to study the impact of SVs
on the ongoing process of speciation. Hence, in this thesis, | will discuss the use of
NGS data to improve our understanding of the role of SVs such as CNVs on the
process of domestication, and their impact on the ongoing process of speciation. In
chapter 2 of this thesis, | describe our study on the dynamics of CNVs in pigs in the
context of adaptation and domestication. In chapter 3, | take the analysis to a
different level and describe the role of CNVRs in speciation. CNVs were mapped in
five closely related species of the genus Sus to provide detailed knowledge on the
potential evolutionary role of CNVs between species. In chapter 4, | focus my study
to understand the effect of selection and genetic drift on the copy number
variation of one of the largest known gene family in mammalian genome, the
olfactory receptor gene family, in pigs. In chapter 5, | describe the results of a study
of other types of genomic variation in pigs such as short insertions and deletions

and SNPs.

26



1 General introduction

References

Agarwal S, Tafel AA, Kanaar R. 2006. DNA double-strand break repair and
chromosome translocations. Mech Chromosom Translocat 5: 1075-1081.

Alkan C, Kidd JM, Marques-Bonet T, Aksay G, Antonacci F, Hormozdiari F, Kitzman
JO, Baker C, Malig M, Mutlu O, et al. 2009. Personalized copy number and
segmental duplication maps using next-generation sequencing. Nat Genet 41:
1061-1067.

Alvarez C, Akey J. 2011. Copy number variation in the domestic dog. Mamm
Genome 1-20.

Antshel KM. 2007. Autistic spectrum disorders in velo-cardiofacial syndrome
(22g11.2 deletion). J Autism Dev Disord 37: 1776—-1786.

Arinami T. 2006. Analyses of the associations between the genes of 22g11 deletion
syndrome and schizophrenia. ] Hum Genet 51: 1037-1045.

Axelsson E, Ratnakumar A, Arendt M-L, Magbool K, Webster MT, Perloski M, Liberg
0O, Arnemo JM, Hedhammar A, Lindblad-Toh K. 2013. The genomic signature of
dog domestication reveals adaptation to a starch-rich diet. Nature 495: 360-364.

Bae JS, Cheong HS, Kim LH, NamGung S, Park TJ, Chun JY. 2010. Identification of
copy number variations and common deletion polymorphisms in cattle. BMC
Genomics 11: 232.

Bailey JA, Gu Z, Clark RA, Reinert K, Samonte RV, Schwartz S, Adams MD, Myers
EW, Li PW, Eichler EE. 2002. Recent segmental duplications in the human
genome. Science 297: 1003 - 1007.

Bassett AS. 1998. 22q11 deletion syndrome in adults with schizophrenia. Am J Med
Genet 81: 328-337.

Bassett AS. 2003. The schizophrenia phenotype in 22q11 deletion syndrome. Am J
Psychiatry 160: 1580-1586.

Bickhart DM, Hou Y, Schroeder SG, Alkan C, Cardone MF, Matukumalli LK, Song J,
Schnabel RD, Ventura M, Taylor JF, et al. 2012. Copy number variation of
individual cattle genomes using next-generation sequencing. Genome Res 22:
778 —790.

Blouch RA, Groves CP. 1990. Naturally occurring suid hybrid in Java. Z Fir
Sadugetierkunde 55: 270-275.

Brouwers N, Van Cauwenberghe C, Engelborghs S, Lambert J-C, Bettens K, Le
Bastard N, Pasquier F, Montoya AG, Peeters K, Mattheijssens M, et al. 2012.
Alzheimer risk associated with a copy number variation in the complement
receptor 1 increasing C3b/C4b binding sites. Mol Psychiatry 17: 223-233.

27



1 General introduction

Campbell PJ, Stephens PJ, Pleasance ED, O’Meara S, Li H, Santarius T, Stebbings LA,
Leroy C, Edkins S, Hardy C, et al. 2008. Identification of somatically acquired
rearrangements in cancer using genome-wide massively parallel paired-end
sequencing. Nat Genet 40: 722 —729.

Carvalho CMB, Ramocki MB, Pehlivan D, Franco LM, Gonzaga-Jauregui C, Fang P,
McCall A, Pivnick EK, Hines-Dowell S, Seaver LH, et al. 2011. Inverted genomic
segments and complex triplication rearrangements are mediated by inverted
repeats in the human genome. Nat Genet 43: 1074-1081.

Chaisson MJ, Brinza D, Pevzner PA. 2009. De novo fragment assembly with short
mate-paired reads: Does the read length matter? Genome Res 19: 336—-346.

Chen K, Wallis JW, McLellan MD, Larson DE, Kalicki JM, Pohl CS, McGrath SD, Wend|I
MC, Zhang Q, Locke DP, et al. 2009a. BreakDancer: an algorithm for high-
resolution mapping of genomic structural variation. Nat Meth 6: 677—681.

Chen WK, Swartz JD, Rush LJ, Alvarez CE. 2009b. Mapping DNA structural variation
in dogs. Genome Res 39: 500 — 509.

Chiang DY, Getz G, Jaffe DB, O’Kelly MJ, Zhao X, Carter SL, Russ C, Nusbaum C,
Meyerson M, Lander ES. 2009. High-resolution mapping of copy-number
alterations with massively parallel sequencing. Nat Methods 6: 99 — 103.

Conrad DF, Andrews TD, Carter NP, Hurles ME, Pritchard JK. 2006. A high-resolution
survey of deletion polymorphism in the human genome. Nat Genet 38: 75-81.

Cooper GM, Zerr T, Kidd JM, Eichler EE, Nickerson DA. 2008. Systematic assessment
of copy number variant detection via genome-wide SNP genotyping. Nat Genet
40:1199-1203.

Critchlow SE, Jackson SP. 1998. DNA end-joining: from yeast to man. Trends
Biochem Sci 23: 394—-398.

Dennis MY, Nuttle X, Sudmant PH, Antonacci F, Graves TA, Nefedov M, Rosenfeld
JA, Sajjadian S, Malig M, Kotkiewicz H, et al. 2012. Evolution of Human-Specific
Neural SRGAP2 Genes by Incomplete Segmental Duplication. Cell 149: 912-922.

Dumas L, Kim YH, Karimpour-Fard A, Cox M, Hopkins J, Pollack JR, Sikela JM. 2007.
Gene copy number variation spanning 60 million years of human and primate
evolution. Genome Res 17: 1266-1277.

Durkin K, Coppieters W, Drogemuller C, Ahariz N, Cambisano N, Druet T, Fasquelle
C, Haile A, Horin P, Huang L, et al. 2012. Serial translocation by means of circular
intermediates underlies colour sidedness in cattle. Nature 482: 81-84.

Edelmann L, Pandita RK, Morrow BE. 1999. Low-Copy Repeats Mediate the
Common 3-Mb Deletion in Patients with Velo-cardio-facial Syndrome. Am J Hum
Genet 64: 1076-1086.

28



1 General introduction

Elferink M, Vallee A, Jungerius A, Crooijmans R, Groenen M. 2008. Partial
duplication of the PRLR and SPEF2 genes at the late feathering locus in chicken.
BMC Genomics 9: 391.

Eliez S. 2007. Autism in children with 22Q11.2 deletion syndrome. J Am Acad Child
Adolesc Psychiatry 46: 433—434.

Emerson JJ, Cardoso-Moreira M, Borevitz JO, Long M. 2008. Natural selection
shapes genome-wide patterns of copy-number polymorphism in Drosophila
melanogaster. Science 320: 1629-1631.

Esteve-Codina A, Paudel Y, Ferretti L, Raineri E, Megens H-J, Silio L, Rodriguez M,
Groenen M, Ramos-Onsins S, Perez-Enciso M. 2013. Dissecting structural and
nucleotide genome-wide variation in inbred Iberian pigs. BMC Genomics 14: 148.

Fadista J, Nygaard M, Holm LE, Thomsen B, Bendixen C. 2008. A snapshot of CNVs
in the pig genome. PLoS One 3: e3916.

Fadista J, Thomsen B, Holm LE, Bendixen C. 2010. Copy number variation in the
bovine genome. BMC Genomics 11: 284.

Fanciulli M, Norsworthy PJ, Petretto E, Dong R, Harper L, Kamesh L, Heward JM,
Gough SCL, de Smith A, Blakemore AIF, et al. 2007. FCGR3B copy number
variation is associated with susceptibility to systemic, but not organ-specific,
autoimmunity. Nat Genet 39: 721-723.

Fontanesi L, Martelli PL, Beretti F, Riggio V, Dall'Olio S, Colombo M, Casadio R,
Russo V, Portolano B. 2010. An initial comparative map of copy number
variations in the goat (Capra hircus) genome. BMC Genomics 11: 639.

Giuffra E, Tornsten A, Marklund S, Bongcam-Rudloff E, Chardon P, Kijas JMH,
Anderson S, Archibald AL, Andersson L. 2002. A large duplication associated with
dominant white color in pigs originated by homologous recombination between
LINE elements flanking KIT. Mamm Genome 13: 569 — 577.

Gokcumen O, Tischler V, Tica J, Zhu Q, Iskow RC, Lee E, Fritz MH-Y, Langdon A, Stiitz
AM, Pavlidis P, et al. 2013. Primate genome architecture influences structural
variation mechanisms and functional consequences. Proc Natl Acad Sci 110:
15764-15769.

Gonzalez E, Kulkarni H, Bolivar H, Mangano A, Sanchez R, Catano G, Nibbs RJ,
Freedman Bl, Quinones MP, Bamshad MJ, et al. 2005. The Influence of CCL3L1
Gene-Containing Segmental Duplications on HIV-1/AIDS Susceptibility. Science
307: 1434 -1440.

Gu J, Lieber MR. 2008. Mechanistic flexibility as a conserved theme across 3 billion
years of nonhomologous DNA end-joining. Genes Dev 22: 411-415.

Gu W, Zhang F, Lupski JR. 2008. Mechanisms for human genomic rearrangements.
Pathogenetics 1: 4.

29



1 General introduction

Hajirasouliha I, Hormozdiari F, Alkan C, Kidd JM, Birol I, Eichler EE, Sahinalp SC.
2010. Detection and characterization of novel sequence insertions using paired-
end next-generation sequencing. Bioinformatics 26: 1277-1283.

Hoekstra HE, Hirschmann RJ, Bundey RA, Insel PA, Crossland JP. 2006. A Single
Amino Acid Mutation Contributes to Adaptive Beach Mouse Color Pattern.
Science 313: 101 -104.

Hormozdiari F, Hajirasouliha I, Dao P, Hach F, Yorukoglu D, Alkan C, Eichler EE,
Sahinalp SC. 2010. Next-generation VariationHunter: combinatorial algorithms
for transposon insertion discovery. Bioinformatics 26: i350—-i357.

Huffmeier U, Bergboer JGM, Becker T, Armour JA, Traupe H, Estivill X, Riveira-
Munoz E, Mossner R, Reich K, Kurrat W, et al. 2010. Replication of LCE3C-LCE3B
CNV as a Risk Factor for Psoriasis and Analysis of Interaction with Other Genetic
Risk Factors. J Invest Dermatol 130: 979-984.

lafrate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, Qi Y, Scherer SW, Lee C.
2004. Detection of large-scale variation in the human genome. Nat Genet 36: 949
—-951.

Innan H, Kondrashov F. 2010. The evolution of gene duplications: classifying and
distinguishing between models. Nat Rev Genet 11: 97-108.

Inoue K, Lupski JR. 2002. Molecular mechanisms for genomic disorders. Annu Rev
Genomics Hum Genet 3: 199-242.

Igbal Z, Caccamo M, Turner |, Flicek P, McVean G. 2012. De novo assembly and
genotyping of variants using colored de Bruijn graphs. Nat Genet 44: 226-232.

Itsara A, Cooper GM, Baker C, Girirajan S, Li J, Absher D, Krauss RM, Myers RM,
Ridker PM, Chasman DI, et al. 2009. Population Analysis of Large Copy Number
Variants and Hotspots of Human Genetic Disease. Am J Hum Genet 84: 148-161.

Kidd JM, Cooper GM, Donahue WF, Hayden HS, Sampas N, Graves T, Hansen N,
Teague B, Alkan C, Antonacci F, et al. 2008. Mapping and sequencing of structural
variation from eight human genomes. Nature 453: 56 — 64.

Kidd JM, Graves T, Newman TL, Fulton R, Hayden HS, Malig M, Kallicki J, Kaul R,
Wilson RK, Eichler EE. 2010. A Human Genome Structural Variation Sequencing
Resource Reveals Insights into Mutational Mechanisms. Cell 143: 837-847.

Kijas JW, Lenstra JA, Hayes B, Boitard S, Porto Neto LR, San Cristobal M, Servin B,
McCulloch R, Whan V, Gietzen K, et al. 2012. Genome-Wide Analysis of the
World’s Sheep Breeds Reveals High Levels of Historic Mixture and Strong Recent
Selection. PLoS Biol 10: e1001258.

Kondrashov FA, Kondrashov AS. 2006. Role of selection in fixation of gene
duplications. Spec Issue Mem John Maynard Smith Spec Issue Mem John
Maynard Smith 239: 141-151.

30



1 General introduction

Korbel J, Abyzov A, Mu X, Carriero N, Cayting P, Zhang Z, Snyder M, Gerstein M.
2009. PEMer: a computational framework with simulation-based error models
for inferring genomic structural variants from massive paired-end sequencing
data. Genome Biol 10: R23.

Korbel JO, Urban AE, Affourtit JP, Godwin B, Grubert F, Simons JF, Kim PM, Palejev
D, Carriero NJ, Du L, et al. 2007. Paired-end mapping reveals extensive structural
variation in the human genome. Science 318: 420 — 426.

Langer-Safer PR, Levine M, Ward DC. 1982. Immunological method for mapping
genes on Drosophila polytene chromosomes. Proc Natl Acad Sci 79: 4381—4385.
Larson G, Dobney K, Albarella U, Fang M, Matisoo-Smith E, Robins J, Lowden S,
Finlayson H, Brand T, Willerslev E, et al. 2005. Worldwide Phylogeography of Wild
Boar Reveals Multiple Centers of Pig Domestication. Science 307: 1618 —1621.
Lee JA, Carvalho CMB, Lupski JR. 2007. A DNA Replication Mechanism for
Generating Nonrecurrent Rearrangements Associated with Genomic Disorders.

Cell 131: 1235-1247.

Lee S, Hormozdiari F, Alkan C, Brudno M. 2009. MoDIL: detecting small indels from
clone-end sequencing with mixtures of distributions. Nat Methods 6: 473 — 474.
Lieber MR. 2010. The Mechanism of Double-Strand DNA Break Repair by the

Nonhomologous DNA End-Joining Pathway. Annu Rev Biochem 79: 181-211.

Liu GE, Hou Y, Zhu B, Cardone MF, Jiang L, Cellamare A, Mitra A, Alexander LJ,
Coutinho LL, Dell’Aquila ME, et al. 2010. Analysis of copy number variations
among diverse cattle breeds. Genome Res 39: 693 — 703.

Li W, Olivier M. 2013. Current analysis platforms and methods for detecting copy
number variation. Physiol Genomics 45: 1-16.

Locke DP, Segraves R, Nicholls RD, Schwartz S, Pinkel D, Albertson DG, Eichler EE.
2004. BAC microarray analysis of 15q11-q13 rearrangements and the impact of
segmental duplications. ] Med Genet 41: 175-182.

Long M. 2001. Evolution of novel genes. Curr Opin Genet Dev 11: 673-680.

Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y, et al. 2012.
SOAPdenovo2: an empirically improved memory-efficient short-read de novo
assembler. GigaScience 1: 18.

Lupski J. 2004. Hotspots of homologous recombination in the human genome: not
all homologous sequences are equal. Genome Biol 5: 242.

Lupski JR. 1998. Genomic disorders: structural features of the genome can lead to
DNA rearrangements and human disease traits. Trends Genet 14: 417—-422.

Maccallum 1, Przybylski D, Gnerre S, Burton J, Shlyakhter I, Gnirke A, Malek J,
McKernan K, Ranade S, Shea TP, et al. 2009. ALLPATHS 2: small genomes

31



1 General introduction

assembled accurately and with high continuity from short paired reads. Genome
Biol 10: R103.

McCarroll SA, Altshuler DM. 2007. Copy-number variation and association studies
of human disease. Nat Genet 39: S37 — 542,

Medvedev P, Stanciu M, Brudno M. 2009. Computational methods for discovering
structural variation with next-generation sequencing. Nat Meth 6: $13-S20.

Mefford HC, Muhle H, Ostertag P, von Spiczak S, Buysse K, Baker C, Franke A,
Malafosse A, Genton P, Thomas P, et al. 2010. Genome-Wide Copy Number
Variation in Epilepsy: Novel Susceptibility Loci in Idiopathic Generalized and Focal
Epilepsies. PLoS Genet 6: €1000962.

