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Abstract 

Kros, J., 2002. Evaluation of biogeochemical models at local and regional scale, 
Alterra Scientific Contributions 7, Alterra Green World Research, Wageningen, the 
Netherlands. 284 pp. 

In this thesis different nutrient cycling and soil acidification models, developed for use 
at different scales, are presented and evaluated. The models considered are NUCSAM 
(NUtrient Cycling and Soil Acidification Model), RrcSAM (REgional Soil Acidification 
Model) and SMARI'2 (an extended version of Simulation Model for Acidification's 
Regional Trends). These are mechanistic dynamic models, which simulate 
biogeochemical processes in semi-natural terrestrial ecosystems at a variety of scales. 
The research tool NUCSAM, which is specifically developed for application on a local 
scale, includes simulation of the biogeochemical processes in various soil layers and on 
a daily time-scale. RKSAM and SMAR'1'2, tools to support policy makers, were 
specifically developed to evaluate long-term soil responses to deposition scenarios on 
a regional scale (national to continental, respectively). For that reason, the models 
RKSAM and SMART2 are relative simple models and operate on a yearly time-scale. 
These models were developed in view of the following research hypotheses: 

1. Adequate simulation of temporal responses in soil solution chemistry on a daily 
basis at various depth requires a detailed multi-layer biogeochemical model 
(NUCSAM); 

2. Annual average responses in soil solution chemistry at the bottom of the root 
zone can be adequately simulated with a simple, one-layer biogeochemical model 
(SMART2); 

3. Simulation of soil solution chemistry on a regional scale requires a simplified model; 
4. Adequate simulation of soil solution chemistry on a regional scale requires 

parameterisation, calibration, validation and uncertainty analysis on that scale. 
Therefore, this thesis primarily aims at testing these hypotheses by (i) validation and 
calibration, (ii) uncertainty analysis, and (iii) model comparison. More specifically, the 
models NUCSAM (site scale), Rl'SAM (site scale/regional scale) and SMART2 (regional 
scale) will be evaluated with respect to the optimal balance between model complexity, 
data availability and model aim. 

The detailed model NUCSAM reproduced the magnitude and trends of 
measured quantities, such as soil water contents and soil solution chemistry, fairly well. 
However, the application on a site scale hampers from the lack of sufficiendy good 
quality data. A model, such as NUCSAM, can not be applied at a large spatial scale 
because of the lack of data availability. The simplified model SMART2 is capable to 
simulate the observed flux-weighted annual averaged concentrations. Ignoring 
seasonal variations of weather conditions, ignoring of different soil layers and 
simplifying process description simplification does not need to greatly affect the 
modelled long-term annual average responses to acid deposition. A simplified model, 
such as SMART2, is an acceptable tool for making long-term evaluation of 
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environmental abatement strategies. Model performance is seriously improved and the 
prediction uncertainties strongly decreased by model calibration at the scale required 
for the ultimate output. Further improvement through calibration is hampered from 
the lack of good quality data on a national scale. 

Additional index words: nutrient cycling, soil modelling, uncertainty analysis, calibration, 
scenario analysis, model error 
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Voorwoord 

Lang verwacht, of misschien zelfs niet meer verwacht, maar toch nog gekomen. De 
grondslag voor dit proefschrift werd alweer zo'n 10 jaar geleden gelegd. Dit betrof 
min of meer het moment waarop ik een vaste aanstelling kreeg bij het toenmalige 
Staring Centrum. Al vrij snel daarna kwam de overgang van input-financiering naar 
output-financiering. Waardoor het produceren van wetenschappelijke output alleen 
maar mogelijk was indien gekoppeld aan reguliere projecten. Dit betekende dat de 
vraag van de opdrachtgever op de eerste plaats kwam te staan en wetenschappelijke 
output op een lagere. Kortom een weinig gunstig gesternte om het plan voor het 
schrijven van een proefschrift tot een goed einde te brengen. Dat er nu toch een 
proefschrift ligt is voor groot gedeelte te danken aan externe nationale projecten, o.a. 
het laatste staartje van het verzuringsonderzoek en diverse EU-projecten, tezamen met 
morele en soms ook een symbolische financiële steun van enkele sympathiserende 
programmaleiders. 

Zoals gezegd, werd de basis reeds 10 jaar geleden gelegd. In die tijd, de eerste 
nationale milieuverkenning Zorgen voor Morgen was net verschenen, begon vanuit het 
beleid de belangstelling te ontstaan om niet alleen modellen te ontwikkelen voor 
toepassing op nationale schaal, maar ook voor het evalueren van de betrouwbaarheid 
van dergelijke modellen. De hoofdstukken 2.1, 2.2 en 2.4 zijn een direct resultaat van 
deze belangstelling. In de loop van de daarop volgende jaren is langzaam maar zeker 
verder gewerkt aan een verdere validatie, calibratie en onzekerheidsanalyse van 
modellen ten aanzien van bodem- en vegetatieprocessen op landelijke schaal. 
Belangrijke aanjagers hiervan waren RIVM-opdrachten die uiteindelijk tot het model 
SMART2 (hoofdstukken 2.3 en 3.1) hebben geleid en een 2-tal EU-projecten 
DYNAMO en UNCERSDSS waarin met name aandacht werd besteed aan validatie 
en calibratie (hoofdstukken 2.3, 3.3 en 3.4) en onzekerheidsanalyse (hoofdstuk 3.2). 

Dat het schrijven van dit proefschrift Vat langer' heeft geduurd lag uiteraard 
ook aan mij zelf. Ik vond namelijk dat ik niet kon volstaan met het aan elkaar nieten 
van een bundel artikelen. Dit betekende toch veel extra werk, zoals het introduceren 
van een rode draad en het vervolgens vasthouden daarvan. Dit werk moest dan wel 
'tussen de bedrijven door' gerealiseerd worden. Het uit 'de mottenballen halen' van 
tekst, data en modelbestanden en er vervolgens nog nieuwe berekeningen mee 
uitvoeren, vraagt meer tijd dan je in eerste instantie zou denken. Maar de voldoening 
dat alles, zonder ISO-9002 certificering, feilloos reproduceerbaar bleek te zijn was des 
te groter. Met name door de onaflatende inbreng en stimulans van Wim de Vries, een 
van mijn co-promotoren, en Janet Mol, een van mijn paranimfen, heeft dit uiteindelijk 
tot het voorliggende resultaat geleid. Desondanks zie ik dit proefschrift niet als 
wetenschappelijk hoogtepunt, maar meer als een soort obligate daad voor iemand die 
al meer dan 13 jaar op grensvlak van wetenschap en praktijk werkt. Daarentegen heb 
ik er altijd met plezier aan gewerkt en hoop dat het door de lezer als de moeite waard 
wordt beschouwd. 

vu 



Een proefschrift schrijf je niet alleen. Dit proefschrift is gebaseerd op 9 
artikelen en rapporten, waarvan het eerste uit 1990 dateert. Alle artikelen betreffen 
multidisciplinaire projecten, waaraan een groot aantal collega's een bijdrage heeft 
geleverd. 

Allereerst wil ik mijn promotor prof dr. ir. N. van Breemen bedanken voor de 
prettige en flexibele wijze waarop hij richting heeft gegeven aan de totstandkoming 
van dit proefschrift. Beste Nico, hoewel je me wel eens de indruk gaf dat het hier om 
een promotie op afstand ging en dat je wat verder van bepaalde aspecten afstond, is 
jouw bijdrage van onschatbare waarde geweest. Ik denk hierbij met name aan de 
secure wijze waarop je mijn manuscripten van commentaar voorzag, de zorg die je 
uitte voor het dreigen te verzanden in details en het waken voor te veel relativerende 
opmerkingen. Mijn beide co-promotoren dr. ir. Marcel Hoosbeek en dr. ir. Wim de 
Vries wil ik bedanken voor hun kritische kanttekeningen en waardevolle adviezen. 
Beste Marcel, je werd pas in vrij laat stadium aan 'dit project' toegevoegd, maar zeker 
niet te laat. Zo heb je een zinvolle bijdrage kunnen leveren aan het kop- en staartwerk 
van dit proefschrift. Daarnaast is met jouw betrokkenheid de basis gelegd voor een 
hechte samenwerking binnen de in de startblokken staande kenniseenheid Groene 
Ruimte. Beste Wim, jij was de eerste die met het idee van een proefschrift aankwam. 
Regelmatig hadden we overleg, maar door samenloop van omstandigheden was dat 
met een lage frequentie en kwam het maar niet tot een eindresultaat. Jij bent altijd 
degene geweest die met een of ander mooi verhaal wist te voorkomen dat ik de 
handdoek in ring wierp. Wim, bedankt voor je onuitputtelijke bron van inspiratie en 
stimulans. 

Mijn paranimfen Janet Mol-Dijkstra en Gert Jan Reinds zijn niet zomaar 
gekozen. Zij hebben, beide als collega, een belangrijke bijdrage geleverd bij de 
inhoudelijke totstandbrenging van dit proefschrift. Beste Janet, jouw tomeloze inzet 
en kennis van zaken aangaande de vele SMART-toepassingen, welke een cruciale 
schakel vormen in dit proefschrift, is ongekend. Beste Gert Jan, jouw bijdrage op het 
gebied van regionale modeltoepassingen en database-werk vormden eveneens een 
onmisbare schakel bij de totstandkoming van dit proefschrift. Naast mijn beide 
paranimfen hebben Caroline van der Salm en Bert Jan Groenenberg, beide collega's 
vanaf het eerste uur, een belangrijke bijdrage geleverd op het gebied van de 
ontwikkeling en toepassing van het model NUCSAM. Caroline, bedankt voor je 
gedetailleerde commentaar en continue belangstelling. Bert Jan, dank voor je continue 
bereidheid om weer eens assistentie te verlenen bij het achterhalen van hoe we in het 
verleden bepaalde aspecten gemodelleerd en geparameteriseerd hadden. Jan-Cees 
Voogd, bedankt voor alle ondersteuning op het gebied dataverwerking, modellen 
draaien, kaartjes en figuren maken en tekstverwerking. 

Daarnaast is er aantal mensen uit 'die goede oude tijd', de laatste dagen van het 
verzuringsonderzoek, de periode 1988-1994, die op de een of andere mannier 
betrokken is geweest bij delen van dit proefschrift. Allen wil ik hiervoor hartelijk 
bedanken. Aan de prettige sfeer waarin we destijds samenwerkten denk ik met 
weemoed terug. Allereerst zijn de RIVM-collega's Hans van Grinsven en Aldrik 
Tiktak, zowel de Speuld-toepassing uit het APVIII en de Solling-toepassing uit de 
Leusden-workshop, waarin jullie beide een grote rol hebben gespeeld zijn in dit 
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proefschrift vertegenwoordigd. Peter Janssen en Carlijn Bak (destijds beide werkzaam 
bij het RIVM) bedank ik voor hun bijdragen op het gebied van onzekerheidsanalyse 
en modelcalibratie. Joris Latour, Jaap Wiertz, Rob Alkemade en Arjen van Hinsberg, 
destijds allen werkzaam bij het RIVM, hebben allen een belangrijke rol gespeeld bij de 
totstandkoming van het model SMART2, zowel inhoudelijk als financieel. In dit 
verband wil ik ook graag mijn dank uitspreken richting Max Posch (RIVM) die, als 
godfather van het model SMART, altijd bereid was voor het leveren van hand- en 
spandiensten, inclusief het leveren van commentaar op de hoofdstukken 1 en 2.3. 

Van wat recentere datum dateert de samenwerking met Edzer Pebesma en 
Gerard Heuvelink, destijds beide werkzaam bij de Universiteit van Amsterdam. Edzer 
en Gerard dank voor de prettige manier waarop wij hebben samengewerkt. Jullie 
geostatistische inbreng vormt een onmisbaar onderdeel van dit proefschrift. In dit 
verband wil ik ook Peter Finke bedanken voor zijn bijdrage aan het kwantificeren van 
onzekerheden in ruimtelijke bestanden. Michiel Jansen (Biometrie) wil ik hartelijke 
danken voor hun prettige en vakkundige hulp en adviezen op statistisch gebied. Albert 
Tietema dank ik voor zijn bijdrage aan hoofdstuk 3.4. 

De directie van Alterra dank ik voor de mogelijkheid die zij hebben geboden 
om dit proefschrift eveneens uit te geven als Alterra Scientific Contribution 7. Mijn 
afdelingshoofd van de afdeling Water en Milieu, Miep van Gijsen ben ik erkentelijk 
voor de materiële ondersteuning van deze uitgave. Graag wil ik ook Martin Jansen 
bedanken, die als vormgever vakwerk heeft geleverd met het vervaardigen van de 
figuren en prachtwerk met het maken van de omslag. 

Hoewel het aantal bedankjes eigenlijk nog veel groter zou moeten zijn, wil ik 
tenslotte mijn familie danken voor de verleende ondersteuning en getoonde 
belangstelling. Lieve ouders, dank voor alle ruimte en mogelijkheden die jullie mij 
geboden hebben. Pa, wat een gemis dat jij dit niet meer mag meemaken. Ben ervan 
overtuigd de je trots geweest zou zijn. Lieve Yvonne, Mathijs, Koen en Eva bedankt! 
Hoewel met het gereed komen van dit proefschrift een zekere last van me is 
afgevallen, vrees ik dat het ijdele hoop is dat ik vanaf nu iedere avond om 6 uur achter 
de piepers zal zitten. Hiertoe zal er meer moeten veranderen, zowel bij mij zelf als op 
het werk .... Misschien is dit het moment om daar nu echt aan te gaan werken. 

Hans Kros, 
december 2001 
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I n t r o d u c t i o n 

1.1 Background and aim 

Background on biogeochemical models 
Evaluation of anthropogenic effects on the environment at local, regional and global 
scales has become a key activity in environmental research. It forms the basis for 
emission reduction measures needed to achieve policy leading to a sustainable society. 
Computer models play an increasing role in the evaluation of those environmental 
effects. In the Netherlands, at the Environmental Policy Assessment Office 
(MilieuPlanBureau: MPB) and Nature Policy Assessment Office (NatuurPlanBureau: 
NPB) a large set of integrated predictive models are used to evaluate the effects of 
policy scenarios on a wide range of environmental problems. These include 
eutrophication, acidification, climate change and biodiversity decrease. Within these 
themes, mechanistic dynamical models, which simulate biogeochemical processes in 
ecosystems, play a crucial role. Biogeochemical models describe the behaviour and 
cycling of water and a variety of elements within ecosystems. A common aspect of the 
models used within the MBP and NPB is that they are used for a nation-wide 
application over a relatively long period of time (10-100 years). Besides their role 
within environmental policy assessment, modelling of biogeochemical processes 
serves a research goal viz (i) data integration, (ii) process integration, (iii) testing 
hypothesis, and (iv) derivation of guidelines for further experimental and field 
research. To describe biogeochemical processes in semi-natural terrestrial ecosystems 
several models have been developed. These models can be divided into two major 
groups, those based on an empirical approach and those based on mechanistic 
descriptions of processes (cf. Iloosbeek and Bryant, 1992). A disadvantage of 
empirical models is that they are generally not able to extrapolated, and therefore less 
suitable for establishing long-term predictions. 

During the last decades several dynamic process-oriented models for such 
purpose have been developed. Examples from the beginning period of this 
development, including surface water models, are: (i) 1980: simulating of soil nutrient 
losses based on the mobile anion concept (Reuss, 1980), (ii) 1982: the 'Birkenes 
model' for soil water and freshwater acidification on the catchment scale 
(Christophersen et ai, 1982), (iii) 1983: a simple model on soil leachate chemistry (Arp, 
1983), (iv) 1983: ILAVAS, the integrated lake watershed acidification study (Chen et ai, 
1983), (v) 1985: MAGIC, a model for the acidification of groundwater in catchments 
(Cosby et ai, 1985), (vi) 1985: a simple semi-empirical model on soil pH and base 
saturation (Bloom and Grigal, 1985), (vii) 1986: the Trickle Down Model on lake 
acidification (Schnoor et al, 1986). Later on, a large number of new models were 
developed, which in majority are based on the same concepts as the older models (cf. 
Tiktak and Van Grinsven, 1995). Several comparisons and performance studies have 
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been made on these models (cf. Eary et al, 1989, Rose et al, 1991 and Tiktak and Van 
Grinsven, 1995). From those studies it was concluded that numerical models are 
useful tools for understanding and integrating processes and disciplines, but the 
predictive reliability of such models still needs to be tested against long-term 
monitoring data. 

Basically, most of the available biogeochemical models are originally developed 
as a site scale model. Ideally, the complexity of a model should be in harmony with its 
intended aim. Important constraints to (realistic) modelling are limited scientific 
knowledge of underlying processes and lack of data. When going from a small or 
detailed towards a large or course temporal and spatial scale, the degree of model 
complexity usually, but not always, decreases (cf. Bierkens et al, 2000). 

Aim 

In this thesis different nutrient cycling and soil acidification models, developed for use 
at different scales, are presented and evaluated. I will focus on mechanistic dynamic 
models, which simulate biogeochemical processes in semi-natural terrestrial 
ecosystems at a variety of scales. The models considered are NUCSAM (NUtrient 
Cycling and Soil Acidification Model; Groenenberg et al, 1995; Chapter 2.1), RESAM 
(REgional Soil Acidification Model; De Vries et al, 1995a; Chapter 2.2) and SMARI'2 

(an extended version of Simulation Model for Acidification's Regional Trends; Kros et 
al, 1995a,b; Chapter 3.1). The research tool NUCSAM, which is specifically developed 
for application on a local scale, includes simulation of the daily variability 
biogeochemical processes. RESAM and SMAR'I'2, tools to support policy makers, were 
specifically developed to evaluate long-term soil responses to deposition scenarios on 
a regional scale (national to continental, respectively). Consequendy, RESAM and 
SMART2 do not include seasonal dynamics. The temporal resolution of these models is 
one year, and the hydrologie description in these models is relatively simple. 

RESAM and SMART (a precursor of SMARI'2; De Vries et al, 1989) were part of 
integrated acidification simulation models that give a quantitative description of the 
linkages between emissions, deposition and environmental impacts such as soil 
acidification and effects on terrestrial and aquatic ecosystems. These integrated models 
are: (i) DAS (Dutch Acidification Simulation model) for application in the Netherlands 
(Olsthoorn et al, 1990) and (ii) RAINS (Regional Acidification Information and 
Simulation model) for application in Europe (Alcamo et al, 1990). The model S M \ R T 2 

is used as the biogeochemical module within the Environmental Policy Assessement 
Office (MPB) and Nature Policy Assessment Office (NPB). 

To evaluate model performance in relation to model simplification and 
transition to a coarser temporal and spatial scale the models NUCSAM, RESAM and 
SMART have been applied simultaneously to the same data set (De Vries et al, 1998). 
This can be seen as a first step in order to check whether model simplification is an 
acceptable pathway to model on a large temporal and spatial scale. A comprehensive 
testing, however, of this approach is lacking. Therefore, this thesis primarily aims at 
testing the underlying approach by (i) validation and calibration, (ii) uncertainty 
analysis, and (iii) model comparison. More specifically, the models NUCSAM (site 



scale), RESAM (site scale/regional scale) and SMAR'1'2 (regional scale) will be evaluated 
with respect to the optimal balance between model complexity, data availability and 
model aim. 

1.2 Scaling Issues 

Earth sciences can be divided along boundaries of spatio-temporal scales. For many 
purposes it is adequate, if not desirable to inquire processes knowledge at one 
particular narrow range of spatial and temporal scales. On the one hand, processes are 
studied on a micro-scale such as decompostion and (de)nitrification (cf. Leffelaar, 
1987), on the other hand research is performed at the level of landscape ecology, such 
as catchments (cf. Likens et ai, 1977). Crossing these boundaries is not very common 
and may be considered as a mutual threat of disciplines. 

One of the common characteristics of environmental problems such as climate 
change and air pollution is that they play a role on a local, regional, national, 
continental and even global scale. The long-term response of soils due to elevated 
atmospheric deposition, investigated in this thesis, is a typical example. It is imperative 
that the spatial and temporal aspects considered in a model must fit its objectives. In 
practice, however, an ideal fit is difficult to achieve, because model input data (e.g. 
initial conditions and parameters) are often limited or even unknown at the relevant 
scale. Especially at large spatial scales, many model parameters cannot be measured 
directly at all. Within the framework of the modelling process we can distinguish three 
specific scale categories (cf. Van der Zee, 1999; Bierkens et al, 2000): 

- the observation scale, the scale for which an observation provides an average value, 
e.g. a soil sample represents only a few dm3 

- the model scale, the scale on which the model provides its output 
- the polhy scale, the scale on which research results are required to answer the 

decision makers questions 
Regarding the model scale, Bouma et al. (1998) stated that many biogeochemical 

models developed on a plot scale may be considered for use at larger spatial scales. 
I Iowever, this may cause problems (cf. I leuvelink, 1998a): 
- The relative importance of a process or subprocess may vary with scale. A 

particular process may be negligible at larger spatial and temporal scales, e.g. 
unsaturated preferential flow (Blöschl and Sivaplan, 1995). 

- At small scales, e.g. at those of intensively monitored plots, the data availability can 
often support the demand of complex models, the data availability is usually sparse 
at larger spatial scales and model input data have to be derived from generic data 
sources like maps and pedo-transferfunctions (cf. De Vries, 1994). 

- Moving from a smaller scale towards a larger, is generally accompanied by an 
increase in level of aggregation. Usually, the model input data become some kind 
of average of point values within a large spatial unit or 'block'. This may require an 
adaptation of the model (cf. Heuvelink, 1998a). 

Consequendy, there is a trade-off between scale and model complexity. A general 
problem that arises from applying a plot scale model on a larger scale is the 
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parameterisation. The more parameters a model contains, the less likely it is that they 
can be derived either directly from available data or indirectly by using pedo-trans fer 
functions. In addition, when particular parameters can only be obtained by calibration, 
identification problems may thwart the calibration. 

For a number of specific environmental problems, data availability on a plot 
scale is relatively large. Often this scale is chosen because it is the most appropriate 
scale to study biogeochemical processes in situ. The local scale, therefore, is the most 
logical level to start with model development. Because of sparser data at larger scale, 
the scale of the model must be adapted to the scale of data availability. 

One possibility is to simplify the model description in such a way that the 
temporal and spatial resolution is comparable to the resolution of the data. During 
such a simplification of processes, model results must remain reliable. The reliability 
can usually be determined by comparing results from the simplified model (i.e. 
SMART) and the local scale model (i.e. NUCSAM). Another possibility is to apply a 
complex, plot scale model directly to a large temporal and spatial scale. A notable 
example of this approach is the STONE model (cf. Boers et al, 1995), a model on a 
national scale describing the fate of nitrate and phosphorous in agricultural soils. Both 
pathways are propagated in the Netherlands for national applications of 
biogeochemical models within the Dutch Nature and Environmental Planning Agency 
(NPB and MPB). Presumably there is an optimal level of model complexity, i.e. a 
point where the degree of model complexity, e.g. in terms of state variables, match the 
data resolution and quality, leading to maximal knowledge gain about the modelled 
system (forgensen, 1992; Janssen, 1998). Since, environmental systems are regarded as 
complex, 'increased complexity in models is interpreted as evidence of closer 
approximation to reality' (Oreskes, 2000). Whereas Hauhs et al. (1996) classified the 
tendency of putting together as many processes as possible as 'naive modelling' or in 
words of Janssen (1998) 'a model should be made no more complex than can be 
supported by the available brains, computers and data'. 

In this thesis I will advocate the use of simpler or simplified models with 
relatively small data requirements, with a relatively high degree of certainty, above 
complex models with large data requirements, that are difficult to fulfil. Because, even 
if the model structure is correct (or at least adequately representing current 
knowledge), the uncertainty in the output of complex models may still be large due to 
the uncertainty in the input data. A theoretically justification for the use of model 
simplification in order to obtain more reliable results can be performed by uncertainty 
analyses (cf. Hornberger et al., 1986; Hettelingh, 1989; Janssen, 1994; Heuvelink, 
1998b). 



1.3 Overview of the b iogeochemical models used in 
this thesis 

General overview 
NUCSAM, RESAM and SMART2 are all process-oriented deterministic models. The 
trade-off between detail and reliability of information obtained and regional 
applicability is reflected by the desired degree of spatial resolution in model output. 
This is a factor of crucial importance when selecting the level of detail in both the 
model formulation and its input data. Application on a coarser scale justifies the use 
of a simpler model, see Table 1. 

T a b l e 1 

Name 

NUCSAM 

RESAM 

SMARI'2 

C h a r a c t e r i s t i c s 

Complexity 

complex 
intermediate 
simple 

o f t h e u s e 

Soil layering 

multi-laver 
multi-layer 
one-laver 

d d y n a m i c 

Temporal 
resolution 
one day 
one year 
one vear 

b i o g e o c h e m i c a l m o d e l s 

Spatial 
resolution 
l x l m 2 

100x100 m2 

500x500 m2 

Application scale 

site 
Netherlands 
Netherlands/Europe 

The regional-scale models SMART2 and RESAM can be seen as simplified 
versions of the 'site-scale' model NUCSAM, to reduce input requirements. NUCSAM is a 
quantitative mechanistic site-scale model with a complex process description, spatial 
(vertical) and temporal resolution. This model represents the basic model that has the 
same spatial and temporal resolutions as the data gathered at intensively monitored 
research plots. The simplifications made in RESAM and SMAR'12 consist of: (i) 
reduction of temporal resolution, i.e. using an annual time resolution, thus neglecting 
interannual variability of both model inputs and processes, (ii) reduction in spatial 
resolution, by using a smaller number of soil compartments and (iii) the use of less 
detailed process formulations. To apply a model on a regional scale, the various 
processes occurring in the soils have either been limited to a few key soil processes, or 
represented by simple conceptualisations (process aggregation). The degree of process 
aggregation in the models increases (complexity decreases) when the availability of 
data decreases, which occurs with an increase in the geographic area of application. 

NUCSAM was developed to describe the biogeochemistry of intensively (mostly 
biweekly) monitored sites during a relatively short-time period. Validation of dynamic 
models with a one-year temporal resolution such as RESAM and SMART2, is 
problematic due to a lack of long-term observation records on soil chemistry data. 
However, long-term simulations with S M \ R T 2 and RESAM can be compared to those 
made with the validated NUCSAM model, that serves as a reference. In this way an 
indirect model output validation can be accomplished for the regional models RESAM 
and SMART2. 

The multi-layer model RESAM gives insight into the spatial (vertical) variation in 
soil (solution) chemistry within the root zone. The hydrology of the one-layer model 
SMART2 eventually only yields the annual precipitation excess draining from the root 
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zone. Therefore, SMART2 only predicts soil solution chemistry at the bottom of the 
root zone. Important acidification indicators such as the Al concentration and Al/Ca 
ratio, however, increase with depth due to Al mobilisation, transpiration and Ca 
uptake. Since most fine roots, responsible for nutrient uptake, occur in the upper soil 
layer (0-30 cm soil depth), it is important to obtain reliable estimates for this layer by 
including water uptake with depth and nutrient cycling (foliar uptake, foliar exudation, 
litterfall, mineralisation and nutrient uptake) within the root zone. 

History of model development 
The models that are addressed in this thesis each have their own specific background. 
The model development started in the mid eighties with the development of RESAM 
as part of the Dutch Acidification System (DAS, Olsthoorn et al, 1990). RESAM has 
been applied at various generic sites (De Vries and Kros, 1989; De Vries et al, 1995a). 
to the Netherlands as a whole (De Vries et al, 1994a). Furthermore, this model was 
subjected to a sensitivity and uncertainty analysis (Kros, et al, 1993). At that same time 
the European scale model SMART was developed to act as a successor of the existing 
soil module (Kauppi et al, 1986) in the RAINS-model (Alcamo et al, 1990). SMART has 
been applied at particular ̂ «mV sites (De Vries et al, 1989) 'and Europe as a whole (De 
Vries et al, 1994b). In the beginning of the nineties the Dutch National Institute of 
Health and Environment (RIVM) requested for a soil module for an integrated model 
for the evaluation of nature conservation policy (Alkemade et al, 1998). Because 
RESAM was considered too complex for this purpose and SMART too simple, it was 
decided to develop the model SMARI'2. During the development period op the models 
RESAM, SMART and SMART2, little attention was paid to serious model evaluation. 
Eventually, during the third and final phase (1991-1995) of the Dutch Priority 
Programme on Acidification emphasis was put on model validation. In that period the 
model NUCSAM (Groenenberg et al, 1995) was developed in order to make use of data 
records from intensively monitored sites for the validation of the models SMART, 
SMART2 and RESAM. Thereafter, successively more and more attention has been paid 
to model evaluation. 

Process descriptions 

NUCSAM, RESAM and SMART2 are all based on the principle of ionic charge balance 
and on a simplified solute transport description. All models assume that: (i) a soil layer 
is a homogeneous compartment of constant density and (ii) the element input mixes 
completely in a soil layer. Furthermore, N-fixation, SO4 reduction and SO4 
precipitation are not included, and the various process descriptions for biological and 
geochemical interactions are simplified to minimise input data requirements. Going 
from NUCSAM to SMART2 process aggregation is achieved by (i) confining to one soil 
layer, (ii) a simpler hydrological description, (iii) simpler descriptions of processes (e.g. 
equilibrium equations instead of rate-limited reactions), (iv) ignoring (phosphorous) or 
lumping elements (e.g. sum of divalent base cations, BC, instead of Ca and Mg 



separately), and (v) ignoring several processes (e.g. NII4 adsorption), In RliSAM and 
SMAR'1'2 the annual water flux percolating through a soil layer is constant and equals 
the infiltration minus the transpiration, whereas NUCSAM contains a separate 
hydrological model. These differences are summarised in Table 2. 

Biological processes are all described by rate-limited reactions, usually first-
order reactions. An exception is the canopy interactions which are described by linear 
relationships with atmospheric deposition (cf. Table 2). In SMAR'I'2, geochemical 
reactions are described by equilibrium equations (dissociation of CO2, cation exchange 
and SO4 adsorption), except silicate weathering, which is described by a zero-order 
reaction (Table 2). So, unlike SMAR'1'2, NUCSAM and RJiSAM account for the effect of 
mineral depletion on the weathering rate. In NUCSAM and RliSAM the geochemical 
reactions are either described by equilibrium equations or first-order reactions 
(protonation of organic anions and weathering of carbonates, silicates and secondary 
Al compounds). 

1.4 Evaluation of the biogeochemical models used 

As mentioned before, the aspects of model evaluation that will be addressed in this 
thesis are (i) calibration and validation by comparing of model results with 
measurements, (ii) assessment of the uncertainty in model results due to uncertainties 
in model structure and model inputs and (iii) intercomparison of results of different 
models. 

Table 2 Processes and process formulations included in NUCSAM, RESAM 
and SMART2 

Processes NUCSAM RKSAM SMART2 

Hydrological processes: 
Water flow I lydrological submodel 

Biological processes: 
Foliar uptake 

Foliar exudation 

Litterfall 
Root decay 
Mineralisation/ 
immobilisation 
Growth uptake 

Maintenance uptake 
Nitrification 

Denitrification 

Proportional to total 
deposition 
Proportional to 11 and 
NI I4 deposition 
First-order reaction 
First-order reaction 
First-order reaction') 

Constant growth 
Ixigistic growth 
Forcing function2) 
First-order reaction') 

First-order reaction') 

Water balance for 
multiple layer 

Proportional to total 
deposition 
Proportional to 11 and 
NI I4 deposition 
First-order reaction 
First-order reaction 
First-order reaction 

Constant growth 
Ix)gistic growth 
Forcing function2) 
First-order reaction 

First-order reaction 

Water balance for 
the root zone 

Proportional to total 
deposition 
Proportional to 11 
and NI I4 deposition 
Model input 
Model input 
Proportional to N 
deposition 
Constant growth 
Ix)gistic growth 
Forcing function2) 
Proportional to net 
NII4 input 
Proportional to net 
N O j input 
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Table 2 (Continued) 

Processes 
Geochemical processes: 
CO? dissociation 
RCOO ptotonation 
Carbonate 
weathering 
Silicate 
weathering 
Al hydroxide 
weathering 

Cation exchanged 

NUCSAM RKSAM SMART2 

Sulphate adsorption 
Phosphate 
adsorption 
Complexation 
reactions 

Equilibrium equation 
1'irst-ordcr reaction 
I'irst-order reaction 

I'irst-order reaction') 

I'irst-order reaction 

Elovich equation 

Gaines-Thomas 
equations for: 
H, Al, NI U, Ca, Mg, K 
and Na 
Langmuir equation 
Langmuir equation 

Equilibrium equations 

Equilibrium equation 
I'irst-order reaction 
I'irst-order reaction 

I'irst-order reaction') 

I'irst-order reaction 

Klovich equation 
Gaines-Thomas 
equations for: 
I L A L N I L . C a . M g . K 
and Na 
Langmuir equation 

equilibrium equation 
I'irst-order reaction 
Equilibrium equation 

Zero-order reaction 

Equilibrium equation 

Gaines-Thomas 
equations for: 
11, AI and HC2 
(=Ca+Mg) 
Langmuir equation 

'' In NUCSAM, these processes are also described as a function of temperature 
3 In Rl-lSAM and NUCSAM the maintenance uptake equals it the sum of litterfall, root 

minus foliar uptake. 
1 In RliSAM and NUCSAM there is also the option to include a dependence of pi I on 

turnover and foliar exudation 

the weathering rate. 

Calibration and validation 

In this thesis calibration is used in a broad sense, i.e. the determination of model input 
data, e.g. parameters, initial and boundary conditions, by using available 
measurements. Some authors use the term parameterisation either with or without a 
fitting procedure based on measurements (cf. Addiscott et ai, 1995). Following this 
definition, calibration, as it is used here, equals parameterisation with a fitting 
procedure. In order to cope with ill-defined and information-poor situations where 
data are sparse and uncertain, calibration can be helpful in order to reduce the 
prediction uncertainty. 

The basic question whether we can validate a model is both a philosophical and 
a scientific one. Addiscott et al. (1995) stated in an evaluation on both questions that 
from a philosophical point of view 'although we may be able to discriminate between 
models, we can never validate a model in the sense of proving that it is correct'. On the 
other hand validation is derived from validus, meaning strong, whereas in legal and 
theological parlance it also means efficacious or 'producing the intended effect'. In a 
modelling context validation can be defined as 'the art of the applicable' (cf. Addiscott 
et ai, 1995). In this thesis validation is used in a more operational way (cf. Konikow and 
Bredehoeft, 1992), i.e. the goodness of fit of simulations to measurements or even the 
confrontation of the model output(s) with expert judgement or personal experience. 

A widely accepted approach of calibration and validation, is, after the model 
has been calibrated successfully to a particular data set, the model is (invalidated by 
comparing model outputs with an independent data set. In practice, however, 



Validation is in fact a sort of evaluation of an applied model. In this context Janssen 
and Heuberger (1995) distinguished: 
- the ability of the model to reproduce the system behaviour 
- the suitability of the model for the intended use 
- the robustness of the model for model input data 

Furthermore, model validation is not a once-and-for-all activity leading to an 
absolute and definite judgement on the model's adequacy. Rather it is an ongoing 
process, which is always performed in a certain evolving context against which the 
statements should be expressed and interpreted (cf. Janssen and Heuberger, 1995). In 
many situations, a thorough validation will be impossible or limited, usually due to a 
lack of data or time, where both are often a result of limited financial resources. 

Uncertainty analysis 

Although models for regional scale assessments have great potentials, they should be 
used with caution, because both models and data often have a high and variable level 
of associated uncertainty (cf. Loague et al, 1998). Consequently, it is crucial that these 
uncertainties are quantified. However, knowledge and information on these problems 
is typically limited, uncertain and poor. For reliable development and application of 
such models, a thorough sensitivity and uncertainty analysis is essential. These help to 
clarify the origins and effects of model uncertainties. In literature the distinction 
between uncertainty analysis and sensitivity analysis is not always clear. Sensitivity 
analysis is primarily concerned with the question how model outputs are affected by 
(small) variations in values of model input data (i.e. parameters, initial conditions, 
inputs). This provides useful information for model calibration and further model 
development (cf. Janssen, 1994). In an uncertainty analysis situations are considered 
where uncertainty and/or risk play a crucial role. This is achieved by assuming that 
values of model input data and the model as such are uncertain, due to uncertainty 
sources, and how these uncertainty affect the model outputs. The uncertainty in 
model outputs of a dynamic model originates from errors or misspecification of (i) 
model structure, (ii) parameters, (iii) initial conditions, (iv) model inputs and (v) model 
operation, due to incomplete knowledge, data or natural variability. 

A variety of techniques for uncertainty analyses has been reported (cf. Iman 
and Helton, 1988 and Janssen et al, 1990). Roughly, we can distinguish (i) Monte 
Carlo based methods and (ii) analytically based techniques. For the analysis of process-
oriented dynamic models Monte Carlo methods are preferred, since they are simple 
and straightforward. They rely on the assumption that the uncertainty in model input 
data can be described by specifying probability distributions and mutual correlations. 
From these probability distributions, multivariate sets of model input data are drawn. 
These samples are used to run the model, i.e. a Monte Carlo simulation. This results in 
a multivariate set of model outputs that are stored for further analysis. This analysis 
consists of calculating (i) the basic statistical information of the model outputs and (ii) 
the uncertainty contribution of the various uncertainty sources to the model outputs. 
Monte Carlo methods, however, also have drawbacks, including huge computational 
loads. In order to cope with this problem several more sophisticated Monte Carlo 
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methods are available, e.g. Latin Hypercube Sampling (McKay et al, 1979) and 
Controlled Random Search (Price, 1983). 

Examples of uncertainty analyses in the field of biogeochemical modelling at 
the plot scale are the quantification of uncertainties for pesticide leaching for one 
generic soil landuse combination (Tiktak et al, 1994) or for one mapping unit in a 
region (Finke et al., 1996). In regional scale assessments, model input data are usually 
derived from generally available data, e.g. soil and landcover maps, using 
(pedo)transfer functions (Bouma et al., 1986; Tiktak et al., 1998). Finke et al. (1996) 
quantified the output uncertainty resulting from both spatial variability and the 
uncertainty in pedotransfer functions by a Monte Carlo analysis and analysed how 
much these sources contributed to the total variance. 

Model comparison 

Comparison of outputs of various models provides insight in the uncertainty due to 
the model structure. This can be either a comparison between models that totally 
differ in the modelling concept or models that differ in degree of detail. Among 
modellers the benefit of model comparison is widely recognised. Several studies on 
this topic have been performed, e.g. in 1993 during *a workshop 16 forest-soil-
atmosphere models were compared, using a long-term data-set from Soiling, Germany 
(Tiktak and Van Grinsven, 1995). 

To compare model outputs either with data or with outputs from other models, 
both qualitative and quantitative methods should be used. Qualitative methods are 
based on visual inspection of the model results in conjunction with the associated data 
using, e.g. scatter plots, time series, distribution functions. Quantitative methods try to 
express the degree of agreement numerically, i.e. by a performance measure (Janssen 
and Heuberger, 1995). 

1.5 Research questions of this thesis 

Until now in the Netherlands a lot of research has been performed on modelling 
nutrient cycling and soil acidification (cf. De Vries, 1994; Van der Salm, 1999). The 
model RESAM has been applied for the Netherlands (De Vries et al., 1994a) and on a 
site scale (Van der Salm et al., 1999). The same is true for the precursor of the model 
SMART2 (cf. De Vries étal. (1989) for a site application and De Vries étal. (1994b) for 
a European application). This previous research focussed on (i) process identification, 
(ii) data derivation and (iii) model development. At that time, these models were also 
used for scenario evaluation without rigorous validation, calibration and uncertainty 
analysis. This implies that the validity of the results could not be presented, but only 
the plausibility. Ever since, however, more and more attention has been paid to model 
evaluation. A selection of the research on evaluation of these models forms the core 
this thesis. It aims at the evaluation of the reliability and validity of a set of 
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biogeochemical models developed for various spatial and temporal scales. The 
research summarised in this thesis was based on the following hypotheses: 
- Adequate simulation of temporal responses in soil solution chemistry on a daily 

basis at various depth requires a detailed muli-layer biogeochemical model; 
- Annual average responses in soil solution chemistry at the bottom of the root zone 

can be adequately simulated with a simple, one-layer biogeochemical model; 
- Simulation of soil solution chemistry on a regional scale requires a simplified 

model; 
- Adequate simulation of soil solution chemistry on a regional scale requires 

parameterisation, calibration, validation and uncertainty analysis on that scale. 

More specifically, I will try to answer the following questions: 
- What is the adequacy of a detailed terrestrial biogeochemical model in predicting 

soil solution chemistry at short time interval and various soil depth? (cf. Chapter 
2.1)? 

- Is uncertainty analyses, which give insight in the relative contribution of processes 
to the model outputs, beneficial in simplifying a detailed terrestrial biogeochemical 
model (cf. Chapter 2.2)? 

- What is the adequacy of a simple one-layer terrestrial biogeochemical model in 
simulating soil solution chemistry (cf. Chapter 2.3)? 

- What is the change in model performance at various soil depth and time scales due 
to model simplification, including spatial and temporal aggregation of a terrestrial 
biogeochemical model in simulating soil solution chemistry (cf. Chapter 2.4)? 

- What is the applicability of a simplified model on a regional scale in view of data 
availability (cf. Chapter 3.1)? 

- What is the prediction uncertainty due to uncertainty in geographical data and 
model parameters when applying a model on a regional scale? (cf. Chapter 3.2)? 

- What is the gain in model performance on a regional scale after regional model 
calibration (cf. Chapters 3.3)? 

- What is the adequacy of simple biogeochemical models as a tool for policy makers, 
(cf. Chapter 4)? 

Figure 1 illustrates the steps taken in this thesis in the transition from modelling on a 
site scale towards application on regional scales. 

11 
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Figure 1 Outline of the model evaluation procedure used in this thesis. Numbers refer 
to the actions listed in the text 

2. 

3. 

On a site scale: 

1. Develop a quantitative mechanistic site-scale model with a high degree of process 
knowledge, spatial (vertical) and temporal resolution. Calibrate and validate the 
site-scale model on high resolution data, (in depth and time) of intensively 
monitored sites by (cf. Chapter 2.1): 
- Minimising the uncertainty and difference between observations and model 

results by calibrating poorly defined model parameters (calibration) 
- Comparing model results with (another) high resolution data-set (validation) 
Perform a sensitivity and uncertainty analysis to determine the most important 
model parameters and associated processes (cf. Chapter 2.2) 
Simplify the site-scale model (3a) into a regional-scale model by (i) aggregation of 
processes and input data based on the desired temporal resolution at regional 
scale (temporal aggregation) and (ii) aggregation of soil layers (spatial aggregation). 
Calibrate the regional scale model (3b) at an (intensively) monitored site, and 
validate at another site (cf. Chapter 2.3). Preferably, the simplification of the 
process description is based on the sensitivity analysis of the detailed model, (cf. 
Chapter 2.2) 
Compare the performance of the site-scale and regional-scale model on the same 
intensively monitored sites, using (i) the original high resolution data and (ii) 
aggregated data at the same temporal resolution as the model. Compare predicted 
long-term trends of the site-scale and regional-scale model for the appropriate 
temporal resolution (cf. Chapter 2.4) 

4. 
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On a regional scale: 

5. Validate the regional-scale model on low resolution (spatial) data at a coarse 
spatial scale (cf. Chapter 3.1) 

6. Reduce the uncertainty by calibrating poorly defined model parameters at a large 
spatial scale (cf. Chapter 3.3) 

7. Specify the uncertainty in the model results at a regional scale (perform an 
uncertainty analysis of the regional-scale model in a spatial context) (cf. Chapter 3.2) 

8. Compare the results of the regional scale model with other models (cf. Chapter 3.4) 

1.6 Outline of this thesis 

The research questions will be answered in chapters II and III, where chapter II 
addresses the evaluation and reliability at the site scale and chapter III at the regional 
scale. Both chapters subsequently conduct (i) model validation and calibration, (ii) 
uncertainty analysis and (iii) model comparison (cf. Table 3). 

Table 3 Outline of the thesis in terms of reliability action and scale, 
numbers refer to Chapter numbers 

Reliability action 

Validation and calibration 
Uncertainty analysis 
Model comparison 

Scale 
Ix)cal scale 
2.1,2.3 
2.2 
2.4 

Regional scale 
3.1,3.3 
3.2 
3.4 

Part II starts with a detailed description of the soil acidification and nutrient cycle 
model NUCSAM and a validation of the model on the Dutch experimental forest site at 
Speuld (Chapter 2.1). As a next step the uncertainty in model predictions due to the 
uncertainty in input data at a site scale was investigated using a simpler version of the 
NUCSAM model, the model RKSAM (Chapter 2.2). The regional scale model SMART2, 
derived from NUCSAM, is described in Chapter 2.3. This chapter also presents the 
calibration and validation of this model at a manipulated monitoring site (Risdalsheia, 
Norway). In Chapter 2.4 all diree models (NUCSAM, RKSAM and SMAR'I'2) are applied 
and compared at one intensively monitored location (Soiling, Germany). In order to 
increase the confidence of long-term predictions of die simplified regional scale model, 
also long-term predictions of the three models are compared. 

Part III of this thesis starts with die application and validation of the regional-scale 
model SMART2 for the Nedierlands (Chapter 3.1). The uncertainty associated with the 
SM.\R'12 application at a large spatial scale is presented in Chapter 3.2. Chapter 3.3 shows 
how the uncertainty in model results at a national scale can be reduced by performing a 
calibration using regional scale data. In Chapter 3.4 die performance of die S.MAR'12 model 
on the national scale is compared widi two other models. 

This thesis concludes with part IV where the results and conclusions of the 
model evaluation are summarised and evaluated with respect to the research 
questions. 
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II Evaluation on a site scale 

2.1 Nutrient cycling and soil acidification modelling on a site scale 
A revised version of: 

NUCSAM: a model for evaluating nutrient cycling and soil acidification 
in forest ecosystems 
By: J. Kros, J.E. Groenenberg, C. van der Salm, W. de Vries and 
N. van Breemen 
Submitted to Ecological Modelling 

2.2 The uncertainty in forecasting trends of forest soil acidification 
A slightly revised version of: 
- The uncertainty in forecasting trends of forest soil acidification 

By: J. Kros, W. de Vries, P.I I.M.Janssen and C.I. Bak 
Published in: Water, Air and Soil Pollution, 66:29-58 

2.3 Modelling effects of acid deposition and climate change on soil and runoff 
chemistry 
A combination of revised versions of: 

SMAR'1'2: Modelling of soil acidity and nitrogen availability in natural 
soil ecosystems in response to changes in acid deposition and 
hydrology 
By: J. Kros, J.P. Mol-Dijkstra, \V. de Vries and G.J. Reinds 
Submitted to Ecological Modelling 
Modelling effects of acid deposition and climate change on soil and 
runoff chemistry at Risdalsheia, Norway 
By: Janet P. Mol-Dijkstra and Hans Kros 
Published in: I Iydrology and Earth System Sciences: 5:487-498. 

2.4 Validation and comparison of soil acidification models with different 
degrees of process aggregation on a site scale 
A combination of revised versions of: 

- Application of soil acidification models with different degrees of 
process aggregation on an intensively monitored spruce site 
By: C. van der Salm, J. Kros, J.E. Groenenberg, W. de Vries and G.J. 
Reinds, 1995 
Published in: S.T. Trudgill (Ed.): Solute modelling in catchment 
systems, John Wiley, Chichester, UK: 327-346. 

- Uncertainties in long-term predictions of forest soil acidification due 
to neglecting seasonal variability 
By: J. Kros, J.E. Groenenberg, W. de Vries and C. van der Salm 
Published in: Water, Air, and Soil Pollution: 79:353-375. 
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2.1 Nutrient cycling and soil acidification modelling 
on a site scale 

Abstract 

A detailed soil and nutrient cycling model for forest ecosystems (NUCSAM) is described here. The 

model integrates the hydrological- and nutrient cycle and soil chemical processes, while including all 

relevant processes in the forest canopy, organic surface layer, mineral soil and soil solution, that are 

known according to current knowledge. The hydrological cycle is modelled by a separate Dany-law-

based hydrological model. Nutrient cycling involves nutrient uptake, litterfall, root turnover and 

mineralisation. Forest growth is described by a logistic growth function. Equilibrium and rate limiting 

chemical reactions are explicitly modelled in a chemical module. Chemical reactions rates depend on 

temperature, whereas biochemical processes depend on temperature, moisture content andpll. 

The NUCSAM model was applied to the Speulderbos Douglas fir stand, and validated using 

measured data on soil and soil solution chemistry. Results mostly showed a reasonable to good 

agreement with observations. However, thepH was overestimated in the topsoil and underestimated in 

the subsoil. The Ca concentration in the topsoil and CI in the subsoil was slightly underestimated 

Long-term (60 a) impacts of acid deposition of three deposition scenarios on two generic forest soil 

combinations were also evaluated with NUCSAM. Scenario analyses showed a fast response of the A/ 

and SO4 concentration after a decrease in SOx deposition and a time-delay in decrease of the NOj 

concentration resulting from a decrease in NOx deposition and higher soil solution concentrations 

below Douglas fir. 

2.1.1 Introduction 
There has been a continuous interest in developing and using detailed process-
oriented ecosystem models for the simulation of vegetation and soil processes, cf. 
reviews by Âgren et al (1991), Tiktak and Van Grinsven (1995) and Ryan eta/. (1996). 
Such models are of interest for linking experimental data and hypotheses testing in 
view of: general ecosystem research, acidification, eutrophication, biodiversity and 
climate change. A detailed ecosystem model must integrate the hydrological cycle, 
nutrient cycling, and other soil processes. Furthermore, such a model must include all 
relevant environmental factors that affect these processes. 

Several hypotheses that link forest growth and forest vitality to air pollution, 
atmospheric deposition, soil acidification and disturbed nutrient cycling have been 
developed. Examples are the Al-toxicity hypothesis (Ulrich, 1983) and the nitrogen 
saturation hypothesis (Skeffington, 1988). Such hypothetical effect relationships can 
be tested by applying mechanistic and comprehensive simulation models. As a first 
step, the integrated Dutch Acidification Systems model (DAS) has been developed 
during the Dutch Priority Programme on Acidification (Heij and Schneider, 1991). 
This model aims at evaluating the long-term effectiveness of acidification abatement 
strategies on a number of receptor systems (forests, forest-soils, heathland and aquatic 
ecosystems). The model describes the complete causality chain from emissions to 
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effects in a regionalised way. An important effect module within DAS is the forest soil 
model R.FSAM (De Vries et al, 1995a; Chapter 2.2), which has a temporal resolution of 
one year. Later on, within the context of the national planning bureau's (NPB, MPB), 
an even more integrated simulation model was developed, the Natuurplanner 
(Alkemade et al, 1998). This required a more simplified biogeochemical model, for 
which we developed the model SMAR'I'2 (see Chapter 2.3). 

The regional models RKSAM and SMAR'I'2 include various simplifications such 
as a yearly time scale, single soil layer (SMAR'I'2) and lumped process formulations. 
Validation of such regional models is, however, cumbersome, as most measurements 
are carried out at the stand level. Validation at that level of detail is problematic since 
the model outputs of these models is in the form of yearly average concentrations that 
cannot be compared directly to (biweekly or monthly) monitoring measurements, 
which show high temporal dynamics. Furthermore, RKSAM and SMART2, which aim at 
predicting long-term changes, cannot be validated with results from relatively short (3-
10 a) monitoring programmes. To overcome this limitation we built a detailed stand-
level model with a high degree of process knowledge and a higher temporal 
resolution: the Nutrient Cycling and Soil Acidification model (NUCSAM). Besides the 
necessity of having a detailed biogeochemical model as a research tool, the most 
important reason for developing NUCSAM was validation and scientific justification 
for the regional models RKSAM and SMART2. The model NUCSAM has been applied 
previously to the Soiling experimental forest in Germany (Groenenberg et al., 1995) 
and to a roofing experimental site Speuld, the Netherlands (Van der Salm et al, 1998). 

In this Chapter, a comprehensive description of the model NUCSAM is given 
together with a validation of the model to a Dutch Douglas fir stand in the 
Speulderbos. Data on forest hydrology, soil chemistry and tree growth were available 
for the period 1986-1990 (Heij and Schneider, 1991; Evers et al., 1987). Furthermore, 
the results of scenario analyses are presented. 

2.1.2 Model description 

Model structure 

NUCSAM is a process-oriented model that simulates the major hydrological and 
biogeochemical processes in the forest canopy, organic surface layer, and mineral soil. 
It considers évapotranspiration, heat transport, canopy processes, litterfall, 
mineralisation, below and above ground nutrient uptake, soil processes and solute 
transport. The change in soil solution and solid phase chemistry is calculated from a 
set of mass balance equations, describing the input, output and interactions in each 
compartment. Vertical heterogeneity is taken into account by differentiating between 
soil layers. Each soil layer is a completely mixed homogeneous compartment of 
constant density. 

Processes in the model are generally described by zero-order and first-order 
rate equations and equilibrium equations. To incorporate the effect of environmental 
changes, most process parameters are described as a function of temperature, soil 
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moisture content and pi I. The model includes all major ions playing an important role 
in nutrient cycling and soil acidification: II, Al, Na, K, Mg, Ca, NII4, NCh, PO4, SO4, 
Cl and organic anions (RCOO). The model is specially developed for application at 
forest stands that are intensively monitored for atmospheric deposition, precipitation 
(meteorological conditions), litterfall and soil solution chemistry. The model inputs 
include atmospheric deposition, global radiation, precipitation and air temperature. 
Ideally, the model requires these inputs on a daily basis. I Iowever, less detailed input is 
also conceivable. This is especially true for deposition, which is generally available at a 
larger time scale. The model computes fluxes and concentrations in the vegetation 
compartments and the soil layers on a daily basis. The basic structure of the model is 
given in Figure 1. 

Deposition 

'Canopy processes:" \ 
• foliar uptake 

\ » foliar exudation.'' 

Foliage Trunk / 
branches Roots ,'Tree growth; 

iThroughfall; ; Litterfall; 

'] ' 

! Rootdecay ! 

zir 
Uptake 

Soil processes: 
• Mineralisation 
• Nitrification 
• Denitrification 
• Weathering 
• Cation exchange 
• AI release 
• Sulphate sorption/ 

ii£ 
Litter layer 

Mineral 
soil layers 

; Leaching 

" r 
Figure 1 The basic structure of NUCSAM, showing the key pools and fluxes 

Biochemical processes 

Nutrient cycling 

Nutrient cycling includes the daily uptake of nutrients by the growing forest and the 
return of nutrients to the soil by means of litterfall and root turnover. This cycle is 
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closed by mineralisation. The vegetation removes nutrients from the soil solution and 
through above ground uptake in order to produce biomass. Losses of nutrients from 
the vegetation are caused by litterfall, root turnover and foliar exudation. Litterfall is 
deposited onto the organic surface layer of the soil, whereas roots are decomposed in 
the organic surface layer and deeper soil layers. Nutrients return to the soil solution by 
mineralisation of litter and dead roots. 

Canopy interactions 

The solute fluxes to the soil surface by throughfall are calculated in NUCSAM from the 
total deposition corrected for canopy interactions, i.e. foliar uptake and foliar 
exudation. In NUCSAM the total input through atmospheric deposition is derived from 
the input through dry deposition en bulk deposition. Dry deposition must be specified 
as model input, whereas bulk deposition is derived from precipitation fluxes and 
precipitation chemistry. Total deposition of NIL, NO.i, SO4 is calculated from the 
input by dry deposition and bulk deposition: 

FX^fflC^FX^+P-cX, (1) 

where FX (moU ha ] d ') refers to the flux of element ~X,ffXdd (-) is the forest filtering 
factor for dry deposition of element X, P the precipitation (m d1), c the concentration 
of element X in wet deposition (molc nr3) and where the subscript td refers to total 
deposition, dd to dry deposition. 

The total deposition of the base cations Ca, Mg, K, Na as well as CI is 
calculated from the input by bulk deposition solely: 

FX«=ff«-FXU (2) 

where FX (mole ha1 d1) refers to the flux of element X,ff,u (-) is the forest filtering 
factor for bulk deposition for base cations and CI. Note that contrary to ffX<u, ffu 
implicitly correct for the input of dry deposition. This is because there is only data 
available on the bulk deposition of base cations and CI. Deposition of Al and P is 
assumed to be negligible, and not included in the model. 

Foliar uptake of NI L, NO3, SO4 and H is described as a linear function of the 
dry deposition of these elements: 

FXß=frXß-FXdJ (3) 

where FX (mole ha ' d ') refers to the flux of element X,frXf„ (-) is the uptake fraction 
of element X and where the subscript fu refers to foliar uptake and dd to dry 
deposition. 

Foliar uptake of N IL and II is counterbalanced by exchange with Ca, Mg and 
K (Draayers, 1993): 
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FCa fl + FMgf + FK/t = FNH4Ju + FHfu (4) 

where the subscript fe refers to foliar exudation and fu refers to foliar uptake. The 
foliar exudation flux of each individual cation, FXj, (mole ha ' a1) is calculated as: 

FXfe = frXf! • (FNU4J„ + FHfu ) (5) 

where frX/, (-) is the foliar exudation fraction of Ca, Mg and K. The sum of these 
fractions equals 1. 

Accumulation and leaching from the canopy 

To calculate the fluxes and concentrations in the leachate from the canopy 
(throughfall), it is necessary to determine the throughfall volume and the interception 
capacity (A,K,ms (m)). The calculation of the throughfall waterflux (TF) is described in 
Section Canopy interception. When precipitation exceeds the interception capacity (A„r,mx 
(m)), accumulated dry deposition and exudated base cations are leached from the 
canopy. This is modelled by a first order equation. 

The accumulation and leaching of constituents form the canopy is calculated 
from the following mass balance: 

~^ = P-cXn +pCdd-FX,l + FXft -TF-cX^, (6) 
at 

where Vc is the amount of accumulated deposition in the canopy (mole m 2), P and TF 
are the daily precipitation and throughfall (m d ') respectively, cXi„ and cXmt are the 
constituent concentration in the solute entering and leaving the canopy respectively 
(mole nr3). Integration of Eq. (6) leads to: 

^mXt) = ^-cXl^{cXmr{t-\)-^--cXi,).^ 
TF(t) TF{t) 

( Tp \ 
- ( - ) " 

\̂  ^Vc.max J 

(7) 

The daily throughfall is then calculated by: 

FXf/(t) = TF(t)-cXm,(t) (8) 

Litterfall and root turnover 

Litterfall and root turnover are the input to the organic pools of N, P, Ca, Mg, K and 
S. Both processes are described by first-order rate reactions: 
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FXy = (1 - JiXnJf )-kXr Am, • ctXb, (9) 

FX^il-frX^ykX^-A^-aX, (10) 

where kp and knt (a ') are the rate constants for litterfall and root turnover, Ami,, and 
Amrt (kg ha ') are the amounts of leaves and fine roots, ctXk and ctXrt (mole kg-') are 
the contents of element X in leaves and roots, and frX„,i,. and jrX„,rt (-) are the 
reallocation fractions for element X in leaves and fine roots, respectively. Ami,, and 
Amrt are directly derived from the given maximum amounts of leaves and roots (see 
Section Forest GrowtB). The contents of P, Ca, Mg, K and S in leaves and fine roots are 
assumed to be constant in time. As high contents of nitrogen are caused by high 
nitrogen deposition rates, the nitrogen content in stems, branches, leaves and fine 
roots is calculated as a function of nitrogen deposition by: 

ctN = - ctNm„ +(ctNmx -aNm„y **" ~^'m" forN^mn<Nld<Nld^ (H) 
^ ld,mx •**td,mn 

<Mmx for.Nld>N. 

where ctNm„ and ctNmx (moU kg-1) are the minimum and the maximum nitrogen 
content in stems, branches, leaves or fine roots, respectively and FN,d,m« and FN,j,„x 

(mole ha~' a ') are the minimum and the maximum deposition levels between which 
the nitrogen content in biomass is affected. Furthermore, a certain delay period 
between deposition change and change in N content is considered in NUCSAM. 

The resulting annual litterfall and root turnover is distributed over the year, 
using a monthly varied coefficient to derive monthly variable fluxes. 

Mineralisation 

To describe the dynamics and mineralisation of organic matter we consider three 
organic matter pools. Models with only one pool are not able to describe the long-
term dynamics of mineralisation, because of the apparent change of the decay 
constant with time. Several models, such as SOM (Jenkinson and Rayner, 1977), 
CENTURY (Parton et a!., 1987), NICCE (Van Dam and Van Breemen, 1995) and 
MKRLIN (Cosby et ai, 1997), distinguish two or more organic matter pools with 
different decay rates. A similarity of these models is that the organic matter pools are 
only discernible conceptually and not physically or chemically. A drawback of the use 
of such a concept is that the pools of organic matter and nutrients are hardly 
measurable. Consequently, within NUCSAM we choose for pools that can be related 
with field observations (cf. Groenenberg et ai, 1998). 

In NUCSAM the three pools: litter, fermented material and humic material were 
assigned to three morphological distinguishable pools i.e. the L, F and 11 horizons of 
the organic surface layer. These morphologically distinguishable pools can be sampled 
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in the field separately in order to measure pools of organic matter and contents of 
nutrients. The pools represent successive stages in the decomposition of organic 
matter, of which the litter compartment is the most easy decomposable compartment 
and humus, the most refractory compartment. Besides litter input from above ground 
material the F and II horizon also derive organic matter by the turnover of fine roots, 
as described before (Eq. 14). Decomposition of roots is described analogous to the 
decomposition of above ground litter. 

Figure 2 gives a schematic presentation of the organic mater pathways in 
NUCSAM. (cf. Groenenberg et al., 1998). 
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mifm = mineralisation of fermented material 

trfm = transformation of fermented to humic material 
mihu = m i n e r a l i s a ' i o n of humic material 

Figure 2 Organic matter pathways in NUCSAM 

Fresh organic material (litterfall and root turnover) is added to the litter 
compartment. Material from the litter compartment is mineralised to CO2 and DOC 
{mil) and transformed to fermented material {tri). Fermented material is mineralised to 
CO2 and DOC (mijm) and transformed to humic material {trJm). Humic material is the 
final stage of organic matter decay and therefore is only mineralised {mihi). Part of the 
humic material from the organic surface layer may be transferred to the mineral soil as 
a result of bio-turbation. Organic matter in living biomass is lumped with death 
organic material because living biomass is only a small fraction of organic matter in 
soils. 

Mass balances of carbon in the various organic pools are determined by the 
input to the compartment either by addition of fresh organic material (litter 
compartment) or by transformation of organic matter (fermented and humus 
compartment) and by the output due to mineralisation and further transformation. 
Mineralisation and transformation of the organic carbon, nitrogen, phosphorous and 
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base cations in the pools are modelled as first order processes. For the litter and 
fermentation layer, the mass balances (mole ha ' a1) thus equal: 

rf(y*»,-rfX,)= _ +k ^ mdXt ( 1 2 ) 

at 
d(Amft-ctXfe) 

dt 
= K,„ • A, • aX„ - {kmiJl + khMjt ) • Amß • ctXj, (13) 

where fru (-) is the leaching fraction, this fraction represents the immediate release of 
nutrients (usually mainly K and Na) to soil solution km\/, (a1) is the mineralisation 
constant for the litter layer, k/„,ä (a-1) is the humification constant for the litter layer, 
kmijm (a1) is the mineralisation constant for the fermentation layer and kb»je (a

1) is the 
humification constant for the fermentation layer, ctX/, and ctXj, (mole kg-1) are the 
contents of N, P, K, Ca, Mg and S in the litter and fermentation layers, and Ami, and 
Amjm (kg ha1) are the amounts of litter and fermented material, respectively. 

In the model the carbon content of organic matter does not change with 
ongoing decomposition i.e. ctC,m — ctC/t — ctC/„ — ctC/,„, this according to the similar 
carbon content found in bulked samples of the L and F horizons compared to H 
horizons as determined in a field inventory of 150 forest stands (De Vries et al, 
1995b). The contents of other components are dynamic through differences in 
mineralisation rate (only for N) and the differences in element contents in litterfall and 
root turnover. The input flux of fresh organic material (root turnover and litterfall) 
depends on the amount of leaves and roots according to (see Eqs. 9 and 10). 

For each soil layer within NUCSAM, a mass balance (mole ha ' a ') can be written 
for soil organic matter: 

d{AhuyCtXhul)_ 

dt (14) 

Kj • i^mfm • aX/m + Ki,n, • Amm • ctXm - kmiM • AmhHj • ctXhuJ ) 

where jnu,i (-) is fraction of soil organic matter in soil layer i, kt„t/m (a1) is humification 
constant for the fermentation layer, k„i>n (a ') is mineralisation constant for the root 
necromass, and km,bi (a-1) is mineralisation constant for the humus layer. The flux of 
organic anions, RCOOmi, produced during mineralisation of all distinguished organic 
matter compartments (mole ha ' a ' ) is calculated from charge balance considerations: 

RCOO. = NH4 mi + Ca- + Ca- + K. - SO. . - H2P04 „. (15) 

Part of the organic matter from the humus compartment may be transferred to 
the mineral soil by bio-turbation. In NUCSAM this is modelled by transferring a 
constant fraction of the newly formed humus over the mineral soil, layers according to 
the root distribution. 
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Mineralisation and transformation rates depend on temperature and moisture 
content. In NUCSAM maximum rate constants are corrected for non-optimal 
temperature and moisture effects by multiplying the rate constants with correction 
factors. 

Mineralisation of nitrogen in each organic matter compartment was coupled 
with carbon mineralisation. At low N contents the rate of nitrogen mineralisation is 
reduced by multiplying the actual mineralisation rate constant with a C /N ratio 
dependent reduction factor ({/^;CN) to account for nitrogen immobilisation. This 
reduction factor is calculated as (Janssen, 1984; De Vries et ai, 1994a): 

*J mi,CS, ~ ' 

1 forCNs<CNme 

CN -CN 
X~DA -CN° > r C N - < C N < < ( 1 + D ^ ) - C N - <16) 

0 ~ ~ forCNs>(\ + DAmo)-CNmo 

with CNS the C/N ratio of the incoming organic material by leaf fall, root turnover or 
transformation of the litter or fermented compartment, CNmo is the C /N ratio of the 
micro-organisms decomposing the substrate (-) and DAmo is the dissimilation to 
assimilation ratio of the decomposing microbes (-). 

Actual values for the mineralisation rate constants are also reduced by factors 
such as soil moisture. In NUCSAM, the same reduction functions where used as for the 
SMART2 model (see Chapter 2.3). 

Nitrogen transformations 

Nitrification (mole ha ' a ') is described as a first-order reaction by: 

^i^,„,=-fß-TL-km-cKH, (17) 

where 6 (m3 m1) is the volumetric water content, TL (m) is thickness of the soil layer, 
k„i (a ') is the nitrification rate constant. As with mineralisation, the nitrification rate 
constant is adjusted on the basis of soil temperature, water content and pH (De Vries, 
1988). The nitrification rate constant is reduced at high water contents. 

Denitrification (mole ha ' a ') is also described as a first-order reaction by: 

FKO3A=-f,0-TL-klll-(NO3 (18) 

As with mineralisation, the maximum values for the nitrification and 
denitrification rate constant, k„; and k,u, are adjusted by the moisture content and pH: 
In NucSAiM, the same reduction functions where used as for the SMART2 model (see 
Chapter 2.3). 
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Uptake of nutrients by roots 

Total uptake of NII4) NCh, Ca, Mg, K, P 0 4
3 and S 0 4 (mole ha ' a1) is described in 

NUCSAM by a demand function, which consists of maintenance uptake and growth 
uptake in stems and branches according to: 

F*» = F*v + FXf + FXß + F*«* + F X > (19) 

where the subscript ru refers to root uptake, ^"to litter fall, rd to root turnover,^ to 
foliar exudation, ju to foliar uptake and gu to growth uptake. The growth uptake is 
directly related to stem and branch growth: 

¥Xsi=dAmil \ctXsl +KJ>r-ctXbr) (20) 

where fr^,i,r (-) is the fraction of growth uptake for branches, krx/ (kg ha ' a ') is a 
logistic rate constant, dAms, (kg ha ' a ') is the stem growth, Am«,^ (kg ha ') is the 
maximum amount of stemwood, rtXsl (moU kg-') is content of element X in 
stemwood, ctXbr (mole kg-') is content of element X in branches, / (a) is time, /,-« (a) is 
time at which the amount of stemwood is 0.5 • Am,i,ms and age (a) is the stand age at 
the start of the simulation. The contents of P, Ca, Mg, K and S in stemwood are 
assumed to be constant in time. The concentration of nitrogen in stems is described as 
a function of the nitrogen deposition according to Eq. (11). 

The nutrient uptake from a given soil layer / is determined by the given root 
distribution: 

FXmJ = FXn-frrti (21) 

where FXm,i (mole ha ' a ') is uptake of element X from soil layer /, FX„ (mole ha ' a ') 
is total uptake of element X, frTO is the root fraction in soil layer /. The uptake of 
nutrients for each layer will be extracted from the soil solution. When there is a 
shortage in a particular layer, this can be compensated by additional uptake from other 
layers. When there is a shortage for the whole soil profile uptake will be reduced, 
resulting in lower contents in the vegetation compartments. 

Preferential uptake of NH4 over NO3 is calculated according to (Gijsman, 
1990): 

ßVH 4 ,w = : KV„ (22) 
1 + 

where j£NI I4>„ (-) is a preference factor for the uptake of NIL» over NO3. NO3 uptake 
is calculated as the difference between total nitrogen uptake and NI I4 uptake: 
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rNOXni=FNn-FMI^ (23) 

The resulting nutrient demand is distributed over the year, using a monthly 
varied coefficient to derive monthly uptake fluxes from the annual uptake (cf. litterfall 
and root turnover distribution over the year): 

ru.month J up,monlb n.annual V*- V 

With: 

12 

Forest growth 

Forest growth is simulated by a logistic growth function. There is no feedback of 
nutrient cycling on growth rate. Stem growth and canopy growth are calculated as 
annual fluxes. The model uses monthly varied coefficients to relate annual growth 
fluxes to monthly nutrient uptake fluxes and litterfall fluxes. Growth constants are 
taken from available field and literature data. Stem growth, cL4msl (kg ha ' a '), is 
described with a logistic growth function: 

• . Si/M „ „ . 
dAmst = i S (26) 

l + e xp ( -&^- ( t f#+ / - / „ ) ) 

where (kr<,ri, kg ha ' a ') is a logistic rate constant, cb\mit (kg ha ' a1) is the stem growth, 
/lm</,m>. (kg ha ') is the maximum amount of stemwood, / (a) is time, tm (a) is time at 
which the amount of stemwood is 0.5 • Am«,** and age (a) is the stand age at the start 
of the simulation. 

Growth of branches (kg ha ' a ') is derived from the stem growth using a fixed 
branch to stem ratio Jhm {-)'• 

M"hr=frbn,-d4Msl (27) 

The actual amounts of leaves and roots (kg ha ') are described as a fraction of 
the maximum amounts: 

^ki^-^—Am,,^ (28) 
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where Ami,./ri (kg ha ') is the actual amount of foliage (Iv) or roots(n) and Amir/rt,ms 
(kg ha ' a ') is the given maximum amounts of foliage (Iv) or roots(rt). Generally the 
maximum amount of leaves and roots is achieved several decades earlier than the 
maximum amount of stems, but this was not considered in this version of NUCSAM. 
The nutrient contents of base cations and sulphur remain constant in all biomass 
compartments, whereas the nitrogen contents are calculated as a function of the 
atmospheric deposition. In NUCSAM we used the same relation between N content in 
leaves and N deposition as used in RRSAM (cf. De Vries et al., 1995a) and in SMAR'1'2 

(see Chapter 2.3). 

Geochemical process 

Rate limited reactions 

Protonation of organic anions and weathering are described by rate-limited first-order 
reactions. Protonation (the association of organic anions with II) is described 
according to: 

FRCOOpr =-e-TL-kpr- cRCOO ' (29) 

where kpr (a
1) is a pH dependent protonation rate constant, 0 the volumetric moisture 

content (m nr3), TL the thickness of the soil layer (m) and cRCOO the concentration 
of organic anion in the soil solution. 

