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Abstract

Kros, J., 2002, Evaluation of biogeochemical models at local and regional scale,
Alterra Scientific Contributions 7, Alterra Green World Research, Wageningen, the
Netherlands. 284 pp.

In this thesis different nutrient cycling and soil acidification models, developed for use

at different scales, are presented and evaluated. The models considered are NUCSAM

(NUtrient Cycling and Soil Acidification Model), RESAM (REgional Soil Acidification

Model) and SMART2 (an extended version of Simulation Model for Acidification’s

Regional Trends). These are mechanistic dynamic models, which simulate

biogeochemical processes in semi-natural terrestrial ecosystetns at a variety of scales.

The research tool NUCSAM, which is specifically developed for application on a local

scale, includes simulation of the biogeochemical processes in various soil layers and on

a daily time-scale. RESAM and SMART2, tools to support policy makers, were

specifically developed to evaluate long-term soil responses to deposition scenarios on

a regional scale (national to continental, respectively). For that reason, the models

RESAM and SMART2 are relative simple models and operate on a yearly time-scale.

These models were developed in view of the following research hypotheses:

1. Adequate simulation of temporal responses in soil solution chemistry on a daily
basis at various depth tequires a detailed multi-layer biogeochemical model
(NUCSAM);

2. Annual average responses in soil soluton chemistry at the bottom of the root
zone can be adequately simulated with a simple, one-layer biogeochemical model
(SMART2);

3. Simulation of soil solution chemistry on a regional scale requires a simplified model;

4. Adequate simulation of soil solution chemistry on a regional scale requires
parameterisation, calibration, validation and uncertainty analysis on that scale.
Therefore, this thesis primarily aims at testing these hypotheses by (i) validation and
calibration, (if) uncertainty analysis, and (iif) model compatison. More specifically, the
models NUCSAM (site scale), RESAM (site scale/regional scale) and SMART2 (regional
scale) will be evaluated with respect to the optimal balance between model complexity,

data availability and model aim.

The detailed model NUCSAM reproduced the magnitude and trends of
measured quantites, such as soil water contents and soil solution chemistry, fairly well.
However, the application on a site scale hampers from the lack of sufficiently good
quality data. A model, such as NUCSAM, can not be applied at a large spatial scale
because of the lack of data availability. The simplified model SMART2 s capable to
simulate the observed flux-weighted annual averaged concentrations. Ignoring
seasonal varations of weather conditions, ignoring of different soil layers and
simplifying process description simplification does not need to gready affect the
modelled long-term annual average responses to acid deposition. A simplified model,
such as SMART2, is an acceptable tool for making long-term evaluation of



Abstract

environmental abatement strategies. Model performance is seriously improved and the
prediction uncertainties strongly decreased by model calibration at the scale required
for the ultimate output. Further improvement through calibration is hampered from
the lack of good quality data on a national scale.

Additional index words: nutrient cycling, soll modelling, uncertainty analysis, calibration,
scenario analysis, model error

vi



Yoorwoord

Lang verwacht, of misschien zelfs niet meer verwacht, maar toch nog gekomen. De
grondslag voor dit proefschrift werd alweer zo’n 10 jaar geleden gelegd. Dit betrof
min of meer het moment waarop ik ecn vaste aanstelling kreeg bij het toenmalige
Staring Centrum. Al vrij snel daarna kwam de overgang van input-financiering naat
output-financiering. Waardoor het produceren van wetenschappelijke output alleen
maar mogelijk was indien gekoppeld aan reguliere projecten. Dit betekende dat de
vraag van de opdrachtgever op de eerste plaats kwam te staan en wetenschappelijke
output op een lagere. Kortom een weinig gunstig gesternte om het plan voor het
schrijven van een proefschrift tot een goed einde te brengen. Dat er nu toch een
proefschrift ligt is voor groot gedeelte te danken aan externe nationale projecten, o.a.
het laatste staartje van het verzuringsonderzock en diverse EU-projecten, tezamen met
morcle en soms ook een symbolische financiéle steun van enkele sympathiserende
programmaletders.