Megens HJ, Crooijmans R, San Cristobal M, Hui X, Li N, Groenen MA. 2008.
Biodiversity of pig breeds from China and Europe estimated from pooled DNA
samples: differences in microsatellite variation between two areas of
domestication. Genet Sel Evol 40: 103 — 128.

Mills RE, Walter K, Stewart C, Handsaker RE, Chen K, Alkan C, Abyzov A, Yoon SC, Ye
K, Cheetham RK, et al. 2011. Mapping copy number variation by population-scale
genome sequencing. Nature 470: 59 — 65.

Montgomery SB, Goode DL, Kvikstad E, Albers CA, Zhang ZD, Mu XJ, Ananda G,
Howie B, Karczewski KJ, Smith KS, et al. 2013. The origin, evolution, and
functional impact of short insertion—deletion variants identified in 179 human
genomes. Genome Res 23: 749-761.

Nicholas TJ, Cheng Z, Ventura M, Mealey K, Eichler EE, Akey JM. 2009. The genomic
architecture of segmental duplications and associated copy number variants in
dogs. Genome Res 19: 491 —499.

Nobile C, Toffolatti L, Rizzi F, Simionati B, Nigro V, Cardazzo B, Patarnello T, Valle G,
Danieli G. 2002. Analysis of 22 deletion breakpoints in dystrophin intron 49. Hum
Genet 110: 418-421.

Noor MAF, Grams KL, Bertucci LA, Reiland J. 2001. Chromosomal inversions and the
reproductive isolation of species. Proc Natl Acad Sci 98: 12084—-12088.

Ogura Y, Bonen DK, Inohara N, Nicolae DL, Chen FF, Ramos R, Britton H, Moran T,
Karaliuskas R, Duerr RH, et al. 2001. A frameshift mutation in NOD2 associated
with susceptibility to Crohn’s disease. Nature 411: 603-606.

Otto SP, Yong P. 2002. The evolution of gene duplicates. In Advances in Genetics
(ed. Jay C. Dunlap and C.-ting Wu), Vol. Volume 46 of, pp. 451-483, Academic
Press.

Pang AWC, Migita O, MacDonald JR, Feuk L, Scherer SW. 2013. Mechanisms of
Formation of Structural Variation in a Fully Sequenced Human Genome. Hum
Mutat 34: 345-354,

32



1 General introduction

Pankratz N, Kissell DK, Pauciulo MW, Halter CA, Rudolph A, Pfeiffer RF, Marder KS,
Foroud T, Nichols WC, For the Parkinson Study Group—PROGENI Investigators.
2009. Parkin dosage mutations have greater pathogenicity in familial PD than
simple sequence mutations. Neurology 73: 279-286.

Parkes M, Barrett JC, Prescott NJ, Tremelling M, Anderson CA, Fisher SA, Roberts
RG, Nimmo ER, Cummings FR, Soars D, et al. 2007. Sequence variants in the
autophagy gene IRGM and multiple other replicating loci contribute to Crohn’s
disease susceptibility. Nat Genet 39: 830-832.

Park H, Kim J-I, Ju YS, Gokcumen O, Mills RE, Kim S, Lee S, Suh D, Hong D, Kang HP,
et al. 2010. Discovery of common Asian copy number variants using integrated
high-resolution array CGH and massively parallel DNA sequencing. Nat Genet 42:
400-405.

Paudel Y, Madsen O, Megens H-J, Frantz L, Bosse M, Bastiaansen J, Crooijmans R,
Groenen M. 2013. Evolutionary dynamics of copy number variation in pig
genomes in the context of adaptation and domestication. BMC Genomics 14:
449,

Perry GH, Dominy NJ, Claw KG, Lee AS, Fiegler H, Redon R, Werner J, Villanea FA,
Mountain JL, Misra R, et al. 2007. Diet and the evolution of human amylase gene
copy number variation. Nat Genet 39: 1256-1260.

Pinkel D, Segraves R, Sudar D, Clark S, Poole I, Kowbel D, Collins C, Kuo W-L, Chen C,
Zhai Y, et al. 1998. High resolution analysis of DNA copy number variation using
comparative genomic hybridization to microarrays. Nat Genet 20: 207-211.

Ramayo-Caldas Y, Castello A, Pena RN, Alves E, Mercade A, Souza CA. 2010. Copy
number variation in the porcine genome inferred from a 60 k SNP BeadChip. BMC
Genomics 11: 593.

Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD. 2006. Global variation
in copy number in the human genome. Nature 444: 444 — 454,

Salmon Hillbertz NH, Isaksson M, Karlsson EK, Hellmen E, Pielberg GR, Savolainen P,
Wade CM, von Euler H, Gustafson U, Hedhammar A, et al. 2007. Duplication of
FGF3, FGF4, FGF19 and ORAQV1 causes hair ridge and predisposition to dermoid
sinus in Ridgeback dogs. Nat Genet 39: 1318 — 1320.

Schrock E, Manoir S du, Veldman T, Schoell B, Wienberg J, Ferguson-Smith MA,
Ning Y, Ledbetter DH, Bar-Am |, Soenksen D, et al. 1996. Multicolor Spectral
Karyotyping of Human Chromosomes. Science 273: 494—-497.

Sebat J, Lakshmi B, Troge J, Alexander J, Young J, Lundin P, Manér S, Massa H,
Walker M, Chi M, et al. 2004. Large-Scale Copy Number Polymorphism in the
Human Genome. Science 305: 525 -528.

33



1 General introduction

Shaw CJ, Bi W, Lupski JR. 2002. Genetic Proof of Unequal Meiotic Crossovers in
Reciprocal Deletion and Duplication of 17p11.2. Am J Hum Genet 71: 1072-1081.

Simpson JT, Wong K, Jackman SD, Schein JE, Jones SIM, Birol i. 2009. ABySS: A
parallel assembler for short read sequence data. Genome Res 19: 1117-1123.

Sindi S, Helman E, Bashir A, Raphael BJ. 2009. A geometric approach for
classification and comparison of structural variants. Bioinformatics 25:i222-i230.

Speicher MR, Ballard SG, Ward DC. 1996. Karyotyping human chromosomes by
combinatorial multi-fluor FISH. Nat Genet 12: 368 — 375.

Stankiewicz P, Lupski JR. 2002. Genome architecture, rearrangements and genomic
disorders. Trends Genet 18: 74-82.

Sturtevant AH. 1920. Genetic studies on Drosophila simulans. Genetics 5: 488-500.

Sudmant PH, Huddleston J, Catacchio CR, Malig M, Hillier LW, Baker C, Mohajeri K,
Kondova |, Bontrop RE, Persengiev S, et al. 2013. Evolution and diversity of copy
number variation in the great ape lineage. Genome Res 23: 1373-1382.

Sudmant PH, Kitzman JO, Antonacci F, Alkan C, Malig M, Tsalenko A, Sampas N,
Bruhn L, Shendure J, Project 1000 Genomes, et al. 2010. Diversity of human copy
number variation and multicopy genes. Science 39: 641 — 646.

The International HapMap Project. 2003. The International HapMap Project. Nature
426: 789-796.

Toffolatti L, Cardazzo B, Nobile C, Danieli GA, Gualandi F, Muntoni F, Abbs S, Zanetti
P, Angelini C, Ferlini A, et al. 2002. Investigating the Mechanism of Chromosomal
Deletion: Characterization of 39 Deletion Breakpoints in Introns 47 and 48 of the
Human Dystrophin Gene. Genomics 80: 523-530.

Tuzun E, Sharp AJ, Bailey JA, Kaul R, Morrison VA, Pertz LM, Haugen E, Hayden H,
Albertson D, Pinkel D, et al. 2005. Fine-scale structural variation of the human
genome. Nat Genet 37: 727-732.

Van Gent DC, Hoeijmakers JHJ, Kanaar R. 2001. Chromosomal stability and the DNA
double-stranded break connection. Nat Rev Genet 2: 196-206.

Volik S, Zhao S, Chin K, Brebner JH, Herndon DR, Tao Q, Kowbel D, Huang G, Lapuk
A, Kuo W-L, et al. 2003. End-sequence profiling: Sequence-based analysis of
aberrant genomes. Proc Natl Acad Sci 100: 7696—7701.

Wang J, Mullighan CG, Easton J, Roberts S, Heatley SL, Ma J, Rusch MC, Chen K,
Harris CC, Ding L, et al. 2011. CREST maps somatic structural variation in cancer
genomes with base-pair resolution. Nat Meth 8: 652—-654.

Wiseman J. 1986. A history of the British pig. Ebenezer Baylis & Son Ltd. Worcester,
UK.

Wright D, Boije H, Meadows JRS, Bed’hom B, Gourichon D, Vieaud A, Tixier-
Boichard M, Rubin C-J, Imsland F, Hallb6dk F, et al. 2009. Copy Number Variation

34



1 General introduction

in Intron 1 of SOX5 Causes the Pea-comb Phenotype in Chickens. PLoS Genet 5:
e1000512.

Xie C, Tammi M. 2009. CNV-seq, a new method to detect copy number variation
using high-throughput sequencing. BMC Bioinformatics 10: 80.

Ye K, Schulz MH, Long Q, Apweiler R, Ning Z. 2009. Pindel: a pattern growth
approach to detect break points of large deletions and medium sized insertions
from paired-end short reads. Bioinformatics 25: 2865-2871.

Yistra B, van den lJssel P, Carvalho B, Brakenhoff RH, Meijer GA. 2006. BAC to the
future! or oligonucleotides: a perspective for micro array comparative genomic
hybridization (array CGH). Nucleic Acids Res 34: 445-450.

Yoon S, Xuan Z, Makarov V, Ye K, Sebat J. 2009. Sensitive and accurate detection of
copy number variants using read depth of coverage. Genome Res 19: 1586—1592.

Yu K, Lieber MR. 2003. Nucleic acid structures and enzymes in the immunoglobulin
class switch recombination mechanism. DNA Repair 2: 1163-1174.

35



1 General introduction

36



2

Evolutionary dynamics of copy number
variation in pig genomes in the context of
adaptation and domestication

Yogesh Paudell, Ole Madsenl, Hendrik-Jan Megensl, Laurent A. F. Frantzl, Mirte Bossel, John
W. M. Bastiaansenl, Richard P. M. A. Crooijmans1 and Martien A. M. Groenen®

*Animal Breeding and Genomics Centre, Wageningen University, De Elst 1, 6700 AH,
Wageningen, The Netherlands

BMC Genomics 2013, 14:449



Abstract

Copy number variable regions (CNVRs) can result in drastic phenotypic differences
and may therefore be subject to selection during domestication. Studying copy
number variation in relation to domestication is highly relevant in pigs because of
their very rich natural and domestication history that resulted in many different
phenotypes. To investigate the evolutionary dynamic of CNVRs, we applied read
depth method on next generation sequence data from 16 individuals, comprising

wild boars and domestic pigs from Europe and Asia.

We identified 3,118 CNVRs with an average size of 13 kilobases comprising a total
of 39.2 megabases of the pig genome and 545 overlapping genes. Functional
analyses revealed that CNVRs are enriched with genes related to sensory
perception, neurological process, and response to stimulus, suggesting their
contribution to adaptation in the wild and behavioral changes during
domestication. Variations of copy number (CN) of antimicrobial related genes
suggest an ongoing process of evolution of these genes to combat food-borne
pathogens. Likewise, some genes related to the omnivorous lifestyle of pigs, like
genes involved in detoxification, were observed to be CN variable. A small portion
of CNVRs was unique to domestic pigs and may have been selected during
domestication. The majority of CNVRs, however, is shared between wild and
domesticated individuals, indicating that domestication had minor effect on the
overall diversity of CNVRs. In addition, the excess of CNVRs in non-genic regions
implies that a major part of these variations is likely to be (nearly) neutral.
Comparison between different populations showed that larger populations have
more CNVRs, highlighting that CNVRs are, like other genetic variation such as SNPs
and microsatellites, reflecting demographic history rather than phenotypic

diversity.



CNVRs in pigs are enriched for genes related to sensory perception, neurological
process, and response to stimulus. The majority of CNVRs ascertained in domestic
pigs are also variable in wild boars, suggesting that the domestication of the pig did
not result in a change in CNVRs in domesticated pigs. The majority of variable

regions were found to reflect demographic patterns rather than phenotypic.

Key words: structural variation, copy number variation, next generation sequencing

data, read depth method



2 Copy number variation in pig genomes

2.1 Introduction

Linking genotypic variation to phenotypic variation is one of the most challenging
aspects of contemporary genome research. While several studies have found that
single nucleotide polymorphisms (SNPs) can have drastic effects on phenotype
(Hoekstra et al. 2006; Kijas et al. 2012), these types of variation are unlikely to
solely explain the large phenotypic diversity found at the inter and intra specific
level. Recent genomic studies have shown that variations, other than SNPs, such as
structural variations (SVs) also play a prominent role in phenotypic evolution

(Dennis et al. 2012).

Polymorphic SVs may lead to different copy number of specific genomic regions
within a population. These regions are often called copy number variable regions
(CNVRs) and can range from 50 bases up to several megabases (Mb) (Mills et al.
2011). CNVRs constitute roughly 5-12% of the human genome (Redon et al. 2006;
Stankiewicz and Lupski 2010) and have been recognized as a source of phenotypic
variation including susceptibility to specific diseases (Redon et al. 2006; Korbel et
al. 2007; Kidd et al. 2008; Stankiewicz and Lupski 2010). Duplication of genic
regions can also result in evolution of new genes and gene functions that can have
a significant impact on phenotypes (Feuk et al. 2006; Freeman et al. 2006; Ibeagha-
Awemu et al. 2008; Marques-Bonet et al. 2009; Zhang et al. 2009). For example,
duplication of the CCL3L1 gene can protect an individual against contracting HIV
and developing AIDS (Gonzalez et al. 2005) and a partial duplication of the Slit-
Robo Rho GTPhase-activating protein 2 gene (SRGAP2), some around 3 million
years ago (mya), created a novel gene function associated with cognitive abilities in

humans (Guerrier et al. 2009; Guo and Bao 2010; Dennis et al. 2012).

In domestic animals the best-known examples of traits that are affected by CNVRs

pertain the animal exterior. For instance, a duplication of the agouti signaling
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protein gene (ASIP) in sheep results in a different pigmentation (Norris and Whan
2008). The duplication of a set of fibroblast growth factor (FGF) genes in dogs leads
to a characteristic dorsal hair ridge (Salmon Hillbertz et al. 2007). A copy number
gain of the region containing the KIT gene causes the dominant white/patch coat
phenotype observed in different European pig breeds (Pielberg et al. 2002, 2003).
Thus, the association of CNVRs with distinct large effects in species that very
recently have undergone strong phenotypic alteration, most notably domesticated
animals in the past 10 thousand years, raises the question of how rapid phenotypic

alteration may be related to (large) structural variation in genomes.

Sus scrofa (domesticated pigs and wild boars; family: Sudiae) diverged from other
Sus species some 4 mya and started to spread, from Southeast Asia, into the rest of
its currently natural occurrence across most of the Eurasia about 1.2 - 0.6 mya
(Frantz LAF, unpublished observations). Such a large bio-geographic range will
result in a wide range of local adaptation that, in part, may be related to CNVRs.
Domestication can be seen as a long lasting genetic experiment (Megens and
Groenen 2012), and in the case of pigs has been carried out on the same wild
ancestral species independently at least once in Europe and once in Asia (Larson et
al. 2005; Megens et al. 2008). Independent domestication implies independent
breeding practices in Europe and Asia for several thousand years. Historical records
revealed that breeding was more intensive in Asia than in Europe for centuries
(White 2011). Different breeding regime led to intensive trading of breeds between
Europe and Asia, especially at the onset of the industrial revolution when
Europeans massively imported Asian breeds (White 2011; Groenen et al. 2012).
Since the wild ancestor is still present throughout the entire natural range, among
domesticated species, Sus scrofa provides a well suitable framework for studying
effects of both adaptation and domestication on mammalian genome structure,

such as CNVRs.
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The recent completion of the porcine genome (Groenen et al. 2012) and the advent
of high-throughput sequencing methods, now allow for a comprehensive screen of
variation, including structural variation in the pig. Although several different
methods e.g. SNP arrays and array CGH have been applied to screen for SVs,
methods based on next generation sequencing (NGS) technology in general, and
read depth (RD) based methods (Sudmant et al. 2010) in particular, revealed better
performance in detecting CNVRs. The advantage of this approach is seen especially
in and near highly duplicated genomic regions, such as segmental duplications
(SDs) where most of the array based methods fail (McCarroll 2008; Alkan et al.
2011).

In this study the RD method was applied on NGS data of 16 Sus scrofa individuals,
representing the diversity of both wild and domesticated pigs, firstly to detect
SVs/CNVs in the pig genome and secondly to relate the evolution of SVs/CNVs to

pig genomics features and to population/domestication histories.