Weathering (dissolution) fluxes of Al and base cations from carbonates, silicates 
(primary minerals) and aluminium hydroxides (molc ha1 a ' ) are described by first-
order rate reactions and Elovich reactions respectively. The flux of calcium from 
dissolution of carbonates is described by: 

FCa*j =P-TL-kCam,ch- ctCaA • ( ^ , - c < : a ) (3 0) 

where Q (kg nr3) is the bulk density, kCn„rjCi, (m3 mole'1 a ') is a weathering rate 
constant, rfCa«* (mole kg-') is the content of Ca in carbonates, and tCa and tCa, (moU 
m3) are the concentration and equilibrium concentration of calcium (cf. Eq. 30), 
respectively. When the soil solution is supersaturated with respect to calcite, 
equilibrium is enforced. The flux of base cations from silicates (primary minerals) is 
described by (Van Grinsven, 1988): 

FX„,fm=p-TL-kXm,pm-aXpm.cHam (31) 

where kX„,e,p„ (m3 mole'1 a ') is a weathering rate constant, ctXpm (mole kg-1) is the 
content of base cation X in primary minerals, à I (mole nr3) is the H concentration 
and a (-) is a parameter. The weathering of aluminium from primary minerals is 
described by: 
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FAL, *. = 3FG»„ ,m + 0.6FMe„ ,m + 3FK„ .„ + 3FM* h„ (32) 

This equation comes down to congruent weathering of Anorthite (Ca), Chlorite (Mg), 
Microcline (K) and Albite (Na). When the solution is under saturated with respect to 
natural gibbsite, the release of aluminium from hydroxides is described by an Elovich 
equation: 

FAl,<,os =p-TL-kE/l- exp(kEJ2 • ctAl0X ) • (cAlt - cAl) (33) 

with cA\ and cAl, (mole m3) as the actual and equilibrium concentration of aluminium 
in the soil solution, and kEl1 (m3 mole"1 a ') and kE!2 (kg mole1) as Elovich constants. 
As with calcite, equilibrium is enforced with respect to Al hydroxide when the soil 
solution is supersaturated (cf. Eq. 33). 

Weathering of P is described by the rate-limited equation: 

FPm = p -TL-kP,, -aPt -{cPe -cP) (34) 

where g (kg m 3) is the bulk density, kP„t (m
3 mole1 a ' ) is the weathering rate 

constant for P, ctV, (mole kg-') is the total phosphate content, cV (mole m3) is the 
actual phosphate concentration in the soil solution, and cP, (mole rn3) is the 
equilibrium concentration of phosphate with apatite, variscite or strengite. 

Equilibrium reactions 

We assume chemical equilibrium for the dissociation of CO2, the concentration of Ca 
in the presence of Ca carbonate, the concentration of Al in contact with Al hydroxide, 
adsorption/desorption of SO4 and cation exchange. The concentration of Ca in 
equilibrium with Ca carbonate is calculated as: 

cCa, =KCa. pC°2 , (35) 

where KCa,b (mol3 L-3 bar1) is the equilibrium constant for Ca carbonate dissolution 
and pCÖ2 (bar) is the partial CO2 pressure in the soil. In NUCSAM we assumed the 
PCO2 in the soil to constant. The bicarbonate concentration in the soil solution 
(mole nv3) is calculated from: 

cHCO-JKC°>-PC°J (36) 
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where KCO2 (mol2 L 2 bar1) is the product of I lenry's law constant for the equilibrium 
between CO2 in soil water and soil air, and the dissociation constant of H2CO3. The 
concentration of Al in equilibrium with natural gibbsite is calculated by: 

cAl, =KAl0X-cHi (37) 

where KAl,* (mol2 L2) is the equilibrium constant for aluminium hydroxide 
dissolution. 

Cation exchange is described by Gaines-Thomas equations with Ca as reference 
ion according to: 

Äl = i ö C , J * L (38) 
fiC*~ <Jaz 

with £v (-) as the valence of cation X, KXrx ((mol L')zx-2) as the Gaines-Thomas 
selectivity constant for exchange of cation X against Ca, frXac (-) is the fraction of 
cation X o n the adsorption complex. X equals II, AI, Fe, Mg, K, Na or NH4. 

frXac is calculated by: 

where CEC (mole kg4) is the cation exchange capacity. The sum of all fractions is 
equal to 1. 

SO4 and H2PO4 sorption in each soil layer are described with a Langmuir 
equilibrium equation according to: 

XSC-cX 
fXml=— (40) 

+ cX 

where rfXa<i (mole kg-1) is the sorbed amount of anion X, XSC (mole kg-1) is the 
sorption capacity for X (cf. Eq. 75 for S and Eq. 76 for P), and KXaii (m

3 mole1) is the 
equilibrium constant for sorption of anion X. 

NUCSAM also includes ion speciation, such as the hydrolysis of Al and 
complexation of aluminium with organic anions. All equilibrium reactions are 
calculated with the chemical equilibrium program EPIDIM (Rijtema et al., 1999). In 
EPIDIM the chemistry of soil solution is defined by a set of chemical components 
(such as H and NO3) and a set of ion species or complexes (such as HCO3 and 
AISO4) with associated specific formation constants. The formation of a certain 
species out of the components can be written as: 
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A'=T,a'JBJ tori=l,...,N (41) 

where a,j is the stoichiometric coefficient of component A, in the formation of species 
By, and MB the number of species B and N the number of components. 

The concentration of each species can be expressed in the concentration of the 
components according to: 

,v 
BJ=KjHA>'J iotj=\,...,M* (42) 

where By is the concentration of species^ A; is the concentration of component /' and 
N the number of components, /Ç the formation constant of species j . dij is the 
stoichiometric coefficient and Ma the number of species B. For each component the 
total concentration is calculated as: 

"T-lU^IK-
/=i 

(43) 

where slkT is the total concentration of component k. 
The total concentrations (A|J) are known from the mass balance calculations 

(see Eq. 68). This results in a set of N equations with N unknowns, i.e. the 
component concentration. This set of equations is then solved numerically with a 
Newton Raphson iteration scheme. 

To correct for the non ideal behaviour of ions, the formation constants Kj used 
are the conditional constants, corrected for the ionic strength in the soil solution. 
These modified constants are calculated from the thermodynamic formation constants 
of the species and activity coefficient of the species and components: 

Kj=K)^ (44) 
Yy 

where y; and y/ are the activity coefficient of the component / and species j 
respectively, Kj the corrected formation constant and Kf the standard formation 
constant. Activity constants are calculated with a Davis approximation (cf. Stumm and 
Morgan, 1981). 
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Water, heat and solute transport 

Water transport 

To simulate evaporation, transpiration, soil water fluxes and soil water contents, an 
adapted version of the SWATRK model (Belmans et al, 1983) was used as hydrological 
submodel, as described below. 

Potential évapotranspiration 

Potential transpiration is calculated by multiplying the reference évapotranspiration 
according to Makkink (1957) by an empirical, season dependent crop factor. For 
conditions in the Netherlands, the Makkink equation is written as: 

Er=l.^-.Kl.f, • (45) 
A s + Y 

in which Er (m d •) is the Makkink reference évapotranspiration, -f (g gr' K ') is 
derivative of the saturation water vapour pressure temperature curve, y (g gr' K. ') is 
psychrometer constant, K4- (W m2) is global radiation, A (J g-1) is specific heat of 
evaporation and ß (-) is empirical constant related to the geographical latitude, which 
for conditions in the Netherlands is equal to 0.65. 

Canopy interception 

Water is supplied to the canopy by precipitation and lost by throughfall and 
evaporation of intercepted water. The daily throughfall is calculated as: 

TF = P-Ej (46) 

where P (m d ') is daily precipitation, TF (m d ') is daily throughfall and £ , (m d ') is 
evaporation of intercepted water. The amount of water intercepted is calculated by 
using a coefficient of free throughfall in combination with a threshold value. A 
relatively simple empirical one-layer canopy-interception submodel is used in order to 
calculate the throughfall flux (TF). 

The calculation of the interception evaporation is based on Gash (1979). An 
analytical approximation is used to calculate daily interception. However, unlike the 
original Gash model, NUCSAM uses daily evaporation rates instead of yearly average 
evaporation rates and takes in to account the changes in the amount of water stored in 
the canopy. As evaporation rates are lower during rainfall, empirical correction factors 
have been introduced for the dry and wet part of the day. First the amount of rainfall 
required to saturate the canopy, Ps (m), is calculated: 
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(47) 

where sc (-) the soil cover fraction, Er (m d ') the reference évapotranspiration, yE„,/ (-) 
a correction factor for the evaporation rate during rainfall, R (m d ') the average 
rainfall intensity, P (m) the precipitation and A„x (m) the maximum amount of water 
stored in the canopy: 

A , = A r , m « - A , ( ' - l ) (48) 

with A,v.mas is the maximum amount of water that can be stored in the canopy and 
A„.c(t-1) is the amount of water in the canopy at the previous time step. 

The maximum interception evaporation (Ei,mx) is calculated as: 

/'.max 

P-sc if P<P 

Ps-sc+ 'r'^E-" -(P-Ps) ifP>Pl
 ( 4 9 ) 

R 

The amount of water stored in the canopy directly after rainfall equals: 

A,,o = ^„ , (>-l) + 4,max (50) 

The canopy water storage at the end of the day is calculated as: 

A~(*) = ̂ „ye A-""'J (51) 

where Awc (m) is the water storage at the end of the day, A,*,* (m) the water storage at 
the start of the dry part of the day,yE^ (-) a correction factor for the evaporation rate 
during the dry part of the day, and ti (d) the length of the dry part of the day, which is 
calculated from the precipitation and average rainfall intensity: 

/ , - . - £ (52) 

The actual daily interception evaporation equals the maximum interception 
evaporation minus the change in water storage in the canopy: 

* ' - £ - ' . ~ - A/ (53) 
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Transpiration and soil evaporation 

Potential transpiration and potential soil evaporation are calculated by partitioning the 
potential évapotranspiration on the basis of the available energy by a method 
equivalent to Van Grinsven et al (1987) and Tiktak and Bouten (1992): 

I V = / , . ( * . E r - / , . E , ) 

E;=(1-SC)-E, 

where E*pi (m d ' ) is the potential transpiration, E*s (m d ' ) is the potential soil 
evaporation, ƒ (-) is an empirical factor that accounts for crop characteristics, sc (-) is 
the soil cover fraction, E, (m d ' ) is evaporation of intercepted water, and ƒ (-) is the 
fraction of the daily interception that reduces the potential transpiration. The soil 
cover is calculated on the basis of the leaf area index. 

The actual soil evaporation rate is calculated as a function of time since the last 
rainfall event according to Black etal. (1969): 

Es=e-{jJ~yi-4^}E: . (55) 

where Es (m d ') is actual soil evaporation, td (d) is time from the start of a drying cycle 
and e (d1/2) is an empirical parameter. The potential transpiration is distributed among 
soil layers on the basis of the root length distribution. Reduction of water uptake 
occurs when soil water pressure heads drop below or exceed a threshold value. The 
root water uptake fluxes are summed to get the actual transpiration. 

Snow accumulation and snowmelt 

A snow module based on the Birkenes model (Christophersen et al, 1983) was 
included in NUCSAM. Precipitation is partitioned into snow and rain as a function of 
the average daily temperature: 

P =< 

P if T r > T , 

P'T~f irrr<f<Ts (56) 

0 ' ' if T>T. 

where P r is the total amount of rainfall (mm d1), P is the total daily precipitation 
(snow and rain, expressed as the total amount of water) in mm d1, T the mean daily 
temperature, Tr the temperature above which all precipitation is rainfall and Ts the 
temperature below which all precipitation is snow. The snow part Ps (mm d ') follows 
then from: 

Ps=P-Pr (57) 
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Snowmelt (Sm) was calculated according to Bergström (1975), which included a 
degree-day approach combined with a parameter that allows an increasing effect of 
temperature on the snowmelt as the snowmelt proceeds: 

J „ = C 0 ( 1 + C # - J ; M ; ) ( T - T 0 ) (58) 

where Co is the initial degree-day factor (mm "C1 day-'), Ctg the rate of increase of the 
degree-day factor (mm1), YMS ^e accumulated melt during a period of snowcover 
(mm), Tthe mean daily temperature and To the threshold temperature for snowmelt. 

Sublimation of snow is calculated as: 

S„=Lsb-Er (59) 

where /„& is a factor to calculate snow sublimation form the potential 
évapotranspiration. 

Snow accumulation is calculated in terms of the amount of water in the snow 
pack, by: 

S = S0+{P,-St + Sm)-àt (60) 

where S and So are the amount of water in the snow pack in the actual and former 
time step (mm), Ps the amount of snowfall (mm d '), Sb the sublimation rate (mm d '), 
Sn the snowmelt rate (mm d ') and ÜT the time step, which is one day. Sublimation of 
snow was calculated as a fraction of daily évapotranspiration. 

The concentration in snowmelt is included in the as first-order process (see 
Chen etal., 1983): 

« X . ^ . , - / " ^ " * (61) 

where km is the leaching coefficient (-), cX„,,.r is the concentration of X in the 
snowpack at the beginning of the time step and cXm at the end of the time step (mole 
m-3). 

Soil water transport 

Transport of water through the soil is calculated with a numerical solution of 
Richard's equation: 

dt ~dz 

-s(b) (62) 
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where 6 (m3 nr3) is volumetric water content, / (d) time, ^ (m) vertical position in the 
soil, h (m) soil water pressure head, K (m d ') hydraulic conductivity and S (d ') sink 
term accounting for root water uptake. The model allows for upward water transport. 

Soil heat transport 

Soil temperature influence the rate of the biogeochemical processes and the chemical 
equilibrium constants. The soil temperature module in NUCSAM is almost identical as 
used in the ILWAS-model (Gherini et ai, 1985). In the simulation of soil temperature, it 
is assumed that the forest floor is covered by canopy such that the direct solar 
radiation reaching the soil is negligible. The heat fluxes over the soil layers are driven 
by advection through the infiltration of water and conductance by the soil media. 
Each layer has a heat capacity that is a function of the soil moisture content: 

j2,-=(i-0/x:,+0,-('XV (63) 

where Q is the heat capacity of layer / (kj m 3 °C]), Cs is the heat capacity of the solid 
phases: 2500 kj nv3 C 1 for organic matter and 2000 kj nr3 C ' for mineral phase 
(values taken from Koorevaar et al., 1983), Cw is the heat capacity of water, 6,s the 
porosity of the soil (m3 nr3) and 6, (t) the actual soil moisture content at t-t. The heat 
capacity of air is negligible. 

The thermal conductivity of the soil media is also calculated as a function of the 
actual soil moisture content, as an average per soil layer (/): 

x _0/(O4r+A(i-gJ)4f m 

where Xs and Xw are the thermal conductivity (kj nr3 °C1) if soil layer / (that includes 
organic matter and mineral phase, 0.25 and 8.8 J nr1 s 1 °C ' for and water respectively 
and fie a weighing factor dependent on the bulk density of the soil. 

With the heat capacity and conductivity of the soil media, the soil heat input 
flux (Fg,,,,,) and output flux (Fß,m,j) (kj d ') per soil layer reads: 

FQJ.J = JV,--.(')T,--. + 4_,(7;. - T,_x) (65) 

Fß^j =Frti(t)Ti+AiÇTi-TM) (66) 

where Fw{t) is the water input flux from layer i-\ (m3 d ] ) , Tj.\ and T, the temperature 
of layer i-\ and / (°C), and Xj the thermal conductivity of layer i. 

The heat balance for each soil layer is defined by: 
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where Qj is the heat capacity of layer / (kj rrv3 °C1) and T,(t-\) and T,{t) the 
temperature (°C) of layer / at the beginning and at the end of the time step 
respectively. The heat balance equation for each soil layer can be written in a 
tridiagonalmatrix with the temperature (T,) of each layer on the diagonal. From this 
system the temperature for each layer is solved using an implicite solution method. 
For the upper boundary, the temperature of the ambient air is used. The lower 
boundary is set to a constant temperature of 10 °C, which is the average temperature 
of groundwater in the Netherlands. 

Solute transport 

Solute transport within NUCSAM is calculated by the solute transport module 
TRANSOL (Rijtema et al., 1999). The basic equation of TRAN SOL is the convection-
dispersion equation: 

~ = - ^ + A(Rm-Rsnk) (68) 
dt dz 

where 0 is the soil moisture content (m m 3 ) , c the concentration of a constituent in 
the soil solution (mole nx3), Js the vertical solute flux (moU m 2 d '), z the soil depth 
(m), Rsoum and R,i„k the source and sink terms (mole nv3 d ') respectively. Within 
TRANSOL the convection-dispersion equation is solved semi-analytically. Since the 
incoming and outcoming fluxes are constant with time during a time-step, the soil 
moisture content varies linear with time, according to: 

6(/) = e(/0) + çw (69) 

where G (/«) is the moisture content at the beginning of the time-step / and <p the rate 
of change of 9 within the time-step. The value of (p is calculated every time-step on 
the basis of 0's from the two previous time-steps. Using the left hand side of Eq. 68, 
the rate of change in the soil solution is defined by: 

— = (e(/0) + ç*)—+(pc (70) 

VCtten neglecting the second order term of diffusion/dispersion, the remaining 
first order equation can be solved analytically. The transport term is numerically 
approximated by: 

3/,_a f 1.\ 
qc-QDlU 

dz dU ' 3? 

9 '+T 

AZ Az 
(71) 
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where q is the waterflux (m d ') and Dss diffusion/dispersion coefficient (m2 d '). The 
diffusion/dispersion is then mimicked by numerical dispersion by choosing an 
appropriate layer thickness. 

2.1.3 Data used for the NUCSAM application to the Speulder forest 

Site description 

Input data were derived mainly from the data set of the Speuld location as described 
in Tiktak et al. (1995). The Speuld site is located in a 2.5 ha Douglas fir stand at an 
altitude of 50 m. The stand is surrounded by a large forest of approximately 50 km2; 
the nearest edge is at a distance of about 1.5 km. The soil is a well-drained Typic 
Dystochrept (USDA) or Cambic podzol (FAO, 1988) on heterogeneous sandy loam 
and loamy sand textured ice-pushed river sediments. A full soil profile description is 
included in Tiktak et al. (1988). The water-table is at a depth greater than 40 m 
throughout the year. In 1988, the start of the monitoring period, the stand was 
29 years old. 

The characteristics of the data-set 

Measurements were carried out at different spatial scales and at different positions 
within the stand. Most soil hydrological measurements were carried out at one plot of 
30x30 m2, although an attempt has been made to scale these measurements to stand 
average values (Bouten et al., 1992). Soil chemical measurements are 'point' 
measurements. Samples were taken from three plots and the volume of soil sampled is 
small. Also the tree physiological measurements were carried out at one point within 
the forest stand. On the other hand, eddy correlation measurements of deposition and 
transpiration are representative at a scale which is larger than the stand. Measurements 
of throughfall amounts, throughfall quality and of forest growth, although point 
measurements, were scaled to average values. I Iowever, all these measurements were 
carried out at the Eastern half of the stand, possibly leading to a deviation from stand 
average values. 

Due to these different spatial scales it is almost impossible to combine all 
measurements within one data-set. Consider the following example: If the 
hydrological part of NUCSAM is calibrated using the average transpiration measured by 
eddy correlation as a criterion, the hydrological regime will be different from the 
hydrological regime at the soil chemical sampling points. For this reason, the 
hydrological part of NUCSAM (i.e. an adapted version of the model SWATRF., cf. 
Section Water transport) was calibrated using data from the soil monitoring plot only. 
This calibration is not representative for the stand as a whole, but can be used in 
combination with the soil chemical data-set. For the derivation of the geo-chemical 
input parameters of NUCSAM, the data-set for plot B was used (see Tiktak et al, 1995). 
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Hydrological data 

Vegetation dependent properties 

The most important vegetation dependent hydrologie parameters are presented in 
Table 1. Interception capacity and efficiency are based on measurements with a 
microwave transmission technique and calibration of detailed interception models 
(Bouten, 1992). Soil cover fraction, reduction point and wilting point and crop factor 
are based on calibration of the hydrological model SWIF on the Speuld site (Tiktak 
and Bouten, 1990, 1994). Average precipitation intensity and evaporation factors are 
based on the calibration of the measured amount of throughfall. Root density data are 
based on measurements in June 1989 (Olsthoorn, 1991). 

Table 1 Vegetation dependent hydrologie parameter values for the 
Speulderbos site 

Parameter Symbol Value Unit 
Soil cover fraction ') 
Average precipitation intensity 2) 
Interception capacity 2> 
Factor for evaporation 4) 
during dry part of day: 
during wet part of day: 

Reduction point ') 
Wilting point ') 
Crop factor ') 

Root density distribution'): 
Litter 

0-20 cm 
20-40 cm 
40-60 cm 
60-80 cm 
> 80 cm 

sc 
R 
**av,mjx 

JEdty 
jfcnvt 

brj 

4 , 
ƒ 

R, 
R, 
R, 
R, 
R, 
R. 

0.9 
10.0 
2.1 

1.5 
0.5 - 9.0 

-600 
-6000 

0.85 

0.05 
0.30 
0.34 
0.15 
0.08 
0.08 

-
mm 
mm 

-
-

cm 
cm 
-

-
-
-
-
-

'> Based on Tiktak and Bouten (1990; 1994). 
2' Measured by Bouten (1992). 
3> Based on root length distribution measurements by Olsthoorn (1991). 
4> Based on the calibration of Svt'ATRE to Speuld. 

Soil physical characteristics 

Water retention characteristics were obtained from simultaneously measured average 
water contents and pressure heads at a plot of 30 X 30 m2. The physical characteristics 
are valid for the same plot as the monitoring data. To extrapolate the retention 
characteristics outside the range of pressure heads that can be measured with 
tensiometers the measured data were fitted to the Mualem-Van Genuchten functions 
(Van Genuchten, 1980): 
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where ft (m3 nr3) is saturated volumetric water content, 6r (m
3 nr3) residual water 

content, h (m) pressure head, a (nr1) reciprocal of the air entry value, n (-) a fitting 
parameter and m — 1-1/». Table 2.3 summarises the results of the fitting. Conductivity 
characteristics were not measured for the Speuld site because of the high spatial 
variability of the Speuld site and the associated large number of samples which have to 
be analysed to obtain representative conductivity data. Alternatively, theoretical 
conductivity characteristics were used according to the Mualem model (Van 
Genuchten, 1980): 

K{h) = KS+ ±—^ -—v 'J ; ' J (73) 

[l + («-M)T 

where, K s (m d ') is the hydraulic conductivity. Values for the saturated hydraulic 
conductivity were based on calibration on the Speuld data set during the winter period 
when évapotranspiration is small (Tiktak and Bouten, 1990). 

Table 2 Parameters of the Mualem-Van Genuchten functions to describe 
the soil physical properties. Source: Tiktak and Bouten (1992) 

Depth 

litter 
0-60 cm 
> 60 cm 

0, 
(m3 m-') 
0.50 
0.33 
0.21 

ft-
(m' m 3) 
0.00 
0.00 
0.00 

a 
(cm") 
0.10 
0.10 
0.04 

n 
(-) 
1.25 
1.25 
1.40 

(cm d-•) 
800 
800 
100 

Snow parameters 

Unlike the previous parameters, snow parameters were not based on measurements at 
Speuld, since they were not available. Most snow parameters (Table 3) were taken 
from Bergström (1975), except for the rate of increase of the degree-day factor (C,,jj) 
the snowmelt rate (i"w) which was calibrated on data from an experimental forest stand 
in Soiling, Germany (cf. Groenenberg et al, 1995) and the leaching coefficient (ks^) 
which was set to 1. 
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1.6 
0.0 

0.25 
0.1 

1 

•c 
•c 
•c 
mm*1 
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Table 3 Parameters used to calculate snow processes 

Parameter Value Unit 
T, 
Tr 

T. 
C€ 
Co 

Geochemical data 

Measured soil data used for the derivation of geochemical parameters were often 
available for different depths in the soil profile. In order to obtain a coherent set of 
parameters and initial conditions of variables, input data were scaled to the same 
depths according to: 

where Xz is the estimated value of state variable X at depth % X1/2 is the measured 
value of state variable X at depth ^1/2, and %/2 is the nearest depth with measurement 
% < £ < £1. For state variables related to a soil layer with thickness ü^ , ^ is the depth 
in the middle of that layer. 

Exchange constants 

Gaines-Thomas exchange coefficients were calculated from the long-term average soil 
solution concentrations extracted with cups (plot B; Tiktak et al, 1995) and the 
measured amount of exchangeable cations (Tiktak et al, 1995). From the 
concentrations, activities were calculated with the chemical equilibrium program 
KPIDIM (Rijtema et al., 1999). Coefficients were calculated with Eq. (33) using Ca as 
the reference ion. As the content of exchangeable base cations was below the 
detection limit, the exchangeable fractions (fraction of total CEC) of all base cations 
were set to 0.01 to calculate Gaines-Thomas exchange coefficients and to initialise the 
model. Results are shown in Table 4. 
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Table 4 Gaines-Thomas exchange coefficients (mol 1 ' ) z - 2 and cation 
exchange capacity (mmolc kg 1 ) 

Depth 
(cm) 
-9-0 
0-5 
5-10 

10-20 
20-30 
30-40 
40-50 
50-60 
60-70 
70-80 
80-100 

Gaines- Thomas exchanj; 
II 

4.00x1 O* 
UOxtO4 

0.57X104 

0.13X104 

0.87X104 

6.66X104 

2.50x105 

2.95x105 
2.43x10s 

2.33x105 

2.83X105 

Na 
42.9 
22.3 
6.7 
6.0 
8.6 
5.1 
3.3 
3.1 
3.5 
4.5 
6.6 

;c coefficient relative to C 
K 

151.9 
128.3 
80.6 
120.8 
267.0 
162.5 
93.7 
69.6 
59.2 
56.5 
52.5 

NII4 

1890.9 
289.1 
13.6 
6.7 

11085.1 
2136.4 
1624.7 
10526.7 
19454.1 
3625.4 

0.0 

a (mol l-i)'-2 

MR 
3.4 
2.5 
1.2 
1.1 
1.4 
0.9 
0.7 
0.7 
0.8 
1.0 
1.2 

Al+Fe 
561.7 
813.7 
127.5 
73.0 
32.2 
1.8 
0.4 
0.4 
0.7 
1.4 
2.5 

ci;c 
(mmolc kg-') 
245.7 
96.9 
58.3 
57.1 
42.8 
29.0 
26.9 
25.7 
27.7 
28.8 
39.7 

Weathering rate parameters 

Parameters for weathering of silicates (Eq. 31) were calculated from results of batch 
experiments (De Vries, 1994) for a generic Cambic Podzol (Table 5). They estimated 
the total weathering flux for a 70 cm profile by dividing the fluxes derived from the 
batch experiments by 50. This factor was introduced to account for differences 
between field and laboratory conditions. The fluxes presented by De Vries (1994) 
were multiplied by a factor 10/7 to calculate the weathering fluxes for a i m profile. 
The weathering rate constant for the Speuld profile, kX„.r,pm, is calculated as follows. 
The coefficients a and kXn„,pm are assumed to be layer independent. Parameter a was 
taken directly from De Vries (1994). The average pH value as measured for plot B by 
Van der Maas and Pape (1990) was substituted. Total element contents and the bulk 
density were taken from Tiktak et al. (1988). Equation (26) can be written down for 
each soil layer. By substituting all parameters into equation (26), and by assuming that 
the total weathering fluxes calculated by this equation equals the weathering flux by 
De Vries (1994), the weathering rate constant can be calculated. The results of the 
calculations are presented in Table 5. 

Parameters for weathering of secondary Al compounds (Table 6) were taken 
from batch experiments as described by De Vries (1994). They investigated a total 
number of 15 sites throughout the Netherlands. For the model applications, we 
selected the soil horizons that showed most resemblance to Speuld. These included 
the Ah, Bhs, BCs and C horizons. 
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Table 5 Parameters for weathering of silicates (Eq. 31) 

Cation 

Na 

K 

Ca 

Mg 

Total wcath 
flux') 

(molc ha ' 
80 

75 

45 

20 

LTlllg 

a ' ) 

pi I dependent 

(a ') 
8.43x10-2 

2.33x10' 

2.26X10' 

1.92x10' 

a 

(-) 
0.87 

1.02 

0.85 

1.54 

pi 1 independent 

(a') 

4.19x10-5 

4.87X102 

7.11x10s 

8.81x10' 

»source: De Vnes (1994) 

Table 6 Parameters for the calculation of weathering of oxalate extractable 
Al (De Vries, 1994) 

Depth 
(cm) 
0-10 

10-40 

40-80 

80-100 

kE/1 
(kK ' a ') 
1.13X10^ 

2.04X10-1 

7.49x10 •• 

1.67x10 -» 

kE/2 
(ms molt ' ) 

11.4 

9.1 

7.3 

9.8 

I lorizon in 
De Vries (1994) 
Ah 

Bhs 

Bcs 

C 

Sulphate and phosphate sorption parameters 

The sulphate sorption capacity, SSC (mmolc kg4), was calculated from the oxalate 
extractable amount of secondary Al according to (Johnson and Todd, 1983): 

SSC = Qm-ctAlos (75) 

The phosphate sorption capacity, PSC (mole kg-'), was calculated from the 
equation (Van der Zee, 1988): 

PSC = 0.2-(ctA/„+ctFe„) (76) 

Contents of oxalate extractable Al were taken from Tiktak et al. (1988) and 
contents of oxalate extractable Fe from measurements on comparable Cambic 
podzols (De Vries, unpublished results). Results on SSC and PSC are shown in Table 
7. The Langmuir adsorption constant for SO+, KeSO* ad, was set to 2 m3 mol ', which 
was taken from the RRSAM database (De Vries et ai, 1994a). The Langmuir adsorption 
constant for phosphate, KeW^PO* ad was set to 12 m3 mol ', which was determined 
from à 12PO4 (phosphate in soil solution) and ctVad (oxalate extractable phosphate) as 
determined in 150 forest stands in the Netherlands (KelhP04aj =f/P^/(1H2P04 (PSC-
ciPad)), s ee E q . (40)). 
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Table 7 Sulphate and phosphate sorption capacities for the different soil 
layers 

Depth ssc 
(mmo)c kg-') 

PSCl> 
(mmol,,- kg ') 

0-5 
5-10 

10-20 
20-30 
30-40 
40-50 
50-60 
60-70 
70-80 
80-100 

3.3 
3.4 
5.7 
8.1 
9.8 
7.6 
6.3 
5.6 
5.2 
5.4 

59 
60 
99 

123 
140 

118 
106 

98 
94 
66 

•> Derived from generic data for a Gambie Podzol 

Soil layer independent parameters 

The Al equilibrium constant and parameters for nutrient cycling are presented in 
Table 8. 

Table 8 Values for soil-layer independent model parameters 

Unit 
1'oliar uptake') 

1'oliar exudation') 

Nitrification2) 
Al dissolution3) 

Parameter 
frNlUfa 
ßHj. 
JrCdf, 

Mte 
ßKß 
&m 

KAL 

Value 
0.21 
0.58 
0.18 
0.11 
0.71 
100.0 

5.0x10s P mol-2 
') Hased on throughfall data over the penod 1987-1990 (Van der Maas and Pape, 1990). 
2> Obtained by calibration. The generic value for km is 40 a '. 
') Average IAP for Al(OII)3 at 90 cm over the period 1987-1990, activities calculated from measured 

concentrations (Van der Maas and Pape, 1990). 

Forest growth data 

The main ecophysiological research and growth analysis was carried out from 1987 
until 1989 (Evers et al., 1991) in a plot adjacent to the plot where most of the soil 
research was done. The ecophysiological subplot had a somewhat lower stand density 
compared to the soil research plot (765 vs. 812 trees ha1). After 1989, the biomass 
analysis was moved to the soil research plot, causing a discontinuity in the data series. 
Table 9 gives an overview of basic stand data for the soil plot and for the tree 
physiological plot as measured in December 1988. 

44 



Chapter 2.1 

Table 9 Tree growth parameters as derived from the ecophysiological plot 
1 (Jans et al., 1991) and the soil research plot (Olsthoorn, 1991) 

Parameter Symbol Unit Value 
Stand age ageit 
Logistic growth constant krvt 
Maximum amount of stems Amstmx 

Amount of foliage Ami,-
1 Ialf life time growth function t05 
Branch stem ratio fihu 

_ Litterfall rate') k£ 
*> I.itterfall was measured directly using 12 litter traps with a surface area of 1 m : (Van der Maas and Pape, 1990). 

State variables that must be known at the beginning of the simulation include 
the element contents in needles, stems, branches, roots and litter. Data related to these 
compartments are given in Table 10. Data are given for the end of the year 1988. 

Table 10 Data on biomass and element contents of needles, roots and 
stems of Speuld stand 

a 
a-' 
g ha • 
g ha-« 
a" 
-
a1 

30 
0.094 
543.8 
19.5 

38 
0.11 
0.15 

Compartment 

Foliage (Amy> 
Branches (Am^V 
Stems (Am^ 
Fine roots (Am„y> 
Litter (Ami)'') 

Biomass 
(MR ha-«) 
18.5 
14.0 
60.0 
3.2 

35.0 

Llcment content (% of dry weight) 
N 

1.84 
0.30 
0.20 
1.00 

-

P K Ca 
0.11 0.58 0.33 
0.04 0.10 0.05 
0.01 0.10 0.05 
0.10 0.08 0.16 

-

Mg 
0.09 
0.03 
0.01 
0.04 

-

S 
0.14 
0.05 
0.05 
0.10 

-
1) Measured in the ecophysiological research (livers et al, 1991). 
2) Nutrient contents in branches, wood and roots inferred from general data (Berdowski el al, 1991). 
3) Measured in the soil research plot by Olsthoorn (1991). 
41 Measured by Tiktak and Bouten (1992). The litter mass is an average value for 485 samples. Element contents in 

litter are calculated by the model using the foliage contents as initial values. 

2.1.4 Model calibration procedure 

The applied model contains parameters, initial and boundary conditions, which are 
incompletely known. More information on these quantities, which are often not 
measurable, is required to improve the model performance. Hence, model calibration 
is required to determine these values accurately from the available measurements, 
taking into account the intended model use and available prior knowledge. 

Model calibration thus becomes a critical phase in the modelling process. 
Despite its importance, the required activities for calibration are often given little 
consideration, and in many cases the model is calibrated using non-structured arbitrary 
methods. As the model under consideration contains a large number of parameters, a 
well-structured and systematic calibration approach is needed, supported by useful 
guidelines. 
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Strategy 

Janssen and Ileuberger (1995) present a general outline of the calibration process, and 
distinguish various important steps: 
- Identify the characteristics of the data-set. 
- Identify the parameters that need calibration, preferably by performing model 

analyses (sensitivity and uncertainty analyses). 
- Specification of model performance criteria, which express the discrepancy 

between measurements and model results. 
- Solution of the calibration problem, which often consists of adjusting the model 

parameters such that the model results match the measurements adequately (e.g. 
minimal misfit). 

The calibration process is usually completed by assessing the accuracy and quality of 
the obtained model (validation aspects; cf. Janssen and Ileuberger (1995)). In the 
sequel it is briefly addressed how the above mentioned issues were used for the 
calibration of the NUCSAM model to the Speuld data-set. 

Parameters that need calibration 

The choice of the model parameters that need calibration was based on an uncertainty 
analysis for the model RESAM (Chapter 2.2 and Kros et al, 1993). Table 11 
summarises the parameters for which the solute concentrations were most sensitive, 
uncertain or hard to derive. 

Table 11 NUCSAM model parameters that were calibrated 

Calibration 
order 
1 
2 
3 
4 

5 
6 
7 
8 
9 

Parameter 

fS02dJ 
ffNOxlU 

JJNHxu 
Sad 

kr^ 
kEl, 
ctNlvmx 

krCam 

krMfyr 

Description 

forest filtering factor S02dd 
forest filtering factor NO x dd 
forest filtering factor NI I„ dd 
forest filtering dry deposition 
base cations and CI 
nitrification rate constant 
Elovich constant 
Maximum N-content of leaves 
rate constant for Ca-weathering 
rate constant for Mg-weathering 

Affects concentration of: 

SÜ4 

NOjandNIL , 
N 0 3 a n d N I I 4 

Na, K, Ca, Mg and Cl 
NO j andNIL , 
Al and 11 
NOjandNI I . , 
Ca 
Mg 

These parameters have been chosen for model calibration. To calibrate soil 
chemistry, simulated soil chemical variables were compared with measured soil 
chemical variables using statistical measures. For the calibration only concentrations in 
the soil solution were used since these were the only variables measured in time, soil 
contents (e.g. oxalate extractable Al) were only measured once. Solute concentrations 
were measured with cups and plates at different depths for three plots (cf. Tiktak et al, 
1995). Because of the large variation in measured concentrations between these three 
plots (cf. Tiktak et al, 1995) it was decided to choose one plot for calibration (plot 5) 
because otherwise no trends in soil chemistry would be visible. Model outputs used 
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for calibration are: pH and the concentrations of AI, Ca, Mg, K, NO% NH4, SO4 and 
CI at 10, 20 and 90 cm depth, two depths for the topsoil and one in the subsoil below 
the root zone. The choice of the hydrological parameters to be calibrated (not shown 
in Table 11) was based on Tiktak and Bouten (1992). 

Performance criteria 

For the evaluation of model performance in relation to observation data in Speuld, 
two different performance measurements were used (Janssen and Heuberger, 1995): 

P-Ö-
NME= ' _ ' (77) 

1 N 

NMAE = s i = (78) 

where, NME (-) is the Normalised Mean Error, NMAE (-) is the Normalised Mean 
Absolute Error, P, is the predicted value, O, is the observed value, O and P are the 
averages for the observed and predicted values and N is the number of observations. 
The NME compares predictions and observations on an average basis (i.e. over the 
whole time-span). The NME thus expresses the bias in average values of model 
predictions and observations and gives a rough indication of overestimation (NME > 
0) or underestimation (NME < 0). The NMAE is an absolute indicator for the 
discrepancy between model predictions and observations. The NMAE does not allow 
for compensation of positive and negative discrepancies. An NMAE of zero is 
considered optimal. 

These criteria can be defined and evaluated for various model quantities, 
individually as well as jointly. For a fair comparison between model results and 
observations, their temporal and spatial scale should be compatible. For model 
calibration, model results were compared with accumulated throughfall amounts, soil 
water contents and soil solution composition. 

Solution of the calibration problem 

Several automated and objective calibration procedures are available for the 
calibration of time-series resulting from dynamic models e.g. the Rotated Random 
Scan method (Janssen and Heuberger, 1995). Such automated calibration procedures 
have been applied to a simplified regional scale models e.g. M\CAL, a steady state soil-
vegetation model (Kros et al, 1994a) and SMART2, a dynamic soil-vegetation model 
(Chapter 3.2; Kros et ai, 1999). However, even for these simplified models 
identification problems occurred and some additional assumptions were necessary in 
order to achieve a solution. Considering the large number of model parameters and 
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their mutual interaction in NUCSAM, it will definitely result in identification problems. 
Consequently, we decided to calibrate the different NUCSAM parameters manually and 
sequentially by comparing model output and measurements using performance criteria 
(cf. Eq. 77 and 78). Therefore we followed the subsequent sequential steps: 

Calibration of the hydrological submodule using time series of throughfall and soil 
watercontent measurements 

- Calibration of the biogeochemical modules using soil solution concentrations. 
Table 11 gives the order in which parameters of biogeochemical modules were 

calibrated. Comparison between model output for different parameter values with 
measured data was done by comparing the statistical measures for the most effected 
(sensitive) model output (cf. Table 11). In case of an (almost) equal model 
performance with respect to the most sensitive variables, differences in model 
performance for other model outputs were taken into account to choose the most 
optimal parameter value. 

The presented misfit criteria consider only specific aspects of the system under 
study, and express the agreement between model data and data in a very condensed 
form, i.e. in one number. Therefore, the use of these quantitative criteria has been 
supplemented by qualitative techniques (e.g. visual comparison of measurements and 
model results). 

2.1.5 Scenario analyses 

NUCSAM was also used to assess the long-term development of soil solution 
chemistry, in particular Al concentration in the soil solution, Al/Ca ratio, the content 
of secondary aluminium compounds and the soil nutrient status. This goal was 
achieved by performing scenario analyses for two generic forest-soil combinations, i.e. 
Douglas fir on a Cambic podzol (DFCP) and Scots pine on a Haplic Arenosol 
(SPI IA). The combination DFCP was chosen because this acts as a reference, whereas 
the combination SPI IA is a very common tree soil combination in the Netherlands. 
Model simulations were carried out with deposition scenarios that are representative 
for Dutch regions with low, average and high deposition rates, respectively. It was 
assumed that in a clean region, the target acid deposition load of 1400 mole ha ' a ' is 
reached in 2010, whereas in average and polluted regions these loads are reached in 
2050 and 2100, respectively (Keizer, 1994). Recently, the deposition targets has been 
adjusted (see Chapter 3.1). This scenario is a rather optimistic one with respect to the 
reduction of deposition. Weather data were randomly selected by a statistical model of 
historically observed weather data (Richardson and Wright, 1984). The results of these 
scenario analyses were primarily meant as an example of model use for predictive 
purposes, as only one deposition scenario and one realisation of weather data was 
evaluated. 

Table 12 presents the deposition scenarios for the two combinations evaluated. 
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Table 12 Total acid deposition (molc ha ' a 1 ) for generic Scots pine (SP) 
and Douglas fir (DF) stands in the Veluwe (Central Netherlands) 

Year Total acid deposition (molc ha ' a ') 
SP DK 

1980 >) 8300 8700 
1990 » 5400 6400 
2000 2) 2600 3000 
2010 2) 2000 2300 
2050 2) 1400 1600 
') Inferred from DKADM calculations (see further text). 
2) Deposition target (Keizer, 1994). These target has been adjusted recently (cf. Chapter 3.1) 

For the period between 1980 and 1991, the deposition of acidifying 
components was estimated with the DKADM model (Erisman, 1993). The DKADM 
model was used to generate data for an average stand, based on meteorological 
measurements and measurements of concentrations in the atmosphere and 
precipitation. For the period before 1980, concentration measurements were not 
available and the deposition was inferred from historical deposition data which were 
based on emissions in those years (Thomas et al, 1988). The historical deposition was 
scaled to the DKADM deposition, using the following equation: 

Ac = AcldMs, 
^id.DUADM 

\ Acid,hh' J 

(79) 

where Acm (molc ha1 a ') is the total deposition of acidity, Aa/,,,, (molc ha ' a ') is the 

deposition based on emissions, AclllDliADM (molc ha-1 a1) is the average deposition of 

acidity calculated with DKADM for the period 1980-1991 and Acldhhl (molc ha ' a ') is 

the average deposition of acidity based on emission data for 1980-1991. Future 
deposition data of acidity (1992-2050) were inferred from average DKADM results for 
1989-1991 and the deposition targets (Table 12) by linear interpolation. Moreover, it 
was assumed that the relative contributions of SO*, NO x and Nil* were constant and 
equal to the contributions for 1991. The average deposition figures were converted to 
deposition figures for Douglas fir and Scots pine by applying filter factors (De Vries, 
1991). Scots pine was assumed to behave as an average tree with respect to dry 
deposition, so the calculated deposition figures directly apply to Scots pine. Dry 
deposition for generic Douglas fir was inferred from the DKADM results using a dry 
deposition filter factor of 1.2. Finally, the deposition of base cations was calculated 
using a filter factor of 2.5 for Scots pine, and 3.0 for Douglas fir. 

An overview of the used generic hydrological, soil chemical and forest growth 
data is given in Kros et al (1996). 
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2.1.6 Results of model calibration 

Hydrology 

Interception and throughfall 

The hydrological submodel was calibrated in two steps: (i) calibrating the interception 
losses using measured throughfall values and (ii) calibrating the transpiration and soil 
evaporation fluxes using measured water contents. The interception fluxes were 
calibrated using data for the year 1988 only, because for this year the differences 
between the daily precipitation at station Drie and the weekly site measurements 
where the smallest. The transpiration and soil evaporation fluxes were calibrated by 
using data for the year 1989, because frequent measurements on water content were 
available for that year only. 

Simulated throughfall amounts for the years 1988 and 1989 are presented in 
Figure 3. Table 13 presents the annual water balances for the period 1987-1989. The 
calibrated NUCSAM model overestimated the accumulated throughfall amount for 
1989 and underestimated the throughfall amount for 1987. For 1988, throughfall 
amounts are in close agreement with measured throughfall values (maximum deviation 
< 10% of observed value). The overestimation of throughfall for 1987 and 1989 are 
partly caused by deviations between the precipitation at station Drie and the on-site 
precipitation (see Table 13). A second explanation for the deviations in 1987 and 1989 
are differences in average rainfall intensity. In 1989, rainfall mainly occurred as large 
storms. After such storms, a large part of the total precipitation drains instantaneously 
from the canopy and evaporation loss is relatively small. In 1987, however, a large part 
of the annual precipitation was in the form of small storms and evaporation losses 
were high. Since NUCSAM uses an average rainfall intensity (R), this may also lead to 
deviations. 

TF (mm 

600 

400 -

200 

1988 

Measured 
NUCSAM 
Precipitation 

1989 

tn.,lll|,ILll..|.J,.U IJ^Y jl Ji ill If Lylij.. • -ii 
H 25 

0 
J F M A M J J A S O N D J F M A M J J A S O N D 

Figure 3 Accumulated simulated and measured throughfall (TF) and measured daily 
precipitation (P) for the years 1988 and 1989 
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Table 13 Simulated water balance terms for the Speuld experimental forest 

Precipitation 
Interception 
Through fall 
Kvaporation 
Transpiration 
Drainage 
Transpiration 
reduction (%) 

1987 
()bserved 
Muxes 
950') 
-
660 

-
-
-
-

(mm a 
NU CS A M 

') 
976 2) 
357 
619 
55 
365 
199 
0.8 

1988 
Observed 

935') 

-
618 

-
-
-
-

NUCSAM 

9332> 
331 
602 
56 
323 
221 
13 

1989 

Observed 

710') 
-
449 

-
-
-
-

NUCSAM 

806 2) 

285 
521 
66 
371 
84 
16 

'> On-site measured precipitation. These values were not used by NUCSAM, because on-site measurements were 
not earned out daily. 

21 Precipitation measured at station Drie was used as input to NUCSAM. 

Soil water contents 

Simulated soil water contents for 1989 are shown in Figure 4. Table 14 gives an 
overview of performance criteria for the discrepancy between the observed and 
measured soil water contents. The performance for the 0-50 cm soil layer appeared to 
be reasonably good, whereas for the 50-100 cm soil layer, soil water contents are 
underestimated. However, differences mainly occur in autumn, indicating that 
rewetting of the soil occurs too late. NUCSAM was not able to predict the dynamic 
behaviour of measured soil water contents correctly, probably indicating that fingered 
flow is a relevant hydrological process for Speuld. 

e (m3 m"3) 
0.30 

0-50 cm 50-100 cm 

— NUCSAM 
x TDR 
• Neutron probe 

J ' F ' M ' A ' M ' J ' J ' A ' S ' O ' N ' D J ' F ' M1 A ! M ' J ' J I A ' S ' O ' N I D 

1989 1989 
Figure 4 Comparison of observed and simulated water contents in the 0-50 and 50-100 
cm soil layers for the year 1989 
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Table 14 NUCSAM Performance criteria for the discrepancy between 
observed and measured soil water contents 

Layer A7W: ') NMA): 2> 
0-50 cm1) 0.10 0.25 
50-100 cm4) -013 0_17 
•' Normalised Mean Knor (see Kq. 77) 
*> Normalised Mean Absolute Krror (sec Kq. 7K) 
3> Model output compared with TDK measurements (n = 88). 
•*) Model output compared with neutron probe measurements (plot B; n = 43). 

Soil solution concentrations 

Results of the calibration are shown for 20 cm and 90 cm depth in Figure 5. Table 15 
shows the NME and NhiAE (Eq. 77 and 78) for the major components for 10, 20 and 
90 cm depth. 

Simulated pi I values are calculated from the charge balance in NUCSAM, 
implying that they are affected by virtually all biogeochemical processes in the model. 
Simulated pH values showed to be over estimated for 20 cm and slightly under 
estimated for 90 cm. At 10 cm depth the agreement was good (figure not shown). 
This is also reflected by the performance criteria, i.e. the Normalised Mean Absolute 
Error (NAME) for H concentration at these depths (Table 15). 

Table 15 Performance of NUCSAM during the observation period 

Parameter 

Depth 10 
N ' ) 

NMAli 2) 

NAHi 2) 

Depth 20 
N 

NMAli 

NMIi 

Depth 90 
N 

NMAli 

NMIi 

Performance measurement 
II 

cm 
48 

0.39 
-0.37 

cm. 
48 

0.81 
-0.81 

cm. 
48 

0.32 
0.20 

Al 

37 

0.60 
-0.30 

41 

0.49 
0.10 

35 

0.57 
0.28 

Ca 

37 

0.52 
-0.45 

40 

0.63 
-0.63 

35 

0.40 
-0.34 

(-) and number of observations 

MR 

37 

0.86 
-0.86 

40 

0.86 
-0.86 

35 

0.54 
-0.54 

K N O , 

37 41 

0.83 0.54 
0.80 -0.37 

40 46 

2.16 0.41 
2.16 -0.24 

35 43 

0.84 0.53 
-0.84 0.02 

>(-) 
NII4 

44 

0.84 
-0.82 

44 

4.70 
3.94 

34 

0.97 
-0.90 

SO4 

41 

0.62 
-0.60 

46 

0.44 
-0.33 

43 

0.40 
0.02 

CI 

41 

0.65 
-0.65 

46 

0.47 
-0.40 

43 

0.52 
0.04 

{) N is number of observations 
2> KMAYi is Normalised Mean Absolute Error and NME is Normalised Mean Krror (see Kq. 77 and 78). 
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Observations 
Model 

[Al3+] (molc m"3) 

10 
8.0 

[Ca2+] (molc m"3; 
0.8 

[S04
21 (molr nr3) 

3.0 

2.0 

1.0 

0.0 

[CI"] (molc n r 3 

3.0 r -

1987 1988 1989 1987 1988 
Time (a) 

1989 

Figure 5 Simulations of soil water chemistry by NUCSAM for 20 cm (left) and 90 cm 
(right) depth 
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The Al concentration was simulated fairly well at both depths. Regarding the 
calibration results for both the pH and the Al concentration, it can be concluded that 
the pi I and Al behaviour in Speuld cannot be described adequately with a 
combination of the Al-hydroxide equilibrium model (Eq. 33) and rate-limited 
dissolution of Al-hydroxides (Eq. 37). This was also noticed in a model comparison 
study for the Soiling site in Germany (Groenenberg et al, 1995; Kros and Warfvinge, 
1995). Wesselink and Mulder (1995) could also not reproduce both pH and Al 
concentrations by Al oxide solubility. They attributed this to Al complexation with 
dissolved organic matter. 

The Ca concentration at 20 cm depth was underestimated. This is also reflected 
by the NME, which is <-0.50. At 90 cm depth, NUCSAM gives a slight 
underestimation. The underestimation of the Ca concentration at 20 cm depth is 
probably due to either an overestimation of the calcium root uptake in the topsoil or 
an underestimation of the return of calcium by litterfall. Changing the internal cycling 
of base cations within the system will lead to higher calcium concentrations in the 
topsoil, without affecting the calcium concentrations below the root zone (i.e. > 90 
cm). Because of the reasonable fit of the Ca concentration at 90 cm depth (i.e. below 
the root zone), we assume that the calcium input by weathering and deposition is 
correct. 

NO3 concentrations were reasonably well reproduced by NUCSAM 
(NMAE - 0.41 - 0.54). This is in contrast with a previous application of the NUCSAM 
model within a model comparison study at Soiling, Germany (Groenenberg et al, 
1995; Kros and Warfvinge, 1995), from which it appears that the behaviour of 
nitrogen could not be simulated reasonably well. SO4 concentrations were also 
predicted reasonably well. CI concentrations, however, were clearly underestimated, 
especially at 90 cm depth for the years 1987 and 1988. This is striking because are 
rather conservative anions in Dutch forest soils. The poor performance for these 
anions is most likely caused by the strong spatial variability of throughfall fluxes and 
spatial patterns of water uptake by roots. This indicated that the hydrological 
calibration, which was based on another plot (see Site description), is not valid for the 
soil chemical monitoring plot. 

2.1.7 Model predictions in response to a deposition scenario 

Hydrology 

Table 16 shows the long-term average simulated water balance for Douglas fir on a 
Cambic podzol and Scots pine on a Ilaplic Arenosol in the 'Veluwe' region. Some 
general conclusions can be drawn from the table: 
- NUCSAM simulates a lower average interception evaporation for Scots pine than 

for Douglas fir, which is in line with Molchanov (1960). who found an interception 
fractions of the precipitation of 37 % for Spruce forest and 21% for pine forest. 

- Actual transpiration for Douglas fir is much higher than for Scots pine due to a 
higher potential transpiration. This is mainly because of the higher crop factor and 
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the lower canopy gap factor for Douglas fir. This demonstrates that feed-backs 
between the hydrological submodel and the forest-growth submodel should be 
considered during forest succession. Compared to transpiration values given by 
Roberts (1983) for an average forest in Europe (330 mm a '), values for Douglas fir 
are higher and for Scots pine lower. 

- Soil evaporation is lower under Douglas fir than under Scots pine. This is mainly 
caused by the lower Leaf Area Index and higher canopy gap fraction for Scots 
pine. 

- Variation in time of potential transpiration, interception evaporation, actual 
transpiration and soil evaporation is much smaller than variation in time of 
precipitation. 

- There is hardly any reduction of soil evaporation calculated by NUCSAM. This is 
the consequence of using the approach by Black et al. (1969), which is only 
sensitive to the length of the period with a daily precipitation less than 0.3 mm. 
The generated meteorological dataset contains correct drought intervals but 
apparendy underestimates the length of periods without precipitation. 

- The average precipitation surplus for Douglas fir is very small. 
The actual transpiration for Douglas fir is almost similar to that for Speuld. The 

actual transpiration simulated by NUCSAM for Scots pine (268 mm a ') compares well 
with that from previous SWATRE simulations by De Visser and De Vries (1989) (281 
mm a ') . For Douglas fir, however, the NUCSAM flux (371 mm a1) is substantially 
higher than that simulated by De Visser and De Vries (1989), viz 328 mm a1. 

Table 16 Average simulated water balance for Douglas fir on a Cambic 
podzol and Scots pine on a Haplic Arenosol in region 'Veluwe' for the 
period 1980-2050 

Tree/Soil 
Combination 
Douglas/Podzol 
Pine/Arenosol 

Muxes and standard deviation (mm a ') ') 
P / Ep, E, 
804±98 304±35 371 ±20 59±3 
804±98 288±34 268±11 95±4 

PS 
74±40 
188±38 

« (-) 2> 

0.96±0.06 
0.99±0.03 

'' P (mm a') is precipitation, ƒ (mm a1) is interception loss, lipi (mm a1) is transpiration, 11, is soil evaporation, and 
PS (mm a ') is precipitation surplus. 

2' a (-) is ratio of actual transpiration over potential transpiration (Up/flif/) 

Soil chemistry 

Figure 6 shows the simulated yearly average soil solution concentrations for the 
'Veluwe' region. Concentrations of sulphate and Al are higher and die pH is lower in 
the soil under Douglas fir than under Scots pine due to higher filtering of air 
pollutants by Douglas fir, and a lower precipitation surplus. NUCSAM simulates a fast 
response of the sulphate concentration after a reduction in SOx deposition, whereas 
the response of Al shows a considerable time delay. The pH increase under Douglas 
fir is clearly higher than the increase under Scots pine. This difference is mainly due to 
the use of a log scale. When inspecting the H concentration (not shown), the decrease 
in H concentration was more or less comparable. 
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Figure 6 Simulated soil water chemistry at for Douglas fir on a Cambic podzol and for 
Scots pine on a Haplic Arenosol (right) in the 'Veluwe' region at 20 cm depth (left) and 
at 90 cm depth (right) for a reducing deposition scenario 

Results showed a higher concentration of NO3 under Douglas fir than under 
Scots pine. As with sulphate, this is caused by higher filtering of NO x and NHX by 
Douglas. NUCSAM also simulates a time delay for the decrease of the NO3 
concentration in the soil solution after a decrease in NI Ix and NOy deposition, caused 
by the release of nitrogen previously stored in living biomass and Utter. The NO3 
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leaching fluxes at 90 cm depth show the same behaviour as the NO3 concentrations at 
90 cm depth. 

Table 17 shows that root uptake of NII4 and NO3 in 2010 is approximately 
66% of the uptake in 1990. There is a clear reduction in N root uptake flux in 2010. 
This is caused by a fast decrease of the nitrogen content in needles simulated by this 
model, which in turn is a result of the assumed empirical relationship between the 
nitrogen content in needles and the nitrogen deposition (see Section Forest growth). As 
these results apply to two individual years, conclusions with respect to time-trends 
must be drawn carefully. This is especially true with respect to mineralisation. 

Table 17 Annual simulated fluxes of NO3 and NII4 for Douglas fir on a 
Cambic Podzol for the 'Veluwe', for 1990 and 2010 

Process 

'l'hroughfall 
Mineralisation 
Root uptake 
I .caching 2) 

Muxes ') (mole 

1990 
3.20 
6.57 

-3.92 
-0.15 

ha ' a 

NII4 
') 

2010 
1.09 
3.05 

-1.68 
-0.49 

1990 
1.42 
0.00 

-2.61 
-2.92 

N O , 

2010 
0.54 
0.00 

-1.12 
-2.53 

1} Positive fluxes indicate an increase in the soil solution concentration 
' Refers to 1 m depth 

Differences between Douglas and Scots pine showed again to be large. A 
considerable time delay was found for the Al/(Ca+Mg+K) ratio, which continues to 
rise for a short time after deposition reduction. This phenomenon was also observed 
in an application on a Norway Spruce stand at Soiling, Germany (Groenenberg et ai, 
1995). It can be explained by exchange of Ca from the soil solution against sorbed Al. 
This is less pronounced in this study than in Soiling, due to the smaller CEC of the 
soils used in this study. Both the Al/(Ca+Mg+K) ratio and the time-delay for decrease 
of this ratio is larger for Douglas compared to Scots pine, which is caused by the 
higher acid load for a soil under Douglas. Regarding the criteria for indirect effects on 
forest stress several criteria have been propagated. Sverdrup and War fringe (1993) 
showed that based on laboratory experiments a critical Al/(Ca+Mg+K) ratio can be 
derived above which harmful effects on root and shoot growth occur. For a spruce 
forest the critical value for the Al/(Ca+Mg+K) is 2 and for pine 0.8. The results show 
that at 20 cm depth an Al/(Ca+Mg+K) ratio < 0.8 for pine was reached in 2000 and 
an Al/(Ca+Mg+K) ratio < 2 occurred around 2040. In the subsoil the criteria were 
met about 10 years later. 

In conclusion, results show a fast response of the sulphate and aluminium 
concentrations after a decrease in SOx deposition, a time-delay for the NO3 
concentration following a decrease in deposition, and higher soil solution 
concentrations for Douglas. 
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2.1.8 Discussion and conclusions 

Major conclusions 

NUCSAM could reproduce the general magnitude of measured quantities. The scenario 
analyses showed a fast response of the sulphate and aluminium concentrations in the 
soil solution after a decrease of the SOx deposition, time-delay for the NO3 
concentration following a decrease in nitrogen deposition, and depletion of the pool 
of secondary aluminium compounds in regions with high deposition. 

Model validation 

A major conclusion arising from this exercise should be that the detailed NUCSAM 
model is now thoroughly tested against a common data-sets (Speuld), and that it 
provides a wealth of opportunities to test hypotheses about the interactions between 
forest, soil and atmosphere. Furthermore, the long-term results from the scenario 
analysis show plausible results. It is, however, not absolutely proven whether the 
model is a suitable instrument for long-term predictions and scenario analyses. It is 
obvious that the Speuld data-set was too short for 'true' model-validation. Moreover, 
due to the large spatial variability of throughfall, soil solution chemistry and stand 
structure, it was almost impossible to build a meaningful and representative data-set. 
A major reason for this was that the monitoring at Speuld followed a 'disciplinary' 
approach, with separate subplots for hydrology, soil chemistry and forest growth. 
Either was the number of sampling replicates too small to calculate stand averages 
(soil chemistry), or it was impossible to select more or less homogeneous subplots 
(hydrology and biomass inventory7). Furthermore, individual monitoring groups came 
with different data for some model parameters. Nevertheless, NUCSAM could 
reproduce the general magnitude of measured quantities, such as soil water contents 
and soil solution chemistry. However, NUCSAM was not always successful in 
simulating measured seasonal dynamics and the Al chemistry. 

Uncertainties 

One of the problems with calibrating a complicated model is that it is difficult, if not 
impossible, to find a unique set of model parameters. One way to improve the 
uniqueness of the obtained calibration is using automated and objective calibration 
procedures. In view of the large number of model parameters that need calibration, 
such a calibration procedure is very time-consuming. For this reason, automated 
calibration procedures have not been applied to NUCSAM, but strict (manual) 
calibration procedures have been postulated. However, if the uniqueness of the 
calibration remains questionable, results of scenario analyses are also uncertain. Model 
uncertainty can be assessed by performing thorough and systematic uncertainty 
analyses. Confidence in predictions from an individual model will also increase when 
other models predict the same magnitude and trends of model outputs. Therefore, 
NUCSAM was used in two model comparison studies (Van Grinsven et al., 1995 and 

58 



Chapter 2.1 

Tiktak et al, 1995). Results showed that the compared models were able to identify the 
general trends and levels of ion concentrations and fluxes. Arguably, stress factors (cf. 
pi I, Al and Al/Ca ratios) may be modelled with a level of detail corresponding to the 
uncertainties in how the trees reacts to chemical stress in the rhizosphere (Sverdrup et 
al, 1994). Problems remain, however, when inspecting the details (e.g. seasonalility) 
especially for modelling of AI, pH and N behaviour. Most probably the Al behaviour 
can be improved by taking the Al complexation with dissolved organic matter into 
account. 

Scenario analyses 

Scenario analyses were carried out for a Douglas fir and a Scots pine on an Haplic 
Arenosol. The most important trend were a fast response of the sulphate and 
aluminium concentrations after a decrease in SOx deposition, time-delay for the NO3 
concentration following a decrease in nitrogen deposition, higher soil solution 
concentrations in the soil below Douglas fir, and depletion of the pool of secondary 
aluminium compounds. 

Recommendations for future research 

After application of the integrated model NUCSAM at the stand-level, some 
uncertainties still remain. Despite these uncertainties progress was made. This exercise 
clearly shows that for further hypothesis testing and validation of the model NUCSAM, 
there is a need to continue intensive monitoring programs, but the balance between 
data acquisition in the various compartments of the ecosystem should be emphasised. 
Moreover, much more attention should be paid to bridging the gap between models 
and experimental data. NUCSAM should be used to select the most important 
parameters to be monitored. Furthermore, NUCSAM can be used to set-up sampling 
strategies (in particular sampling frequencies). Another major point of concern should 
be the issue of quality control. The current exercise shows that both the model and the 
dataset were poorly adjusted. Perhaps the only way to guarantee that integrated data-
sets become and remain available is by building databases, which are maintained by a 
small group of researchers that consists of both modeller and field scientists. Besides 
long-term monitoring of important model parameters, there is a need for 
measurement campaigns aimed at reducing the uncertainty in the model results. 
However, such campaigns should be directed by the requirements of integrated 
models, and not follow a disciplinary line. Besides intensive monitoring programs 
there is a need for extensive monitoring on a larger number of locations. Such 
extensive monitoring programs are mandatory for calibration of regional models (see 
Part III of this thesis). However, as with the intensive monitoring programs, much 
more attention should be paid to bridging the gap between models and measurements. 
In extensive monitoring, the need for using models to set-up measurements 
campaigns is even more evident than in intensive monitoring programs. 

After the application and validation of the stand-level model NUCSAM, some 
uncertainties still remain, and new uncertainties arose. For further hypothesis testing 
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and validation the model has been applied to a roofing experimental site Speuld (Van 
der Salm et al, 1998). Results of that study were comparable with a NICCCE 
application to Speuld (Koopmans and Van Dam, 1998). However, NUCSAM should be 
used to further explore available manipulation experiments, which serves two goals (i) 
further validation and testing of the model and (ii) use the model to integrate and 
interpret the data records collected at those sites. 

Finally, present site calibrations could be used to assess the uncertainty of 
predictions for Speuld, and the deposition scenarios. This will be presented in the next 
Chapter. Instead of using NUCSAM in order to assess the uncertainty in long-term 
predictions the simplified version R.KSAM was used. 
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2.2 The uncertainty in forecasting trends of forest soil 
acidification 

Abstract 

A Regional Soil Acidification Model (RESAM) has been developed to gain insight in long-term 

impacts of deposition scenarios on forest soils in The Netherlands. Model predictions of such large-

scale environmental effects of acid deposition require extrapolation of site specific data to large 

geographical regions. The major aim of this study is to quantify the uncertainty in model response to a 

given deposition scenario, due to uncertainty and spatial variability in data. Furthermore, the 

uncertainty analysis was performed to determine which additional data will most likely improve the 

reliability of predictions. An efficient Monte Carlo technique was used in combination with regression 

analysis. The analysis was restricted to one forest soil ecosystem: a leptic podzol with Douglas fir, 

subject to a scenario of decreasing atmospheric deposition. The investigated output variables were pH, 

AI/Ca ratio and Nlh/K ratio in the root %one, which are generally used as indicators of forest soil 

acidification and of potential forest damage. In most cases the relation between the parameters and 

model output can be satisfactorily described by a linear regression model. The contribution of the 

uncertainty of various parameters to the uncertainty of the considered output variable depends on soil 

compartment and time. The uncertainty, as measured by the coefficient of variation, appears to be high 

for the Nlh/K and All Ca ratios, whereas it was relatively low for pi\. Results show that the 

uncertainty in the depositions ofSOx, NOx and NHX in a receptor area and the uncertainty in the 

parameters and variables determining the nitrogen and aluminium dynamics contribute most to the 

resulting uncertainty of the considered model output. 

2.2.1 Introduction 
The long-term impact of acid deposition on soils is an important ecological problem. 
The development of unfavourable Al/Ca ratios and NH4/K ratios, either by the 
mobilisation of Al (acidification) or the accumulation of ammonium (eutrophication), 
may lead to forest deterioration induced by the inhibition of the uptake of nutrients 
such as Ca and Mg (Ulrich and Matzner, 1983; Roelofs et al., 1985; Boxman et al., 

1988). 

Several process-oriented models have been developed to predict the long-term 
effects of acid deposition on soil (e.g. Arp, 1983; Chen et al., 1983; Reuss and Johnson, 
1986; Cosby et al., 1985; Bloom and Grigal, 1985; Levine and Ciolkosz, 1988). 
However, most of these models do not include the effect of the nutrient cycle, 
although this is very important for making predictions of the Al/Ca and NH4/K 
ratios in the upper soil horizons. A notable exception is the ILWAS model developed 
by Chen et al. (1983), but this model is difficult to apply on a regional scale, because of 
its extensive data input requirements. Therefore, a Regional Soil Acidification Model 
(RKSAM) has been developed for analysing long-term soil responses to acid deposition 
on a regional scale (De Vries et al., 1994a). It is used for predicting the annual average 
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fluxes and concentrations of the major elements in characteristic forest/soil 
ecosystems in the Netherlands. 

For its regional application RESAM has been linked as a submodel in an overall 
framework predicting environmental impacts of S and N emissions to evaluate the 
effectiveness of abatement strategies: the integrated Dutch Acidification Simulation 
(DAS) Model (Olsthoorn et al., 1990). The regional application has been performed 
for 20 predefined deposition regions (De Vries et al., 1995a). For each region the long-
term impact of acid deposition on the most relevant combinations of soil and 
vegetation has been evaluated by RESAM. The deposition scenario for each region is 
delivered by the deposition module of the DAS model. 

As part of the DAS model, RESAM holds a central place in the analysis of the 
acidification problems and the evaluation of abatement strategies. In connection with 
such policy applications it is imperative that the uncertainty of the model results is 
analysed, particularly since the lack of long-term series of observations to calibrate a 
model makes it difficult to indicate the reliability of long-term predictions. 

Uncertainty in long-term predictions is mainly due to: (i) insufficient knowledge 
of the investigator, (ii) uncertainty of data and (iii) model implementation. Insufficient 
knowledge is reflected by the model structure which includes several assumptions and 
simplifications with respect to the modelled processes. Essential processes in 
acidifying systems which are imperfectly known include (Jenkins et al., 1989): (i) the 
dynamics of organic matter, including the behaviour of dissolved organic matter; (ii) 
the dynamics of solid phase Al including complexation of inorganic Al by organics; 
(iii) N cycling through the vegetation, especially nitrification/dcnitrification, and (iv) 
the dynamics of forest growth in relation to the acidification status of the soil. 
Although the model structure is possibly an important uncertainty source, it is very 
difficult or even impossible to asses. An indication may for instance be obtained by 
model comparison or by comparing different process formulations. 

Apart from the model structure (and implementation), the uncertainty in model 
outputs is also due to uncertainties in data, viz source terms, initial conditions of 
model variables, and model parameters (e.g. Homberger et al., 1986; Alcamo and 
Bartnicki, 1987). The uncertainty in data is due to natural variability and inaccurate 
and insufficient measurements. In order to represent the natural variability (spatial 
and/or temporal) of the processes under consideration, one usually specifies a (joint) 
probability distribution for the associated model inputs, reflecting the expected range 
of values (see e.g. Hettelingh, 1989). Similarly, in situations where the uncertainties in 
model inputs are mainly due to inaccurate and/or insufficient data, one usually also 
applies probability distributions to specify the possible range of values which one 
expects (i.e. reflecting the 'degree of belief). Both situations are closely related and can 
be approached through an analysis of how model output depends upon model inputs 
(Hornberger et al., 1986). The difference is, however, that (spatial) variability is a fact 
of nature whereas poorly defined inputs can be constrained by additional data to 
reduce the uncertainty in model predictions. 

Several publications analysed the effects of uncertain inputs, initial conditions 
and model parameters in the field of environmental modelling, for instance in the 
fields of long-range air pollution transport (Alcamo and Bartnicki, 1987), watershed 
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acidification (Hornberger et ai, 1986; Kämäri et ai, 1986; Hettelingh, 1989), and water 
quality modelling (Beck and Van Straten, 1983). In most cases, a Monte Carlo analysis 
approach was used. One of the underlying premises in nearly all these studies is that 
the model structure is 'correct' or at least represents current knowledge adequately. 
The same assumptions have been made in our study. An indication of the influence of 
model structure is planned to be published later by a comparison with other models 
which differ in complexity and type of process formulations (see Chapter 2.4). 

The major aim of this study is to gain insight into: (i) the uncertainty in RliSAM 
output variables due to uncertainties in the model inputs; (ii) the importance of the 
model inputs in order to have a guideline as to which additional data will most likely 
improve the reliability of predictions; (iii) whether average model inputs produce 
adequate average model outputs, to verify whether simulation with average model 
inputs, as will be used in a regional application to limit the computation time, is 
acceptable. The analysis is restricted to one forest soil, a leptic podzol with Douglas 
fir, subject to a scenario with decreasing deposition. The investigated output variables 
are pi I, NII4/K and Al/Ca ratios in the root zone, which are generally used as 
indicators of soil acidification and of potential forest damage. 

2.2.2 Model structure of RESAM 

The acidification process in RKSAM is conceptualised as a disturbance in forest 
element cycling. The model structure is based on this concept. RKSAM simulates the 
major biogeochemical processes occurring in the forest canopy, litter layer and mineral 
soil horizons. The biogeochemical processes accounted for in the model are: foliar 
uptake and foliar exudation, litterfall and root decay, mineralisation, root uptake, 
nitrification and denitrification, protonation of organic anions, carbonate 
dissolution/precipitation, weathering of primary minerals containing Al and base 
cations (Ca, Mg, K, Na), aluminium hydroxide dissolution/precipitation, cation 
exchange of II, Al, base cations and NIL», SO4 adsorption/desorption and 
dissolution/speciation of inorganic C. Here we used a simplified version of RF.SAM in 
order to limit computation time. The simplification mainly concerns the use of a 
steady-state nutrient cycle instead of a dynamic one. 