Zoals gezegd, werd de basis reeds 10 jaar geleden gelegd. In die tijd, de eerste
nationale milieuverkenning Zorgen voor Morgen was net verschenen, begon vanuit het
beleid de belangstelling te ontstaan om niet alleen modellen te ontwikkelen voor
toepassing op nationale schaal, maar ook voor het evalueten van de betrouwbaarheid
van dergelijke modellen. De hoofdstukken 2.1, 2.2 en 2.4 zijn een direct resultaat van
deze belangstelling. In de loop van de daarop volgende jaren is langzaam maar zcker
verder gewerkt aan een verdere validatie, calibratie en onzekerheidsanalyse van
modellen ten aanzien van bodem- en vegetatieprocessen op landelijke schaal.
Belangrijke aanjagers hiervan waren RIVM-opdrachten die uiteindelijk tot het model
SMART2 (hoofdstukken 2.3 en 3.1) hebben geleid en een 2-tal EU-projecten
DYNAMO en UNCERSDSS waarin met name aandacht werd besteed aan validatie
en calibratie (hoofdstukken 2.3, 3.3 en 3.4) en onzekerheidsanalyse (hoofdstuk 3.2).

Dat het schrijven van dit proefschrift ‘wat langer” heeft geduurd lag uiteraard
ook aan mjj zelf. Tk vond namelijk dat ik niet kon volstaan met het aan elkaar nieten
van een bundel artikelen. Dit betekende toch veel extra werk, zoals het introduceren
van een rode draad en het vervolgens vasthouden daarvan. Dit werk moest dan wel
‘tussen de bedrijven door’ gerealiseerd wotrden. Het uit ‘de mottenballen halen’ van
tekst, data en modelbestanden en er vervolgens nog nienwe berekeningen mee
uitvoeren, vraagt meer tijd dan je in eerste instantie zou denken. Maar de voldoening
dat alles, zonder ISO-9002 certificering, feilloos teproduceerbaar bleek te zijn was des
te groter. Met name door de onaflatende inbreng en stimulans van Wim de Vries, een
van mijn co-promototen, en Janet Mol, een van mijn paranimfen, heeft dit uiteindelijk
tot het voorliggende resulraat geleid. Desondanks zie ik dit proefschrift niet als
wetenschappelijk hoogtepunt, maar meer als een soort obligate daad voor iemand die
al meer dan 13 jaar op grensvlak van wetenschap en praktijk werkt. Daarentegen heb
ik er altijd met plezier aan gewerkt en hoop dat het door de lezer als de moeite waard
wordt beschouwd.
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Een proefschrift schrijf je niet alleen. Dir proefschrift is pebaseerd op 9
artikelen en rapporten, waarvan het eerste uit 1990 dateert. Alle artkelen betreffen
multdisciplinaire projecten, waaraan een groot aantal collega’s een bijdrage heeft
geleverd.

Allereerst wil ik mijn promotor prof dr. it. N. van Breemen bedanken voor de
prettige en flexibele wijze waarop hij richting heeft gegeven aan de totstandkoming
van dit proefschrift. Beste Nico, hoewel je me wel eens de indruk gaf dat het hier om
een promotie op afstand ging en dat je wat verder van bepaalde aspecten afstond, is
jouw bijdrage van onschatbare waarde geweest. Tk denk hierbi) met name aan de
secure wijze waarop je mijn manuscripten van commentaar voorzag, de zorg die je
uitte voor het dreigen te verzanden in details en het waken voor te veel relativerende
opmetkingen. Mijn beide co-promotoren dr. ir. Marcel Hoosbeek en dr. ir. Wim de
Vres wil ik bedanken voor hun keitische kanttekeningen en waardevolle adviezen.
Beste Marcel, je werd pas in vrij laat stadium aan ‘dit project’ toegevoegd, maar zeker
niet te laat. Zo heb je een zinvolle bijdrage kunnen leveren aan het kop- en staartwerk
van dit proefschrift. Daarnaast is met jouw betrokkenheid de basis gelepd voor een
hechte samenwerking binnen de in de startblokken staande kenniseenheid Groene
Ruimte. Beste Wim, jij was de eerste die met het idee van een proefschrift aankwarm,
Regelmatig hadden we overleg, maar door samenloop van omstandigheden was dat
met een lage frequentie en kwam het maar niet tot een eindresultaat. Jij bent altijd
degene peweest die met een of ander mooi verhaal wist te voorkomen dat ik de
handdoek in ring wierp. Wim, bedankt voor je onuitputtelijke bron van inspiratie en
stimulans,