2.2 Results

2.2.1 Data selection, copy number detection and definition
of multi copy regions

In this study, 16 pigs were selected to cover a broad representation of pig diversity
of both wild and domestic pigs. The selection of samples included three wild boars
from Asia and three from Europe and five domesticated individuals from Asia and
five from Europe (Table 2.1; Supplementary Table 2.1A). Whole genome re-
sequenced data were obtained for the 16 samples with the average coverage per
sample varying between 7x and 11x. Reads were aligned against the porcine
reference genome (Sus scrofa build 10.2 (Groenen et al. 2012)) using mrsFAST
(Hach et al. 2010). The RD method (Sudmant et al. 2010) was used to detect copy

numbers (CNs) in the 16 pig individuals (see materials and methods for details).
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From the estimated CN we defined regions of CN gains (termed multi copy regions
(MCRs)) as regions = 6 kilobases (Kb) and CN > 3. We detected 61,761 MCRs in the
16 individuals with individual numbers of MCRs ranging from 3,750 in an Asian
domestic (AsD05) to 3,984 in a European wild boar (EuUWBO03). The average number
of MCRs per individual was 3,860 covering 49.93 Mb (Table 2.1; Supplementary
Table 2.1A). The size of the MCRs identified varied from the predefined minimum
of 6 Kb to 122 Kb with an average size of 13 Kb. The majority of MCRs was found to
be common in all 16 individuals. The number of MCRs that were found specific to
single individual ranged from 0-12. Regions of CN loss were also identified, but we
observed a positive correlation between sequence depth and regions of CN loss.
With the used sequence coverage, this resulted in a considerable numbers of false
positive CN losses (data not shown) and it was therefore decided to exclude CN

losses from further analyses.

2.2.2 Copy number variable regions among pigs
CNVRs can be identified by comparing CN of the overlapping MCRs in different

individuals. We identified 5,097 MCRs with their corresponding CN in the 16
individuals. The standard deviation (s.d.) of CN of each MCR was calculated and
MCRs with a s.d. 20.7 among the 16 individuals were regarded as CNVRs. In total,
3,118 putative CNVRs were obtained with an average size of 13 Kb, comprising
39.72 Mb of the porcine genome (Supplementary Table 2.2A; See Figures 2.1; 2.3
and Supplementary figures 2.2 & 2.3 for examples of CNVRs). The CNVR density per
chromosome varies from 0.85% on chromosome 18 to 2.29% on chromosome 2

(Supplementary Table 2.2B).
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Table 2.1 Number and total size of multi copy regions in the 16 individuals1.

Total Size
Region | Populations Individual* Sample Read—depth2 MCR (Mb)
AsWB01 Japanese WB 11 3764 48.9
wild AsWBO02 | N. Chinese WB 10 3832 49.75
AsWBO03 | S. Chinese WB 10.1 3953 51.23
AsDO1 Meishan 9 3926 50.89
Asia

AsD02 Meishan 9.1 3854 49.89
Domestic AsDO3 Xiang 8.1 3858 49.74
AsD04 Xiang 8 3861 50.19
AsDO5 Jianquhai 10.5 3750 47.99
EuwB01 Dutch WB 9 3768 48.79
wild EuwB02 Dutch WB 8 3816 49.2
EuwB03 Italian WB 10 3984 51.47
EuD01 Large white 8 3909 50.59

Europe
EuD02 Large white 8 3929 50.9
Domestic EuDO03 Landrace 8 3800 48.85
EuD04 Duroc 7.1 3814 49.54
EuDO5 Pietrain 11 3943 51.14

"More details on individual information (Supplementary Table 2.1A)

2Average read-depth of the diploid region.

2.2.3 Experimental validation

We evaluated the accuracy of CNVRs prediction by quantitative real time-
polymerase chain reaction (qPCR). Ten genic CNVRs, ten non-genic CNVRs and four
diploid regions were randomly selected and tested using two distinct primer sets
per locus. 23 of the 24 assays were successful and for those we found 100%
agreement with our CNVRs predictions indicating a low false discovery call of
CNVRs by the methodology and thresholds used in our analysis. Details of the gPCR

primers can be found in Supplementary Table 2.4C. We also compared the
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predicted CNVRs with known CNVRs. The region in chromosome 8 containing the
KIT gene in the pig genome, which is known to be copy number variable between
different European breeds confirms our results (Pielberg et al. 2002, 2003) (Figure
2.1).
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Figure 2.1 Region in chromosome 8 with the KIT gene.

The region in chromosome 8 with KIT gene (SSC8: 43,550,236-43,602,062), which is
responsible for dominant white color in pigs shows an increase in the number of copies in
the European domestic individuals.

A) Heatmap of the region containing the KIT gene. Blue color represents the diploid region
where red color represents the region with copy number higher than 9.

B) Location of the KIT gene in the porcine genome (extracted from Ensembl browser).

2.3.4 Association of CNVRs with genomic features

Segmental duplications (SDs) (duplicated sequences larger than 1 Kb with more
than 90% sequence similarity) act as promoter of CNVRs by facilitating non-allelic
homologous recombination (Sharp et al. 2005; She et al. 2008). We compared the

overlap between CNVRs with a list of 1,934 SDs previously identified in the pig
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genome (Groenen et al. 2012). We found that approximately 27.5% of SDs (533 out
of 1934) were overlapping within the 10 Kb flanking region of CNVRs. Both the
CNVRs and SDs appear to be non-randomly distributed across the genome (Figure
2.2). Highly repetitive sequences such as retrotransposons were also investigated
for their correlation with CNVRs. The frequencies of major retrotransposon families
were calculated by counting the number of bases of these elements in the 10 Kb
flanking regions of CNVRs and SD separately (Table 2.2). We observed significant
enrichments of LINE-L1 (P <0.001, Fisher test), LTR-ERV1 (P <0.001, Fisher test) and
satellite elements (P <0.001, Fisher test) near CNVRs and SDs (Table 2.2).
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Figure 2.2 The UGT2B10 gene in the porcine genome. The UGT2B10 gene, which is involved
in detoxification, shows increased copy number in the Asian individuals. A) Heatmap
showing higher copies of UGT2B10 (ENSSSCG00000026944; SSC8: 71,105,942-71,111,905 ) in
Asian individuals (CN 5 to 9). B) Location of the UGT2B10 in the porcine genome (extracted
from Ensembl browser).
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The guanine/cytosine (G/C) content of CNVRs and 10 Kb flanking region of CNVRs were
assessed. Interestingly, it was observed that the G/C contents of CNVRs and 10 Kb flanking
region of CNVRs are on average 1.5% and 1% lower than in the rest of the genome,
respectively (Supplementary Table 2.2C).
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Figure 2.3 Distribution of CNVRs and SDs across the porcine genome. Black lines represent
all 18 autosomes and the sex chromosome X. Red lines on the upper part of chromosomes
indicate the 3,118 CNVRs and green lines on the lower part of chromosomes indicate 1,934
SDs.

2.3.5 Functional analysis of copy number polymorphic
genes

Genes overlapping with CNVRs were extracted and potential functional roles
associated with CNVRs were identified by analyzing them. Although partial
duplication of a gene can lead to a functional new gene, the likelihood that a gene
is functional intuitively decreases with the fraction of a gene that is duplicated. To
limit the false discovery rate caused by the inclusion of a large fraction of non-

functional gene duplicates, we only considered genes which are at least 70%
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overlapping with a CNVR. Out of 21,627 genes annotated in the current genome
build (Sus scrofa build10.2, Ensembl release 67 (Flicek et al. 2012; Groenen et al.
2012)), 575 protein-coding genes were found to overlap with the 454 CNVRs
(14.56% of total CNVRs) (Supplementary Table 2.3A). A potential source of false
positive calls are local high copy segments residing outside the gene exons resulting
in CNVR calls without corresponding gene copy number variation. To avoid this
type of false positives, the average depth of exon regions of the 575 genes,
overlapping with a CNVR, were calculated (Supplementary Table 2.3A). Only genes
with CN >2 in at least one individual and s.d. of 20.5 between 16 individuals were
considered for further analysis. Of the 575 genes, 545 genes fulfilled this threshold
(Supplementary Table 2.3B). Of the 11,629 one to one orthologous genes between
human, cow and pig, only 25 were observed as multi copy genes including 10
olfactory receptor genes and genes like KIT, BFAR, AHNAK and FLG2
(Supplementary Table 2.3C). Some of these genes only showed multiple copies in
some of the individuals for example, KIT (Figure 2.1), whereas others showed high

CN in all individuals like FLG2 with CN ranging between 10-32.

The olfactory receptor gene family, one of the largest gene families in the porcine
genome (Groenen et al. 2012; Nguyen et al. 2012), is over-represented with 353
out of 545 genes overlapping with CNVRs (Supplementary Table 2.3D). Genes
involved in immune response, for instance IFN (Alpha-8, 11, 14; Delta-2), IFNW1,
IGK (V1D-43, V2-28, V/8-61), IL1B and PG3I, were often observed as variable in CN
between individuals. Defense related genes NPG3 and PMAP23, which are specific
to porcine genome, were found to be variable in CN. In addition, genes involved in
metabolism, AMY1A, AMY2, AMY2A, AMY2B and BAAT, and detoxification, ABCG2,
UGT2B10, UGT1A3, CYPA11, CYPA22, CYP4F3 and CYP4X1, are also present in the

list of copy number variable genes.
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Few CN variable genes were observed to be unique to a specific group of pigs;
Asian domestics, Asian wild boars, European wild boars or European domestic. One
example is the genomic region at chromosome 8, which contains the UGT2B10
gene (SSC8: 71105001-71116000; Supplementary Table 2.3A) and was found to
have a high CN specifically in Asian domestics and Asian wild boars (Figure 2.3).
Similarly, BTN1IA1, CDK17, CDK20, F5, FLG2, MGAT4C, RALGDS and SUSD4 show
variation in CN in all individuals but have comparatively high CN in the Asian

domestic individuals.

Human orthologs of the porcine genes were used to analyze the functional
enrichment of genes affected by CNVRs. Gene ontology (GO) enrichment analysis
revealed that most of these genes were involved in biological processes regulating
sensory perception of smell (p<0.001), signal transduction (p<0.001), neurological

process (p<0.001) and metabolic process (p<0.001) (Supplementary Table 2.4A).

Table 2.2 Densities of repetitive element families in pig CNVRs and SDs.

Repeats PigCNVRs1 PigSDs2 Other intervals®
Number of 10 Kb intervals 5304 2467 259660

LINE-L1 2872.95*% 2852.95*% 1368.88
LINE-L2 259.06 241.895 263.975
SINE-tRNA-Glu 1132.72 1133.05 1049.36
LTR-ERV1 248.19* 438.18* 148.055
LTR-ERVL-MaLR 170.467 183.131 159.755
SINE-MIR 193.498 209.735 233.435
DNA-hAT-Charlie 106.889 136.9616  111.46

Satellite 638.778* 576.016*  273.754

! Flanking 10 Kb regions of both end of CNVRs, all overlapping regions are merged.
2 Flanking 10 Kb regions of SDs, all overlapping regions are merged

* Whole genome is divided into 10 Kb regions

* p-value (<0.001)

2.4 CNVRs between groups
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The inclusion of pigs from the two independent domestications together with
animals representing their wild ancestors enables preliminary investigation into
whether the pattern of CNVRs was influenced by the process of domestication
and/or the demographic history of pigs. For this particular comparison, to avoid
any bias caused by sampling size, we included only 12 individuals, 3 from each of
the 4 different groups based on their geographical origin/population (Asian wild,
Asian domestic, European wild and European domestic) (Supplementary Table
2.1B). We compared the extent of overlap between the different groups and
combination of the four groups and for each comparison, CNVRs were calculated

separately (applying a threshold of 20.7 s.d. to call CNVRs) (Figure 2.4).

Figure 2.4 Pairwise comparison between different groups. A) Schematic representation of
pigs across Eurasia. Two nodes show two independent domestication events. B) Shared
CNVRs between different populations.

In all comparisons, it is evident that the large majority of CNVRs are shared among

the different groups (Figure 2.4B). The Asian group (including both Asian wild and
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Asian domestics) was found to have a higher CNVRs count (2,917) than the
European group (2,779). Among the four groups, the Asian domestic group was
found to have the largest number of CNVRs (2,289; of which 277 were group
specific) with a ratio of 0.12 between shared and Asian domestic group specific
CNVRs. The European domestic group was found to have the lowest number of
CNVRs (2,084, 151 group specific) with a ratio of 0.07 between the shared and
European domestic group specific CNVRs (Figure 2.4). Applying the same criterion
as described above in the functional analyses, we extracted the genes overlapping
with the CNVRs found in the comparative analyses. For each of the four groups we
calculated the average cumulative count of genes and the s.d. of these overlapping
genes (Supplementary Table 2.4B). It is notable that the number of genes situated
in CNVRs seems to be higher in domesticated animals, both European and Asian, as
compared to wild animals, but that the variation is lower in domesticated pigs

compared to wild boars.

2.5 Discussion

Pigs have been important in agriculture and welfare for thousands of years. The
recent completion of a high-quality draft genome of Sus scrofa (Groenen et al.
2012) enables the detailed investigation of a variety of genomics features. In this
study, we used next generation sequence of 16 different wild as well as domestic

pigs from Eurasia to generate a detailed map of CNVRs in the porcine genome.

2.5.1 CNVRs in pig genomes (compared to other
mammalian genomes)
We applied the read depth methodology (Alkan et al. 2009; Sudmant et al. 2010;

Bickhart et al. 2012) to estimate CNVRs. In total 3,118 CNVRs with an average size
of 13 Kb were identified. Our result suggests that at least 1.5% (39.74 Mb) of the
porcine genome can vary in CN of a size larger than 6 Kb, which is the minimum size
we considered in this study. This figure is consistent with a recent study in cattle

(Bickhart et al. 2012). It is likely that the actual count and size of variable regions in
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the porcine genome is higher than our estimate. The stringent filtering criteria
applied in our study, including a relatively high threshold of standard deviation to
call a CNVR and exclusion of CN losses which were difficult to score with the
sequence coverage currently available for the sampled individuals, likely inflated
our false negative discovery rate. In addition, 100% validation of CNVRs tested by
gPCR strengthens our confidence that our set of CNVRs is an underestimation

rather than an overestimation.

Nevertheless, we estimated significantly more CNVRs than previously reported in
pigs. Recently, two studies using array CGH inferred 259 CNVRs using 12 animals (Li
et al. 2012) and 37 CNVRs on chromosomes 4, 7, 14 and 17 in a set of 12 samples.
In addition, three other studies using the Porcine SNP60 genotypes inferred 49
CNVRs using 55 animals (Ramayo-Caldas et al. 2010), 382 CNVRs using 474 animals
(Wang et al. 2012) and 565 CNVRs using 1693 pigs (Chen et al. 2012). The
limitations faced by these studies, may be related to different factors such as,
homogeneous sampling (only domestic pigs), low marker density, non-uniform
distribution of SNPs along pig chromosomes and/or a lack of specially designed
non-polymorphic probes which is necessary to identify CNVR with higher resolution
(Ramos et al. 2009). Here, the RD method based on next-generation sequencing,
using 16 different wild as well as domestic pigs from Eurasia, resulted in a better
resolution and higher confidence to call CNVRs. Thus, most of the CNVRs
discovered in this study are novel relative to the previous studies and represents

the largest catalog of porcine specific CNVRs to date.

2.5.2 Association of CNVRs with genomic features

Previous studies suggested that repetitive elements play an important role in the
formation of CNVRs and SDs (Cahan et al. 2009). Frequent breakage of DNA in and

around the repeat regions could initiate non-allelic homologous recombination
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(NAHR) and result in CNVRs (Hastings et al. 2009). The enrichment of the repetitive
elements LINE-L1, LTR-ERV1 and satellite elements at the boundaries of CNVRs and
SDs in the porcine genome (2.2), suggests that these families of repeat elements
indeed facilitate the formation of CNVRs and SDs in the porcine genome. This is in
accordance with the observation made by Giuffra et al. (2002), who has reported
an association of LINE-L1 and the duplication of the region containing the KIT gene
in the porcine genome (Giuffra et al. 2002). Similarly, the slightly lower G/C content
(1.5%) of CNVRs in the porcine genome suggests that the porcine CNVRs are likely
to coincide with the gene-poor regions, which is consistent to the observation

made in the human genome (Yim et al. 2010).

2.5.3 Copy number polymorphic genes

In total, we found 545 genes overlapping with CNVRs representing a valuable
resource for future studies on the relation between CNV genes and phenotype
variation. Functional enrichment analysis suggests that genes involved in sensory
perception of smell, signal transduction, neurological system process and
metabolism are affected by the CNVRs. The enrichment of CNVRs involved in the
sensory related genes is consistent to the general behavior of pigs, showing strong
reliance on their sense of smell in various behavioral contexts. Collectively, this
data might assist future studies on some of the genetic variation influencing

morphological, behavioral and physiological traits in pigs.