Table 1 gives a brief overview of the model formulations used. The general 
construction of the notation of the source terms, variables and parameters used in 
RKSAM is given in Table 2. 
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Table 1 Description of the most important processes included in the 

model 

1. 1'oliar uptake and foliar exudation 

~FNH^=jNH^~FNH^ ~~~ ~ ~ 
FXfl=kXfi-Alv-ctXk X = Ca,Mg,K 

2. I.itterfall and root decay 

FXf = kXf • Alr • ctXk
 x = M> s > C a - M B . K 

FX^k^A^dX, X = N , S , C a , M g , K 

3. Mineralisation (steady-state option) 

~'FXZ~=~FX~+'FX^ x = N'. s/^iftK" 
4. Rootuptake ^steady-state option] 

FX„ = FXXU + FXf + FXfr - FXJu + FX^ X = N, S, Ca, Mg, K 

Distribution of N over NO3 and NÏI4 : 

A T T J 

FNUt„=frfrMl.„ - FNr 

FNOy„=FN„-FNH4t„ 
5. Nitrification and denitrification 

FNH4^0-D-k„rcNH4 

FNO3ni=0-D-kde-cNO, 
6. Protonation 

FRCOO = 0-D-kpr- cKCOO 
7. Carbonate dissolution/precipitation 
FCan,,é =pD- kCawrch • ctCach • (cCar - cCa) 

pC02 
cCa, = KeCa , 

cHCOy 

with: 
cCae = equilibrium concentration 
p(X)2 = partial CO2 pressure 
8. Weathering of primary minerals 

FX„^ =P-D- kX„,pa • äXpm
 X = Ca, Mfe K, Na 

FAlm^ = 3 • FCa„tfm + 0.6 • FMg^pm + 3 • K„tfm + 3 • Na^pm 

i.e. congruent weathering of equal amounts of anorthite ((2a), chlorite (Mg), microcline (K) and 
albite (Na) 
9. Aluminium hydroxide dissolution/precipitation 

~FAT~^~D"£ÏÏ~~^AJ0X '-(CAT-CAI) 

cAl=kAl-clf 
e ox 

with: cAlc = equilibrium concentration 
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C h a p t e r 2 . 2 

T a b l e 1 ( c o n t i n u e d ) 

- 12 i i . ' a n o n exchange 

fr*. = KeX.. 

ctX. 

cX2 X = I I ,Al ,Mg,K. ,Na ,NII 4 

cCcT 

with: fX = 
J M' CEC 

% valence of cation X 

ctSO^=-
SSC-KeSOA^-cSO 4,arl 

l + KeSOAad-004 

__12. Dissolution/spcciation of inorganic C 

cHCO, 

T a b l e 

Kntity 

= KC02 
pC02 

ell 

2 N o t a t i o n o f RFSAM s o u r c e 

(Constituent 

t e r m s , 

Process 

v a r i a b l e s a n d p a r a m e t e r s 

(Compartment 
A amount [kg ha ' 

c concentration in the 
soil solution |molc 

m-'] 
ct content [mmol,, kg-'] 
CEC cation exchange 

capacity |mmolc kg^[ 
D layer thickness [m] 
ƒ fraction |-| 

jpr preference factor [-] 
F flux [mole ha ' a-'| 
k rate constant [a '] 
K equilibrium constant 

[mol* V] 
rho bulk density |kg m-'] 
SSC sulphate sorption 

capacity [mmolc kg-'] 
0 volumetric moisture 

content [m1 m '] 

N 

N( ) 2 

N O j 
N l l j 

NII 4 

S 

S()2 

SÜ4 
Ca 

MR 

K 
Na 

dd 

de 

dm 
ex 

fi 
> 

<?" 
If 
mi 

P' 

rd 
ru 

dry deposition 

denitrification 

wet deposition 
exchange 

foliar exudation 
foliar uptake 

net (growth) uptake 
litterfall 
mineralisation 
protonation 

root decay 
r<K)t uptake 

ac 

ad 

cb 
Iv 

ox 
pm 

rt 
St 

adsorption 
complex 
sorption site 

carbonates 
leaves/ 
needles 
oxides 
primary 
minerals 
roots 
stems 

CI 

II 
Al 
IICO3 
RCOO 
C 0 2 

we weathering 

Foliar exudation, litterfall, root decay, nitrification, denitrification, protonation 
and weathering are described by first-order reactions. Foliar uptake is considered a 
fraction of the dry atmospheric deposition. Root uptake is equal to the sum of 
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litterfall, foliar exudation and root decay minus foliar uptake plus a given net growth. 
Net growth is either described by a logistic function or as a constant increase. Here we 
used the latter option. Root uptake per soil layer is assumed to be proportional to the 
transpiration per soil layer. The dissolution of Ca and Al from carbonates and 
hydroxides respectively, is described as a first-order reaction, which is rate-limited by 
the degree of undersaturation. If supersaturation occurs, the Ca or Al concentration is 
set to equilibrium. Cation exchange and sulphate sorption are treated as equilibrium 
reactions, using Gaines-Thomas equations and a Langmuir isotherm, respectively. 
Speciation/dissolution of inorganic C is computed from equilibrium equations. A 
complete overview of the model structure of RKSAM is given in De Vries et al. (1994a). 
The model input includes atmospheric deposition and hydrological data. Initial 
concentrations of cations and anions in the soil solution and the adsorption complex 
are calculated from an assumed equilibrium with the present atmospheric deposition. 

2.2.3 Methodology 

Monte Carlo simulation 

There are various techniques available for performing uncertainty analysis (e.g. Janssen 
et a!., 1990). The most commonly used method for evaluating the uncertainty 
associated with parameter uncertainty in environmental modelling is related to Monte 
Carlo simulation. Monte Carlo methods suppose that the uncertainty of the various 
sources of uncertainty i.e. source terms, variables and parameters (in the following all 
these 'model inputs' will be referred to as parameters) can be characterised by their 
distribution functions and their correlations. Next, simulations are carried out with a 
randomly selected set of parameter values from the distribution functions. From the 
results, the distribution functions and the variance for the particular output variables 
can be estimated. 

In performing uncertainty analysis with Monte Carlo techniques we distinguish 
two major steps: (i) sampling of model parameters followed by model simulation, and 
(ii) quantifying the (overall) uncertainty in the model output variables and determining 
the contribution of the model parameters to this uncertainty by using statistical 
techniques. 

Sampling method 

The number of Monte Carlo simulations needed for accurate estimates depends on 
the applied sampling method and on the number of considered sources of uncertainty. 
Especially in the case of RESAM, Monte Carlo analysis with straightforward drawings 
will lead to numerous and unnecessary computer runs. 

An efficient sampling method has been developed named Tatin Hypercube 
Sampling' (LHS) (McKay et a!., 1979; Iman and Conover, 1980). The principle of this 
method is a combination of two common statistical techniques. First, for each input 
parameter the parameter range is divided into N strata with equal probability 1/N, 
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where N is a specified number equal to the number of Monte Carlo simulations. In 
each stratum a value is randomly sampled. Second, the values for each parameter are 
combined randomly, or with a specified correlation, with values of the other 
parameters to form a multivariable sample of N parameter combinations. 
Consequently it uses a relatively small number of model simulation runs. This method 
has been used successfully in various applications (Downing et ai, 1985; Iman and 
Helton, 1985, 1988; Gardner et ai, 1983; Kämäri étal, 1986; Hettelingh, 1989). 

In this study we have applied an adapted version of the software package 
PRISM (Gardner et al, 1983). This is a package for performing uncertainty analyses by 
using Monte Carlo simulations with Latin Hypercube Sampling (LUS) in combination 
with statistical techniques. 

Statistical analysis 

The first purpose of the analysis is to quantify the overall uncertainty in the response 
variables by computing means, variances, percentiles, frequency distributions etc. 

The second purpose is to identify which sources of uncertainty contribute most 
to the overall uncertainty/variability in the output variable. In general this is done by 
correlation and regression analyses. An extended overview of these techniques is given 
by Janssen et al. (1990). Here we restrict to a short summary of regression analysis. 
Linear regression analysis is applied to explain variability in a response variable (say y) 
by considering a set of potential explanatory variables (say xi,...,xp). In this context the 
response variable is the output variable of RKSAM and the explanatory variables are 
the sources of uncertainty. The linear regression model has e.g. the following form: 

y = Â + Â - * i + Â - * 2 + - + ^ - * P + ' (!) 

where: ßk (k — 0,1,..., p) denote the estimated regression coefficients (using 
the least-squares method) and ê denotes the residual term which is left unexplained by 
linear regression. 

The coefficient of determination (COD) (also called R2) of this regression is 
equal to: 

R 2 = C O D = l 'Y (2) 

where S is the standard deviation of the regression residual, and Sy is the standard 
deviation of the response variable. COD is a number between 0 and 1. It measures the 
fraction of the variance in the response variable which is explained by the linear 
regression model. In fact, COD expresses the validity of the linear model to 
approximate (fit) the original model output y (COD = 1 means a good fit). 
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When the regression model gives a good fit (COD ~ 1), the coefficients ßk 

appropriately express the sensitivity of the model output y to variations in the 

parameters Xk. ßk however does not account for the uncertainty in the explanatory 
variable Xk. In order to include this uncertainty, it is useful to scale the original 
regression model (Eq. 1) with respect to the mean values and the standard deviations 
of y and Xk. 

This results in the standardised regression model (Draper and Smith, 1981): 

I ^ = ßC<K^ + ... + ftKhpL + ^ ( 3 ) 

y x\ xp 

where ß (k — 1, ..., p) represent the estimated standardised regression coefficients 

(SRC), which are related to the coefficients ßk by: 

SRCk=ß^=ßt~ ' (4) 

11ère SS]i and Sy denote the standard deviations of Xk and y. The subscript k denote the 

average values of y and Xk. 
From Eq. (3) it is obvious that the standardised regression coefficients (SRC) 

indicates the increase or decrease in the model output y (in terms of its standard 
deviation Sy) due to an increase in parameter *k (in terms of its standard deviation J"Ak), 
while the other parameters Xj remain unchanged. Therefore the SRC can be used to 
assess the importance of each parameter Xk in explaining the uncertainty of the 
considered model output. Usually this is done by ranking the sources of uncertainty 
on the basis of the SRC. This method has the following disadvantages: (i) the SRC can 
be misleading in case of strong non-linearity in the relation between Xk and y; and (ii) 
the SRC does not account for the influence of other parameters on y besides Xk. 

Ad. (i): The SRC is only a measure for the linear relationship between 
parameters and the associated model output. Therefore it is always important to 
inspect the COD. When the COD is low, there are strong non-linear relationships and 
the use of the SRC is not justified. When strong non-linearity occurs, it is worthwhile 
to apply data transformation (e.g. a logarithmic transformation) to the parameters 
and/or the model output. However, an appropriate data transformation is sometimes 
hard to find. Generally rank transformation is used, which is shown to be a robust and 
powerful transformation (Iman et al., 1981). The uncertainty contribution is then 
analysed by studying the standardised rank transformed regression coefficients 
(SRRC). In fact, rank transformed regression analysis only gives information about the 
monotony of the relationship between parameters and associated model output. 
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Ad. (ii): Although the SRC and/or SRRC are recommended in literature (Dale 
et ai, 1988; Iman and Helton, 1988), it is shown by Janssen et al (1990) that they are 
imperfect when the parameters are correlated. For this reason Janssen et al. (1990) 
introduced a new improved measure, which determines the relative change in the 
uncertainty (S,) of the model output y as a result of a (small) relative change in the 
uncertainty (S*^ of the parameter Xk, taking the influence of the correlated sources 
into account. This results in a compound measure named the partial uncertainty 
contribution (PUC): 

M* = iß? • rXjJ • 4 , = tSRCJ • LCCJ • V , (5) 
j=\ 7=1 

where rvy and r.̂ .v are the correlation coefficients between xy and y, and xt and Xj 

respectively. The quantity rVv will in the sequel also be denoted as LCQ (Linear 

Correlation Coefficient). 
When there are no correlations, the PUC can be simplified to (Janssen et al, 

1990): 

PUCk = SRCk • LCCk = SKC2
k (6) 

In this specific case the SRC is equal to the root of the PUC (C), which we will 
call the root of the (partial) uncertainty (coefficient) (RTU). When the SRC differs 
from the RTU, this is an indication for a correlation between the parameters 
considered. Contrary to the SRC, the RTU is always positive. 

In this study we use the RTU as a measure for the uncertainty contribution, 
unless the COD appears to be very low. In that case we perform rank analysis and use 
the SRRC. 

Apart from using regression analysis in quantifying the uncertainty 
distributions, we have applied this technique to get a justification for using averaged 
parameter values in a regional application: if the COD is close to 1 during the 
simulation period, the model has a strong linear behaviour, and the average output of 
all the Monte Carlo simulations will be close to the output of a simulation carried out 
with average parameter values. 

Furthermore, we have used the results of the regression analysis to see whether 
the (linear) regression models, that can be seen as a model simplification of the 'real' 
model (i.e. a so-called meta model; Kleijnen, 1987; Rotmans et al, 1988), could 
possibly replace RESAM for a regional application. 
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2.2.4 Uncertainty in model input 

Restrictions 

The investigated output variables have been restricted to the pi I, NII4/K ratio and 
Al/Ca ratio in the root zone of a leptic podzol covered by Douglas fir. The soil profile 
consists of four horizons (layers): O (litter layer, 4 cm), A (15 cm), Bh (25 cm) and C 
(20 cm). For this soil profile, with four layers, R.KSAM needs about 200 source terms, 
variables and parameters, which have to be estimated on the basis of rather uncertain 
a priori information. 

In order to restrict the number of (uncertain) parameters, and consequently also 
the number of Monte Carlo simulations, we have assumed a steady-state nutrient cycle 
with a constant net uptake (i.e. tree growth), which implies that the total uptake (foliar 
uptake and root uptake) is equal to the sum of litterfall, foliar exudation, root decay 
and net uptake. Consequently, there is no accumulation of N and S in needles, roots 
and/or litter layer. Furthermore, a feedback between reducing depositions of N and S 
and their contents in the needles is not considered. Especially for N this might be an 
important mechanism. It is likely that in the long run the assumption of a stationary 
nutrient cycle will lead to an overestimation of both the NI I4/K ratio and the Al/Ca 
ratio and to an underestimation of pH for the decreasing-deposition scenario 
considered (see Section Data). 

Furthermore, we have assumed a constant hydrology, by taking a constant 
annual precipitation volume. Finally, uncertainties in various parameters which were a 
priori considered as insignificant of the investigated model output, have not been 
investigated. Examples of these are: Ca, Mg, K and Na contents in primary minerals; 
exchangeable fractions of NII4, Ca, Mg, K and Na, and the selectivity constants of Mg 
and Na. Using these assumptions, the number of parameters for which probability 
distributions have to be specified has been reduced to 70. 

Data 

Deposition data (source terms) 

Uncertainty in deposition is related to spatial variability caused by concentration 
gradients and variation in filtering dry deposition. The uncertainty and spatial 
variability in wet and dry depositions is restricted to one receptor area in the centre of 
the Netherlands with intensive animal husbandry. The source terms consist of both 
dry and wet deposition of SO2, NO2, and NI 13 and wet deposition of base cations (Ca, 
Mg, K, Na) and chloride. The dry deposition of base cations, chloride and sea salt 
sulphate is described by a dry deposition factor (fdJ). This is a factor by which the wet 
deposition must be multiplied to determine the dry deposition. 

The deposition values used are given in Table 3. Data have been derived from 
wet deposition and throughfall measurements of SO4, NO3, NII4 and Na in 27 
coniferous forest stands in the Netherlands ^Tiktak et ai, 1988; Ivens et ai, 1988; 
Kleijn et ai, 1989; Houdijk, 1993). The ratio of Na in throughfall minus bulk 
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deposition to Na in bulk deposition was used to estimate/« (Bredemeier, 1988). The 
values for NIL» and SO4 were considered representative of a deposition region with 
intensive animal husbandry. 

Table 3 Ranges and distributions of deposition fluxes (molc ha ' a 1 ) and 
the dry deposition factor (-) 

Input 

FSO2* 
FS02ää 
FNO,j,. 
FN02M 

FNH!<U. 
FNHJU 
FCaj, 
FM&j.-
PKfy. 
FNad„. 
FC/s 

.h 

Mean 

875 
2965 
440 
530 

1310 

2885 

240 
190 
240 
730 

1125 
0.98 

SI) 
225 

1025 

35 
230 
220 

1050 

125 
65 
60 

165 
315 

0.55 

Min. 

690 
1650 

370 
320 
945 

1530 

135 
130 
150 
495 
640 
0.31 

Max. 

1410 
4260 

470 
1100 
1730 

4810 

490 
360 
340 
970 

1610 

1.96 

The deposition scenario used is based on the emission reduction policy in the 
Netherlands (Schneider and Bresser, 1988). Although the intended reductions are 
subject to various uncertainties, which are mainly due to political and technical factors, 
we do not consider them here. The emission scenario is divided into two periods: 
1987-2000 and 2000-2010; the corresponding reduction fractions are given in Table 4. 
The reduction during these two periods is considered linear. The reduction is only 
applied on SOx, NO x and NHS; the depositions of the base cations and CI remain 
constant. 

Table 4 Reduction fractions for total deposition fluxes of SO*, N O , and 
N i l , 

„Period SOx NOx NM, 
~î 987-2000 063 ÖÄQ . 0.58 
_2000-2010 058 029 O40 

Here we restrict the uncertainty in the source terms to the initial (i.e. 1987) 
values as specified in Table 3. The deposition scenario for each Monte Carlo 
simulation is obtained by multiplying the by LI IS sampled initial deposition value for 
SOs, NO x and NIL by the corresponding reduction factor. 

Initial values of variables 

An overview of the distributions specified for the initial values is given in Table 5. 
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II Evaluation on a site scale 

Table 5 Distr ibutions of initial conditions 

Variable 

Au-
A„ 
J" 
f«' 
ctN« 
CtCdsi 

äK„ 
ctS« 
aNi. 
ctCai, 
CtKlr 

ctSi, 

CIN,! 

ctCa^ 

ctK„ 

ctS„ 

rhon 

rho, 

rho2 

rho, 

ctAL ; 
ctAL i 
ctAL t 
SSC, 
SSQ 

ssc, 
CEC, 
CEC, 
CEC2 

CEC, 

JALu 
JAL2 

fAL> 

Unit 

kg ha ' 
kg ha•' 
-
-
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
kg m 3 

kgn r 3 

kg m 3 

k g m 3 

mmol,: kg^ 
mmii l t 

mmolc 

mmoL. 
mmolc 
mmolc 

kgr. 
kg;' 
k g ' 

ktr' 
kg ' 

mmolc kg-' 
mmolc kg^ 
mmolc 
mmolc 

-
-
-

kg ' 
kg ' 

Distribution 

type 
normal 
uniform 
normal 
normal 
normal 
normal 
normal 
normal 
normal 
normal 
normal 
normal 
normal 
normal 
normal 
normal 
normal 
normal 
normal 
normal 
lognormal 
lognormal 
lognormal 
lognormal 
lognormal 
lognormal 
normal 
lognormal 
lognormal 
lognormal 
normal 
normal 

normal 

Mean 

9500.0 
3750.0 
0.39 
0.41 
0.11 
0.07 
0.04 
0.02 
2.80 
0.32 
0.36 
0.24 
0.34 
0.25 
0.22 
0.05 
150.0 

1310.0 
1450.0 
1540.0 
4.18(65.0)') 
5.11 (156.0) 
4.98 (145.0) 
0.26 (1.3) 
3.30(1.2) 
2.90(1.1) 
282.0 

3.4 (30.0) 
2.4(11.1) 
1.6(4.8) 

0.05 
0.53 

0.73 

SD 

3135.0 
-

0.13 
0.12 

0.015 
0.035 
0.016 
0.008 
0.59 
0.14 
0.08 
0.05 
0.05 
0.07 
0.07 
0.01 
60.0 
139.0 
"48.0 
35.0 
0.66 
0.61 
0.41 
0.47 
0.48 
0.32 
68.0 
0.72 
0.67 
0.68 
0.03 
0.15 

0.15 

Min. 

3400.0 
1350.0 
0.06 
0.04 
0.08 
0.04 
0.02 
0.01 
1.49 
0.13 
0.20 
0.17 
0.25 
0.16 
0.13 
0.03 
22.0 

790.0 
1300.0 
1300.0 
2.46 (12.0) 
2.95 (19.0) 
3.77 (42.0) 

-1.42(0.25) 
-7.0 (0.0) 
-7.0 (0.0) 

108.0 
0.69 (2.0) 
0.0(1.0) 
0.0(1.0) 

0.02 
0.37 

0.52 

Max. 

16000.0 
6300.0 
0.66 
0.78 
0.12 
0.13 
0.07 
0.04 
3.71 
0.79 
0.66 
0.36 
0.40 
0.34 
0.44 
0.07 

454.0 
1530.0 
1540.0 
1600.0 
5.21 (184.0) 
6.65 (777.0) 
6.01 (406.0) 
1.31 (3.7) 
2.74(15.5) 
2.09 (8.1) 

700.0 
5.2 (186.0) 
3.8 (43.0) 
2.9(19.0) 

0.11 
0.78 

0.89 
l ' l'or lognormal distributions values in brackets denote the nominal values; the other values concern the log-

transformed counterparts 

The initial values that must be specified with respect to the tree species are 
amounts and element contents in needles, roots and stems and the root distribution. 
The needle biomass (Ail) and element contents in stems (ctX«, X = N , S, Ca, K) and 
roots (ctXrt, X — N,S,Ca,K) are based on literature data (a.o. Kimmins et al., 1985). 
Element contents in needles (ctXk, X — N,S,Ca,K), root biomass (A„) and root 
distribution data (frt „, n- layer number) are based on field research in eight Douglas 
forest stands in the centre of the Netherlands (Oterdoom et al, 1991). Note that 
extremely high N contents occur in the needles, up to 3.7% (Table 5). They are due to 
the high N IL input in the investigated area. A decreasing deposition may lead to a 
decrease in the N content, but this is not included in this model analysis. Data for the 
root biomass {Ar!) and the root distribution fractions (frt„, »=1,2,3) are related to the 
fine roots (< 2 mm), which are active in water and nutrient uptake. Naturally, in the 
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case of three layers only two fractions are independent. We calculated the fraction in 
layer 3 from the other two: ß 3 - 1 - frt 1 - fn 2- Afterwards we checked whether the 
distribution o(frt) matched with the measured one. The field survey of Oterdoom et a!. 
(1991) gave no information about roots in the litter layer. Consequendy, we did not 
include roots in the litter layer; however, it is likely that the litter layer contains a 
considerable amount of (fine) roots (Grier et ai, 1981; Persson, 1983). 

Investigated variables related to the soil are bulk density {rho), content of 
aluminium hydroxides (ctA/0X), sulphate sorption capacity (SSC), cation exchange 
capacity (CEC), and fraction of exchangeable aluminium (fAl,). The distributions of 
rho and CEC in the litter layer (layer 0) were derived from the field survey in eight 
Douglas stands mentioned earlier (Kleijn et al, 1989). Values for ctAl0X and .WCin the 
litter layer were assumed to be zero. For the mineral layers rho, ctAl0X and CEC were 
derived from the soil information system available at the Winand Staring Centre. SSC 
was related to ctAl0X using literature data (Johnson and Todd, 1983). The aluminium 
occupation of the exchange complex (fAltc„, «=0...3) was derived from the field survey 
in eight Douglas stands (Kleijn et ai, 1989). 

Modelparameters 

A summary of the relevant model parameters is given in Table 6. The investigated 
model parameters related to the vegetation are the foliar uptake factor of NHi 
(/NU)/«), the preference factor for the NII4 uptake by roots (fpj^lh ™), foliar 
exudation constants (kXf„ X=Ca, K, Mg), litterfall (k/j) and root decay (4,/) constants. 
The distributions used for the foliar uptake fraction and the root uptake preference 
factor of NH4 are more or less arbitrary. Foliar uptakes of SO2 and NO2 were 
considered negligible. Distributions of the foliar exudation of Ca, K and Mg were 
derived from the differences between throughfall and estimated total deposition in 15 
Douglas stands (Tiktak et al, 1988; Kleijn étal, 1989; Houdijk, 1993). Total deposition 
was estimated by adding the measured bulk deposition (du) to the dry deposition, 
calculated by multiplying the /« factor with the bulk deposition (see Table 3). Litterfall 
values were based on a national inventory of the forest vitality in the Netherlands (P. 
van der Tweel, pers. comm.). The distribution of the root decay constant was derived 
from data given by Santantonio and Hermann (1985). 

Investigated model parameters related to the soil are the nitrification constants 
(k„i„, »=0,1,2,3), protonation constant (kp,), weathering rate constants of primary 
minerals (kX„rp„, X=K/Na , Ca/Mg) and aluminium hydroxides (kAL ov » n=l,2,3), 
'he aluminium hydroxide equilibrium constant (tC-iL), the sulphate adsorption 
constant (KSOj aj) and the exchange constants taking Ca as the reference ion (KXrx, 
X=H,A1,NII 4 ,K) . 
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Table 6 Distributions of model parameters 

Parameter 

ßithß, 
PVHJW 
kCaf, 
khty, 
kK/i 

k,„ 
k„0 
k„i 

k<ù2 

km> 
lZpr 

kK/Na„pa 

kCa/Mgn/M 
kAI„u<, 

kAhtaxZ 

kAlrl0Xi 
KAL 
KHexO 

KHa, 

KHK2 

KIL, 
KAL-o 
KAL-, 
KAL-2 
KAL-, 

KNH4&0 
KNH4B.; 

KNH^2 

KNH4K> 
KKexO 

KK^, 

KKrx2 

KKtx) 

KSO4* 

Unit 

-
-

a 1 

a ' 
a -' 
a ' 
a •' 

a ' 
a ' 
a ' 
a ' 

a ' 

a ' 
a ' 
a ' 
(mol 1 
(mol 1 
(mol 1 
(mol 1 
(mol 1 
mol 1 
mol 1 
mol 1 
mol 1 
(mol 1 
(mol 1 
(mol 1 
(mol 1 
(mol 1 
(mol 1 
(moll 
(mol 1 

')-' 
')-
•)" 
')-
' ) • 

' ) • 

')-
i)-i 

' ) • ' 

' ) • 

' ) • ' 

i ) - i 

')-' 
m3 mol/ 

Distribution 
type 

uniform 
uniform 
normal 
normal 
normal 
uniform 
uniform 

uniform 
uniform 
uniform 
uniform 

uniform 

uniform 
uniform 
uniform 
uniform 
lognormal 
lognormal 
lognormal 
lognormal 
lognormal 
lognormal 
lognormal 
lognormal 
lognormal 
lognormal 
lognormal 
lognormal 
lognormal 
lognormal 
lognormal 
lognormal 
lognormal 

Mean 

0.1 
1.5 

0.14 
0.26 
0.22 
2.0 

85.0 
20.0 
2.0 
2.0 

50.0 

1.1-10-» 

5.2510 * 
0.02 
0.20 
0.20 
10» 77 

3.50 (33.0)' 
6.79 (889.0) 
7.83(2515.0) 
7.72 (2252.0) 
4.30 (74.0) 
-1.18(0.3) 
-0.18(0.8) 
-0.14 (0.9) 
1.40(4.1) 
1.69 (5.4) 
5.23(187.0) 
7.62 (2039.0) 
2.50 (12.0) 
3.60 (37.0) 
4.77(118.0) 
6.17 (478.0) 
0.00(1.0) 

SD 

-
-

0.05 
0.04 
0.08 
-
-
-
-
-
-
-
-
-
-
-
-

1.00 
1.29 
1.96 
3.52 
1.00 
1.32 
1.38 
1.44 
0.20 
1.33 
1.91 
1.93 
0.70 
0.69 
0.63 
0.87 
1.15 

Min. 

0.0 
0.0 

0.08 
0.19 
0.09 
1.5 

50.0 
10.0 
0.0 
0.0 

25.0 

2 .010 5 

5.0-10' 
0.01 
0.10 
0.10 
1 0 s " 
1.50 (4.5) 
4.76 (117.0) 
4.01 (55.0) 
2.62 (14.0) 
2.30 (10.0) 
-2.98(0.1) 
-2.19(0.1) 
-1.80(0.2) 
1.00(2.7) 
-0.5 (0.6) 
1.64(5.2) 
4.79 (120.0) 
1.10(275.0) 
2.40(11.0) 
3.61 (37.0) 
5.02(151.0) 
-2.30(0.1) 

Max. 

0.2 
2.0 

0.23 
0.31 
0.32 
2.5 

120.0 
30.0 
5.0 
5.0 

75.0 

2.0-10-» 

1 .010 ' 
0.03 
0.30 
0.30 
109.JS 

5.50 (2.5) 
9.19 (9800.0) 
10.3(2533.0) 
12.2(98789.0) 
6.30 (545.0) 
0.9 (0.6) 
1.6 (0.1) 
2.7 (5.5) 

1.80 (6.0) 
3.58 (36.0) 
8.06(3165.0) 
10.6(3478.0) 
3.90 (49.0) 
4.4 (6.0) 
5.5 (52.0) 
7.4 (772.0) 
2.3 (10.0) 

'< l'or lognormal distnbuüons, values in brackets denote the nominal values; the other values concern the log-
transformed counterparts. 

The distributions of the nitrification, protonation and aluminium hydroxide 
weathering rate constants were chosen somewhat arbitrary around a calibrated value, 
since very little is known about the uncertainty/variability of these parameters. The 
distribution type was assumed to be uniform. The distributions of the base weathering 
constants were based on information in De Vries and Breeuwsma (1986), whereas the 
aluminium hydroxide equilibrium constant distribution was derived from Lindsay 
(1979) and May et al. (1979). Distributions of the selectivity constants were derived 
from a field survey by Kleijn et al. (1989). Contrary to other soil parameters, the 
distribution type of the selectivity constant was assumed to be lognormal. 
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Correlations 

Naturally, various parameters are correlated. 11ère we only consider those correlations 
for which we have obvious indications, i.e. those with a correlation coefficient greater 
than 0.5. Correlations for deposition parameters, turnover parameters of roots and 
needles and selectivity constants included in the analysis are given in Table 7. 

Table 7 Correlations used 

Parameter 1 Parameter 2 Correlation coefficient 
FSO,M FN02*d 0.77 
FS02dd FNHijd 0.89 
FNOijj FNH)dJ 0.51 
FCldu. FNajr 0.80 
kf Alr -0.80 
k,ä A„ -0.60 
ft t f„2 -0.67 
KIL. KAL- 0.52 

__KK,X KNHJC, 0 J 6 

Especially, the dry deposition fluxes of SOx and NIIX appear to be strongly 
correlated. The same is true for the wet deposition fluxes of Na and CI. The 
correlations between deposition parameters are based on bulk precipitation and 
throughfall data in the 27 coniferous stands mentioned before (Houdijk, 1993; Ivens et 
al, 1988; Kleijn et al, 1989). The correlation between kf and At,, is based on the 
knowledge that the product kf A/,, lies between M 0 3 and 4T03 kg ha ' a ' (Kimmins 
ft a/., 1985; Tiktak et ai, 1988). The correlation coefficient used was determined by trial 
and error. The same holds for the correlation between k„i and Art. The correlation 
between the root distribution parameters (frt i a nd / , j) was based on the field survey of 
Oterdoom et al (1991). A correlation wi th / , 3 was introduced implicitly by the relation 
ft} - 1 - fi 1 - f„ 2 (see Initial values of variables). The correlations between the 
selectivity constants of Al and 11, which together occupied about 90% of the exchange 
complex, and between K and NI I4 were based on the field survey of Kleijn et al 
(1989). 

2.2.5 Results 

Introduction 

The presentation of the uncertainty in model output is restricted to the pH, NII4/K 
ratio and Al/Ca ratio in two layers of the leptic podzol soil profile: the top of the root 
zone (A, 15 cm) and the bottom of the root zone (C, 20 cm). 

The uncertainty in the model output is presented by: 
- the mean, the standard deviation (SD) and the coefficient of variation (CV) (i.e. 

SD/mean) at the beginning (1987), halfway (2000) and at the end (2010) of the 
simulation period; 
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- the trajectory of the mean, median (50 percentile), 97.5 percentile and 2.5 
percentile during the simulation period (i.e. 1987-2010). 

Furthermore, we give the model output of a simulation carried out with mean 
parameter values, referred to as reference run, in order to investigate the 
correspondence between this result and the mean of all the Monte Carlo simulations. 
With this we can check if one simulation with mean parameter values suffice for a 
regional application, planned in the near future. 

The contribution of the model parameters to the uncertainty is presented by 
the trajectory of the root of the (partial) uncertainty (coefficient) (RTU) of the three 
most important parameters either at the beginning or at the end of the simulation 
period. 

pH 

The mean, the standard deviation (SD) and the coefficient of variation (CV) of the pi I 
in layers 1 and 3 in 1987, 2000 and 2010 are given in Table 8. The model results show 
that the absolute uncertainty (SD) in the pi I in the subsoil is slightly higher than that 
in the topsoil, whereas the opposite is true for the relative uncertainty (CV). Both the 
absolute and the relative uncertainty remain fairly constant in both layers during the 
simulation period. The pi I in both layer 1 and layer 3 increases during the simulation 
period, due to the decreasing deposition. 

Table 8 Mean, SD and CV of the pH in layers 1 and 3 in 1987, 2000 and 
2010 

Laver 
1 
1 
1 

3 
3 
3 

Year 
1987 
2000 
2010 

1987 
2000 
2010 

Mean 
3.0 
3.1 
3.2 

4.1 
4.2 
4.3 

SI) 
0.11 
0.11 
0.13 

0.13 
0.13 
0.14 

CV 
0.04 
0.04 
0.04 

0.03 
0.03 
0.03 

Figure 1 shows the trajectories of the mean, various percentile values, and the 
reference run in both layers during the simulation period. At the initiation of each 
simulation, model outputs are in steady state with respect to deposition. This is done 
by running the model 25 years in advance while keeping all the 'capacity' variables 
constant. 

The reference run and the mean correspond very well. In the reference run the 
pH is only about 0.01 to 0.08 lower than the mean. There is a slight difference 
between the median and the mean in layer 3 (median > mean), which indicates that 
the pH distribution is skewed to the left. 
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pH 
4.0 

3.5 

3.0 -

2.5 L 

Layer 3 

1990 2000 2010 1990 2000 2010 

Time (a) 

Figure 1 Temporal evolution of the mean, the median, the 97.5 and 2.5 percentiles, and 
the reference run of the pi I in layers 1 and 3. 

The temporal evolution of the three parameters with the highest RTU with 
respect to the p H in layers 1 and 3, either at the beginning or at the end of the 
simulation period, is shown in Figure 2. Dur ing the simulation period, the coefficient 
of determination (COD or R2) of the regression models lies between 0.92 and 0.96 in 
layer 1, and between 0.87 and 0.88 in layer 3. 

RTU 
1.0 r-

0.7 

Layer 1 Layer 3 

0.3 

0.0 

ctAl0 

FNH 

CEC, 
3,dd FSO 

UN,» 
2,dd 

- kAla 

•- FNH. 
FSO 

3,dd 
'idd 

1990 2000 2010 1990 2000 2010 

Time (a) 

Figure 2 Temporal evolution of the RTU between model parameters and the pi I in 

layers 1 and 3 

Figure 2 shows that die uncertainty of the p i I in layer 1 is mainly determined 

by uncertainty in the amount of aluminium hydroxide {ctAl„s ;) in that layer, whereas 

the uncertainty in the equilibrium constant of aluminium hydroxide (KA/0X) mainly 

determines the uncertainty of the p i I in layer 3. Both äA/ax and K/V„x determine the 11 
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buffering by aluminium hydroxides. The fact that ctAlax is important in layer 1 is due 
to a strong undersaturation with respect to aluminium hydroxides. In this layer the 
KAlax hardly affects the Al dissolution. However, in layer 3 saturation occurs with 
respect to aluminium hydroxide, thus explaining the importance of KALx. Both the 
uncertainty contributions of ctAlox and KAl0X decrease during the simulation period, 
which is due to the decreasing deposition. 

Next to the Al dissolution parameters, the dry deposition of NII.i (FNIhdi) and 
SO2 (FSO2 à,i), which are the main contributors to the acid load, determine the 
uncertainty of the pH in both layers. It must be noted, that the high RTU value of 
FSO2 dii is mainly due to the correlation between FSO2 M and FNlh a- This is 
confirmed by inspecting the standardised regression coefficients (SRC), a measure 
which does not account for correlations (see Section Statistical Analysis). The SRC of 
FS02HM layer 1 lies between -0.21, in 1987, and -0.01, in 2010, and the SRC otFNH, 
between -0.18, in 1987, and -0.22, in 2010. For layer 1 the N content in needles (ctNt) 
and the CEC in that layer (CECi) also appear to be important, especially as the 
simulation period proceeds. For ctNk, this is due to the increase in the relative 
contribution of the internal N cycle to the acid load. It must be noted, however, that 
the N content in the needles has been kept constant over the simulation period (see 
Section Restrictions), whereas it will most probably decrease as a result of the decreasing 
N deposition (Van den Burg et al., 1988; Van den Burg and Kiewiet, 1989). The 
uncertainty contribution of ctNk might thus be overestimated. The increase in the 
uncertainty contribution of CECi with time, is also caused by the change in 
deposition: a decrease in H load leads to less aluminium dissolution resulting in Al 
desorption and II adsorption. However, the contribution of the CEC is temporal: 
when the deposition level remains constant after the deposition reduction period, a 
new equilibrium is installed. Consequendy the uncertainty contribution will decrease. 

Molar N H 4 / K ratio 

The mean, the SD and the CV of the molar NH 4 /K ratio in 1987, 2000 and 2010 are 
given in Table 9. 

Table 9 Mean, SD and CV of the molar NH4/K ratio in layers 1 and 3 in 
1987, 2000 and 2010 

I .ayer 
1 
1 
1 

3 
3 
3 

Year 
1987 
2000 
2010 

1987 
2000 
2010 

Mean 
3.4 
1.8 
1.2 

0.5 
0.2 
0.0 

sn 
1.2 
0.7 
0.6 

0.6 
0.3 
0.1 

CV 
0.35 
0.40 
0.45 

1.1 
1.6 
3.2 

These model results show that the absolute uncertainty (SD) of the NH4/K 
ratio in the topsoil (layer 1) is greater than in the subsoil (layer 3), whereas the 
opposite is true for the relative uncertainty (CV). In both layers the absolute 
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uncertainty decreases during the simulation period, due to the decrease in (N) 
deposition. On the other hand, the relative uncertainty increases, especially in layer 3. 
The deposition reduction leads to a depression of the mean molar NH4/K ratio in 
both layers. The molar NH4/K ratio in layer 3 is permanently about 1 to 2 units lower 
than in layer 1. This is mainly caused by nitrification and to a lesser extent by NH 4 

uptake. During the entire simulation period the molar NH4/K ratio in the topsoil 
remains below 5, which is generally considered to be an acceptable ratio (Roelofs et al., 
1985; De Vries, 1988). 

Layer 3 4 

8.0 

5.3 

2.7 

nn 

— 

1 

Layer 1 

p97.5 
Median 
p2.5 

"•••.. Reference Run 

I ! 1 I 

1990 2000 2010 1990 2000 2010 

Time (a) 

Figure 3 Temporal evolution of the mean, the median, the 97.5 and 2.5 percentiles, and 
the reference run of the NI I4/K mol ratio in layers 1 and 3 

Figure 3 shows the time evolution of the mean, various percentile values and 
the reference run of the molar NI I4/K ratio. Figure 3 clearly confirms the difference 
in absolute uncertainty between layers 1 and 3 shown in Table 9 In layer 1 the 
reference run lies somewhat lower than the mean, but the similarity is striking. In layer 
3 the difference is more substantial. The median lies also below the mean, which 
toiplies that the distribution is skewed to die right. 

Figure 4 shows the RTU trajectories of the three parameters with the highest 
RTU either at the beginning or at the end of the simulation period. During the 
simulation period the COD of die regression models lies between 0.92 and 0.94 in 
layer 1, whereas it decreases from 0.82 at the beginning to 0.46 in layer 3. Although 
the COD at the end of the simulation period is low, we still use the RTU for the 
analysis, because data transformations did not improve the COD. However, one 
should bear in mind, that the COD in layer 3 is decreasing at the end of the simulation 
period to an unacceptably low value, which means that the RTU is no longer an 
optimal measure to quantify the uncertainty. 
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Figure 4 Temporal evolution of the RTU between model parameters and the NII4/K 
mol ratio in layers 1 and 3 

At the beginning of the simulation period the uncertainty in the molar NI I4/K 
ratio in layer 1 is mainly determined by the dry depositions of NH3 (FNHjdi) and SO2 
(FSO2 M) and the dry deposition factor (J,u). During the simulation period, the 
uncertainty contribution of the deposition parameters decreases, whereas the influence 
of the N content in needles (ctNt) and the nitrification rate constant [k„j /) increase. 
This means that the uncertainty contribution of the internal N cycle becomes greater 
than the contribution of the external N load (compare the pll). The uncertainty 
contribution off,u remains more or less constant. 

Contrary to layer 1, the uncertainty in layer 3 is mainly determined by 
parameters influencing the NIL» concentration. As in layer 1, FNII) M and FSO2 M 
mainly determine the uncertainty at the beginning of the simulation period, whereas 
their influence decreases when the simulation period proceeds. For both layers it is 
remarkable that FSO2 M strongly contributes to uncertainty in the molar NI I4/K ratio. 
This is caused, however, by the predefined correlation between FSO? dd and FNIh M 
(see Section Correlations). Similar to layer 1, the influence of the internal N cycle 
increases with time. In the year 2010 the biomass amounts of roots (A^) and needles 
(A/,) contribute strongly to the uncertainty of the NI 14/K mol ratio. Remarkable is 
also the relatively high uncertainty contribution of the NII4 selectivity constant in layer 
3 (KNH-i x 3). As in layer 1, the impact of the deposition parameters decreases, 
whereas, unlike in layer 1, the nitrification rate parameter in layer 2 (k„,• 2) decreases 
too. 

Molar A l /Ca ratio 

The mean, the SD and the CV of the molar Al/Ca ratio in 1987, 2000 and 2010 are 
given in Table 10. 
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Table 10 Mean, SD and CV of the molar Al/Ca ratio in layers 1 and 3 in 
987, 2000 and 2010 

J-aver 

3 
3 
3 

Year 
1987 
2000 
2010 

1987 
2000 
2010 

Mean 
2.3 
1.5 
1.0 

9.8 
10.5 
5.3 

SD 
1.2 
0.9 
0.6 

5.0 
11.6 
6.5 

CV 
0.53 
0.59 
0.59 

0.51 
1.1 
1.2 

From these model results it is clear that both the absolute (SD) and the relative 
(CV) uncertainties in layer 3 are much greater than the uncertainties in layer 1. The 
absolute uncertainty in layer 1 decreases with time, whereas the relative uncertainty 
remains fairly constant. On the other hand in layer 3 there is a dramatic increase in 
uncertainty, especially in the period between 1990 and 2000 both in the relative and 
the absolute uncertainty. Furthermore the mean also increases during this period. This 
is caused by changes in the adsorption complex. As a result of the decreasing 
deposition, the concentrations of II and the Al decrease too. This leads to exchange 
°f Ca against II, which results in a relatively stronger decrease in the Ca concentration 
than the decrease in the Al concentration, leading to a temporal increase in the molar 
Al/Ca ratio. 
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Figure 5 Temporal evolution of the mean, the median, the 97.5 and 2.5 percentiles, and 
the reference run of the Al/Ca mol ratio in layers 1 and 3 

Figure 5 shows the time evolution of the mean, various percentile values, and 
the reference run of the molar Al/Ca ratio. In layer 1 the reference run is more or less 
equal to the mean. In layer 3, however, the reference trajectory clearly deviates from 
the mean after 1996. 

81 



II Evaluation on a site scale 

It is clear that eventually the decrease in deposition has a positive effect on the 
molar Al/Ca ratio. In both layers the mean molar Al/Ca ratio decreases by about 
50%. However, when a dynamic nutrient cycle would have been considered, the 
decrease in molar Al/Ca ratio would probably have been less. As a result of decreasing 
N contents in the needles, the acid production caused by the N mineralisation 
followed by nitrification would be lower. 

It is remarkable that, in spite of the strong reduction in deposition, the mean 
Al/Ca ratio in layer 3 remains above 1, which can be considered an acceptable value 
(De Vries, 1988). However, simulations over a longer time period showed that the 
mean Al/Ca ratio in layer 3 will decrease further by 3 units in the period 2010 to 2030, 
due to a decrease in Ca adsorption. 

Contrary to the other analysed model outputs, we used the rank transformed 
data of the molar Al/Ca ratio in layer 3. This is done, because a linear regression with 
the original data resulted in a bad 'fit' (low COD), which was highly improved by rank 
transformation as shown in Figure 6. The COD in layer 1 lies, during the entire 
simulation period, between 0.94 and 0.96. 
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Figure 6 The COD and the RCOD in layer 3 during the simulation period 

Figure 7 shows trajectories of the three parameters with the highest RTU in 
layer 1 and the highest standardised rank transformed regression coefficient (SRRC) in 
layer 3, either at the beginning or at the end of the simulation period. The uncertainty 
of the Al/Ca ratio in layer 1 is mainly determined by the content of aluminium 
hydroxide {ctAl„s i), the deposition of Ca (FCa,i„), and the Ca content in the needles 
(ctCah). The uncertainty contribution of ctAlax t slightly increases with time, which is a 
result of a decrease in ctAl0X i during the simulation (dissolution of aluminium 
hydroxide due to acid deposition). When simulations are carried out over a period of 
100 a (De Vries and Kros, 1989) the uncertainty in the Al/Ca ratio is almost 
completely determined by the uncertainty in ctA!0X /. The influence of FCaj,. and ctCai,. 
on the uncertainty remains fairly constant during the simulation period. 
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Figure 7 Temporal evolution of the RTU between model parameters and the Al/Ca 
mol ratio in layers 1 and 3 

2010 

At the bottom of the root zone, it is mainly the Ca deposition (FCa^fù) which 
determines the uncertainty in the Al/Ca ratio, although it slighdy decreases during the 
simulation period. Remarkable is that also the Ca weathering constant of primary 
minerals (kCa„,) significantly contributes to the uncertainty. In this context, it is 
important to note that the values of the SRRC in layer 3 are negative, since higher 
values of FCa,iw, / « a n d kCa„, result in higher Ca concentra dons and thereby in lower 
Al/Ca rados. The RTU is always posidve (see Section Statistical Analysis). 

2.2.6 Discussion and conclusion 

Discussion 

The information provided by the uncertainty analysis can be used as a basis for further 
model development and data collection. The processes related with the relatively 
certain parameters could be aggregated. However, one should be aware that the 
uncertainty depends strongly on the considered output. For example, the uncertainty 
contribution of kMgt would be more pronounced when the Mg concentration was 
considered. In order to reduce the uncertainty of the most critical parameters, it is 
necessary to make a distinction between uncertainty due to natural variability and 
uncertainty due to a poorly defined model parameter distribution. Important 
parameters whose uncertainties mainly originate from inaccurate and/or insufficient 
data are KAl0X,fa, kni. The uncertainty related with these parameters can be reduced by 
additional data collection and/or calibration on relevant field measures. The 
uncertainty of the other group of important parameters originates mainly from natural 
variability, i.e. mainly ctAL, FNH} dd, FS02 dd, ctNfr. The uncertainty related to those 
parameters is simply a fact of nature. 
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In general, the model outputs of a simulation with average parameter values 
correspond quite well with the average of the outputs from all the Monte Carlo 
simulations. This is related to the linear behaviour of most model outputs, which is 
expressed by a COD value close to 1 for most regression models. However, replacing 
the original RliSAM by these linear regression models (frequently called 'meta-model') 
in further studies is not suitable. 

The regression models are mainly descriptive and have not much explanatory 
value. The coefficients in these models are highly time-dependent. Moreover, their 
values depend on the specific deposition scenario considered in this study. The 
relation with the important processes at hand does not show up clearly and explicitly, 
and therefore their use for further in-depth studies is rather limited. 

Conclusions 

A decrease in deposition leads almost directly to a strong decrease in NILj/K ratio, a 
slight decrease in Al/Ca ratio, and a slight increase in pH. When a non-stationary 
nutrient cycle had been considered, the observed effects would probably have been 
stronger, since the assumption of a stationary nutrient cycle may have led to an 
overestimation of the NH4/K and the Al/Ca ratio, and an underestimation of the pi I. 

The relative uncertainty, determined by the variation coefficient, strongly 
depends on the considered model output, soil layer and time and is: 
- high for the NI I4/K ratio and the Al/Ca ratio and low for the pi I; 
- always larger in the subsoil than in the topsoil; 
- nearly constant for the pH in both topsoil and subsoil and for the NII4/K and 

Al/Ca ratios in the topsoil, whereas it strongly increases with time for both ratios 
in the subsoil. 

The uncertainty contribution of model parameters on model outputs depends 
on the considered model output, soil layer, and time as shown in Table 11. 

Table 11 The most important uncertainty sources for the pH, NH4/K and 
Al /Ca ratios in the topsoil and the subsoil at the beginning (1987) and at 
the end (2010) of the simulation period. 

Model output 

Top soil 

Sub soil 

pff 
Begin 
ctAL 
F SO 2 id 
FNlhu 

KAL 
FNH;dd 

FS02,u 

Fnd 
ctAL 
ctNi,, 
CEC 

KAL 
FNH,u 
FSO2M 

NH4/K 
Begin 
FNH)dd 

FSÖ2M 

JM 

FNHuu 
F SO 2 M 

k. 

Knd 
ctN/„ 

k. 

A„ 
Ab 

KNU4i, 

Al/Ca 
Begin 
ctAL 
FCaj, 
ctCa/r 

FCad, 
fdj 
kCa„ 

I'.nd 
ctAL 
FCaj, 
ctCai, 

FCa,tw 
fid 
kCa„ 

The uncertainty in pH is mainly determined by the content of aluminium 
hydroxides {ctA.l„s) in the topsoil and the aluminium hydroxide equilibrium constant 
(KA/0X) in the subsoil. Furthermore, the dry depositions of NH3 (FNlh dd) and SO2 
(FSOidi) also contribute strongly to the uncertainty of the pi I in both the topsoil and 
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subsoil. I lowever, at the end of the simulation period, at a low acid deposition load, 
the uncertainty contribution of the deposition decreases (external N cycle) and the 
contribution of the N content in needles (dN/,) increases (internal N cycle). 

At the beginning of the simulation period, the uncertainty in the NH 4 /K ratio, 
is mainly determined by the dry deposition of NI h (FNIIJM) for both the topsoil and 
the subsoil, the dry deposition factor of base cations (fdj) for the topsoil, and the 
nitrification constant {k„) for the subsoil. At the end of the simulation period, the 
influence of the dry deposition of ammonia decreases (external N cycle), and the 
uncertainty contribution of the nitrification constant {k„, topsoil), the N content in 
needles {ctNi,., topsoil), and the amounts of roots and needles (A,i, A/,., subsoil) 
increase (internal N cycle). 

The uncertainty in the Al/Ca ratio in the topsoil is mainly determined by the 
content of aluminium hydroxide (äAI„x), followed by the wet deposition of Ca (JFCa.h) 
and the Ca content in needles {ctCaii). In the subsoil it is mainly the total deposition of 
Ca (FCa,h., fi,i), followed by the Ca weathering rate constant of primary minerals 
(kCa„r), which determines the uncertainty. The uncertainty contribution of these 
parameters remains more or less constant during the simulation period. 

The parameters that hardly influence the uncertainty of the considered model 
outputs are the bulk density (rho) of all soil layers, the S content in leaves (äS/,), stems 
(rtSst) and branches (ctSi,,), the foliar exudation rate constant of Mg (kAfyi) and the 
foliar uptake constant of NI 13 (fl<Hsjï). 

Acknowledgements 

We thank DrJ.P. Hettelingh and Dr J.J.M, van Grinsven (National Institute of Public 
Health and Environmental Protection) for their constructive comments on the 
manuscript. We are grateful to J.C. Voogd for technical support. This research was 
financed by the Dutch Priority Programme on Acidification. 

85 



II Evaluation on a site scale 

86 



2.3 Modelling effects of acid deposition and climate 
change on soil and runoff chemistry 

Abstract 

Elevated CO? levels, caused by anthropogenic emissions of CO? to the atmosphere, and higher 

temperatures may also lead to increased plant growth and uptake o/N, but increased temperature 

may lead to increased N mineralisation, causing enhanced N-leaching. The overall result of both 

counteracting effects, particular in the long run, is largely unknown. To gain insight in those long-term 

effects, the geochemical model SMART2 was applied, using data from the catchment-scale experiments 

of the RAIN and CUMEX projects, conducted on boreal forest ecosystems at Risdalsheia (southern 

Norway). These unique series of experiments at the ecosystem scale provides information on the short-

term effects and interactions ofN deposition and increased temperature and CO2 on C and N geling 

and especially the runoff chemistty. To predict changes in soil processes in response to climate change, 

the model was extended, by including the temperature effect on mineralisation, nitrification, 

denitrification, Al dissolution and mineral weathering. The extended model was tested on the two 

manipulated catchments at Risdalsheia and long-term effects were evaluated by performing long-time 

runs. The effects of climate change treatment, which resulted in increased N fluxes at both catchments, 

were slightly overestimated by SAL4RT2. The temperature dependency of mineralisation was simulated 

adequately, but the temperature effect on nitrification was slightly overestimated. Monitored changes in 

base cation concentrations and pH, though were simulated quite well with SMART2. The long-term 

simulations, indicate that the increase in N runoff is only a temporal effect; on the long-term, no effect 

on total N-leaching is predicted At higher deposition level the temporal increase in N-leaching lasts 

longer than at low deposition level. Contrary to N leaching, a temperature increase leads to a 

permanent decrease in Al concentrations andpH. 

2.3.1 Introduction 
Emissions of CO2 and other greenhouse gases to the atmosphere may lead to an 
increase in global temperature over the next decades. Largest changes are expected at 
high latitudes (Houghton et al., 1990). Primary productivity in boreal ecosystems has 
increased in large regions of northern Europe and eastern North America due to 
enhanced N deposition, since these systems are N-limited (Kauppi et al, 1992). Higher 
C 0 2 concentrations may lead to increased plant growth, C sequestration and uptake of 
N. Increased temperatures, on the other hand may lead to increased mineralisation 
(Stanford et al, 1973; Edwards, 1975), causing CO2 production and enhanced N-
leaching. The overall result and in particular the long-term effects are largely 
unknown. 

Large-scale whole-ecosystem experiments provide one of the tools to study the 
response of the ecosystem and to evaluate geochemical models that include global 
change processes. At Risdalsheia, southern Norway, the effects and interactions of N 
deposition and increased temperature and CO2 on C and N cycling and especially the 
runoff chemistry have been examined at catchment-scale experiments on boreal forest 
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ecosystems (Van Breemen et ai, 1998; Wright, 1998). Runoff chemistry is of particular 
interest. It provides a sensitive integrated signal of change in terrestrial catchments; 
while changes in the internal N cycle are often difficult to discern directly due to 
spatial and temporal variability. 

To quantify the impacts of acid deposition, land use and climate change at large 
(regional to national) scale, simulation models are being used. The models MERLIN 
(Wright et al, 1998b) and MAGIC7 (Wright et al, 1998a) have been applied at 
Risdalsheia to test effects of climate change on runoff chemistry. In this paper we 
evaluate the enhanced SMAR'I'2 model (Mol-Dijkstra and Kros, 2001) using the control 
and the manipulated catchments at Risdalsheia. SMAR'I'2 has been developed in order 
to integrate soil acidification processes and nutrient cycling, and to predict long-term 
effects of acid deposition scenarios on a national and continental scale. To quantify 
the effects of climate change on soil processes, we included the effect of temperature 
on these processes to integrate effects of climate change, acid deposition and nutrient 
cycling in a quantitative way. This extended version of SMART has also been applied 
on the European scale (Ferrier and Helliwell, 2000). The Risdalsheia experimental 
catchments are very suitable for application of SMART2, because the experimental 
design of the experimental catchments corresponds with the temporal and spatial 
resolution of the model output. We used annual fluxes of solutes in runoff (Wright et 
al, 1998a), corresponding to the time steps of one year that is used by SMAR'I'2. 

The major aims of this paper are to (i) test the hypothesised temperature effects 
by calibration and validation of the model on a manipulated catchment and (ii) 
evaluate long-term effects of climate change on C and N cycling and especially on N 
runoff. To test the temperature effect in SMAIU'2, we first calibrated the model at the 
control catchment ROLF, and next, after the incorporation of the temperature effect, 
at the EGIL catchment where soil temperature was increased. Finally, we evaluated 
the model at the KIM catchment which was subjected to elevated air temperature and 
CGvpressure. The effect of deposition reduction was only evaluated at the KIM 
catchment. Long-term effects of deposition reduction, temperature rise and increase 
of CGvpressure were evaluated by extrapolating the existing treatments at Risdalsheia 
for 30 years. 

2.3.2 Modelling approach 

Model structure 

SMAR'I'2 is a simple, single-layer soil acidification and nutrient cycling model. It 
includes the major hydrological and biogeochemical processes in the vegetation, litter 
and mineral soil. The model simulates changes in H, Al, divalent base cations 
(BC2=Ca+Mg), K, Na, NH4 , NO3, S0 4 , HCO3 and CI concentrations in the soil 
solution. In addition, it simulates changes in solid phase characteristics connected to 
the acidification status, i.e. carbonate content, base saturation and amorphous Al 
precipitates. The SMARl'2 model consists of a set of mass balance equations, 
describing the soil input-output relationships, and a set of equations describing the 
rate-limited and equilibrium soil processes. SMAR'I'2 is an extension of the SMART 
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model (De Vries et ai, 1989). Since the (original) SMART model does not include a 
complete nutrient cycle, it is not suitable for calculating N availability. Furthermore, it 
does not include upward solute transport. Therefore, the model SMART was extended 
with a nutrient cycle (litterfall, mineralisation and uptake) and an improved modelling 
of hydrology, including runoff, upward and downward solute fluxes. Most of the 
extensions were derived from the dynamic multi-layer model Ri:sAM (De Vries et ai, 
1995a) and the steady-state multi-layer model MAC Al. (De Vries «toi, 1994c). Figure 1 
gives a schematic representation of the SMART2 model. The included processes are 
summarised in Table 1. 
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Figure 1 Schematic representation of the processes included in the SMART2 model 
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Table 1 Overview of processes included in SMART2 

Process 
Input. 
Total deposition 

Upward seepage 

Water Balance 

Rate-limited reactions: 
1'oliar uptake 
1'oliar exudation 
Litterfall 

Root decay 

Mineralisation 

N immobilisation 

Growth uptake 

Nitrification 

Denitri fixation 

Silicate weathering 
Equilibrium reactions: 
CO2 Dissociation 
Dissociation of 
organic acid 
Carbonate weathering 
Al hydroxide 
weathering 
Cation exchange 
Sulphate sorption 

Klcment 

SO4, NOj , 
BC2 '), Na, 
S ( ) 4 ,NO, , 

N IL , 
K,C1 
N IL , 

BC2 '), Na, K, CI 

-

NIL; 
BC2 '), K 
BC2 i), K, 
N IL , N O , 
BC2 », K, 
N I L , N 0 3 

BC2 '), K, 

N I L , N 0 3 

N I I 4 , N 0 3 

BC2 '), K, 
N I I 4 , N 0 3 

N I L . N O j 

NO3 

Al, BC2 '), 

IICO3 
RC(K) 

BC2 ') 
Al 

Na ,K 

IP) ,A1,BC2 ' ) 
I P ) , S 0 4 

Process description 

Inputs; deposition fluxes arc multiplied by an 
clement- and vegetation-dependent filtering factor2) 
Inputs 

Inputs; precipitation, upward seepage, 
évapotranspiration 

Linear function of total deposition 
Lquals foliar uptake 
Logistic growth 

Linear function of litterfall 

first-order reaction and a function of pi I, Mean 
Spring Water table (MSW) and C /N ratio of the 
litter 

Proportional to N deposition and a function of the 
C /N ratio soil organic matter 
Logistic growth 

Proportional to net NI I4 input and a function of 
pi I, Mean Spring Water table (MSW) and C /N 
ratio 
Proportional to net NO3 input and a function of 
pi I, Mean spring water table (MSW) and C /N ratio 
Zero order reaction 

CO2 equilibrium 
Oliver equation 

Carbonate equilibrium 
Gibbsite equilibrium 

Gaines-Thomas equations 
Langmuir equation 

1) BC2 stands for the sum of divalent base cations (Ca + Mg) 
2) The vegetation-dependent filtering factor takes the roughness length of the canopy into account 
3) Implicitly, 11 is affected by all processes. This is accounted for by the charge balance 

SMART2 was constructed using a process-aggregated approach to minimise 
input data requirements for applications on a regional scale. This implied the 
following simplifying assumptions: 

i. The various ecosystem processes have been limited to a few key processes: 
The soil solution chemistry in SNLVRT2 depends solely on the net element input 

from the atmosphere (deposition), groundwater (upward seepage), nutrient cycling 
processes (uptake, litterfall, mineralisation and immobilisation) and the geochemical 
interaction in the soil ((de)nitrification, CO2 equilibria, weathering of carbonates, 
silicates and/or Al-hydroxides and cation exchange). Processes that are not taken into 
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account, are: (i) N fixation and NII4 exchange, (ii) uptake, immobilisation and 
reduction of SO4 and (iii) complexation of Al with OH, SO4 and RCOO. 

//. The included processes have been represented by simplified conceptualisations: 

Soil interactions are either described by simple rate-limited reactions (e.g. 
uptake and silicate weathering) or by equilibrium reactions (e.g. carbonate and Al-
hydroxide weathering and cation exchange). Influence of environmental factors such 
as pi I on rate-limited reactions and rate-limitation of weathering and exchange 
reactions are ignored. Solute transport is described by assuming complete mixing of 
the element input within one homogeneous soil compartment with a constant density 
and a fixed depth (at least the root zone). Because SMART2 is a single layer soil model 
neglecting vertical heterogeneity, it predicts the concentration of the soil water leaving 
the root zone. The annual water flux percolating from this layer is taken equal to the 
annual precipitation plus upward seepage minus évapotranspirations, which terms 
must be specified as a model input. The time step of the model is one year, so 
seasonal variations are not considered. Justifications for the various assumptions and 
simplifications have been given by De Vries et al. (1989). Furthermore, Chapter 2.4 of 
this thesis will address the consequences of model simplification into more detail. 

Process descriptions 

In this section an overview of the process descriptions used in the SMART2 is given. 
An explanation of the symbols used is given in Annex 1. 

Mass balances 

For each of the cations (Na, K, BC2=Mg+Ca, NH4, Al) and strong acid anions (S04, 
NO3, CI) considered in SMAR'I'2 the mass balance equation for a compartment with 
depth £ is given by: 

j t • K,(z) = x> + x»k) - PE(z) • [X](z)+x„(z) (l) 

where Xw(^) is the total amount of ion X in the soil solution (mole m 2) of a soil 
compartment with depth ç (m). X„ is the sum of all input fluxes to the soil 
(mole m 2 a1). X;«($ is the sum of all interaction fluxes (mole m 2 a ' ) in the soil at 
depth £ (m). X„„(%) is the net seepage flux (mole nr2 a ') entering a soil compartment 
with depth z ( s e e Eq. 6). [XJ(^) is the concentration of ion X (mole nv3) in the soil 
compartment with depth 3, In SMARI'2 the precipitation excess at depth % PE(^) is 
calculated as: 

PE(z) = P-(l-fmt)-frn(z)-Tr (2) 
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where Pis the precipitation, 7'rthe actual transpiration, f„„ the interception fraction (-) 
and fhaüf) the cumulative transpiration (water uptake by roots) fraction (-) in the root 
zone at depth $, which is calculated as: 

K(z) = • 
1 -

1 

J —7 n -v. 

V 

for i < Tr; 

for z > T 

(3) 

where 7'^ is the thickness of the root zone (m) and rutxp is an exponent determining 
the water uptake pattern. 

Upward seepage 

Upward seepage is included in the mass balance, Eq. (1), as a net term, i.e. the input of 
the upward seepage flux (Xs(„) minus the lateral output flux (X^). Figure 2 gives an 
overview of the water balance in the soil system, including seepage. 

z=0 

z=z 

frru(z)-Tr 
Transpiration 
flux 

Troughfall 
flux 

1 

p(1-fJ-KJz)-Tr 
> 

1 

P(1-fJ-Tr 
Precipitation 
excess 

frJz)Se 

Se 
Seepage flux 

CM 

K (z)Se 
Lateral 
flux 

(1-frJSe 
Lateral 
flux 

z=Trz 

Figure 2 Water balance in SMART2 

The input to the soil system consists of the throughfall flux, P • (1 - ƒ,„) and the 
upward seepage flux, Se. In SMARI'2, upward seepage is defined as the flux at the 
bottom of the root zone. The upward seepage flux is assumed to be reduced at 
shallower depth. For the sake of simplicity for seepage input into the root zone, the 
same reduction function with depth is used as for transpiration, i.e. frn(%), cf. Eq. (3). 
Consequently, the seepage input to the compartment with depth ^ equals: frrJ$ • Se. 
The seepage flux of ion Xis described as: 
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X«(z) = fr„(z)-Se-[Xl (4) 

where [X\„ stands for the concentration of ion X i n the seepage water (mole nv3) and 
Se the upward seepage flux (m a '). Because it is stated that the transpiration is 
independent of the upward seepage flux, Se, there must be a lateral output flux which 
equals the seepage input: -Jh*0d • Se. 

The concentration of ion X in the lateral output flux at depth ^ equals the 
concentration in the soil compartment, [X](^). Consequently, the lateral output flux of 
ion X is described as: 

Xil(ï) = -frni(z)-Se-[X](z) (5) 

where Se is the upward seepage flux (m a '). The net effect of seepage at depth % 
Xsen(^), is t h u s : 

Xs,ÄZ) = frn(&Se-([Xst)-[X](z)) (6) 

From Eq. (6) it is follows that the influence of upward seepage on the 
concentration in the considered soil compartment is larger as the concentration of ion 
X in the upward seepage water deviates more from the concentration in the soil 
solution. Note that the remaining part of the upward seepage flux that does not reach 
depth çis draining laterally. This lateral flux equals: - (1 - fr^) • Se • [Xlr]. 

Input fluxes 

The external input by atmospheric deposition to the soil compartment is influenced 
by the total deposition (td), foliar uptake (fu), foliar exudation (fe) and mineralisation of 
litter (mi). Their presence depends on the component involved: 

A/m=0 (7) 

BC2 /A=BC2 / r f + BC2 / f + BC2m/. (8) 

K,=Kld+Kfr+Kmi (9) 

Nam=NatJ (10) 

KH4in=KH4</d-KH4iJu+Nm (11) 

M \ » = N 0 3 > r f (12) 

S04i>i=S04„ (13) 
HcOXi„=0 (14) 

RCOOa=0 (15) 
0 * = C 7 „ (16) 
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And the input of 11 is calculated from the charge balance: 

H A =S04J. +NOXm +HCO^„ +C/,„ +RCOO,„ -

-NH4tm-A/,„-BC2,„-K,„-Nail 

(17) 

Canopy interactions 

The canopy interactions included in SMARI'2 were taken from the RESAM model (De 
Vries eta/., 1995a). Foliar uptake of NIL» and II is described as: 

Xfu=frXfu-Xld (18) 

where frX/u is the foliar uptake fraction of II or NIL». For H/u the deposition of free II 
(H,d) is calculated from the charge balance: 

Hl4 = S0AM +N0Xtd + Clld -NHAM -BC2ld -Ka -Nald (19) 

Foliar exudation of the cations (K, BC2) is taken equal to foliar uptake of NH4 
and H (cf. De Vries et al, 1995a), and is assumed to be triggered by exchange with 
these ions (Roelofs et ai, 1985; Ulrich, 1983). The foliar exudation of each individual 
cation is calculated as: 

Xß=frXß-(NH4Ju+Hß) (20) 

with X=K, BC2,frXfi is the foliar exudation fraction of K and BC2 (-), and sum oîfrKj, 
znàfrBC2f, equals 1. 

Litterfall and root decay 

The inputs by litterfall and root decay in SMART2 affecting the mineralisation flux, 
were also taken from the RESAM model (De Vries etal., 1995a). In SMART2, litterfall is 
the input to an organic pool containing N, BC2 and K. Contrary to RESAM, SMART2 
does not include a physical litter layer in which a separate concentration is calculated. 
Only an organic pool is modelled, which has the same soil solution concentration as 
the mineral soil. Input fluxes of N, BC2 and K by litterfall, X^are described as: 

Xf={\-frXHyAmrctXk (21) 

where Am//is the amount of litterfall (kg ha ' a1), ctXk is the contents of element X in 
leaves (mole kg^1) and JrX„ are reallocation fractions for element X in leaves (-). 
Reallocation of K and BC2 in leaves prior to litterfall is considered negligible (i.e.frK„ 
— frBC2„ = 0). The amount of stems and litterfall are described by a logistic growth 
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function (see Eq. 54 and 55). High contents of N in leaves and fine roots in Dutch 
forests are caused by the high N deposition level. To account for this effect, the N 
content in leaves is calculated as a function of the N deposition according to: 

«N* = \ <****. + (^, , .v - <**>*.) • K'"~-T
 f0r N * - K N '" * N " - (22) 

«N*v~ ßrN,d>N,^x 

where ctN/,;„„ and ilN/,-,** are the minimum and maximum N content in leaves (mole 
kg-') and AU«, and N,d,ms- are the minimum and maximum total deposition levels of N 
(mole ha1 a1) between which the N content of leaves is influenced. For the 
Netherlands N,j,m„ = 1500 molc ha1 a ' and N,j,»x = 7000 moU ha ' a ' were used. 
Contrary to RKSAM the reallocation fraction (frXn) is not considered as a function of 
the N content in the foliage, frX„ remains constant during the simulation period. 

The dynamic turnover of fine roots is coupled with the amount of litterfall and 
divided between the litter compartment (depth independent) and the mineral soil 
(depth dependent). The root decay flux in the litter compartment (X«;/,) is described 
as: 

X „ , , = X , •*ƒ•>„., (23) 

where ncf is the nutrient cycling factor (-), which is defined as the ratio of the root 
turnover (related to nitrogen) and the above ground nitrogen cycle (litterfall flux), and 
frrt.it is the fraction of fine roots in the litter layer (-). The depth-dependent root decay 
flux in the mineral soil (X^fâ) is described as: 

^ . « W = A W - X r »ƒ•(!-A,*) (24) 

Mineralisation 

As with canopy interactions, litterfall and root decay, mineralisation in SMAR'I'2 is also 
taken from the RESAM model. For the simulation of the decomposition of above-
ground organic matter (litter, including dead roots in the litter layer) a distinction is 
made between a rapidly decomposing pool of fresh litter (less than one year old) and a 
slowly decomposing pool of old litter (more than one year) (Janssen, 1984). The 
mineralisation flux of N (during mineralisation N is released as NH4), K and BC2 
(mole ha-' a-1) from fresh litter, Xmjr, is described as a fraction of the input of X by 
litterfall and root decay in the litter compartment according to: 

X«,fl =\fi*k + Kt -O" frXÙ-Xr (! + *ƒ • fa) (25) 
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where fr„? is a mineralisation fraction (-) and frXk is a litter leaching fraction (-). 
Leaching only refers to the release of BC2 (=Ca+Mg) and K from fresh litter just after 
litterfall, a process which is especially important for K. Litter leaching is a process 
which differs from mineralisation because organic matter is not decomposed. 

Fresh litter which is not mineralised is transferred to the old litter (humus) 
pool. The mineralisation flux of NH4 , K and BC2 from this litter pool, Xm/j,, is 
described by first-order kinetics (Van Veen, 1977): 

X*.»=*i*,t-'4»*-dXt (26) 

where km,j, is the mineralisation rate constant from old litter (a1), Amu is the amount 
of old litter (kg ha ' ) and ctXn is the content of element X in old litter (mole kgr1)- At 
present, mineralisation of organic matter in the mineral soil layers is not considered in 
SMAR'1'2, except for the mineralisation from root necro-mass, which is fed by root 
decay as described before. The total input by mineralisation (X„!) in the litter layer 
consists of the sum of mineralisation of fresh litter, old litter and the root decay in the 
litter layer: 

Xmi = Xm,/t + Xmi,fl + Xrr!,/I (27) 

Root decay in the mineral soil is considered to be mineralised completely. The 
total mineralisation flux at depth £ becomes equal to: 

*«#, <X) = X
mj, + X«,ji + Xmj, + X * . , (*) (28) 

The flux of organic anions, RCOOmi,M, produced during mineralisation from 
both fresh and old litter and from dead root (mole ha4 a ') is calculated from charge 
balance considerations: 

*COOmM(z) = Nm,t0/(Z) + BC2miJOI(z) + KmM(z) (29) 

Actual values for the mineralisation fraction (frm\fl and ƒ•«/,//) and mineralisation 
rate constant (k„/,ß and km,/!) are described in SMART2 as maximum values, which are 
reduced by factors such as soil moisture (water-table), pH and the C/N ratio. For all 
constituents the maximum value (km;mx and fm,mx) is influenced by the mean water-
table during spring time (Mean Spring Water table, MSW) and the pH. The N 
mineralisation is also influenced by the C /N ratio: 

Jrmi ~ Jrmi,mx ' Umi,MSW' ' Umi,pH ' Um/.CN (^"j 

K-m ~ ^m;,mx * urn,MSW ' rfmi.pH ' rfmi,CN (^ V 

where rfm,Msw, rfm,Pu and rf„i,cN are the reduction factors for water-table, pH and N 
content (C/N ratio) respectively (-). For BC2 and K, rfa.cN - 1. The reduction 
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functions for water-table and pH were partly taken from RESAM (cf. De Vries et al. 
1988): 

rf. mi,MSW 

0.25 for MSW < 0.45 

log10(4 -MSW) for 0.45 < MSW < 2.50 

1 for MSW > 2.50 

(32) 

y ni. til ~ 'mi,pH 

0 for pH < 2.5 
pH - 2 . 5 

2 
pH-\ 

1 

/or 2.5 < pH < 3.5 

> r 3.5 <pH<6 

for pH > 6 

(33) 

The N mineralisation values are reduced at low N contents (high C/N ratios) to 
account for immobilisation by microbes according to (Janssen, 1984): 

rf. mijCN 

1 forCNs<CN, 
CN,-CN, 

forCNm<CNs<(\ + DAmo)-CNm 
DAao-CNae 

0 forCNs>{\ + DAmo)-CNn 

(34) 

where CN„0 is the C /N ratio of the micro-organisms decomposing the substrate (-), 
CNS is the C /N ratio of the substrate (fresh litter (s-fl), old litter {s-It)) and DA„0 is 
the dissimilation to assimilation ratio of the decomposing microbes (-). Values for 
DA„„ and CNm„ are related to fungi because they are mainly responsible for 
mineralisation of forest litter. 

