Resilient and sustainable farming systems

From theory to practice

Wageningen, 7 november

Janjo de Haan & Wijnand Sukkel

Structure Wageningen UR

Plant Sciences Group

Global developments in agriculture

- Larger scale, more monocultures
 - loss of spatial + temporal diversity
- High/increasing amounts of inputs
- Decreasing availability and quality of resources
 - soil, biodiversity, water, phosphorus, energy
- Decreasing robustness/resilience of agro ecosystems

A central tenet of epidemiology is that both the number of diseases and the incidence of disease should increase proportionally to host abundance (Tilman et al. 2002).

Production of food in an ecosystem or in a factory?

Two visions

WAGENINGEN UR

- Maximum control
- Maximum yield
- Low diversity
- Monoculture
- Market oriented
- High value crops
- High diversity
- Resilient
- Stable yield
- High diversity
- Environmental oriented

Complex and multi-objective methods

Control pest x (+ landscape + biodiversity + ...)

Conflicting objectives in agricultural production?

- Market demands uniformity
- Mechanisation and field operations demand uniformity
- Economy and policy (subsidies) promote uniformity
- Reductionist research focusses on G-M-E solutions

- Resilient agro-ecosystems
- Attractive Landscape
- Conservation Biodiversity

Stress factors of agro-ecosystems

- Physical/chemical
 - drought
 - excess of water
 - temperature
 - erosion
 - wind
 - pollution
 - compaction
 - nutrients

- Biological
 - pests
 - diseases
 - weeds

We do need resilience

- Increase in stress factors: climate change
- Increasing vulnerability in modern agriculture
- Economical and environmental costs of control
- To fulfil all ecosystem services
 - production
 - water management
 - climate
 - biodiversity
 - landscape
 - ...

Definition Ecological Resilience

The amount of disturbance that an ecosystem could withstand without changing self-organized processes and structures (Holling, 1973)

The capacity for self-repair or adaptive renewal and reorganization of social-ecological systems following

perturbation.

(Costanza et al., 1992): Resilience = MS / R_T

Key elements for resilience in agroecosystems

- Soil quality
 - Buffering capacity water and nutrients
 - Biodiversity
- Biodiversity in time and space and on different scales
 - Different niches and functions
 - Redundancy and overlapping functions
 - Spare capacity for changing conditions
- Well balanced mix of control and guidance

Biodiversity and resilience

Soil is the basis Organic matter plays a central role

Relationships between soil food web, plants, organic matter, and birds and mammals Image courtesy of USDA Natural Resources Conservation Service http://soils.usda.gov/sqi/soil quality/soil biology/soil food web.html.

Organic matter input

Conventional

Low EOM
input
AF
800 kg eom/ha/yr

Average EOM input

MAN

1550 kg eom/ha/yr

slurry, crop residues, catch crops

Fertilization: chemical fertilizers, slurry

Organic

High FOM

High EOM input
BIO

2750 kg eom/ha/yr

Fertilization: FYM, slurry

crop residues, catch crops

Fertilization: chemical fertilizers

Difference in crop condition: MAN and AF

Crop yield trend 2001-2013

Spatial variation of mineral nitrogen

Management for biological resilience

Create **continuity** for functional biodiversity

Food, shelter and habitat

Create discontinuity in hosts for pathogens (plant, crop, field, landscape)

 Crop rotation, cropsurface, genetic diversity, plant resistance

Spatial and temporal!

Continuity for beneficials Food, shelter and habitat

- Landscape: ecological infrastructure, natural elements
- Field margins (presence and management)
- Soil management
 - reduced tillage, organic matter, mulch
- Field size and dimensions
- Alternative food sources
- Flower strips
- Crop management

Ecological infrastructure Field margins, field size

Effects Spiders and beetles from margins

Discontinuity for pathogens

- Host scarcity, repellent, confusion, unfavourable habitat
- Crop Rotation
 - Frequency, sequence, field adjacency
- Intercropping
 - Strips, Rows,
 - Crop mixtures
 - Under sowing
 - Agroforestry

Intercropping

- Making more efficient use of resources
 - light, water, nutrients
- In general higher production
- Positive/negative crop interactions
- Reducing host abundance

Barriers for the adoption of diverse agroecosystems

- Economy, costs, policy, suppliers
- Reductionist research focused on G-M-E interactions
- Management (depending on mechanisation rate)
 - Mechanisation
 - Harvest
 - Weed control
 - Pest and disease control
 - Fertilisation
 - Irrigation

Where do we stand

Already applicable

- Field margins
- Flower strips
- Reduced tillage
- Cover crops
- Positive org matter balance
- Mixed cropping fodder crops
- Undersowing cover crops
- Multifunctional crop rotation
- Variety mixes

Needs further paradigm shift, research, technology

- Strip cropping
- Agroforestry
- Intensive crop mixes
- Genetically heterogeneous varieties

Knowledge, research and adoption

- Some knowledge about general principles available
 - Further knowledge development needed
 - Design and testing for local conditions
 - Interdisciplinary approaches
 - Development techniques (sensors, ICT, GPS, robots, ...) to solve the conflicting objectives
- Combine with on farm research, farmer field schools, stakeholder involvement, ...

Wrap up

- Increased resilience is crucial for agro-ecosystems
 - Food security, biodiversity and other ecosystem services combined
 - Balance between control and resilience management
 - Various management options for increased resilience already applicable
 - Needed: Improved knowledge, technology development; paradigm shift, policy

Some references and contacts

- Tillage and crop diversity effects on overwintering of natural enemieswillemien.geertsema@wur.nl
- Earthworm diversity and soil functions in reduced tillage systems and field margin strips – mirjam.pulleman@wur.nl
- Disease suppresiveness of soil amendments joeke.postma@wur.nl
- Soil health and soil management <u>gerard.korthals@wur.nl</u>
- Reduced Tillage and soil Biodiversity <u>derk.vanbalen@wur.nl</u>
- Resilience through Diversity wijnand.sukkel@wur.nl
- Soil management and soil biodiversity <u>marjoleine.hanegraaf@nmi-agro.nl</u>
- Organic matter management <u>janjo.dehaan@wur.nl</u>