Genes involved in immune response such as interferon (IFN), cytochrome P450
(CYP), are usually fast evolving due to their importance for the organism to respond
rapid changes in the environment. Our results show that these type of genes are
often found to be CN variable in pigs. For example, members of interferon (IFN)
gene families, involved in defense against viral infections, and CYP genes, which are
responsible for detoxification and drug metabolism, were found to be CN variable.

Olfactory receptor (OR) represents another gene family that is over-represented in
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our list of CN variable genes. Sus scrofa have the largest repertoire of functional OR
genes in mammals (from mammals whose genome has been sequenced to date)
(Nguyen et al. 2012), likely related to the strong dependence on their sense of
smell for foraging (Groenen et al. 2012). Nearly one-third of the 1301 porcine OR
genes are found as copy number variable in pigs. These findings suggest that the

wide variety of environment faced by pigs around the world resulted in CNVs.

Among defense related copy number variable genes, NPG3 (from 4 to 23 copies)
and PMAP23 (from 2 to 13 copies) are cathelicidin related porcine specific genes.
NPG3 is responsible for microbicidal activity against Escherichia coli, Listeria
monocytogenes and Candida albicans in vitro (Kokryakov et al. 1993) whereas
PMAP23 exerts antimicrobial activity against both gram-positive and gram-negative
bacteria in vitro (Zanetti et al. 1994). In addition, CAMP (from 3 to 16 copies),
another cathelicidin related gene present in the list of copy number variable genes.
The observed variation in copy number of cathelicidin related genes suggests an
ongoing process of evolution of this gene-family in porcine genome to combat

food-borne pathogens.

In humans, copy number of amylase genes, especially AMY1, shows high variation
between populations (from 2 to 15 copies). High copy number of AMY1 allows
more efficient breakdown of starch (Perry et al. 2007). Unlike in humans, pigs have
a universally high number of copies (from 8 to 21 copies) of amylases (AMY1,
AMY2A, AMY2B) between all individuals, suggesting universal importance of

amylases for digesting starch-rich food in this omnivorous species.

Genes such as BTN1A1 and F5 are found to be involved in the regulation of milk
lipid droplets (Ogg et al. 2004) and preterm delivery in human (Hao et al. 2004),

respectively. Interestingly we found that these genes had variable numbers of
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copies in different pig breeds. Specifically, Asian breeds have typically a higher
number of copies of these genes. In the pig breeding industry, Asian breeds are
famous for being highly prolific; with some breeds typically bearing more than 15
live young per litter. These results suggest that these genes have been important in
the selection process for highly fertile breeds in Asia. It is notable that some of
these fertility genes have high CN in some European breeds (especially Large
whites). Recent studies shown that this particular breed has been extensively
admixed with Chinese pigs in order to improve fertility traits during the industrial
revolution (White 2011; Groenen et al. 2012). Thus, this pattern could also be the

result of this well-known admixture.

Some members of the uridine diphosphate glucuronosyl transferases (UGTs)
superfamily are found variable in copy number. UGTs are part of important
metabolic pathways responsible for the detoxification and elimination of many
different endobiotics and xenobiotics (Miners et al. 2006). The UGT2B10 gene,
which is one of the most important genes involved in N-glucuronidation of nicotine,
has a higher copy number in Asian individuals (from 5 to 9 copies) than the
European individuals (3 copies). The elevated copy number may be related to the
ability to detoxifying specific plant secondary metabolites. Although, at present
there is no data on wild boar feeding habits in relation to floristic differences
between East and West Eurasia, our finding can direct future ecological studies on

that subject.

2.5.4 Demography shape CNVR diversity

Regardless of their geographic origin, different pig populations have undergone
different selective pressure. Important events were the foundation of modern pig
breeds starting around 200 years ago during the industrial revolution, and more
recently, the development of modern breeding practices in the past five decade in

different parts of Asia and Europe.
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The association of CNVRs with distinct phenotypic effect and different selective
regimes in Europe and Asia, suggest that differences in structural variation
between wild and domestic pigs as well as Asian and European populations, could
reflect domestication history. By including different pigs from the two independent
domestications together with individuals representative of their wild ancestors,
enabled a first preliminary insight into the change in pattern of CNVRs influenced

by the process of domestication and/or the natural demographic history of pigs.

To investigate the importance that CNVRs may have had on phenotypic
diversification in breeds, we compared the amount of CNVRs in domesticated and
wild individuals. We found more CNVRs in domesticated animals (2,915) than in
wild boars (2,879). Moreover, our results showed that CNVR counts were also
higher in Asian pigs (combined wild and domestic) (2,967) than in European pigs
(2,779) (combined wild and domestic) (Figure 2.4), which is consistent with a large
effective population size and diverse origin of Asian pigs (Megens et al. 2008;

Groenen et al. 2012).

A recent study based on SNPs identified a similar pattern not only between breeds
and wild but also between Asian and European pigs (Groenen et al. 2012). Thus, CN
seems to be more variable in larger populations, following the similar patterns as
other types of variation such as SNPs (Groenen et al. 2012) and microsatellites
(Megens et al. 2008). This indicates that the general pattern of CNV is more
reflecting demography rather than phenotypic diversity. Having large fractions of
common CNVRs between different groups and excess of CNVRs (2,664; 85.43%) in
non-genic regions suggest that a major part of these variations are likely to be
neutral or nearly neutral. This further supports their reflection on demography

rather than phenotypic diversity. These results are of importance as they show that
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intensive artificial selection did not affect the overall diversity of CNVRs in domestic
pigs and do not appear to be the major source of the large phenotypic diversity

observed in domestic pigs.

2.6 Conclusion
We identified 3,118 CNVRs with an average size of 13 Kb comprising 39.2 Mb of the

porcine genome, which represents the largest source of genetic variation identified
in the porcine genome to date. The inferred CNV regions include 545 genes
providing an important resource for future analyses on phenotypic variation in pigs.
Functional analyses revealed CNVRs enriched for genes related to sensory
perception, neurological process, and response to stimulus in specific breeds or
wild population. Comparison between wild and domestic groups shows that, beside
few exceptions, domestication did not lead to a change in CNVRs among breeds.
Moreover, we found that most CNVRs ascertained in domestics were also variable
in wild boars. This result suggests that the majority of CNVRs were already
segregating among wild boars before domestication. Furthermore, while we
identify few CNVRs that may be under selection during domestication and may lead
to phenotypic differences, the majority of variable regions were found to reflect
demographic pattern rather than selective regimes. QOur study represent a
comprehensive analysis of CNV in both domestic and wild pigs and provides
valuable insight in the evolutionary dynamics of copy number variation, in the

context of adaptation and domestication.

2.7 Materials and Methods

2.7.1 Database

In total 16 different individuals originated from 13 populations of Sus scrofa were
sequenced at different sequencing centers using the Illumina HiSeq platform. The
libraries are 100 bases pair-end reads with coverage per animal ranging between 7

— 11x. The sampled pigs comprised of three European wild boars (2- Dutch and 1-
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Italian), five European domestics (2- Large whites and 1- from each Landrace, Duroc
and Pietrain), three Asian wild boars (1- North Chinese, 1- South Chinese and 1-
Japanese) and five Asian domestics (2- Meishan, 2- Xiang and 1- Jianquhai) (Table
2.1; Supplementary Table 2.1A). DNA samples were obtained from blood samples
collected by veterinarians according to national legislation or from tissue samples
from animals obtained from the slaughterhouse or in the case of wild boar from

animals culled within wildlife management programs.

2.7.2 Sequence alignment and copy number estimation
Copy number of regions in the genomes of all the 16 individuals was detected by

the read depth (RD) method (Alkan et al. 2009; Sudmant et al. 2010), where the
number of copies present is inferred from sequence depth of whole genome
sequence data. To calculate the average read depth from those libraries, reads
were aligned to the available pig reference genome (Sus scrofa build 10.2) using
mrsFAST v2.3.0.2 (“Micro-read (substitutions only) fast alignment and search tool”
(Hach et al. 2010)) with an edit distance of at most 7. mrsFAST is a memory
efficient and fast software, which reports all possible mapping locations (not only
the best, unique or first mapping locations as several other softwares), which is
essential in order to detect multi-copy regions using read depth method. Because

the RD methods do not take paired end information into consideration, all the

paired end libraries were treated as single end libraries.

Highly repeated elements are the main source of noise for the RD method. The
porcine genome consists of more than 40 percent of highly repeated elements and
most of these repeated elements are long/short interspersed nuclear elements
(LINEs/SINEs), long terminal repeats retro-transposons (LTRs) and satellites
(Groenen et al. 2012). To avoid noise from these repeated elements, a repeat
masked reference genome was used. Repeat masked information was obtained

from NCBI
58



2 Copy number variation in pig genomes

(ftp://ftp.ncbi.nih.gov/genbank/genomes/Eukaryotes/vertebrates_mammals/Sus_s
crofa/Sscrofal0.2/Primary_Assembly/assembled_chromosomes/FASTA/) and
merged with the repeat masked information used in Groenen et al. (2012)
(Groenen et al. 2012). Calculation of read depth across the whole genome was
done with the help of SAMtools v0.1.12a (Li et al. 2009). Average read depth for

each 1 Kb non-overlapping bin was calculated across the genome.

RD method uses read depth information of diploid region to infer copy number of
each 1 Kb non-overlapping bin present in the genome. No prior information
regarding diploid regions in the porcine genome was available. We therefore used
1:1 orthologous genic regions between human, cow and pig as diploid region in the
first stage to identify CN of each bin present in the genome (Supplementary Figure
2.1). Since, coding regions are known to have a higher G/C content than an average
region of a genome (Hogstrand and B6hme 1999; Galtier et al. 2001)

this procedure may introduce a G/C biased read depth. To reduce possible G/C bias
caused by the 1:1 orthologous regions, all diploid regions predicted from 1:1
orthologous regions in the first stage were subsequently used to calculate the

average diploid read depth of the porcine genome (Supplementary Figure 2.1).

Next generation sequencing methods has been shown to introduce a bias in the
coverage in regions of high or low G/C. One of the major reason for GC bias
coverage in lllumina sequences originates from the polymerase chain reaction
(PCR) amplification step during library preparation as well as for cluster
amplification on the lllumina flowcell (Oyola et al. 2012). This issue is similar for any
sequencing technology that relies on PCR amplification (Quail et al. 2012). To
correct for this bias we calculated G/C intervals correction factors as described by
Sudmant et al. (2010) (Sudmant et al. 2010). These factors were used to correct
read depth of each 1 Kb bin across the genome. CN of each 1 Kb non-overlapping

bins were then estimated based on the G/C corrected read depth. Since the
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samples include both male and female individuals, copy number of male X
chromosomes were corrected by multiplying the read depth by 2 (outside the

pseudo-autosomal regions) to make them comparable with female individuals.

2.7.3 Prediction of MCRs and defining CNVRs

All the 1 Kb bins with minimum CN of 1 were extracted from all 16 individuals and
bins with CN >3 were chained to form multi copy regions (MCRs). The same MCRs
might be assigned with different boundaries in different individuals due to
technical and/or biological reason and therefore all the MCRs from all individuals
were extracted merged and the CN of those regions for all 16 individuals were
compared. Copy number variable regions were identified based on the standard
deviation of the CN of MCRs in all 16 individuals. Hence, CNVR status was assigned

to those regions, which were variable (s.d. 20.7) in CN across all 16 individuals.

2.7.4 Gene identification and Gene Ontology

All the annotated porcine genes from Sus scrofa build 10.2, Ensembl release 67,
were extracted using Biomart (Haider et al. 2009) and genes which were
overlapping with the CNVRs (>70% overlap) were identified. To reduce false calls of
particular genes as being multi copy genes, exons of genes overlapping with CNVRs
were tested for average CN. GC correction on the read depth of all exons was
performed using the correction factors obtained previously for the whole genome.
All the genes with an average depth in exon regions >2 were kept in the list of
genes affected by CNVRs for further analysis. Not all pig genes have associated
gene names, thus the genes without gene names were blasted against the human
Refseq mRNAs and human reference protein sequences (blastn and blastp
respectively) and the best human hit was assigned as gene name. Human orthologs
of porcine genes were used to perform gene ontology analysis. BinGO v2.44
(Maere et al. 2005) a plugin of Cytoscape v2.8.3 (Shannon et al. 2003) was used to

identify enriched GO terms using human gene annotation as background.
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Hypergeometric test was used to assess the significance of the enriched terms and

Benjamini and Hochberg correction was implemented for multiple comparisons.

2.7.5 Comparison between different groups
For the group comparison, we formed groups based on their geographical location

and population type (Asian wild, Asian domestic, European wild and European
domestic). To make all the groups comparable with each other, we took 12 instead
of all 16 individuals i.e. three pigs per group (Supplementary Table 2.1B). CNVRs for
all groups were generated based on the similar approach we used before but

instead of all 16 individuals, we compared only individuals present in the particular

group.

2.7.6 qPCR Validation

Primer3 webtool http://frodo.wi.mit.edu/primer3/ was used to design primers for
gPCR validation. Amplicon length was limited between (50 bp — 100 bp) and
regions with GC percentage between 30% and 60% were included, while avoiding
runs of identical nucleotides. All other settings were left at their default. Details of
the qPCR primers can be found in Supplementary Table 2.4C. gPCR experiments
were conducted using MESA Blue qPCR MasterMix Plus for SYBR Assay Low ROX
from Eurogentec, this 2x reaction buffer was used in a total reaction volume of
12.5ul. All reactions were amplified on 7500 Real Time PCR system (Applied
Biosystems group). The copy number differences were determined by using a
standard ACt method that compares the mean Ct value of the target CNV
fragments, determined from different input concentrations, compared to the mean

Ct value of a known diploid reference.
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Abstract

Unraveling the genetic mechanisms associated with reduced gene flow between
genetically differentiated populations is key to understand speciation. Different
types of structural variations (SVs) have been found as a source of genetic diversity
in a wide range of species. Previous studies provided detailed knowledge on the
potential evolutionary role of SVs, especially copy number variations (CNVs),
between well diverged species of e.g. primates. However, our understanding of
their significance during ongoing speciation processes is limited due to the lack of
CNV data from closely related species. The genus Sus (pig and its close relatives)
which started to diverge ~4 Mya presents an excellent model for studying the role

of CNVs during ongoing speciation.

In this study, we identified 1408 CNV regions (CNVRs) across the genus Sus. These
CNVRs encompass 624 genes and were found to evolve ~2.5 times faster than
single nucleotide polymorphisms (SNPs). The majority of these copy number
variable genes are olfactory receptors (ORs) known to play a prominent role in food
foraging and mate recognition in Sus. Phylogenetic analyses, including novel
Bayesian analysis, based on CNVRs that overlap ORs retain the well-accepted
topology of the genus Sus whereas CNVRs overlapping genes other than ORs show

evidence for random drift and/or admixture.

We hypothesize that inter-specific variation in copy number of ORs provided the
means for rapid adaptation to different environments during the diversification of
the genus Sus in the Pliocene. Furthermore, these regions might have acted as
barriers preventing massive gene flow between these species during the multiple
hybridization events that took place later in the Pleistocene suggesting a possible

prominent role of ORs in the ongoing Sus speciation.

Key words: speciation, structural variation, copy number variation, next generation

sequencing data, read depth method
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3.1 Introduction

The process of speciation is one of the major evolutionary drivers of the diversity of
life on earth. Understanding the process by which populations diversify leading,
ultimately, to speciation has been one of the major focuses of evolutionary
biologists for decades (Mayr 1963; Mallet 1995; Coyne and Orr 2004). Two major
models of speciation have been put forward. The first model, also known as
allopatric speciation, involves cessation of gene flow between two newly formed
populations as a result of geographical isolation (i.e. mountain ranges, rivers). The
second model, parapatric or sympatric speciation, involves cessation of gene flow
between two populations with overlapping geographical range (Bolnick and
Fitzpatrick 2007; Fitzpatrick et al. 2008; Niemiller et al. 2008). Many recent genetic
studies, on organisms as diverse as fish (Terai et al. 2006), birds (Ellegren et al.
2012), insects (Hearn et al. 2013; Martin et al. 2013), amphibians (Niemiller et al.
2008), mammals (Lohse and Frantz 2014; Green et al. 2010; Reich et al. 2010) and
plants (Mitsui and Setoguchi 2012), have shown that genetic exchange during
population diversification is more common than what was originally anticipated.
Hence, the reduction of gene flow between sub-populations or species, that inhabit
the same geographic range, often involves a period of extrinsic reproductive

isolation before acquiring an eventual intrinsic reproductive isolation.