N immobilisation 

Besides implicitly modelled immobilisation by mineralisation, SMART2 includes also a 
description of N immobilisation by soil organic matter, which has also been included 
in the SMART model (De Vries et al., 1994b). The description of N immobilisation is 
based on the assumption that the amount of organic matter (carbon) is constant. 
Consequently, immobilisation of carbon and base cations is not accounted for the 
mineral soil. 

N immobilisation is described by an increase in N content in organic matter. 
When the C/N ratio of the soil (CN<m) varies between a critical (GV„) and a minimum 
value (CNm), the immobilisation rate is assumed to decrease according to: 
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N.._ = 

0 forCNoa<CNa„ 

(Na-Nv-Nk,„)^l™-- forCN„<CNm<CNir (35) 
er mti 

N.-N^-N^ forCNm>CNtT 

The minimum N leaching rate (Ni ma) is calculated by multiplying the 
precipitation excess by a natural background NO3 concentration in drainage water of 
0.02 moU m 3 (Rosen, 1990). During the simulation, the C content is fixed whereas the 
N content is annually updated, by adding the amount of N immobilised during each 
time step to the N amount in the mineral topsoil. The C/N ratio is in turn updated by 
dividing the fixed C pool by the variable N pool according to: 

om AmN:+N:_
 V ' 

Because N immobilisation mainly occurs in- the humus layer and the upper 
mineral soil (Tietema, 1992), the thickness of the zone where N immobilisation (T;z) 
occurs is taken at 20 cm. 

Interaction fluxes 

The interaction fluxes for Al, BC2, K, Na, NIL» and NO3 accounted for in SMART2 
are base cation and Al weathering (we), root uptake (ru), nitrification (ni), 
denitrification (de) and rootdecay in the mineral soil (rd mi). For nitrification and 
denitrification reduction functions as a function of pH and groundwater level are 
included (see Eq. 60 and 61). The interaction fluxes for a compartment with depth % 
are described as: 

^ , „ t ( t ) = ^ » , - S (37) 
BC2,„, (Z) = BC2„-K- fr„(z) • BC2„ (38) 

^ W = ̂ T Ä W ' ^ (39) 
Na„,,(z) = Nam-K (40) 

NH4 i l i /(0 = -A,W-(Nf/4 i„. + NH4>„) (41) 

K0XM = Ml) • (M74>„. - IY03|„ - M) 3 > ) (42) 

S04M(Z) = 0 (43) 

W«\,„,(?) = 0 (44) 

KCOOm,(z) = 0 (45) 

C U t ) = 0 (46) 

98 



Chapter 2.3 

"^(0=J ,04.«,,W+^o J iA /(t)+Ha)3 iA /(o+c/ t o(o+Rcoo t o(o-

Mineral weathering 

Weathering of divalent base cations (BC2=Ca+Mg) and monovalent base cations (Na, 
K) is include as a zero-order reaction. The weathering of Al is related to BC2 
weathering according to: 

Aln=r-BC2„, (48) 

where r is the stoichiometric equivalent ratio of Al to BC2 in the congruent 
weathering of silicates. In SMARl'2 this value is fixed to 2, which is based on an 
average for Ca and Mg (cf. De Vries étal., 1995a). 

Nutrient uptake 

Nutrient uptake is taken from the MACAL model (De Vries et al, 1994c). Total root 
uptake of NII4, NO3, BC2=Ca+Mg, K is described as a demand function, which 
consists of maintenance uptake, to re-supply the needles/leaves/shoots and roots 
(steady-state situation), and net (growth) uptake in stems and branches. The total root 
uptake fluxes for NH4, NO3, BC2 and K (mole ha > a ') are thus described as: 

K03,„=(Nf - N A + N Ç J - — - (49) 
in 

™h,„ = (N f - Nf„ + N , ) • ̂ - ^ (50) 
^ in 

BC2m = BC2lf + BC2jt + BC2xu (51) 

K^Kf+K^K^ (52) 

where gu stands for growth uptake, and N = NH4+NO3. In case of nutrient shortage 
the nutrient contents in the foliage are reduced according to the maximum available 
nutrients. However, the model does not include a feedback of nutrient shortage on 
growth. 

Growth uptake is calculated as: 

Xgu =(Amsl(t)-Amsl{t-\)yctXsl (53) 

where Amfkt) - Ams{tA) is the increment in amount stems for the current year (=time 
step) (kg ha-' a ') and ctXn is the content of element X in stems (mole kg^). The 
current amount stems and branches is forced by a logistic growth function: 
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Amtl(t) = 
Am, .f/,W.V 

\ + tx^{-kä-{ageix+t~tyJ) 
(54) 

where Amit{t) is the amount of stems (and branches) for simulation year / (kg ha '), 
Amstimx the maximum amount of stems (kg ha '), age,,, the initial age of the vegetation 
(forest), tv, the half life-time (a), ^,/is the logistic growth rate constant (a '). 

In the model the amount of litterfall is linked to the stem growth parameters by 
assuming that the maximum amount of litterfall is reached with a three times higher 
growth constant than the maximum amount of stems: 

AmJt) = 
Am Ij.ms 

l + e x p ^ - ^ - ^ + Z - ^ ) ) 
(55) 

where Am/j^ is the maximum amount of litterfall (kg ha ' a1). 

Nitrification and denitrification 

Nitrification and denitrification for the complete soil layer (mole ha-1 a ') are described 
in SMAR'I'2 as a fraction of the net input: 

NH4,„, = A , Nth,„-NIL+-
NH4 

N,, 
- • (N W ; > / -NJ (56) 

( NO,,. 
N03 ,A = A • NOx„,-NOXni + NH4m ~-f^-N„ (57) 

where jr„; znafrj, are the nitrification and denitrification fractions (-), NIl4,m and NOj,;„ 
stand for the gross input fluxes of NIL» and NO3, respectively, cf. Eqs. (11) and (12), 
Mil,™ and N0)tni stands for the root uptake fluxes of NH 4 and NO3 respectively, cf. 
Eqs. (47) and (48), ATH/> and NO;,j„ stands for the immobilisation fluxes in the 
mineral soil of NH4 and NO3 respectively, Eq. (15), Nm;M. is the total mineralisation 
flux, cf. Eq. (28) and Nlh.m is the nitrification flux, cf. Eq. (56). As with 
mineralisation, the maximum values for the nitrification and denitrification rate 
constant, ƒ•„,>* and fr^mx, are adjusted by the mean water-table and pH: 

Jrni ~ jrm,mx ' Um,MSW' ' Um.fiH (58) 

Jrdr ~ jrdt,mx ' U<Ù,MSW ' üé.pll (59) 
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where rf„j/d,,Msw and rf„j/<k,pu a r e t n e nitrification and the denitrification reduction 
factors for the water-table and pH respectively (-). Maximum values are reduced with 
a decreasing mean spring water-table for nitrification, because this process is restricted 
to aerobic conditions, whereas the opposite is true for denitrification. Both rate 
constants are also reduced with decreasing p l l . 

The nitrification reduction functions for mean spring water-table is described as: 

if- MSW' 

rfni,MSW' 

\rfm,MSW,mx 

iniMsw,-» + (?ƒ*•.AW.«V - i«iMsw,„ ) — ßr Zl < MSW < K.2 (60) 
Zz~Zl 

forMSW<Zl 

for zt < MSW 

for MSW >& 

were rfr^Msw;«,« is the soil dependent minimum value of the reduction function (-), and 
% and £? are soil dependent MSW(m) values where the reduction function is changed. 

The nitrification reduction function for pH is described as: 

Uni.pH ~ 

1 
(61) 

'pU l + exp(4-(2.75-/>H)) 

The denitrification reduction function for mean spring water-table is described 

as: 

v *,AOT' — i 

J de ,mm ,mx 

"de,ma,m\ VJ ik,n, 

J de,mswtmn 

for MSW < Om 
x MSW 

- rf^„^ fir 0 < MSW < Zilr 
Zde 

(62) 

for MSW > Xde 

where 34. (m) is the soil-dependent depth of the MSW below which the reduction by 

tfkMsvr (-)• 
The denitrification reduction function for mean pH is described as: 

Vde,fill ~ 

o 
pH - 3 . 5 

for pH < 3.5 

for 3.5 <pH< 6.5 

for pH> 6.5 

(63) 

Cation Exchange and chemical equilibria 

Cation exchange is included for H, Al and BC2 described by Gaines-Thomas 
equations using concentrations instead of activities (cf. De Vries et al., 1989): 
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MLL^KJJ^.ML (64) 
frBCZ, [BC2+] 

frK = KAL^ (65) 
frBC2j 'X [BC2+] 

The charge balance for the exchange complex requires that: 

frl^+frBCl^+frAl^X (66) 

Sulphate adsorption is described by a Langmuir equation: 

jjcpon (67) 

" ^ c1/2+[sor] (67) 

where ctSÖ4 (mole kgr1) is the sorbed amount of SO4, SSC (mole kg:1) the sulphate 
sorption capacity and C</, the half-saturation constant (mole m3). The dissociation of 
CO2, the dissolution of Ca carbonate (calcareous soils only) and the dissolution of Al 
hydroxide is described as (cf. De Vries et al, 1988): 

\l\CO-] = K a h ^ (68) 

Kr, -pC02 
[BC2+]= C >

 2 (69) 

[Al3+] = K . , / „ - [H + f (70) 

The dissociation of organic acids (humic +fulvic acids) is modelled as (cf. 
Posch étal., 1993): 

[RCOO-] = [RCOO„,t]• K *< (71) 

where K, is a pi I dependent dissociation constant, according to (Oliver et al., 1983): 

-logwKa=a + b-pH-c-pH2 (72) 

where the a, b and c are based on experimental data. Oliver et al. derived the values a-
0.96, £=0.90 and ^0 .039 for surface water. 
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The II concentration is determined by charge balance, Eq. (14), because the 
model structure of SMAR'1'2 is based on the anion mobility concept (Reuss and 
Johnson, 1986). The charge balance for the soil solution concentrations equals: 

[H+]=[sof ]+[NO; ]+p ico; ]+[cr ]+[RCOO~ ] -
[BC 2 + ] - [NH 4

+ ] - [Na + ] - [K + ] - [A l , + ] 

Concentrations of K, Na, NII4, NO3 and CI are fully determined by the mass 
balance equation, cf. Eq. (1). The concentration of base cations in non-calcareous soils 
is determined by both the mass balance equation and a change in the adsorbed 
amount of base cations determined by cation exchange equilibrium reactions, Eqs. 
(62) and (63). The concentrations of HCO3 and Al are determined by both the mass 
balance equations and an equilibrium with II, cf. Eqs. (66), (67) and (68). The 
concentration of divalent base cations in calcareous soils is determined by both the 
mass balance equation and a change in carbonate content. In these soils carbonate 
weathering is included, Eq. (67), but silicate weathering, Al hydroxide weathering and 
cation exchange are neglected (the Al concentration is thus set to zero). The 
dissociation of organic acids is modelled by Eq. (69). Sulphate sorption is described by 
a Langmuir isotherm, Eq. (65). The pH is thus influenced by all rate-limited and 
equilibrium processes causing proton production or consumption. 

The dissolved and adsorbed concentrations are calculated by solving fourteen 
equations with fourteen unknowns, i.e. ten concentrations ([H+], [Al3+], [K+], [Na+], 
[BC2+], [SO42], [NO3], [CI], piCOv], [RCOO]), three exchangeable fractions (frIL, 

frBC2ac,frAL) and adsorbed SO4 {äSO-t,a). The numerical solution procedure is given 
in Posch et ai. (1993). 

Inclusion of the effect o f temperature 

The effect of temperature was considered for (i) the mineralisation of old Utter, 
nitrification and denitrification, (ii) Al hydroxide dissolution and (iii) weathering of 
primary minerals. A direct temperature effect on growth was not included because 
observations did not clearly indicate a change in growth (Van Breemen et al, 1998) 
and the effects of temperature rise and increase of CO2 on growth are still ambiguous 
(Mohren, pers. comm.). There might be, however, an indirect effect of temperature on 
growth because of a larger N availability due to increased mineralisation. In SMART2, 
this would increase N uptake, but not biomass, so, the N-content in biomass would 
increase until a given maximum nitrogen content. 

We choose the same dependency for mineralisation, nitrification and 
denitrification, as the temperature dependencies of these processes are similar. The 
temperature effect on N mineralisation is often described by a Qui function. Kätterer 
et al. (1998) and Stanford et al. (1973) found QUJ values between 2.0 and 2.5. 
Kirschbaum (1995) found a temperature dependent Q10 for mineralisation with higher 
values at lower temperatures, which is in agreement with Ross and Bridger (1978). 
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The temperature dependency of nitrification (cf. Grundmann et ui., 1995; Stark, 
1996) and denitrification (Grant, 1991; Nômmik and Larson, 1989) are mostly 
described by an Arrhenius equation. A Qio-function is, however, also used (e.g. 
Knowles, 1982 who gives in a review Qio values of 1.5 to 3.0 for denitrification). To 
have a comparable description, we choose a Qm function for all three microbiological 
processes as (cf. Kirschbaum, 1995): 

KT) = k(TA-J2u , 1» (74) 

where k represents either the mineralisation rate constant of old litter (a '), or the 
nitrification factor (-) or the denitrification factor (-), Tis the temperature (K) and T^ 
is the reference temperature (K). For all these nitrogen transformation processes, we 
obtained a fitting Qm value of 1.6. The temperature effect on mineralisation refers to 
the mineralisation of old litter, because the decomposition rate of fresh litter did not 
change under the different treatments (Verbürg, 1998). 

For the Al oxide dissolution the temperature dependency was described by Van 
't Hoffs equation (e.g. Stumm and Morgan, 1981): 

K*JT) = K Al, (^/)-eXP 
AH 

R T„f T' 
(75) 

where KAI «.• is the Al oxide dissolution constant (mol2 L2), Al 1° is the reaction 
enthalpy (= -95.5 kj mol ') and R is the universal gas constant (8.3T03 kj mol • K1) . 
Temperature rise will lead to a decrease of KAUS-

The temperature effect on weathering rates was described as (Sverdrup, pers. 
com.): 

X„C0 = X„(7V).exp 3600 

VT«f 

1_ 

T 

Y\ 
(76) 

where X„ is weathering rate (mole nr3 a '). A temperature increase from 5 °C to 8.7 °C 
implies an increase in weathering of 20%. 

The effect of increased CO2 pressure was not included for the biochemical 
processes, but for the geochemical equilibria pCO: is included. The pCOz in soil air is 
calculated as a multiple of the pCOz in the atmosphere. Consequently, increase in CO2 
pressure in the atmosphere directly implies an increase in pCOj in soil air. 
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2.3.3 Site description and manipulation experiments 

Site description 

Risdalsheia is located near Grimstad, southern Norway (58°23'N, 8°19'E) at 300 m 
above sea level (Wright et al, 1998a). The site is representative for large areas of 
upland southern Norway. Mean annual precipitation is 1400 mm, runoff 1200 mm 
and mean annual temperature is 5°C (mean o f -3 °C in January and +16°C in July). 
Vegetation is mainly a sparse cover of pine {Pinus sylvestris 1^) and birch (Betula pubescens 
L.) with heather (Calluna vulgaris L.) and blueberry (Vaccinium myrtillus L.) as dominant 
ground species. Risdalsheia receives relatively high levels of acid deposition with mean 
values for 1984-1992 of 113 mmolc S m 2 a ' and 132 mmoL N m 2 a ' . (Wright et al, 
1993). 

Manipulation experiments 

Two sets of manipulation experiments have been conducted at Risdalsheia (Table 2). 
The first set of experiments (the RAIN-project: Reversing Acidification In Norway) 
entailed exclusion of ambient N and S deposition (Wright et al, 1993) at the roofed 
KIM catchment from June 1984 until August 1999. The roofed EGIL catchment 
received recycled ambient acid rain. The uncovered catchment ROLF served as 
outside control. The decrease in S and N deposition resulted in a strong decrease of 
S0 4 and N concentrations in the runoff, accompanied by decrease in base cation 
concentrations, and increase in acid neutralising capacity (ANC) (Wright et al, 1993; 
Wright and Jenkins, 2001). 

Table 2. Overview of the t reatments at the catchments at Risdalsheia in 
the CLIMEX project 
Name 
ROIJ-
1'XiIL 

KIM 

Treatment 
Control 
Control 
Treatment 
Control 
Treatment 

Deposition' 
Ambient 
Ambient 
Ambient 
Clean 
("lean 

Climate2 

none 
none 
Soil warming 
none 
CO2 + air warming 

1 
2 V\. 

Deposition manipulation started in 1984 
(-Hmate manipulation started in 1994 

The second set of experiments (the CLIMEX-project: CLIMate change 
Experiment) began April 1994 and involved manipulation of CO2 and temperature. 
These new treatments (Dise and Jenkins, 1995) were superimposed on the ongoing 
RAIN treatments. Both the KIM catchment and the EGIL catchment were divided in 
a treatment section and a control section. At the KIM catchment, CO2 was added to 
fhe air during the growing season at target concentration of 560 ppm and the air was 
warrned by +5°C in January and 4-3°C in July, with intermediate temperature during 
the intervening months. Runoff chemistry of both treatment sections was analysed. 
Wight (1998) found increased NO? and NII4 concentrations in runoff in response to 
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elevated temperature. At the EGIL catchment, the soil was warmed by means of 
electric heating cables placed beneath the litter in the treatment section, resulting in an 
average soil temperature rise of 3.7°C at 5 cm depth during the first 3 years of 
treatment. The runoff chemistry was analysed only in the treatment section of the 
EGIL catchment. Lükewille and Wright (1997) found a significant increase in N 
concentrations in runoff in response to elevated soil temperature during the first 15 
months of treatment. 

At the EGIL catchment, there was no change in growth or biomass of the 
shrubs or pine trees, and no change in N concentrations in the shrub foliage (Arp, 
pers. com.). Beier and Rasmussen (1997) found a small increase in N concentrations 
in pine needles at both catchments. Arp and Berendse (1997) found a small increase in 
growth of the shrubs at the KIM catchment. 

Mineralisation and nitrification measurements were performed for 3 years: one 
control year (1994) and two treatment years (1995 and 1996). Verbürg (1998) and 
Verbürg et al. (1999) found an increase in net N-mineralisation and nitrification due to 
climate change, but variability was high. At the EGIL catchment there was no 
significant change in mineralisation and nitrification. At the KIM catchment the 
increase in net mineralisation was significant. Decomposition rates of fresh litter were 
not affected by temperature and CO2 treatments. 

Model parameterisation 

To test the model and the included temperature dependencies, the SMAR'1'2 model was 
applied to two catchment experiments at Risdalsheia. For the simulation of the 
concentrations of different elements in the runoff the model was calibrated at the 
ROLF catchment. The Al oxide dissolution constant, the mineralisation constant and 
the nitrification factor were calibrated manually, using the concentrations of NO3, 
NIL, BC2 and Al and pi I in the runoff. The inclusion of temperature-dependencies 
of N-processes and of the Al oxide dissolution constant was tested as from 1995, the 
year the temperature rise started, at the EGIL catchment. The SMAR'I'2 model was 
validated for both temperature and deposition changes by applying it at the KIM 
catchment. 

The soil parameters were either derived from measurements (Wright et al, 
1993) or from the MAGIC7 calibration at Risdalsheia (Wright et al, 1998a) (Table 3). 
The selectivity constant for Al-BC exchange (KAL) and II-BC exchange (KHrx) were 
calculated by using Gaines-Thomas equations (see Eq. 64 and 65). The adsorbed 
fractions and runoff concentrations were derived from Wright et al (1993). Averages 
of measured absorbed fractions and concentrations at the three catchments were 
taken. 

The vegetation parameters (Table 3) were either taken from measurements or 
from estimates. 
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Table 3. Fixed parameters for KIM and EGIL used in calibration of 
SMART2. 

Parameters 
S oil parameters 

Soil depth (m) 
Bulk density (g e ra ' ) 
Porosity (m m ') 
CI'C (mmolc kg ' ) 
Organic matter (kg kg ' ) 
Initial C /N (-) 
S04-ads. I Ialf saturation (molc m

3 ) 
S04-ads. Max. capacity (molc m

 3) 
Solubility Al(OII)3 (log,,,) 
Sel. constant Al-BC exchange (log,,,) 

Sel. constant I I-BC exchange (log,,,) 

Total organic acid (molc m 3 ) 
p C 0 2 (multiple of p C 0 2 in air) (-) 
BC2-weathering (moL m 3 a ' ) 
Na-weathering (molc m

 3 a ') 
K-weathcring (molc n r 3 a ' ) 

Vegetationjiarameters ') 
Ammonium foliar uptake fraction (-) 
Proton foliar uptake fraction (-) 
K foliar exudation fraction (-) 
Max. amount of litterfall (kg m 2 a ') 

Reallocation fraction (-) 
BC2 leaf contents (%) 

K leaf contents (%) 

N contents in litterfall (%) 

I-ogistic growth rate constant (a ') 
Growth half time (a) 
Max. amount of biomass (kg m ^ 

N nutrient content (%) 

BC2 nutrient content (%) 

K nutrient content (%) 

Mineralisation factor fresh litter (-) 
Min. rate constant old litter (a ') 
Fraction roots in litter layer (-) 
Nutrient cycling factor (-) 

ROLF 
0.10 
0.66 
0.5 
87.0 
0.25 
25. 
60. 
6.0 
7.2 
-1.63 

2.85 

0.12 
6.32 
0.005 
0.001 
0.000 

0.4 
0.4 

0.65 
0.175 

0.10 
0.81 

0.73 

0.96 

0.15 
10. 
3.2 

1.13 

0.002 

0.002 

0.4 
0.16 
0.75 
1.77 

IXÏ1L 
0.10 
0.53 
0.5 
97.0 
0.26 
25. 
60. 
6.0 
7.2 
-1.63 

2.85 

0.12 
6.32 
0.005 
0.001 
0.000 

KIM 
0.10 
0.73 
0.5 
97.0 
0.24 
25. 
60. 
6.0 
7.2 
-1.63 

2.85 

0.12 
6.32 
0.005 
0.001 
0.000 

0.4 
0.4 

0.65 
0.209 

0.10 
0.61 

0.53 

0.84 

0.15 
10. 
3.1 

0.63 

0.002 

0.002 

0.4 
0.16 
0.75 
1.82 

Derived 

measured 
measured 
measured 
measured 
measured 
calibrated 
measured 
measured 
calibrated 
calculated 

calculated 

measured 
measured 
calibrated 
calibrated 
calibrated 

estimated 
estimated 
estimated 
measured 

estimated 
measured 

measured 

measured 

derived 
derived 
estimated 

measured 

measured 

measured 

estimated 
calibrated 
estimated 
calculated 

Reference 

(Wright et al., 1998a) 
(Wright et ai, 1993) 
(Wright et al., 1998a) 
(Wright et al, 1993) 
(Wright et ai, 1993) 
(Wright et al, 1998a) 
(Wright et ai, 1998a) 
(Wright*/ al, 1998a) 
This study 
Required data from 
Wright*/al. (1993) 
Required data from 
Wright*/al (1993) 
(Wright*/ a/., 1998a) 
(Wright*/ al, 1998a) 
(Wright*/*/, 1998a) 
(Wright*/ al, 1998a) 
(Wright*/ al, 1998a) 

(Kros*/a/., 1995a) 
(Kros*/a/., 1995a) 
(Kros el al, 1995a) 
(Arp, pers comm.; 
Beier, pers comm.) 
(Kros */ al, 1995a) 
(Arp and Berendse, 
1997) 
(Arp and Berendse, 
1997) 
(Arp, pers comm.; 
Beier, pers comm.) 
(Kros*/ al, 1995a) 
(Kros etal, 1995a) 
(Arp, pers comm.; 
Beier, pers comm.) 
(Arp and Berendse, 
1997) 
(Arp and Berendse, 
1997) 
(Arp and Berendse, 
1997) 
(Kros*/ al, 1995a) 
this study 
(Kros*/ al, 1995a) 
Data from Arp and 
Beier, pers. comm. 

l' 1'or ROLF and FGIL the same vegetation parameters were used 
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For shrubs we derived data from Arp and Berendse (1997) and Arp (pers. 
comm.), while for trees the data were based on Beier and Rasmussen (1997) and Beier 
(pers. comm.). Parameters that were not measured or estimated at Risdalsheia were 
taken from Kros et al (1995a), using the values for heather. The measured 
aboveground litterfall of shrubs (Arp, pers. com.) and of the trees Beier (pers. com.) 
were summed. The root turnover was calculated using the measured litterfall and 
assuming a nutrient cycling factor (ncf, see Eq. 23) of 0.5 for trees and a mfoi 3.0 for 
shrubs (Kros et al, 1995a). These amounts of litterfall in combination with these 
nutrient cycling factors resulted in a biomass weighted average ncfol 1.8. At the EGIL 
catchment, N-mineralisation fluxes were 10 - 15 % higher than the measured N 
mineralisation fluxes. (Table 4). The total litterfall values are much lower 
(approximately less than half) than the values mentioned in Wright et al. (1998b), who 
only used estimates since measurements were not available at that time. 

We excluded the influence of soil solution pi I on mineralisation, because it had a 
too strong a positive feedback: increased pi I which in turn increased mineralisation, 
causing an unrealistic overestimation of the nitrogen concentration. Furthermore, 
experimental support for the positive feed back of pi I on mineralisation is rather weak. 

2.3.4 Results 

Model calibration 

The calibration of the simulated runoff chemistry without temperature effect was 
performed by comparing simulated concentrations with observed concentrations from 
the ROLF catchment (Figure 3). The temperature effect was calibrated at the EGIL 
catchment from 1995 (Figure 4). 

Calibration at the ROLF control catchment 

CI concentrations were reproduced very well, indicating a well-simulated hydrology 
(Figure 3). The NO3 and the N IL concentrations were reproduced quite well too. The 
dynamics in SO4 and BC2 concentrations were not fully reproduced by SMART2. The 
fluctuations of S 0 4 concentrations were underestimated, as was also found by Van der 
Salm étal. (1995), who attributed this effect to the lack of vertical heterogeneity of the 
model. SM.\R'I'2 considers the mineral soil as one-layer neglecting vertical 
heterogeneity and consequently it underestimates the retardation of absorbing 
compounds. The pi I was overestimated for the years before 1990, whereas the Al 
concentrations were overestimated during the entire simulation period. Changing the 
Al oxide dissolution constant leads either to increased or decreased both of pH and Al 
concentrations, so calibration of the Al oxide dissolution constant cannot improve 
predictions of pH and Al concentrations at the same time. The same problem was 
found by Wesselink and Mulder (1995), who could not reproduce both pi I and Al 
concentrations by Al oxide solubility. They attributed this to Al complexation with 
dissolved organic matter. We calibrated the value of the Al oxide dissolution constant, 
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such that it resulting satisfactory pi I values and BC2 concentrations. Taking into 
account Al complexation with organic compounds might lead to better results. 
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Figure 3 Measured and simulated concentrations of S04, NO3, NFL, pH, BC2, Al, BC 
and CI for the ROLF control catchment 
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[SO.2"] (mol m"3) 

1980 1990 2000 2010 1980 
Time (a) 

1990 2000 2010 

Figure 4 Measured and simulated concentrations of SO4, NO3, NII4, pH, BC2, Al, BC 
and CI for the EGIL catchment with a soil temperature increase starting in 1994 

Calibration of the temperature effect at the EGIL catchment 

The incorporation of the temperature effect was calibrated at the EGIL catchment, 
using the measured mineralisation and nitrification rates (see section 3.2). The 
observed and the simulated relative increase in N-mineralisation were comparable, 
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about 10% (Table 4). The nitrification at EGIL was underestimated, but the relative 
temperature effect was overestimated, which is an indication that the Qui for 
nitrification might be too high. Figure 4 shows an increase in simulated NO3 and NI I4 
concentrations starting from 1995. This is also found for the observed concentrations, 
though to a less extent. The concentrations before 1995 were clearly underestimated, 
resulting in an underestimation of the 3 years pre treatment N-leaching fluxes. This 
was probably caused by an overestimation of N-uptake, since N-mineralisation was 
slightly overestimated (Table 4). The relative increase in N leaching due to 
temperature rise was overestimated by SMART2. The observed increase was 68% 
whereas the simulated increase was 200 % (Table 4). 

The higher measured N-contents in needles (Beier and Rasmussen, 1997) 
indicate a higher N-uptake after temperature rise, which was not predicted by 
SMAR'I'2. Even though SMAR'12 calculates a higher mineralisation and therefore a 
higher N availability, the N-uptake did not increase, because the N-content in the 
biomass had already reached the maximum value before the temperature rise. In 
SMART2, N uptake can only increase if the N content in biomass is not maximal. 

The lower actual Al hydroxide dissolution constant due to temperature rise (see 
Eq. 75) caused a decrease in calculated Al concentrations and pi I with temperature 
rise. Furthermore, BC2 and BC concentrations increased due to higher weathering 
rates. This effect, however, was not sufficient to compensate the pH decrease due to a 
shift in the Al hydroxide equilibrium and the increase in NO3 concentration due to 
enhanced mineralisation. 

Evaluation at the KIM catchment 

Deposition reduction (1984 -1994) 

After calibration the model was evaluated to the KIM catchment, using the same 
parameter set for the soil, except for bulk density, CEC and organic matter (Table 3). 
The vegetation related parameters differed at the two catchments: at the KIM 
catchment the ground vegetation was mainly Calluna vulgaris L., whereas at the EGIL 
catchment it was Vactinium myrtillus L. The predicted trends in S0 4 , NO3 and NH 4 

concentrations in runoff corresponded well to the observed trends, but SMART2 
underestimated the SO4, NO3, NH 4 and BC2 concentrations and overestimated pH 
(Figure 5), Al, BC and CI concentrations were predicted well. The underestimation of 
the concentration of S0 4 , NO3, NII4 and BC2 might be caused by a too strong 
response to the reduction in deposition, which may be caused by an underestimation 
of sulphate desorption and a too fast release of nitrogen. Divalent base cation 
concentrations are strongly correlated to S 0 4 input. Higher acid input due to higher 
S 0 4 input induces an exchange of base cations by H and Al, resulting in higher BC2 
concentrations. 

I l l 



II Evaluation on a site scale 

[S04
21 (molc m"3) [N031 (molc m

J) 

Treatment starts 

{ • Obs. (c) 0.04 -
» Obs. (t) 

SMART2(c) 0 0 3 

SMART2 (t) 0.02 

[NH4
+] (molc m"3) 

0.05 

0.04 

0.03 

0.02 

0.01 

0.0 

0.01 

0.0 

pH 

Treatment starts 

I 

Treatment starts 

i 

> ° . J > » W ^ 

4.5 

4.3 

4.1 

3.9 

3.7 

3 5 

/ ° 
f O ° O O V 
f o o o 

- ' • ' \ 
Treatment starts 

i i i i i i 

[BC2+] (molcrrf
3) 

Treatment starts 

1 

[Ar](molcm-3) 
0.1 

Treatment starts 

\ 

[BC+] (molc m"3) 

0.2 Treatment starts 

i 

[Cil (molc m'3) 

0.2 
Treatment starts 

I 

1980 1990 2000 1990 2000 2010 2010 1980 

Time (a) 

Figure 5. Measured and simulated concentrations of S0 4 , K 0 3 , NH4 , pi I, BC2, Al, BC 

and CI for KIM catchment with deposition reduction as from 1984 and a CO2 and air 

temperature increase starting in 1994. 
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Figure 6 Simulated concentrations of NOi, NH-i, total N and nitrification for the EGIL 
catchment in the long-term 

Temperature lise 

The response of N concentrations to temperature rise after 1994 was simulated fairly 
well (Figure 5), especially the increase in nitrate concentrations was reproduced well. 
In contrast to the EGIL catchment, SMAR'i'2 simulated an increase of N uptake due to 
temperature rise (Table 4). At the KIM catchment, the N content in the leaves 
^creased, because the maximum N content was not reached yet, which resulted in a 
higher N uptake (see Eq. 22). 

The field experiments show a little treatment response to BC2 concentrations 
and no response to SO.» concentrations, whereas the model gave a decrease in BC2 
concentrations and no response to SO4 concentrations (Figure 5). SMAR'I'2 predicted a 
PU increase in response to temperature rise, whereas the observed pi I actually fell. 

n e Al concentrations were adequately simulated both before and after the 
temperature rise, although the effect was small. Both simulated and measured Al 
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concentrations decreased due to temperature rise. The respond of BC concentrations 
on temperature rise was simulated well. Both the simulated and observed BC 
concentrations increased in response to temperature rise. 

Since the short-term effect of the soil heating was rather small, we decided to 
evaluate the possible long-term effect of temperature rise. Therefore the soil heating 
treatment of EGIL was simulated for a period of 200 years. The deposition during 
this 200 year period was taken as the average of 1995-1998. SMAR'1'2 predicts the 
climate change effect on N-leaching to be temporal (Figure 6). After 100 years, the N 
leaching in the treatment run is equal to that of the control run. At the actual 
temperature it took more than 100 years to reach a steady state (N saturation), 
whereas at the elevated temperature it took less than 50 years. At higher temperature 
less N was accumulated in the soil, because of a higher mineralisation rate. The 
NOVNII4 ratio changed, due to increased nitrification. In the long-term, NOi 
concentrations increased whereas NIL» concentrations decreased. At the KIM 
catchment (low deposition) a new steady state was already reached within 5 years 
(Figure 5). Due to the lower Al oxide dissolution constant at 8.7 °C than at 5 °C, the 
Al concentrations after temperature rise were lower than before, resulting in lower pi I 
values. 

2.3.5 Discussion and conclusions 

In general, the observed time-series in runoff chemistry in response to deposition 
reduction and temperature rise were well reproduced by the model SMAR'1'2. At the 
roofed sites, however, SMAR'I'2 tended to underestimate the concentrations of SO4 
NO3, NI I4 and BC2, though the simulated trends were reproduced well. Mol-Diikstra 
et al. (1998) tested the performance of SMART2 in response to deposition reduction at 
a spruce forest (Speuld) in the Netherlands, where bi-weekly soil solution samples 
were taken with 4 replicates. The SMART2 results were compared with flux-weighted 
averaged concentrations obtained from observed soil solution chemistry and modelled 
hydrology. This uncertainty in fluxes due to high soil variability at Speuld thwarted the 
model validation. In contrast to the observations at Speuld, the observations at the 
Risdalsheia catchments are 'real' annual average concentrations from the runoff of the 
whole catchment, which means that the time and space resolutions of measurements 
and modelling are similar. This application, with quite a long observation period 
contributes to an increase in confidence in using SMART2 at the regional scale 
especially to evaluate deposition scenarios. 

The inclusion of the climate change effect in SMAR'1'2 was restricted to the 
temperature effect on mineralisation of old litter, nitrification, denitrification 
weathering and Al oxide dissolution constant. For the N related processes we 
obtained a QK, value of 1.6. Kätterer et al. (1998), however, found Q„, values for 
mineralisation of about 2.5 for comparable soil and vegetation tvpes. Kirschbaum 
(1995), even, found a Q10 value of 5.0 at a temperature of 5 °C. Although there was an 
indication that N-uptake increased, the temperature effect on growth was not included 
because the effect on growth is not clear and the temperature dependency as well as 
the C 0 2 dependency of growth is not well known. An increase in N 'availability, 
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however, induced an increase in N-uptake at the KIM catchment, which was caused 
by an increase in N content in the biomass. This increase was possible since at that 
low N input, the N content in the biomass was below its maximum. At the EGIL 
catchment the maximum N content was already reached due to higher N input, so 
there was no response of N uptake. The inclusion of the temperature dependencies 
gave satisfactory results. The observed increase in N-runoff was reproduced well by 
the model, just like the observed increase in mineralisation and nitrification. Still, there 
is a need to pay attention to the N-cycling in SMAR'1'2, considering the adaptation of 
the pi I influence on mineralisation in this application. 

Table 4 Three years average pre and post t reatment N-fluxes as calculated 
by SMART2, MERLIN and observed (mmol m 2 a ' ) . The standard 
deviations are given in brackets 

X;II. 

KIM 

-

N-tlux 

Deposition 
Litterfall 
Mineralisation 
Uptake 
Nitrification 
Denitrification 
I .eaching 

Deposition 
Litterfall 
Mineralisation 
Uptake 
Nitrification 
Denitrification 
I .caching 

SMART2 

pre 
77 (22) 

262 (6) 
269 (1) 
307 (6) 

10(7) 
0(0) 

18(13) 

21(8) 
195 (4) 
225 (2) 
238 (2) 

4(3) 
0(0) 
5(5) 

post 
83 (21) 

257 (1) 
312(3) 
301 (3) 
30(7) 
2(0) 

54(12) 

0(-) 
197 (3) 
256 (2) 
247 (3) 

8(2) 
0(0) 
8(3) 

Ml 'RUN 
pre 

76 
485 
418 
486 

-
-

28 

14 
469 
437 
470 

-
-
4 

post 
59 

487 
456 
485 

-
-

48 

0 
477 
472 
482 

-
-
9 

()bscrvcd 
pre 

77 (22) 

-
245 (-)' 

-
45 (-)• 

-
28(6) 

21(8) 

-
147 (-)« 

-
2(-) ' 
-
3(1) 

post 

83 (21) 
-

271 (57)2 

-
67(11)2 

-
47(10) 

0(-) 

-
201 (7)2 

-
3(0)2 

-
9(4) 

' n = l 

Wright et al. (1998b) applied MERLIN at Risdalsheia. This model is of 
comparable complexity as SMAR'1'2 and gave comparable results. MERLIN is a simple 
process-orientated model focused on simulation of concentrations of inorganic 
nitrogen in soil leachate and runoff in terrestrial ecosystems (Cosby et al., 1997). The 
m°del links the C and N cycles. The ecosystem is simplified to one plant 
compartment and two soil organic matter compartments (labile and refractor)' organic 
matter), the effect of temperature was included by changing the decomposition rate in 
1 J95, the year the temperature treatment started. MERLIN calculated a higher N 
turnover than SMAR'1'2, due to a higher N input via litterfall (Table 4). Wright et al. 
U J98b) used estimated litterfall fluxes for shrub vegetation, whereas we used recendy 
measured litterfall fluxes (Arp, pers. com.). However, both models calculated 
comparable N leaching fluxes. Considering the 3 years pre and the 3 years post 

eatment, MERLIN calculated the increase of N leaching very well, but the year-to-
>'ear variations were not well reproduced. As with SMAR'1'2, MERLIN predicted 

creased N runoff in response to temperature rise. On the long-term, however, 
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MERLIN predicted an enduring higher N runoff in response to temperature rise 
(Wright et ai, 1998b), while SMARI'2 predicted only a temporal increase. 

The length of the period with increased N runoff in response to elevated 
temperature depends on deposition level. The SMAR'I'2 simulations indicate that with 
high deposition levels, the temporal effect of increased N leaching is longer than with 
lower deposition levels. Due to increased nitrification, the ratio between NO3 and 
NFI4 concentrations changes. NO3 concentrations increase and NIL» concentrations 
decreased. 

It seems that the biochemical processes give a temporal response to 
temperature rise, whereas the geochemical processes change is permanent. To test the 
model more rigorously in its suitability to predict responses to climate change, 
additional years of treatment would be needed. For instance, the strong temporal 
variability in the mineralisation and nitrification measurements makes it difficult to 
test the model behaviour in response to temperature rise over such a short period. 
Application to other soil warming experiments (Rustad et ai, 2001) would be 
additional to test the prediction climate change response of the model. The long-term 
runs showed a temporal effect of temperature rise dependent on deposition level. It 
would be recommendable to test this effect in the field. 
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2.4 Validation and comparison of soil acidification 
models with different degrees of process 
aggregation on a site scale 

Abstract 

A one-layer (SMAKT2) and a multi-layer (RESAM) soil acidification model with a resolution of one 

year and a multi-layer soil acidification model with a temporal resolution of one day (NUCSAM) were 

applied to an intensively monitored spruce site at Soiling, Germany. SMART2 was specially developed 

for the application on a national and European scale, RES AM for application on the regional to 

national scale, whereas NUCSAM is a typical site-scale model. Contrary to SMART2 and RESAM, 

NUCSAM takes seasonal variability into account since it simulates solute transport and 

biogeochemical processes on a daily basis. Consequently, NUCSAM accounts for seasonal variation in 

deposition, precipitation, transpiration, litte f all, mineralisation and root uptake. 

The major aim was to study the influence of model simplifications, in terms of process detail, 

number of soil layers and temporal variability, on the modelled of soil solution concentrations and 

leaching fluxes. To that aim, the models where first validated by comparing simulated concentrations 

and leaching fluxes with measured values at the Soiling site during the period 1973-1989. Next, 

long-term soil and soil solution response simulated with three models were compared using two 

deposition scenarios for the period 1990-2090. Input parameters were derived from measured data at 

the Soiling site. Outputs from the one-layer model SMART2 were compared with measured soil 

solution concentration averaged over depth. 

All models were able to simulate most of the concentrations during the examined period 

reasonably well. However, the one-layer model, SMART2, had some difficulties to simulate strong 

changes in soil solution concentrations due to a lower retardation in the soil system. RESAM 

simulated a somewhat stronger rise and fall in base cation andSÖ4 concentrations in the subsoil. 

Although both the seasonal and the interannual variation in the soil solution concentrations 

as modelled by the three models showed large differences, the long-term trends corresponded quite well 

and the leaching fluxes were almost similar. Generally it appeared that the uncertainty due to time 

resolution and vertical heterogeneity in long-term predictions was relatively small. So, the use of the 

simplified model SMAKT2, that neglects seasonal variation and vertical heterogeneity, is in most 

aspects acceptable for the evaluation of long-term trends in soil and soil solution chemistry. 

2.4.1 Introduction 
Various models have been developed to analyse the long-term response of surface 
waters and soils to acid deposition. These models have been designed for use on a 
continental to national scale, such as MAGIC (Cosby et ai, 1985) and SMART (De Vries 
et al, 1989), S M \ R T 2 (Chapter 2.3; Kros et al, 1995a,b) and RESAM (Chapter 2.2; De 
Vries et al, 1995a) or for use on a catchment or site scale, such as ILWAS (Chen et al, 

1983) and NUCSAM (Chapter 2.1; Groenenberg étal, 1995). 

Models designed for regional predictions tend to be more simplified than site 
scale models to minimise input requirements. Simplification may involve (i) less 
detailed process formulations, (ii) reduce temporal resolution, for example using an 
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annual time resolution, thereby neglecting variability within a year of both model input 
and processes and (iii) reduced vertical resolution, by using a smaller number of soil 
compartments. These simplifications may cause errors in predictions. Seasonal 
variability is generally driven by climatic (e.g. precipitation, deposition, evaporation, 
snowmelt) and biotic factors (e.g. litterfall, mineralisation, nutrient uptake). 
Georgakakos et al. (1989) indicated that the neglect of such natural day-to-day 
variability, may significantly affect long-term predictions of lake alkalinity. Similarly, 
Warfvinge and Sandén (1992) showed that the long-term trend in soil solution ANC is 
affected by time resolution. 

Another problem with long-term large scale (soil) acidification models is the 
lack of sufficient long-term (> 50 years) series of observations, which makes these 
models difficult to calibrate and validate. A thorough calibration and validation on 
short-term (< 10 years) series is hardly possible because these models do not account 
for seasonal variability which plays an important role in short-time data records. 
1 Iowever, results of the long-term large scale models can be compared with results of 
more detailed models which are validated on relatively short-term data sets. 

The objective of this study is to characterise the effect of model 
simplifications on soil solution response, with emphasis on the influence of temporal 
and vertical resolution. For that purpose, we compared the results derived with 
SMART2 (one soil layer, annual resolution), RliSAM (multi-layer, annual resolution), 
and NUCSAM (multi-layer, daily resolution). The three models were first tested and 
validated using measured concentrations of an intensively monitored spruce site at 
Soiling, Germany. At this site inputs, solute concentrations and solid phase element 
contents have been measured continuously for more than twenty years (1973-1990), 
along with plant physiological, hydrological, micrometeorological and soil biological 
monitoring programmes. Next, we characterise the effect of model simplification on 
long-term predictions of soil and soil solution response. The long-term simulations 
with the three models were performed for two atmospheric deposition scenarios over 
a 100-year period. 

2.4.2 Models used 

SMART2 is a one-layer model, whereas RKSAM and NUCSAM distinguish a litter layer 
and several mineral soil layers. SMART2, RlvSAM and NUCSAM all simulate the major 
biogeochemical processes in the canopy, litter layer and mineral soil horizons. SMART2 
was especially developed for the application on a national to the European scale. 
RESAM has been developed to analyse the long-term soil response to acid deposition 
on a regional scale. NUCSAM accounts for seasonal variation in deposition, 
precipitation, transpiration, litterfall, mineralisation and root uptake and all the 
biochemical and geochemical processes are modelled as a function of temperature, 
and is especially designed for application on a site-scale. 
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NUCSAM 

NUCSAM (Chapter 2.1; Groenenberg et al, 1995) includes hydrological processes, i.e. 
(i) partitioning of precipitation into rainfall and snowfall, (ii) snowpack accumulation 
and snowmelt, (iii) interception evaporation from the forest canopy and soil 
evaporation, (iv) transpiration and snowmelt, and (v) one-dimensional vertical 
transient water flow. 

Water fluxes and soil water contents are calculated with an adapted version of 
the SWATRE (Belmans et al, 1983) model, a finite difference solution to the Richard's 
equation. The adapted version includes an interception evaporation based on Gash 
(1979), a snow module and divides root uptake over the different soil layers according 
to a fixed root distribution (see Chapter 2.1). 

The biogeochemical processes accounted for in NUCSAM are basically the same 
as used in RKSAM except for mineralisation. In NUCSAM (i) litterfall, root decay, 
mineralisation and root uptake are distributed over the year by given monthly 
coefficients, (ii) both upwards and downwards solute transport is simulated and (iii) 
speciation of inorganic carbon is computed from known equilibrium equations. All 
chemical equilibrium and rate-limited equations are solved with a separate chemical 
equilibrium module F.PIDIM (Rijtema et al., 1999), which calculates aluminium 
complexation with organic and inorganic anions. 

RESAM 

RF.SAM (Chapter 2.2; De Vries etal, 1995a) simulates all processes occurring the forest 
canopy, litter layer and mineral soil horizons which significandy influence the 
concentration of major ions in the soil solution. The model consists of a set of mass 
balance equations, kinetic equations and equilibrium equations. Mass balance 
equations describe the input-output relationship in each soil layer for all ions, except 
for II and HCO3. The concentration is determined by the CO2 equilibrium equation 
(cf. Chapter 2.2), whereas the II concentration is determined from the charge-balance. 
Model input includes atmospheric deposition and hydrological data. 

The soil layers are considered as homogeneous compartments of constant 
density and the constituent input mixes completely within each soil layer. The time 
resolution is one year. However, the time-step of the model is one to five days to 
avoid numerical instability and to minimise numerical dispersion. 

SMART2 

The one-compartment soil acidification and nutrient cycling model SMART2 (Chapter 
2.3; Kros et al, 1995a,b), includes the major hydrological and biogeochemical 
processes in the vegetation, litter and mineral soil. Apart from pH, the model also 
predicts changes in aluminium (Al), divalent base cation (BC2, i.e. Ca+Mg), sodium 
(Na), potassium (K), nitrate (NO3) and sulphate (SO4) concentrations in the soil 
solution, and solid phase characteristics restricted to the acidification status, i.e. 
carbonate content, base saturation and amorphous Al precipitates. SMART2 was 

119 



II Evaluation on a site scale 

developed from the dynamic soil acidification model SMART (De Vries et ai, 1989), by 
including a nutrient cycling and improving modelling of hydrology. The SMAR'I'2 
model consists of a set of mass balance equations, describing the soil input-output 
relationships, and a set of equations describing the rate-limited and equilibrium soil 
processes. 

Methodology 

General Approach 

To objectively compare differences in predictions by these three models differences in 
parameterisation must be minimised. Data for the models were derived from the 
Soiling data set (Bredemeier et al, 1995). Where the models used the same state 
variables and process parameters with the same vertical or temporal resolution, we 
simply used the same values for the three models. Parameters for SMAR'I'2 were 
derived by depth-averaging of the values which were used for RKSAM and NUCSAM 
(input mapping: Rose et al, 1991). Annual deposition and water fluxes, which are 
input to the model RKSAM and SMART2, were derived by accumulating the daily 
NUCSAM values to annual values. 

Vertical configuration and simulation period 

At the Soiling site NUCSAM and RKSAM considered a litter layer of 7 cm (at the start of 
the simulations) and seven mineral soil layers to a depth of 90 cm (Table 1). For 
SMAR'I'2 two separate simulations were performed: (i) with a single mineral soil layer 
of 10 cm thickness and (ii) with a single layer of 90 cm thickness. 

All models were run for the period 1971-1990. The period 1961-1970 was used 
as an initialisation period to estimate solute concentrations in 1970 and to equilibrate 
solute concentrations with exchangeable cations and adsorbed S0 4 . During that 
period, amounts of exchangeable cations and adsorbed amounts of SO4 were 
continuously updated while pools of cations in primary minerals and of Al in 
amorphous precipitates were kept constant. 

Model adaptations 

In regional applications, SMART2 and RESAM use annual average hydrological fluxes, 
which are kept constant throughout the simulation period in order to study focuses on 
the influence of differences in biogeochemical process descriptions and their vertical 
and temporal resolution (one day versus one year). SMART2 and RHSAM were slightly 
adapted to account for variations in hydrological fluxes between the years. 

The SMART2 model is normally applied to calculate concentrations at the 
bottom of the root zone. To apply the SMAR'I'2 model at shallow depth (10 cm), the 
calculation of N-immobilisation was slightly adapted. In the standard version of 
SMART2, N-immobilisation is supposed to occur in the upper 20 cm of the soil. For 
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the simulation of concentrations at 10 cm depth, the total N immobilisation flux was 
multiplied by the ratio of the amount of organic C in the considered layer and the 
amount up to 20 cm depth. 

Model comparison 

The modelled flux-weighted annual averaged concentrations by SMARI'2 and RKSAM 
can not be directly compared with the monthly measured soil solution concentration. 
Possibilities to compare the results of the three models with observation data are 
comparing: (i) monthly observed concentrations with estimated monthly 
concentrations derived from RKSAM and SMART2 output by linear interpolation 
between annual values, or (ii) estimated flux-weighted annual averaged measured 
concentrations (or leaching fluxes) with simulated values. Annual leaching fluxes can 
he obtained by multiplying measured monthly concentrations with monthly simulated 
water fluxes (see 1 Ijdrologkal data). Flux-weighted annual averaged concentrations were 
derived by dividing the 'measured' leaching flux by the annual water fluxes. 

In this study, a combined approach was used: simulated concentrations were 
compared with measured concentrations (according to (i) and simulated cumulative 
annual leaching fluxes were compared with (calculated) measured annual leaching 
fluxes. A comparison of measured concentrations with simulated concentrations and 
cumulative fluxes gives a good impression of the performance of the models and the 
ability of the models to simulate trends and extreme values. 

For a more objective comparison of the model outputs two statistical measures 
were calculated, i.e. the Normalised Mean Absolute Error (NMAE) and the Normalised 
Mean Error (NME) (cf. Janssen and Heuberger, 1995 and Chapter 2.1): 

j K\IAE = N ' • " _ (1) 

KUE = - '•*• (2) 
0/ 

where P, is the modelled value, 0, is the observed value, O is the average of the 
°bservations, and N is the number of observations. N.M4E quantifies the average 
deviation between model prediction and measurements. NME indicates of the 
tendency of the model to underestimate (positive value) or overestimate (negative 
value) the observation data. NMAE and KME for the three models were calculated 
using monthly concentrations for model results and measurements. 
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Model input data 

Hydrological data 

For all models hydrological fluxes and water contents were calculated by an adapted 
version of the SWATRH model (cf. Chapter 2.1). Drainage fluxes, root uptake fluxes 
and water contents from SWATRR were directly used by NUCSAM. For RTCSAM and 
SMAR'I'2 annual root uptake fluxes were derived by accumulating the daily root uptake 
fluxes to annual values. To keep water contents constant throughout the simulation 
period, annual drainage fluxes were calculated by subtracting the root uptake fluxes 
from the input flux for each layer. For RKSAM, water contents for each layer were 
averaged over the simulation period. The data for SMAR'I'2 were derived by depth 
averaging the water contents that were used for RliSAM. An overview of the main 
hydrological fluxes and water contents is given in Table 1. 

Table 1 Average drainage fluxes and water contents used in NUCSAM, 
RlïSAM and SMAR'I'2 

Layer 
(cm) 

0-10 
10-20 
20-30 
30-40 
40-60 
60-80 
80-90 » 

Average drainage 
(cm a 
Nl'GS 

73.6 
70.1 
64.0 
55.7 
47.7 
43.0 
41.0 

-') 
AM/RKSAM 

flux 

SMART2 • 

73.6 
-
-
-
-
-
41.0 

Average soil 
(m3 m') 

water content 

NUGSAM/RGSAM 

0.40 
0.39 
0.36 
0.36 
0.37 
0.34 
0.34 

SMART2 
0.40 
-
-
-
-
. 
0.36 

S.MART2 soil layer 0-90 cm 

Biological data 

An overview of the biological data and their derivation is given in Table 2. The 
parameters for N cycling in NUCSAM/RKSAM and SMAR'I'2 were derived 
independently from the Soiling data set as the process description in the models is 
different. RKSAM/NUCSAM use an overall nitrification rate, which is reduced by 
moisture content, pH and organic matter content. For SMAR'I'2 separate nitrification 
fractions, based on input-output budgets, were derived for the run with the 10 cm soil 
layer and the run with the 90 cm soil layer. The relationship between moisture 
content, pH, organic matter content and nitrification rate, which was used in 
NUCSAM/RKSAM was not calibrated on the site data. 
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T a b l e 2 V a l u e s f o r s o i l l a y e r i n d e p e n d e n t m o d e l p a r a m e t e r s u s e d i n t h e 

s i m u l a t i o n b a s e d o n t h e S o i l i n g d a t a s e t ( B r e d e m e i e r et al., 1 9 9 5 ) 

Process 
I'oliar uptake» 

Foliar exudation3 

Tree growthb 

Litterfall0 

Root decay 
Nutrient cycling 
factor 
Root uptake 
pattern 
Mineralisation 

Nitrificationf 

DenitrificationS 

N immobilisation11 

Parameter 

/ r N I I v » 

> " > 
frCzfi 
> M g * 

frKf, 
frKClfi 

&rgii 

•**ilmax 

/<)5 

kf 
kr,t 
nçf 

rutxp 

frmfl 

k-milt 

K>m.mx 

Jfiu,mx 

fcde.mx 

frd, 

C/N 

Unit 
-
-
-
-
-
-
a-1 

kg ha • 
a 
a-1 

a 1 

-

-

a 1 

-
a« 

-
-

Value 
0.11 
0.33 
0.49 
0.09 
0.42 
0.58 
0.10 
3.8xl05 

69.2 
0.19 

1.4 
0.5 

6.58 

0.4 
0.05 

100.0 
4.5 

10.0 
0.10 
19.5 

Model 
NUCSAM, RËSAM 

NUCSAM, RESAM 
NUCSAM, RESAM 

NUCSAM, RlùSAM 
NUCSAM, RRSAM 

SMART2 

NUCSAM, RESAM, SMART2 

NUCSAM, RESAM, SMART2 

NUCSAM, RESAM, SMART2 

NUCSAM, RESAM 

NUCSAM, RESAM 

SMART2 d 

SMART2 C 

NUCSAM, R ISAM, SMART2 

NUCSAM, RESAM, SMART2 

NUCSAM, RESAM 

SMART2 

NUCSAM, RESAM 

SMART2 

SMART2 

Based on average throughfall and deposition data over the period 1974-1990 
Derived by curve fitting of the biomass measurements, which were corrected for thinning (62.9%). 
Average needlefall rate over the period 1967-1973, taking into account that 92.5% of the litterfall is 
needlefall 
»/refers to the ratio of root decay to litterfall (see Chapter 2.3). This ratio was derived from the 
annual average root decay (1.49 ) to litterfall (2.96 ) in Soiling 
ru,xp refers to the exponent determine the water and nutrient uptake pattern in SMART2 (see 
Chapter 2.3). This ratio was derived by assuming that 50%.of the nutrient uptake take place in the 
top 10 cm of the soil profile. 
km.max is derived from average throughfall and mineralisation fluxes over the period 1970-1985, 
assuming that all mineralised N is released as NH4. ƒ/•„ is derived form average throughfall and 
average drainage fluxes and calculated average root uptake fluxes for the period 1973-1990 
Derived from De Vries et al. (1995a). 
Based on 1973 data for Corg and Norg 

Growth uptake in all three models was calculated by multiplying a given 
(logistic) growth rate (see Chapter 2.1, 2.2 and 2.3) by the element content in 1968 in 
stems and branches respectively. N content is calculated with a linear relationship 
between N content and N deposition. N content is minimal at a N deposition of 
1500 mole ha1 a1 and maximal at a N deposition of 7000 mole ha 1 a ' . Element 
contents of other nutrients were assumed to remain constant. Growth uptake fluxes in 
SMART2 at 10 cm depth were automatically generated in the model by the depth 
dependent root uptake function (see Chapter 2.3). This root uptake function is 
calibrated such that 50% of the nutrients are taken up in the upper 10 cm of the soil 
profile. Parameters related to forest growth were kept constant, the stand remains a 
mature forest with a very low net growth and a relatively high nutrient cycling 
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throughout the simulation period. The monthly distribution fractions for litterfall, 
root decay, mineralisation and root uptake as used in NUCSAM are given in Table 3. In 
RKSAM and SMART2 these fractions were equally distributed over the year. 

Table 3 Monthly distribution fractions (-) for litterfall ((f), root decay (rd), 
mineralisation (mi) and root uptake (ru) as used in NUCSAM 

Month 
January 
February 
March 
April 
May 
June 
July 
August 
September 
October 
November 
December 

V 
0.00 
0.00 
0.00 
0.00 
0.10 
0.10 
0.10 
0.10 
0.20 
0.20 
0.10 
0.10 

rd 
0.00 
0.00 
0.00 
0.00 
0.10 
0.10 
0.10 
0.10 
0.20 
0.20 
0.10 
0.10 

mi 
0.00 
0.00 
0.10 
0.15 
0.15 
0.20 
0.20 
0.15 
0.05 
0.00 
0.00 
0.00 

ru 
0.01 
0.01 
0.05 
0.08 
0.15 
0.15 
0.15 
0.15 
0.10 
0.09 
0.05 
0.01 

Geochemical data 

NUCSAM and RESAM 

Geochemical data for NUCSAM and RKSAM as given in Table 4 to Table 6, were 
directly derived from the Soiling data set (Bredemeier et ai, 1995). Gaines-Thomas 
exchange constants (for all three models) were based on average soil solution 
concentrations measurements in 1983 and solid phase analyses in the same year (Table 
6). Sulphate adsorption constants for NUCSAM and RESAM (Table 6) were derived 
from data in Meiwes (1979). 

Table 4 Soil properties used for NUCSAM, RESAM and SMART2. Bulk 
density (Q), cation exchange capacity (CEC), amorphous Al (hydr)oxide 
content (ctAl0X) and sulphate sorption capacity (SSC) 

Soil layer 
(cm) 
NUCSAM and RiiSAM 

0-10 
10-20 
20-30 
30-40 
40-60 
60-80 
80-90 

SMART2 

0-10 
0-90 

P 
(kgrr r3) 

930 
1140 
1190 
1390 
1390 
1690 
1690 

930 
1389 

CKC 
(mmol; kg"1) 

132 
79 
58 
45 
56 
56 
76 

132 
66 

rfAU 
(mmol, :kfr') 

97 
97 

185 
185 
185 
176 
94 

97 
156 

SSC 
(mmolc kg-1) 

1.0 
4.5 
4.5 
4.5 
4.5 
6.7 
6.7 

1.0 
5.1 
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Weathering fluxes of primary minerals in NUCSAM and RESAM were described 
by a first-order equation (see Chapter 2.1 and 2.2). Rate constants for this equation 
(Table 5) were derived from a budget study (Wesselink et ai, 1994). Dissolution 
parameters of Al-hydroxides (Elovich equation; see Chapter 2.1) in RESAM and 
NUCSAM, are given in Table 5 together with their derivation. 

SMART2 

Most data for SNLVRT2 were derived by depth averaging the data that were used for 
NUCSAM and RESAM (Table 5 and Table 6). Some parameters that were only used in 
SMAR'1'2 were directly obtained from the Soiling data set. Soil properties which were 
used in SMAR'I'2, i.e. bulk density (p), cation exchange capacity (CEC), sulphate 
sorption capacity (SSQ, amorphous Al (hydr)oxide content (ctAL) (Table 4) were 
derived by depth averaging the data used in NUCSAM and RESAM (Table 4). To 
calculate Gaines-Thomas exchange constants for SMAR'I'2 (Table 6) concentrations 
and solid phase analyses were depth averaged for the 10 cm and 90 cm soil 
compartment. A depth weighted sulphate adsorption constant for SMART2 was 
derived in three steps. First adsorbed amounts of sulphur were calculated for all layers, 
considered in -NUCSAM/RESAM, using a Langmuir equation (see Chapter 2.1, Eq. 67) 
and the sulphate adsorption constants from Meiwes (1979), assumed the same range 
in dissolved SO4 concentrations with depth. Next, the calculated adsorbed amounts 
were depth-weighted. Finally, the depth-weighted sulphate adsorption constant was 
derived by fitting the depth-weighted adsorbed SO4 amounts against the SO4 
concentration range. 

Table 5 Weathering rate constants of amorphous Al (hydr)oxides and 
primary minerals used in the simulation by NUCSAM and RESAM 

Layer 
(cm) 

0-10 
10-20 
20-30 
30-40 
40-60 
60-80 
80-90 

krEI, ') 
(m3 kg-1 a1) 

0.6 xlO7 

2.0 xlO-7 

5.1 xlO7 

5.1 xlO-7 

5.1 xlO7 

5.1 xlO7 

5.1 xlO-7 

krEk 2> 
(kg mole1) 

750 
750 
750 
750 
750 
750 
750 

KAL» 
(l2 mol 2) 

3.5x10» 
3.5x10« 
3.5x10« 
3.5x10« 
3.5x10« 
3.5x10« 
3.5x10« 

Weathering rate constants •*) 
J10-*a-i) 
Ca 

6.5 
6.0 
5.6 
5.4 
5.3 
6.2 

10.9 

Mg 
93.6 
73.2 
66.9 
63.7 
61.8 
51.7 
25.8 

K 
0.011 
0.008 
0.007 
0.006 
0.005 
0.005 
0.003 

Na 
0.021 
0.015 
0.013 
0.010 
0.011 
0.011 
0.011 

Elovich constant, see Eq. (33), Chapter 2.1. Derived from average soil solution concentrations of H and Al in 
1983, assuming K/U*=3.5xl08 and MI/2=7.5xl0-2 

*> Elovich constant, see Eq. (33), Chapter 2.1. The average of values given in De Vries (1994). 
3) AI (hydr)oxide equilibrium constant, see Eq. (37), Chapter 2.1. Average IAP for Al(OIi)3 at 90 cm over the 

period 1973-1991. The value given, is the value at 25 °C, which is derived from the value at field temperature (10 
°q. 

4) Based on total analysis and weathering fluxes of base cations from Wesselink et al. (1994) and average H 
concentration in 1983. 
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Table 6 Gaines-Thomas exchange constants and SO4 sorption constants 
used in the simulation by NUCSAM and RliSAM 

Soil layer 
(cm) 

0-10 
10-20 
20-30 
30-40 
40-60 
60-80 
80-90 

]exchange constants ') 
(mol F ) z x-2 
II Al 

5180 0.97 
57.5 26.2 
15.3 8.75 
15.3 7.37 
15.3 7.37 
15.3 26.2 
15.3 26.2 

MR 
1.60 
2.56 
65.3 
0.42 
1.25 
1.25 
1.25 

K 
647 

3660 
7470 

18700 
16900 
16900 
16900 

Na 
8.4 

29.1 
21.2 
32.0 
36.2 
36.2 
36.2 

NIIj 
1.05 
6.53 
30.7 
30.7 
30.7 
30.7 
30.7 

KS()w2> 
(1 mol -') 

0.5x10 3 
7.6x10' 
1.5x10' 
1.5x10' 
2.4x10' 
2.4x10' 
2.4x10' 

') Based on average soil solution concentration measurements in 1983 and solid phase analyses in the 
same year except for NI I4 which is taken from De Vries et al. (1995a) 

2) Derived from Meiwes (1979). 

In SMART2 weathering fluxes are input to the model and were directly derived 
from the above mentioned budget study (Table 7) and dissolution of Al-hydroxide 
was described by equilibrium with an Al-hydroxide. Solubility products for the Al-
hydroxide at 10 and 90 cm depth were derived from average soil solution 
concentrations of H and Al in 1983 at these depths. The solubility product for Al-
hydroxide at 90 cm depth was also used in RliSAM and NUCSAM to calculate the Al 
concentration at equilibrium. 

Table 7 Geochemical parameters for SMART2 

Parameter 

KAL ') 
FBC2„V 
FBC1„ 2) 
KAL-
K H „ 
KSÖ4ad 

Unit 

l2 mo l 2 

molc m ' a ' 
molc n r 3 a ' 
l mol-' 
mol 1 -• 
1 mol ' 

Val 
10 

ues 
cm 

4.0x107 

0.039 
0.011 

0.7 
4786 

4.2x10' 

90 cm 
2.0x10'' 

0.043 
0.012 

3.5 
1862 

3.9x10' 
') Average IAP for Al(OI 1)3 at 10 and 90 cm based on measured Al and 11 concentrations in the period 1973-1990 
3 For 10 cm based on NUCSAM weathering rates and average II concentrations at 10 cm depth for the period 

1973-1990, for 90 cm depth directly based on weathering fluxes from Wesselink el al. (1994) 

Deposition data and scenarios 

For the deposition during the observation period 1973-1990 we used yearly values for 
wet and dry deposition as described in Bredemeier et al. (1995). 

For the long-term application of the three models, we used two atmospheric 
deposition scenarios for the period 1990-2090, i.e. (i) Business as Usual (BU): deposition 
values from the Soiling data set in 1990 were kept unchanged for the period 1990-
2090; (ii) Improved Environment (IE): deposition of SOx, NO x and NHX were reduced 
linearly with time between 1990 and 2000 by 75% and kept constant afterwards. For 
all other constituents the values of 1990 were kept constant, except for H, which is 
calculated from the charge balance. The values for the total deposition fluxes (in molc 
ha-1 a1) used for 1990 were: 1473 for NH4, 1410 for NO3 and 3641 for SO4. For base 
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cations and CI the total deposition fluxes were 458 for Ca, 344 for Mg, 44 for K, 875 
for Na and 1052 for CI. 

2.4.3 Results and discussion 

Validation and testing 

To characterise the effects of differences in the models, the simulated concentrations 
and leaching fluxes were compared with measured concentrations and leaching fluxes 
in the topsoil (10 cm) and subsoil (90 cm) for S0 4 , CI, NO, , NH4, Al and BC2 
(divalent base cations). Simulated and measured concentrations are shown in Figure 1 
(S04 and CI), Figure 2 (NO3 and NH4) and Figure 3 (Al and BC2). An overview of the 
statistical measures, NMAE and NME, for the various substances in topsoil and subsoil 
is given in Table 8. All models simulated the measured concentrations reasonably well. 
Differences between the output of the models SMAR'l'2, R.KSAM and NUCSAM were 
rather small. A notable difference occurred for the S 0 4 concentration in the subsoil. 
During the first five years SMAR'1'2 clearly performed less than RESAM and NUCSAM, 
whereas during the period 1980-1985 the opposite is true. Another remarkable result 
from the performance measures (Table 8) is that SMART2 showed in most cases the 
lowest values for both NAIAE and NME (i.e. the best performance), whereas NUCSAM 
showed the highest values (i.e. the worse performance). A more detailed discussion on 
the performance of the models to simulate the individual ions is held in the following 
sections where the influence of the model differences is presented. 

Table 8 Normalised Mean Absolute Error (NAME ) and Normalised Mean 
Error (NME ) for simulated concentrations 

Component 
so4 

NO3 

NII4 

BC2 

Al 

II 

CI 

Depth 
10 
90 
10 
90 
10 
90 
10 
90 
10 
90 
10 
90 
10 
90 

SMAR'I'2 

0.25 
0.29 
0.49 
0.53 
1.6 
1.0 

0.29 
0.29 
0.33 
0.34 
0.47 
0.40 
0.26 
0.25 

KMAH 

RllSAM 

0.24 
0.24 
0.50 
0.63 
6.0 

0.93 
0.25 
0.16 
0.33 
0.37 
0.47 
0.49 
0.28 
0.16 

NUCSAM 

0.37 
0.25 
0.62 
0.76 
5.0 

0.88 
0.41 
0.46 
0.52 
0.33 
0.53 
0.49 
0.41 
0.23 

SMART2 

0.17 
0.06 
0.19 
0.23 
-0.26 
0.99 
0.03 

-0.23 
0.32 
0.19 
0.47 
0.36 
0.11 
0.06 

KAIE 

Rl-XAM 

0.05 
0.12 
0.09 
0.36 
-6.0 
0.93 
0.21 
0.02 
0.12 
0.34 
0.45 
0.48 
0.03 
0.06 

NUCSAM 

-0.01 
0.18 
-0.04 
-0.25 
-4.9 
0.80 

-0.21 
-0.43 
0.02 
0.30 
0.51 
0.47 
-0.04 
0.16 

Influence of vertical resolution 

The influence of vertical resolution is best illustrated by the SO4 concentrations and 
leaching fluxes (Figure 1), as deposition and adsorption of SO4, was described in all 
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models in practically the same way. The trends in SO4 concentrations, as simulated by 
NUCSAM and Rl'.SAM, were generally in good agreement with the observation data. 
SMAR'I'2, however, overestimated SO4 concentrations at 90 cm depth from 1972-1978, 
during that period a strong rise in SO4 concentrations took place at this depth. This 
overestimation is caused by a larger dispersion of the SO4 front in a one-layer system 
compared to a multi-layer system. In a multi-layer system elevated atmospheric input 
of SO4 initially stores the absorbed SO4 in the upper soil layers only. In a one-layer 
system, elevated input immediately leads to a (small) rise in the absorbed amounts and 
concentrations for the whole soil profile. Although concentrations were overestimated 
by SMART2 in the subsoil, from 1973-1975, the performances for SO4 in both layers 
for the whole trajectory were comparable with the other multi-layer models. SMART2 
even showed the lowest value for the NME (Table 8). Cumulative leaching fluxes for 
SO4 and CI at 10 cm depth were simulated rather well. Leaching fluxes at 90 cm were 
slightly overestimated for CI by all three models and slightly underestimated for SO4 
by RHSAM and NlJCSAM. 

As a result of the smoothed SO4 front, the rise in Al due to weathering in the 
period 1972-1978 is less pronounced in SMART2. This causes a lower exchange of 
adsorbed base cations against Al compared to the other models. This lower BC2 
desorption in turn leads to a lower rise of the BC2 concentrations in the subsoil, as 
simulated by SMAR'I'2 (see Figure 3). 

Influence of process description 

The main differences in process description between the models occur in the 
description of processes involving the nitrogen dynamics. All three models account 
for storage of N in the litter layer and for mineralisation. However, SMAR'I'2 and 
RllSAM only made a distinct between old and fresh litter, whereas NUCSAM includes a 
three compartment model (see Chapter 2.1). Furthermore, (devitrification in SMART2 
is described in a different way than it is in RKSAM and NUCSAM. 

Nevertheless comparable results for the NO3 concentrations in both soil layers 
were obtained (Figure 2). This is confirmed by the NMAE and NMI- (see Table 8). The 
NH 4 concentrations in the topsoil (Figure 2) were clearly overestimated by NUCSAM 
and RJ'SAM (NME < 0), whereas SMAR'I'2 underestimate this concentration. In the 
subsoil, all models simulated comparable NH4 concentrations, which were 
underestimated with respect to the measurements (see NME values, Table 8). The 
relatively good agreement between observed and simulated concentrations with 
SMAR'I'2 in the topsoil, is partly due to the fact that in SMAR'I'2 different nitrification 
constants at 10 and 90 cm depth were used, which were directly derived from the 
Soiling data set. RKSAM and NUCSAM, however, used one overall nitrification 
parameter. 
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Figure 1 Measured and simulated SCU and CI concentrations and leaching fluxes at 10 
(left) and 90 cm depth (right) 

129 



II Evaluation on a site scale 
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Figure 2 Measured and simulated NO3 and NI I4 concentrations and leaching fluxes at 
10 (left) and 90 cm depth 
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Another difference between SMART2 and RESAM/NUCSAM is the way in which 
Al concentrations are calculated. SMAR'I'2 assumes equilibrium with Al-hydroxide, 
whereas RESAM and NUCSAM use a kinetic description (see Chapter 2.1 and 2.2). 
Figure 3 shows that results for the simulation of Al (main cation) were comparable 
with those for the main anion SO4. The way in which Al concentrations were 
calculated appears to have hardly any influence on the results for the chosen period, 
both in the topsoil and the subsoil. In long-term predictions NUCSAM/RESAM and 
SMAR'F'2 may give different Al concentrations, particularly in the topsoil where the 
dissolved Al is far from equilibrium with gibbsite. Exhaustion of solid Al-compounds, 
will lead to a lower simulated Al concentration by NUCSAM/RESAM, whereas that 
simulated by SMAR'F'2 will remain constant. This effect, however, does not occur in 
this case, see Figure 4. 