Mijn paranimfen Janet Mol-Dijkstra en Gert Jan Reinds zijn niet zomaar
gekozen. Zij hebben, beide als collega, een belangrijke bijdrage geleverd bij de
inhoudelijke totstandbrenging van dit proefschrift. Beste Janet, jouw tomeloze inzet
en kennis van zaken aangaande de vele SMART-toepassingen, welke een cruciale
schakel vormen in dit proefschrift, is ongekend. Beste Gert Jan, jouw bijdrage op het
gebied van regionale modeltoepassingen en database-werk vormden eveneens een
onmisbare schakel bij de totstandkoming van dit proefschrift. Naast mijn beide
paranimfen hebben Caroline van der Salm en Bert Jan Groenenberg, beide collega’s
vanaf het eerste uur, een belangrijke bijdrage geleverd op het gebied van de
ontwikkeling en toepassing van het model NUCSAM. Caroline, bedankt voor je
gedetailleerde commentaar en continue belangstelling. Bert Jan, dank voor je continue
bereidheid om weer eens assistentie te verlenen bij het achterhalen van hoe we in het
vetleden bepaalde aspecten gemodelleerd en geparameteriseerd hadden. Jan-Cees
Voogd, bedankt voor alle ondersteuning op het gebied dataverwerking, modellen
draaien, kaartjes en figuren maken en tekstverwerking.

Daarnaast is et aantal mensen uit ‘die goede oude tijd’, de laatste dagen van het
verzuringsonderzoek, de periode 1988-1994, die op de een of andere mannier
betrokken is geweest bij delen van dit proefschrift. Allen wil ik hiervoor hartelijk
bedanken. Aan de prettige sfeer waarin we destijds samenwerkten denk ik met
weemoed terug. Allereerst zijn de RIVM-collega’s Hans van Grinsven en Aldrk
Tiktak, zowel de Speuld-toepassing uit het APVIIT en de Solling-toepassing uit de
Leusden-workshop, waarin jullie beide een grote rol hebben gespeeld zijn in dit
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proefschrift vertegenwoordigd. Peter Janssen en Carlijn Bak (destijds beide werkzaam
bij het RIVM) bedank ik voor hun bijdragen op het gebied van onzekerheidsanalyse
en modelcalibratie. Joris Latour, Jaap Wiertz, Rob Alkemade en Arjen van Hinsberg,
destijds allen werkzaam bij het RIVM, hebben allen een belangrijke rol gespeeld bij de
totstandkoming van het model SMART2, zowel inhoudelijk als financieel. In dit
verband wil ik ook graag mijn dank uitspreken richting Max Posch (RIVM) die, als
godfather van het model SMART, altijd bereid was voor het leveren van hand- en
spandiensten, inclusief het leveren van commentaar op de hoofdstukken 1 en 2.3.

Van wat recentere datum dateert de samenwerking met Edzer Pebesma en
Gerard Heuvelink, destijds beide werkzaam bij de Universiteit van Amsterdam. Edzer
en Gerard dank voor de prettige manier waarop wij hebben samengewerkt. Jullie
geostatistische inbreng vormt een onmisbaar onderdeel van dit proefschrift. In dit
verband wil ik ook Peter Finke bedanken voor zijn bijdrage aan het kwantificeren van
onzekerheden in ruimtelijke bestanden. Michiel Jansen (Biometrie) wil ik hartelijke
danken voor hun prettige en vakkundige hulp en adviezen op statistisch gebied. Albert
Tietema dank ik voor zijn bijdrage aan hoofdstuk 3.4.