The mechanisms by which gene flow reduces between diverging populations that
overlap in their range are still not very well understood. A major goal of geneticist
and evolutionary biologist is to identify the mechanisms or genes and/or regions in
the genome that are involved in the reduction of gene flow and eventually
emergence of reproductive isolation between diverging populations. In animals,
only a few genes have so far been identified to be involved in speciation, for
example Prdm9 in mouse (Mihola et al. 2009), and Odysseus-site homeobox (Perez
and Wu 1995), JYalpha (Masly et al. 2006) and GA19777 Overdrive (Phadnis and Orr

2009) in Drosophila. These sparse examples of identified speciation genes do not
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seem to suggest a common or general universal pathway/process leading to
speciation but rather point to the involvement of a variety of different mechanisms

in the evolution of pre- and postzygotic barriers between different species.

Speciation with gene flow could be achieved through the reduction of gene flow at
specific loci in the genome, also coined islands of speciation (Turner et al. 2005;
Noor and Bennett 2009). Multiple studies have successfully identified possible
islands of speciation in the genome of diverging species (Turner et al. 2005;
Ellegren et al. 2012), however the exact contribution of these regions in speciation
is still to be unraveled. Furthermore, these studies have mainly focused on genetic
variation due to single nucleotide polymorphisms (SNPs) and very few studies have
investigated the role that structural variations (SVs) play in the process of
population diversification (Michel et al. 2010; Vicoso and Bachtrog 2013). Copy
number variations (CNVs), a class of SVs, can be a major mechanism driving gene
and genome evolution by duplicating and deleting segments of the genome and as
a result, create novel gene functions, disrupt gene functions, or affect regulatory
mechanisms in the genome. The majority of inter-species CNV studies have focused
on primates (Newman et al. 2005; Popesco et al. 2006; Dumas et al. 2007; Perry et
al. 2008; Dennis et al. 2012) and suggested that species-specific copy number (CN)
can be evolutionarily favored because of their adaptive benefits (Popesco et al.
2006; Dumas et al. 2007; Perry et al. 2007; Nguyen et al. 2008; Guerrier et al. 2009;
Dennis et al. 2012). However, these studies only provide insights into the role of
CNV between already well-diverged species (i.e. Chimpanzees and Humans),
making it difficult to determine whether these variations between species have

arisen during speciation or rather accumulated post-speciation.

The species of the genus Sus provide a good model to study the effect of CNV
regions (CNVRs) in the process of speciation. Genus Sus comprises of at least 7

morphologically and genetically well-defined species (Frantz et. al. 2013), that
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inhabit the five biodiversity hotspots in Island and Mainland South East Asia (ISEA
and MSEA) (Myers et al. 2000). Recent findings showed that these species diverged
during the late Pliocene (4-2.5 Mya), due to their isolation on different islands of
ISEA and underwent multiple rounds of small scale inter-specific hybridization
during the glacial periods of the Pleistocene (2.5-0.01 Mya) (Frantz et. al. 2013).
Indeed, the frequent occurrence of glacial periods during the Pleistocene, resulted
in land bridges between ISEA and MSEA allowing migration between islands (Frantz
et. al. 2013). Therefore, the process of divergence between the pigs in ISEA and
MSEA, effectively follows alternating periods of allopatric (warm periods) and
parapatric (glacial periods) conditions. However, while these species can be
identified based on morphology and/or DNA and are still capable of producing
fertile offspring (Blouch and Groves 1990), the mechanisms that prevented these
species from large scale homogenizing during the numerous glacial periods of the

Pleistocene remain unclear.

In this study, we analyzed the complete genome sequence of 4 different species of
the genus Sus, that are solely found in ISEA (Sus-ISEA): Sus barbatus (Bearded pig
on Borneo), Sus celebensis (Sulawesi warty pig), Sus cebifrons (Philippine warty pig),
Sus verrucosus (Javan warty pig) and 3 populations of the species Sus scrofa from
Europe, China and Sumatra. We compared and contrasted the pattern of CNVs
among population/species, in order to investigate the role that CNVRs may play in

this on-going process of speciation.

3.2 Results

Whole genome re-sequencing data were obtained for seven populations (two
individuals of the same species from ISEA; Sus cebifrons, Sus celebensis, Sus
verrucosus and Sus barbatus (in case of Sus barbatus we obtained data from four
individuals) and two individuals each from three diverged populations of Sus scrofa;

from Sumatra, China and Europe (Table 3.1, Fig 3.1, Supplementary Table 3.1).
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Previous analyses have shown the read depth (RD) method to be an accurate
method for computational detection of CN of regions throughout the genome,
especially with high coverage data (Sudmant et al. 2010; Bickhart et al. 2012;
Esteve-Codina et al. 2013; Paudel et al. 2013). Since our main goal was the
identification of inter-population CNVRs, the two samples from the same
population were combined to achieve higher RD. The combined data was used to
identify inter-population CNVRs between the seven populations by aligning short
reads to the Sus scrofa reference genome (Groenen et al. 2012, see material and
methods for details). In the case of Sus barbatus, all possible pairwise combinations
of the four individuals displayed a high level of congruence in CN detection in both
intra- and inter-population comparison. To avoid bias due to sampling size and
total coverage we selected two of four Sus barbatus individuals in order to give a
read coverage comparable with the other populations studied (Supplementary
Table 3.1). We tested the assumption that combining individuals from the same
population would not create any significant bias due to the expected higher inter-
than intra-population variation by comparing CN among and between the seven
populations. We found that the copy number differences (CNDs) between pairs of
individuals from different populations were significantly higher than between
individuals from the same population (p-value <0.001, Wilcoxon test,
Supplementary Figure 3.1A and 3.1B). Thus, combining two individuals of the same
species will likely result in a higher sensitivity in calling CN with a relative minimal
bias in the inter-population comparison. For each population, multi copy regions
(MCRs) were defined by applying a threshold of a minimum of 6 consecutive 1
kilobase (Kb) bins that have an average CN higher than 2.5. All the MCRs were then
retrieved from all populations and we then chained MCRs that were (partially)
overlapping between two or more populations. We computed the CN for all
chained MCRs in each population and for each MCR, the standard deviation (s.d.) of
CN between the seven populations was estimated. All MCRs with a s.d. 20.7 were

regarded as CNVRs. We identified 1408 regions, encompassing 17.83 megabases
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(Mb) on the Sus scrofa reference genome, as CNVRs (Supplementary Table 3.2,
Supplementary Figure 3.1) (see material and methods for details on detection of

CN, MCR, and CNVR).

Sus celebensis

Sus cebifrons

Sus verrucosus
Sus scrofa (Sumatra)
Sus scrofa (China)

Sus scrofa (Europe)

Figure 3.1 Schematic overview of origin of Sus populations across Eurasia and Island of South East Asia
used in this study.

Although CNVRs were found on every chromosome, the number and the total size
of CNVRs per chromosome are not correlated with chromosome length (Fig 3.2A
and Fig 3.2B), which is consistent with our previous study related to CNVRs in the
porcine genome (Paudel et al., 2013). Many of the identified CNVRs are relatively
small, close to the effective resolution of 6 Kb. While the size of CNVRs ranges from
6 to 98 Kb, the majority (1089 out of 1408; 78%) of the CNVRs that were identified
is between 6 and 15 Kb (Fig 3.2C). We did not observe any CNVR larger than 98 Kb
which is probably due to incompleteness and assembly errors in the current
genome build resulting in gaps in the genome. In addition, the presence of
repetitive elements may preclude the chaining of smaller segments of large CNVRs.

Repetitive sequences will break the contiguity of defined CNVRs as those regions
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were masked in the genome prior to the alignment. We observed a number of
regions on some chromosomes having cluster of CNVRs with comparatively higher
CN in some populations. For example, the 0.81 Mb region between 22.24 Mb -
23.05 Mb on chromosome 10 (Fig 3.3A and 3.3B) shows higher CNs in the Sus
scrofa populations (CN range in Sus scrofa 0 to 85; CN range in Sus-ISEA 0 to 39).
Another example is the 370 Kb region between 78.7 Mb and 79.07 Mb on
chromosome 10 (Fig 3.3A and 3.3C) that shows a series of regions with high CN in
Sus-ISEA (CN range in Sus-ISEA 22 to 72; CN range in Sus scrofa 12 to 46).

Table 3.1 Read depth of individuals and grouped individuals used (information of other Sus
barbatus individuals can be found in Supplementary Table 3.1)

Separate Combined
Names Combined Separate
Depth Depth
Sus Sbarl 9.087
Sbar 17.186
barbatus Sbar2 8.087
Sus Scebl 9.36
' Sceb 18.6
cebifrons Sceb2 9.174
Sus Scell 18.409
Scel 25.475
celebensis Scel2 7.046
Sus Sverl 9.088
Sver 18.844
verrucosus Sver2 10.127
Sumatral 10.961
Sus scrofa Sumatra 22.247
Sumatra2 11.113
Chinal 7.965
Sus scrofa China 19.172
China2 11.268
Europel 7.555
Sus scrofa Europe 18.529
Europe2 11.056
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Figure 3.2 Distribution, proportion, and frequency of CNVRs in the pig genome. A) Distribution of CNVRs
on the different chromosomes of the porcine genome. B) Proportion of CNVRs per chromosome. C)
Frequency and size of CNVRs

Overall, most of the CNVRs identified displayed CN higher than two in all seven
populations (1077 out of 1408 region) with only a small fraction (29; 211 Kb) being
population specific. This could be due to the stringent criteria implemented to
reduce false positive CNV calls. Sus barbatus showed the largest number of MCRs
observed as variable in CN in all the seven populations (1358; 17.33 Mb) whereas
Sus scrofa from Sumatra showed the lowest number of MCRs observed as variable

in CN in all the seven populations (1197; 15.613 Mb) (Supplementary Table 3.3).

3.2.1 Experimental validations
We used quantitative real time-polymerase chain reaction (qPCR) to validate the

identified CNVRs. We randomly selected ten genic CNVRs, ten non-genic CNVRs
and five diploid regions and tested these using two distinct primer sets per locus.
All 25 assays were successful and all 25 showed 100% agreement with our CNVRs
predictions, indicating a low false discovery rate for calling CNVRs based on the RD

analysis.
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3.2.2 Functional relevance of CNVRs in the genus Sus

We used the porcine gene annotation of the current genome build (Sus scrofa
build10.2, Ensembl release 75 (Flicek et al. 2012)) to identify genes encompassing
CNVRs. To improve the reliability of the functional annotation of CNVRs, only genes
having at least 70 percent overlap with a CNVR were considered. The CN of the
genes were set at the CN of the overlapping CNVRs. Out of the 21,630 protein
coding genes annotated in the current genome build (Groenen et al. 2012), 624
genes were found to overlap with 504 CNVRs (35.8% of total CNVRs)

(Supplementary Table 3.4).

Sbar
Sceb
Scel
Sver
Sumatra
China
Europe

Europe

Sbart
Sbar2
Sceb1
Sceb2
Scell
Scel2
Svert
Sver2
Sumatral
Sumatra2
China1

Sbart
Sbar2
Sceb1
Sceb2
Scell
Scel2
Sver1
Sver2
Sumatral
Sumatra2

China2

Europe1
Europe2

Europel
Europe2 ]

Figure 3.3 Heatmap of CNVRs. A) Heatmap of CNVRs on chromosome 10. Each column represents one
CNVRs and each row represents a population. B) Heatmap of a 0.81 Mb region on chromosome 10
(SSC10: 22.24 Mb - 23.05 Mb; 24 CNVRs). Each column represents one CNVR (chromosome; CNVRs
starting position; size of the CNVR) and each row represents one population (upper panel) or single
individual (lower panel). C) Heatmap of a ~370 Kb region on chromosome 10 (SSC10: 78.7 Mb - 79.07
Mb; 13 CNVRs of different sizes. Each column represents one CNVRs (chromosome; CNVRs starting
position; size of the CNVR) and each row represents one population (upper panel) or single individual
(lower panel). Abbreviations: Sbar (Sus barbatus), Sceb (Sus cebifrons), Scel (Sus celebensis), Sver (Sus
verrucosus), Sumatra (Sus scrofa population from Sumatra), China (Sus scrofa from China), Europe (Sus
scrofa from Europe).
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The olfactory receptor gene family, one of the largest gene families in the porcine
genome (Groenen et al. 2012; Nguyen et al. 2012), is highly over-represented with
413 out of 624 genes overlapping a CNVR (Supplementary Table 3.4). Genes
involved in immune response, such as IFN (Alpha-8, 11, 14; Delta-2), IFNW1, IGK
(V1D-43, V2-28), IL1B and PG3I, also show variation in CN between populations.

Only few genes exhibit a high CN in a single population or a general high number of
copies with much variation in two or more population. For example, PSMB5 shows
higher CNs in Sus-ISEA (from 21 in Sus celebensis to 10 in Sus cebifrons) but no sign
of duplication in the three population of Sus scrofa (1-2 copies). NBPF6 and NBPF11
show high CN in all populations but with large variation in Sus-ISEA individuals
(from 18 to 44 for NBPF6 with s. d. of 11.1 and 21 to 60 for NBPF11 with s. d. of
15.7). Likewise, SAL1 shows CNV only between Sus scrofa populations (from 2-11
with s.d. of 3.48).

The porcine-specific immune-defense related genes NPG3 and PMAP23, together
with the other immune related genes USP17L2, CDK20, POMC, were found to be
CNV with in general high variation in Sus scrofa populations. In addition, other
previously identified CNV-genes in pigs involved in metabolism (AMY1A, AMY2,
AMY2A, AMY2B) and detoxification (UGT2B10, UGT1A3, CYPA11, CYPA22, CYP4F3,

and CYP4X1) are found to be CNV genes in this study as well.

A gene ontology (GO) enrichment analysis on all 624 genes overlapping CNVRs
revealed that most of these genes are involved in biological processes regulating
sensory perception of smell (p<0.001), signal transduction (p<0.001), neurological

process (p<0.001) and metabolic process (p<0.001) (Supplementary Table 3.5).

3.2.3 Cluster analysis
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To investigate whether the observed CNVRs were congruent with the known
phylogeny of the species, we performed a cluster analysis based on the CN at each
CNV locus. The resulting tree is highly congruent to the phylogenomic analyses
based on SNPs (Frantz et al. 2013) (Fig 3.4A). However, some inconsistencies are
observed in the resolution of branching order within Sus-ISEA which is not
surprising as recurring hybridization was common in the evolutionary history of

Sus-ISEA (Frantz et al. 2013).

A)

Sus celebensis

Sus barbatus )—
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Sus verrucosus
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Figure 3.4: Cluster and phylogenetic tree analysis. A) Cluster analysis. The phylogenetic tree on the left
side is obtained from Frantz et. al (2013) and the cluster tree on the right side is obtained by cluster
analysis using the actual CN of CNVRs from different populations. The branch length does not
correspond to the evolutionary distance. B) NJ-Phylogenetic tree obtained by using the pairwise
difference based on SNPs (Abb. see Table 3.1). C) NJ-Phylogenetic tree obtained by using the pairwise
CNDs of all possible pairs for CNVRs overlapping ORs (Abb. see Table 3.1)
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3.2.4 Rate of accumulation of CNVRs (relative to rate of
accumulation of SNPs)
It is generally thought that species incompatibility (e.g. through Islands of

divergence) and/or lack of (intra-) species recognition are more likely to be
established by fast evolving genomic regions. Thus a comparison between the rate
of accumulation of CNV to other types of genetic variation, such as SNPs, could
provide insight into the role of CNVs in population differentiation and speciation.
To this end, a comparison between the rate of accumulation of SNPs and CNVs in
each lineage was performed. To do so we first identified 1,115,908 SNPs in the
genomic regions that were found to be diploid (2 copies) in all populations. We
computed a rate of SNP accumulation, between each pair of individuals by dividing
the number of observed difference with the total sites that could be confidentially
called. Pairwise CNDs were obtained for all possible pairs of the 14 individuals. The
CNDs were transformed into binary values with CND > 2 as 1 and CND < 2 as 0. For
each pair, the rate of pairwise difference was then calculated by dividing the total
differences with the total CNVRs count (1408). The estimated CND rate is expected
to be very conservative in comparison with the estimated rate of SNPs, due to our
binary scale, which does not take into account the possible multiple changes in CN.
For example, going from two to ten copies requires at least three duplication
events but is considered as a single step in the current analysis. We observed that
the rate of pairwise CND is approximately 2.5 times higher than the SNP rate
(Supplementary Table 3.6 and 3.7, respectively). The observed higher CND rate
compared to the SNP rate could be the result of over-representation of ORs in the
list of genes overlapping with CNVRs. To investigate this, the rates of pairwise CNDs
of CNVRs overlapping with ORs and without ORs were calculated separately
(Supplementary Table 3.8 and Supplementary Table 3.9). In both comparisons, i.e.
CNVRs overlapping with and without ORs, the rate of pairwise CNDs was observed
to be higher than for SNPs. The elevated CND rate therefore does not seem to be

caused solely by expansion of the OR gene family.
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3.2.5 Phylogenetic analysis

The observed elevated evolutionary rate of CND may suggest that some of the
CNVRs could be involved in speciation since fast evolving regions potentially play a
role in the transition from pre- to postzygotic isolation. We therefore constructed
neighbor joining (NJ) phylogenetic trees from SNPs and CNVRs pairwise distance
matrices using PHYLIP (Felsenstein 1989). We repeated the analysis using CNVRs
overlapping with OR (CNVR-OR), CNVRs overlapping with genes other than ORs
(CNVR-nonOR), and all CNVRs (CNVR-ALL). Trees obtained from SNPs (Fig 3.4B) and
CNVR-OR (Fig 3.4C) resulted in nearly identical topologies. The SNP-tree topology is
identical to previous phylogenomic analysis (Fig 3.4A) (Frantz et al. 2013) whereas
the CNVR-OR-tree topology deviates slightly form the SNP-tree in the mixed
relationship of the Asian Sus Scrofa. By contrast, phylogenetic trees obtained from
CND of CNVR-nonOR (Supplementary Figure 3.2A) and CNVR-ALL (Supplementary
Figure 3.2B) resulted in different topologies compared to SNP-based phylogenies
where especially the CNVR-nonOR-tree topology is highly deviating from the SNP-
tree. To test if population taxon sampling plays a role in the phylogenetic results,
we repeated the analysis with all pairwise combinations of the four Sus barbatus
individuals and obtained identical phylogenetic tree topologies for all different

partitions (data not shown).