Influence of temporal resolution 

The influence of neglecting seasonal fluctuations on solute fluxes can best be 
identified by comparing RFiSAM and NUCSAM, models with a comparable process 
description and a difference in temporal resolution. The most direct influence of the 
chosen temporal resolution is on CI concentrations and fluxes. For example, NUCSAM 
with daily up- and downward water fluxes gives stronger fluctuations in 
concentrations than RESAM (Figure 1). NAIAE values for the CI concentrations, 
however, showed that the simulation of the CI concentrations by NUCSAM was not 
better than for the other models. In the topsoil, the simulated fluctuation of the CI 
concentration was sometimes out of phase with the measured fluctuation. In the 
subsoil, NUCSAM underestimated CI concentrations in wet periods (Table 8). 

The influence of the chosen temporal resolution can particularly strong for the 
NO3, NH4 and base cations concentrations, which are strongly influenced by seasonal 
processes as nutrient uptake and mineralisation. NO3 concentrations (Figure 2, Table 
8) simulated with NUCSAM and RESAM were in close agreement with the 
measurements in the topsoil. Although, NUCSAM simulated the seasonal peaks in NO3 
concentrations NAIAE values in the topsoil were somewhat higher for NUCSAM 
compared to RESAM. NO3 concentrations in the subsoil were poorly simulated by 
Ri:SAM up to 1980. From 1980 onwards concentrations simulated by NUCSAM and 
RESAM were in the same range as measured values (relatively low NAIAE and NAIE). 
However, fluctuations in simulated concentrations by NUCSAM occurred more 
frequent than the measured multi-year fluctuations in concentrations. The differences 
in simulated NO3 concentrations in the subsoil, between NUCSAM and RESAM is 
caused by the fact that in NUCSAM total N uptake is lower. N uptake in NUCSAM is 
lower due to a restriction of the N uptake to the growing-season, which leads in 
certain years to a higher N demand than available in the soil solution, causing a lower 
total N uptake in that year. 

Cumulative leaching fluxes for NO3 in the topsoil (Figure 2) were in close 
agreement with measured leaching fluxes both for NUCSAM and RESAM. Cumulative 
leaching fluxes in the subsoil, were underestimated (-0.3 mole m2) by RESAM, due to 
the underestimation of the concentrations (positive NAIE) in the period up to 1980 
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and overestimated (+0.4 moU nv2) by NUCSAM due to the overestimation of seasonal 
peak concentrations (negative NMË). 

The correspondence between simulated and measured NH4 concentrations 
(Figure 2) was poor for RESAM and NUCSAM. The periodical fluctuations in 
concentrations in the subsoil were not simulated by NUCSAM and in general NH4 
concentrations were overestimated in the topsoil. Although, both measured and 
simulated NH4 concentrations were relatively low, the deviation between measured 
and simulated values leads to a serious overestimation (about 0.5 mole m2) in the 
period 1983 to 1989. 

Topsoil (10 cm) Subsoil (90 cm) 

[AT] (molcnv3) 
5 r 

• ; • * : • $ 

[BC2+](molcm-3; 
1.0 

1970 1975 1980 1985 1990 1970 1975 1980 1985 1990 

Time (a) 

Figure 3 Measured and simulated Al and BC2 concentrations at 10 (left) and 90 cm 
depth (right) 

Base cation concentrations (Figure 3) are influenced both by processes with a 
strong seasonal magnitude, such as mineralisation, solute transport and ion-exchange. 
The general trend in divalent base cation concentrations in the topsoil was reasonably 
simulated both by NUCSAM and RESAM. NUCSAM and RESAM overestimated the rise 
in BC2 concentrations in the subsoil up to 1978. From 1982 onwards all models 
overestimated BC2 concentrations, probably due to an underestimation of tree growth 
during this period. RESAM produced a somewhat stronger rise and fall in BC2 
concentrations in the subsoil than NUCSAM. This is caused by a stronger desorption 
of BC2 in RESAM. The same phenomenon, can be observed for SO4, albeit to a lesser 
extent (Figure 1). RESAM simulated slighdy higher SO4 concentrations than NUCSAM 
from 1975-1980. The deviation between RESAM and NUCSAM is induced by slight 
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differences in hydrology as reflected by the differences in simulated CI concentrations 
in the subsoil. 

Long-term predictions with NUCSAM, RESAM and SMART2 

Model performance using annual average concentrations 

Contrary to the Validation and testing section, we quantified the long-term model 
performance by comparing the flux-weighted annual averaged simulated 
concentrations with the corresponded observed ones. Figure 4 presents the long-term 
flux-weighted annual average concentrations as simulated by the three models for the 
Business as Usual (BU) scenario. Results for the Improved Environment (IE) scenario are 
given in Figure 5. Figure 4 and Figure 5 also include the observed flux-weighted 
annual average values. These values were calculated from the observed concentrations 
which were weighted with simulated soil waterfluxes that correspond with the period 
between the current and previous sampling date. 

Regarding the performance of the three models to simulate the observed 
concentrations and ratio in terms of the NMAE (Table 9), we can conclude that the 
results for all models are quit comparable. Notable exceptions are, however, the 
Al/BC ratio at 10 cm and the S 0 4 concentration at 10 cm for SMART2 and the N 0 3 

concentration at 90 cm for NUCSAM. Inspecting the individual values of the NMAE 
(the closer to zero the better the predictions), results appeared to be good {NMAE < 
0.30) for the SO4 concentrations in the topsoil and subsoil and the Al concentration in 
the subsoil for all models, for the NO3 concentration in the topsoil for NUCSAM, and 
for the Al concentration in the topsoil for RESAM, moderate (0.30 < NMAE < 0.60) 
for the NO3 concentration in the topsoil and subsoil for SMART2 and RESAM, and the 
Al concentration in the topsoil for SMART2, and bad (NMAE > 0.60) for the NO3 
concentration in the subsoil for NUCSAM and the A1/BC2 ratio in the topsoil and 
subsoil for all models. 

Concerning the performance of the model SMART2, Table 9 shows that for the 
SO4, NO3 and Al concentrations in the subsoil the performance is always either better 
than RF.SAM or better NUCSAM. The performance of SMART2 for these concentration 
in the topsoil is always less than the performance of RESAM and NUCSAM, although 
the deviations were small. For the A1/BC2 ratio the performance of SMART2 is always 
the poorest. However, RESAM and NUCSAM also showed a rather poor performance, 
which is not much better than that of SMART2. The bad performance of this 
compound model output was due to an overestimation of the Al concentration and an 
underestimation of the BC2 concentration (see Figure 3). 

Also from this comparison based on the annual average concentration, it can be 
concluded that the performance of the regional scale model SMART2 yield to 
comparable performance as obtained for the models RESAM and NUCSAM. This is an 
important result, since the annual average concentration is usually the temporal 
aggregation level used in national assessments by the Environmental and Nature 
Policy Assessment Office. 
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Table 9 Performance of the two models during the observation period 
expressed as the Normalised Mean Absolute Error (NMAU) 

NUCSAM 

RESAM 

SMART2 

NM AH 

S()4 

10 cm 
0.16 
0.14 
0.26 

90 cm 
0.15 
0.10 
0.11 

NO, 
10 cm 
0.26 
0.32 
0.38 

90 cm 
0.70 
0.57 
0.39 

Al 
10 cm 
0.30 
0.21 
0.36 

90 cm 
0.21 
0.25 
0.24 

A1/BC2 
10 cm 
4.0 
3.9 
4.2 

90 cm 
12.7 
13.2 
21.2 

Scenario analysis 

General features 

Under the BU scenario (Figure 4) the Al concentration gradually increased in the 
subsoil. In the topsoil, however, Al concentration decreased. This is due to a depletion 
of the Al hydroxide pool in topsoil. As a result of the depletion of the Al hydroxide 
pool, which highly determines the buffer capacity, the pi I decreased (cf. De Vries et 
al, 1994a). Under the IE scenario, the AI concentration (Figure 5) strongly decreased 
in both the topsoil and subsoil, due to deposition reductions. 

Under the IE scenario SO4 and NO3 strongly decreased in response to the 
decrease in atmospheric deposition. Due to SO4 desorption and N mobilisation from 
the humus, there was a retardation in the concentration response, especially in the 
subsoil. Afterward, the SO4 and NO3 concentrations showed a constant level for both 
scenarios. 

The molar A1/BC2 ratio in the topsoil showed a similar trend as the Al 
concentration. For both scenarios the molar A1/BC2 ratio decreased below 2, i.e. the 
critical value for spruce forest. Under the BU scenario this decrease was accompanied 
by a decrease in pH due to depletion of Al (hydr)oxides, and the pH buffering it 
provides. In the subsoil the A1/BC2 ratio gradually increased with the BU scenario. 
Under the IE scenario the A1/BC2 ratio initially showed a delayed response to the 
decrease in deposition. The delay time for the multi-layer models, RESAM and 
NUCSAM, was considerably shorter than for the single-layer model SMART2. 

Differences between SMART2, RESAM and NUCSAM predictions 

The agreement between flux weighted annual averaged concentration simulated by 
SMART2, RESAM and NUCSAM, was generally good for all presented constituents. The 
most remarkable difference between the two model results was that the NUCSAM 
outputs strongly fluctuating while the SMART2 and RESAM outputs were smoothed. 
This is, of course, inherent to the temporal resolution of the models; daily based 
versus annual average based. From 1970-1990, however, the SMART2 and RESAM 
results also showed a slightly fluctuating behaviour, which was caused by using the 
measured yearly values for deposition during this period. 
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Figure 4 Flux-weighted annual averaged concentrations simulated with NUCSAM, 
RESAM and SMART2 of the concentrations of SO4, NO3, Al and the A1/BC2 ratio at 10 
cm (left-hand side) and 90 cm (right-hand side) depth, under the Business as Usual 
scenario. The observed flux-weighted annual averaged concentrations are also given 
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Figure 5 Flux-weighted annual averaged concentrations simulated with NUCSAM, 
RKSAM and SMART2 of the concentrations of SO4, NO3, Al, and A1/BC2 ratio at 10 cm 
(left-hand side) and 90 cm (right-hand side) depth, under the Improved Environment 
scenario. The observed flux-weighted annual averaged concentrations are also given. 

Comparing the NUCSAM results for the two scenarios in general, it was striking 
that seasonal variability under the IE scenario was much smaller than under the BU 

scenario. This especially holds for the SO4 concentration in the subsoil, where 
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eventually all seasonal variability ceased. To a lesser extent this also happened for the 
S 0 4 concentration in the topsoil and the Al concentration and the A1/BC2 ratio in 
both considered soil layers. This was caused by the relative increase in importance of 
SO4 sorption and cation exchange at lower concentration levels, resulting in a stronger 
buffering of concentrations. This also explained that the seasonal variability of NO3 
was the same for both scenarios, which is difficult to see in Figure 4 and Figure 5. 
However, this was checked by normalising the NUCSAM concentrations by dividing 
them by the concentrations calculated with RESAM, which showed clearly that the 
seasonal variability under both scenarios was comparable. 

The long-term trends show that the models produce very similar trends for 
both scenarios. For most model outputs the NUCSAM results fluctuating around the 
SMART2 and RKSAM results. A notable exception is the A1/BC2 ratio in the subsoil 
under the IE scenario. The SMART2 simulated a much quicker response of the 
A1/BC2 ratio to the deposition reduction than the models RKSAM and NUCSAM. To a 
lesser extend this is also true for the SO4 and Al concentration. Again, this difference 
in time-delay is due to the difference in considered soil layers. Figure 5 clearly shows 
that the differences vanished several decades after the deposition reached a new 
constant level, i.e. the year 2000 (see Section Deposition data and scenario}). 

Cumulative leaching fluxes 

Cumulative leaching fluxes of Al, SO4, NO3 and NH4 over a period of 120 years 
predicted by SMART2, RKSAM and NUCSAM are presented in Figure 6 and Figure 7. All 
modes gave similar leaching fluxes for SO4. Although, the SMART2 flux in the subsoil 
for the BU scenario was slightly higher and in the topsoil for the IE scenario slightly 
lower. The Al and NO3 leaching fluxes predicted by SMART2 and RKSAM were 
invariably lower than the NUCSAM fluxes, for both scenarios and both depths. The 
low Al and NO3 fluxes were mainly due to ignoring seasonal variability. Although 
ignoring seasonality created additional model uncertainty, the identified differences are 
acceptable when making long-term predictions. 

This study showed that time resolution has only a rather small effect on the 
uncertainty in long-term (> 100 year) soil acidification. On a shorter time scale (10-50 
years), during strong changes in deposition, the effect is more significant, especially 
for the A1/BC2 ratio. 
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Figure 6 Cumulative leaching fluxes of SO4, NO3, Al, and NH4 at 10 cm (left-hand 
side) and 90 cm (right-hand side) depth as simulated with NUCSAM, R.KSAM and 
SMART2, using the Business as Usual'scenario 
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Figure 7 Cumulative leaching fluxes of S0 4 , NO3, Al and NH4 at 10 cm (left-hand side) 
and 90 cm (right-hand side) depth as simulated with NUCSAM, RESAM and SMART2 
using the Improved Environment scenario 
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2.4.4 Conclusions 

Testing and Validation 

The validation of NUCSAM, RESAM and SMAR'I'2 at the Soiling site, shows that the 
models reproduce the main features of the concentration variations over time for 
most concentrations. In particular: 
- trends and dynamics of the concentrations of NO3, SO4 and Al are reproduced 

well; 
- simulated NH4 concentrations in the topsoil is reproduced fairly by SMART2, but 

overestimated by NUCSAM and RESAM; 
- simulated A1/BC2 ratios in the subsoil are too low. This is of concern because the 

A1/BC2 ratio is an important criterium in critical acid loads. 
Despite differences in their process descriptions, SMAR'I'2, RESAM and NUCSAM 

simulate most of the solute concentrations reasonably well. Whether the dissolution of 
Al-hydroxides was modelled by a rate-limited reaction (NUCSAM, RESAM) or by an 
equilibrium equation (SMAR'I'2) hardly affected modelled Al concentrations. The 
differences in N cycling processes also hardly affect the quality of the modelled NO3 
and NII4 concentrations. 

The influence of vertical resolution of the models was clearly shown by the 
simulated concentration of SO4 and base cations in the subsoil. All models mimicked 
the observed a rise in SO4 concentration between 1975 and 1980, due to a decrease in 
sulphate adsorption. However, the one-layer model, SMART2, overestimated the initial 
rise in dissolved SO4, due to a large dispersion of the sulphur front in a one-layer 
system. On the other hand for the simulation period as a whole SMAR'1'2 showed the 
best performance for SO4 in the subsoil. 

We expected a strong influence of temporal resolution in the simulation of 
NO3 by NUCSAM compared to RESAM and SMART2. In the topsoil, NO3 
concentrations simulated by these models were in the same range as the 
measurements. Subsoil NO3 concentrations were slightly underestimated by RESAM 
and SMAR'I'2, as these models simulated a higher N uptake than NUCSAM. Albeit, 
NUCSAM slightly overestimated the subsoil NO3 concentrations, and the temporal 
fluctuations were poorly simulated. The same is true for the NI I4 concentrations. The 
NMAE values for the NO3 concentrations in the top- and the subsoil were higher for 
NUCSAM than for RESAM. In the topsoil the higher NMAE values resulted from the 
fact that simulated fluctuation were sometimes out of phase with the measured 
fluctuations. The NIL» concentration in topsoil was best modelled by SMART2, the two 
other models seriously modelled too high NI I4 concentration in the topsoil. All three 
models underestimated the NH4 concentrations in the subsoil, but the observed NH4 
concentration in subsoil are already very low. 

In general it can be concluded that the performance of the regional scale model 
SMAR'I'2 is as good as the performance of the more complex models RESAM and 
NUCSAM. A model such as NUCSAM proved to be a valuable link between relatively 
short data records and long-term predictions generated with RESAM and SMART2. 
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Long-term predictions 

RfiSAM, which does not include seasonal variation, simulated the observed flux-
weighted annual averaged concentrations (and ratios) comparable or even better than 
NUCSAM. Because the uncertainties in long-term predictions of soil and soil solution 
response induced by ignoring seasonal variability are rather small, it can be concluded 
that Rl'.SAM, which neglects seasonal variability, is acceptable for making long-term 
annual average predictions. 

SMAR'I'2, which does not take into account seasonal variation and vertical 
heterogeneity, yields in most cases results that are as good as the model NUCSAM and 
RESAM. However, during abrupt changes in inputs the concentrations and fluxes of 
adsorbing compounds, such as SO4 and Al, some deviations may occur. Bearing this 
in mind, it can be concluded that the use of the simplified model SMAR'1'2, that 
neglects seasonal variation and vertical heterogeneity, is in most aspects acceptable for 
the evaluation of long-term trends in soil and soil solution chemistry. 
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3.1 Modelling of soil acidity and nitrogen availability 
in natural soil ecosystems in response to changes 
in acid deposition and hydrology 

Abstract 

SMART2 has been developed to provide a simple, nationally applicable model to gain insight into the 

effects of hydrology, atmospheric deposition and nutrient cycling on soil and soil water quality. 

SMART2 was derived from a dynamic soil acidification model SMART (Simulation Model for 

Acidification's Regional Trends), aimed at the evaluation of the effectiveness of emission control 

strategies for SO2, NOx and NH) at the European scale. SMART is a one-compartment model 

which only includes geochemical buffer processes (e.g. weathering and cation exchange). SMART2 

furthermore, includes nutrient cycling and solute input through upward seepage. The SMART2 model 

is linked to the Multiple stress mO de I for VEgetation (MOVE), that predicts the probability of 

occurrence of individual plant spedes as a function of the acid, nutrient and moisture status of the soil. 

In this paper we evaluate SMART2 for various acidification and seepage scenarios (1990-

2050) in the Netherlands. The results are focused on pH and nitrogen availability. We considered 

combinations of five vegetation structure types (three forest types, heather and grass) on seven soil types 

(three sandy soils, two clay soils, peat and loess soils) and five water-table classes, using a 250 X 250 

km2 grid. Effects of changes in pH, as calculated with SMART2, on the forest understorey in a 

nutrient poor deciduous forest were evaluated with MOVE. 

Model simulations indicate that reductions in add atmospheric deposition lead to a relatively 

fast increase in pH and base saturation and a decrease in N availability. As a result of deposition 

reductions the predicted number of spedes in the forest understorey in a nutrient poor dedduous forest 

increases from 40 to 80% in 1990 to 60 to 100% in 2050. 

3.1.1 Introduction 
Changes in vegetation are often caused by changes in site factors, such as pH and 
nitrogen availability (cf. Huston, 1979; Grime, 1979; Tamm, 1991). Abiotic site factors 
are affected by changes in atmospheric deposition (Galloway, 1995), water-tables (Van 
Wirdum, 1986), changes in management, and land use and internal processes such as 
vegetation succession. Changes in abiotic site factors may affect the structure and 
functioning of semi-natural ecosystems, and thus to biodiversity (cf. Bobbink et al., 

1998). Often, ecosystems are affected by various threats simultaneously (multiple 
stress effect). Environmental effects on ecosystems are usually studied for one stress 
factor at a time. 

Started in the second half of the 20th century, Dutch ecosystems received 
increasingly inputs of NFI4 and SO4. These affected soil solution concentrations, pH 
and nitrogen availability (Van Breemen et al, 1982). Two groups of effects of 
enhanced atmospheric deposition of sulphur and nitrogen can be distinguished: (i) 
(soil) acidification, leading to enhanced leaching of base cations, and increased 
dissolution of potentially toxic aluminium, and (ii) eutrophication by nitrogen only. In 
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wet ecosystems eutrophication is also due to input of polluted ground- and surface 
water. A thorough review of the impacts of N inputs on semi-natural ecosystems, i.e. 
bogs and wetlands, species-rich grasslands, heathlands and forest, related to vegetation 
changes, is given in Bobbink eta/. (1998). 

Research on forests indicated that increased nitrogen inputs cause high 
concentrations of NII4 and NO3 in the soil solution (Roelofs et ai, 1985; Kleijn et ai, 
1989), associated with a shift towards nitrophilous grass-species in the forest 
understorey (Hommel et al, 1990). p l i decrease may affect the original ground 
vegetation (Bobbink et a!., 1998). Besides vegetation changes, increased nitrogen input 
and acidification may lead to: (i) nutrient imbalances, resulting from an increase in 
biomass, causing an increased demand of base cations (Ca, Mg, K) and the 
counteracting effect of reduced uptake of these cations due to increased NFI4 
concentrations (Boxman and Van Dijk, 1988) and (ii) increased susceptibility to 
secondary stress factors such as frost (Aronsson, 1980) and fungi (Roelofs et ai, 1985). 

In heathlands high inputs of atmospheric nitrogen are a significant factor in the 
transition of heathland to grassland (Heil and Diemont, 1983). Apart from the 
changes in competitive interactions between heather and grasses under the influence 
of nitrogen accumulation in the soil, heather beetle plagues are important factors in 
vegetation changes in heathlands (Berdowski and Zeilinga, 1987; Berendse et al, 
1987). Generally, the species that contribute most to biodiversity tend to grow on soils 
with a relative high pH, low nitrogen content, and low Al/Ca ratio (Bobbink et ai, 
1998). 

Also in semi-natural species-rich grassland, increased nitrogen availability that 
gives more highly productive grassland depresses botanical diversity (Bobbink et al, 
1998). Wetland ecosystems showed also a significant decrease in diversity at elevated 
nitrogen inputs (Vermeer and Berendse, 1983). 

In the Netherlands many vegetation types used to depend on shallow water-
table. In the last decades, these vegetation types have suffered severely from lowering 
of the water-table, by intensive drainage and groundwater abstraction (Van Amstel et 
al, 1989). In addition, Hendriks (1994) showed that 29% of the Dutch forests suffers 
from drought. Decrease upward seepage water quality has also affected species 
diversity in many wetland ecosystems (Van Wirdum, 1991). 

To evaluate effects of eutrophication, acidification and drought on species 
diversity, a conceptual, species-centred, Multiple stress mOdel for VEgetation (MOVE) 
has been developed (Latour and Reiling, 1991). MOVE calculates the probability of 
occurrence of plant species as a function of soil pH, soil nitrogen availability and 
depth of the groundwater-table in spring. Because combined samples of vegetation 
and these site factors are rare, the indication values of plant species by Ellenberg et al. 
(1991) are used to assess the site factors. The Ellenberg's indication values were 
calibrated with samples of vegetation relevés combined with measured site factors 
(Wiertz^a/., 1992). 

To evaluate the soil pH and nitrogen availability in response to acidification, 
drought and eutrophication scenarios the SMART model (De Vries et al, 1989) was 
extended to serve as soil module for the MOVE model. The dynamic soil acidification 
model SMART was developed to evaluate the effectiveness of emission control 

146 



Chapter 3.1 

strategies for SO2, NO x and NHi on a European scale. SMART is a simple one-
compartment model which mainly includes geochemical buffer processes such as 
weathering and cation exchange. To model abiotic site factors in both dry and wet 
natural ecosystems SMART was extended with nutrient cycling and improved 
hydrology (including upward seepage transport). The extended model is called 
SMART2. 

With the combination of the SMAR'1'2 model and the MOVK model (see Figure 
1) it is possible to evaluate the response of site factors of terrestrial ecosystems to 
deposition and upward seepage scenarios to (i) assess the effectiveness of the 
combination of emission-deposition reductions and reduction in groundwater 
abstractions on a national scale, and (ii) identify areas with a large probability of 
occurrence of specific plant species, shows the general concept of the integrated 
SMART2-MOVH model. 

SMART2 

Soil 
module 

Moisture 
content 

— j PH 

J N 
; availability 

MOVE 

Vegetation 
module 

Figure 1 Schematic presentation of the integrated SMART2-MOVK model 

The major objectives of this Chapter are (i) to present a simple, nationally 
applicable model to gain insight into the effects of upward seepage, atmospheric 
deposition and nutrient cycling on terrestrial ecosystems, (ii) the validation and 
evaluation on a national scale using regionally available data, and (iii) an application of 
the model on a national scale using various deposition and hydrology scenarios. A 
complete description of the model SMART2 is given in Chapter 2.3. This Chapter 
provides an evaluation and validation of SMART2 on a national scale using a nation­
wide inventory and the background on geographical information and data used for a 
national application of SMARl'2, as well as an indicative application of the combined 
SMART2-MOVE using two deposition scenarios. 

3.1.2 T h e SMART2 Model 

SMART2 (Kros et al, 1995a) predicts changes in H, Al, divalent base cation (BC2), 
NO3 and SO4 concentrations in the soil solution, as well as solid phase characteristics 
depicting the acidification status, i.e. carbonate content, base saturation and 
amorphous Al precipitates. The SMART2 model consists of a set of mass balance 
equations, describing the soil input-output relationships, and a set of equations 
describing the rate-limited and equilibrium soil processes (Table 1). 
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Table 1 Processes and process descriptions included in SMART2 

Process 
Input 
Total deposition 

Upward seepage 

Water Balance 

Rate-limited reactions: 
Foliar uptake 
Foliar exudation 
Litterfall 

Root decay 

Mineralisation 

N immobilisation 

Growth uptake 

Nitrification 

Denitrification 

Silicate weathering 

Equilibrium reactions: 
Dissociation/association 
Carbonate weathering 
Al hydroxide weathering 
Cation exchange-
Sulphate sorption 

Klcmcnt 

S 0 4 , N 0 3 , N I I 4 , 
BC2 '), Na, K 

S 0 4 , N 0 3 , N I I 4 , 
BC2 '), Na, K 

-

N I L 
BC2 », K 
BC2 '), K, 
N I l 4 , N 0 3 

BC2 », K, 
N I I 4 ,N ( ) 3 

BC2 '), K, 

N I U . N O j 
N I I 4 ,NO j 

BC2 '), K, 
N I I 4 , N 0 3 

NIl4 ,N() 3 

NO3 

Al, BC2, Na, K 

IICO3 
BC2 
Al 
IP) ,A1,BC2 
II, SĈ 4 

Process description 

Inputs: deposition fluxes are multiplied by 
an element- and vegetation-dependent 
filtering factor2) 
Inputs 

Inputs: precipitation, upward seepage, 
évapotranspiration 

Linear function of total deposition 
Fquals foliar uptake 
Logistic growth 

linear function of litterfall 

first-order reaction and as a function of pi I, 
Mean Spring Water table (MSW) and C /N 
ratio of the litter 

Proportional to N deposition and as a 
function of the C /N ratio soil organic 
matter 
Logistic growth 

Proportional to net NI I4 input and as a 
function of pi I, Mean Spring Water table 
{MSW") and C/N ratio 
Proportional to net N 0 3 input and as a 
function of pi I, Mean Spring Water table 
{MSW) and C /N ratio 
Zero order reaction 

CO2 equilibrium equation 
Carbonate equilibrium equation 
Gibbsite equilibrium equation 
Gaines-Thomas equations 
Langmuir equation 

'< BC2 stands for divalent base cations (Ca, Mg) 
9 The vegetation-dependent filtering factor takes into account the roughness length of the canopy 
* Implicitly, II is affected by all processes. This is accounted for by the charge balance 

The soil solution chemistry in SMART2 depends on the net element input from 
the atmosphere (the product of deposition and filtering factor, i.e. a correction factor 
for the roughness length of the canopy) and groundwater (upward seepage), canopy 
interactions (foliar uptake, foliar exudation), geochemical interactions in the soil (CO2 
equilibria, weathering of carbonates, silicates and/or Al hydroxides, SO4 sorption and 
cation exchange), and a complete nutrient cycle (litterfall, mineralisation, root uptake, 
nitrification and denitrification). The growth of the vegetation and litterfall are 
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modelled by a logistic growth function, which acts as a forcing function. Nutrient 
uptake only stops when the soil solution concentration of the corresponding nutrient 
becomes zero. Soil interactions are either described by simple, rate-limited (zero-
order) reactions (e.g. uptake and silicate weathering) or by equilibrium reactions (e.g. 
carbonate and Al-hydroxide weathering and cation exchange). The influence of 
environmental factors, e.g. pH and temperature, on weathering and exchange 
reactions is ignored. Solute transport is described by assuming complete mixing of the 
element input within one homogeneous soil compartment with a constant density and 
a fixed depth (generally the root zone), so SMART2 only predicts the solutes leaving 
the root zone. The annual water flux percolating from this layer equals the annual 
precipitation excess, which must be specified as a model input. The time step of the 
model is one year, so seasonal variations are not considered. 

3.1.3 The vegetation effect module MOVE 

We used the model MOVE (Latour and Reiling, 1993) to evaluate the effects of a 
changes in soil pH and N availability, as calculated by SMART2, on species diversity for 
plant species of nutrient-poor deciduous forests. MOVE predicts the probability of 
occurrence of plant species as a function of three abiotic soil factors: soil acidity, 
nutrient availability and soil moisture. With regression statistics the probability of 
occurrence of a species can be calculated for each combination of soil factors or for 
each environmental variable separately resulting in species-response curves. Species-
response curves of about 900 plant species have been determined for soil moisture, 
nutrient availability and soil acidity (Wiertz et al, 1992) using Gaussian logistic 
regression models. Although, it is known that species diversity is affected by several 
nutrients (cf. Olde Venterink, 2000), MOVE only take N into account. 

Regression was based on an extensive database developed for a revision of the 
Dutch classification of plant communities (Schaminée et al, 1989). This database 
consists of 30 000 vegetation relevés. However, no information on abiotic site factors 
of these vegetation relevés was available. Hence, abiotic site factors were assessed in 
retrospect based on Ellenberg indication values (Ellenberg et al, 1991), using the 
method of Ter Braak and Gremmen (1987). Ellenberg indication values indicate the 
relationship between the occurrence of a plant species and nutrient availability, acidity, 
soil moisture, salt dependency, and temperature. These values have been assigned to 
most plant species of western and central Europe, and the Netherlands (Wiertz et al, 
1992). The abiotic site factors of each vegetation relevé are assessed by averaging the 
indication values of all the observed species. Calculated averages of the Ellenberg 
indication values are used as a semi-quantitative assessment of die abiotic soil factors. 
Next, the frequency of probability of occurrence of each species is derived as a 
function of the average Ellenberg indication values of the vegetation relevés, using 
Gaussian logistic regression models (Jongman et al, 1987). Because this analysis used 
only floristic information to assess the abiotic site factors, any (historical) vegetation 
relevé can be included in the analysis. Moreover, such an analysis excludes potential 
bias caused by high temporal and spatial variation in the actual measurements of 
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abiotic site factors. Species occurrence has been described as being significant for 95% 
of the species using unimodal and linear regression models. Most of the significant 
models were unimodal. Linear models were found for nutrients (4%) and salt (20%). 

Ellenberg indication values were calibrated with quantitative values for the 
abiotic soil factors using combined samples of vegetation and environmental variables. 
This calibration connects SMARI'2 with MOVK. For this purpose a database has been 
compiled with combined samples for pH (N = 3988), mean spring water table (MSW) 
(N = 13) and N availability (N = 266). For pi I, MSW, biomass production and N 
availability satisfying relations with Ellenberg values were found, explained variances 
of respectively 0.58,0.54, 0.59 and 0.58 (Alkemade et al., 1996). 

MOVK input consist of a yearly average pi I and N availability in the root zone 
and the {MSW). The pi I and N availability were calculated by SMAR'l'2, whereas the 
MSW-was provided by the hydrological scenario derived by the national groundwater 
model (LOM, Pastoors, 1993; cf. Section Hydrology scenario). The pi I in SMARI'2 refers 
to a 'real' p l l of the soil solution, which must not be mixed up with regular soil 
analysis parameters like pII(KCl) and pll( l l20). In this study the N availability is 
defined as the sum of the N throughfall flux and the mineralisation flux. This can be 
regarded as a gross N availability, which is available for root uptake, immobilisation 
and denitrification. The remainder will be leached from the root zone. 

Characteristic species for nutrient-poor deciduous forest Quercion Robori-Petraeae 
and Fago-Quercetum were inferred from Loopstra and Van der Maarel (1984). 
Ecological response curves of 13 plant species were inferred from Wiertz et al. (1992). 
These species are: Convallaria majalis, Ceratocapnos daviculata, Deschampsia ßexuosa, 
llieradum laevigatum, llieradum umbellatum, llolcus mollis, Lunula pilosa, Lunula sjlvatica, 
Melampjrum pratense, Polypodium vulgare, Pteridium aquilinum, Solidago virgauria, and Teucrium 
scorodonia. 

For each species the 10 and 90 percentiles of the species-response curves were 
calculated. The 10 percentile corresponds with a reduced probability of occurrence 
due to 'shortage or limitation', the 90 percentile to reduced occurrence due to 'excess 
or intoxication'. Next, the probability of occurrence was plotted for each grid cell. A 
species was considered to have a probable occurrence when both the predicted pi I 
and N availability in a grid cell were between the 10 percentile and the 90 percentile 
value of the ecological response curve. The probability of occurrence for each grid cell 
was calculated from the number of the mentioned 13 plant species which are probable 
to occur. 

3.1.4 Model parameterisation, calibration and validation 

Data acquisition strategy 

Data needed to apply SMARI'2 on a national scale, include system inputs (driving 
variables), the initial state of model variables and model parameters. System inputs 
refer to a specific deposition scenario and upward seepage scenario for each grid cell. 
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Model variables and parameters refer to particular combinations of generic soil types 
and generic vegetation structure types. 

In predicting the long-term impact of atmospheric deposition scenarios on site 
factors on a national scale, we distinguished: 
- geo-referenced information on system inputs, for each grid cell i.e. (i) soil type, 

vegetation structure type, and water table class, (ii) the deposition of SO4, NO3, 
NI I-t, base cations and CI (iii) precipitation and (iv) upward seepage fluxes; 

- generic information, i.e. average values for initial values of model variables and 
model parameters for each combination of vegetation structure type and soil type. 
Soil type, vegetation structure type and water table class were derived form 

national maps, which were generalised en gridded toward a 250 X 250m2 grid. 
Hydrological information was derived from the National Groundwater Model (LGM; 
Pastoors, 1993), with a resolution of 250 X 250 m2. Deposition values of SO2, NO x 

and NIIi for 1980, 1990 and 1997 were available on a 1 X 1 km2 grid (Kerens and Van 
Dam, 2000, see section Deposition Scenarios) and deposition values of base cations and 
CI (derived from a 10 X 10 km2 grid database; De Vries et al, 1994c). The grid-related 
information was stored in database tables, wThereas the vegetation and soil related 
parameter were stored in ascii-files (cf. Mol-Dijkstra et al., 2001). The model output 
was stored as grid - and time related data in database tables or grid-ascii-files. 

Validation data 

To gain insight into the reliability of the model predictions, we compared model 
results of the soil and solution chemistry for forest with soil and soil solution 
measurements at 60-100 cm depth. Validation data were based on an inventor)' of 
about 200 forested stands throughout the Netherlands. For acid sandy soils, 
measurements from 150 forest stands were used, which were sampled once during die 
period March to May in 1990 (De Vries et al., 1995b). For clay, loess and peat soils 
measurements from 100 forest stands were used, which were sampled once during the 
period March to May in 1994 (Klap et al., 1999). 

It is important to realise that there exists some crucial differences between the 
modelled and observed samples (see also De Vries et al., 1994a): 
- the number of the observed soil/vegetation combinations differed from those that 

were simulated and most observations concerning forest on poor sandy soils; 
- the soil depth of the observations was always 60-100 cm, whereas the soil depth 

used for the simulations varied from 20-100 cm (cf. Table 9); 
SMAR'I'2 simulated flux weighted annual average concentrations, whereas die 

field data were single observations in early spring. 

Areal distribution of soil-vegetation combinations 

We considered seven soil types and five water-table classes, which were derived from 
the 1 : 50 000 soil map of the Netherlands. Soil types were generalisation based on soil 
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chemical criteria: parent material, presence of calcite, base saturation and texture 
(Table 2). 

Table 2 Distinguished soil types 

Code 
SP 
SR 
SC 
CN 
CC 
PN 
I.N 

Soil class 
Sand Poor 
Sand Rich 
Sand Calcareous 
Clay Non-calcareous 
('lay Calcareous 
Peat Non-calcareous 
Loess Non-calcareous 

Common soil types (I'AC), 1988) 
Carbic Podzols, Arenosols 
(îleyie Podzols, Glcysols 
Arenosols 
Fluvisols 
1'luvisols 
Ilistosols 
l.uvisols 

The relation between the 1 : 50 000 soil map codes and the seven soil types 
used is given in Kros et al. (1995a). The five water-table classes were the same as used 
by De Waal (1992) (Table 3). The corresponding Mean Highest Water-table {Ml \\V) 
and Mean Lowest Water-table (MLW) were derived (weighted averaged) from Van 
der Sluijs (1990). 

Table 3 Used water-table classes and their corresponding water-table 
classes from the 1 : 50 000 soil map of the Netherlands and the 
corresponding averaged MHW, MLW, MSW 

Water-table Class Water-table Class from the MHW) MLW 
used in this study 1 : 50 000 soil map (m) (m) 

MSW 

I 
II 
I I ' , III, III ' , V, V' 
IV, VI 

vu, vir 

-0.05 
0.07 
0.24 
0.60 
1.29 

0.38 
0.66 
1.18 
1.43 
2.21 

0.08 
0.24 
0.48 
0.82 
1.51 

» Averaged Ml W (Mean I lighest Water-table), MLW (Mean Lowest Water-table) and MSW (Mean Spring Water-
table)as given by or calculated from Van der Sluijs (1990) 

We attributed the existing vegetation to five classes of 'functional types' of 
vegetation (Table 4), based on difference in canopy characteristics, litter production, 
growth and vegetation management. 

The areal distribution of the vegetation structure types over the soil types 
(Table 5) and the water-table classes (Table 6) was obtained by an overlay of 250 X 
250 m2 grid maps, i.e. (i) generalised soil map (including water-table information), (ii) 
the Dutch forest inventory (Nederlandse, 1985), (iii) 'nature conservation value map' 
(Natuurbeleidsplan, 1989) and a detailed vegetation map based on satellite 
observations (LGN; Thunnissen et ai, 1992). Because of the inaccuracy of the various 
vegetation maps, more than one vegetation class could be assigned to a 250 X 250 m2 

grid cell. For these cases the following allocation sequence was used: (i) first grassland 
and heather from the satellite observation map first assigned to the 250 X 250 m2 grid 
cells; (ii) second forest (DEC, SPR, PIN) was assigned only when no grassland and no 
heather was assigned during the previous step. This sequence was used because the 
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LGN data (dated from 1990) was more recent than the forest inventory data (dated 
from 1985). 

T a b l e 4 D i s t i n g u i s h e d v e g e t a t i o n c l a s s e s 

Code Vegetation Class Common species 
Characteristics 

DHC Deciduous forest Oak, beech, Japanese larch 
Needle or leaf-shedding trees with: low forest filtering, growth rate and 
transpiration rate 
Scots pine and black pine 
Hvergreen trees with: moderate forest filtering, growth rate and 
transpiration rate-
Douglas fir, Norway spruce 
Hvergreen trees with: high forest filtering, growth rate and transpiration 
rate 
Calluna, Hrica 
Common grass species 

no fertilisation or grazing 

PIN 

SPR 

HF.A 
GRP 

Pine forest 

Spruce forest 

I leather 
Grassland 
(nutrient-poor) 

T a b l e 5 A r e a o f t h e v e g e t a t i o n / s o i l c o m b i n a t i o n s c o n s i d e r e d i n t h e m o d e l 

a p p l i c a t i o n a s a p e r c e n t a g e o f t h e t o t a l v e g e t a t i o n - c o v e r e d a r e a i n t h e 

N e t h e r l a n d s » ) ( 3 2 6 6 1 4 h a ) 2 ) 

Soil type 

Sand Poor 
Sand Rich 
Sand Calcareous 
Clay Non-calcareous 
Clay Calcareous 
Peat Non-calcareous 
Loess Non-calcareous 

Total 

Area (%) 
Pine 
forest 

35.54 
4.97 
0.29 
0.27 
0.02 
0.22 
0.14 

41.45 

Spruce 
Hörest 

5.97 
3.11 
0.12 
0.30 
0.03 
0.39 
0.05 

9.97 

Deciduous 
forest 

18.73 
10.19 
1.28 
2.57 
2.21 
1.62 
0.52 

37.12 

I leather 

3.70 
0.18 
0.00 
0.00 
0.00 
0.12 
0.02 

4.02 

Grass 
(nutrient-) 
Poor 

3.19 
0.29 
2.94 
0.27 
0.29 
0.44 
0.02 

7.44. 

Total 

67.14 
18.74 
4.63 
3.42 
2.54 
2.79 
0.74 

100.00 
') Information on the areal distribution of tree species and soil types in each grid cell was derived by overlaying a 

250 X 250 m2 grid with vegetation coverage information and a soil database with soil type information in a 250 x 
250 m2 grid. The latter database was derived by transforming the digitised 1 : 50 000 soil polygon map of the 
Netherlands (De Vries and Denneboom, 1992). 

21 This value excludes the vegetation coverage in the southern part of the Province of Limburg and the southern 
part of the Province of Flevoland 
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Table 6 Area of the vegetat ion/water-table class combinations considered 
in the model application as a percentage of the total vegetation covered 
area in the Netherlands (326 614 ha) 

Water-table 
Class 

1 
2 
3 
4 
5 

Total 

Area (%) 
Pine forest 

0.03 
0.21 
5.66 
5.77 
29.76 

41.43 

Spruce 
Forest 

0.01 
0.13 
3.41 
2.72 
3.71 

9.98 

Deciduous 
forest 

0.28 
1.25 
11.75 
8.81 
15.02 

37.11 

I leather 

0.01 
0.01 
0.61 
0.22 
3.18 

4.03 

(îrass 
(nutrient-) 
Poor 
0.50 
0.99 
1.21 
1.08 
3.67 

7.45 

Total 

0.82 
2.59 
22.64 
18.60 
55.35 

100.00 

Data related to vegetation structure types 

Data used for the five vegetation structure types are presented in Table 7. The 
vegetation age (age,^) was set to 40 years old for forest and 10 years old for short 
vegetation. This refers to a semi mature forest which will double in biomass during 
the next 50 years. The stand age (ageit) for forest (PIN, SPR, DEC) was derived by 
assuming that most of the actual forest in the Netherlands was planted at the 
beginning of the 20th century. For heather (IIEA) and grassland (GRP) is was assumed 
that they were sod cutted or ploughed 10 years ago. 

Most data on canopy interactions (filtering factors, dry deposition factors, 
interception fractions, foliar uptake fractions and foliar exudation fractions), nutrient 
cycling (reallocation fractions and nutrient contents in leaves) and growth uptake 
(nutrient contents in stems) in forests were directly taken from De Vries et al. (1994c). 
Values for pine, spruce and deciduous trees related to Scots pine, Douglas fir and Oak 
respectively. The amounts of litterfall for these forests were the product of the average 
values for leaf biomass and litterfall rate constant given by De Vries et al. (1994a). 
Nutrient cycling factors (nef), the fraction of roots in the litter layer (frrt //) and 
mineralisation constants for forest were taken from a literature survey by De Vries et 
al. (1990). 

Filtering factors for heathlands and grasslands were assumed to be 1.0. Dry 
deposition factors, foliar uptake fractions and foliar exudation fractions for heather 
and grassland were derived from Bobbink and Heil (1993) and Bobbink et al. (1990), 
respectively. Interception fractions for both vegetation structure types were derived 
from De Visser and De Vries (1989). 

As with forests, the amounts of litterfall in heathlands and grasslands were 
calculated as the product of average values of above ground biomass and litterfall rate 
constants, using data from Berendse (1988) for Erica (wet heathland) and Molinia 
(grass). Reallocation factors, nutrient cycling factors, nutrient contents in above 
ground biomass and mineralisation constants were derived from the same source. The 
fraction of roots in the humus layer in heathlands was based on Tinhout and Werger 
(1988). Actually, these authors found that about 75% of the fine root biomass (cf. 
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Table 7) was in the top 5 cm of the soil. We assumed this amount to occur in the litter 
layer. The same assumption was made for the organic top-layer in grassland. 
Concentrations of monovalent base cations (K) in above-ground biomass in 
heathlands and grasslands were based on Heil and Diemont (1983) and Bobbink et al. 
(1990), respectively. Values for divalent base cations (Ca, Mg) were derived from Pruyt 
(1984). Mineralisation constants for heather and grassland were based on Berendse 
(1988) assuming that they relate to well-drained soils (no reduction for groundwater 
level). 

Table 7 Values used for the canopy interactions, nutrient cycling, growth 
uptake and mineralisation parameters for the five vegetation structure 
types 

Parameter •) 
aSe'i 
ag'n 
Canopy Interaction 

JPO2 
JNH, 
JNOx 
fdj 

fr,*t 

frNH4j„ 

fififi. 
JrKf, 
Nutrient Cycling 
Am f 
nef 

™cxp 

fr* 
fr,tli 
ctBC2k 

aKt 

CtNu-m. 
ctNu^ 
Growth Uptake 
ctN« 
ctBC2sl 

ctKsl 

Mineralisation 

Jf m mx 

**m fft\-

Unit 
a 
a 

-
-
-
-
-
-
-
-

kg m 2 a ' 

-
-
-
-
% 
% 
% 
% 

% 
% 
% 

-
a 1 

PIN 
40 
80 

1.4 
1.3 

0.85 
2.5 
0.3 
0.3 
0.3 

0.63 

0.41 
0.5 

2 
0.36 
0.25 
0.31 
0.60 

1.5 
2.5 

0.12 
0.11 
0.05 

0.8 
0.05 

SPR 
40 
80 

1.6 
1.5 
1.0 
3.0 
0.4 
0.3 
0.3 

0.63 

0.30 
0.5 

2 
0.36 
0.25 
0.54 
0.61 

1.5 
2.5 

0.11 
0.08 
0.04 

0.8 
0.05 

DI-C 
40 
80 

1.15 
1.1 
0.7 
2.0 
0.2 
0.3 
0.3 

0.66 

0.33 
0.5 

2 
0.36 
0.25 
0.64 
0.92 
2.5 
3.5 

0.17 
0.06 
0.12 

0.8 
0.05 

III 'A 
10 
10 

1.0 
1.0 
1.0 
1.5 
0.1 
0.4 
0.4 

0.65 

0.24 
3 
2 

0.10 
0.75 
0.75 
0.25 
0.9 
0.9 

0 
0 
0 

0.4 
0.3 

CRP 
10 
10 

1.0 
1.0 
1.0 
1.5 

0.05 
0.3 
0.3 
0.5 

0.30 
3 
2 

0.50 
0.75 
0.75 
0.70 

1.6 
1.6 

0 
0 
0 

0.8 
0.3 

') See Annex t for explanation of the used symbols, and Chapter 2.3 for the equations in which the parameters are 
used. 

Data related to soil types 

Data used for the soil parameters of the seven soil types are presented in Table 8. 
Data on bulk density, soil moisture content, carbonates, CEC, base saturation, organic 
matter content, total nitrogen content and secondary Al compounds were derived 
from an extensive field survey of 150 non-calcareous sandy soils (SP and SR; De Vries 
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et al, 1995b), about 50 calcareous sandy soils (Alterra, W. de Vries, pers. comm.), 30 
clay soils (CN, CC), 40 loess soils (LN) and 30 peat soils (PN; Klap et al, 1999). Note 
that all sampling sites were forest site. Exchange constants and the Al equilibrium 
constant were calculated, using the measured adsorbed and dissolved concentrations 
of II, Al and BC2 averaged of the considered soil depth. Here we present the median 
values related to the root zone for forest, which was set equal for all forest types. 
Similarly KAl„x derived from averaged soil solution concentrations of Al and II for 
sites with a pH below 4.5. The pH criterion was also used for the calculation of the 
exchange constant and was introduced to prevent use of unrealistic values. 

Maximum denitrification fractions [fr^,m:) and the parameters relating 
denitrification to water-table (rfé,Msw,mn and $4.) were derived from Breeuwsma et al. 
(1991). Nitrification fractions were calculated as a function of the water-table class, 
using data on deposition and leachate concentrations of NIL» (cNW) and NO3 (cNO;) 
in the mentioned 300 forest stands on sandy, clay, loess and peat soils, assuming that 
the NI I4 to NO3 ratio at the bottom of the root zone can be described as: 

cNH4 = (l-A)-M^ 

,NO, NOXld+(l + frm)-NHA>ld 

or: 

M / 4 / r f cNH 
4 

frni = 

NOiltl cNO. 

NH4M 

NO. , . V M03 j 

(2) 

When deposition data for NII4 and NO3 were not available, a ratio of 2 was 
assumed between the total deposition of NII3 (NIU,/d) and the total deposition of 
NO x (NO),,,]). The results for the various sandy soils were lumped, because differences 
appeared to be small. Using these data, a linear relationship between the nitrification 
fraction and MSWwas assumed (see Chapter 2.1). 

The SO4 sorption capacity was set at 2% of the secondary Al compounds 
content (Johnson and Todd, 1983). The partial CO2 pressure was derived from 
Koorevaar et al. (1983). Weathering rates of base cations for the non-calcareous sandy 
soils were taken from De Vries (1994), who derived weathering rates on the basis of 
one-year batch experiments that were scaled to field observations. Weathering rates 
for calcareous soils were derived from De Vries et al. (1994a). For peat and loess soils 
weathering rates were derived from Van Breemen et al. (1984) and Weterings (1989) 
respectively. Note, however, that these weathering rates refer to silicate weathering. 
The weathering in calcareous soils is fully dominated by carbonate weathering, cf. Eq. 
(69) in Chapter 2.3. 
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Table 8 Values used for the soil parameters for the seven soil types, 
related to the depth of the root zone for forest 

Parameter ') 
Depth 

Unit 
m 

Soil physical properties 

frpp 

e<x 
en 
e 
Organic matter 
OM 
CNm 

CNIT 

CN0„ 
CN„0 

DA„0 

(De)nitrificatio/, 

y ni mx 

rfmMSWmn 

Kft 

K.«2 

frdtmx 

rfdtMSWmn 

U 

-
g e m 3 

g e m ' 
m3 m 3 

kg kg:1 

kg kg i 
kgkg-i 
kg kg-1 

kg kg-' 

kg kg"1 

i 

-
. 
m 
m 
-
-
m 

Soil Chemical Parameters 
CEC 
frBC2„ 
KAL 
KHCX 

KAL 
ctCod, 
ctAL 

ssc 
c 
pC02 
BC2„ 

Kr„ Na„ 

mmolc kg'1 

-
log (mol 1 ') 
log (mol 1 -') 
log (mol 1 ') 
mmolc kg-' 
mmolc kg • 
mmolc kg^' 
mole nv3 

hPa 
mole m 3 a ' 
molc m

 3 a-1 

SP 
0.7 

0.1 
1.45 
0.13 
0.13 

0.02 
15 
40 
21 
15 
1.5 

1.0 
0.3 
0.1 
0.5 
0.9 

0.25 
1.3 

11 
0.07 
0.79 
4.0 
8.1 
0.0 
85 
1.7 
1.0 
0.1 

0.009 
0.011 

SR 
0.6 

0.2 
1.26 
0.13 
0.18 

0.06 
15 
40 
26 
15 
1.5 

1.0 
0.3 
0.1 
0.5 
0.9 

0.25 
1.3 

41 
0.06 
0.16 

3.8 
7.9 
0.0 
109 
2.2 
1.0 
0.1 

0.025 
0.020 

sc; 
0.8 

0.2 
1.62 
0.13 
0.061 

0.01 
15 
20 
10 
15 
1.5 

1.0 
0.3 
0.1 
0.5 
0.9 

0.25 
1.3 

8 
0.83 
-1.2 
5.0 
8.1 

182.4 
9 

0.18 
1.0 
0.1 

0.008 
0.010 

CN/CC 
1.0 

0.0 
1.16 
0.13 
0.27 

0.07 
15 
40 
10 
15. 
1.5 

1.0 
0.5 
0.0 
0.5 
1.0 
0.7 
2.5 

319 
0.89 
-3.4 
6.7 
9.4 

0.(109.)') 
196 
3.9 
1.0 
0.2 

0.030 
0.040 

I.N 
1.0 

0.2 
1.52 
0.13 
0.41 

0.03 
15 
40 
21 
15. 
1.5 

1.0 
0.5 
0.2 

0.85 
0.9 
0.7 

1 

54 
0.16 
0.6 
4.2 
8.3 
0.0 
155 
3.1 
1.0 
0.1 

0.015 
0.020 

PN 
0.5 

0.0 
0.17 
0.13 
0.84 

0.90 
15 
40 
35 
15. 
1.5 

1.0 
0.3 
0.5 

0.85 
1.0 

0.85 
1.5 

414 
0.58 
-2.1 
3.5 
6.5 
0.0 
101 
3.1 
1.0 
0.5 

0.010 
0.020 

') See Annex 1 for explanation of the used symbols, and Chapter 2.3 for the equations in which the parameters are 
used. 
Value in bracket was used for calcareous clays soils (CQ 

Data related to soil-vegetation combinations 

Model parameters that depend on both soil and vegetation refer to the depth of the 
root zone, transpiration rate and growth parameters, 
combination of soil and vegetation are given in Table 9. 

Values used for each 
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Table 9 Values used for the soil and vegetation-dependent parameters for 
all soil vegetation combinations 

Vegetation Soil Tr~ Tr kxt tv, Am!lmx 

M (m a-') (a') (a) (kg m *) 
PIN 

SPR 

DI:C 

I IRA2) 

GRP 

SP 
SR 
SC 
CN, CC 
LN 
PN 
SP 
SR 
SC 
CN, CC 
PN 
LN 
SP 
SR 
SC 
CN 
CC 
LN 
PN 
SP, SC 
SR 

sc: 
PN 
SP, sc 
SR, LN 
SC 
CN, CC, PN 

0.7 
0.6 
0.8 
1.0 
1.0 
0.5 
0.7 
0.6 
0.8 
1.0 
0.5 
1.0 
0.7 
0.6 
0.8 
1.0 
1.0 
1.0 
0.5 
0.2 
0.2 
0.2 
0.2 
0.2 
0.2 
0.2 
0.2 

0.276 
0.292 
0.298 
0.378 
0.282 
0.378 
0.296 
0.304 
0.329 
0.417 
0.417 
0.306 
0.326 
0.328 
0.34 
0.397 
0.397 
0.326 . 
0.397 
0.335 
0.37 
0.335 
0.41 
0.40 
0.44 
0.40 
0.48 

0.067 
0.066 
0.085 
0.085 
0.066 
0.085 
0.072 
0.077 
0.072 
0.072 
0.072 
0.077 
0.088 
0.088 
0.088 
0.090 
0.088 
0.088 
0.090 
0.15 
0.15 
0.15 
0.15 
0.15 
0.15 
0.15 
0.15 

40 
39 
34 
34 
39 
34 
38 
37 
38 
38 
38 
37 
50 
48 
48 
49 
48 
48 
49 
10 
10 
10 
10 
5 
5 
5 
5 

22.2 
28.3 
10.5 
10.5 
28.3 
10.5 
25.0 
41.1 
25.0 
25.0 
25.0 
41.1 
28.8 
76.9 
76.9 
49.9 
76.9 
76.9 
49.9 
1.4 
1.4 
1.4 
1.4 
0.5 
0.5 
0.5 
0.5 

v> See Annex 1 for explanation of the used symbols, and Chapter 2.3 for the equations in which the parameters are 
used. 

*> I leather on loess and clay soils do not occur 

The thickness of the root zone and actual évapotranspiration rates for forest 
were taken from De Vries et al. (1994c), who derived transpiration fluxes from model 
calculations (SWATRR, Belmans et al, 1983) for various forest types on sandy soils, 
while using expert judgement for forests on peat, loess and clay soils. Actual 
évapotranspiration rates for short vegetation on sandy soils were derived from De 
Visser and De Vries (1989). Values for loess soils were taken from Van der Salm 
(1999). Values for clay and peat soils were set equal to potential évapotranspiration 
rates as given in De Visser and De Vries (1989). For sandy soils and loess soils actual 
transpiration rates were corrected when the precipitation deviates form 780 mm a ', 
i.e. the value used for the water balance calculations (cf. Hootsmans and Van Uffelen 
(1991). Growth rate parameters for forest were based on a literature survey by De 
Vries et al. (1990). Growth rates for short vegetation refer to shoot growth only (i.e. 
increase in litterfall), and were derived from Berendse (1988). The increase of non 
shoot material was assumed to be negligible. This was mimicked in the model by 
setting the nutrient contents in stems to zero (cf. Table 7). 
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Deposition and hydrology scenarios 

The temporal trends of chemical soil parameters predicted by SMAR'I'2 are driven by 
scenarios for atmospheric deposition and hydrology. Deposition scenario is related to 
changes in the atmospheric deposition fluxes of NHX> NO x and SOx. The deposition 
of base cations and of CI was kept constant. The hydrology scenario is related to the 
changes in the quantity of the upward seepage flux and related changes in phreatic 
water level. The solute concentrations of the upward seepage flux was kept constant. 
For both deposition and hydrology a Business as Usual (BU) and an Improved Environment 
(IE) scenario was evaluated and their mutual combinations (Table 10). The scenarios 
were generated for the period 1990-2050. 

Table 10 Considère 

I lvdrolo^V 

Business as Usual 
Improved environment 

d scenarios wil 

Business as 

:h 

V: 

resp 

sual 
BB 
BI 

ect to de 

Dep* 

position and hydrology 

osition 
Improved !• environment 

IB 
II 

'> Refers to precipitation 
9 Refers to SOx, NO» and Nl h. Atmospheric deposition of base cations and chloride was assumed to be constant 

Deposition scenarios 

The two deposition scenarios consists of: (i) a continuation of the deposition in the 
year 1997, BU and (ii) a reducing deposition scenario, reflecting the planned emission 
reductions in the Netherlands for the next 20 years, IE. 

Simulations started in 1980 to initialise the model, using deposition estimates 
for the year 1980, 1990 and 1997 (Kerens and Van Dam, 2000). These estimates are 
based on calculations with an empirical model (DKADM; Erisman, 1991) of the wet 
and dry deposition of these elements on a national scale for a 5 X 5 km2 grid, using the 
concentrations of NIL, NO x and SOx that were measured at several weather stations 
of the National Air Quality Monitoring Network. 

For the BU scenario values for the year 1997 were maintained until 2050. For 
the IE deposition anticipated deposition values for the years 2010 and 2030 were 
taken from the National Environmental Plan (cf. Beck et al, 2001). The Improved 
Environment scenario values for the 2010 deposition were related to the National 
Emission Ceiling (NEC) for the Netherlands and the Gothenburg protocol for the 
rest of Europe. Deposition values for 2030 correspond with deposition values for 
which 90% of the semi-natural areas has a deposition below the critical load (cf. Beck 
etal, 2001). For 2050 the same values were used as for 2030. 

For all deposition inputs in each 250 X 250 m2 grid values from the 
corresponding 5 x 5 km2 grid were used. For each grid cell values for in between years 
were derived by linear interpolation. 
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Table 11 National averaged deposition and emission values used for NIIi 
N O , and SOx deposition within the scenarios 

Year 

1980 
1990 
1997 
2010 
2030 
2050 

Average deposition'; 
(molt ha ' a ') 

Nil* 
1832 
1823 
1499 
880 
239 
239 

NC »x 

834 
811 
642 
361 
105 
105 

SOx 

1478 
719 
394 
177 
77 
77 

'1 bta! emissions') 
(kton a 

N i l 
') 
i 

234 
231 
187 
104 
50 
50 

N( ) 2 

585 
575 
453 
238 
80 
80 

so2 
481 
202 
118 
50 
40 
40 

'> Deposition values refer to the beginning year ot the penod 
2> National emissions 

Values used for the deposition of base cations and CI were taken from De Vries 
(1991), who performed an interpolation from 22 monitoring-stations for the period 
1978-1985 (Anonymous, 1985) to a 10 X 10 km2 grid. For each 1 X 1 km2 grid values 
from the corresponding 10 X 10 km2 grid were used. Base cation and CI deposition 
fluxes were kept constant throughout the simulation period. 

Precipitation data were derived from weather stations from the Royal 
Netherlands Meteorological Institute (KNMI). Selected records of precipitation 
normals from 280 stations over the period 1950-1980 were interpolated to a 10 X 10 
km2 grid. As with the base cation deposition, values for each l x l km2 cell were taken 
from the corresponding 10 X 10 km2 grid and were assumed constant during the 
simulation period. Details on the interpolation procedure have been given in 
Hootsmans and Van Uffelen (1991). Most values ranged between 700 and 900 mm a-'. 

Upward seepage scenarios 

Scenarios for the quantity on upward seepage were generated with the National 
Groundwater Model for the Netherlands (LGM, Pastoors, 1993). The effects of 
upward seepage on the site factors were evaluated for two scenarios: (i) a constant 
upward seepage flux, using the values for the year 1988 (Pastoors, 1993), Bussiness as 
Usual, and (ii) 25% reduction of groundwater extractions for public drinking water, 
resulting in increased upward seepage fluxes for the year 2010 (Pastoors, 1992), 
Improved Environment. For the Improved Environment scenario, values between 1988 and 
2010 were linearly interpolated. It must be emphasised that the surface area that 
showed an increase in upward seepage flux is restricted to about 12% of the model 
area, on 9% of the surface area of the Netherlands (cf. Pastoors, 1992). Calculated 
changes in phreatic water level were converted to absolute values by adding them to 
the initial phreatic water level (Kros eta/., 1995a). These actual values of phreatic water 
level were used as input for both S.\L\RT2 and MOVK. 

Information on upward seepage water chemistry was based on the National 
Survey on landscape ecology (LKN; Bolsius et al., 1994). For each 1 km2 grid cell, the 
LKN groundwater quality database provides a quality class. To assign a chemical 
composition to the quality classes, the chemical composition of reference water types 
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from Van Wirdum (1991) were used. Using solute concentrations of the reference 
samples from Van Wirdum (1991), ionic concentrations were derived for the 
considered seepage types (Table 12, cf. Kros et al, 1995a). 

Table 12 Groundwater concentrations (molc m
 3) used for the seepage type 

Seepage type-

No set-page 
Mixed water 
Groundwater 
Brackish water 
Sea water 
Surface water 

SO4 
0.20 
0.20 
0.27 
5.74 
55.0 
1.67 

N O , 
0.06 
0.06 
0.02 
0.02 
0.02 
0.27 

N l l 4 

0.05 
0.05 
0.04 
0.12 
0.78 
0.05 

BC2 >) 
3.23 
3.23 
6.42 
19.5 
137.7 
4.93 

K 
0.03 
0.03 
0.05 
1.05 
10.0 
0.18 

Na 
0.30 
0.30 
0.52 
46.0 
456.0 
4.17 

a 
0.20 
0.20 
0.31 
54.1 
538.0 
5.01 

BC2 = Ca+Mg 

3.1.5 Results 

We present results from a validation and an application of the model SMAR'1'2 on a 
national scale. Results concerning model outputs required for applications of MOYi:, 
i.e. pH and N availability. N availability is defined as the sum of the N throughfall flux 
and the total N mineralisation flux (see Chapter 2.3, Eq. 28). Base saturation as such is 
not an input for the MOVK model, but is also presented because of its 
(hydro)ecological implication. For the validation some other model outputs are 
presented as well. 

Validation 

Soil solution concentrations 

To gain insight into the reliability of the model predictions, we compared model 
results on soil and solution chemistry for forests with soil and soil solution 
measurements at 60-100 cm depth (cf. Table 13). 

Table 13 Median values of important soil and soil solution parameters as 
observed at 60-100 cm depth (Obs.) and predicted for 1990 (Mod.) by 
SMART2 for deciduous forest 

Soil type 

Sand poor 
Sand rich 
Peat 
IXK'SS 

Clav 
f'lav cale. 

N') 

Obs 
27 
28 
30 
40 
13 
17 

Mod. 
44093 
10051 
6363 
926 

6386 
3884 

p l i 

Obs. 
4.0 
3.8 
3.8 
4.3 
6.3 
7.4 

Mod. 

3.8 
3.9 
3.8 
4.1 
5.9 
6.8 

Al 
(mole rr 

Obs. 
0.42 
0.49 
0.04 
0.18 
0.01 
0.00 

Mod. 

1.08 
0.52 
0.04 
0.37 
0.00 
0.00 

NII4 
(mole rr 

Obs. 
0.08 
0.08 
0.24 
0.04 
0.00 
0.00 

Mod. 

0.00 
0.00 
0.01 
0.19 
0.07 
0.00 

N O , 
(mol,; m 

Obs. 

0.25 
0.33 
0.02 
0.72 
0.11 
0.06 

<') 
Mod. 

0.58 
0.23 
0.01 
0.47 
0.22 
0.08 

A' represents the number observed and simulated soil/vegetation combinations. 
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The agreement between the observed and simulated pi I was generally good. 
The agreement for the Al concentration appeared to be reasonable. Alternatively, the 
Al in concentration in poor sandy soils was overestimated. The agreement for NIL» 
and NO3 was generally moderate (deviations larger than 50%). NII4 concentrations 
were clearly underestimated in peat soils. Given that NO3 concentrations were slightly 
underestimated too, N mineralisation might be underestimated or denitrification 
overestimated. For the poor sandy soils and the clay soils the NO3 was clearly 
overestimated, whereas for rich sandy soils and loess soils it was underestimated. 
These deviations indicate that the nitrogen dynamics in SMAR'I'2 are parameterised 
inadequately. It is likely that the mineralisation and or (devitrification parameters 
need some improvements. Moreover, in SMAR'I'2 the N mineralisation flux, which 
strongly influences the concentrations of dissolved N, depends largely on the age of 
the vegetation and the N content in the foliage (cf. Chapter 2.3) However, nation wide 
data on the age of the vegetation and the N content in the foliage is lacking. Finally, 
our validation is mainly limited to deciduous forest on non-calcareous soils. For other 
vegetation structure types, additional data gathering on soil and soil solution would be 
required. 

Nitrogen mineralisation ßuxes 

We also compared the calculated N mineralisation fluxes with observations, as they 
are a substantial part of the N availability. N mineralisation fluxes depend on: (i) the 
age of the vegetation, (ii) vegetation management (mowing, grazing or forest 
harvesting) and (iii) the N flux in atmospheric deposition. The N mineralisation fluxes 
calculated by SMARI'2 for the year 1990 refer to: (i) relatively mature terrestrial 
ecosystems (heathlands/grasslands are assumed to be 10 years old; forests are 
assumed to be 40 years old), (ii) from which no biomass is removed during the 
simulation period and (iii) with a high atmospheric N input. 

Validation should thus focus on data for similar systems. Mineralisation data are 
comparatively scarce, except in steady-state situations when mineralisation equals 
litterfall which has been measured more frequently. Table 14 summarised N 
mineralisation data. When available, the age of the ecosystem is presented as well. 

For heathlands and grasslands, data given by Gorree and Runhaar (1992) for a 
steady-state situation (mineralisation equals litterfall) are 2 - 2.5 kmolc ha ' a '. These, 
however, do not include root turnover, which is generally 75% of the total N turnover 
in these ecosystems (cf. Berendse, 1988). Consequently, the total N mineralisation flux 
would be increased by 8 to 10 kmoU ha1 a ' at a steady-state. Note that data on 
heathlands and grasslands used in SMAIU'2 are based on Berendse (1988), i.e. Erica 
and Molinia respectively. Validation should thus focus on mineralisation data by 
Berendse (1988). 
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Table 14 Observed N mineral isat ion rates 

Type of ecosystem 

Pine Forest 
Gerrits fles 
Tongbcrsvcn 

Deciduous Forest 
Oak+mixed; Beech 
Oak+mixcd; Birch 
Deciduous forest 

Heathland 
Calluna 
Krica 
Urica 
Urica 

Grassland 
chalk grassland 
Molinia 
Molinia 
Molinia 

Age-

fa) 

ca. 60 
ca. 80 

50-100 
ca. 45 
varying 

varying 
10 
30 
50 

unknown 
10 
30 
50 

N mineralisation flux 
(kmolc ha i a-1) 

5.1 
5.7 

7 - 8 
7 - 8 
3 - 1 0 

0.8 - 4.2 
0.5 - 3.0 
3 .5-7.0 
8.2 - 9.1 

3.5 
2 - 3 
6 - 7 

7 .6-9.3 

Source-

Van Dobbcntf a/. (1992) •> 
Van Dobbenrfa/(1992) ') 

Tietema(1992) 
Van Brecmen etat. (1988)') 
Mc-lillo (1981) 

Berendse (1990) 
Berendse (1988,1990) 
Berendse (1988, 1990) 
Berendse (1988, 1990) 

Van Dam (1990) 
Berendse (1988) 
Berendse (1988) 
Berendse (1988) 

'> These data refers to litterfall fluxes 

N mineralisation fluxes as calculated by SMAR'1'2, using the BU scenarios both 
for deposition and seepage, are summarised in Table 15. In Table 15 the N 
mineralisation fluxes in 1990 for forest (Spruce, Pine, Deciduous) refer to a forest of 
40 years old and for short vegetation (Heather, Grass) to a site of 10 years old, 
whereas the values in 2050 can be regarded as a mature ecosystem were litterfall equals 
mineralisation. 

Table 15 Calculated N mineralisation fluxes, under the BU scenario 

Vegetation N mineralisation flux (kmolc ha ' a ') 
1990 2050 

Spruce-
Pine 
Deciduous 
I leather 
Grass 

2.8 
3.5 
4.6 
2.7 
4.3 

3.2 
4.2 
5.3 
3.1 
4.6 

In general, therefore, comparisons are problematic and should be regarded as 
indicative. Model results from Table 15 generally compared reasonable with observed 
N mineralisation fluxes. The modelled mineralisation fluxes for short vegetation in 
2050 (i.e. 70 years old) were comparable with the appropriate ranges in Table 14, 
whereas the modelled fluxes in 1990 (i.e. 10 years old) are slightly higher than the 
observed values. Modelled mineralisation fluxes for forest were always lower than the 
observed fluxes. This might be an indication that the N litterfall fluxes for forest we 
used in this SMART2 application were underestimated. Data used in SMART2 for the N 
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litterfall flux are a multiplication of average litterfall fluxes with a varying N content 
depending on the N deposition level. Multiplication of observed ranges in litterfall 
fluxes and N contents in foliage (Table 16) provides an indication of N mineralisation 
rates at steady-state. 

Table 16 N litterfall fluxes 

Tree species Litterfall1) N contents2) N litterfall flux 
(Mkg h a ' a ' ) (%) (kmolc h a ' a ' ) 

(Scots) Pine 0 .5-8.5 ' ) 1.6-3.0 0 .4-12 
(Norway) Spruce 1.5-7.5') 1.1-2.3 0 . 8 - 8 
(Oak) Deciduous 1.6 -5.6s) 2.2 - 3.2 1.6- 8 
') Data based on a literature compilation for Northern Europe (Reurslag and Berg, 1993) 
2) Data for 45 pine stands, 15 spruce stands and 30 oak stands in the Netherlands (I lendriks et al, 1994). Contents 

refers to contents of the foliage, for the calculation of the litterfall flux a reallocation factor of 0.36 was assumed 
(cf. Table 7) 

3> Data based on a review by De Vries et al. (1990); Duvigneaud et al. (1971) gives ranges of 4.7-7.5 Mkg ha' a ' 

Considering the average maximum litterfall fluxes used in SMAR'I'2, i.e. ca. 3 
Mkg ha-1 a * for the various tree species (Table 7), indicates that for forest the litterfall 
fluxes are underestimated, which in turn result in too low mineralisation fluxes in 
forest. 

Geographical distribution of pH and nitrogen availability 

Maps of the median pH and nitrogen availability per l x l km2 grid cell for all 
vegetation structure types in the year 1990 and 2050 for IE deposition scenario (i.e. 
reducing deposition) combined with the IE seepage scenario (increasing upward 
seepage) are presented in Figure 2 and Figure 3. 

Spatial variability in pH was high, which mainly corresponds with the variability 
in soil types. Calcareous sandy soils and clay soils along the coast-line, clay soils in 
along the rivers are well buffered soils, with relatively high pH values. Non-calcareous 
sandy soils in the central part and the southern part of the country have a lower buffer 
capacity, resulting in relatively low pH. Figure 2 show that deposition reductions and 
increase in upward seepage result in an increase in pPI values, especially for the non-
calcareous soils. 