De directie van Alterra dank ik voor de mogelijkheid die zij hebben geboden
om dit proefschrift eveneens uit te geven als Alterra Scientific Contribution 7. Mijn
afdelingshoofd van de afdeling Water en Milieu, Miep van Gijsen ben ik erkentelijk
voor de materiéle ondersteuning van deze uitgave. Graag wil ik ook Martin Jansen
bedanken, die als vormgever vakwerk heeft geleverd met het vervaardigen van de
figuren en prachtwerk met het maken van de omslag.

Hoewel het aantal bedankjes eigenlijk nog veel groter zou moeten zijn, wil ik
tenslotte mijn familie danken voor de vetleende ondersteuning en getoonde
belangstelling. Lieve ouders, dank voor alle ruimte en mogelijkheden die jullie mij
geboden hebben. Pa, wat een gemis dat jij dit niet meer mag meemaken. Ben ervan
overtuigd de je trots geweest zou zijn. Lieve Yvonne, Mathijs, Koen en Eva bedankt!
Hoewel met het gereed komen van dit proefschrift een zekere last van me is
afgevallen, vrees ik dat het ijdele hoop is dat ik vanaf nu iedere avond om 6 uur achter
de piepers zal zitten. Hiertoe zal er meer moeten veranderen, zowel bij mij zelf als op
het werk .... Misschien is dit het moment om daar nu echt aan te gaan werken.

Hans Kros,
december 2001
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I Introduction

1.1 Background and aim

Background on biogeochemical models

Evaluation of anthropogenic effects on the environment at local, regional and global
scales has become a key activity in environmental research. It forms the basis for
emission reduction measures needed to achieve policy leading to a sustainable society.
Computer models play an increasing role in the evaluation of those environmental
effccts. In the Netherlands, at the Environmental Policy Assessment Office
(MilicuPlanBureau: MPB) and Nature Policy Assessment Office (NatuurPlanBureau:
NPB) a large set of integrated predictive modcls are used to evaluate the effects of
policy scenarios on a wide range of environmental problems. These include
eutrophication, acidification, climate change and biodtversity decrease. Within these
themes, mechanistic dynamical models, which simulate biogeochemical processes in
ecosystems, play a crucial role. Biogeochemical models describe the behaviour and
cycling of water and a variety of elements within ecosystems. A common aspect of the
models used within the MBP and NPB is that they are used for a naton-wide
application over a relatively long period of time (10-100 years). Besides their role
within environmental policy assessment, modelling of biogeochemical processes
serves a research goal viz (i) data integration, (i) process integration, (i) testing
hypothesis, and (iv) derivation of guidelines for further experimental and field
research. To describe biogeochemical processes in semi-natural terrestrial ecosystems
several models have been developed. These models can be divided into two major
groups, those based on an empirical approach and those based on mechanistic
descriptions of processes (cf. Ioosbeek and Bryant, 1992). A disadvantage of
empirical models is that they are generally not able to extrapolated, and therefore less
suitable for establishing long-term predictions.

During the last decades several dynamic process-oriented models for such
purpose have been developed. Examples from the beginning period of this
development, including surface water models, are: (i) 1980: simulating of soil nutrient
losses based on the mobile anion concept (Reuss, 1980), (ii) 1982: the ‘Biurkenes
model’ for soil water and freshwater acidification on the catchment scale
(Christophersen ef 2/, 1982), (iii) 1983: a simple model on soil leachate chemistry (Arp,
1983), (iv) 1983: ILW'AS, the integrated lake watershed acidification study (Chen et @/,
1983), (v) 1985: MAGIC, a model for the acidification of groundwater in catchments
(Cosby er al, 1985), (vi) 1985: a simple semi-empirical model on soil pH and base
saturation (Bloom and Grigal, 1985), (vii) 1986: the Trickle Down Model on lake
acidification (Schnoor ef 4/, 1986). Later on, a large number of new models were
developed, which in majority are based on the same concepts as the older models (cf.
Tiktak and Van Grinsven, 1995). Several comparisons and performance studies have