To further evaluate the discrepancies between the different partitions we
performed a more parametric phylogenetic approach, Bayesian phylogenetic
analysis, using the MKV model (Lewis 2001) as implemented in MrBayes V2.2
(Huelsenbeck and Ronquist 2001), and an extending encoding of the CNs. We first
ran the MKV model without any topology constrains and found that the monophyly
of the Sus-ISEA and Sus scrofa clades, as identified by the SNP data and in previous
analyses (Frantz et. al. 2013), was highly supported (posterior probability PP>0.9)
for both CNVR-OR and CNVR-ALL, but not for CNVR-nonOR which supported a Sus

cebifrons and Sus scrofa (China) relationship. To address the strength of support for

84



3 Copy number variation in suids speciation

these discrepancies we tested different constrained models that fit the history of
inter-specific admixture (Frantz et. al. 2013). We first computed the support
(marginal likelihood; see methods) for a null model in which the monophyly of Sus-
ISEA and Sus scrofa clades were constrained, a scenario consistent with the SNP
tree. Thereafter 4 different models were tested that are described in Figure 3.5 A-
D. In Model-1, we constrained Sus verrucosus and Sus scrofa Sumatra to be
monophyletic (Figure 3.5A), representing known admixture among these species
(Frantz et. al. 2013). In Model-2, we constrained Sus celebensis and Sus scrofa
Sumatra to be monophyletic (Figure 3.5B) representing possible human
translocations of Sus celebensis to Sumatra and neighboring islands. In Model-3,
Sus barbatus and Sus scrofa Sumatra were constrained to be monophyletic (Figure
3.5C), representing known admixture between these two species/populations. In
Model-4, Sus cebifrons and Sus scrofa China were constrained to be monophyletic
(Figure 3.5D), representing possible migration from MSEA to the Philippines (Frantz
et. al. 2013). The marginal likelihood analysis strongly supports the monophyly of
the two major clade of Sus-ISEA and Sus scrofa for CNVR-OR and CNVR-ALL but not
for CNVR-nonOR where this monophyly provides a much poorer fit. For CNVR-
nonOR the difference in marginal likelihood (delta-InL) to the null model was 7.46

(Table 3.2), which strongly supports the non-monophyly of the two major clades.
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Table 3.2 Marginal likelihood scores for each partition of CNVR for different models tested.
CNVR-ALL*  CNVR-OR* CNVR-nonOR*

Non-constrained 7.74 7.61 6.13
Constrained (monophyly Sus scrofa
( PaYIY > f 0 0 7.46
and Sus-ISEA, respectively)
Constrained (Sus scrofa (Sumatra)
47.72 16.12 21.6
and Sus barbatus)
Constrained (Sus scrofa (Sumatra)
45.11 20.65 11.89
and Sus celebensis)
Constrained (Sus scrofa (Sumatra)
31.18 15.52 14.72
and Sus verrucosus)
Constrained (Sus scrofa (China) and
32.71 19.72 0

Sus cebifrons)

* delta-InL i.e. (best marginal likelihood score) — (marginal likelihood score of the model)

A B)

Other Species Other Species

Sus verrucosus Sus celebensis

Sus scrofa (Sumatra) Sus scrofa (Sumatra)

Q)

D)
Other Species Other Species
Sus barbatus Sus cebifrons
Sus scrofa (Sumatra) Sus scrofa (China)

Figure 3.5 Simple schematic diagrams of tested constrained models. A) Constrained model 1 where
other species consists of Sus scrofa (Europe and China) and Sus barbatus, Sus cebifrons and Sus
celebensis. B) Constrained model 2 where other species consists of Sus scrofa (Europe and China) and
Sus barbatus, Sus cebifrons and Sus verrucosus. C) Constrained model 3 where other species consists of
Sus scrofa (Europe and China) and Sus cebifrons, Sus celebensis and Sus verrucosus. D) Constrained
model 4 where other species consists of Sus scrofa (Sumatra and Europe) and Sus barbatus, Sus
celebensis and Sus verrucosus.
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3.2.6 Sus scrofa and Sus-ISEA specific CNVRs
In order to identify CNVRs specific to the two monophyletic clusters, Sus-ISEA and

Sus scrofa (Frantz et. al. 2013), we ascertained CNVRs (s.d. = 0.7) in each of these
clusters separately. We found 782 and 1089 CNVRs in Sus scrofa and Sus-ISEA,
respectively (Supplementary Table 3.10A and 3.11A). A total of 687 CNVRs were
found to overlap between the two groups (ascertained as CNVRs in both group)
together with 98 and 407 CNVRs uniquely ascertained in Sus scrofa and Sus-ISEA
group, respectively (Supplementary Table 3.10B and 3.11B). We observed 243
genes in the 687 CNVRs whereas uniquely ascertained CNVRs in Sus scrofa and Sus-
ISEA contained 47 and 178 genes, respectively (Supplementary Table 3.10C and
3.11C). Most of the genes unique to each cluster were found to be OR genes.
Notable, the majority of the OR genes that were observed to vary in Sus-ISEA were
found to be fixed with high CN in Sus scrofa populations. To test if taxon sampling
introduces a bias in these group specific analyses (because of four populations in
Sus-ISEA and three in Sus scrofa), we re-sampled every possible combination of
three in the Sus-ISEA cluster. This sampling correction did not affect any of the
results described above (e.g. there was always a higher number of CNVRs in Sus-

ISEA than Sus scrofa; number of CNVRs in Sus-ISEA group varied from 917 to 1026).

3.3 Discussion

3.3.1 Evolution of CNVRs in the genus Sus and their
possible role in the on-going Sus speciation process

The comparison between the seven populations of genus Sus allowed us to
elucidate general and species-specific features of CNVs. It is known that compared
to SNPs, CNVRs cover a larger part of the genome (in terms of nucleotides) and
potentially have larger effects by, for example, changing gene structure, gene
dosage and alternating gene regulation (Henrichsen et al. 2009; Zhang et al. 2009).
In this study, we detected 1408 CNVRs in these five closely related species of the

genus Sus. The functional enrichment analysis of the CNVRs suggested that genes
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involved in sensory perception of smell, signal transduction, neurological process,
and metabolic process are over-represented in CNVRs. The most abundant gene
family in the porcine genome, the OR gene family, was observed as highly over-
represented in the CNVRs. This over-representation of OR genes in the CNVRs could
have strong functional consequences since pigs strongly rely on their sense of smell

for finding food, predators, and most importantly potential mates.

The process of (on-going) speciation is thought to be triggered by a combination of
many different mechanisms which include processes such as, gradual adaptation to
different environment, evolution of divergent mate recognition and other
molecular mechanism which are thought to be influenced by fast evolving regions
in the genome. These fast evolving regions potentially accumulate divergence
faster, which eventually result in creating reproductive barriers between
populations. CNVRs can be a major mechanism driving gene and genome evolution
by duplication and deletion of segments of the genome and as a result, create
novel gene functions, disrupt gene functions, or affect regulatory mechanisms in
the genome. The comparison between the rate of accumulation of CNVRs and the
rate of accumulation of SNPs suggests that the CNVRs are evolving approximately
2.5 fold faster than SNPs, which is in line with a recent study in apes (Sudmant et al.
2013) where a 1.4 fold differences was observed between CNVRs and SNPs. Thus,
these fast evolving CNVRs, especially those overlapping with functional regions in

the genome might be a major driver of the on-going speciation in pigs.

The recent study on speciation of the genus Sus has shown that these taxa have
undergone multiple rounds of small-scale inter-specific hybridization (i.e.
admixture) during the glacial periods of the Pleistocene (2.5-0.01 Mya) (Frantz et al.
2013). Despite the multiple events of interspecific hybridization and being
geographically very close to Sus-ISEA populations, the Sumatran Sus scrofa

population (found to be coexisting with Sus barbatus on Sumatra) was found to be
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less admixed with Sus-ISEA than Sus scrofa. This implies the existence of
mechanisms that prevented these species from massive homogenizing during the
numerous glacial periods of the Pleistocene. Furthermore, the phylogenetic tree
analysis based on pairwise CND of CNVR-OR and pairwise difference in SNPs
suggests that CNVR-OR largely recapitulates the accepted phylogeny of the genus
Sus (Frantz et al. 2013), whereas the phylogenetic trees obtained by using pairwise
CND of CNVR-nonOR, show inconsistencies with the phylogenetic history of the
genus Sus and instead follows expected patterns of random drift and admixture
(Frantz et al. 2013) (Supplementary Figure 3.2A and 3.2B). The strength of support
for these inconsistencies were assessed by testing the support of different
constrained models that fit the history of inter-specific admixture reported in a
previous study (Frantz et. al. 2013) using a novel Bayesian phylogenetic analysis
approach. The Bayesian phylogenetic analysis on the CN partitions significantly
supported the recapitulations of topology of the genus Sus by CNVR-OR whereas
for CNVR-nonOR the inconsistent topology representing admixture/random drift of
genus Sus was strongly supported. Thus, CNVRs with OR show resistance to
admixture and random drift effects between the analyzed species. This observation
in combination with the observed higher rate of evolution suggests that these OR
genes could play a major role in the on-going speciation process of Sus, facilitating
rapid adaptation to different environments and divergence in mate recognition.
Furthermore, pigs are known to depend highly on their sense of smell for foraging
and mate recognition, and have one of the largest functional OR repertoires
observed in mammals, which additionally makes it plausible that ORs are important

in speciation of pigs.

Besides OR genes, genes involved in immune response, defense to pathogens and
detoxification such as interferon (/IFN), NPG3, PMAP23 and cytochrome P450
(CYP450), are usually also fast evolving due to their importance for the organism to

respond rapidly to changes in the environment and food-borne pathogens (Perry et
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al. 2008; Liu et al. 2010; Sudmant et al. 2010; Bickhart et al. 2012; Paudel et al.
2013; Sudmant et al. 2013). Thus, together with ORs, the observed variation in CN
of these genes suggests an ongoing process of evolution of these gene families and

their importance for adaptation in a rapidly changing environment.

Despite the similar divergence time, the total CNVRs in the Sus-ISEA group (1089;
407 specific to Sus-ISEA) was found to be higher than that in Sus scrofa (782; 96
specific to Sus scrofa). In addition, for the 407 Sus-ISEA specific CNVRs, Sus scrofa
shows universal high and fixed CN between three diverse Sus scrofa populations
and most of the genes overlapping with group specific CNVRs are found to be ORs
(178 genes; 146 ORs). This fixation might have happened soon after the split of the
ancestral Sus scrofa population from the other Sus species from ISEA around 4

Mya.

We suggest that CNVR-ORs, might have provided the means to rapid adaption to
different environments during the diversification of the genus in the Pliocene
(Frantz et al. 2013). Further, the CNVR-ORs might have acted as barriers against
gene flow during the multiple round of hybridization that took place later in the
Pleistocene. To what extent these regions might have played a role in
differentiating of Sus scrofa from the rest of the suids is another interesting topic
which requires a more extensive taxon sampling of highly diverged suids from

other parts of the world.

3.4 Materials and Methods

3.4.1 Samples and data generation
In total 16 different individuals from 5 different species were sequenced using the

lllumina platform. The sequences are 100 bases pair-end reads from 400-500 bp
insert-libraries with coverage per animal ranging between 7 — 18x. The sampled

pigs comprised of European wild boar (2- Dutch, Sus scrofa), Chinese wild boar (2-
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South Chinese, Sus scrofa), Sumatran wild boar (2- Sumatra, Sus scrofa), Sus
barbatus (4 individuals), Sus cebifrons (2 individuals), Sus celebensis (2-individuals),
and Sus verrucosus (2 individuals) (Table 3.1; Supplementary Table 3.1). Blood
samples were obtained from DNA samples were obtained from veterinarians
according to national legislation and tissue samples were obtained from animals
culled within wildlife management programs. DNA from blood or tissue was
extracted using the DNeasy blood and tissue kits (Qiagen, Venlo, NL, USA). Quality
and quantity were measured with the Qubit 2.0 Fluorometer (Life Technologies,

Carlsbad, CA, USA).

3.4.2 Sequence alignment and copy number estimation

The CN of regions in the genomes of all individuals was detected by a RD method
(Alkan et al. 2009; Sudmant et al. 2010; Paudel et al. 2013), where the number of
copies is inferred from sequence depth of whole genome sequence data. To
calculate the average read depth from those libraries, reads were first aligned to
the repeat masked reference genome (Sus scrofa build 10.2) using mrsFAST
v2.3.0.2 (“Micro-read (substitutions only) fast alignment and search tool” (Hach et
al. 2010)) with an edit distance of at most 7 given that the mean divergence
between the seven species is maximum 2% (Groenen et al. 2012; Frantz et al.
2013). Repeat masked information was obtained from NCBI
(ftp://ftp.ncbi.nih.gov/genbank/genomes/Eukaryotes/vertebrates_mammals/Sus_s
crofa/Sscrofal0.2/Primary_Assembly/assembled_chromosomes/FASTA/) and
merged with the repeat masked information used in Groenen et al. (2012). Because
the RD methods do not take paired-end information into consideration, all the
paired-end sequences were treated as single-end sequences. Two individuals from
each species were merged and treated as one to increase the confidence and
sensitivity to infer CN (see results). Calculation of read depth across the whole
genome was done with the help of SAMtools v0.1.18 (r982:295) (Li et al. 2009).

Average read depth for each 1 Kb non-overlapping bins of repeat masked genome
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was calculated. To be considered for further analysis, a bin needs to have at least

300 bases of unmasked region.

The RD method uses read depth information of diploid regions as the reference to
infer CN. Since no prior information regarding diploid regions in the porcine
genome was available, we initially used 1:1 orthologous genic regions between
human, cow and pig and assumed these to be diploid in pig to identify CN of each
1Kb bin present in the genome. Because coding regions are known to have a higher
GC content than the genome average (Hogstrand and Bohme 1999; Galtier et al.
2001) this procedure may introduce a GC biased read depth. Hence, to reduce
possible GC bias introduced by the 1:1 orthologous regions, all diploid regions
predicted from 1:1 orthologous regions in the first stage were subsequently used to
recalculate the average diploid read depth of the porcine genome as described

previously (Paudel et al. 2013).

Next generation sequencing methods have been shown biased in coverage in
regions of high or low GC (Bentley et al. 2008; Dohm et al. 2008; Aird et al. 2011;
Benjamini and Speed 2012; Oyola et al. 2012; Quail et al. 2012). To correct for this
bias we calculated GC intervals correction factors as described by Sudmant et al
(Sudmant et al. 2010). These factors were then used to correct read depth of each
1 Kb bin across the genome. CN of each 1 Kb non-overlapping bin was then
estimated based on the GC corrected read depth. Since the samples include both

male and female individuals, sex chromosomes were excluded from the analysis.

3.4.3 Prediction of MCRs and defining CNVRs

All the 1 Kb bins with minimum CN of 1 were extracted from all individuals and bins
with CN 22.5 were chained to form multi copy regions (MCRs). The same MCRs
might be assigned with different boundaries in different individuals due to

technical and/or biological reasons. Therefore, all the MCRs from all individuals
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were extracted, merged, and CN of those regions for all individuals were calculated
and compared. Further, the MCRs with standard deviation of CN higher than 0.7

(s.d. 20.7) between all individuals were assigned as CNVRs (Paudel et al. 2013).