N availability will have decreased in 2050 compared to 1990. N availability also 
showed a highly spatial variability, mainly due to the spatial variability in atmospheric 
N deposition. N availabilities appeared to be high in the central part and the southern 
part of the country, were atmospheric deposition of N is high. In the northern part of 
the country the atmospheric deposition of N is low, resulting in lower N availabilities. 
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5 

Figure 2 Geographical distribution of dominant values for the pH in the root zone of 
semi-natural terrestrial ecosystems in 1990 (left) and 2050 (right), for the IE deposition 
scenario combined with the IE seepage scenario 

2050 1990 
N availability 

rfcha 

<3.8 

(kmolha"1a'1) 
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I 

' ''in 

1'igure 3 Geographical distribution of dominant values for the N availability 
(kmolc ha-1 a1) in the root zone of semi-natural terrestrial ecosystems in 1990 (left) and 
2050 (right), for the IE deposition scenario combined with the IE seepage scenario 
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Effects of vegetation and soil on abiotic site factors 

Changes in soil pH, N availability and base saturation under different vegetation 
structure types are summarised in Table 17. Vegetation structure types influence the 
soil chemistry by differences in nutrient cycle, filtering of dry deposition and 
transpiration. 

Reduced atmospheric deposition and increased upward seepage, is expected to 
increase the soil pPI and base saturation, and to decrease N availability. The pi I and 
base saturation increase was rather limited, except in grassland soils. Grassland soils 
also showed higher pH and base saturation throughout the simulation period. 
However, the relatively high soil pH and base saturation for grassland were biased by 
the fact that about 45% of the considered sites are located on calcareous sandy soils or 
clay soils. For other vegetation structure types the differences in pH and base 
saturation were generally small. Deciduous forest, though, show a slightly higher pi I 
and a higher base saturation, which was mainly an effect of soil type and water-table 
class. Compared to coniferous forest, deciduous forest are generally located on richer 
soils with a higher water-table (i.e. wetter circumstances). The higher base saturation 
for spruce forest was most likely due to a higher filtering of dry deposition, resulting 
to an higher input of base cations. 

Table 17 Effects of vegetation on the predicted median pH, N availability 
and base saturation (BS) in the root zone for all soil types in 1990, 2010 
and 2050 in response to the IE deposition scenario combined with the IE 
seepage scenario 

Vegetation 

Spruce 
Pine 
Deciduous 
I leather 
Grass 

N') 

3961 
24435 
18046 
6556 

23362 

pu 

1990 
3.7 
3.8 
4.0 
3.8 
4.1 

2010 
3.9 
4.0 
4.2 
3.9 
4.5 

2050 
4.1 
4.2 
4.5 
4.3 
6.0 

N availability 
(kmolc 

1990 
6.6 
7.3 
7.6 
5.8 
6.5 

ha-1 a1) 
2010 
4.8 
5.7 
6.4 
4.3 
5.8 

2050 
3.5 
4.6 
5.8 
3.3 
5.1 

BS 
(%) 
1990 

2 
1 
6 
1 

51 

2010 
3 
2 
9 
2 

63 

2050 
10 
8 

27 
7 

84 
') N represents the number of gnd cells evaluated 

For all vegetation structure types the N availability was clearly lower in 2010 
and 2050 than in 1990. N availability decrease most for heather (43%), spruce (36%) 
and pine forest (47%). For grassland (21%) and deciduous forest (24%) reductions 
were lower. That the N availability reduced less than the atmospheric deposition, 
(which was more than 80%; see Table 11), is due to increased N mineralisation, at 
higher pH. In addition, in the beginning of the simulation period N accumulated in 
soils, whereas in 2050 there was more or less a steady-state between litterfall and 
mineralisation. Furthermore, the litterfall flux also increased slighdy during the 
simulation period, because in 1990 the maximum amount of litterfall was not yet 
achieved. Between 1990-2050, N mineralisation increased from 2.8 to 3.2 kmolc ha ' a 
1 for spruce forest, from 2.7 to 3.1 kmolc ha ' a1 for pine forest and from 4.3 to 4.6 
kmolc ha-' a ] for deciduous forest. 
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Soil type (Table 18) influences the soil chemistry by differences in weathering 
rates and cation exchange capacity. The effect of soil type was much more 
p ronounced than the effect of vegetation. O f course, a clear distinction exists between 
calcareous and non-calcareous soils. 

Calcareous soils have a high p l l and base saturation due to the presence of 
calcite. There was no effect of the combined scenario on the p i I of calcareous soils. 
Which was kept at about p i I, irrespective of deposition level and seepage input. The 
non-calcareous sandy soils have the lowest p i I and very low base saturation, indicating 
that these soil are strongly acidified. Deposit ion reductions and increase in upward 
seepage caused an increase in p i I and base saturation in the non-calcareous soils. The 
increase was most p ronounced for loess soils, indicating that soil acidification is 
reversible for these soils. For peat soils the remarkable combination of a p i I a round 
3.9 and a base saturation around 50% is in agreement with field observations (Klap et 

ai, 1999). 

T ab l e 18 E f fec t s of soil type on t he p r e d i c t e d med i an p H , N avai labi l i ty 
and base s a t u r a t i on (BS) in the r o o t z one be low d e c i duou s fo res t in 1990, 
2010 and 2050 in r e s pon s e to the IE d e p o s i t i o n s c ena r io c o m b i n e d w i th 
the IE s eepage s c ena r io 

Soil type 

Sand poor 
Sand rich 
Sand calc. 
Clay 
Clay calc. 
I*ocss 
Peat 

N>> 

44093 
10051 
4657 
6386 
3884 
926 

6363 

p l l 

1990 
3.8 
3.9 
7.0 
5.9 
6.8 
4.1 
3.8 

2010 
3.9 
4.1 
7.1 
6.0 
6.9 
4.3 
4.1 

2050 
4.2 
4.3 
7.1 
6.1 
6.9 
5.1 
4.2 

N availability 
(kmolc 

1990 
7.1 
7.5 
5.9 
7.6 
5.5 
7.4 
4.4 

ha i a-') 
2010 

5.7 
6.2 
5.3 
6.3 
4.8 
6.6 
3.7 

2050 
4.6 
5.2 
4.9 
5.1 
4.2 
6.3 
3.0 

BS 

(0/°) 
1990 

1 
3 

100 
87 

100 
7 

51 

2010 
2 

4 
100 
87 

100 
9 

52 

2050 
8 

10 
100 
87 

100 
26 
52 

The calculated changes in p H and base saturation were relatively small 
compared to those derived in another evaluation of a similar deposition scenario (cf. 
D e Vries et al, 1994a). This study refers to the one box model SMAR'1'2, whereas D e 
Vries et al. (1994a) presented results for the top 30 cm using the multi-layer model 
R.KSAM, i.e. the layer where the major changes in p i I and base saturation occur. In the 
one layer compar tment (up to 1 m) considered here, changes in p H and base 
saturation averaged out. The results on N availability, by contrast, were not influenced 
by the thickness of the soil compartment , because this output refers to a flux for the 
root zone (including the litter layer) as whole. 

The N availability of calcareous and peat soils was relatively low, because they 
are generally located in areas with relatively low atmospheric input of N . For peat 
soils, the low N availability was also due to low mineralisation fluxes. The median N 
mineralisation flux for peat soil in 2050 was 1.9 kmolc ha • a1 , whereas the average 
mineralisation flux for all soil was 3.5 kmolc h a 1 a ' . T h e low relatively low 
mineralisation flux for peat soils is mainly due to the correlation with wet 
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circumstances. Under (man-induced) dry circumstances the N mineralisation in peat 
soil can be very high, up to 100 kmolc h a 1 a ' (cf. D e Vries et al., 2001). 

Effects o f depos i t ion and s eepage scenarios on abiotic site factors 

Deposition reductions alone (Table 19; compare the columns BB vs. IB), increased in 
median values of p i I and base saturation and decrease N availability. Although, the 
average p H increase for a specific vegetation structure type was rather small, 0.1 - 0.4 
pH , large regional differences occurred (see Figure 2). The largest increase in p H were 
found under pine forest and grassland. Compared to the reduction in N deposition, 
the reduction in N availability were rather small. 

Increase in upward seepage (Table 19; compare the columns IB vs. II), had only 
a slight effect on the median values of p H , N availability and base saturation. The 
results for the IE seepage scenario, as presented in Table 19 should be handled with 
care. The surface area affected by IE seepage scenario is relatively small, whereas 
deposition scenario affects all systems. Increase in upward seepage is restricted to sites 
with water-table class 1, 2 and 3 (cf. Table 3) in the surroundings of groundwater 
extraction wells, viz only in 3088 grid cells (i.e. 9% of the surface area of the 
Netherlands). In addition, the average increase in upward seepage flux for these cell 
was only 50 m m a-1. 

T ab l e 19 E f fec t s of c o m b i n a t i o n s of t he v a r ious scenar ios 1 ) on the 
p r ed i c t ed med ian p H , N avai labi l i ty and base s a t u r a t i on (BS) in the r oo t 
z one of all soil t ypes for the d i f fe ren t v ege t a t i on s t r u c t u r e types in the 
year 2050 

Vegetation 

Pine 
Deciduous 
I leather 
Grass 

N2> 

24435 
18046 
6556 

23362 

P " 

BB 
3.8 
3.8 
4.1 
3.9 
5.7 

IB 
4.1 
4.2 
4.2 
4.3 
6.0 

II 
4.1 
4.2 
4.4 
4.3 
6.0 

N availability 
(kmolc 
BB 

6.3 
7.2 
7.7 
5.0 
6.5 

ha-' a ' ) 
IB 

3.5 
4.6 
5.8 
3.3 
5.1 

II 
3.4 
4.5 
5.6 
3.3 
5.1 

BS 

(%) 
BB 

2 
2 

12 
1 

81 

IB 
10 
8 

27 
7 

84 

II 
10 
9 

27 
7 

84 
') The first character refers to the deposition scenario, the second character refers to the seepage scenario, e.g. IH 

refers to IE deposition scenario and to the BV seepage scenario 
2) N represents the number of grid cells evaluated 

Effects on plant spec ies in for nutrient-poor dec iduous forest 

The effects of calculated changes in the output variable soil p H on species diversity 
were predicted for plant species of nutrient-poor deciduous forests (i.e. the forest on 
non-calcareous sandy soils) for 1990 and 2050 using the vegetation model MOVE 
(Latour and Reiling, 1993; see section 3.1.3) 

For all soil types the median N availability remained above the op t imum value 
of 3 kmolc ha * a'1 (Latour et al, 1993). For the p H Latour et al. (1993) reported an 
op t imum value of 4.2 for nutrient-poor deciduous forest. Results showed for all soils, 
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except the non-calcareous sandy soils and peat soils, a median p H above 4.2 at the end 
of the simulation period. 

Figure 4 presents the probability of occurrence of species of nutrient-poor 
deciduous forests on rich an poor sandy soils for 1990, 2010 and 2050. In 1990 the 
predicted number 'of species varies on average between 40 and 80% of the considered 
13 species. In 2010 this increases to 40 to 100% and in 2050 the occurrence increased 
in general to 60 to 100% of the species. In some specific areas the predicted 
percentage of species remained below 20%. In these areas the soil p H is higher than 
5-8, i.e. the upper limit for the considered species in nutrient-poor deciduous forests 
(see section 3.1.3). 

•* 

: t. 

8 
*«. ia 

Figure 4 Predicted geographical distribution of the probability of occurrence of plant 
species typical for nutrient poor deciduous forest (see section 3.1.3) for 1990 (a) and 
2050 (b), in response to the IE deposition scenario combined with the IE seepage 

3.1.6 Discussion and conclusion 

Discuss ion 

Uncertainties 

The assessment of the uncertainty in model predictions caused by input data due to 
the uncertainty and spatial variability in those data will be addressed in Chapter 3.2 
and Chapter 3.3. Here we restrict ourselves to a qualitative discussion of the 
consequences of crucial assumptions made in this model application. 
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Uncertainties caused by model structure are due to model assumptions and 
simplifications. Assumptions and simplifications are made because of insufficient 
knowledge, to limit data requirements and for operational reasons (e.g. application on 
a scale, that requires model simplification). The lack of knowledge with respect to 
acidification and nutrient cycling models mainly concerns the dynamics of organic 
matter, N and Al (De Vries, 1994; Kros et al., 1993). Especially the uncertainties in Al 
and N dynamics may seriously contribute to the uncertainty in the results of pi I and 
N availability. 

E.g. SMARI'2 assumes that there is always equilibrium with secondary Al 
compounds (cf. section 3.1.2). In reality equilibrium is approached only in the subsoil, 
while under-saturation prevails in the topsoil. This equilibrium assumption will 
accelerate the depletion of secondary Al compounds and will lead to higher pi I and Al 
concentrations in the top soil. Yet, improvement on the speciation of Al in relation to 
organic anions and the dissolution of amorphous Al precipitates have been 
incorporated (cf. Posch et al., in prep.) 

The N availability highly depend on the N mineralisation flux, which in turn 
depend on the age of the vegetation, vegetation management (e.g. sod cutting, 
mowing, grazing and tree harvesting), litterfall and N uptake. These aspects have not 
yet been adequately incorporated in the model for all vegetation structure types. In 
addition, the effect of pH and MSW (cf. Chapter 2.3) on modelled N mineralisation 
and N transformation processes have an inadequate experimental basis. Therefore, we 
recommend to improve and extend the N transformations processes, especially related 
to pi I and water-table. 

Management aspects, like sod cutting, mowing, grazing and tree harvesting 
should be included to properly calculate N availability, which highly depend on the 
age of the vegetation and the removal of biomass. Our assumption that each 
vegetation structure type has a particular age, strongly influences the model results. 
Furthermore, we assumed that the net production was nil. This was based on the 
assumption that biomass return to the soil equals biomass production. This 
shortcoming has in the mean time been captured by linking the SMART2 to the 
succession model SUMO (cf. Wamelink et al., 2000). 

Validation 

Validation on solute chemistry yield satisfactory results, however, the validation part 
of this study was limited to soil solution concentrations under forests. The validation 
on N availability gave good indicative results, but was hindered by a lack of a regional 
dataset on mineralisation rates. A more comprehensive validation of SMART2 for all 
soil and vegetation structure types especially for the model output on N availability, is 
desirable. Obviously, there is a need for additional measurement campaigns aimed at 
improving the model descriptions and reducing the uncertainty in the model results. 
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Spatial and temporal resolution 

In this study calculations are performed for the root zone as a whole (compartments 
up to 1 m), whereas most of changes in soil and soil solution occur in the top 30 cm, 
where also most of the fine roots occur. Since the thickness highly influence the pH, it 
is recommended to reconsider the choice of the calculations for shallower depth, e.g. 
30 cm. This is especially relevant with respect to the linkage SMART2-MOVK. 

The thickness of the soil compartment seriously influenced the model results. 
Here we considered the root zone as one homogeneous compartment. This 
assumption implies that the calculated concentrations refer to the bottom of the root 
zone. Generally there is a strong gradient in soil solution chemistry and fine root 
distribution with depth. pH and Al concentrations generally decrease with depth, as 
most of the fine roots occur in the top soil. Furthermore, most of the changes in time 
in soil and soil solution chemistry occur in the top 30 cm. Consequently, the 
assumption of one homogeneous relatively large compartment (up to 1 m) cancelled 
out changes with depth. To investigate the effect of soil depth within the root zone in 
more detail, both SMART and SMAR'I'2, have been extended to multi-layer models with 
variable depth of the soil layers. The annual time-scale may affect the long-term 
predictions, but this effect is likely to be small (cf. Chapter 2.4 and Kros et al, 1994b). 

The use of a 250 X 250 m2 grid as a reference grid places various restrictions on 
geographical resolution. This resolution is far too coarse to model ecosystems which 
forms the topo-sequence within brook-valleys, with potentially high nature 
conservation value. Geographical resolution needs to be improved for an adequate 
modelling of site factors in wetlands and brook-valleys. Various studies with SMAR'I'2 
on a more detailed spatial scale have been performed, e.g. in the Drentsche Aa area 
(cf. Kros et al., in prep) and in the Beerze Reusel (cf. Van Dobben et al, 2001). These 
studies show that greater spatial resolution, especially with respect to hydrology, 
clearly improved the output. Applying such detail at the national scale, however, 
would tremendously increase the logistic problems already encountered in the local 
application (see Chapter 2.1). In conclusion, modelling at that spatial resolution on a 
National scale is one step too far for logistic reasons and lack of data. 

Conclusions 

SMART2 appeared to be a flexible and quick tool to evaluate effects of deposition and 
upward seepage scenarios on soil solution chemistry. 

Model predictions on pi I and Al concentration for deciduous forest showed a 
reasonable to good agreement with observations. Alternatively, the Al in 
concentration in poor sandy soils was overestimated. Model predictions for the NO3 
and NII4 concentrations showed moderate relationship with the observations. A 
preliminary validation on N mineralisation fluxes, showed a reasonable agreement 
between calculated fluxes and measured fluxes available from literature. N 
mineralisation fluxes in forests are likely to be underestimated. 

Reductions in N and S deposition lead to an improvement of the abiotic site 
factors, i.e. a moderate increase in pi I and base saturation in non-calcareous soil and a 
clear decrease in N availability for all soils with forest. The spatial variability in all 
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investigated model outputs, i.e. pi I, base saturation and N availability was large. The 
spatial variability in pi I and base saturation is linked with the spatial variability in soil 
type, whereas the spatial variability in N availability is linked with the spatial variability 
in N deposition. N availability strongly depends on the age of the vegetation. Litterfall 
increase followed by mineralisation increase, subsequently resulted in an increase in N 
availability that may abolish the reductions in N deposition. Consequently, reductions 
in N deposition not necessarily lead to a reduction in N availability. 

The effects of IE seepage scenario on the inspected site factors were negligibly 
small, which is a result that only a very small parts of the Netherlands is affected by 
the reduction in groundwater extractions. The probability of occurrence of typical 
plant species in nutrient-poor deciduous forests increased with 20% in 2050, due to 
the evaluated IE deposition scenario combined with the IE seepage scenario. 
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3.2 Uncertainty assessment in modelling soil 
acidification on the European scale: a case study 

Abstract 

When modelling soil acidification on the European scale, it is inevitably that both model and data 

have varying degrees of associated uncertainty. The present study attempted to quantify the uncertainty 

in long-term forecasts of soil solution concentrations ojAlandNO) resulting from the uncertainty in 

low resolution European-scale maps (1:1000 000) and input data. We used the "Netherlands as a 

case study. Large-scale forecasts were made with a relatively simple dynamic process-oriented model, 

SMART2. Model outputs were considered as block median concentrations and the block areal 

fractions in which concentrations exceeded a critical level As sources of uncertainty we considered (i) 

the soil and vegetation maps (categorical data), and (ii) the soil and vegetation-related parameters 

(continuous data). The uncertainty in categorical data was quantified by comparing European soil 

and vegetation maps, and the more detailed maps of the Netherlands. The uncertainty in continuous 

data was derived from various European databases and literature. The uncertainty in model outputs 

was quantified by an efficient two-step Monte Carlo simulation approach, which takes spatial 

correlation into account. The uncertainty in the input data on the European scale led to major 

uncertainties in the predicted Al concentration. Uncertainties in the areas where the Al concentration 

exceeded the maximum allowable concentration were much smaller. The uncertainties in soil-related 

parameters contributed most to the uncertainty in the Al concentration, whereas the uncertainty 

contributed by the soil and vegetation maps was negligible. For the NO) concentration, however, the 

soil and vegetation maps were important sources of uncertainty. Evaluation of the different error 

sources is of great practical significance, as it identifies which sources need further improvement. The 

present study shows that the uncertainty contribution of the different error sources depends greatly on 

the model output considered 

3.2.1 Introduction 
Elevated NO3 and Al concentrations, in soil water and groundwater in semi-natural 
ecosystems are primarily caused by elevated atmospheric deposition. This is a major 
European-scale environmental problem. Atmospheric deposition of acidifying 
substances (S and N) increase the dissolution and leaching of Al, especially in acidic 
sandy soils. The resulting elevated Al concentration in groundwater is a threat to its 
use as drinking water both for people and animals, especially from shallow wells. In 
the Netherlands, e.g. elevated levels of Al in shallow aquifers below forests are related 
to acid atmospheric deposition (e.g. Mulder et al, 1990). Arable land is usually limed to 
a soil pH above 5, where the Al concentration is negligible. Consequently, only 
groundwater below semi-natural ecosystems is at risk of contamination with Al. As 
regards NO.% however, a most serious impact originates from agricultural soils. 
According to RIVM (1991), atmospheric deposition of N compounds in the 
European Union (EU) accounts for 10% of the total N supply, including both 
deposition and direct application of manure and fertiliser. As a result, the threat of 
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NO3 leaching from semi-natural ecosystems is less serious than in agricultural soils. In 
areas with large atmospheric N deposition, e.g. in north-western Europe, however, the 
groundwater quality below semi-natural ecosystems is under threat (De Vries, 1994). 
Eutrophication via atmospheric deposition is still a serious problem in the whole of 
Europe (De Vries, 1994). An assessment of the threat to groundwater in Europe by Al 
resulting from acid deposition has been made by Kämäri et al. (1990) and RIVM 
(1991). Both studies have produced maps of the sensitivity of groundwater to 
acidification in Europe. 

At present, various models are available for large-scale prediction of ecosystem 
acidification, e.g. MAGIC (Cosby et al, 1985), SAFE (Sverdrup et al., 1995), and 
SMART (De Vries et al, 1989). SMART has been specially developed for the European 
scale, to evaluate various deposition scenarios (De Vries et al, 1994b). Models for 
regional scale assessments should be used with caution as both models and data have 
varying levels of associated uncertainty (Loague et al, 1998). Consequently, it is 
imperative that these uncertainties are quantified. Until now, quantification of 
uncertainties has mostly been limited to a specific generic soil vegetation combination 
(Chapter 2.2; Kros et al, 1993) or to one mapping unit in a region (Finke et al, 1996). 

In regional scale assessments, model input data are usually derived from 
generally available data, e.g. soil and landcover maps, using (pedo) trans fer functions 
(Bouma et al, 1986; Tiktak et al, 1998). Finke et al. (1996) quantified the output 
uncertainty resulting from both spatial variability and the uncertainty in pedotransfer 
functions by a Monte Carlo approach and analysed the contribution of these sources 
to the total variance. Finke et al. (1996) considered only one soil mapping unit, 
representative for only a part of the Netherlands for which a detailed network of soil 
profile descriptions was available. Furthermore, they ignored the spatial correlation of 
the model input data. By including spatial correlation of model input data in a Monte 
Carlo analysis made it possible to quantify both the spatial variability of the point 
concentration within a block (i.e. the spatial variation in values occurring within single 
blocks of a single Monte Carlo run) and the uncertainty of block-aggregated values 
(i.e. the statistical variation in block-aggregated values among the entire ensemble of 
Monte Carlo runs) can be evaluated. 

The present study was intended to quantify uncertainties associated with 
European-scale forecasts of Al and NO3 concentrations in soil water, leaching from 
the root zone of semi-natural ecosystems towards the phreatic groundwater. We used 
the dynamic and process-oriented model, SMART2 (Kros et al, 1995a), an extended 
version of the SMART model (De Vries et al, 1989). To minimise input data 
requirements, SMAR'I'2 uses rather simple process formulations and is confined to a 
single layer. Its model input consists of the annual average atmospheric deposition 
flux. Parameter values were assigned by using data relating to either soil type or 
vegetation, irrespective of the location. Aggregated soil and vegetation maps were 
used to link parameter values to a specific location, using (pedo) trans fer functions. 

The objective of the present paper was to quantify the uncertainty in long-term 
forecasts of soil solution concentrations of Al and NO3 resulting from of the 
uncertainty in maps and model parameters available on the European scale. We 
focused on the 15 member states of the European Union (EU). Compared to Europe 
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as a whole, this means that we could use more detailed information, such as the 
1:1 000 000 soil map of the EU (EC, 1985). Furthermore, we limited ourselves to a 
case study, using the Netherlands as an example. The sources of uncertainty 
investigated included: (i) soil and vegetation maps (categorical data), and (ii) soil-
related and vegetation-related parameters (continuous data). Apart from quantifying 
uncertainties in model outputs, the most important aim was to quantify the relative 
contributions of the various sources of uncertainty investigated. The uncertainty 
associated with the model structure itself was not taken into account. 

Uncertainties in model outputs are presented as prediction intervals (i.e. the 
90% confidence interval). Prediction intervals were obtained by a Monte Carlo 
analysis using Latin Hypercube Sampling of spatially correlated fields. Relative 
contributions of individual sources of uncertainty to the output uncertainty were 
investigated by an analysis of variance of the Monte Carlo sample of the model 
outputs. 

3.2.2 Methods and materials 

Model application 

The SMART2 model 

SMAR'1'2 (Chapter 2.3, Kros et ai, 1995a) predicts changes in II, Al, base cation (BC), 
NO3 and SO4 concentrations in the soil solution, as well as solid phase characteristics 
depicting the acidification status, i.e. carbonate content, base saturation and readily 
available Al content. The SMAR'I'2 model consists of a set of mass balance equations, 
describing the soil input-output relationships, and a set of equations describing the 
rate-limited and equilibrium soil processes (See Chapter 2.3). 

The soil solution chemistry in SMAR'1'2 depends on the net element input from 
the atmosphere (the product of deposition and filtering factor, i.e. a correction factor 
for die roughness length of the canopy) and groundwater (seepage), canopy 
interactions (foliar uptake, foliar exudation), geochemical interactions in the soil (CO2 
equilibria, weathering of carbonates, silicates and/or Al hydroxides, SO4 sorption and 
cation exchange), and nutrient cycling (litterfall, mineralisation, root uptake, 
nitrification and denitrification). The growth of the vegetation and litterfall are 
modelled by a logistic growth function, which acts as a forcing function. Nutrient 
uptake only stops when the soil solution concentration of the corresponding nutrient 
becomes zero. Soil interactions are either described by simple, rate-limited (zero-
order) reactions (e.g. uptake and silicate weathering) or by equilibrium reactions (e.g. 
carbonate and Al-hydroxide weathering and cation exchange). The influence of 
environmental factors, e.g. pi I and temperature, on weathering and exchange 
reactions is ignored. Solute transport is described by assuming complete mixing of the 
element input within one homogeneous soil compartment with a constant density and 
a fixed depth (generally the root zone). Because SMART2 neglects vertical 
heterogeneity, it predicts the concentration of the soil water leaving the root zone. 
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The annual water flux percolating from this layer equals the annual precipitation 
excess, which must be specified as a model input. The time step of the model is one 
year, so seasonal variations are not considered. 

Model inputs and outputs 

Input data for the SMART2 application include system inputs and initial values of 
variables and parameters. Input data refer to (i) a specific deposition scenario for each 
grid cell, (ii) model variables and parameters which are either related to a soil type or a 
vegetation or to a combination of both, and (iii) soil and vegetation maps. System 
inputs are the atmospheric deposition, hydrology and vegetation development. All 
input data were derived as a functions of location (grid cell), soil type or vegetation, or 
a combination of vegetation and soil type. 

For the European-scale application, the soil and vegetation maps were 
aggregated and rasterised towards a 1 X 1 km2 grid, using the dominant soil type and 
vegetation respectively (Kleeschulte, 1997). Seven soil classes were distinguished: poor 
sand (SP), rich sand (SR), calcareous sand (SC), non-calcareous clay (CN), calcareous 
clay (CC), loess soils (LN) and peat soils (PN). We used four vegetation structure 
types: coniferous forest (CON), deciduous forest (DEC), heather (HEA) and non-
fertilised grassland (GRP) (Tables 2 and 3). The aggregation of soil types was based 
mainly on soil chemistry criteria, i.e. presence of calcite, texture, and base saturation. 
Moisture condition was not taken into account as a separate criterion, because this 
information was not available on the European scale. The range of vegetation 
structure types chosen, was mainly determined by the data availability on the 
European scale. Ideally, coniferous forest should be split up into spruce forest (i.e. 
forests with large forest filtering, growth rate and transpiration rate) and pine forest 
(i.e. forest with moderate forest filtering, growth rate and transpiration rate), but this 
was not feasible on the European scale. 

Table 1 Soil categories considered 

Code 

SP 

SR 

sc: 

CN 

CC 

PN 

LN 

Soil Class 

Sand Poor 

Sand Rich 

Sand 
Calcareous 
Clay Non-
calcareous 

Clav 
Calcareous 
Peat Non-
calcareous 
I-oess Non-
calcareous 

Common soil types 
FAO (I'AO, 1981) 
Humic and Orthic 
Podzols (1)') 
Gleyic Podzols (1) 

Gleyo-calcaric 
Huvisol (1) 
Huvisols (2,3,4) 

Calcaric Huvisols 

(2,3,4) 
I listosols (NA) 

Orthic Luvisols2) (3) 

USDA-SCS 
Kntic Haplortod 

Typic 
I Iaplaquod 
I Iydraquent 

I Iydraquent 

I Iydraquent 

Medihemist 

Typic Ilapludalf 

Characteristics 

Coarse texture, low CKC, low 
weathering rate 
Finer texture, slightly larger 
CLC and weathering rate as SP 
All calcareous sandy soils 

Large weathering rate, large 

cix; 
Calcareous, large weathering 
rate, large CMC 
Œ C 

Moderately large weathering 
rate and CivC 

'» Figures m brackets refer to texture classes: 1: coarse: clay content less than 18%, 2 = medium: clav content 
between 18 and 35% and 3 = fine: clay content greater than 35%. N.\: not applicable 

' For geographical reasons, luvisols outside the loess area were included in the CN class 
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Table 2 Vegetation categories considered 

Code Vegetation Class I'brcst type, from KU Characteristics 
I.andcover data base 

DKC Deciduous forest 

CON Coniferous forest 

CRP (Nutrient-poor) 
Grassland 

IIKA Meathland 

Broad-leaved forest 
Mixed forest 

Coniferous forest 

Natural grassland 

Moors and hearhland 

Needle or leave shedding trees with 
low forest filtering, growth rate, and 
transpiration rate 
Kvergreen trees with moderate forest 
filtering, growth rate, and transpiration 
rate 
moderate growth rate, low filtering 

low growth rate, low filtering 

Although SMARI'2 is intended to be used on a regional scale, it still operates at 
the point support. In order to assess soil-water quality on a regional or European scale 
(e.g. for 5 x 5 km2 or larger blocks), the model was applied to many point locations 
within each block. Subsequently, model results at these point locations were 
aggregated to yield a single block value. An important reason for not applying the 
model directly at the block scale (i.e. 'upscaling' the model by feeding it with block-
aggregated inputs) was that it is extremely difficult to define the right form of input 
aggregation. Because SMAR'I'2 is a non-linear model, simply averaging the inputs prior 
to running it will usually not yield the block-averaged model output (Heuvelink and 
Pebesma, 1999). 

The model output investigated was mainly limited to the annually averaged Al 
concentration at a depth of 1 m (i.e. below the root zone for all ecosystems 
considered). Model outputs were generated for point locations on a 1 X 1 km2 grid 
located in semi-natural ecosystems. For the Netherlands, which was used as a case 
study, this resulted in 7 435 l x l km2 point locations for which calculations were 
performed. Model outputs for these point values were aggregated to block values for 
5 x 5 km2 blocks, by taking (i) the median concentration value from the points within 
each block and (ii) the percentage of the area in which the individual concentration 
values exceeded a specific environmental standard. 

Within the European Union, the threshold values for the Al concentration in 
drinking water are as follows (EU Council Directive 80/778/EEC). The guide value is 
0.05 mg 1 ' (0.006 mole m3) , while the maximum allowable concentration (MAC) is 0.2 
mg 1-1 (0.02 mole m-1). In the present study, we focused on the MAC value. The MAC 
value for drinking water, however, is less relevant when phreatic groundwater is 
concerned, as was the case in our study. For the protection of the deeper groundwater 
used in the preparation of drinking water, the Al concentration at the bottom of the 
root zone could be allowed to exceed the MAC, because considerable immobilisation 
°f Al may occur between phreatic groundwater and the level of drinking water wells. 
Therefore, we used a less stringent threshold, which is related to forest vitality, i.e. 0.2 
mol,, m-3 (De Vries, 1994), although the scientific support for this threshold is rather 
weak. For NO}, we used only the MAC as the threshold value, i.e. 50 mg 1' 
(0.8 mol, m3) . 

177 



I l l Evaluation on a regional scale 

Uncertainty analysis 

General Approach 

A Monte Carlo approach a large number of equally probable realisations of the model 
input data are generated, followed by running the model for each set of realisations. 
At a sufficiently large number of runs, the uncertainty in the model output can be 
derived from the variability of the output of all Monte Carlo runs. The reasons for 
using Monte Carlo analysis were that (i) no assumptions have to be made about the 
model, and (ii) it can easy handle the spatial application, i.e. the inclusion of spatial 
correlations. In order to limit the computation load, we used Latin Hypercube 
Sampling (cf. Chapter 2.2). 

For a given 5 x 5 km2 grid cell, a single Monte Carlo run resulted in a 
distribution of model results for each point in a 1 X 1 km2 grid. The entire Monte 
Carlo sample yielded an ensemble of distributions. Each Monte Carlo sample allowed 
us to estimate the median concentration for each block or the areal fraction of each 
block exceeding a threshold. Using sample order statistics, we constructed 90% 
prediction intervals for the block median concentration and for the block areal 
fraction exceeding a threshold. 

Two Monte Carlo experiments were used, one to quantify the output 
uncertainty and one to quantify the uncertainty contributions of the categorical maps, 
continuous soil parameters, and continuous vegetation parameters. In order to obtain 
the prediction intervals for block-aggregated model outputs resulting from the 
uncertainty in all inputs considered, a nested Monte Carlo experiment was carried out 
simulating 25 realisations of the categorical map, and 25 realisations of continuous 
maps attached to the categorical maps. This led to a total of 625 Monte Carlo 
simulations with SMARI'2 for each l X l km2. This was done because the continuous 
maps (with the continuous soil-related and vegetation-related parameters) depend on 
the categorical maps (i.e. combined EU soil/vegetation). 

The relative contributions of the three individual sources of uncertainty were 
quantified using an ANOVA experiment (Jansen et a!., 1994), which was also nested. 
For each of the 25 realisations of the combined soil/vegetation map, five realisations 
of the soil-related parameters were crossed with five realisations of the vegetation-
related parameters. This also resulted in 625 (25 X 5 X 5) Monte Carlo simulations. 
The stability of the calculated variances was checked visually by comparing the 
differences between two executions of the experiment. Using analysis of variance for 
each 5 x 5 km2 block, the total variance of the results was split into contributions 
from (i) categorical maps, (ii) soil-related parameters, (iii) vegetation-related 
parameters, and (iv) interaction. Latin Hypercube Sampling was not used for this 
experiment, because the sample size (five) would disturb the spatial correlation too 
much. 
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Uncertainty in categorical data 

The uncertainty in the categorical data, i.e. the aggregated soil and vegetation maps, 
was quantified by comparison national maps and EU maps, assuming that the national 
maps represent the 'ground truth' (i.e. the real world). Obviously, European scale 
maps having a smaller resolution compared to national maps. For an application on 
the European scale, however, European maps are often essential. Data from national 
sources either require substantial edge matching at national borders, or might be based 
on data collection using different basic assumptions. The second approach leads to 
data sets which are difficult to compare (cf. Kleeschulte, 1997). The maps of the 
Netherlands we used included a aggregated version of the 1:50 000 digital soil map 
(De Vries and Denneboom, 1992) and a 25 X 25 m2 pixel satellite image for the 
vegetation (Noordman et al., 1997). The EU maps comprised the 1:1 000 000 soil map 
of the EU (EC, 1985) and the EU landcover database (Corine land cover database, 
scale 1:1 000 000; EC, 1993). The soil map of the Netherlands (NL-map) and the EU 
soil map (EU-map) were aggregated to seven soil types, while both vegetation maps 
were aggregated to four vegetation types. The EU-maps were rasterised to a 1 X 1 km2 

grid, whereas the NL-maps remained at their original resolution. An example for the 
soil map is shown in Figure 1. Figure 1 illustrates the error introduced by using the 
EU soil map instead of the soil map of the Netherlands. 

Because it is likely that soil type and vegetation type are dependent, the 
different categories were combined to unique categorical variables. The derived error 
variances, nugget variances and sill variances were stored in error matrices, as 
described in Finke et al. (1999). Variograms were only fitted for matrix elements 
belonging to an EU-stratum in which the summed NL-classes were larger than 1 500 
ha or occupied more than 2.5% of the EU-stratum, this yielded 89 matrix elements. 
Using the indicator variables, exponential variograms with a nugget were fitted, using 
the geostatistical program GSTAT (Pebesma and Wesseling, 1997). The remaining 
matrix elements were modelled as spatial white noise, i.e. no spatial correlation. Using 
sequential multiple indicator simulation of categorical variables, equally probable 
realisations of the 'true' maps were generated. 

The assumption that the maps of the Netherlands represent 'reality' causes an 
underestimation of the uncertainty in the EU-maps, because (i) the detailed NL-maps 
are, of course subject to uncertainty too and (ii) the EU maps and the maps of the 
Netherlands maps are not derived from independent sources. The uncertainty thus 
derived reflected the uncertainty due to the use of European databases instead of 
more detailed national data, as was aimed in this study. The uncertainty in the maps of 
the Netherlands is known to some extent. The fraction of the area occupied by a land 
cover type which actually corresponds to its classification (i.e. the map accuracy) is 
near 90% for natural vegetation (Noordman et al., 1997). The target accuracy of the 
1:50 000 soil map of the Netherlands is 70% (Steur and Heijink, 1991). 
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Calcareous Clay 
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Peat 

Figure 1 Fragments of the 1:50 000 soil map of the Netherlands and the 1:1 000 000 
soil map of the EU 

Uncertainty in continuous data 

The selection of continuous parameters to be included in the uncertainty analysis was 
based on the results of a sensitivity analysis and on process knowledge. Parameters 
that were a priori considered to be either rather certain, e.g. carbonate equilibrium or 
insensitive, e.g. sulphate sorption constants were omitted from the analyses. In 
addition, litterfall parameters were not included, because they mainly affect the soil 
solution concentration in the topsoil and not at the bo t tom of the root zone (cf. Kros 
et al, 1993). As a result, eight vegetation-related parameters and eleven soil-related 
parameters were included in the uncertainty analysis (Table 3). Each vegetation-related 
parameter was specified for four vegetation classes, while each soil-related parameter 
was specified for seven soil classes, by means of class transfer functions. Each class 
transfer function (i.e. 1 1 x 7 + 8 x 4 = 109 class/parameter combinations) consisted 
of an average value, a min imum value, a maximum value, a variogram and cross 
correlations (correlations between variables) with other parameters in the same class. 
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T a b l e 3 C h a r a c t e r i s a t i o n o f p a r a m e t e r s i n s p e c t e d 

(-odes Description Affect') Distr. 
Type*) 

Cross 
Correlation5) 

Spatial 
Correlation') 

Derived from 

Vegetation-related parameters 
JSO2 Forest filtering SO2 
ffNH; I'orest filtering NI I3 
JNOx I'orest filtering N O , 
fdd Dry deposition factor 
Tr ') 'I'ranspiration 

Am,lmx Amount of stems 
ctNii N content in 

shoot/stem 
kimmx Mineralisation rate 

constant 

Al 
N O , 
N O , 
Al 
A1,N()3 

N O , 
N O , 

A l ,NO , 

N 
N 
N 
N 
N 

N 
N 

N 

+ 
+ 
+ 
+ 

literature7) 
literature 
literature 
literature 
literature/ 
calibration 
Literature 
Literature 

Literature 

Soil-related parameters 
CN0„ C /N ratio of organic Al, N O , L 

matter 
frumx Nitrification fraction Al, N O , N 
frdtmx- Denitrification Al, N O , N 

fraction 
KAlox Dissolution constant Al N 

AU 

HFSDF 

ctAIox3) secondary Al Al 
compounds 

Na„ *) Na weathering rate Al 

BC2.t
 3) BC2 weathering rate Al 

C E O CHC M 
frBC2xV Fraction BC2 a t Œ C Al 
KAL- A1-BC2 exchange Al 

constant 

KHB 11-BC2 exchange 
constant 

Al 

I. 

N 

N 

L 

N 
N 

N 

* 
* 

+ 

+ 

* 

* 

+ 
+ 
+ 

+ 

calibration 
calibration 

Derived from 
250 monitoring 
sites in the 
Netherlands 
HFSDF«) 

Literature/ 
HFSDF 
Literature/ 
HFSDF 
HFSDF 
HFSDF 
Derived from 
250 monitoring 
sites in the 
Netherlands 9> 
Derived from 
250 monitoring 
sites in the 
Netherlands 9) 

•' Transpiration rate basically depends on both vegetation and soil, but we have only included the dependence on vegetauon 
^ K»t was set eejual to Ka*,. 
3> Refers to soil solution concentrations of Al and NO,; other model outputs were not considered in the present study 
4) N — normal; L = lognormal 
5) The symbols '*' and '+' indicate groups of parameters which were cross-correlated, no symbol means no cross-correlation 

assumed 
6> '-': no spatial correlation, simulated as white noise; '*'; spatial correlation was estimated, based on process knowledge; '+': 

spatial correlation was derived from fitting experimental variograms, using data from 250 monitoring sites (I^eters et ai, 
1994; Klap etat., 1999) 

^ 'literature' refers to Kros tt al. (1993), Kros it al. (1995a), and references therein 
1 I'uropean I'orest Soil Data Base (Reinds, 1994) 
o» See Leeters eta/. (1994) and Kkp et al. (1999) 
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Cross correlations across classes were not taken into account. Parameter 
distributions types were assumed to be either normal or lognormal. The uncertainty in 
continuous data was based on the literature, on a database covering about 250 
extensively monitored forest sites in the Netherlands (NLFSDB, Leeters et al, 1994; 
Klap et al, 1999), and on a European Forest Soil Database (EFSDB, Reinds, 1994). 
For those model parameters for which it was not possible to derive statistical 
properties from existing data sets, the minimum and maximum values were estimated. 
These parameters included forest filtering, nitrification and denitrification fractions, 
and weathering rates. In these cases, the standard deviation was estimated from the 
minimum and maximum value by (max - min) / 4 and the distribution type was 
assumed to be normal. Minimum and maximum values from national sources were 
decreased by about 10% and increased by about 10% respectively, in order to derive a 
range for the European scale. 

Cross correlations were included between all forest filtering factors (Table 3), 
based on process knowledge (Kros et al, 1993). Cross correlations were assigned to 
the C /N ratio of organic matter (C1SU), cation exchange capacity (CEC) and the initial 
base saturation (frBC2M), based on data in the NLFSDB and EFSDB. 

As with the categorical data, spatial correlation was also included for the 
continuous data. Therefore, variogram models were fitted with exponential 
variograms using the available data (i.e. NLFSDB). When no data was available for the 
derivation of spatial correlation, spatial correlation was taken into account by 
assuming a spatial correlation over a distance of 5 km. Spatial correlation was omitted 
only for those parameters that obviously lacked spatial dependence. These parameters 
were simulated as spatial white noise, i.e. no spatial correlation (Table 3). 

The distribution attributes and the variogram parameters for each generated 
combined soil/vegetation map (i.e. categorical data) were used to generate equally 
probable realisations of maps, using non-conditional, stratified, sequential, 
multivariable Gaussian simulation (Pebesma and Wesseling, 1997). 

The following uncertainties in model input data were excluded from the 
uncertainty analysis: (i) deposition scenario (variable in space and in time) and (ii) soil 
or vegetation-related parameters. Because the product of the filtering factors (//SO;, 
_$NIL,_#N03) and the deposition yields the site specific deposition flux, all of the 
uncertainty in the spatial pattern of the deposition was loaded on the forest filtering 
factors. Uncertainties in the temporal evolution of the deposition scenario were 
excluded because these are mainly the result of political and technical factors (e.g. the 
feasibility of emission reduction measures). 

The uncertainty analysis was performed using an existing national deposition 
scenario, because no detailed scenarios were available on the European scale. We 
believe that existing acidification scenarios (Alcamo et al, 1990) are too rough for our 
purpose. Consequently, we used an official deposition scenario from the Netherlands 
Environmental Outlook (RIYTSL 1997). This scenario includes predictions of SO:, 
NO x , and NH 3 deposition for the years 1995, 2000, 2010, and 2020, for each 1 X l 

km2 grid cell. Annual averaged values are presented in Table 4. In order to mimic 
European data, the deposition scenario was aggregated to a 20 X 20 km2 grid, because 
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it is likely that European-scale scenarios with this level of detail will become available 
in the near future. 

Table 4 Average values of N deposition and potential acid deposition for 
the deposition scenario1 ' used 

Year 

1995 
2000 
2010 
2020 

N deposition 

(mok ha ' a ') 

2 119 
1 858 
1 661 
1 642 

Potential acid 

3 193 
2 653 
2 281 
2 301 

1 he Netherlands environmental ( Hit look presents three scenanos for atmosphenc deposition, l o r this study we 
used the 'middle-of-the-road' scenano, called the Kuropean Co-ordination (KC) scenano 

Although annual precipitation values are available for Europe, we also used 
precipitation data from the Netherlands. We used data representing the long-term 
annual averaged precipitation on a 10 X 10 km2 grid data (cf. De Vries et ai, 1994c). As 
with the deposition data, the 10 X 10 km2 grid data was aggregated to 20 X 20 km2 grid 
mean values. 

3.2.3 Results and discussion 

Uncertainty in Model Predictions 

Uncertainties in model forecasts are presented as 90% prediction intervals for 5 X 5 
km2 block-aggregated values in 1995 and 2020 as: (i) the block median Al 
concentration (Figure 2), (ii) the block areal percentage where the Al concentration 
exceeds the MAC value (0.02 mole m\ Figure 3), and (iii) the block areal percentage 
^•here the Al concentration exceeds the forest vitality criterion (0.2 mole m \ Figure 
4). 

It is clear that the uncertainty in the predicted Al concentration was large 
(Figure 2). For a substantial part of the country, the block median concentration 
exceeded 0.2 moU m \ i.e. the critical value for forest vitality, both in 1995 and 2020. 
This is also illustrated by Table 5, which presents the median values of all 5 X 5 km2 

blocks (i.e. the entire map) for different statistical parameters. Despite the high levels 
o f uncertainties, the spatial differentiation was large. The largest concentrations 
occurred in the central and southern parts of the country. These are the areas with 
large atmospheric deposition and poor sandy soils (SP). Low concentrations occurred 
along the western coastline, where calcareous sandy sous (SC) dominate, and in the 
centre of the country, i.e. newlv re-claimed land with calcareous clay sous (CN). 
Because the spatial variation in' pi I and the related Al concentration are mainly 
determined by the soil-related parameters (Kros et a/., 1995a), Table 6 summarises the 
Median values, for all 5 X 5 km2 blocks (i.e. the entire map), of various statistical 
Parameters per soil type. The uncertainty was found to be smaller (90% prediction 
lnterval about [0, 1] in 1995, cf. Table 6) for the low concentration areas (mainly SC 
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and CN) than for the areas with large concentrations (mainly SP) (90% prediction 
interval about [0.1, 2.8] in 1995, Table 6). In terms of the coefficient of variation (CV), 
however, the opposite was found: a large CV for SP and CC soils and a low CV for SP 
soils. The reducing deposition scenario clearly resulted in a decrease in the spread of 
the prediction interval, and a clear shift towards smaller values: both the lower side 
(P05, i.e. the 5-percentile) and the upper side (P95, i.e. the 95-percentile) of the 
prediction interval decreased. As for the median values for the map as a whole (Table 
5), the lower side (P05) decreased from 0.02 to 0.01, while the upper side (P95) 
decreased from 2.1 to 1.3. The deposition scenario clearly affected the various soil 
types in the same way, i.e. smaller mean and median values and a narrower 90% 
prediction interval, although the CV hardly changed. 

Lower side 1995 Upper side 

Figure 2 The 90% prediction interval (left: lower side; right: upper side) of the block 
median Al concentration for 5 x 5 km2 blocks, for 1995 (top) and 2020 (bottom) 
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Lower side 

<*K; 

1995 
Upper side 

Exceedance AI3* _»»!*P?_ 
concentration (%) 

• 0- 10 
• 10-20 

1 20-40 , 
• 40-80 f J * 
• 80-100 J '. 

Figuie 3 The 90% prediction interval (left: lower side; right: upper side) of the block 
areal percentage where the Al concentration exceeds the \l \< : value for Al 
(0.02 moU m ') for 5 x 5 km : blocks, for 1995 (top) and 2020 (bottom) 
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Table 5 Median values over the entire map of 5 X 5 km2 blocks of the 90% 
prediction intervals (P05 = lower side; P95 = upper side), the median, the 
mean, and the coefficient of variation (CV) of the Al concentration (Al), 
areal exceedances for the Maximum Allowable Concentration (AU* 0.02), 
and the forest vitality criterion (AU, 0.2), for 1995 and 2020 

( )urput Year TO5 P95 median mean CV 

Al 1995 0.02 2.09 0.40 0.66 0.99 
(triolein-3) 2020 0.01 1.33 0.28 0.42 0.99 

Alex 0 (12 

(%) 

Alrx 0 2 

(%) 

1995 
2020 

1995 
2020 

71 
63 

25 
14 

100 
100 

100 
100 

100 
95 

71 
60 

93 
89 

67 
60 

0.12 
0.15 

0.35 
0.43 

The uncertainty in the percentage of the block area where the Al concentration 
exceeding the MAC value (Figure 3) was small, especially in the areas with large 
concentrations. This was obviously, due to large predicted Al concentrations (median 
value about 0.4 mole nr3) in comparison with the MAC criterion (0.02 moU m3). 
Exceptions were the calcareous soils, along the western coastline (i.e. sandy soils) and 
the newly re-claimed land in the centre (i.e. clay soils), in which the predicted Al 
concentrations were much smaller (90% prediction interval about [0, 67]). Using the 
less stringent forest vitality criterion (0.2 moU nr3) yielded a much larger uncertainty in 
the exceedance area, but it was still smaller than the uncertainty in the Al 
concentration (see also Table 5). Furthermore, unlike the exceedance area of the MAC 
value, that for the forest vitality criterion showed a decrease in exceedance as a result 
of the decreasing deposition scenario. Although this decrease was restricted to the 
areas with relatively low Al concentrations. 
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1995 
Lower side 

Figure 4 The 90° o prediction interval (left: lower side; nght: upper side) of the block 
areal percentage where the Al concentration exceeds the forest vitality criterion for Al 
(0.2 mole ay3) for 5 x 5 km2 blocks, for 1995 (top) and 2020 (bottom) 
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Table 6. Median values over the entire map of 5 X 5 km2 blocks of the 
90% prediction intervals (P05 = lower side; P95 = upper side), the 
median, the mean, and the coefficient of variation (CV) of the Al 
concentration (molc m

3) in 1995 and 2020 for various soil types1) 

Soil type 

SP 

SR 

SC 

CC 

CN 

PN 

LN 

Year 

1995 
2020 

1995 
2020 

1995 
2020 

1995 
2020 

1995 
2020 

1995 
2020 

1995 
2020 

P05 

0.09 
0.07 

0.03 
0.02 

0.00 
0.00 

0.00 
0.00 

0.01 
0.00 

0.00 
0.00 

0.00 
0.00 

P95 

2.80 
1.90 

2.43 
1.61 

0.73 
0.45 

1.08 
0.59 

2.07 
1.22 

1.36 
0.80 

1.47 
0.85 

median 

0.82 
0.66 

0.60 
0.44 

0.00 
0.00 

0.00 
0.00 

0.28 
0.16 

0.'l9 
0.10 

0.09 
0.05 

mean 

1.10 
0.78 

0.85 
0.58 

0.09 
0.06 

0.15 
0.09 

0.56 
0.33 

0.37 
0.21 

0.30 
0.17 

CV 

0.80 
0.74 

0.91 
0.88 

3.85 
3.84 

2.54 
2.76 

1.15 
1.15 

1.25 
1.32 

1.61 
1.62 

') Dominant soil type within a 5 X 5 km2 grid cell according the KU soil map 

Relative Uncertainty Contribution 

The relative contributions of the three uncertainty sources (i.e. the combined 
soil/vegetation map, continuous soil-related, and continuous vegetation-related 
parameters), are presented as (i) the corresponding variances for the median Al 
concentration for the 5 x 5 km2 blocks (Figure 5) and (ii) summarised in a figure 
presenting the average variances for the maps of 5 X 5 km2 block aggregated values 
for the Al and NO3 concentrations and the exceedances (Figure 6). 

The results show that the variance in soil parameters accounted for more than 
50% of the total variance for almost all grid cells, whereas the vegetation parameters 
accounted for less than 10% of the total variance for almost all grid cells (Figure 5). 
The contribution of the categorical maps to the total uncertainty was clearly larger 
than that of the vegetation parameters. Remarkably, the uncertainty contribution of 
the categorical data was large mainly for soils with low Al concentrations (i.e. mainly 
calcareous soils). This was probably due to mis-classification of calcareous soils in the 
EU map. A calcareous soil results in a negligible Al concentration, whereas under the 
same circumstances a non-calcareous poor sandy soil may result in a considerable Al 
concentration. Note, however, that Figure 5 only presents the main effects of the 
three sources of uncertainty, scaled to the sum of the three main effects. 
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Categorical Continuous soil 

100 j - 100 i-

V 50 U 50 k 

• !»• n l — — J mJÊÊ WEM 
0 29 40 60 80 100% 0 29 40 60 80 100% 

100 
Variances (%) 
<10 
10-20 
20-30 
30-40 
40-50 
>50 

0 29 40 60 80 100% 

Figuie 5 Relative variance (percentage of the sum of the three main variance 
components) of the soil and vegetation maps (Categorical), continuous soil-related 
parameters (Continuous Soil) and continuous vegetation-related parameters 
(Continuous Vegetation) for the median AI concentration for 5 X 5 km2 blocks, for 
1995 

Relative uncertainty contributions were summarised by calculating the average 

contributions of the variances of the three uncertainty sources to the total variance of 

the inspected model outputs for the whole map with 5 x 5 km2 blocks (Figure 6). 

Contrary to Figure 5, the main effects were no t scaled to the sum of the main effects, 
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so the figure presents an interaction term. It is clear that the uncertainty in the 
continuous soil parameters contributed most to the uncertainty in the Al 
concentration, as well as to the uncertainties in areal exceedances. This was confirmed 
by an uncertainty analysis performed with comparable models (see Chapter 2.2; Kros 
et al, 1993), which concluded that the uncertainty in the Al concentration at the 
bottom of the root zone, as well as the associated pi I, is mainly determined by 
typically soil-related parameters, e.g. KAL and rfAl„.v. It should be stressed, however, 
that the situation in the top soil may differ, because the Al concentration and the 
associated pi I in the top soil are strongly affected by the nutrient cycle (see Chapter 
2.2; Kros et al, 1993) through vegetation-related parameters such as tfN,/, and kmims. 
This is, however, not relevant for leaching towards the phreatic groundwater. 

Contribution to 
total variance (%) <? 

100 r r ^T^ I I 1 I 1 ffpf=j=m I 1 
interaction ï 

A l A,ex0.2 Ale*0.02 N 0 3 N 0 3 ex 

Figure 6 Average variances over the entire map of 5 X 5 km2 blocks of the three main 
components and the interaction component explaining the total variance in various 
model outputs for 1995 

Results for NO3, however, were markedly different. For both the NCb 
concentration and the exceedance, the largest uncertainty contribution originated from 
the categorical data, followed by the continuous vegetation-related parameters, 
whereas the smallest contribution stemmed from the continuous soil-related 
parameters. Unlike Al, the NO3 concentration and exceedance at the bottom of the 
root zone were generally determined to a larger extent by vegetation processes, e.g. 
f /N^^NII^J/NOi, making the uncertainty contribution of the vegetation parameters 
more important than that of the soil parameters. Remarkably, the three exceedance 
parameters showed a larger interaction term than the two concentrations. This might 
be due to the fact that the exceedance parameters range from 0 to 1, whereas the 
concentration ranges from 0 to infinity. A 0 to 1 scale usually leads to skewed 
distributions, which may lead to large interaction terms. The skewness of the 
distributions is illustrated by the differences between the mean and median values in 
Table 6. 
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Regarding the uncertainty thus quantified, it is important to stress that the size 
of the grid cell considered (i.e. the size used for presenting the results) is critical, 
because aggregation to larger blocks leads to more accurate results (narrower 
prediction intervals) at the cost of the spatial resolution of the results. The number of 
categories used for soil type and vegetation (seven soil classes and four vegetation 
classes) may also affect the results. If more categories had been distinguished, the 
uncertainty in the continuous data could have become smaller, whereas the 
uncertainty in the categorical data could have become larger. For instance, the 
uncertainty in CEC might become smaller if the poor sandy soils are split into soils 
with high organic matter contents and those with low organic matter content. At the 
same time, the uncertainty in the two new soil classes would become larger. Thus, 
there is a trade-off in the uncertainty contribution between the categorical data and 
the continuous data, depending on the extent of aggregation. For the application of 
SMAR'1'2 on the European scale, splitting soil types or vegetation any further than was 
done here makes little sense, unless additional data necessary to estimate the newly 
introduced class transfer functions become available. 

3.2.4 Conclusions 
It is showed that the width of the prediction interval largely depends on whether block 
median concentrations or block arcal exceedances are considered. The Al 
concentration showed wide 90% prediction intervals both for areas with low Al 
concentrations (i.e. SC and CC soils) and for areas with high concentrations (mainly 
SP soils). The implications of these wide intervals are probably most important for the 
calcareous soils (SC and CC). It is for these soils that the environmental thresholds 
(both 0.2 and 0.02) were within in the 90% prediction interval (0 to 1.1 mole m 3) in 
1995, whereas for the SP soils the 90% prediction interval in 1995 ranged from 0.09 to 
2.8 mole nv\ In conclusion, it is highly certain that the environmental threshold is 
exceeded in areas with high concentrations, but not in those with low concentrations. 
This effect was clearly illustrated by the 90% prediction intervals for the block areal 
exceedance of the MAC threshold, which showed a narrow prediction interval for the 
large concentration areas (SP soils) (95 to 100% in 1995 and 92 to 100% in 2020) and 
a wide interval for the low concentration area (SC and CC soils) (0 to 67%, both in 
1995 and 2020). For the less stringent forest vitality criterion, however, this contrast 
was less pronounced. 

For the scenarios evaluated, the model was able to predict a considerable 
decrease in Al concentration, despite the large prediction intervals due to uncertainty' 
in the model input data. This effect was, however, less profound for the exceedances, 
which was especially true for the block areal exceedances of the MAC threshold. 

The relative uncertainty contribution largely depended on the model output 
considered. For the Al concentration and the exceedances of the two Al thresholds, 
the soil-related parameters contributed most to the output uncertainty, whereas the 
uncertainty contribution of the vegetation-related parameters was negligible. By 
contrast, the results for NO3 showed that the average uncertainty contribution mainly 
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stemmed from the categorical parameters, followed by the continuous vegetation-
related parameters, whereas the continuous soil-related parameters contributed least. 
The larger contribution of the vegetation-related parameters to the uncertainty of the 
NO3 concentration is due to the fact that N processes are dominated by the 
vegetation-related processes rather than by soil-related processes. 

Given the large costs associated with measures to prevent increased Al and 
NO3 concentrations, it is important to assess whether the collection of more data 
would result in a reduction of the prediction interval. From the present study useful 
information can be derived to support decisions on different alternatives for reducing 
uncertainties associated with long-term model predictions. Possible alternatives are 
either improving of the EU soil and vegetation maps (categorical parameters) or 
collecting additional input data in order to reduce the uncertainty in parameters 
(continuous parameters). Our study showed, however, that this largely depends on the 
model output considered. 

Finally, it is important to notice that the present study only assessed the 
uncertainty in model output resulting from uncertainty in model inputs. We ignored 
sources of uncertainties related to the parameters not considered as uncertain, or 
those related to the model structure. Therefore, the presented prediction intervals 
should be considered with caution. If all input uncertainties were modelled correcdy, 
the prediction intervals of the model output would at the best underestimate the true 
uncertainty. Further insight into the extent of underestimation would require a 
comparison of model results with measured values. 
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3.3 Assessment of the prediction error in a large-scale 
application of a dynamic soil acidification model 

Abstract 

The prediction error of a relatively simple soil acidification model (SAL4RT2) was assessed before and 

after calibration, for the Al and NO) concentrations on a block scale. Although SMART2 was 

especially developed for application on a national to European scale, it still runs at a point support. A 

5 X 5 km2 grid was used for application on the European scale. Block characteristic values were 

obtained simply by taking the median value of the point support values within the corresponding grid 

cell. In order to increase confidence in model predictions on larger spatial scales, the model was 

calibrated and validated for the Netherlands, using a resolution that is feasible for Europe as a whole. 

Because observations are available only at the point support, it was necessary to transfer them to the 

block support of the model results. For this purpose, about 250 point observations of soil solution 

concentrations in forest soils were upscaled to a 5 x 5 km2 grid map, using multiple linear regression 

analysis combined with block kriging. The resulting map with upscaled observations was used for both 

validation and calibration. A comparison of the map with model predictions using nominal parameter 

values and the map with the upscaled observations showed that the model overestimated the predicted 

Al and NO; concentrations. The nominal model results were still in the 95% confidence interval of 

the upscaled observations, but calibration improved the model predictions and strongly reduced the 

model error. However, the model error after calibration remains rather large. 

3.3.1 Introduction 
SMARI'2 is a model developed for the assessment of soil acidification and 
eutrophication on a large spatial scale (Kros et al, 1995a). It is a relatively simple 
dynamic one-layer model that predicts soil and soil solution concentrations of major 
ions in non-agricultural soils in response to atmospheric deposition. 

The reliability of large-scale forecasts with SMART2 is seriously hampered by 
uncertainties in the input data. In Chapter 3.2 (see also Kros et ai, 1999; Pebesma et 
al, 2000) the prediction uncertainties in Al and NO3 concentrations on a European 
scale due to uncertainty in input data have been quantified. These studies indicated 
that model predictions were very uncertain, mainly because of the uncertainty in 
model parameters related to crucial soil processes. To reduce these uncertainties and 
increase confidence in model predictions for large spatial scales, the model results 
need to be compared with observations. Although in most cases, model inputs and 
variables can be directly derived from the available literature or measurements, certain 
model parameters can only be derived in an indirect way. Consequendy, there is a 
general shortage of knowledge about the precise values to be used, which seriously 
affects the credibility of the model results. 

Reduction of uncertainty in simulated soil solution concentrations on a large 
spatial scale, may be achieved by a calibration in order to deduce more reliable values 
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for these parameters. Therefore, in the present study we calibrated the model SMAR'1'2 
by using soil chemistry data for the Netherlands, assuming that the adaptation of 
model parameters would lead to more accurate model predictions at large spatial 
scales. In this paper, the term calibration is used for model parameter adjustment in 
view of observations of corresponding model output variables. The benefits of the 
model calibration procedure can be assessed by quantifying the model error for both 
the non-calibrated, using nominal parameter values, and the calibrated model. The 
only way to quantify the model error is through a model validation, achieved by 
comparing model results with independent observations, cf. I leuvelink and Pebesma 
(1999). Usually, observations originate from conventional soil sampling, resulting in a 
data set containing multiple values in some cells and no values in others. Furthermore, 
the scale of the observations for calibration and validation usually does not 
correspond with the scale of the model application. One of the expected effects is that 
variability caused by natural variability and outliers decreases as a result of the 
conversion from point support to block support (I leuvelink and Pebesma, 1999). 
Therefore, a procedure was developed to convert point scale data from about 250 
forest stands in the Netherlands to a block scale data set. 

In addition to model calibration, the upscaled monitoring data were also used 
to quantify the prediction error of the model. According to I leuvelink and Pebesma 
(1999), the only way to quantify the model error is through model validation. Like 
calibration, model must also be validated at a block support. The model error itself 
can be divided into a structural part and a part that originates from input uncertainty. 
The latter, the model input error, has been quantified previously (Kros et ai, 1999). 

The present paper illustrates the benefits and feasibility of calibration on a large 
spatial scale (i.e. the Netherlands), in which point observations on soil solution 
chemistry were upscaled to the same support as the model results. Furthermore, we 
illustrate how to subdivide the model error into a model structure error and a model 
input error. The aim of this study was to reduce the level of uncertainty, and increase 
confidence in the quantification of the effects of soil acidification on the European 
scale. This was done by (i) searching for parameter sets that give an acceptable 
difference between model outputs and measurements, (ii) obtaining smaller ranges of 
model parameter values, i.e. reducing parameter uncertainty, and (iii) quantifying the 
model error for both nominal and calibrated model results. The results of the present 
study may in turn guide the gathering of additional information for further parameter 
calibration and model improvement. 

3.3.2 Model and data 

Model 

SMART2 (Kros et ai, 1995a, see Chapter 2.3) predicts changes in pi I, aluminium (Al), 
base cation (BC), nitrate (NO3) and sulphate (SO4) concentrations in the soil solution, 
and solid phase characteristics depicting the acidification status, i.e. carbonate content, 
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base saturation and readily available Al content. SMAR'1'2 extends the dynamic soil 
acidification model SMART (De Vries et al, 1989), by including nutrient cycling and 
improved hydrology. The SMAR'1'2 model consists of a set of mass balance equations 
describing the soil input-output relationships and a set of equations describing the 
rate-limiting and equilibrium soil processes. 

In the present study we considered only the modelled annual averaged Al and 
NO3 concentrations at a depth of 1 m (i.e. below the root zone) below coniferous and 
deciduous forest. Model outputs were first generated on a 'point scale' using a 1 X 1 
km2 grid, and including only those cells that contained (semi)-natural vegetation. 
Model output for these point values was aggregated to block values for 5 x 5 km2 

blocks, by (i) taking the block median concentration value from the points within the 
block and (ii) taking the areal fraction where the individual concentration values 
exceeded an environmental standard. 

Input data and model parameters to be calibrated 

Input data for the SMAR'I'2 application can be divided into system inputs and initial 
values of variables and parameters. System inputs are atmospheric deposition, 
hydrology and vegetation development. All input data are derived as a function of 
location (grid cell) or soil type or vegetation type or the combination of vegetation 
type and soil type. Input data refer to (i) a specific deposition scenario for each grid 
cell, (ii) model variables and parameters which are either related to a soil type or a 
vegetation type or to a combination of both and (iii) a soil map and vegetation map. 
For the application on a European scale, the gridded soil map and vegetation map, 
representing the dominant soil type and vegetation type for a 1 x 1 km2 grid, 
respectively, were generalised. Seven soil classes were distinguished and four 
vegetation types. Model simulations were performed for the period 1985 to 1995, 
using deposition values for the corresponding years. Although the original national 
deposition values were available for a 1 x 1 km2 grid, the original values were 
aggregated to a 20 x 20 km2, because this is the resolution for which Europe-wide 
scenarios may become available. 

The number of parameters to be calibrated had to be restricted in order to (i) 
restrict the computational load and (ii) avoid identification problems. We based our 
selection of parameters to be calibrated on a sensitivity and an uncertainty analysis (cf. 
Chapter 3.2 and Kros et al, 1999), using only the most sensitive and uncertain model 
parameters. First parameters to which the model output was insensitive were fixed. 
We then excluded those parameters which we considered relatively well-known (e.g. 
growth and litter fall parameters). We also excluded those parameters which were 
impossible to identify with this data set, because the calibration criterion was not 
sensitive to changes in their values. Finally, we ended up with five vegetation-
dependent parameters and five soil-dependent parameters for calibration (Table 1). 
The parameters not included in the calibration were set at their nominal value. The 
nominal values were taken from Kros et al. (1995a). 
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Table 1 Parameters calibrated 

Code 

JSC)2 

#MH.i 
i N O x 
Jdd 
fcrm 

fr„ 
frd, 

KAU 

KM* 

KII« 

Description 
Forest filtering SO2 
Forest filtering NI h 
Forest filtering NC), 
Dry deposition factor 
Mineralisation fraction 
Nitrification fraction 
Denitrification fraction 
Al„x dissolution 
constant 
A1/BC2 exchange 
constant 
I I /HC2 exchange 
constant 

Affects1) 
Al 
NO3 
N O j 
Al 
AI, N O j 
M, NO3 
Al, NC)3 

Al 

Al 

Al 

LInit 
-
-
-
-
a ' 
-
-
log(mol 2 1 2) 

log(mol I-') 

log(mol 1 1) 

Dependent on 
Vegetation 
Vegetation 
Vegetation 
Vegetation 
Vegetation 
Soil 
Soil 
Soil 

Soil 

Soil 

derived from 
literature 
literature 
literature 
literature 
literature 
global calibration2) 
global calibration2) 
Derived from ca. 250 
plots in NL 
Derived from ca. 250 
plots in NL 
Derived from ca. 250 
plots in NL 

') Refers to soil solution concentrations of Al and NO3; other model output was not considered in the 
present study 

9 i.e. manual calibration, only focussing on the average concentrations 

Calibration and validation data 

Soil solution concentrations were sampled at 241 forest stands, including 147 non-
calcareous sandy soils, sampled during the spring of 1990 (De Vries et al., 1995b), 38 
loess soils, sampled during the spring of 1992, 30 peat soils, sampled during the spring 
of 1993 and 26 clay soils, sampled during the spring of 1993 (Klap et al., 1999). The 
soil solution was sampled during the period from February to May. Composite 
samples, consisting of 20 subsamples, were taken from the mineral topsoil (0 to 30 
cm) and the mineral subsoil (60 to 100 cm) in early spring. At this time of the year, the 
composition of the soil solution corresponds reasonably well with the flux-weighted 
average annual soil solution concentration. Soil solution was extracted by 
centrifugation of soil samples. The locations were restricted to non-calcareous soils 
throughout the country, because sampling was performed in the context of 
acidification research (cf. De Vries et al., 1995b). The forest types included were Scots 
pine, black pine, Douglas fir, Norway spruce, Japanese larch, oak and beech. 

The observation sites were lumped into the same forest type classes and soil type 
classes that were used for the model simulations. The tree species were lumped into 
two forest type classes: 
- Coniferous stands (Douglas fir, Norway spruce, Scots pine and black pine), i.e. 

evergreen trees with moderate to high forest filtering capacity, growth rate and 
transpiration rate (CON); 

- Deciduous stands (Japanese larch, oak and beech), i.e. needle- or leaf-shedding 
trees with low forest filtering capacity, growth rate and transpiration rate (DEC). 

The soil types were lumped into five classes (Table 2), based on parent material 
(texture, mineralogical composition, organic matter). Moisture condition was not 
taken into account as a separate criterion, since this information is not available on a 
European scale. Note, however, that previous applications of SMART2 (cf. Kros et al., 
1999) also included calcareous sandy soils (SC), calcareous clay soils, non-fertilised 
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grassland (GRA) and heathland (I IEA). Since no observation data were available for 
these soil and vegetation types, these categories were not included in the calibration 
and validation. 

Table 2 Overv iew of the soil type c lasses d is t inguished 

Code Soil class Common soil types (FAQ, 1988) 
SI' 
SR 
CN 
PN 
I.N 

Sand Poor 
Sand Rich 
Clay Non-calcareous 
Peat Non-calcareous 
Loess Non-calcareous 

Carbic Podzols, Arenosols 
Glcyic Podzols, Glcysols 
1'luvisols 
1 listosols 
Luvisols 

SMART2 simulates averaged annual values, whereas the data set represents the 
concentration of ions in early spring (February to May). Although average 
concentrations in April may be used as an estimate of the flux-weighted annual 
average concentration (De Vries et al, 1995b), our data set was sampled only once. 
This influences the quality of the calibration because of extreme values due to specific, 
temporary circumstances, such as weather conditions and deposition. Since upscaling 
smoothes such extreme values, this is another important motivation for performing an 
upscaling operation. The upscaling procedure use average information on e.g. annual 
deposition in combination with a multiple regression equation, yielding a smoothing 
of extreme values and outliers. 

3.3.3 Methodology 

Upscaling of observation data 

In order to calibrate and validate the model it was necessary to bring observations and 
model results to the same support. Several techniques are available to perform spatial 
upscaling, including regression analysis (cf. Leeters et al, 1994), generalised additive 
modelling (cf. Tiktak et al., 1998), ordinary block kriging (Journel and Huijbregts, 
1978), stratified block kriging (Pebesma and De Kwaadsteniet, 1997) and a 
nonparametric dis tance-weigh ting procedure (Han et al., 1993). Two disadvantages of 
kriging are that (i) it spreads out sharp boundaries which do exist in reality, and (ii) it 
assumes similar mean and variogram for all soil units (Brus et al., 1996). Rarely are 
natural processes explained with an estimate of variability. Therefore, as stated by, e.g. 
Heuvelink and Bierkens (1992), it is advisable to use all relevant additional 
information, such as the relation between atmospheric deposition and soil solution 
concentrations (Leeters et ai, 1994). It remains unlikely that this information alone can 
fully explain the object variable, because (i) crucial additional information may not be 
available and (ii) soil parameters are often spatially correlated. The structure in spatial 
data can usually be divided into a systematic part and a stochastic part (Han et al, 
1993). Therefore, we decided to use a hybrid of a systematic and a stochastic method. 
However, the division between the systematic part and the stochastic part is rather 
arbitrary. Multiple linear regression was used for the systematic behaviour, whereas 
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ordinary block kriging was used for the stochastic behaviour. Here we derived nation 
wide upscaled monitoring data from about 250 forest stands in the Netherlands (Mol-
Dijkstra and Kros, 1999). 