I Introduction

been made on these models (cf. Eary ef al, 1989, Rose ¢ 4/, 1991 and Tiktak and Van
Grinsven, 1995). From those studies it was concluded that numerical models are
useful tools for understanding and integrating processes and disciplines, but the
predictive reliability of such models still needs to be tested against long-term
monitoring data.

Basically, most of the available biogeochemical models are originally developed
as a site scale model. Ideally, the complexity of a2 model should be in harmony with its
intended aim. Important constraints to (realistic) modelling are limited scientific
knowledge of underlying processes and lack of data. When going from a small or
detailed towards a large or course temporal and spatial scale, the degree of model
complexity usually, but not always, decreases (cf. Bierkens ¢f a/, 2000).

Aim

In this thesis different nutrient cycling and soil acidification models, developed for use
at different scales, are presented and evaluated. 1 will focus on mechanistic dynamic
models, which simulate biogeochemical processes in semi-natural terrestrial
ecosystems at a variety of scales. The models considered are NUCSAM (NUtrient
Cycling and Soil Acidification Model; Groenenberg e a/, 1995; Chapter 2.1), RIiSAM
(REgional Soil Acidification Modecl; De Vries ef 2/, 1995a; Chapter 2.2) and SMART2
(an extended version of Simulation Model for Acidification’s Regional Trends; Kros ¢f
al., 1995a,b; Chapter 3.1). The research tool NUCSAM, which is specifically developed
for application on a local scale, includes simulation of the daily variability
biogeochemical processes. RESAM and SMARTZ, tools to support policy makers, were
specifically developed to evaluate long-term soil responses to deposition scenartos on
a regional scale (nadonal to continental, respectively). Consequently, RESAM and
SMART2 do not include seasonal dynamics. The temporal resolution of these models is
one year, and the hydrologic description in these models is relatively simple.

RESAM and SMART (a precursor of SMARTZ; De Vries ¢f al, 1989) were part of
integrated acidification simulation models that give a quantitative description of the
linkages between emissions, deposition and environmental impacts such as soil
acidification and effects on terrestrial and aquatic ecosystems. These integrated models
are: (i) DAS (Dutch Acidification Simulation model) for application in the Netherlands
(Olsthoorn e al, 1990) and (i) RAINS (Repional Acidification Information and
Simulation model) for application in Europe (Alcamo ¢f 4/, 1990). The model SMART2
is used as the biogeochemical module within the Environmental Policy Assessement
Office (MPB) and Nature Policy Assessment Office (NPB).

To evaluate model performance in relation to model simplification and
transition to a coarser temporal and spatial scale the models NUCSAM, RESAM and
SMART have been applied simultaneously to the same data set (De Vries ef 2/, 1998).
This can be seen as a first step in order to check whether model simplification is an
acceptable pathway to model on a large temporal and spatial scale. A comprehensive
testing, however, of this approach is lacking. Therefore, this thesis primarily aims at
testing the underlying approach by (i) validation and calibration, (i) uncertainty
analysis, and {iii) model comparison. More specifically, the models NUCSAM (site
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scale), RI:SAM (site scale/regional scale) and SMART2 (regional scale) will be evaluated
with respect to the optimal balance between model complexity, data availability and
model aim.

1.2 Scaling Issues

Earth sciences can be divided along boundaries of spatio-temporal scales. For many
purposes it is adequate, if not desirable to inquire processes knowledge at one
particular narrow range of spatial and temporal scales. On the one hand, processes ate
studied on a micro-scale such as decompostion and (de)nitrification (cf. Leffelaar,

1987), on the other hand research is performed at the level of landscape ecology, such

as catchments (cf. Likens ¢f 2/, 1977). Crossing these boundaries is not very common

and may be considered as a mutual threat of disciplines.