3.4.4 Gene identification and Gene Ontology
All the annotated porcine genes from Sus scrofa build 10.2, Ensembl release 67,

were extracted using Biomart (Haider et al. 2009) and genes overlapping with the
CNVRs (270% overlap) were identified. Not all pig genes have associated gene
names, thus the genes without gene names were aligned against the human Refseq
mRNAs and human reference protein sequences (blastn and blastp, respectively),
and the best human hit was assigned as gene name. Human orthologs of porcine
genes were then used to perform a gene ontology analysis. BinGO v2.44 (Maere et
al. 2005) a plugin of Cytoscape v2.8.3 (Shannon et al. 2003) was used to identify
enriched GO terms using human gene annotation as background. A hypergeometric
test was used to assess the significance of the enriched terms and Benjamini-

Hochberg FDR correction was implemented for multiple comparisons.

3.4.5 Sus scrofa specific and other suids specific CNVRs

For the group comparison, we formed two groups: one with Sus scrofa including all
three diverse populations of Sus scrofa and another with the Sus-ISEA. CNVRs for
both groups were generated based on the similar approach described above

comparing only individuals belonging to a group.

3.4.6 Cluster analysis

Hierarchical cluster analysis was performed using R package “hclust” on the CN at
each CNVR. Initially, each species is assigned to its own cluster and then the
algorithm proceeds iteratively, at each CNVR joining the two most similar clusters,

continuing until there is just a single cluster.
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3.4.7 SNP calling

We extracted all the regions that were assigned as diploid (CN 2) in all populations.
We then used SAMtools mpileup (Li et al. 2009) to call genotype at sites and only
considered genotype calls as SNPs, if they are different from the reference base

and covered by at least 4 reads with minimum base and mapping quality of 20.

3.4.7 Estimation of pairwise distance between SNPs and
CNVRs and construction of phylogenetic tree

A rate of SNP accumulation, between all possible pair of the 14 individuals was
computed by dividing the number of observed difference with the total sites that
could be called confidently i.e. 1,115,908 SNPs. The CNDs were transformed into
binary values with CND = 2 as 1 and CND < 2 as 0. For each pair, the rate of pairwise
difference was then calculated by dividing the total differences with the total
CNVRs count (1408). PHYLIP package (Felsenstein 1989) was used to construct
neighbor joining (NJ) phylogenetic trees from the calculated pairwise distance
matrix of SNPs and the following partitions of CNVRs: CNVR-OR (CNVRs overlapping
OR genes) CNVR-nonOR (CNVRs overlapping non-OR genes) and CNVR-ALL (all

CNVRs with and without gene overlap).

3.4.8 Construction of phylogenetic trees using a Bayesian
approach

Bayesian phylogenetic analysis was performed using the MKV model (Lewis 2001)
as implemented in MrBayes (Huelsenbeck and Ronquist 2001). This model
implements a maximum likelihood approach to variable characters (i.e.
morphology). To use this model with our CN data we need discrete CN values
between 0 and 9. We used the following equation to transform CNs of each locus
for each species into 9 discrete values.

CNn = ((CNo- CNmin)/(CNmax — CNmin))*(10-1)

Where, CNn = Transformed CN (rounded)

CNo =Raw CN
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CNmax = Maximum observed CN for a locus

CNmin = Mainimum observed CN for a locus
We used the default (infinity) hyper-prior for the dirchelet process that model rate
classes. This model implies little variation among rate of transition between CN.
More complex models can be used by decreasing the hyper-prior (increasing
concentration parameter). However, because increasing the concentration
parameter (the number of rate categories) for the dirichelet process greatly
increases the running speed, we kept this parameter to the default settings. For
each data set (CNVR-OR, CNVR-nonOR and CNVR-ALL) we first ran 1,000,000
Markov Chain Monte Carlo (MCMC) (25% burnin) samples to estimate posterior
distributions of the various parameters. Marginal likelihoods were computed using
the stepping-stone model (Fan et al. 2011; Xie et al. 2011) with 1,000,000 samples
(25% burnin) and 50 steps. We also estimated the marginal likelihood under
different constrained models (see Results) to further investigate the support for

discrepancies found among data sets and between NJ and Bayesian trees.

3.4.9 qPCR validation

Primer3 webtool http://frodo.wi.mit.edu/primer3/ was used to design primers for
gPCR validation. Amplicon length was limited between 50 bp to 100 bp and regions
with GC percentage between 30% and 60% were included, while avoiding runs of
identical nucleotides. All other settings were left at their default. Details of the
gPCR primers can be found in Supplementary Table 3.12. gPCR experiments were
conducted using MESA Blue qPCR MasterMix Plus for SYBR Assay Low ROX from
Eurogentec, this 2x reaction buffer was used in a total reaction volume of 12.5ul.
All reactions were amplified on 7500 Real Time PCR system (Applied Biosystems
group). The CNDs were determined by using a standard ACt method that compares
the mean Ct value of the target CND fragments, determined from different input

concentrations, compared to the mean Ct value of a known diploid reference.
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Abstract
Genes encoding olfactory receptors, the proteins responsible for odorant

recognition, form the largest gene family in mammals and vary considerable in
copy number between species. This variation in olfactory receptor repertoire is
related to the level of reliance on olfaction in the context of the ecology of species,
and to genetic drift resulting in random duplication and deletion of olfactory
receptor genes (ORs). Pigs (Sus scrofa) are among the mammalian species with the
highest number of functional ORs. The pig reference genome contains 1,301 ORs,
of which more than 85% are functional. This high number is probably related to the
dependence of pigs on their sense of smell for foraging and mate recognition. We
developed a pipeline that uses next generation sequence data and read depth
based method to identify copy number variable ORs in pig genomes. The pipeline
outperforms approaches based on large copy number variable regions, especially
when dealing with such a large and complex gene family. Even though, this pipeline
is unable to detect the exact copy numbers of ORs due to cross alignment between
closely related members of ORs, it can predict the copy number variation status of
each gene in the OR repertoire with a high accuracy. We further investigated the
significance of selection and genetic drift in the evolution of ORs in the pig by
sequencing 36 wild and domesticated pigs from Asia and Europe. We observed 751
(60%) ORs having copy number variation in the pig, the majority being functional
(637). Most of the copy number variable ORs are in clusters in the genome,
suggesting an important role of gene clusters in promoting the variation of copy
number through non-allelic homologous recombination (NAHR). Furthermore, the
higher degrees of intra- and inter-population divergence of functional ORs indicate
a probable role of selection on the variation of functional ORs in the pig genome.
Surprisingly the distribution of the relative copy number of non-functional ORs is
significantly different from a normal distribution as expected by neutral evolution
of non-functional ORs. Since, both functional and non-functional ORs reside in

clusters in the genome, NAHR might have facilitated the variation of both



functional and non-functional ORs. Thus, we conclude that both selection and
clusters of ORs in the genome play important roles in overall copy number variation

of the OR repertoire in pigs.

Key words: structural variation, copy number variation, next generation sequencing

data, olfactory receptor, read depth method



4 Copy number variation of the olfactory receptor gene family

4.1 Introduction

A first step in the perception of smell is the ability to detect and discriminate
different odorous compounds in the environment. Sense of smell, olfaction, is very
important for many animals where it contributes to discriminate between edible
and noxious foods, identifying toxic substances, marking territories, and avoiding
predators (Feinstein and Mombaerts 2004; Mombaerts 2004). At the molecular
level, olfaction is mediated by a conserved signal transduction cascade, which is
initiated by the binding of odorants to specific G-protein coupled receptors, known
as olfactory receptors (Buck and Axel 1991; Beites et al. 2005). Identification of the
genome wide repertoire of ORs revealed that the number of ORs varies
considerably between animals (Beites et al. 2005). Although mammals typically
have a large number of ORs, the number of functional ORs varies a lot between
different mammalian species and seems to follow their dependency on sense of
smell (Hayden et al. 2010). For example, hominid primates, including humans, have
increasingly relied on vision rather than sense of smell, which during the hominid
primates evolution has resulted in halving the number of functional ORs in human
compared to basal primates (Rouquier et al. 2000; Gilad et al. 2003, 2004; Hayden
et al. 2010; Hughes et al. 2014). Pigs on the other hand depend heavily on their
olfaction for finding food, detecting predators and potential mates, which also is
reflected in the large number of ORs observed in the pig genome. The OR
repertoire in the current genome build of pig (Sus scrofa build 10.2) comprises
1301 ORs (Nguyen et al. 2012). The majorities of them are functional (1113
functional ORs and 188 non-functional ORs) and are mainly found in clusters on
different chromosomes in the pig genome (Groenen et al. 2012; Nguyen et al.
2012). Similar to human OR nomenclature, by looking at sequence similarity and
phylogenetic clustering with ORs from other species, pig ORs have been classified
into 17 different families and 349 subfamilies (Nguyen et al. 2012). During
evolution of the pig, the OR repertoire has undergone a dynamic process of

duplication, deletion, and pseudogenization to meet the ecological demand of pigs
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(Groenen et al. 2012). Compared to cow (880 functional and 190 non-functional
ORs (Lee et al. 2013)), the pig lineage has gained some additional 230 functional
ORs since their last common ancestor, illustrating the importance of olfaction for
pigs and suggesting that this process of duplication, deletion, and pseudogenization
of ORs could still be ongoing. Thus, studying variation of the pig OR repertoire in
multiple individuals, will help to further understand the variability and evolution of

this large gene family.

Structural variations (SVs) in particular copy number variations (CNVs) refer to
differences in copy number of segments of DNA between different individuals of a
species. Studies have shown that CNVs play an important role in the evolution of
genomes in general, and gene and gene families in particular, by facilitating the
gradual process of expansion and diminution (Long 2001; Otto and Yong 2002;
Kondrashov and Kondrashov 2006; Conrad and Antonarakis 2007; Kim et al. 2008;
Korbel et al. 2008; Innan and Kondrashov 2010; Dennis et al. 2012). Some recent
genome wide studies have reported the impact of copy number variable regions
(CNVRs) on the OR repertoire (Trask et al. 1998a, 1998b; Rouquier et al. 2000;
Nguyen et al. 2006; Redon et al. 2006; Korbel et al. 2007; Nozawa et al. 2007;
Bickhart et al. 2012; Paudel et al. 2013; Sudmant et al. 2013). However, these
studies mainly focused on generating global maps of CNVRs in the genomes
analyzed and were carried out at low resolution (i.e. regions equal or larger than

6Kb).

A CNVR can range from a few bases up to several mega bases (Mb) in size and
affect multiple genes, like clusters of functional and non-functional genes from the
same gene family, which is often the case for ORs. Thus, with the resolution
currently achieved in most CNV analysis, it is often not possible to determine

whether all genes within a CNVR are indeed variable in copy number. This can
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potentially result in a systematic bias and mislead conclusions about the CNV of
specific functional and non-functional ORs.

To avoid such complications, we developed a pipeline which uses a read depth (RD)
based method to identify copy number variation of each OR locus in the OR
repertoire of the pig genome. Whole genome re-sequencing (WGS) data of 36 pigs
(both wild and domestic) from the Eurasian continent were used to study the
dynamics and evolution of CNVs in the largest known mammalian gene super

family.

4.2 Results

4.2.1 Copy number variable ORs
There are 1,301 ORs (1,113 functional and 188 non-functional) in the pig reference

genome (Nguyen et al. 2012). In this study however, we only considered the 1,270
ORs that are present on the autosomes of the pig genome (1,087 functional and
183 non-functional ORs (Supplementary Table 4.1)). We aligned WGS data of 36
pigs representing 12 different domestic and wild populations from different parts
of Europe and Asia (Table 4.1) against a pseudo-reference genome (see materials
and methods for detail about the pseudo-reference genome). A novel pipeline was
developed which uses a RD method to estimate copy number of each individual OR
and to identify copy number variable ORs among the 36 sequenced individuals
(Supplementary Table 4.2A, Supplementary Figure 4.1, see materials and methods

for details about the detection of copy number of each OR locus).

The OR gene family is one of the most complex gene families in the pig genome.
Some ORs are highly similar (~100% identical). Based on phylogenetic analysis and
similarity between sequences, ORs are classified into 17 different families and 349
different sub-families (Nguyen et al. 2012). Of these 349 subfamilies, 146 have only
one member whereas the rest (203 subfamilies) have 2 or more members (Nguyen

et al. 2012). Thus, it is expected that some level of cross alignment of sequence
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reads from closely related members of the OR gene families/subfamilies will result
in overestimation of the number of copies of ORs. To minimize the overestimation
of copies due to cross alignment between highly similar OR members, we tested
different mismatch percentages when aligning sequences against the pseudo-
reference genome. We found that allowing a maximum of 2% mismatches was
most suitable to compensate for sequencing errors, distance to the reference

genome, allelic variation, and to minimize cross alignment.

Table 4.1 List of individuals with their sequence coverage

Count Origin Sample Individual ID Coverage*
1 Asian Wild WB20U02 7.66
2 Asian Wild WB29U12 8.61
3 Asian Wild WB29U14 8.75
4 Asian Wild WB29U16 12
5 Asian Wild WB30U08 7.51
6 Asian Wild WB30U09 11.11
7 European wild WB21F05 7.94
8 European wild WB22F02 6.63
9 European wild WB25U11 9.82
10 European wild WB28F31 11.59
11 European wild WB42M09 11.61
12 European wild WB44U07 8.29
13 Asian Domestic MS20U10 8.46
14 Asian Domestic MS20U11 8.34
15 Asian Domestic XI01U03 7.69
16 Asian Domestic Xl01U04 7.51
17 Asian Domestic JQ01u02 7.63
18 Asian Domestic JQO1U08 7.24
19 Asian Domestic JI01U08 7.81
20 Asian Domestic JIo1u10 8.18
21 Asian Domestic LSPO1U16 8.86
22 Asian Domestic LSPO1U18 10.28
23 Asian Domestic WS01U03 9.04
24 Asian Domestic WS01U13 8.4
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25 European Domestic LW36F05 8.04
26 European Domestic LW36F06 8.02
27 European Domestic LR30F03 6.68
28 European Domestic LR30F04 9.06
29 European Domestic CMO1F18 6.56
30 European Domestic CTO1F13 9.39
31 European Domestic CT01M12 7.68
32 European Domestic MAO01F20 9.29
33 European Domestic PI21F06 9.38
34 European Domestic PI21F07 10.45
35 European Domestic DU23MO03 5.36
36 European Domestic DU23M04 5.91

*calculated based on diploid region in the pseudo genome

However, given the sequence similarities between family/subfamily members of
the OR repertoire, this stringent criterion will not completely prevent an
overestimation of copy number due to cross alignment. To test the level of cross
alignment, we aligned WGS data of the reference pig (TJ Tabasco) to the pseudo-
reference genome with a maximum of 2% mismatches. Without any cross
alignment, we would expect the reference pig to have CN of 2 for most ORs.
However, we observed that the vast majority (1127) of the ORs are estimated as
having 3 copies or more in the reference pig (T) Tabasco)(Supplementary Table
4.2B). As an example, we looked into more detail at members of the sOR9A
subfamily together with its closely related subfamily members (sOR9E, sOR9G and
sOR5J). These ORs have sequence distances ranging from 0.0 to 0.59
(Supplementary Table 4.2C). Figure 4.1 shows a phylogenetic tree (neighbor-joining
tree) and the estimated copy number of those members in the reference individual
(T) Tabasco). We observe that members of subfamilies tend to have similar
estimated copy numbers which is most likely due to the cross alignment between
copies of these members. This observation further indicates that our approach
cannot be used to resolve the exact copies of ORs in the genome but we presume
that the bias of cross alignment will be more or less equal in all 36 individuals,

enabling identification of copy number variable ORs.
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We next estimated the variability of the ORs by considering an OR as variable if the
standard deviation (s.d.) of the copy number of that OR in all 36 individuals was at
least 0.7 (s.d. 20.7) (Paudel et al. 2013). Of the 1270 studied ORs, 751 (60%) were
observed to be variable in copy number (CNV-ORs onwards) (Supplementary Table
4.2D) and 114 of these CNV-ORs were non-functional (62.2% of the total non-
functional ORs), (Supplementary Table 4.2E) and 637 CNV-ORs were functional

(58.6% of the total functional ORs) (Supplementary Table 4.2F).

ORs Copy
Number
sORGAIA SOR9A1A 9.16
_LO ROAIB sOR9A1B 9.16
sOROA2 SOR9A2 15.71
sOROABA SOR9AGA 12.68
_LO ROABB SOR9A6B 12.69
sOROA3A SOR9A3A 13.33
_| sOROA3B SOR9A3B 14.33
sOROA4 sOR9A4 10.77
.l —E sOROAS SOR9AS 10.23
sORIG! sOR9G1 2.62
‘— sOROE! SOR9E1 2.59
sOROE2 SOR9E2 2.23
sORSJ sOR5J1 2.81
F—u—w—i

Figure 4.1 Neighbour-joining phylogenetic tree of 13 ORs genes (9 from sOR9A subfamily, 2
from sOR9E and 1 each from sOR9G and sOR5J subfamilies, respectively). The table shows

copy number estimation of the 13 ORs on the reference individual TJ tabasco.