Model results at a block support for 5 x 5 km2 blocks were obtained by taking 
the block median value from the corresponding point support model runs (see section 
2.1). To use the observation data for a model calibration at a block support for 5 x 5 
km2 blocks, the observations must be aggregated to the same support. Therefore, a 
map was generated with the major soil solution concentrations (Al, NO.i, SO4, 
Ca+Mg, CI and pll) for a 5 x 5 km2 grid (cf. Mol-Dijkstra and Kros, 1999). To 
account for both systematic and stochastic behaviour, the block values were derived in 
three steps, according to the scheme in Figure 1: 
1. multiple regression analyses for a 250 x 250 m2 grid, in order to estimate values at 

unsampled locations by including all available additional information which may 
explain the systematic effect; 

2. aggregation of the 250 x 250 m2 values to a 5 X 5 km2 grid; 
3. adjusting the 5 x 5 km2 grid values by adding that part of the residual that can be 

predicted from spatial correlated observations. This procedure was performed 
using residual kriging on log-transformed data. 

Data Modeloutput 

250 points 1 x 1 km grid 

Multiple linear regression 

Ancilillary data 

Aggregating 

Figure 1 Upscaling procedure for available point observations and model results 

Regression analysis and aggregation 

Candidate predictor variables for the regression analysis were: land use, soil type, tree 
species, total deposition of N and S, canopy closure, tree height, total area covered by 
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the forest, nearest distance to the forest edge and principal land use at the nearest 
forest edge (Mol-Dijkstra and Kros, 1999). These variables were used because they are 
available on a national scale at a resolution of 250 X 250 m2 and we assumed that they 
might have a significant effect on soil solution concentrations. The use of national 
data made it possible to split up the category of coniferous forest (CON), which was 
used for the model calibration, into pine forest (PIN) and spruce forest (SPR). 
Multiple linear regression was used to fit the soil solution concentrations to the 
candidate predictor variables, using the GKNSTAT statistical package (Genstat 5, 1987). 
Since the predictor variables are either quantitative (e.g. deposition) or qualitative (e.g. 
soil type), the regression equations include both quantitative and qualitative variables. 
The best regression models were obtained by means of the following procedure: (i) 
find the best model with the SKLKCT option in GKNSTAT, (ii) investigate whether non-
linearities lead to improvements, using the SPUNK option in GKNSTAT and (iii) 
investigate whether the inclusion of interactions leads to a better model. To meet the 
assumption of normally distributed regression residuals, the soil solution 
concentrations (response variables) were log-transformed (using the logL). For the 
presentation, results were transformed back to the original scale. 

The 'point maps' thus derived at a resolution of 250 x 250 m2 were aggregated 
to 5 X 5 km2 'block maps', being the spatial scale of the model predictions, by taking 
the median value within each of the 5 X 5 km2 blocks. 

Residual kriging 

The non-explained part of the regression model (i.e. the residual) consists of an 
unstructured part, which originates from measurement errors, but also of a structural 
part, which could be explained by known predictor variables, causing a spatially 
correlated residual. The systematically explained part was described using predictor 
variables, while the residuals are random and were treated stochastically. For this 
stochastic part, we used ordinary block kriging. The stochastic part was included by 
analysing the log-trans formed residuals, based on the 250 x 250 m2 map, for spatial 
relationships. Residuals were estimated by: 

hAk)=JpAk)-yUk) (i) 

where êp,,(k) denotes the residual at a point support (denoted by the subscript p) for 
the log-transformed observed concentration of constituent r, at location k (}'/,,r(k)) and 
the estimated log-trans formed concentration r for the 250 x 250 m2 grid cell in which 
location k is located {y$.Afi))- These values are still treated as points. Experimental 
semivariograms for êp,r were fitted using an exponential model. Where necessary, the 
nugget variance was adjusted manually. Subsequendy, ordinary block kriging for 5 x 5 
km2 blocks was applied to the spatially correlated residuals. Finally, the upscaled 
concentrations at the 5 x 5 km2 block support ( JB . ^ ) were calculated as: 

jBA/)=}Un+êBA/) (2) 
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where j B r( /) denotes the upscaled concentration r for 5 x 5 km2 blocks (denoted by 

the subscript B) on a log-scale derived by multiple regression only and en,r (^ the part 
of the residual that was predicted by considering spatial correlation on a 5 X 5 km2 

block scale. 
Assuming independence of both terms in Eq. (2), the predicted variances of the 

upscaled observations thus derived for all 5 x 5 km2 block support values were 
estimated as: 

tftO = <,( ')+ <**.,(') (3) 

with ô\ r(l) being the block median regression variance for the upscaled observation 

r and ô\ r{l) being the kriging variance of the predicted residuals (ên,r (/)), both for 

5 x 5 km2 blocks /and on the log-scale. 

Model calibration 

Calibration approach 

The calibration was performed on a grid-to-grid basis using a 5 x 5 km2 grid, which 
was considered representative of application on the European scale. Because 
observations were only available for forest, the calibration included only those 5 x 5 
km2 grid cells that contained at least 20% of nature conservation area, of which at 
least 50% consisted of forest. This means that the upscaled 'observations' for a 5 x 5 
km2 block, i.e. the block median values, originated from at least 40 cells (=202 X 0.2 x 
0.5) from the 250 X 250 m2 subgrid, whereas the upscaled model results originated 
from at least 3 (* 52 X 0.2 X 0.5) subgrids of 1 X 1 km2. As a result, 153 of the original 
918 blocks were used for the calibration. 

In general, two calibration methods are available for solute transport models, a 
Monte Carlo based method (cf. Hornberger et al., 1986) and a mathematically based 
method, the Bayesian approach (cf. Klepper and Hendrix, 1994). If several (say more 
than 5) independent parameters have to be calibrated, the Monte Carlo method seems 
to be rather inaccurate (cf. Scott, 1992). Therefore, we used the mathematically based 
method. 

Calibration steps 

Because several model parameters do have the same overall effect on the soil solution 
concentration, it was necessary to perform the calibration in sequential steps as 
outlined in Table 3. Furthermore, where applicable, the calibration criterion was also 
adapted per calibration step, as outlined below. 
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Table 3 Overview of the consecutive calibration steps 

Calibration Parameters 
step 

Criterion Plots included Process 

Nitrogen parameters 
1 km 

2 i N H 3 # J ( ) x 2 ) 

3 fr„ 
4 jfä. 
Aluminium parameters 

5 J S 0 4 

6 fid 

7 KÀL-

8 K.\\ts K\ \rx 

N0 3 +NI i 4 » 

N0 3 +N[ i 4 ' ) 

NOj+pII+AI 
N0 3 +pI I+Al 

so4 

BC2 

Ai+pi r 

A l+p I I+N0 3 

Only dry sandy 
soils 
Only dry sandy 
soils 
AU grid cells 
All grid cells 

All grid cells 

AU grid ceUs 

AU grid ceUs 

All grid cells 

Mineralisation (internal N 
input) 
Forest filtering of NI I3 and 
N O , (external N input) 
Nitrification 
Dcnitrification 

forest filtering of S( >2 
(external S input) 
Forest filtering of BC 
(external BC input) 
Dissolution of secondary Al 
precipitates 
Cation exchange 

') Since no upscaled NI f4 concentrations were available, we used the average NI I4 concentration from 
the individual plots, i.e. 0.1 molc m

3 

2) Since the simultaneous calibration of both filtering factors resulted in identification problems, the 
filtering factors were first calibrated individually. The resulting optimal values were then used as the 
initial values for the simultaneous calibration of both filtering factors. 

We first considered only the parameters affecting the N input, i.e. the forest 
filtering factors for NO x and SOx ($NOx, _//SOx) and the mineralisation rate constant 
(&»,). These parameters were calibrated using the total N concentration (NO3 + NH4) 
at the bottom of the root zone of forest locations on dry sandy soils only, which 
excludes the possibility of substantial N loss by denitrification. Apart from the growth 
parameters and N contents in the various biomass compartments, which determine 
the loss of N by uptake, and denitrification from this calibration step, no other 
parameters affect the N leaching flux. Next, the nitrification parameter (f„!) and the 
denitrification parameter ( ,̂) were calibrated using the entire data set. Because 
nitrification leads to the formation and denitrification to the consumption of NO3 and 
II, which in turn results in dissolution or precipitation of Al, we used NO3, pi I and Al 
as criteria. 

From the parameters that indirectly influence the Al budget (viz through the 
charge balance), those that direcdy influence the base cation concentrations (i.e. the 
dry deposition factor, f,u and the weathering rates, BC2„,) were calibrated first, 
followed by the forest filtering factor for SO* (fßÖ2)- This ensured that the base 
cation and sulphur budgets were optimally simulated before the parameters that 
direcdy influence the Al concentration (KAU, iCAL) were adjusted. 

Calibration criterion and optimisation algorithm 

The model parameters considered were calibrated simultaneously for each calibration 
step. The squared difference between the model outputs considered and the 
corresponding (upscaled) observations for all 5 x 5 km2 grid cells was minimised. 
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Candidate parameter values were selected from a priori specified uncertainty ranges. 
Unlike the regression analysis and kriging, the calibration was performed with the 
original data. The calibration criterion was based on the non-weighted summed square 
of the differences. 

The model to be calibrated can be written as: 

i U O = ƒ(/,<?) (4) 

where J"M is the original (non log-transformed) model output for concentration 
constituent r (r = 1, . .. ,1) for a 5 X 5 km2 block / ( /=1 , . .. , J) and 6 denotes thep-
dimensional parameter vector reflecting the parameter constraints specified in Table 1. 
The model parameters depend on either the vegetation type or the soil type. The 
summed squared difference between model and data over all concentration 
constituents for grid cell /was expressed as: 

C(/;ö) = | ; ( , r ( / ; ö ) ) 2 (5) 

where 

^ 0 ) = ^ , r ( / ) - i ; u , r ( / ; 0 ) (6) 

is the difference between the back-trans formed upscalcd observation of component r 
at block l,j"n,r (I) and the associated upscaled model prediction j°\i,r (I;ff) for the original 
scale. Eventually, the various misfits per grid cell C(/;6) were combined into one 
overall criterion by summing over N blocks: 

C(0) = £ c ( / ; 0 ) (7) 
/=i 

For each calibration step (cf. Table 3) an optimal parameter vector 6 was 
determined by minimising the overall misfit function: 

min o[C(0)] (8) 

The optimisation was carried out with a constraint minimisation function using 
the Gauss-Levenberg-Marquardt algorithm. Physical boundaries were used for the 
constraints. The optimisation was carried by using a model-independent parameter 
optimiser PEST (Doherty et al, 1994). The optimisation delivered the „best linear 
unbiased' estimator of the set of true model parameters. Therefore, also the 95% 
confidence limits of the optimised parameters was calculated from the covariance 
matrix (cf. Doherty et al, 1994). 
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Model error quantification 

The benefits of the model calibration procedure were assessed by quantifying the 
model error for both the nominal and the calibrated model run. According to 
Heuvelink and Pebesma (1999), the only way to quantify the model error is through a 
model validation, achieved by comparing model results with independent 
observations. Currently, however, no independent data set on a national scale is 
available. Therefore, it was decided to 'validate' the model by quantifying the model 
error before and after calibration. As with calibration, the model validation was 
performed at a block support, taking into account the uncertainty due to the upscaling 
of the observations. We used a procedure that takes this into account (see Heuvelink 
and Pebesma (1999). 

Consider the difference between the model prediction at the block support jM,r 
and the observation data (i.e. the validation data at the block support on the log-scale), 

Jay-

yB,r=yM,r-yB,r (9) 

This difference does not yield the real model error, because it also includes the 
estimation error m jay. 

Jn,r-jB,r 00) 

wherejß,r denotes the true block support value. The squared difference of Eq. (10) can 
be simply derived from the model outputs and observation data at the block support 
(cf. Eq. 9). It can be decomposed as follows: 

( i W - h,,)2 = iiyB,r - y us) - (ys,r - yB,r)f 

= (yB,r -yM,r)2 +(yBlr -yB,r)2 -2(yB,r -yM,r)(yB,r -yB,r) 

In Eq. (11) (yB,r -JMJ)2 represents the true but unknown model error at a block support 
and (jn,r -J'B,!)2 represents the estimation error of the upscaled observations, both on 
the log-scale. 

Heuvelink and Pebesma (1999) describe the situation in which the cross-
product in Eq. (11) is zero. In such a situation it can be seen from Eq. (11) that 
evaluating the model error as (}\\i,rjB,r) results in an overestimation. In fact, the model 
error should be judged by the term (y.u.rj'B,!), which of course gives smaller values. In 
our situation, however, the cross-product in Eq. (11) was not zero. The upscaled 
observations were based on multiple regression relations using ancillary information 
such as vegetation type, soil type and deposition (see section 3.3.3), whereas the model 
input data for the SMART2 application was partly based on the same ancillary 
information (see section 2.1). This means that the errors in the ancillary information 
yielded artificial similarities between the aggregated validation data and the model 
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results, so the cross-product in Eq. (11) between (yn,r - JW) and (jn,r - ju,!) is not zero 
but positive. Consequently, we have to evaluate Eq. (11) with a non-zero cross-term. 

The estimation error of the upscaled observations was estimated by Eq. (3), and 
consisted of the block median estimation variance of the multiple linear regression 
model and the kriging variance. Since the squared observable differences, (yM,r -ju,)2, 
were only available in an average sense (we only had one value per block), it was 
impossible to estimate the model error for individual blocks. However, the model 
error could be estimated as an average from the mean square error of prediction 
(MSEP) for component r. 

MSEP(r) = ̂ £ [ }Mr(J) - >B, r(/)]
2 (12) 

where / is the grid cell indicator and N the total number of grid cells. Using Eq. (3) 
and (12), and averaging over all 5 X 5 km2 blocks, Eq. (11) can be written as: 

MSEP(r) = ä2
AUr + älr-2pMnäMräB_r _ (13) 

with GM r being the average model error for output r, <TBr the estimation error of 

the upscaled observations averaged over all grid cells and pMD the correlation 

coefficient between the model error at the block support (yn,r -JM,!) and the estimation 

error at the block support based on observation data (jm,r -JW)-
Because it is not easy to estimate the correlation coefficient, three extremes 

were evaluated, viz, - 1 , 0 and 1 Although it was obvious (see above) that the 
correlation coefficient was positive, we also included - 1 , for the sake of completeness. 
We assumed that p M D was independent of the model output considered. Given a 
known correlation coefficient, the only sensible solution to Eq. (13) is: 

a I W J 

2AV,D<V + ftplnKr - 4 ( < - MSEPjr)) 
(14) 

The average model error {0%
M r) can be divided into a structural part (<7^tl.sr) 

and a part that originates from input uncertainty {ÔMHIr ): 

^M,r=^2AŒS,r+^M,U,r (15) 

Given the model error due to input error, which has been quantified by Kros et 
al. (1999), and the model error derived from Eq. (14), the structural part of the model 
error can be quantified by: 
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aMVJs = alm,r - alm,r C16) 

Note, however, that GMÏL% r is only defined for values > 0. The contribution of 

the input error was quantified by performing Monte Carlo simulations. The sources of 
uncertainty considered were (i) uncertainty/impurity in soil maps and vegetation maps 
(categorical data) and (ii) uncertainty in soil and vegetation related parameters 
(continuous data). The uncertainty in categorical data was quantified by a comparison 
between the cruder European Union soil and vegetation maps and the more detailed 
maps from the Netherlands. The uncertainty in the continuous data was derived from 
various European databases and the literature. The resulting uncertainty was expressed 
as variances of the block median Al and NO3 concentrations for 5 x 5 km2 blocks in 
the year 1995, i.e. the year for which the model error was quantified (cf. Kros et ai, 
1999). Since the input error was quantified for the non-calibrated model, we were only 
able to quantify the model structure error for the nominal model run. 

3.3.4 Results and discussion 

Upscaled observed soil solution concentrations 

Regression models 

Stepwise selection process showed that significant predictive variables for the logc 

NO3 concentration included (i) soil type (i.e. SP, SR, LN, PN, CN), (ii) tree species 
(i.e. SPR, PIN, DEC), (iii) deposition of NHX (NHxlieP), (iv) mean spring water table 
depth (MSW), (v) area of contiguous forest (area) and (vi) tree height. The inclusion of 
non-linear relationships (for MSW and area) resulted in a loss of significance for tree 
height. No significant interactions were discovered. Finally, the following multiple 
regression equation was derived for the NO3 concentration at depths of 60-100 cm 
(cf. Mol-Dijkstra and Kros, 1999): 

InNO, = soi/(i) + veg(j) + 0.33NH:<.ljrp -5.5-0.025 A , n r -l.24areanM - 0 . 1 (17) 

where NO3 is the NO3 concentration in mole m 3 , soil(i) and veg(j) are constants that 
differ per soil type / and vegetation type j , NHX dtp is the ammonium deposition in 
kmolc ha ' a1, MSW is the mean spring water table depth in m below the soil surface 
and area is the area of connected forest in ha. The percentage of variance accounted 
for was 48%. There was a positive relation between NHS dtp and the NO3 
concentration. NHX dtp affects the NO3 concentration through nitrification, which is 
generally complete in (dry) forest soils (cf. Tietema, 1992). Remarkably, there was no 
significant contribution of the NO* deposition to the NO3 concentration. This was 
most probably caused by the fact that NO x deposition in the Netherlands is 
considerably lower than NHX deposition, with average values of about 750 and 2000 
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mole ha ' a ', respectively, for the period 1990-1995 (Bleeker and Erisman, 1996). The 
relationship with MSW originated from a lower denitrification flux at deeper water 
table depths. MSW < 1 m yields higher negative values for the whole term, whereas 
MSW > 1 m yields lower negative values. The negative relation with area of 
contiguous forest was a result of the lower rate of forest filtering of atmospheric 
deposition in larger contiguous forest areas. A larger contiguous forest area means 
shorter forest edges, resulting in a smaller roughness length, which in turn yields a 
lower rate of forest filtering (cf. Draayers et al., 1988). The estimated constants for 
soil(J) ranged from -1.2 for loess soils to 0.8 for rich sandy soils (SR). The constants 
for vegfj) ranged from 0 for deciduous to 1.4 for spruce forest. 

The significant main effects for the Al concentration at depths of 60-100 cm 
were found to be soil type, tree species and mean spring water table {MSW). Although 
deposition was not significant as a main effect, the interaction between soil type and 
NU« deposition was significant. Since some soil types showed a negative relationship 
with deposition, which could not be explained, the relationship with NIIX deposition 
was not included in the regression equation. Finally, the following multiple regression 
equation was derived for Al (cf. Mol-Dijkstra and Kros, 1999): 

In Al^ = soil{i) + veg{j) - 2.0 • 0.1'VOT' - 1 . 3 (18) 

where soil(i) and veg(j) are constants that differ per soil type / and vegetation typey' and 
MSW is the mean spring water table. The percentage of variance accounted for was 
50%. The estimated constants for soil(i) ranged from -2.6 for clay soils to 0.2 for rich 
sandy soils (SR). The constants for veg(J) ranged from 0 for deciduous to 1.5 for spruce 
forest. The Al concentration was best explained by soil type and vegetation type, and 
decreased with soil type in the following order: SP > SR > LN > PN > CN, which 
coincides with an increase in weathering rate. Furthermore, the Al concentration 
increased with the vegetation structure type, in the following order: SPR > PIN > 
DEC, which coincides with a decrease in the input of (acid) atmospheric deposition. 
The negative relation with the MSW stemmed from higher pi I and base cation 
concentrations under wet circumstances, which means low Al concentrations due to a 
lower solubility. It was remarkable that no significant contribution of the atmospheric 
deposition was found. I Iowever, this effect was partly included in the vegetation type, 
since pine and spruce trees have higher filtering capacities, resulting in a higher input 
(throughfall) flux. Furthermore, it is understandable that the effect of deposition was 
overruled by the effect of soil type. The soil types included ranged from clay soil 
(CN), with negligible Al concentrations, to poor sandy soils (SP) with extremely high 
Al concentrations. 

Observation-based Maps 

The regression equations 17 and 18 were used to calculate Al and NO3 concentrations 
for 250 X 250 m2 grid cells followed by aggregation to 5 X 5 km2 blocks (Figure 2). 
Figure 2 also shows the map that was adjusted with ordinary block-kriged residuals for 
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5 x 5 km2 blocks. Only those cells are presented that included more than 20% of 
(semi) natural vegetation, of which more than 50% consisted of forest. The map of 
NO3 concentrations clearly shows higher concentrations in the southern and to a 
lesser extent in the central and eastern part of the country, which were the areas with 
high nitrogen deposition rates. Lower concentrations were found in the northern and 
central parts. The Al concentrations, however, were more evenly spread over the 
country. This was caused by the absence of the deposition variable from the 
regression equation (cf. Eq. 18). The addition of the kriged residuals yielded a much 
more dynamic image. This effect was strongest in the northern part of the country. 

Since the effect of kriging cannot be quantified in terms of the percentage of 
variance accounted for, the consequences of the addition of the block-kriged residuals 
is illustrated by the Normalised Mean Squared Error of Prediction (NMSEP) for all grid 
cells (Table 4): 

NMSEP(r) = & = (19) 
J p,r 

where ju.Al) are the intermediate upscaled observation for either a 250 x 250 m2 or 5 x 
5 km2 block / determined either with regression analysis or with regression analysis 
combined with kriging. jp.JJ) represents the observed point-concentration of 
component r within block /, N the number of available observations and J r the 

mean of observations r on a point scale. Normalisation of the MSEP by the mean of 
the observations yields a dimensionless measure, which makes it possible to compare 
it across different model outputs. 

The resulting NMSEP value was calculated for four situations (Table 4): 
1. the original regression for a 250 x 250 m2 grid using the complete data set of 241 

point observations (cf. section 3.1) (Regression 250 x 250 m2 with data); 
2. the original regression for a 250 x 250 m2 grid using only those 250 x 250 m2 

cells that were situated within 5 x 5 km2 blocks with more than 20% (semi) 
natural vegetation, of which more than 50% consisted of forest. This subset 
included about 8000 grid cells sized 250 x 250 m2; 

3. upscaled regression results for 5 x 5 km2 blocks containing more than 20% (semi) 
natural vegetation, of which more than 50% consisted of forest, and the 
observation points situated within these blocks (Regression 5 x 5 km2); 

4. like (iii) but with the addition of the block-kriged residuals (Regression + kriging 
5 X 5 km2). 
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Regression 

Al (moL.m3) 

5Ç ^ V 

Regression + Kriging 

-
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N03 (molc.rrr
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0.02 - 0 4 

0 4 - 0 8 
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• T cF' j 'i 

Figure 2 Maps of estimated upscaled observations of soil solution concentrations of Al 
(top) and NO3 (bottom) in the subsoil (60-100 cm) for 5 x 5 km : block median values, 
based on regression analysis alone (left) and regression analysis combined with block-
kriged residuals (right) 
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Table 4 NMSLP values for all 5 x 5 km2 grid cells for the Al and NO3 
concentrations predicted by regression analysis and regression analysis 
combined with block-kriging. The NMSLP at a 250 x 250 m2 point support 
is also given 

l.cvcl of upscaling N Al N'( h 
Median1' Median1' XMSI-.P R:«i, Median') Median" XMShP R:«j, 
Re^r. Obs. Regr. Obs. 

10.11 

10.22 

7.35 

0.50 

-

_ 

0.24 

0.27 

0.40 

0.40 

0.24 

0.28 

0.28 

7.13 

7.74 

5.63 

. (mole m-3) (<Jf=7)a (molc m ') (d f=9)3 

Regression (only cells with obs.) 241 0.20 0.20 10.11 0.50 0.24 0.24 7.13 0.48 
250 x 250 m2, point support 
Regression (all cells) 7996 0.48 
250 x 250m2, point support 
Regression (only cells with obs.) 85 0.51 0.31 
5 x 5km2, block support 
Regression+Kriging (only cells 85 0.43 0.31 
with obs.) 
5 x 5km2, block support 
'' Back-transformed average of the logt.-transformed mean 
3 Degrees of freedom of the regression, i.e. number of predictive variables. Note, however, that soi/(T) 

and vegj) in IAJS. 17 and 18 refer to categorical variables consisting of 5 and 2 categories respectively 
(cf. section 4.1) 

Inspection of the NMSEP (Table 4) showed that the 'regression + kriging' map 
was a better estimate than the map based on regression analysis alone, with the NAISEP 
decreasing by 28% for both Al and NO3. It might be concluded from the NMSEP that 
the estimation of the NOi concentration was better than that of the Al concentration. 
This was, however, not reflected in the percentage of variance accounted for (R2

ad,). 
The R2ad, values were almost equal for Al and NO3: 50% and 48% respectively (see 
section 4.1). This was because (i) the NO3 regression equations include more degrees 
of freedom (i.e. the number of predictive variables + 1) and (ii) the variances of the Al 
observations were larger. Both aspects yielded a reduced R2adj. If we limit ourselves to 
those grid cells that contain more than 20% (semi) natural vegetation, of which more 
than 50% consists of forest, we find higher concentrations for both Al and NO-). 

The maps derived by a combination of regression analysis and block-kriging of 
the residuals were regarded as the maps with upscaled observations that can be used 
for either model calibration or model validation. 

The effect of upscaling on the width of the distribution is illustrated by 
cumulative distribution functions (CDF, Figure 3). Upscaling from point values to 
block median values clearly results in a narrower distribution. The first step of the 
upscaling process, i.e. from the original observation points to values for all 250 x 250 
m2 cells containing (semi) natural vegetation, considerably narrows the distribution. 
The reason was that the regression analysis was performed with averaged ancillary 
information (i.e. on soil, land cover and deposition, cf. section 3.1) instead of site-
specific information. Averaged information was used, since we wanted to make 
predictions on a national scale, and no site-specific information u^as available for the 
country as a whole. Yet the resolution of the available ancillary information was still 
wide. The resolution was lowest for atmospheric deposition: l x l km2, whereas that 
for soil types was 125 x 125 m2 (scale 1:50 000). The use of averaged information 

209 



I l l Evaluation on a regional scale 

combined with a multiple regression equation resulted in a smoothing of extreme 
values or outliers due to e.g. measurement errors or location-specific circumstances, 
such as a farm being situated nearby, preferential water transport or upward seepage. 
The second step of the upscaling process, from 250 x 250 m2 to 5 x 5 km2, further 
narrowed the distribution, though the reduction was less than the first step. The 
narrowing was simply caused by averaging out the differences. Note that the CDF 
value thus derived for NO3 is much smoother than the CDF for AI. This was due to 
the fact that the regression equation for Al (Eq. 18) was explained purely by class 
predictor variables, viz soil type and vegetation type, and the continuous predictor 
variable MSW, for which only 5 values were used, whereas NO3 (Eq. 17) was also 
explained by the continuous predictor variables NH3 deposition and area. The final 
step, i.e. the addition of the kriged residuals, resulted in a smoother curve and more 
variability among predicted values, an effect which was most pronounced for Al. 

Cumulative frequency (%) 
100 r 

Measured 

Upscaled data: 

250 x 250m, regression 

5 x 5km, regression 

5 x 5km, regression + kriging 

1 1 I 

0 1 2 3 4 0 1 2 3 4 
Al (molc nr3) N03 (molc rrr

3) 

Figure 3 Cumulative frequency distribution of Al concentration (left) and NO3 
concentration (right) for upscaled values for 5 x 5 km2 blocks with kriging, upscaled 
values for 5 x 5 km2 blocks without kriging, regression results for 250 x 250 m2 grid 
points and c 250 point measurements in forest stands 

Model calibration 

Effect of model calibration on predicted NO3 and Al concentrations 

Both the nominal and the calibrated parameter values were used for the simulation of 
maps with SMART2 (Figure 4). A comparison between the nominal and calibrated 
maps showed that the simulated concentrations for both NO3 and Al were 
considerably lower when using calibrated model parameters. Model simulations with 
the nominal parameter values clearly overestimate the observed Al and NO3 
concentrations (compare Figure 2 and Figure 4). 
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Figure 4 Maps of simulated soil solution concentrations of Al (top) and NO3 (bottom) 
in the subsoil (60-100 cm) for 5 x 5 km2 block median values, based on SMART2 
simulations using nominal parameter values (left) and calibrated parameters (right) 
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T o evaluate the benefits of the calibration for the map as a whole, calibration 
results were also compared with the upscaled observations using cumulative 
distribution functions (CDF) (Figure 5). The upscaled observations were presented as 
a 9 5 % prediction interval. Assuming that the log-trans formed observations were 
normally distributed, approximate 9 5 % prediction intervals were calculated by: 

[iB,r(0-2<v(/), .)„,,.(/)+ 2<r,ir(/)] (20) 

where j B ,. denotes the upscaled log-transformed concentration r for 5 x 5 km 2 block 

/ (Eq. 2) and <TR r (?) the standard error of the upscaled concentrations for 5 x 5 km2 

block /(i.e. the standard error due to regression and kriging of the residuals, cf. Eq. 3). 
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Figure 5 Cumulative frequency distribution of Al concentration (left) and NOj 
concentration (right) for the upscaled observations; SMARI'2 results with nominal 
parameters and calibrated parameters for 5 x 5 km2 block median values, together with 
95% confidence intervals 

The resulting prediction intervals appeared to be wide for both model outputs 
(Figure 5), although the interval for NCh was much wider than that for Al. 

The benefits of the calibration were clearly illustrated by the shift in the C D F of 
the nominal model run towards the C D F of the calibrated model run. Note , however, 
that a comparison on the basis of CDFs may result in too optimistic a judgement, 
because it means that the relation with geographical location was abandoned. The 
C D F of the model results corresponded quite well with the CDF' of the upscaled 
observations for both model outputs, whereas the nominal model results were clearly 
underestimated for both outputs. It was remarkable, however, that the nominal model 
results for both Al and N O i were almost completely covered by the 9 5 % confidence 
interval of the upscaled observations. 

Effect o f calibration steps 

The effect of the consecutive calibration steps was inspected by calculating the mean 

square error of prediction (MSEP) (Table 5). The nominal MSEP for all three inspected 
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model outputs appeared to be comparable, though it must be noted that the values 
were not normalised by the mean, which makes comparisons between the three 
inspected model outputs precarious. The first calibration step of the mineralisation 
rate constant (kmî), considerably improved of the NO3 performance, decreasing the 
MSEP by 50%. The calibrated median values for km- were clearly lower than the 
nominal values (Table 6), which resulted in lower mineralisation fluxes. The 
calibration also profoundly narrowed the confidence interval for km. The calibration 
of the filtering factors (#NIl3#40 x ) improved the MSEP only slightly (Table 5). The 
slight improvement of step 2 also resulted in a minor adaptation of the median 
parameter values (Table 6). Only the calibrated median value for deciduous forest 
ended up somewhat below the nominal values. Yet the 95% confidence interval for 
_$NÜ3 (CON) was clearly compressed, while the confidence intervals for deciduous 
forest were expanded. This last result was most likely due to a smaller number of 5 x 
5 km2 blocks with deciduous forest (24) than with coniferous forest (129). Although 
the Al concentration was not considered during the first two calibration steps, its 
performance clearly improved. This was due to an overestimation of both Al and NO3 
during the nominal run (cf. Figure 2 and Figure 4) and the positive relationship 
between NO3 and Al. Higher inputs of NO3 (either by mineralisation or by 
throughfall) yield a higher acid load and hence higher Al concentrations. At the same 
time the performance of the model for the pH slighdy deteriorated. 

Table 5 Overview of the performance of the consecutive calibration steps 

Calibration Step Parameter 

0 Nominal 

1 fcm 

2 ffiiUißiO* 
3 fr« 
4 fr* 

5 #;o4 
6 fää 
7 K\L 
8 KAL KIL-

Mean 
Al 
0.17 
0.13 
0.12 
0.08 
0.08 
0.07 
0.07 
0.07 
0.05 

squared error of prediction') 
NO j pH 
0.18 0.16 
0.09 0.17 
0.08 0.17 
0.06 0.19 
0.06 0.19 
0.06 0.18 
0.06 0.18 
0.06 0.17 
0.08 0.02 

Criterion 

NO3 + NII4 
N O j + NIL, 
AI, NO j , pH 
Al, NOj , pi I 
SO4 
BC2 

Al, pi I 
• A l ,NO, , p I I 

') Based on concentrations expressed in mole rrr1 

The calibration of the nitrification fraction fr„i profoundly improved the 
prediction of both Al (33% reduction of the MSEP) and NO3 (25% reduction of the 
MSEP), whereas that of the pH deteriorated further. The calibration oîfr„i gave lower 
median values oîfr„i for sandy soils (SP and SR) and clay soils (CN) (Table 7). Those 
for peat (PN) and loess (LN) did not changed, because the lack of data on these soil 
types caused identification problems. Only 9 blocks of si2e 5 x 5 km2 included PN 
and LN, whereas there were 144 blocks for SP and SR. This also explains why the 
confidence interval, was narrowed only for SP and SR. Although ƒ•„, direcdy influences 
the NO3 concentration, its effect on the Al concentration (in terms of MSEP values) 
was much large than on the NO3 concentration, which appeared to be negligible. 
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The calibration of the denitrification fraction had no effect. This was also due 
to identification problems, caused by a lack of information on the moisture condition. 
Adjusting the filtering factor for SO2 (^SCh) improved both the Al concentration and 
the pi I. Remarkably, the calibration of jßOz resulted in a median value for deciduous 
forest (DEC) that was considerably higher than for coniferous forest (CON) (Table 
6). This was a rather unexpected result, because the filtering capacity of spruce forest 
is higher than that of deciduous forest (De Vries et ai, 1995b). The anomaly was most 
probably induced by the fact that the number of blocks with deciduous forest was 
much smaller than the number of blocks with coniferous forest. 

Table 6 Nominal (Nom.) and calibrated (Cal.) 95% confidence intervals 
and median values of the vegetation-related parameters 

Tree 95% conf. 
species interval 

CON P02.51) 
Median 
P97.52) 

DEC P02.5 
Median 
P97.5 

[a'j 
Nom. 
0.02 
0.05 
0.10 

0.02 
0.05 
0.10 

Cal. 
0.02 
0.03 
0.03 

0.01 
0.04 
0.06 

H 
Nom. 
1.0 
1.3 
1.8 

0.8 
1.1 
1.4 

Cal. 
1.0 
1.3 
1.6 

0.9 
1.0 
1.9 

_#NOx 

M 
Nom. 
0.6 
0.9 
1.2 

0.5 
0.7 
1.0 

Cal. 
0.6 
1.0 
1.3 

•-0.5 
0.6 
1.8 

j s o 2 

(-1 
Nom. 
1.0 
1.5 
1.8 

0.8 
1.2 
1.4 

Cal. 
1.4 
1.5 
1.6 

1.7 
2.0 
2.4 

fiid 

H 
Nom. 
1.5 
2.8 
3.5 

1.5 
2.0 
2.5 

Cal. 
2.9 
3.5 
4.1 

2.0 
3.4 
4.7 

') P02.5 - 2.5 percentile, i.e. lower side of the 95% confidence interval 
2) P97.5 = 97.5 percentile, i.e. upper side of the 95% confidence interval 

The use of the dry deposition factor (/̂ /) did not improve the performance of 
Al, NO3 and pi I, although its calibration yielded higher median parameter values for 
both DEC and CON (Table 6). This step resulted in increased BC2 and BC 
concentrations, which were obviously underestimated by the nominal values. As with 
the other filtering factors, the confidence interval was only narrowed for coniferous 
forest. 

The calibration of the dissolution constant of secondary Al precipitates (KA10X) 
resulted in a slight improvement of the pi I performance. The median values for SP, 
SR and LN were reduced, whereas the values for CN and PN remained unchanged 
(Table 7). Finally, the calibration of the exchange constants (KA\ex and Kllex) resulted 
in a considerable performance improvement of the pH and to a lesser extent of the Al 
concentration, whereas the performance of the NO3 concentration worsened. The 
latter must be attributed to feedbacks between pfl and the N transformation 
processes. The calibration was able to reduce the width of the confidence interval of 
KA\„X considerably for all soil types, except for LN. Furthermore, slight improvements 
were found for the exchange constants KAlex and Klitx for the soil types SR, CN and 
PN. 

In conclusion, the calibration clearly improved of the model performance and 
reduced uncertainty in the model input data. The model performance for the Al and 
NO3 concentrations was improved mostly by the calibration of the 'N related' process 
parameters, i.e. mineralisation (k„i) and the nitrification (J„î). The improvement due to 
the calibration of the 'Al related' parameters was clearly less successful. Of the 'Al-
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related' process parameters, it were especially the exchange constants which improved 
the model performance. 

Table 7 Nominal (Nom.) and calibrated (Cal.) 95% confidence intervals 
and median values of the soil-related parameters 

Soil 
type 

SI' 

SR 

CN 

I.N 

PN 

95% conf. 
interval 

P02.5') 
Median 
P97.52) 

P02.5 
Median 
P97.5 

P02.5 
Median 
P97.5 

P02.5 
Median 
P97.5 

P02.5 

Median 
P97.5 

1-1 
Nom. 
0.8 
1.0 
1.0 

0.8 
1.0 
1.0 

0.6 
1.0 
1.0 

0.7 
1.0 
1.0 

0.5 

1.0 
1.0 

Cal. 
0.6 
0.7 
0.8 

0.6 
0.7 
0.8 

0.6 
0.8 
1.1 

-2.0 
1.0 
4.0 

-oo 

1.0 
oo 

u 
H 
Nom. 0.0 
0.9 
1.0 

0.0 
0.9 
1.0 

0.5 
1.0 
1.0 

0.6 
0.9 
1.0 

0.0 

1.0 
1.0 

Cal. 
n.o.5) 
0.9 
n.o. 

n.o. 
0.9 
n.o. 

n.o. 
1.0 
n.o. 

n.o. 
0.9 
n.o. 

n.o. 

1.0 
n.o. 

|log(mol 
Norn. 
7.6 
8.2 
8.7 

6.8 
8.2 
8.0 

8.5 
9.4 
10.2 

7.1 
8.3 
9.0 

4.9 

6.5 
9.2 

Cal. 
7.6 
7.8 
8.1 

7.8 
8.0 
8.3 

8.7 
9.4 
10.1 

5.8 
7.5 
9.2 

5.6 

6.5 
7.1 

AA1,V 

|Ioj»(moI 
Nom. 
-0.3 
0.8 
1.7 

0.2 
0.3 
1.0 

-4.3 
-3.4 
-2.9 

-1.7 
0.6 
1.5 

-4.0 

-2.1 
-1.0 

Cal. 
-1.7 
-0.1 
1.5 

-0.2 
0.1 
0.3 

-4.9 
-3.4 
-3.0 

-4.6 
-0.4 
3.9 

-2.6 

-2.1 
-1.7 

Al l« 
[log(mol 
Nom. 
3.6 
3.9 
4.5 

3.7 
3.9 
4.3 

3.8 
6.7 
9.1 

2.8 
4.2 
7.1 

2.1 

3.5 
5.7 

• • I ) | 

Cal. 
-5.7 
3.7 
13.2 

-0.1 
1.7 
3.5 

2.2 
2.4 
2.8 

-9.6 
3.8 
17.2 

3.1 

3.5 
3.9 

') P02.5 = 2.5 percentile, i.e. lower side of the 95% confidence interval 
2) P97.5 = 2.5 percentile, i.e. upper side of the 95% confidence interval 
3) n.o. = not optimised, due to identification problems 

Of the vegetation-related parameters, narrowed confidence intervals and the 
resulting reduction in the uncertainty level of the model input were found especially 
for k,„i and the filtering factors in coniferous forests, except for j^NOx. For deciduous 
forest, however, it was only feasible to reduce the level of input uncertainty for kmi and 

The calibration resulted in a reduction of the uncertainty of most soil-related 
input data. This reduction was, however, limited to the SP and SR soil types. As was 
the case for the vegetation-related parameters, the uncertainty in soil-related 
parameters for CN, LN and PN was hardly improved, due to data limitations. Finally, 
our data set did not allow us to reduce the uncertainty of the denitrification fraction 

Model error quantification 

Using the methodology described in section 3.3, the model was 'validated' on a block 
scale for 5 X 5 km2 blocks. This was done by quantifying the model error for both the 
nominal model results and the results of the calibrated model. Because the input error 
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was only quantified for the nominal model (cf. section 3.3; Kros et al., 1999), the 
partitioning of the model error into a structural part (a2MHs) and an input part (O2MHI) 

was only possible for the nominal model run. The model errors thus quantified for Al 
and NO3 are presented in Table 8. 

Tab le 8 Mode l e r r o r (O 2ME) and r e l a t ive c o n t r i b u t i o n of t he mode l 
s t r u c t u r e e r r o r (MS) to t he mode l e r r o r for t h r ee c o r r e l a t i on coe f f i c i en t s 
of t he c r o s s - t e r m s (cf. Eq . 13) for the b lock med ian Al and NO3 
c o n c e n t r a t i o n for 5 x 5 km 2 b l ocks for d i f f e r en t c a t ego r i e s o f v ege t a t i on 
and soil types 

Constituent Category 

Al 

NO3 

CON 
DEC 
SP 
SR 
CN 
LN 
PN 
Over all 

CON 
DEC 
SP 
SR 
CN 
LN 
PN 

Nominal 
p = 0 
o2«;;1' 
0.7 (1.0) 
0.6 (0.9) 
0.2 (0.5) 
1.1 (1.4) 
- 3 ) 

0.3 (0.6) 
-3) 

0.7 (1.0) 

2.3 (3.0) 
2.9 (4.1) 
3.3 (5.1) 
1.9(2.4) 
1.2(1.5) 
3.0 (4.4) 
-3) 

MS (%) 
<02) 
<02> 
<02) 
<02) 
-
<02) 
-
<02> 

<02) 
<02) 
24 
<02) 
<02> 
43 
-

P = l 
oW> 
3.4 (5.4) 
3.0 (4.3) 
2.5 (3.3) 
4.0 (7.3) 
2.0 (2.6) 
2.7 (3.7) 
-
3.3 (5.1) 

5.4 (14.4) 
5.9 (19.1) 
6.6 (27.1) 
4.7 (10.4) 
3.8 ( 6.6) 
6.4 (24.5) 
-

MS (%) 
49 
44 
41 
53 
19 
15 
-
48 

45 
52 
63 
30 
32 
73 
-

Calibrated 
p = 0 
ohirP 
0.02 (0.14) 
0.13 (037) 
-3) 

0.2 (0.51) 
-
0.04 (0.19) 
-
0.04 (0.20) 

-23 

-
-
-
0.05 (0.23) 
-
-

p = l 
02Mli» 
2.1 (2.7) 
2.2 (2.8) 
1.6(2.0) 
2.5 (3.3) 
2.0 (2.5) 
2.2 (2.9) 
-
2.1 (2.7) 

1.3(1.6) 
1.6 (2.0) 
1.5(1.9) 
1.2(1.5) 
1.9 (2.4) 
1.0(1.3) 
-

Over all 2.4 (3.2) <02) 5.4 (14.8) 46 1-40-7) 
') Values in brackets denote the coefficients of variation (CV) of the back-transformed data derived 

from the variance of the log-transformed data by: c.V = Se'r -1 • Concentration are given in mole n r 3 

on the original scale. 
2) <0 means input error (a2MEi) > model error (O2MB), resulting in a negative value for the model 

structure error (cf. Fiq. 16) 
3) means no real solution for Eq. 14, discriminant < 0 

It is obvious that the correlation coefficient in Eq. (13) must be positive. This 
means that a realistic estimate of the average model error lies between the results for Q 
= 0 and o = 1 (cf. section 3.3). Thus, the average model error for Al for the nominal 
model run lies between 0.7 and 3.3, whereas for NO3 the average model error was 
considerably higher, between 2.4 and 5.4. The larger average model error for NO3 is 
supported by Figure 5, where the CDF of the nominal SMART2 run deviates more 
from the CDF for upscaled data than was the case for Al. Model calibration obviously 
lowered the model error for both Al and NO3 concentrations. 

Inspection of the model error per soil and vegetation category showed that the 
greatest model error for Al occurred for rich sandy soils (SR), whereas the greatest 
model error for NO3 was found for poor sandy soils (SP). It was for these categories 
that the calibration produced the greatest gain, confirming the findings reported in 
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section 4.2. Again, this was caused by the fact that more data were available for SP 
and SR soils. 

The differences in model error between the two forest types were small for 
both compounds, although Al showed a slightly smaller error for DEC, whereas NO3 
showed a slightly smaller error for CON. The differences for the five soil types, 
however, were larger. The model error was relatively small for CN (both for Al and 
NO3) and for LN (for Al). Relatively large model errors were found for SR (Al), LN 
and SP (NO3). 

The subdivision of the model error into an input error part and a structural 
error part should ideally provide useful information on weak and strong aspects of the 
model. A small structural part means that a large part of the model error is absorbed 
by the input error or vice versa. A large structural error means that efforts should 
concentrate on improving the process formulation of the model, whereas a large input 
error indicates that the emphasis should be on both better and additional data 
gathering. 

Inspection of the relative contributions of the input error and the model 
structure error to the total model error shows that there are no major differences 
between Al and NO3. In the case of o = 1, the model error for both outputs is equally 
distributed over both terms. However, these results depend greatly on the value of Q. 
As the correlation coefficient decreases, the relative contribution of the model 
structure error increases, because the model error decreases while the input error 
remains constant. At a certain point, the model error even exceeds the input error, 
yielding a negative model structure error. This indicates an unrealistic value of either 
the correlation coefficient or the input error. 

The present study has shown that the relative contribution of the model 
structure error was remarkably small for the Al concentrations in CN and LN. For 
these soil types, additional data gathering might be the most beneficial approach. To a 
lesser extent, this was also true for the NO3 concentrations in SR and CN. 

3.3.5 Conclusions 

Upscaling model outputs 

The present study assessed the calibration and validation of a relatively simple soil 
acidification model on a block scale. Although SMART2 was developed especially for 
application on a national to European scale, it still runs on a point support. Heuvelink 
and Pebesma (1999) showed that the most appropriate way to obtain results at a block 
support is to run the model on a point scale for multiple point locations within the 
block, followed by aggregation of the model output. This avoids application of the 
model on a larger scale, which is essential because application on a larger scale requires 
block-averaged parameters, and it is hardly possible to aggregate point support inputs 
in such a way that they yield the correct block-averaged model output (cf. Wen and 
Gómez-Hernandez, 1996). Furthermore, this procedure has several additional 
advantages since point support output is available, any linear or non-linear aggregation 
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may be used (e.g. block mean, block median, areal fractions exceeding a threshold) 
and any block size or shape may be chosen (cf. Heuvelink and Pebesma, 1999). 

Upscaling monitoring data 

To obtain calibration and validation data on a block scale, c 250 point observations 
have been extrapolated to points in a 250 x 250 m2 grid, using multiple regression 
analysis. The regression analysis was able to explain 48% of the variance in the NO3 
concentration, whereas the percentage of Al variance accounted for was 50%. The 
NO3 concentration was best explained by soil type, vegetation type, NHX deposition, 
mean spring water table and area of contiguous forest. The Al concentration could be 
fully explained by soil type, vegetation type and mean spring water table. The 
subsequent extrapolations of these point values to 5 X 5 km2 blocks substantially 
narrowed the distributions. The final step towards the upscaled observation, i.e. the 
addition of the kriged residuals at 5 x 5 km2 blocks, clearly improved the predictions, 
reducing the MSEP by c 15% for both compounds. We conclude that the procedure 
used is well suited for the upscaling of observed soil solution concentrations of NO3 
and Al from a point support to a block support. 

Calibration 

The SMAR'I'2 model was calibrated at a 5 x 5 km2 block support using the upscaled 
monitoring data. The used calibration procedure appeared to be a useful tool for 
finding optimal parameter ranges, and for reducing input uncertainties. Although the 
effects of reduced input uncertainty on the uncertainty in the model outputs remained 
unquantified, our study provided useful results. The calibration appeared to be very 
successful in correcting the overestimation of Al and NO3 concentrations resulting 
from the nominal parameter set. It seems likely that these overestimations were mainly 
due to an overestimation of the mineralisation rate and the nitrification rate 
parameters, although this result is biased by the sequence of the calibration steps. 
When calibrating the forest filtering factors (//NH3,^NO.\) prior to the mineralisation 
rate, results would definitely have been different. However, it was assumed that the 
filtering factors were more certain than the mineralisation rate, since the filtering 
factors were derived from various individual through fall measurements throughout 
the country, whereas the mineralisation rates were roughly derived from various 
literature sources (Kros et al, 1995a). The calibration of the Al-related parameters only 
resulted in a slight improvement of the model performance, with the exception of the 
exchange constants, although this was only true for the Al concentration and pi I. The 
improvement in modelled pi I was remarkable. 

As already mentioned, it is most likely that calibration results generally depend 
on the order of the calibration steps. However, in our case identification problems 
made it absolutely necessary to perform a stepwise procedure, and we had good 
reasons for the order of the consecutive calibration steps we used (cf. section 3.2). 
Another important aspect is that data used for calibration, i.e. the upscaled monitoring 
data, introduce an additional uncertainty caused by upscaling (cf. section 3.3). Because 
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this error was not included in the calibration procedure, the calibration may seem to 
provide a level of accuracy that is not really substantiated. Analysis of this error shows 
that the nominal run is already within the 95% confidence interval of the data. 
Nevertheless, it can be concluded that calibration leads to an obvious improvement of 
the model performance and a reduction of the uncertainty in the model input data. 

Model error 

It has been shown that it is possible to perform a model validation at a block support 
using point support validation measurements. Quantification of the model error 
showed that it was relatively large for the nominal run, whereas calibration greatly 
reduced the model error when focussing on the block median results. 

Splitting the model error into an input error part and a structural error part 
should ideally provide useful information on weak and strong aspects of the model. In 
the present study, however, the model validation was impeded by a correlation 
between the upscaled observations and the upscaled model results. Therefore, it was 
not feasible to unambiguously split the model errors into a part originating from the 
uncertainty in the model input data and the uncertainty due to the model structure. 
Nevertheless, it can be concluded that the relative contribution of the model structure 
error was remarkably small for the Al concentration in clay (CN) and loess (LN) soils. 
For these soil types, therefore, additional data gathering might be beneficial. To a 
lesser extent, this is also true for the NO3 concentration in rich sandy soils (SR) and 
clay soils (CN). 

Final remarks 

We do believe there is a value in fitting parameters to data to be simulated, especially 
when it is not a goal in itself but rather done in conjunction to comparing a non-
calibrated model simulation to these data (our nominal model simulation). Also, we do 
not use validation in the sense of proving that the model is capable of producing the 
results it was intended for. First of all no standards were defined ahead of the 
validation procedure, second the data available were insufficient (small numbers, large 
variations) to allow such a decision to be well-founded. 

In plain terms, the most important result is that soil acidification modelling on a 
regional scale is, despite all efforts, still prone to large uncertainties. To circumvent 
these problems, more data would be required both in time and space. Lack of such 
data can regarded as the principal botdeneck towards further improvement of the 
model. Just as stated by Janssen and Heuberger (1995), model validation is not a 
'once-and-for-alT activity leading to an absolute and definite judgement on the model's 
adequacy. This is especially true for this research since the remaining model error after 
model calibration is still considerably high for both Al and NO3. 
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3.4 Quantification of nitrate leaching from forest soils 
on a national scale 

Abstract 

To evaluate the effects ofN emission policies it is necessary to have a reliable information of nitrate 

concentrations and leaching fluxes from forest ecosystems. It is specially desirable to have insight into 

the regional variability of nitrate concentrations, to support local policy on emission abatement 

strategies.. In this paper, three methods for calculation of a spatial distribution on soil nitrate 

concentrations in Dutch forest ecosystems are compared. We considered (i) a regression model based on 

observed nitrate concentrations and additional data on explanatory variables (H) a semi-empirical 

dynamic model WANDA, and (Hi) a process-oriented model SA1ART2. The two dynamic models are 

frequently used for the evaluation of effects of reductions in nitrogen deposition at a scale ranging from 

region to a country as a whole. We considered the results of the regression model as a reference to 

evaluate the performance of the two dynamic models. Furthermore, the results of the three methods are 

also compared with a steady-state approach that is currently used for the derivation of critical loads on 

N. 

Results show that both dynamic models give similar results on a national scale, when inspected 

in the form of cumulative distribution functions. The regional variability is predicted differently by 

both models. Discrepancies are mainly caused by a difference in handling forest filtering. All three 

methods show that, despite the high N inputs, Dutch forest still accumulate more N than they release. 

This implies that presently acceptable N deposition in view of groundwater quality are higher than the 

(long-term) critical loads. However, in areas with high atmospheric N input all three methods predict 

that the EU standard for nitrate in groundwater for (50 mg I') is exceeded 

3.4.1 Introduction 

In large parts of western Europe, in particular the Netherlands, N input through 
atmospheric deposition to forest ecosystems exceeds the long-term capacity of the 
ecosystem to retain N (De Vries étal, 1995b; Dise étal, 1998; Gundersen, 1995). This 
may have several adverse effects: (i) decrease in botanical diversity (cf. Bobbink et al, 
1998), (ii) eutrophication of ground - and surface waters (cf. De Vries, 1994), (iii) 
acidification (cf. Van Breemen et al, 1982) and (iv) decreased tree vitality (cf. Boxman 
and Van Dijk, 1988). For decades, governmental authorities have been busy with 
policy and measurements aimed at reducing of N inputs in semi-natural ecosystems. 
Notable examples are the NO x protocol (Sophia protocol, UN/ECE) and the multi-
pollutant-multi-effect protocol (Gothenburg protocol, UN/ECE). For the evaluation 
of N emission policy it is desirable to have a reliable map at an appropriate spatial 
scale, ranging from regional to national or even European scale, of the NO3 
concentration in drainage water and N leaching fluxes from semi-natural ecosystems. 

Various methodologies are available for the quantification of the extend and 
geographical distribution of N leaching. They range from statistical methods based 
directly on measurements, such as multiple regression (cf. Leeters et al, 1994), 
generalised additive modelling (cf. Tiktak et al, 1998, though this refers to cadmium 
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leaching), stratified block-kriging (Pebesma and De Kwaadsteniet, 1997) and process-
oriented models ranging from simple (cf. De Vries et al., 1989, 1995a) to complex 
models (cf. Boers et al., 1995, used for agricultural soils). For large-scale analyses, 
complex models are generally not appropriate, because of the huge data demand. At 
large spatial scales these large amounts of data are not available or are at least 
associated with large uncertainties. Therefore, the use of simpler models with a smaller 
data demand is justified on a large spatial scale (cf. Chapter 2.4; De Vries et al., 1998). 
Statistical methods have the disadvantage that they are generally not able to generate 
future predictions, however, they have proven to be suitable for the generation of the 
actual geographical distribution. Process-oriented dynamic models, however, have 
been developed mainly to analyse temporal trends, either for a point application or an 
application in a spatial context. They do suffer a high dependency on (usually) scarce 
observations. 

In this research results from two simple dynamic models, which differ in degree 
of complexity, are compared with NO3 concentrations based on statistically scaled-up 
monitoring data in Dutch forest soils. In this way, we gave an indication of the 
reliability of national scale assessment of NO3 concentrations below the root zone. 
We also discuss the implications of the results with respect to critical N loads. 

3.4.2 Methodology 

General 

We compared three methods for the quantification of NO3 concentrations below 
forest ecosystems in the Netherlands: (i) regression analysis based on observations and 
additional data on explanatory variables (cf. Mol-Dijkstra and Kros, 1999), (ii) a semi-
empirical model WANDA (Tietema et al., in prep.), and (iii) a simple process oriented 
model SMART2 (Kros etal., 1995a). The results of the regression analysis were used as 
a reference, to quantify the performance of the two dynamic models, assuming that 
those results are the best estimate of the actual geographical distribution of the NO3 
concentration. 

We investigated the yearly average NO3 concentration at 1 m depth (i.e. below 
the root zone). A common feature of the three methods is that they are based on 
point information, i.e. either model-input data or observed concentrations. In order to 
derive a map with NO3 concentrations, the available point information (point 
support) must be transformed towards a plane (block support). We aggregated 'point 
values' to block values by taking the block median values of the underlying point 
values (see Figure 1). All basic (point) calculations, were performed at a 250 X 250 m2 

grid. These 'point' calculations where aggregated to 1 x 1 km2 blocks by taken the 
block median value. A 1 X 1 km2 grid was chosen as a reference, because deposition 
estimates were available at that scale. 
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Complexity 

Figure 1 Diagram showing the procedure of model validation and up-scaling 

Up-scaling point observations by regression analysis 

Regression analysis was applied to generate a map with soil solution concentrations of 
NO3 for a 1 X 1 km2 grid (cf. Mol-Dijkstra and Kros, 1999). First a multiple 
regression analyses at a 250 x 250 m2 grid was used to estimate values at unsampled 
locations by including all relevant additional information which may accounted for 
systematic effects. Secondly, the 250 x 250 m2 values were aggregated towards a 1 x 1 
km2 grid. 

Regression analysis was based on a data set of about 150 measurements on soil 
solution concentrations in forest stands on non calcareous sandy soils throughout the 
Netherlands (De Vries et al, 1995b). The soil solution was sampled between February 
to May 1990. Composite samples, consisting of 20 sub samples were taken from the 
mineral top soil (0 to 30 cm) and the mineral subsoil (60 to 100 cm) in early spring. 
During this period the composition of the soil solution reasonably corresponds with 
the flux weighted annual average soil solution concentration (De Vries et al, 1995b). 
Soil solution was extracted by centrifugation. The locations were restricted to non-
calcareous soils throughout the country. The tree species included were Scotch pine, 
black pine, Douglas fir, Norway spruce, Norway spruce, Japanese larch, oak and 
beech. 

The observations sites were lumped into forest type classes, watertable classes 
and soil type classes that were also used for the model simulations. The tree species 
were lumped into tree forest type classes: 
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Coniferous stands (Scotch pine), i.e. evergreen trees with moderate forest filtering 
capacity, growth rate and transpiration rate; 

- Spruce stand (Douglas fir, Norway spruce and black pine), i.e. evergreen trees with 
high forest filtering capacity, growth rate and transpiration rate 

- Deciduous stands (Japanese larch, oak and beech), i.e. needle or leaf sheddy trees 
with low forest filtering capacity, growth rate and transpiration rate. 

All soil types were lumped into one class, i.e. non-calcareous sandy soils. A 
distinction was made into five water table class (cf. Kros et ai, 1995a). 

For the regression analysis candidate predictor variables were derived from 
available national databases and maps at a resolution of 250 X 250 m2 (cf. Mol-
Dijkstra and Kros, 1999). These variables include: land-use, soil type, tree species, 
total deposition of N and S, canopy closure, tree height, total area of the forest, 
nearest distance to the forest edge and the principal land-use at the nearest forest 
edge. We selected these variables because they were available it was known from 
previous research that they potentially have a significant effect on the soil solution 
concentration and are available on a national scale (Leeters et ai, 1994). With multiple 
linear regression the soil solution concentrations were fitted to the candidate predictor 
variables, using the statistical package GKNSTAT (Genstat 5, 1987). Since the predictor 
variables are either quantitative (e.g. deposition) 'or qualitative (e.g. tree type) the 
regression equations includes both types of variables. The models with the best fit 
were derived by the following procedure: (i) find the best model with the SKI.KCT 
option from GKNSTAT, (ii) investigate whether non-linearity's leads to improvements, 
by using the SPUNK option from GKNSTAT, (iii) investigate whether the inclusions of 
interactions leads to a better model. In order to meet the prerequisite of a normal 
distribution, the explaining variables were log-trans formed using the natural logarithm. 
For the presentation, results were back-transformed towards the linear scale. 

The WANDA Model 

WANDA (regional model With Aggregated Nitrogen DynAmics) is a semi-empirical 
process oriented model (Tietema, 1999). The basis of the model is the predictive 
importance of the C/N ratio for NO3 leaching. A negative correlation between both 
parameters has been found in various large data sets (McNulty et ai, 1991; Tietema 
and Beier, 1995; Gundersen, 1995; Gundersen et al, 1998). WANDA consist of three 
organic nitrogen pools: trees, labile organic matter (LOM) and refractory organic 
matter (ROM) and two inorganic nitrogen pools: NH4 and NO3. The sources of 
inorganic nitrogen are atmospheric deposition and mineralisation of ROM. The sinks 
are plant uptake, microbial immobilisation in LOM and NO3 leaching. Net plant 
uptake and ROM mineralisation are negative linear functions of tree age. Beyond a 
certain tree age there is no plant uptake nor ROM mineralisation. Microbial 
immobilisation is a function of C /N ratio of the organic layer. Below a certain critical 
C /N ratio no inorganic nitrogen is being immobilised, beyond a maximal feasible 
C /N ratio all available inorganic nitrogen is immobilised. Between these two values, 
the fraction taken up varies in a linear fashion with C/N. 
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The net uptake of NII4 and NO3 in the various pools is calculated in a certain 
order. NI 14 is taken up preferentially over NO3 by both plants and microbes, and the 
trees take up all required nitrogen before it becomes available for microbial uptake. 
The NI I4 and NO3 available in excess of the demand leaves as NO3, assuming a 
complete nitrification and no denitrification. This assumption limits the use of 
WANDA to well-drained soils. 

There are only five unknown parameters in this relatively simple model. These 
parameters are the four threshold C/N ratios for microbial immobilisation in LOM 
(upper and lower limit for NII4 and NO3 immobilisation) and the maximum rate of 
ROM mineralisation at a theoretical tree age of zero. All other parameters could be 
derived from available forestry information. The five unknown parameters were 
identified by parameter optimalisation using the relationship between C/N ratio in the 
organic layer and NO3 leaching found by Gundersen (1995) in the ECOFEE data set 
(Figure 1; Table 1). WANDA directly calculates NO3 leaching. In order to calculate 
NO3 concentrations in drainage water, the drainage water flux is calculated as a 
function of tree species and tree age. 

The SMART2 Model 

SMARI'2 (Kros et al, 1995a) is a simple one-compartment soil acidification and 
nutrient cycling model that includes the major hydrological and biogeochemical 
processes in the vegetation, litter and mineral soil. Apart from nitrate (NO3) and 
ammonium (NII4) concentrations the model also predicts changes in aluminium (Al), 
base cation (BC), and sulphate (SO4) concentrations and the pH, in the soil solution 
and solid phase characteristics depicting the acidification status, i.e. carbonate content, 
base saturation and readily available Al content. The SMAR'1'2 model is an extension of 
the dynamic soil acidification model SMART (De Vries et al., 1989). The major 
extensions in SMAR'1'2 are the inclusion of a nutrient cycle and an improved modelling 
of hydrology. The SMAR'I'2 model consists of a set of mass balance equations, des­
cribing the soil input-output relationships, and a set of equations describing the rate-
limited and equilibrium soil processes. 

The soil solution chemistry in SMAR'1'2 depends solely on the net element input 
from the atmosphere (the product of deposition and filtering factor) and groundwater 
(seepage), canopy interactions (foliar uptake, foliar exudation), geochemical 
interactions in the soil (CO2 equilibria, weathering of carbonates, silicates and/or Al-
hydroxides, SO4 sorption and cation exchange) and a complete nutrient cycle 
(litterfall, mineralisation, root uptake, nitrification and denitrification). Nitrogen The 
adsorption of NH 4 is not taken into account. 

Growth of the vegetation and litterfall are modelled by a logistic growth 
function, which acts as a forcing function. Nutrient uptake is only limited when there 
is a shortage in the soil solution. Litterfall and root decay is the input to an organic 
pool containing N, BC2 and K. Mineralisation of above-ground organic matter (litter, 
including dead roots in the litter layer) a distinction is made between a rapidly 
decomposing pool of fresh litter (less than one year old) and a slowly decomposing 
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pool of old litter (more than one year). Nitrification and denitrification for the 
complete soil layer are described in as a fraction of the net input. The mineralisation, 
nitrification and denitrification rate constant are influenced by the mean water-table 
andpH. 

Soil-solute transfers are described by simple rate-limiting (zero-order) reactions 
(e.g. uptake and silicate weathering) or by equilibrium reactions (e.g. carbonate and Al-
hydroxide weathering and cation exchange). Influence of environmental factors such 
as pi I on rate-limiting reactions and rate-limitation of weathering and exchange 
reactions are ignored. Solute transport is described by assuming complete mixing of 
the element input within one homogeneous soil compartment with a constant density 
and a fixed depth (at least the root zone). Since SMART2 is a single layer soil model 
neglecting vertical heterogeneity, it predicts the concentration of the soil water leaving 
the root zone. The annual water flux percolating from this layer is taken equal to the 
annual precipitation minus the annual évapotranspiration for the considered soil 
depth. Both terms must be specified as model input. The time step of the model is 
one year, so seasonal variations are not considered. 

National scale application and model comparison 

Input data for the national scale application of WANDA and SMAR'I'2 can be divided in 
system inputs and initial values of variables and parameters. System inputs for both 
models are the atmospheric deposition, hydrology and vegetation development or tree 
age. Input data included (i) a specific deposition scenario for each grid cell, (ii) model 
variables and parameters which were either related to a soil type or a vegetation type 
or to a combination of both and (iii) a soil map and vegetation map relating variables 
and parameters to grid cells. For the national scale application, a gridded soil map and 
vegetation map, representing the distinguished dominant soil types and vegetation 
types for a 250 X 250 km2 grid respectively was made. In this map seven soil classes 
were distinguished and four vegetation types. This study was confined to forest on 
sandy soils, which means that only one soil type (non-calcareous sandy soils) and three 
vegetation types (DEC, SPR and CON) were used. 

An essential system input for WANDA is the C/N ratio of the organic layer. 
This ratio was calculated for each grid by using a multiple regression relation based on 
measured C /N ratios in forest floor and additional data. For this relation the same 
dataset (i.e. De Vries et al, 1995b) was used as for the derivation of the NO3 
concentration map, which also includes solid phase analyses. The derived multiple 
regression relation (R2=0.44) contained as significant predictor variables, in decreasing 
order of importance: tree-species, soil type, age of the trees. 

The thus derived maps at a resolution of 250 x 250 m2 still have a point 
support, since they are based on point observations of soil solution concentrations. In 
order to derive values at a block support, the 250 x 250 m2 'point maps' were 
aggregated to a 1 X I km2 'block map', by taking the block median value. 
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An important aspect to notice is that WANDA and SMART2 simulate yearly 
averaged values, whereas the data set represents the concentration of ions in early 
spring (February to May). This influences the quality of the validation. 

3.4.3 Results and discussion 

Comparison of maps 

The upscaled spatial distribution as calculated with the three methods is given in 
Figure 2A-C. The three methods show seriously different results. Compared to the 
regression, SMART2 calculates rather high NO3 concentrations for the Veluwe area, i.e. 
a forested area in the centre of the country, whereas WANDA simulates rather low 
concentrations for this area. This difference was mainly caused by the way in which 
both models incorporates forest filtering induced by differences in roughness length. 
Both the regression model and WANDA explicitly account for the total area of the 
forest, assuming that a larger continuous area of dense forests results in lower forest 
filtering and thus a lower input of atmospheric deposition (cf. Draayers and Erisman, 
1993). The SMAR'I'2 model, however, only includes forest filtering factors that depends 
on forest type, independent of the forested area. These factors were large for spruce 
forest and small deciduous forest. Taking into account that the Veluwe is a densely 
forested with spruce, it is obviously that WANDA and the regression model calculates 
lower NO3 concentration for this area. Another remarkable difference between 
SMAR'I'2 and WANDA, is that WANDA calculates clearly higher NO3 concentrations 
under wet circumstances. This can be recognised in Figure 2C by the lowlands 
(Gelderse Valley) in the middle of the country and the brook valleys in the southern 
part of the country, where WANDA also calculates higher NO3 concentrations than the 
regression model. In fact this is an artefact of WANDA, which does not include 
denitrification. Therefore, this model is only applicable for dry ecosystems. 

When inspecting the spatial distribution for each method separately and 
disregarding the above-mentioned omissions, the spatial images appeared to be rather 
consistent, i.e. high NO3 concentration in areas with high deposition and vice versa. 

Comparison of cumulative distribution functions 

When comparing the results as cumulative distribution functions (CDF), the 
differences between the three methods seem to be much smaller (Figure 3A). Figure 
3A shows the corresponding results of the maps shown in Figure 2, i.e. a CDF of all 
l x l km2 grid cell values. From this figure it is obvious that at high concentrations 
(> 0.5 mole m3) both WANDA and SMART2 under-estimated the NO3 concentrations. 
At lower concentrations (< 0.4 mole nv3) SMART2 over-estimated the NO3 
concentrations., while WANDA over-estimated at low concentrations (< 0.3 mole m3) . 
The latter was connected to wet soils, which were not taken into account within 
WANDA. 
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A. Regression B. SMART2 

C. WANDA 

Figure 2 Maps of the upscaled NCh concentration as estimated with the regression 
model (A) and via the dynamic models SMAR'1'2 ( B) en WANDA (C) 

T o investigate the role of spatial scale in the performance of the two models, 
both model results as well as the regression data were also aggregated towards a larger 
grid size, i.e. 5, 10, 15, 20 and 25 km2 . F rom Figure 3B and C it is clear that the 
models perform best at a 5 km2 grid, while the performance seems be worse at a 25 
km2 grid. This effect is only pardy confirmed in terms of the calculated mean squared 
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error of prediction (MSEP) (Table 1). When inspecting the MSEP a larger grid size 
yields a better performance for both models. Although, the performance in terms of 
the MSEP is increasing, the spatial resolution of course decrease. Consequently, there is 
a gain in reliability at the cost of spatial variability. This trade-off between spatial 
resolution and reliability is, in fact, a well-known phenomenon. An important 
consequence of the loss of detail, i.e. averaging out of extremes, is a decreasing 
capability to identify areas where a concentration standard is exceeded. It is, however, 
precarious to draw conclusions on spatially explicit model results only based on CDFs. 
Because large regional differences exist, also at a rather small distance (0.5-1 km). 
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Figure 3 Cumulative distribution functions for a l x l km2, 5x5 km2,15x15 km2 and a 
25x25 km2 grid of the calculated NO3 concentration by regression, SMART2 and 
WANDA 
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Table 1 Mean squared error of prediction {MSUPy> between WANDA results 
and the regression data and SMAR'I'2 results and regression data for five 
grid sizes 

Model 
SMARI'2 

WANDA 

1) 

MSUP = -

l x l km2 

0.43 
0.49 

5x5 km* 
0.24 
0.30 

10x10 km2 

0.20 
0.25 

15x15 km2 

0.15 
0.18 

20x20 km2 

0.15 
0.18 

25x25 km2 

0.14 
0.19 

Impacts of used method on the exceedance of groundwater standards for 
nitrate 

A comparison with the EU groundwater standard for phreatic groundwater value for 
NO3 of 50 mg H (0.8 mok nr3), shows that all three methods indicate substantial areas 
where this standard has been exceeded. This area is ranging from 10 to 20% of the 
considered area depending on the used method (see Figure 3A). These areas are 
mainly located in the south-eastern part of the country, which corresponds with areas 
with high NH3 emission and deposition. In addition, all three methods show large 
areas, ranging from 40 to 80% of the total area considered, where the guidance 
concentration, i.e. 25 mg 1 ' (0.4 moL nr3) has been exceeded Note that this range is 
much wider than where the groundwater standard is exceeded. This is caused by the 
fact that 25 mg 1 ' lies around the median values, i.e. in the middle of the distribution, 
whereas 50 mg \A lies in the tail of the distribution. In other words the uncertainty in 
exceedance area is larger for the guidance concentration than for the EU standard. 

Note also that the exceedance area highly depends on the used grid size. The 
larger the grid size, the smaller the exceedance area. It must be noted, however, that 
the method used here, is not a proper way to derive the exceedance area. A correct 
way is to start at the point scale data for a 250 x 250 m2 grid and count the number of 
250 X 250 m2 cells within a 1 km2 with a concentration higher than the standard 
concentration (cf. Kros et ai, 1999). 

Relation with critical loads 

Results of a spatial distribution of NO3 concentrations below the root zone of semi-
natural ecosystem are of special interest with respect to the exceedance of critical 
concentrations. Because critical loads are calculated with a steady-state method, they 
do take into account N (im)mobilisation from the soil and litter layer. In reality, 
however, dynamic processes play an important role also within the context of critical 
loads (Tietema et al, in prep.), especially, when inspecting the short-term (<50 year). 

Posch and Hettelingh (2001) also address the relation between dynamics and 
critical load (see Figure 4). During Stage 1 the deposition is above the critical load, but 
the chemical variable is still below the critical value. Therefore, in this stage violation 
of the criterion do not occur despite the exceedance of the critical load {Damage Delay 
Time = & — ti). During Stage 4 the deposition is below the critical load, but the criterion 
is still violated (Recovery Delay Time = fc — tj). 
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Figure 4 A typical temporal evolution of the deposition (top) and a soil chemical 
variable (e.g. NOj concentration) (bottom). The delay between the (non) exceedance 
of the critical load and the (non-)violation of the critical chemical criterion: Damage 
Delay Time (DDT) and Recovery Delay Time (RDT) (After: Posch and Hettelingh, 2001) 

T o quantify the difference between the NO3 concentration calculated with the 
dynamic models SMART2 and WANDA at one hand and a steady state method at the 
other hand, we also calculated the potential NO-, concentration while neglecting all 
dynamic aspects. The steady state NO3 concentration (in mole tor3) was calculated as: 

{N05\ = 
PE 

(1) 

where: A'* is the N deposition (mole m 3 a ' ) , Nup is net long-term N uptake 

(mole n r 3 a ' ) , AT* the denitrification (mole m 2 a 1 ) , and PE the precipitation excess 

(m a-3). 
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Figure 5 Cumulative distribution functions of the calculated NOj concentration as 
calculated with a steady state methods with de deposition for 1990 and the NO} 
concentration as calculated with the three methods at a 1 x 1 km2 grid 

Figure 5 shows that the steady-state NO3 concentration is usually much higher 
than the actual concentration, indicating that still a lot of N is being immobilised in 
forest ecosystems in the Netherlands. All three methods provide a consistent result. 
Although some differences exists, esp. at high concentrations. 