To test whether there is any difference in the observed copy number by
considering individual OR loci (current study) instead of a larger CNVR (>= 6Kb), we

compared the copy number of OR loci from this study with the copy number of ORs
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from our previous study (Paudel et al. 2013). Sixteen out of the current 36
individuals were included in the previous study from which we first extracted the
CNVRs overlapping with ORs from our current list. We obtained a list of 402 ORs
that overlap with 297 CNVRs. Out of the 402 copy number variable ORs from the
previous study, only 357 were found to be copy number variable in the current
study. Similarly, 349 ORs which are assigned as CNV-OR in current study were not
found as CNV in the previous study and comparing the estimated copy numbers of
ORs from the two studies showed on average 200 less copies per individual in the
current study (Supplementary Figure 4.2A and 4.2B, Supplementary Table 4.2G).
This suggests that the whole genome analysis of copy number not only resulted in a
considerable overestimation of copy number of this gene family but also incorrectly

assigned some of the ORs as variable in copies.

4.2.2 Experimental validation

To validate the identified CNV-ORs, we used quantitative real time-polymerase
chain reaction (gPCR). We randomly selected ten functional CNV-ORs, ten non-
functional CNV-ORs and five diploid ORs and tested these using two distinct primer
sets per locus. All 25 assays were successful and 23 showed 100% agreement with
our CNV predictions, indicating a low false discovery rate for calling CNV-ORs based

on the RD analysis.

4.2.3 The mechanism behind the variation of ORs in the
pig genome
The CNV-ORs are distributed non-uniformly across the pig genome and, as

expected, chromosomes in the pig genome with a large number of ORs, like
chromosomes 2, 7, and 9 were found to have higher number of CNV-ORs. ORs in
the pig genome are generally located in clusters (Nguyen et al. 2012). Since CNVs in
different genomes are facilitated by recombination-based mechanisms (Redon et
al. 2006; Sudmant et al. 2010; Bickhart et al. 2012; Paudel et al. 2013), we tested

whether the variation of ORs are promoted by the non-allelic homologous
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recombination (NAHR) facilitated by ORs residing in clusters. We considered two or
more ORs to form a cluster if they are at most 25 Kb apart and without any non-OR
gene in between. The latter was included because duplication/deletion of a non-OR
gene could influence subsequent selection. Altogether, 243 clusters were observed
encompassing 1,015 ORs (Supplementary Table 4.3A). Out of the 243 clusters, 187
have at least one CNV-OR. Among the 751 CNV-OR, 626 (527 functional and 99
non-functional; 83%) were found to be in those 187 clusters suggesting that the
ORs in clusters are more prone to vary in copy number (p-value < 0.0001, chi-

square test) (Supplementary Table 4.3B; some examples of clusters: Figure 4.2A-C).

A B)
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HeORTHER 2_67SS0009 67561174
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Figure 4.2 Heatmap of clusters of ORs in pig genome. A) Heatmap of cluster of ORs in

chromosome 9 (SSC9: 56239423-56765931) with both CNV-ORs and non CNV-ORs (*
denotes non CNV-ORs). B) Heatmap of cluster of ORs in chromosome 2 (SSC2: 67432030-
67619777) where none of the ORs are variable in copy number. C) Heatmap of cluster of
ORs in chromosome 5 (SSC5: 22078096-22213780) where all of the ORs are variable in copy

number

Besides the cluster effect, repetitive elements such as LINEs and SINEs might also
play a role in the variability of ORs. To test the role of repetitive elements in the
generation of CNV-ORs in the pig genome, we examined repetitive elements in the

1 Kb flanking regions of the 1,270 OR loci. Loci that overlapped were merged to
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avoid double counting and this resulted in 1,267 loci. The 1 Kb flanking sequences
of these OR loci harbored a total of 5,188 repetitive elements (4.0 repeat
elements/OR region)(Supplementary Table 4.3C). We then counted the number of
repetitive elements in the flanking 1 Kb sequences of the CNV-ORs and nonCNV-
ORs separately. The 1 Kb flanking regions of the 751 CNV-ORs harbored 2,950
repetitive elements (3.9 repetitive element/CNV-OR) while the 1 Kb flanking
regions of 519 nonCNV-ORs harbored 2,240 repeats (4.3 repeat element/nonCNV-
OR)(Supplementary Table 4.3D and 4.3E). These results show that there is no
significant difference in repetitive element content in the flanking region of CNV-

ORs and nonCNV-ORs.

4.2.4 Recently expanded ORs are more variable

Compared to cows, pigs have an additional 230 ORs suggesting OR gene expansion
in the pig lineage since the last common ancestor of cow and pig. The question is if
these expanded ORs are more prone to be variable in copy number or not. To test
this we extracted 291 1:many and 163 1:1 orthologous ORs between cow and pig
considering 1l:many as “recently expanded” and 1:1 as “non-expanded"
(Supplementary Table 4.4A and 4.4B). We observed 55.3% (161/291) of 1:many and
20.8% (34/163) of 1:1 ORs as variable in copy number (Supplementary Table 4.4C
and 4.4D), suggesting that the recently expanded ORs are more prone to vary in
copy number. Of the 161 recently expanded CNV-ORs, 151 were functional and 133
were located in clusters. In case of the 34 non-expanded CNV-ORs, 28 were

functional and 30 were located in clusters.

4.2.5 Annotation of CNV-ORs

Variation in specific copies of ORs will probably alter the number of OR genes in the
olfactory epithelium, ultimately altering the sensitivity to particular odorants
recognized by the sensory neurons (Schaefer and Margrie 2007). Unfortunately,

very little is known about the categories of odorant recognized by ORs, which
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makes it difficult to elaborate on the impact of CNV-OR in a particular adaptive
phenotype of pigs. ORs in pigs are classified into families and subfamilies based on
their sequence identity i.e. ORs with less than 60% identity in protein sequence are
classified into different families, resulting in 17 OR families (Table 4.2, (Nguyen et
al. 2012)). In addition, it has been suggested that ORs with more than 60%
sequence identity recognize odorants with related structures (Malnic et al. 1999;
Kajiya et al. 2001), thus by comparative analysis, for some pig OR families general
odor categories have been assigned (Table 4.2, (Nguyen et al. 2012)). Generally,
functional ORs in the OR families assigned to be involved in mate recognition, like
rancid, sour, sweat, and fatty, are less variable than functional ORs in the OR
families involved in food recognition, like herbal, woody, orange, and rose (Table

4.2).

4.2.6 Comparison of variation of functional and non-
functional ORs

Differences in the degree of variation of functional versus non-functional ORs might
provide insight whether there is any difference in selection between the two types
of ORs. To test this, average s.d. (mean and variance) of the copy number for both
functional and non-functional ORs in the 36 individuals was computed. Functional
and non-functional ORs were found to be significantly different in variability
(Welch's t-test p-value <0.05) with an average s.d. of 1.31 and 0.9, respectively
(Table 4.3). The average s.d. (mean and variance) of the copy number for both
functional and non-functional ORs was computed separately for the four
populations included in our data (i.e. Asian wild, Asian domestic, European wild,
and European domestic). In all the analyses, functional ORs were found to be more
variable than non-functional ORs and the difference in variation is significantly
higher for all population except for the European wild population (Welch's t-test p-
value <0.05, Table 4.3). We also combined all wild and domestic populations and

calculated average s.d. (mean and variance) for functional and non-functional ORs.
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Again, we observed a significantly higher variation for functional ORs compared to
non-functional ORs in both wild and domestic populations (Welch's t-test p-value
<0.05, Table 4.3). These observations suggest that the degrees of intra-population
and inter-population polymorphism of ORs in both wild and domestic populations

are higher in functional ORs compared to non-functional ORs.
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Table 4.3 Divergence of functional and non-functional ORs.

Functional ORs s.d. [*] Non-functional ORs s.d. [*] p-value
Al 1.31[1.38,1.7] 0.90 [1.16, 0.80] 0.01
All wild 1.38[1.43, 1.91] 0.94 [1.22, 0.89] 0.01
All domestic 1.30[1.30, 1.69] 0.88 [1.08, 0.78] 0.00
Asian wild 1.28 [1.20, 1.64] 0.89 [1.04, 0.80] 0.03
Asian domestic 1.32[1.31, 1.74] 0.96 [1.13, 0.91] 0.03
European wild 1.29 [1.31, 1.66] 0.98 [1.18, 0.97] 0.13
European domestic 1.21[1.10, 1.46] 0.80[0.87, 0.65] 0.00

* mean, variance

4.2.7 Does genetic drift and/or selection contribute to
variation of the OR repertoire?
Various factors such as insertions, deletions, duplications, and nonsense mutations

expand or diminish pseudo-genes in a genome. In general, the process of expansion
or diminution of pseudo-genes (non-functional) is believed to be neutral, thus for
the non-functional ORs we would expect the differences in copies to follow or
approach a normal distribution whereas for the functional ORs a deviation from
normality would suggest selection. To test for genetic drift/neutrality and selection
in the observed CNV of ORs, we calculated relative copy number of all OR loci in
each individual compared to the reference individual (T) Tabasco, see method
section, Supplementary Table 4.5A) and plotted the distributions. Figure 4.3 shows
the distributions of the relative copy number for functional and non-functional ORs
in all 36 individuals. We observed a similar distribution for the relative copy
number of both functional and non-functional ORs. Both distributions deviate
significantly from a normal distribution, however the distribution of non-functional
ORs was slightly closer to normality compared to the distribution of functional ORs

(Figure 4.3; Supplementary Table 4.5B and 4.5C, Supplementary figure 4.2).
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Figure 4.3 Distributions of the relative copy number for functional and non-functional ORs in

all 36 individuals.

4.3 Discussion

Several genome wide studies have been performed to obtain insight in the role of
CNV in the OR repertoire in a variety of mammals but most of them focused on
CNVRs overlapping OR loci and not on individual ORs (Nozawa et al. 2007; Niimura
and Nei 2007; Hasin et al. 2008; Young et al. 2008). In this study, we developed and
used a RD approach to identify copy number variation of each individual OR gene in

pig genomes. Since some members of the different OR gene families are highly
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similar to each other, we tried to reduce alignments of reads from paralogous
sequences by applying a stringent alignment criterion (at least 98 percent similar).
However, a considerable level of cross alignment still occurs at this stringency,
which is illustrated by the large number of ORs in the reference individual (TJ
Tabasco) with copy number 2 3. This cross alignment made it impossible to resolve
the exact number of copies of each OR locus using this approach. However, we
assumed that the cross alignment would similarly affect all the 36 individuals. Thus,
in this study we mainly focused on CNV of OR between different individual pigs. By
using the pipeline we developed, we identified the status of variation of each OR
locus in the OR repertoire for 36 different wild and domestic pigs from Europe and
Asia, at a higher resolution than previously obtained in pigs or any other species.
We observed more than half of the ORs in the OR repertoire (i.e. 751 ORs out of
1270) as having a variable copy number in the 36 pigs, with no significant
differences in variation between functional and non-functional ORs (58.6% and
62.2%, respectively). The comparison of the list of CNV-ORs obtained in the current
study and the CNV-ORs in the previous study (Paudel et al. 2013) suggests that
around 45 out of 402 overlapping ORs were previously incorrectly assigned as being
copy number variable. In addition, the previous study could not provide CNV status
of the remaining 349 OR loci that were found to be copy number variable in the
current study. This suggests that the pipeline presented in the current study
outperforms methods based on large CNVRs (Nozawa et al. 2007; Niimura and Nei
2007; Hasin et al. 2008; Young et al. 2008) and therefore could be applied to
analyze variation of ORs in other organisms and/or applied to other large gene

families.

Copy number variations are known to result from a number of mechanisms such as
NAHR, non-homologous end joining (NHEJ), fork stalling and template switching
(FoSTeS) (Freeman et al. 2006; Bickhart et al. 2012; Sudmant et al. 2013; Paudel et

al. 2013). The observed non-significant difference in frequency of repetitive
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elements within 1 Kb flanking region of CNV-OR and nonCNV-OR loci, suggests that
NAHR mediated by repetitive elements does not play a significant role in the
variation of ORs in the pig genome. Instead, a significant number of CNV-ORs was
found to reside in clusters, suggesting a prominent role of NAHR between the ORs
located within clusters in facilitating the variation of ORs in pig genomes. This has
previously been suggested as a mechanism in the formation of copy number
variation of ORs in the human genome as well (Hasin et al. 2008; Young et al.

2008).

The pig OR repertoire has expanded by at least 230 ORs compare to its last
common ancestor with cow (which has 1071 ORs, 880 functional and 190 non-
functional) (Lee et al. 2013). The comparison between recently expanded and non-
expanded ORs between cow and pig (see results for details on definition of
expanded and non-expanded ORs) suggests that the recently expanded ORs are
more prone to vary in copy number. This could be due to the lower evolutionary
constraint on the newly copied genes compared to the old ORs that appear to have
a fixed copy number in all 36 pigs. Although, the majority of both the recently
expanded and non-expanded CNV-ORs reside in clusters, the high sequence
similarity between the members of the recently expanded ORs would have favored
NAHR between these ORs and thus might have promoted the observed higher copy
number variation in the recently expanded ORs compared to the non-expanded

ORs.

Pigs depend heavily on their olfaction for finding food and to detect predators and
potential mates, which is reflected in the large number of functional ORs observed
in the pig genome (Groenen et al. 2012; Nguyen et al. 2012). Almost 60% of the
ORs in the OR repertoire of pigs are found to be variable in copy number, which is
higher than in other organisms (Nozawa et al. 2007; Hasin et al. 2008; Young et al.

2008). In human for example, several studies have found only around 30-50% of
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ORs to be variable in copy number (Nozawa et al. 2007; Hasin et al. 2008; Young et
al. 2008). Functional annotation of CNV-ORs suggests that OR families involved in
food detection are more variable than the ORs responsible for mate recognition
(Table 4.2). This is expected because of pig’s adaptation to many different
environments across the Eurasian continent, which requires variation of the ORs
responsible to food foraging. However, our current knowledge on OR odor
specificity is still inadequate and further investigations are needed before we can

draw reliable conclusion about this.

It has been suggested that positive selection could favor CNV of ORs (Nguyen et al.
2006). If positive selection favors a higher number of copies of functional ORs, then
changes in the OR repertoire enhance olfactory capabilities, which gives a higher
level of sensitivity to different odorants (Nguyen et al. 2006). Thus, those functional
ORs are selected for as pigs adapt to a new environment. If this is the case, then
the degrees of intra- and inter-population divergence of copy number of ORs
should be higher for functional compared to the non-functional ORs. Supporting
this hypothesis, we observed that the degrees of intra- and inter-population
divergence of functional ORs are always higher (most of the cases significantly
higher (Table 4.3)) indicating a role of positive selection on the variation of

functional OR repertoire in the pig genomes.

In general, the process of variation of non-functional genes is believed to be mostly
neutral, thus for the non-functional ORs we would expect the variation to follow or
approach a normal distribution (Feller, William 1957; Nozawa et al. 2007).
However, the distributions of relative copy number of non-functional ORs was not
as expected (Feller, William 1957; Nozawa et al. 2007). We observed very similar
distributions for both functional and non-functional ORs and both distributions
deviated significantly from a normal distribution. Although, the distribution of non-

functional ORs was slightly closer to normal compared to functional ORs the strong
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deviation from a normal distribution suggested that other factors, in particular
clustering of ORs in the genome, increase the probability of changing the number
of copies of non-functional ORs facilitated by NAHR with other surrounding
functional/non-functional ORs. Thus, we conclude that both selection and cluster

are playing role in overall copy number variation of OR repertoire in pigs.

4.4 Materials and methods

4.4.1 Samples and data generation
In total 36 different individuals from 10 different breeds as well as wild boars from

China and Europe were sequenced using the lllumina Hiseq platform. The libraries
are 100 bases pair-end reads with coverage per animal ranging between 7 — 11x.
The sampled pigs comprised of European wild boars (6), Chinese wild boars (6),
Asian domestics (12), and European domestics (12) (Table 4.1; Supplementary
Table 4.1). DNA samples were obtained from blood samples collected by
veterinarians according to national legislation or from tissue samples from animals

obtained from animals culled within wildlife management programs.

4.4.2 Sequence alignment and copy number estimation
Copy numbers of 1270 autosomal ORs in each individual were detected by the RD

method (Alkan et al. 2009; Sudmant et al. 2010; Bickhart et al. 2012; Paudel et al.
2013), wher