T o get an impression about the short term and long-term effects in terms of 
deposition, we compared our data with the recently published updated critical loads 
for the Netherlands (De Vries et ai, 2000). For that purpose, we selected from the 
model results those sites where the NO3 concentration was between 25 + 0.56 mg 1 ' 
and 50 ± 0.56 mg 1 ' . The window of ± 0.56 mg 1 ' (± 0.04 mole nr3) was determined 
empirically, such that the window size does no t disturb the distribution. At a wider 
window the shape of the CDFs changes, whereas at a smaller window the CDFs 
became less smooth. These results together with the derived critical N load related to 
a critical NO3 concentration of 25 and 50 mg H are given in Figure 6. As already 
noticed from Figure 5, Figure 6 also shows that the actual situation is far from steady 
state. For all tree methods and both criteria, the forest soils can accept higher nitrogen 
deposition loads than the long-term critical loads without violating the critical 
concentrations. This means that many semi-natural terrestrial ecosystems in the 
Netherlands are immobilising N under the current circumstances. Also in this 
situation all three methods provide quite comparable results. However , when mos t 
systems will reach steady-state with respect to nitrogen saturation, the situation will be 
rather serious (see Figure 5). Steady-state seems to have been reached in ca. 10 % of 
area according to results of the up-scaled monitor ing data (regression) for the 50 mg 1 
1 criterion. Tha t the models WANDA and SMAR'1'2 do no t simulate this, indicates that 
the two models overestimate the capability to store N in the ecosystem in particular 
cases. 
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Chapter 3.4 
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Figure 6 Percentage protected area as a function of the total N deposition according to 
a steady-state calculation and the three inspected methods at the target value on NO3 of 
25 mg 1 ' (A) and the EU standard on NO3 of 50 mg 1 ' (B) 

3.4.4 Conclusions 

The NO3 maps as calculated by the three methods provided clearly different results. 
Yet, the spatial distributions in the form of a cumulative distribution function 
provided comparable results, especially at 5 X 5 km2 grid. This gridcell increase, 
however, cost spatial resolution, and decrease the benefit for determining exceedance 
areas. 

The differences between the three approaches are mainly caused by the 
differences in handling forest filtering and denitrification. To improve predictions for 
densely forested areas, the SMAR'l'2 model must be extended with a spatial dependent 
filtering factor, i.e. nearest distance to the forest edge. The incorporation of this effect 
into the model is rather simple. The predictions of WANDA under wet circumstances, 
can be improved by the incorporation of denitrification. 

All results point to the fact that most forests in the Netherlands are still 
accumulating N. The actual situation is still a long way from steady state. However, at 
high atmospheric N input, all three methods indicate that the EU standard for 
phreatic groundwater for NO3 (50 mg 1 ') is exceeded. So, dynamic models are useful 
for quantifying the gap between the actual state of NO3 leaching and the potential 
NO3 leaching in case of a steady state. For this goal the models provide a rather 
consistent result. 
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IV General d iscussion and conclusions 

Compared to the real world, the structure and processes of the considered 
biogeochemical system is simplified in any biogeochemical model. Modelling implies 
necessarily a reduction of complexity. The question is, however, to find the 'optimal' 
extent of simplification. In this final chapter the main results and conclusions are 
discussed in view of the research hypotheses: 
- Adequate simulation of temporal responses in soil solution chemistry on a daily 

basis at various depths requires a detailed multi-layer biogeochemical model; 
- Annual average responses in soil solution chemistry at the bottom of the root zone 

can be adequately simulated with a simple, one-layer biogeochemical model; 
- Simulation of soil solution chemistry on a regional scale requires a simplified 

model; 
- Adequate simulation of soil solution chemistry on a regional scale requires 

parameterisation, calibration, validation and uncertainty analysis on that scale. 
The hypotheses were tested by the evaluation of various terrestrial biogeochemical 
models through: (i) validation by comparing model results with measurements, (ii) 
assessment of model uncertainties and (iii) comparison of different models. Here the 
validity of the hypotheses are discussed while answering the research questions raised 
in Chapter 1. Section 4.1 concerns the applicability on a local scale, whereas section 
4.2 addresses the regional scale applicability. Finally, the adequacy of a simple 
biogeochemical model as a policy tool is addressed in Section 4.3. 

4.1 Model application on a site scale 

Adequacy of detailed soil solution chemistry modelling 

Experience with a model such as NUCSAM showed that the model help to summarise 
and integrate results from individual disciplines and provides a multidisciplinary 
perspectives of complex systems. 

The detailed nutrient cycling and soil acidification model NUCSAM was built to 
simulate effects of atmospheric deposition on soil solution chemistry on a site scale on 
a daily basis at different depths. At the intensively monitored site Speuld the 
agreement between observed and simulated changes in soil solution chemistry was 
reasonably good. NUCSAM reproduced the magnitude and trends of measured 
quantities, such as soil water contents and soil solution chemistry. Also the seasonal 
trends and trends with soil depth could be reproduced rather well. However, there are 
some exceptions. The pH was slightly overestimated in the topsoil and underestimated 
in the subsoil. This indicated that the pH and Al behaviour was not described 
adequately by rate-limited dissolution of Al-hydroxides. Most probably this 
description can be improved by the inclusion of Al complexation with dissolved 
organic matter (cf. Wesselink and Mulder, 1995). 
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IV General discussion and conclusions 

Applications of NUCSAM to the intensively monitored sites like Speuld was, 
however, hampered by large spatial variability in throughfall, soil solution chemistry 
and stand structure. Either the number of sampling replicates was too small to obtain 
representative stand averages (soil chemistry), or it was impossible to select more or 
less homogeneous subplots (hydrology and biomass inventory). It is important to 
realise that in the Netherlands the Speuld experimental forest had provided one of the 
most complete datasets available. This implies that the lack of good quality data is a 
crucial limiting factor for further validation and model improvement. 

Despite its complexity, a model such as NUCSAM can be rather useful to 
evaluate of pre-defined temporal deposition scenarios. Such analysis is, however, only 
valid for a specific site and cannot be (quantitatively) applied at a larger spatial scale. 
There is little hope to obtain a reasonable coverage for the Netherlands as a whole, by 
applying a model as NUCSAM at a sufficient number of intensively monitored sites 
because of high costs involves and limited flexibility of the model (application time, 
calculation time and processing time). Accordingly, for regional applications, model 
simplification is inevitable. 

Role of uncertainty analyses in simplifying a detailed terrestrial 
biogeochemical model 

This thesis showed that uncertainty analysis help to decide how to simplify 
biogeochemical models can contribute to model simplification. The relative 
contribution of processes to the model outputs appeared to vary with time, model 
input, depth and model output. The results of the uncertainty analysis indicated that 
nutrient cycling processes and kinetics of Al dissolution need to be known properly to 
simulate solute fluxes and concentrations in the topsoil, while in the subsoil they are 
unimportant. In addition, the need to describe a particular processes also depends on 
the constituent considered. E.g. pH is mainly influenced by the Al dissolution 
processes, whereas concentrations of NO3 and NIL* are mainly influenced by nutrient 
uptake and (de)nitrification. Accordingly, a simplified model able to model all major 
solutes in and below the root zone, must include almost all processes that are included 
in the detailed model. Subsequently, results from an uncertainty analysis alone are not 
enough for the guidance of model simplification. Just as with the implementation of a 
new model, common sense and expert judgement are indispensable for model 
simplification. Model simplification, that is only based on statistical and/or 
mathematical techniques would be delicate, because those do not take into account all 
available information. This type of simplified models are only based within the 
constraints of the model that is meant to be simplified (cf. section 4.3). 

Adequacy of a simple one-layer terrestrial biogeochemical model to simulate 
soil solution chemistry 

A relatively simple biogeochemical model such as SMAR'I'2 proved to be a reliable tool 
for the simulation of changes observed in a whole-ecosystem experiment, where 
deposition was decreased and temperature increased, viz the Risdalsheia catchment. In 
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contrast to the observations at Speuld, observations at the Risdalsheia catchments are 
'real' annual average concentrations from the runoff of the whole catchment. This 
means that model and observations have the same temporal and spatial resolution. 
The observed time-series in runoff chemistry in response to deposition reduction and 
temperature rise were well reproduced by SMART2. The observed increase in N-runoff 
was reproduced well by the model, just like the observed increase in mineralisation 
and nitrification. These results, as referring to a relatively long observation period 
(more than 10 years), give confidence in applications of SMAR'I'2 on a regional scale 
for the simulation of annual average concentrations. 

Change in model performance due to model simplification 

To study the influence of model simplifications the models where validated by 
comparing simulated concentrations and leaching fluxes with measured values at the 
Soiling site during the period 1973-1989. Although differences in process description 
exist between SMART2, R.KSAM and NUCSAM, all models were able to simulate most of 
the concentrations reasonably well during the study period. Differences in the 
description of e.g. the dissolution of Al-hydroxides and N cycling did not affect 
modelled long-term annual average Al and N concentrations. The capability of 
SMART2 to simulate the observed flux-weighted annual averaged concentrations (and 
ratios) is, in fact, comparable or even better than that of NUCSAM. 

Ignoring seasonal variations in weather conditions and nutrient dynamics does 
not gready affect the modelled long-term response of flux-weighted annual average 
soil solution chemistry to acid deposition. The multi-layer models RESAM and 
NUCSAM nicely reproduced the observed rise in SO4 concentration, between 1975 and 
1980. However, the one-layer model SMART2 tended to overestimate the initial rise in 
SO4 concentration, due to a larger dispersion of the SO4 front. This artefact of a one 
layer model should be born in mined when simulating leaching fluxes of adsorbing 
solutes. 

When considering annual average concentrations at a certain soil depth, this 
research showed that the uncertainties in long-term predictions of soil solution 
response induced by neglecting seasonal and vertical spatial variability and by 
simplifying process description were rather small. So the simplified model SMART2 
proved to be an adequate tool to evaluate long-term effects of environmental 
abatement strategies. 

4.2 Model application on a regional scale 

Applicability of a simplified model on a regional scale in view of data 
availability 

SMART2 appeared to be a fairly good model for simulating soil solution chemistry on 
national scale. Results for the nitrogen availability (here defined as N mineralisation + 
N deposition) were encouraging, but could not be validated adequately due to a lack 
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IV General discussion and conclusions 

of sufficient data. Nevertheless, SMART2 appeared to be a rather flexible and quick 
tool to evaluate deposition and seepage scenarios. 

Model predictions of the un-calibrated model of pi I and Al concentration for 
deciduous forest on poor sandy soils show a reasonable to good agreement with 
observations. The modelled concentrations of NO3 and NII4 compare moderately 
well with the observations. An indicative validation of N mineralisation fluxes, shows 
generally a reasonable agreement between calculated and measured fluxes available 
from literature. N mineralisation fluxes in forest were most likely underestimated. The 
Al concentrations in poor sandy soils, however, were clearly overestimated. 

Scenarios with reduced deposition of N and S deposition improved the abiotic 
site factors, such as pH and base saturation (in non-calcareous soils) and N availability 
in forest soils. Spatial variability in all investigated model outputs, i.e. pi I, base 
saturation and N availability appeared to be large. The spatial variability in pH and 
base saturation is linked with the spatial variability in soil type, whereas the spatial 
variability in N availability is linked with the spatial variability in N deposition and 
vegetation/land-use. Therefore, it is clear that a support tool for decision-making 
must be spatially explicit. 

Impacts of the uncertainty in geographical data and model parameters on 
regional scale predictions 

Given the use of regional models such as SMART2 in decision-making, it is clear that 
the reliability of spatial information and the consequences for the model predictions 
must be quantified. Uncertainty at large spatial scales not only originated from 
parameter uncertainty but also from the used maps. The relative uncertainty 
contribution largely depended on the model output. For the Al concentration and the 
exceedances of Al concentration thresholds, soil-related parameters contributed most 
to the output uncertainty. For NO3, the uncertainty mainly stemmed from 
geographical data. 

Within the context of policy-making, two questions are crucial: (i) What is the 
uncertainty in the (areal) exceedance of a critical indicator for a particular region? and 
(ii) Is the model able to predict (statistically) significant changes in exceedance areas in 
response to a particular environmental scenario? Concerning these questions, it can be 
concluded that the width of the prediction interval largely depend on whether block 
median concentrations or block areal exceedances are considered. Furthermore, 
despite the large prediction intervals due to uncertainty in model input data, changes 
in the Al and NO3 concentrations or exceedance areas could be predicted with 
confidence. 

Given the large costs associated with measures to prevent increased Al and 
NO3 concentrations, it is important to assess whether collection of more data would 
reduce of the prediction interval. From the present study useful information can be 
derived to decide on different alternatives for reducing uncertainties associated with 
long-term model predictions. In general it is concluded that most emphasis must put 
on improvement the soil and vegetation related parameters and less on the 
improvement of the soil and vegetation maps. 
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Gain in model performance on a regional scale through a regional calibration 

The SMAR'l'2 model was calibrated at a 5 x 5 km2 block support using the up-scaled 
monitoring data. The applied calibration procedure appeared to be a useful for finding 
optimal parameter ranges, and for reducing input uncertainties. Even though the 
effects of reduced input uncertainty on the uncertainty in the model outputs remained 
un-quantified. The calibration appeared to be very successful in correcting the 
overestimation of Al and NO3 concentrations resulting from parameter values based 
on site applications. These overestimates were mainly due to an overestimation of the 
mineralisation and nitrification. 

As with the site scale application, it must be stressed that the regional data-set 
on about 200 forested sites, mainly on sandy soils, is the only available set for this type 
of calibration studies in the Netherlands. This set, that was collected in view of the 
modelling needs, proved to be very useful for model calibration and the assessment of 
the model error. However, this set, collected in the early nineties remains the only 
useful set and for progress in regional scale modelling further sets are badly needed. 

This thesis also showed that model performance strongly depends on the grid-
size used. Usually, increase in grid-size increases performance. This grid-cell increase, 
however, costs spatial resolution, and decreases the benefit for determining 
exceedance areas. Given large regional differences, even at a rather small distance, 
high resolution data on actual soil solution concentration in semi-natural terrestrial 
ecosystem are crucial to support of regional policy activities such as the regional NII3 
abatement plan in the Netherlands. 

In conclusion, application of the SMAR'l'2 model to the whole of the 
Netherlands, while only parameterised and calibrated on a small number of intensive 
monitored sites yields inadequate results. It is showed that model performance 
seriously improved and the prediction uncertainties strongly decreased by model 
calibration at the scale required for the ultimate output. 

4.3 Adequacy of s imple b iogeochemical models as a 
tool for policy makers 

This research showed that a detailed biogeochemical model, such as NUCSAM, can not 
be applied adequately at a large spatial scale. Even for the application at a single 
research site the lack of good quality data appeared a serious constraint. This clearly 
illustrates that models must be simplified for application at larger spatial and temporal 
scales. Modelling with a complex model on a large regional scale which lacks data for 
model parameterisation, calibration and validation would be pointless. Especially, 
from the viewpoint of the considered policy questions optimal or smart adaptation of 
the model to the available data is crucial. This also means that derivation of a meta-
model from a complex non-calibrated and validated model by statistical techniques 
(Mol-Dijkstra et al., 1999) is bound to fail. This approach may lead to models that can 
be ran more easily, but less reliable. Models for larger spatial and temporal scale must 
be simplified as much as possible, while retaining a degree of process description so 
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that model evaluation through calibration, validation and uncertainty analysis is 
feasible. 

Models such as SMAR'I'2 fit to the policy scale (see Chapter 1), but in some cases 
are still too complex. For the sake of applicability and of adaptation to the policy scale, 
even more simplified models, e.g. steady state models, are needed. This is especially 
true in integrated approaches such as NlTROGRNIUS (Erisman et al., 2002), a spatial 
decision support systems on the nitrogen problem for the whole of the Netherlands. 
NlTROGRNIUS contains an agronomy/soil module (INITIATOR, De Vries et ai, 2002) 
that is less complex than SMART2, but still process-oriented. 
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Summary 

Evaluation of anthropogenic effects on the environment at local, regional and global 
scales has become a key activity in environmental research. It forms the basis for 
emission reduction measures needed to achieve policy leading to a sustainable society. 
Computer models play an increasing role in the evaluation of those environmental 
effects. In the Netherlands, at the Environmental Policy Assessment Office 
(MilieuPlanBureau: MPB) and Nature Policy Assessment Office (NatuurPlanBureau: 
NPB) a large set of integrated predictive models are used to evaluate the effects of 
policy scenarios on a wide range of environmental problems. These include 
eutrophication, acidification, climate change and biodiversity decrease. Within these 
themes, mechanistic dynamical models, which simulate biogeochemical processes in 
ecosystems, play a crucial role. 

Aims and hypotheses 
In this thesis different nutrient cycling and soil acidification models, developed for use 
at different scales, are presented and evaluated. The models considered are NUCSAM 
(NUtrient Cycling and Soil Acidification Model), RESAM (REgional Soil Acidification 
Model) and SMART2 (an extended version of Simulation Model for Acidification's 
Regional Trends). These are mechanistic dynamic models, which simulate 
biogeochemical processes in semi-natural terrestrial ecosystems at a variety of scales. 
The research tool NUCSAM, which is specifically developed for application on a local 
scale, includes simulation of the daily variability in biogeochemical processes in 
various soil layers. RESAM and SMAR'I'2, tools to support policy makers, were 
specifically developed to evaluate long-term soil responses to deposition scenarios on 
a regional scale (national to continental, respectively). For that reason, the models 
RESAM and SMART2 are relative simple models and operate on a yearly time-scale. 
These models were developed in view of following research hypotheses: 

1. Adequate simulation of temporal responses in soil solution chemistry on a daily 
basis at various depth requires a detailed multi-layer biogeochemical model 
(NUCSAM); 

2. Annual average responses in soil solution chemistry at the bottom of the root 
zone can be adequately simulated with a simple, one-layer biogeochemical model 
(SMART2); 

3. Simulation of soil solution chemistry on a regional scale requires a simplified 
model; 

4. Adequate simulation of soil solution chemistry on a regional scale requires 
parameterisation, calibration, validation and uncertainty analysis on that scale. 

Therefore, this thesis primarily aims at testing these hypotheses by (i) validation and 
calibration, (ii) uncertainty analysis, and (iii) model comparison. More specifically, the 
models NUCSAM (site scale), RESAM (site scale/regional scale) and SMART2 (regional 
scale) will be evaluated with respect to the optimal balance between model complexity, 
data availability and model aim. 
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Summary 

Overview of the models 
NUCSAM, RKSAM and SMAR'I'2 are all based on the principle of ionic charge balance 
and on a simplified solute transport description. All models assume that: (i) a soil layer 
is a homogeneous compartment of constant density and (ii) the element input mixes 
completely in a soil layer. NUCSAM is a detailed nutrient cycling and soil acidification 
model for semi-natural ecosystems, especially developed for site scale applications. 
Consisting of multi-layers and having a daily temporal resolution. NUCSAM integrates 
the hydrological- and nutrient cycle and soil chemical processes, while including all 
relevant processes in the forest canopy, organic surface layer, mineral soil and soil 
solution. The hydrological cycle is modelled by a separate Darcy-law-based 
hydrological model. Nutrient cycling, involves nutrient uptake, litterfall, root turnover 
and mineralisation. Forest growth is described by a logistic growth function. 
Equilibrium and rate limiting chemical reactions are explicitly modelled in a chemical 
module. Chemical reactions rates depend on temperature, whereas biochemical 
processes depend on temperature, moisture content and pi I. 

Going into the direction NUCSAM, RKSAM, SMAR'1'2, process aggregation is 
achieved by (i) confining to annual averages, (ii) confining to one soil layer, (iii) 
simpler descriptions of processes, (iv) ignoring or lumping elements, and (v) ignoring 
several processes.. In RKSAM and SMAR'I'2 the annual water flux percolating through a 
soil layer is constant and equals the infiltration minus the transpiration, whereas 
NUCSAM contains a separate hydrological model with a daily timestep. SMAR'I'2 is 
confined to one layer, whereas RKSAM and NUCSAM are multi-layer models. Biological 
processes are all described by rate-limited reactions, usually first-order reactions. In 
SMAR'I'2, geochemical reactions are described by equilibrium equations, except silicate 
weathering, which is described by a zero-order reaction. So, unlike SMAR'I'2, NUCSAM 
and RKSAM account for the effect of mineral depletion on the weathering rate. In 
NUCSAM and RKSAM the geochemical reactions are either described by equilibrium 
equations or first-order reactions. 

Adequacy of s imulat ion on a plot scale 

Detailed modelling responses in soil solution chemistry 
The detailed NUCSAM model was applied to the Speulderbos Douglas fir stand, and 
validated using measured data on soil and soil solution chemistry. Applications of the 
NUCSAM model to the intensively monitored site Speuld site was hampered by the 
large spatial variability of throughfall, soil solution chemistry and stand structure. This 
was mainly because separated 'disciplinary' subplots for hydrology, soil chemistry and 
forest growth were used for monitoring. Either the number of sampling replicates was 
too small to calculate stand averages (soil chemistry), or it was impossible to select 
more or less homogeneous subplots (hydrology and biomass inventory). Nevertheless, 
the agreement between observed and simulated changes in soil solution chemistry was 
reasonably good. NUCSAM reproduced the magnitude and trends of measured 
quantities, such as soil water contents and soil solution chemistry. Also the seasonal 
trends and trends with soil depth could be reproduced rather well 
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Scenario analyses, that were carried out for Douglas fir on a Cambic podzol and 
Scots pine on an Haplic Arenosol showed that the model is a suitable instrument for 
scenario analyses on a local scale. Model results showed that deposition reduction led 
to: (i) a fast improvement of the SO4 and Al concentrations after a decrease in SOx 

deposition, (ii) time-delay for the NO3 concentration following a decrease in nitrogen 
deposition, and (iii) higher soil solution concentrations of all solutes in the soil below 
Douglas fir. Despite its complexity, a model such as NUCSAM can be rather useful to 
evaluate of pre-defined temporal deposition scenarios. Such analysis is, however, only 
valid for a specific site and cannot be (quantitatively) applied at a larger spatial scale. 
There is little hope to obtain a reasonable coverage for the Netherlands as a whole, by 
applying a model as NUCSAM at a sufficient number of intensively monitored sites, 
because of high costs involves and limited flexibility of the model (application time, 
calculation time and processing time). Accordingly, for regional applications, model 
simplification is inevitable. 

Uncertainties in soil solution chemistry on a site scale 
Besides the inevitable role of an uncertainty analysis with in the context of ecological 
modelling, uncertainty analyses may also be helpful in finding guidelines for model 
simplification. An uncertainty analyses on a site scale was performed with RliSAM, an 
already simplified version of NUCSAM. Results showed that the uncertainty strongly 
depends on the considered model output, soil layer and time. The same is true for the 
contribution of the uncertainty of various parameters to the uncertainty of the 
considered output variables. The results of the uncertainty analysis indicated that 
nutrient cycling processes and kinetics of Al dissolution need to be known properly to 
simulate solute fluxes and concentrations in the topsoil, while in the subsoil they are 
unimportant. In addition, the need to describe a particular processes also depends on 
the constituent considered. E.g. pi I is mainly influenced by the Al dissolution 
processes, whereas concentrations of NO3 and NH4 are mainly influenced by nutrient 
uptake and (de)nitrification. Accordingly, a simplified model able to model all major 
solutes in and below the root zone, must include almost all processes that are included 
in the detailed model. Subsequently, results from an uncertainty analysis alone are not 
enough for the guidance of model simplification. 

Annual average responses in soil solution chemistry with a simple one-
layer biogeochemical model 
The simplified model SMAR'I'2 meant for application at larger spatial and temporal 
scales was evaluated at the Risdalsheia catchment. On boreal forest ecosystems at 
Risdalsheia (southern Norway), catchment-scale experiments of the RAIN and 
CLIMEX projects were conducted during a period of 15 years. These unique series of 
experiments at the ecosystem scale provides information on the effects and 
interactions of N deposition and increased temperature and CO2 on C and N cycling 
and especially the runoff chemistry. The observations at the Risdalsheia catchments 
are annual average concentrations from the runoff of the whole catchment, which 
means that the time and space resolutions of measurements and modelling are similar. 
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Summary 

The inclusion of the climate change effect in SMAR'I'2 was restricted to the 
temperature effect on mineralisation of old litter, (de)nitrification, weathering and Al 
oxide dissolution constant. 

The observed time-series in runoff chemistry in response to deposition 
reduction and temperature rise were well reproduced. Although, SMART2 tended to 
underestimate the concentrations of SO4, NO}, NH4 and BC2. The observed increase 
in N-runoff was reproduced well by the model, just like the observed increase in 
mineralisation and nitrification. Still, there is a need to pay attention to the N-cycling 
in SMART2, considering the adaptation of the pi I influence on mineralisation in this 
application. The temperature dependency of mineralisation was simulated adequately, 
but the temperature effect on nitrification was slightly overestimated. This application, 
with quite a long observation period, contributes to an increase in confidence in using 
SMART2 on the regional scale, especially to evaluate deposition scenarios. 

Model comparison on a local scale 
The site applications of both NUCSAM and SMART2 gave hopeful results. However, 
before accepting SMART2 as suitable tool for regional applications, it is necessary to 
analyse the influence of model simplifications, in terms of process detail, number of 
soil layers and temporal variability, on the modelled of soil solution concentrations 
and leaching fluxes. To that aim, all three models (NUCSAM, RESAM and SMAR'I'2) 
where first validated by comparing simulated concentrations and leaching fluxes with 
measured values at the Soiling site during the period 1973-1989. Next, long-term soil 
and soil solution response simulated with three models were compared using two 
deposition scenarios for the period 1990-2090. Input parameters were derived from 
measured data at the Soiling site. Outputs from the one-layer model SMART2 were 
compared with measured soil solution concentration averaged over depth. 

Despite differences in their process descriptions, SMART2, RESAM and 
NUCSAM simulate most of the solute concentrations reasonably well. Whether the 
dissolution of Al-hydroxides was modelled by a rate-limited reaction (NUCSAM, 
RESAM) or by an equilibrium equation (SMART2) hardly affected modelled Al 
concentrations. The differences in N cycling processes also hardly affect the quality of 
the modelled NO3 and NII4 concentrations. All models mimicked the observed a rise 
in SO4 concentration between 1975 and 1980, due to a decrease in sulphate 
adsorption. However, the one-layer model, SMART2, overestimated the initial rise in 
dissolved SO4, due to a large dispersion of the sulphur front in a one-layer system. On 
the other hand for the simulation period as a whole SMART2 showed the best 
performance for SO4 in the subsoil. 

In the topsoil, NO3 concentrations simulated by these models were in the same 
range as the measurements. Subsoil NO3 concentrations were slighdy underestimated 
by RESAM and SMART2, whereas these were slightly overestimated by NUCSAM. The 
NH4 concentration in topsoil was best modelled by SMART2, the two other models 
seriously modelled too high NH4 concentration in the topsoil. All three models 
underestimated the NH4 concentrations in the subsoil, but the observed NH4 
concentration in subsoil are already very low. 
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This implies that ignoring seasonal variations of weather conditions, ignoring of 
different soil layers and simplifying process description simplification does not need to 
greatly affect the modelled long-term response of flux-weighted annual average soil 
solution chemistry to acid deposition. Consequently, it is concluded that the level of 
aggregation/simplification as used in the model SMART2 is acceptable for making 
long-term predictions on a regional scale. 

A d e q u a c y of s i m u l a t i o n on a r e g i ona l s ca l e 

Annual average responses on soil solution chemistry on a regional scale 
The model SMART2 has been incorporated in a framework to support national scale 
applications using a 250 x 250 m2 grid. However, adequate simulation of annual 
average response at a particular soil depth on a plot scale does not necessarily imply 
that the results are also acceptable on a regional scale. This requires testing and 
validation on a regional scale. Therefore, SMART2 has been applied and validated for 
the Netherlands as a whole using regionally available data. Furthermore, the model 
was used to analyse the effects of upward seepage, atmospheric deposition and 
nutrient cycling on changes in semi-natural terrestrial ecosystems. The model SMAR'I'2 
was also linked with a vegetation effect model MOVE to quantify the effects on 
floristic diversity. 

SMART2 appeared to be a rather flexible and quick tool to evaluate deposition 
and seepage scenarios. Model predictions for the NO3 and NII4 concentrations 
showed a moderate relationship with the observations. Model predictions of pH and 
Al concentration show a reasonable to good agreement with observations, but the Al 
in concentration in poor sandy soils was overestimated. The (spatial) variability in all 
investigated model outputs, i.e. pH, base saturation and N availability is large. The 
spatial variability in pH and base saturation is linked with the spatial variability in soil 
type, whereas the spatial variability in N availability is linked with the spatial variability 
in N deposition. N availability highly depends on the age of the vegetation. 
Consequently, it is inevitable that spatially explicit modelling is needed. 

Uncertainties in soil solution chemistry on a regional scale 
VChen modelling soil solution chemistry on a regional scale, it is inevitably that both 
model and data have varying degrees of associated uncertainty. Therefore, SMART2 
was subjected to an uncertainty analysis in a spatial context. Given the large costs 
associated with measures to prevent increased Al and NO3 concentrations, it is 
important to assess whether the collection of more data would result in a reduction of 
the prediction interval. From the present study useful information can be derived to 
support decisions on different alternatives for reducing uncertainties associated with 
long-term model predictions. Possible alternatives are either improving the soil and 
vegetation maps or collecting additional input data in order to reduce the uncertainty 
in parameters. 

The analyses was focussed on the uncertainty in long-term large-scale 
predictions of soil solution concentrations of Al and NO3 resulting from the 
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uncertainty in low resolution European-scale maps (1:1000 000) and other input data. 
Model outputs were considered as block median concentrations (for 5x5 km2 grid 
cells) and the block areal fractions (for 5x5 km2 grid cells) in which concentrations 
exceeded a critical level. As sources of uncertainty we considered (i) the soil and 
vegetation maps (categorical data), and (ii) the soil and vegetation-related parameters 
(continuous data). The uncertainty in categorical data was quantified by comparing 
European soil and vegetation maps, and the more detailed maps of the Netherlands. 
The uncertainty in continuous data was derived from various European databases and 
literature. The uncertainty in model outputs was quantified by an efficient two-step 
Monte Carlo simulation approach, which takes spatial correlation into account. 

It is showed that the width of the prediction interval largely depends on 
whether block median concentrations or block areal exceedances are considered. The 
Al concentration showed wide 90% prediction intervals both for areas with low Al 
concentrations (i.e. calcareous and clay soils) and for areas with high concentrations 
(mainly poor sandy soils). For the scenarios evaluated, the model was able to predict a 
considerable decrease in Al concentration, despite the large prediction intervals due to 
uncertainty in the model input data. 

The relative uncertainty contribution largely depended on the model output 
considered. For the Al concentration the soil-related parameters contributed most to 
the output uncertainty, whereas the uncertainty contribution of the vegetation-related 
parameters was negligible. By contrast, the results for the NO3 concentration showed 
that the average uncertainty contribution mainly stemmed from the soil and vegetation 
maps, directly followed by the continuous vegetation-related parameters, whereas the 
continuous soil-related parameters contributed least. In general it is concluded that 
most emphasis must put on improvement the soil and vegetation related parameters 
and less on the improvement of the soil and vegetation maps. 

Reducing the uncertainty in regional model prediction by model 
calibration 
To quantify of the beneficial effect of model calibration at a large spatial scale, the 
prediction error of SMAR'I'2 was assessed before and after calibration, for the median 
Al and NO3 concentrations in a 5 x 5 km2 grid cell. Because observations are available 
only as point values, it was necessary to transfer them to representative values for a 
5 x 5 km2 grid. For this purpose, about 250 point observations of soil solution 
concentrations in forest soils were upscaled to a 5 x 5 km2 grid map, using multiple 
linear regression analysis combined with block kriging. The resulting map with 
upscaled observations was used for both validation and calibration. A comparison of 
the map with model predictions using nominal parameter showed that the model 
overestimated the predicted Al and NO3 concentrations. The nominal model results 
were still in the 95% confidence interval of the upscaled observations, but calibration 
improved the model predictions and strongly reduced the model error. 

The used calibration procedure appeared to be a useful tool for finding optimal 
parameter ranges, and for reducing input uncertainties. The calibration appeared to be 
very successful in correcting the overestimation of Al and NO3 concentrations 
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resulting from the nominal parameter set. However, the model error after calibration 
remains rather large, but further improvement through calibration is hampered from 
the lack of good quality data. 

Model comparison on a regional scale 
A reliable spatial distribution of NO3 concentrations below the root zone of semi-
natural ecosystem are of special interest with respect to the exceedance of critical 
concentrations. 

To gain additional insight into the uncertainty due to the model structure of 
SMAR'I'2, the simulated spatial distribution on solute concentrations on NO3 in Dutch 
forest ecosystems were compared with: (i) a regression model based on observed NO3 
concentrations and additional data on explanatory variables and (ii) a semi-empirical 
dynamic model WANDA. The comparison was performed for the Netherlands as 
whole, using a 250 X 250 km2 grid. The NO3 maps as calculated by the three methods 
provided clearly different results. However, the spatial distributions in the form of a 
cumulative distribution function provided comparable results, especially at 5 X 5 km2 

grid. This grid-cell increase, however, cost spatial resolution, and decrease the benefit 
for determining exceedance areas. 

Main findings 
The detailed model NUCSAM reproduced the magnitude and trends of measured 
quantities, such as soil water contents and soil solution chemistry. However, the 
application on a site scale hampers from the lack of good quality data. Results showed 
that it is inevitable that a model, such as NUCSAM, can not be applied at a large spatial 
scale because of the lack of data availability. This makes it clear that the model must 
be simplified for application at larger spatial and temporal scale. Results of the 
uncertainty analysis indicated that a simplified model able to model all major solutes in 
and below the root zone, must include almost all processes that are included in the 
detailed model. 

The capability of the simplified model SMART2 to simulate the observed flux-
weighted annual averaged concentrations is comparable or even better than NUCSAM. 
This implies that ignoring seasonal variations of weather conditions, ignoring of 
different soil layers and simplifying process description simplification does not need to 
gready affect the modelled long-term response of flux-weighted annual average soil 
solution chemistry to acid déposition. Accordingly, is concluded that a simplified 
model, such as SMART2, is an acceptable tool for making long-term evaluation of 
environmental abatement strategies. 

Application of a regional model, such as SMART2, to the whole of the 
Netherlands, while only parameterised and calibrated on a small number of intensive 
monitored sites yields inadequate results. Model performance is seriously improved 
and the prediction uncertainties strongly decreased by model calibration at the scale 
required for the ultimate output. However, the model error after calibration remains 
rather large, but further improvement through calibration is hampered from the lack 
of good quality data on a national scale. It is concluded that most emphasis must put 
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on improvement the soil and vegetation related parameters and less on the 
improvement of the soil and vegetation maps. 

Models for larger spatial and temporal scale must be simplified as much as 
possible, while retaining a degree of process description so that model evaluation 
through calibration, validation and uncertainty analysis is feasible. 
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Samenvatt ing 

Zowel op de locale als regionale schaal staat het evalueren van effecten van het 
menselijk handelen op het milieu erg in de belangstelling binnen het milieuonderzoek. 
Dit type onderzoek vormt de basis voor het beleid ten aanzien van emissiebeperkende 
maatregelen ten behoeve van een duurzame samenleving. Bij het evalueren van 
milieueffecten zijn computermodellen een steeds grotere rol gaan spelen. Zo wordt 
binnen het Nederlandse Milieu- en Natuurplanbureau gebruik gemaakt van diverse 
geïntegreerde modellen, welke ingezet worden voor het evalueren van 
beleidsscenario's ten aanzien van een brede range van milieuproblemen, zoals: 
eutrofiëring, verzuring, klimaatverandering en afname van biodiversiteit. Binnen al 
deze thema's spelen procesgeoriënteerde dynamische modellen voor het simuleren 
biogeochemische processen in ecosystemen, een belangrijke rol. 

Doel en hypothesen 
In dit proefschrift worden diverse nutriëntenkringloop- en bodemverzuringsmodellen, 
die ontwikkeld zijn voor toepassing op verschillende schaalniveaus beschreven en 
geëvalueerd. Het gaat hierbij om de modellen NUCSAM (NUtrient Cycling and Soil 
Acidification Model), RlïSAM (REgional Soil Acidification Model) en SMART2 (een 
uitgebreide versie van het model Simulation Model for Acidification's Regional 
Trends). Dit zijn allen mechanistische dynamische modellen voor het simuleren van 
biogeochemische processen in half-natuurlijke terrestrische ecosystemen. Het 
onderzoeksmodel NUCSAM is speciaal ontwikkeld is voor toepassing op de locale 
schaal. Daarom zijn in dit model onder andere de biogeochemische processen op 
dagbasis gemodelleerd en wordt er ook onderscheid gemaakt in diverse bodemlagen. 
De modellen Rl'SAM en SMART2 zijn speciaal ontwikkeld als beleidsondersteunende 
modellen. In het bijzonder voor de evaluatie van lange-termijn veranderingen in de 
bodem op regionale schaal (variërend van nationaal tot continentaal) ten gevolge van 
atmosferische depositie- en hydrologische- scenario's. Daarom zijn de modellen 
R.F.SAM en SMART2 relatief eenvoudige modellen die op jaarbasis rekenen. Deze 
modellen zijn ontwikkeld uitgaande van de volgende onderzoekshypothesen: 

1. het op dagbasis adequaat simuleren van temporele veranderingen in 
bodemvochtchemie vereist een gedetailleerd meerlagig biogeochemisch model 
(NUCSAM); 

2. jaargemiddelde veranderingen in bodemvochtchemie aan de onderkant van de 
wortelzone zijn adequaat te modelleren met een eenvoudig eenlagig 
biogeochemisch model (SMART2); 

3. het simuleren van de bodemvochtchemie op een regionale schaal vereist een 
eenvoudig model; 

4. het adequaat simuleren van de bodemvochtchemie op een regionale schaal vereist 
parameterisatie, calibratie, validatie en een onzekerheidsanalyse op datzelfde 
schaalniveau. 
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Dit proefschrift heeft met name tot doel om deze hypothesen te toetsen middels: (i) 
validatie en calibratie, (ii) onzekerheidsanalyse en (iii) modelvergelijking. Meer 
specifiek houdt dit in dat de modellen NUCSAM (plotschaal), RESAM 
(plotschaal/regionale schaal) en SMART2 (regionale schaal) geëvalueerd zullen worden 
met het oog op een optimale balans tussen modelcomplexiteit, databeschikbaarheid en 
doel van het model. 

Overzicht van de modellen 
NUCSAM, RESAM en SMART2 zijn allen gebaseerd op het ladingsbalansprincipe en een 
eenvoudige beschrijving voor het transport van bodemvocht. Alle modellen 
veronderstellen dat: (i) een bodemlaag homogeen is en een constante dichtheid heeft, 
en (ii) de stoffen in een bodemlaag volledig gemengd worden. NUCSAM betreft een 
gedetailleerd nutriëntenkringloop- en bodemverzuringsmodel voor half-natuurlijke 
terrestrische ecosystemen, special bedoeld voor toepassing op een plotschaal. Het 
model bevat meerdere bodemlagen en rekent met tijdresolutie van een dag. In 
NUCSAM worden hydrologische -, nutriëntenkringloop - en bodemchemische 
processen geïntegreerd. Hierbij zijn alle relevante processen in het kronendak, de 
strooisellaag, de minerale bodem en het bodemvocht meegenomen. De hydrologische 
kringloop is gemodelleerd middels een apart hydrologisch-model gebaseerd op de wet 
van Darcy. De gemodelleerde nutriëntenkringloop omvat nutriëntopname, bladval, 
wortelsterfte en mineralisatie. Bosgroei is beschreven met een logistische groeicurve. 
Chemische-evenwichten en snelheidsprocessen worden in een aparte chemische-
evenwichtsmodule gemodelleerd. Chemische-reacties zijn binnen het model 
afhankelijk van de temperatuur, terwijl de biochemische-processen naast de 
temperatuur ook afhankelijk zijn van het bodemvochtgehalte en de pH. 

Gaande in de richting van NUCSAM, RESAM, SMART2, is er sprake van 
vereenvoudiging en aggregatie door (i) het rekenen met jaarlijks gemiddelde waarden, 
(ii) het beperken tot een bodemcompartiment, (iii) het eenvoudige beschrijven van 
processen, (iv) het negeren of lumpen van element, en (v) het negeren van diverse 
processen. Zo wordt in RESAM en SMART2 de jaarlijkse waterflux door een bodemlaag 
bepaald door de opgelegde jaarlijkse waterbalans: infiltratie minus transpiratie, terwijl 
de hydrologie in NUCSAM door een apart hydrologisch-model met een dagelijkse 
tijdstap wordt berekend. SMART2 is bestaat uit slechts een bodemlaag, terwijl RESAM 
en NUCSAM meerdere bodemlagen bevatten. Biologische-processen zijn als 
snelheidsprocessen gemodelleerd, meestal als eerste-orde processen. In SMART2 zijn 
de meeste geochemische processen beschreven als evenwichten. De verwering van 
silicaten is opgenomen als een Oe-orde proces. In tegenstelling tot SMART2, houden 
NUCSAM en RESAM rekening met het effect van uidoging van mineralen gehalten op 
de verweringssnelheid. In NUCSAM en RESAM zijn de geochemische-reacties of 
middels evenwichtsvergelijkingen of middels le-orde reacties beschreven. 
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H e t a d e q u a a t s i m u l e r e n op p l o t s c h a a l 

Gedetailleerd modelleren van veranderingen in bodemvochtchemie 
Het gedetailleerde NUCSAM model is toegepast op een intensief doorgemeten 
onderzoekslocatie in het Speulderbos bestaande uit douglassparren. Het model is 
gevalideerd aan de hand van bodem- en bodemvochtmetingen. De toepassing van 
NUCSAM op de douglassparrenopstand in het Speulderbos werd echter belemmerd 
door een grote ruimtelijke variabiliteit van doorval, bodemvochtchemie en de 
structuur van de opstand. Dit was met name problematisch omdat de metingen 
plaatsvonden in afzonderlijke discipline-georiënteerde subplots: één voor de 
hydrologie, één voor de bodemchemie en een voor de bosgroei. Met als gevolg dat of 
het aantal replica's te klein was om een opstandsgemiddelde grootheden te bepalen (in 
het geval van de bodemchemieplot), of het onmogelijk was om een voldoende 
homogene subplot te vinden (in het geval van de hydrologie - en bosgroeiplot). 
Desondanks, was er sprake van een goede overeenkomst tussen de gemeten en de 
gesimuleerde veranderingen in de bodemvochtchemie. NUCSAM bleek in staat om 
zowel de mate als de trend van de gemeten grootheden, zoals vochtgehalten en 
bodemvochtconcentraties, goed te reproduceren. Ook de seizoenstrend en de trend 
met de diepte werden goed gesimuleerd 

Scenario-analysen, die zijn uitgevoerd voor generieke combinaties van een 
douglassparrenopstand op een holtpodzolgrond en een grove-dennenopstand op een 
duinvaaggrond, laten zien dat het model een hanteerbaar en geschikt instrument is 
voor het uitvoeren van scenario-analysen op de locale schaal. Modelresultaten laten 
zien dat depositie-reductie leidt tot (i) een snelle afname van de SO4- en Al-
concentraties als gevolg reducties in de SOx-depositie, (ii) een naijlling in de afname 
van de NOj-concentraties als gevolg van de afname in de N-depositie, en (iii) hogere 
bodemvochtconcentraties in de douglassparrenopstand dan in de grove-
dennenopstand. Ondanks de hoge mate van complexiteit, is een model zoals NUCSAM 
bijzonder geschikt voor het evalueren van te voren vastgestelde tijdsafhankelijke 
depositie-scenario's. Een dergelijke analyse kan echter niet gerbuikt worden uitspraken 
op regionale - of nationale schaal, omdat de resultaten van een specifieke 
piottoepassing niet (kwantitatief) vertaald kunnen worden naar grotere ruimtelijke 
schaal. Er is echter weinig hoop op het verkrijgen van een acceptabele dekkingsgraad 
met NUCSAM-toepassingen voor geheel Nederland. Als gevolg van de hoge kosten die 
daarmee gemoeid zijn, is er een gebrek aan intensief doorgemeten locaties en is een 
model als NUCSAM niet flexibel genoeg voor toepassing op een grotere ruimtelijke 
schaal (hoge tijdsinvestering voor het uitvoeren van veel toepassingen en lange 
rekentijden). Daarom is het voor regionale - of nationale toepassingen noodzakelijk 
om het model te vereenvoudigen. 

Onzekerheid in bodemvochtchemie op locale schaal 
Naast de reguliere rol die een onzekerheidsanalyse speelt bij het modelleren van 
biogeochemische processen, kan een onzekerheidsanalyse ook een bijdrage leveren bij 
het vinden van richtlijnen die kunnen leiden tot modelvereenvoudigingen. Een 
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onzekerheidsanalyse op de locale schaal is uitgevoerd met het model RESAM, een al 
reeds vereenvoudigde versie van NUCSAM. De resultaten laten zien dat de onzekerheid 
sterk afhankelijk is van de beschouwde modeluitgang, bodemlaag en tijd. Datzelfde 
geldt ook voor de onzekerheidsbijdrage van de modelparameters aan de onzekerheid 
van de beschouwde modeluitgangen. De onzekerheidsanalyse geeft aan dat de 
nutriëntenkringloopprocessen en de kinetiek van het oplossen van Al-precipitaten in 
belangrijke mate bepalend zijn voor het adequaat simuleren van bodemvochtfluxen en 
— concentraties in de bovengrond, terwijl deze processen voor de ondergrond relatief 
onbelangrijk zijn. Daarnaast hangt de noodzaak om een proces wel of niet mee te 
nemen ook af van het beschouwde modeluitgang. Zo wordt de pH met name 
beïnvloed door het oplossen van Al-precipitaten, terwijl de NOi- en NII4-
concentraties met name beïnvloedt worden door nutriëntopname en (de)nitrificatie. 
Een vereenvoudigd model dat in staat moet zijn om alle belangrijke 
bodemvochtcomponenten te modelleren, zowel in als aan de onderrand van de 
wortelzone, dient daarom vrijwel alle processen in zich te hebben die ook in het 
complexe model zitten. Het gevolg hiervan is dat een onzekerheidsanalyse maar een 
beperkte bijdrage kan leveren bij het verstrekken van richtlijnen voor het 
vereenvoudigen van modellen. 

Jaargemiddelde veranderingen in bodemvochtchemie gemodelleerd met 
een eenvoudig eenlagig biogeochemisch model 
Het vereenvoudigde model, SMARI'2, dat ontwikkeld is voor lange-termijn 
toepassingen op regionale schaal is eerst toegepast op een experimenteel vanggebied in 
Risdalsheia, zuidelijk Noorwegen. In een vanggebied nabij Risdalsheia begroeid met 
een boreaal bos zijn gedurende 15 jaar experimenten uitgevoerd op het schaalniveau 
een vanggebied. Deze experimenten zijn uitgevoerd in het kader van de EU-
onderzoeksprojecten RAIN (manipulatie-experimenten met depositie) en CLIMEX 
(manipulatie-experimenten met klimaat). Het betreft een unieke serie van 
experimenten op ecosysteemschaal, dat informatie verschaft over de effecten van de 
interactie tussen N depositie en toename in temperatuur en CO2 op C- en N-
kringloop en bovenal op de concentraties in het afstromende water. De metingen in 
het Risdalsheia-vanggebied zijn eenvoudig te herleiden tot jaargemiddelde 
concentraties in het afstromende water. Dit betekent dat de ruimtelijke - en temporele 
schaalniveaus van metingen en model goed overeenkomen. Voor deze toepassing is 
SMART2 voorzien van klimaatsveranderingsprocessen te weten, temperatuureffect op 
mineralisatie van oud strooisel, (de)nitrificatie en de verwering van Al-precipitaten. 

De gemeten tijdreeks van concentraties in het afstromende water, dat 
gemanipuleerd werd door depostie-reductie en temperatuur toename, werd door het 
model goed gereproduceerd. De door SMART2 gemodelleerde concentraties van SO4, 
NO3, NH4 en BC2, werden echter enigszins onderschat. De gemeten toename in N-
afvoerflux werd door het model goed gereproduceerd, evenals de waargenomen 
toename in mineralisatie en nitrifïcatie. Desondanks is er aanleiding om de N-
kringloop processen in het model te verbeteren. Het gaat hierbij met name om het 
ingebouwde effect van de p i l op de mineralisatie. De gemodelleerde temperatuur 
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afhankelijkheid van de mineralisatie leverde goede resultaten op, maar het temperatuur 
effect op de nitrificatie werd enigszins overschat. De bevredigende resultaten van deze 
validatiestudie op basis van een relatief lange dataset, laten zien dat het model SMAR'I'2 
een adequaat model is om in te zetten bij regionale - en nationale toepassingen. In het 
bijzonder wanneer het gaat om de evaluatie van depositie-scenario's. 

Model vergelijking op locale schaal 
Plotschaal toepassingen van zowel NUCSAM als SMAR'I'2 hebben hoopvolle resultaten 
opgeleverd. Maar voordat we een model als SMAR'I'2 kunnen accepteren als een 
geschikt model voor regionale — en nationale toepassingen, is het noodzakelijk om de 
effecten van modelvereenvoudigingen in meer detail te analyseren. I Iet gaat hierbij om 
de effecten van vereenvoudigingen in procesbeschrijvingen, reductie in het aantal 
bodemlagen en reductie in de temporele variabiliteit op de gemodelleerde 
bodemvochtconcentraties en uitspoelingsfluxen. Hiertoe zijn de drie modellen 
(NUCSAM, RKSAM en SMAR'I'2) eerst gevalideerd middels een vergelijking tussen de 
gemeten en gemodelleerde concentraties en uitspoelingsfluxen. Hierbij is gebruik 
gemaakt van gegevens van de onderzoekslocatie Solling (midden Duitsland), die 
gedurende de periode 1973-1989 zijn verzameld. Vervolgens zijn de resultaten van 
lange-termijn (1990-2090) simulaties, uitgevoerd met de drie modellen, onderling 
vergeleken 1990-2090. De uitvoer van het eenlaagmodel SMART2 werd vergeleken met 
de laagdikte gewogen gemiddelde van de gemeten bodemvochtconcentraties in de 
corresponderende lagen. 

Ondanks de verschillen in procesbeschrijvingen, worden de meeste 
bodemvochtconcentraties door de modellen SMAR'1'2, RliSAM en NUCSAM redelijk 
goed gesimuleerd. Of het oplossen van Al-precipitaten nu gemodelleerd wordt met 
een snelheidsreactie (NUCSAM, RKSAM) of met een evenwichtsvergelijking (SMART2), 
beïnvloedt de gemodelleerde Al-concentraties niet of nauwelijks. De verschillen in N-
kringloopprocessen beïnvloedt ook nauwelijks de gemodelleerde NO3- en NII4-
concentraties. Alle modellen simuleren ook de waargenomen toename in SO4-
concentratie in de periode tussen 1975 en 1980, als gevolg van een afname in 
sulfaatadsorptie, hoewel het eenlagige SMARI'2 de initiële toename in opgelost SO4 
overschat. Dit laatste als gevolg van de grote mate van dispersie van het sulfaatfront in 
een eenlagigsysteem. Desondanks laat SMART2 over de gehele simulatieperiode de 
beste performance zien voor de S04-concentratie in de ondergrond. 

In de bovengrond vallen de gesimuleerde NO^-concentraties van alle modellen 
binnen de range van de gemeten concentraties. In de ondergrond, werden de NO3-
concentraties enigszins onderschat door RKSAM en SMAR'1'2, terwijl deze door 
NUCSAM iets overschat werden. De NH4-concentraties in de bovengrond werden het 
best gemodelleerd door SMAR'1'2. De twee andere modellen berekende duidelijk te 
hoge NH4-concentrades in de bovengrond. Alle drie modellen onderschatten de NH4-
concentraties in de ondergrond, maar het gaat hierbij wel om zeer lage gemeten 
concentraties. 

Uit deze vergelijkende studie volgt dat het negeren van seizoensvariatie in 
weerscondities en nutriëntendynamiek, het lumpen tot een bodemcompartiment en 
het vereenvoudigen van procesbeschrijvingen, niet of nauwelijks de kwaliteit van de 
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gesimuleerde jaarlijksgemiddelde bodemvochtconcentraties — en fluxen beïnvloedt. 
I Iet aggregatieniveau en de mate van detaillering van procesbeschrijvingen zoals dat in 
het model SMARl'2 is toegepast is dus acceptabel voor het maken van lange-termijn 
simulaties op regionale schaal. 

H e t a d e q u a a t s i m u l e r e n op r e g i ona l e s c h a a l 

Jaargemiddelde veranderingen in bodemvochtchemie op regionale 
schaal 
Het model SMAR'I'2 is ondergebracht in een raamwerk voor het uitvoeren van 
landelijke toepassingen op basis van een 250 X 250 m2 grid. Omdat het adequaat 
simuleren van jaargemiddelde bodemvochtconcentraties op een bepaalde diepte voor 
een specifieke plot nog geen garantie biedt voor adequate simulatie op een regionale 
schaal, dient het model ook getest en gevalideerd te worden op de regionale schaal. 
Hiertoe is SMAR'I'2 toegepast en gevalideerd voor geheel Nederland met 
gebruikmaking van een landelijke datasets. Vervolgens is het landelijke model gebruikt 
om effecten te kwantificeren van veranderingen in de hydrologie (kwelflux), 
atmosferische depositie en vegetatiesuccessie in half-natuurlijke terrestrische 
ecosystemen. Het model SMAR'I'2 is tevens gekoppeld met het vegetatie-effectmodel 
MOVE om een uitspraak te kunnen doen omtrent veranderingen in floristische 
diversiteit. 

SMAR'I'2 onder gebracht in een landelijk-raamwerk, blijkt een flexibel en snel 
instrument voor het evalueren van depositie - en hydrologie (kwel) scenario's. 
Gemodelleerde NO3- en NH-t-concentraties komen goed overeen met waarnemingen 
uit een landelijke dataset. Gemodelleerde pH en Al-concentraties laten ook 
bevredigende resultaten zien, maar de gemodelleerde Al-concentraties in arme 
zandgronden bleken te hoog. De resultaten laten ook een grote mate van ruimtelijke 
variabiliteit zien in de gemodelleerde pH, basenverzadiging en N-beschikbaarheid. De 
ruimtelijke variabiliteit in pH en basenverzadiging hangt nauw samen met de variatie 
in bodemtype, terwijl die van de N-beschikbaarheid nauw samenhangt met de 
ruimtelijke variabiliteit in N-depositie. Daarnaast hangt de N-beschikbaarheid ook in 
hoge mate af van het successiestadium van de vegetatie. Deze resultaten geven aan dat 
voor het uitvoeren van landelijke evaluaties ruimtelijk expliciet gemodelleerd dient te 
worden. 

Onzekerheid in bodemvochtchemie op locale schaal 
Bij het modelleren van de bodemvochtchemie op regionale schaal dient zowel 
rekening te worden gehouden met de onzekerheden gerelateerd aan de modelstructuur 
en aan de onzekerheid in de gebruikte data. Hiertoe is met SMAR'I'2 een 
onzekerheidsanalyse uitgevoerd in een ruimtelijke context. Gegeven de hoge kosten 
die gemoeid zijn met maatregelen om Al en NCb-concentraties in bodem- en 
grondwater te reduceren, is het van belang om na te gaan of met aanvullende 
dataverzameling een reductie in de onzekerheid van de modeluitkomsten is te 
bewerkstelligen. Een dergelijk onderzoek levert belangrijke informatie op basis 
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waarvan een besluit kan worden genomen over de te volgen strategie om 
onzekerheden in lange-termijn modelvoorspelling te reduceren. Mogelijk alternatieven 
zijn het verbeteren van de betrouwbaarheid van de gebruikte bodem- en 
vegetatiekaarten of het verzamelen aanvullende gegevens ten behoeve van de 
modelparameterisatie. 

De in dit proefschrift uitgevoerde analyse richt zich op de onzekerheid in lange-
termijn voorspellingen van de Al- en NOß-concentraties in het bodemvocht als gevolg 
van de onzekerheid in grootschalige bodem- en vegetatie-kaarten (bijv. de EU-
bodemkaart van 1:1000 000) en andere niet kaartgebonden gegevens. Gekeken is naar 
de mediane concentraties per gridcel (5x5 km2) en de areale fractie per gridcel (5x5 
km2) waar sprake is van overschrijding van een kritische concentratie. Beschouwde 
onzekerheidsbronnen zijn (i) de gebruikte bodem- en vegetatiekaarten (categorische 
data) en (ii) de bodem- en vegetatie-gerelateerde modelparameters (continue data). De 
onzekerheid in de categorische data is bepaald door het vergelijken van de Europese 
bodem- en vegetatiekaarten met de gedetailleerde Nederlandse kaarten. De 
onzekerheid in de continue data is bepaald aan de hand van diverse Europese 
databases en literatuurgegevens. De onzekerheid in de modeluitgangen is bepaald 
middels een efficiënte tweetraps Monte-Carlo-simulatie, waarbij rekening is gehouden 
met ruimtelijke correlatie. 

Resultaten laten zien dat de onzekerheid in hoge mate afhangt van de 
beschouwde modeluitgang, zoals de medianeconcentraties per gridcel en de areale 
overschrijdingen per gridcel. Voor de Al-concentratie worden brede 90% 
voorspellingsintervallen berekend, zowel in gebieden met lage Al-concentraties 
(kalkrijke — en kleigronden) als in gebieden met hoge concentraties (met name arme 
zandgronden). Ondanks de grote onzekerheid in de modeluitkomsten, was het model 
in staat om significante reductie in de gemodelleerde Al-concentraties te voorspellen 
als gevolg van de geëvalueerde depositie-scenario's. 

De relatieve onzekerheidsbijdrage hangt eveneens in hoge mate af van de 
beschouwde modeluitgang. Aan de onzekerheid in de Al-concentratie dragen de 
bodemgerelateerde parameters het meeste bij, terwijl de onzekerheidsbijdrage van de 
vegetatie-gerelateerde parameters verwaarloosbaar klein bleek. Voor de NO3-
concentratie daarentegen, leverende gebruikte bodem- en vegetatiekaart de grootste 
onzekerheidsbijdrage, direct gevolgd door de continue vegetatie-gerelateerde 
parameters, terwijl de continue bodemgerelateerde parameters het minst bijdroegen. 
In het algemeen kan geconcludeerd worden dat de meeste nadruk gelegd dient te 
worden op het verbeteren van de bodem- en vegetatie-gerelateerde parameters en 
minder nadruk op het verbeteren van de bodem- en vegetatiekaarten. 

Reductie van de onzekerheid bij regionale modelstudies middels 
modelcalibratie 
Voor het kwantificeren van het effect van modelcalibratie op nationale schaal is de 
fout in de modeluitkomsten van SMAR'I'2 voor en na calibratie bepaald. Dit is gedaan 
voor de mediane Al- en NCVconcentraties in een 5 x 5 km2 gridcel. Omdat er alleen 
metingen beschikbaar zijn op puntschaal, zijn deze gegeven eerst opgeschaald naar 
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hetzelfde schaalniveau als waarop de modeluitkomsten worden berekend. Hiertoe zijn 
ongeveer 250 punt-waarnemingen van gemeten bodemvochtconcentraties in 
bosbodems opgeschaald naar een 5 x 5 km2 gridkaart. I lierbij is gebruik gemaakt van 
een combinatie van multiple-lineaire-regressieanalyse en blockkriging. De daardoor 
verkregen opgeschaalde kaarten met waarnemingen zijn zowel gebruikt voor de 
validatie als de calibratie. Een vergelijking tussen de kaart met modelvoorspellingen op 
basis van nominale parameter-instellingen met de kaart met opgeschaalde 
waarnemingen laat zien dat het model zowel de Al- als de NOi-concentraties 
overschat. De nominale modelresultaten lagen weliswaar binnen het 95% 
betrouwbaarheidinterval van de opgeschaalde waarnemingen, maar de calibratie levert 
wel een duidelijke reductie van de modelfout op. 

De gebruikte calibratie-procedure blijkt een bruikbare methodiek om op 
nationale schaal te komen tot optimale parameterranges en voor het reduceren van 
onzekerheden. De calibratie blijkt tevens succesvol in het corrigeren van de 
overschattingen van de Al- en N03-concentraties. Ondanks deze verbeteringen blijft 
de modelfout na calibratie nog steeds relatief groot. Verdere verbeteringen zijn echter 
niet mogelijk door het gebrek aan de juiste gegevens. 

Modelvergelijking op regionale schaal 
Een betrouwbaar ruimtelijk beeld van NCh-concentraties in onder de wortelzone van 
half-natuurlijke ecosystemen is met name van belang voor het bepalen van de 
overschrijding van kritische concentraties. Om nader inzicht te krijgen in de 
onzekerheid ten gevolge van de modelstructuur van SMAR'I'2, zijn met SMART2 
gesimuleerde kaarten met NOï-concentraties in het bodemvocht van Nederlandse 
bossen vergeleken met N03-concentratiekaarten gebaseerd op: (i) een multiple-
regressiemodel op basis van gemeten bodemvochtconcentraties en aanvullend data, 
zoals bodemtype en depositie, als verklarende variabelen en (ii) een half-empirisch 
dynamisch model WANDA. De vergelijking is uitgevoerd voor geheel Nederland, voor 
een 250 X 250 km2 grid. De met de drie methoden bepaalde NO^-kaarten laten 
duidelijk verschillende resultaten zien. Wanneer echter alleen maar vergleken wordt op 
basis van een cumulatieve frequentieverdeling, zijn de resultaten behoorlijk 
verglijkbaar, in het bijzonder op het aggregatieniveau van een 5 x 5 km2 grid. Een 
dergelijke opschaling gaat uiteraard ten koste van de ruimtelijke resolutie, en daarmee 
neemt ook de functionaliteit af om overschrijdingsarealen te bepalen. 

Belangrijkste conclusies 
Het gedetailleerde model NUCSAM is goed in staat om zowel het niveau als de trend in 
gemeten grootheden zoals bodemvochtgehaltes en bodemvochtconcentraties te 
simuleren. De modeltoepassingen worden echter belemmerd door het gebrek aan 
gegevens van een goede kwaliteit. Resultaten laten zien dat het onmogelijk is om een 
model zoals NUCSAM toe te passen op regionale schaal, met name als gevolg van het 
gebrek aan gegevens. Dit maakt het noodzakelijk om het model te vereenvoudigen ten 
hoeve van de regionale en nationale toepasbaarheid. De onzekerheidsanalyse laat zien 
dat een vereenvoudigd model vrijwel alle processen inzicht moet hebben als het 
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gedetailleerde model bevat, om zodoende instaat te zijn om alle belangrijke 
componenten in en aan de onderkant van de wortelzone te kunnen simuleren. 

Het vereenvoudigde model SMAR'1'2 is goed in staat om de fluxgewogen 
jaargemiddelde bodemvochtconcentraties te simuleren. De resultaten zijn vergelijkbaar 
of zelfs beter dan de resultaten verkregen met het complexe model NUCSAM. Dit 
houdt in dat het negeren van de seizoensdynamiek, het niet onderscheiden van 
verschillende bodemlagen en het vereenvoudigen van procesbeschrijvingen niet of 
nauwelijks van invloed is op de gemodelleerde lange-termijn veranderingen in de 
jaargemiddelde bodemvochtconcentraties. Een vereenvoudigd model, zoals SMART2, 
kan dan ook beschouwd worden als een bruikbaar en adequaat instrument voor het 
maken van lange-termijnvoorspellingen ten behoeve van het beleid ten aanzien van 
bes trij dingsmaatregelen. 

Het toepassen voor geheel Nederland van een regionaal model, zoals SMART2, 
terwijl het alleen geparameteriseerd en gecalibreerd is op een klein aantal intensief 
gemonitoorde locaties leidt tot niet adequate resultaten. Middels een calibratie op 
nationale schaal is de modelperformance te verbeteren en de onzekerheid in de 
modelresultaten te verkleinen. Na calibratie blijft de uiteindelijke modelfout echter 
groot. Deze is ook niet verder te reduceren middels aanvullende calibratie-
experimenten als gevolg van het gebrek aan de juiste data op nationale schaal. Ten 
aanzien van aanvullende dataverzameling kan geconcludeerd worden dat de meeste 
nadruk gelegd dient te worden op het verzamelen van gegevens ten behoeve van de 
bodem- en vegetatie-gerelateerde parameters en minder op het verbeteren van de 
gebruikte bodem- en vegetatiekaarten. 

Modellen voor toepassing op grotere ruimtelijke schaalniveaus dienen zo 
eenvoudige mogelijk van opzet te zijn. Hierbij is wel zaak dat ze een bepaald niveau 
van procesgeörienteerdheid behouden, zodat modelevaluatie middels calibratie, 
validatie en een onzekerheidsanalyse mogelijk blijft. 
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Annex 1 List of symbols used in the process descriptions in 
the SMART2 model 

Symbol Explanation Unit 

6 volumetric moisture content of the soil 
Qu bu lk density o f t he mineral soil 
Q,~ bulk density of the soil in the root zone 
ageu age o f the site 
age^ age of the vegetation 
Amu amount of litter 
Amy actual amount of litterfall 
Amif,mx maximum amount of litterfall 
AmN,~ amount of nitrogen in the zone where N immobilisation occurs 
Am,, actual amount of stems and branches 
Ams,,mx maximum amount of stems and branches 
CEC ca t ion exchange capacity 
CNiT critical C /N ratio of the soil 
CNm„ minimum C /N ratio of the soil 
CNom C /N ratio of the soil 
ctAlox content of Al in secondary Al compounds in the soil 
ctCa,/, amount of Ca in carbonates in the soil 
ctC,~ organic carbon content in the zone where N immobilisation 

occurs 
ctNu.mx maximum N content in leaves 
ctNi,,„„ minimum N content in leaves 
dXi, nutrient content in leaves of ion X (N, K, BC2) 
clX,i, nutrient content in shoot of ion X (N, K, BC2) 
C'a half-saturation constant for sulphate sorption 
DAmc dissimilation to assimilation ratio of decomposing microbes 
dl time step 
fdd dry deposition factor 
frd, actual denitrification fraction 
frde.mx maximum denitrification fraction 
fr,„i interception fraction 
frm actual mineralisation fraction fresh litter 
frmmx maximum mineralisation fraction fresh litter 
fr„ actual nitrification fraction 
fr^Mx m a x i m u m nitrification fraction 
frN„ reallocation of N fraction before litterfall 
jr,tJi fraction roots in the litter layer 
ƒ•„ cumulative transpiration fraction 
JrXx fraction of ion X (BC2, Al, 11) on the adsorption complex 
frXf, foliar exuda t ion fraction 
frXfi, foliar up t ake fraction 
frXt, leaching fraction from fresh litter of ion K and BC2 
ßXu leaching fraction from fresh litter of ion K and BC2 
IQ dissociation constant for organic acids 
KAb selectivity constant for A1/BC2 exchange 
KAl0X dissolution constant for Al-hydroxide 
KBCct dissolution constant for calcium carbonate 
KCO2 dissociation constant for CO2 
kg/ growth rate constant for logistic growth 

k g m ' 
kgnv3 

a 
a 
kg ha-' 
kg ha-1 a ' 
kg ha-' a 1 

molc kg-1 

kg ha ' 
kg ha ' 
mole kg-' 

gg ' 1 

gg:1 

ggr1 

molc kg"1 

molc kg'1 

molc kg 1 

molc kg-1 or % 
molc kg"1 or % 
molc kg ' or % 
molc kg-' or % 
molc nv ' 

molc m 3 

molc"1 m 3 

m o l c 2 m 6 

(molc m 3 ) 3 h P a ' 
molc2 m 6 hPa ' 
kg ha ' a ' 
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Annex 1 

Symbol I'.xplanation 
KH,x selectivity constant for I I /BC2 exchange 
krmi actual mineralisation rate constant old litter 
krmi.mx maximum mineralisation rate constant old litter 
MHW mean highest water-table 
ML.W mean lowest water-table 
nrf nutrient cycling factor (ratio above ground N cycle/below 

ground N cycle) 
Nde denitrification flux 
N,„ N immobilisation flux 
Nk,m Minimum N leaching flux 
N„, nitrification flux 
Ntijnc total N depos i t ion a bove which ctN/, = aN/, „ x 

N,jjn to tal N depos i t ion be low wh ich ctNir = clNi,m 

OM organic matter content 
P precipitation 
pCÖ2 partial CO2 pressure in the soil 
PE precipitation excess 
rfmMSW' reduction fraction of the mineralisation rate for the water-table 
rfjni.CN reduction fraction of the mineralisation rate for N content 
rf.mMSW reduction fraction of the mineralisation rate for the water-table 
rf,diMSW,mn minimum denitrification reduction fraction for the water-table 
rfdt,pn reduction fraction of the denitrification fraction for pi I 
rfdeMSW reduction fraction of the denitrification fraction for the water-

table 
rf,mpH reduction fraction of the nitrification fraction for pi 1 
rf,m,MSW',mn minimum nitrification reduction fraction for the water-table 
rfm,/til reduction fraction of the mineralisation rate for pi I 
map root uptake exponent 
Se u pward seepage flux 
ctS04,ac Sulphate content at the adsorption complex 
SSC Sulphate adsorption capacity 
t time 
Ai half-life time parameter of logistic growth function 
T,x thickness of the zone where N mobilisation occurs 
Tr transpiration flux 
Xrç thickness of the root zone 
Xji foliar exudation flux of ion X (K, BC2) 
Xf„ foliar uptake flux of ion X (NI I4,11) 
Xeu growth uptake flux of element X (N, K, BC2) 
Xm input flux of ion X (S04 , NO3, NI I4, Cl, RCOO, K, Na, BC2, 

HCOfcAl) 
X,„, interaction flux of ion X (S04 , NO , , NIL,, CI, RCOO, K, Na, 

BC2,1ICO3, Al) 
Xia lateral output flux of ion X (S04 , NO , , NI L,, CI, RCOO, K, 

Na, BC2,1 ICO,, Al) 
Xf litterfall flux of ion X (NI I4, RCOO, K, BC2) 
Xm mineralisation flux fresh litter, old Utter and the root decay in 

the litter layer of ion X (NIL», RCOO, K, BC2) 
Xm,ii mineralisation flux old litter of ion X (NI I», RCOO, K, BC2) 
Xmji mineralisation flux fresh litter of ion X (NI I+, RCOO, K, BC2) 
XmJot mineralisation flux fresh litter, old litter and the total root decay 

of ion X (NI I4, RCOO, K, BC2) 
Xrims r o o t decay flux in t h e mineral soil o f ion X (NIL», R C O O , K , 

BC2) 

Unit 
mo l c m

 3 

m 
m 

molt m 2 a 
molc m

 2 a 
mo l c m

 2 a 
mo l c m

 2 a 
mole m 2 a 
molc m 2 a 

gg"1 

m a ' 
h Pa 

m a ' 
mmol , kg ' 
mmol c kg"1 

a 
a 
m 
m a ' 
m 
molc 
molc 
moL_-
molc 

mol c 

mol c 

molc 
molc 

molc 
molc 
moLc 

molc 

m 2 a ' 
m 2 a ' 
nv 2 a ' 
m 2 a ' 

m 2 a-' 

m 2 a"1 

m 2 a ' 
m 2 a ' 

m 2 a ' 
m 2 a ' 
m 2 a ' 

m 2 a-1 
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Symbol explanation Unit 

X-iAU 

Xsen 

Xttt 

m 
K 

ZJ»2 

Jà 

root decay flux in the litter layer of ion X (NI I4, RCOO, K, mole m 2 a 
BC2) 
seepage flux of ion X (S04 , NC)3, NI I4, Cl, K, Na, BC2,1 ICO,, mol, n r 2 a 

M) 
net seepage flux of ion X (SO4, NO j , NII4 , Cl, RCOO, K, Na, mol,- m 2 a 
BC2,HCO.,,Al) 
total deposition of element X (S04 , N, K, Na, BC2) mole m 2 a 
weathering flux of base cation X (Na, K, BC2) mol, m 3 a 
concentration of ion X (SC)4, NO3, K, Na, BC2,1 ICO}, Al and molc n r 3 

11) in soil solution 
depth m 
soil dependent depth of MSW fot determination of rf„,M.\u" m 
soil dependent depth of Qu'Indétermination of rfm ,\i,vu7 m 
soil dependent depth of AfSW for determination of rf^uw ni 
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