One of the common characteristics of environmental problems such as climate
change and air pollution is that they play a role on a local, regional, national,
continental and even global scale. The long-term response of soils due to elevated
atmospheric deposition, investigated in this thesis, is a typical example. It is imperative
that the spatial and temporal aspects considered in a model must fit its objectives. In
practice, however, an ideal fit 1s difficult to achieve, because model input data {eg.
initial conditions and parameters) are often limited or even unknown at the relevant
scale. Especially at large spatial scales, many model parameters cannot be measured
directly at all. Within the framework of the modelling process we can distinguish three
specific scale categoties (cf. Van der Zee, 1999; Bierkens ef a/, 2000):

- the observation scale, the scale for which an observation provides an average value,
e.g. a soil sample represents only a few dm?

- the model scale, the scale on which the model provides its output

- the policy scale, the scale on which research results are required to answer the
decision makers questions

Regarding the model scale, Bouma ef 4/, (1998) stated that many biogeochemical
models developed on a plot scale may be considered for use at larger spatial scales.
However, this may cause problems (cf. Heuvelink, 1998a):

- The relative importance of a process or subprocess may vary with scale. A
particular process may be negligible at larger spatial and temporal scales, e.g.
unsaturated preferential flow (Bloschl and Sivaplan, 1993).

- At small scales, e.g, at those of intensively monitored plots, the data availability can
often support the demand of complex models, the data availability is usually sparse
at larger spatial scales and model input data have to be derived from generic data
sources like maps and pedo-transferfunctions (cf. De Vries, 1994).

- Moving from a smaller scale towards a larger, is generally accompanied by an
increase in level of aggregation. Usually, the model input data become some kind
of average of point values within a large spatial unit or ‘block’. This may require an
adaptation of the model (cf. Heuvelink, 1998a).

Consequently, there is a trade-off between scale and model complexity. A general

problem that arses from applying a plot scale model on a larger scale is the
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parameterisation. The mote parameters a model contains, the less likely it is that they
can be detived either directly from available data or indirectly by using pedo-transfer
functions. In addition, when particular parameters can only be obtained by calibration,
identification problems may thwart the calibration.

For a number of specific environmental problems, data availability on a plot
scale is relatively large. Often this scale is chosen because it is the most appropriate
scale to study biogeochemical processes in situ. The local scale, therefore, is the most
logical level to start with model development. Because of sparser data at larger scale,
the scale of the model must be adapted to the scale of data availability.

One possibility is to simplify the model description in such a way that the
temporal and spatial resolution is comparable to the resolution of the data. During
such a simplification of processes, model results must remain reliable. The reliability
can usually be determined by comparing results from the simplified model (i.e.
SMART) and the local scale model (1.e. NUCSAM). Another possibility is to apply a
complex, plot scale model directly to a large temporal and spatial scale. A notable
example of this approach is the STONE model (cf. Boers e a/, 1995), a model on a
national scale describing the fate of nitrate and phosphorous in agricultural soils. Both
pathways are propagated in the Netherlands for national applications of
biogeochemical models within the Dutch Nature and Environmental Planning Agency
(NPB and MPB). Presumably there is an optimal level of model complexity, ie. a
point where the degree of model complexity, e.g. in terms of state variables, match the
data resolution and quality, leading to maximal knowledge gain about the modelled
system (Jorgensen, 1992; Janssen, 1998). Since, environmental systems are regarded as
complex, ‘increased complexity -in models s interpreted as evidence of closer
approximation to reality’ (Oreskes, 2000). Whereas Hauhs ef a/ (1996) classified the
tendency of putting together as many processes as possible as ‘naive modelling’ or in
words of Janssen (1998) ‘a model should be made no more complex than can be
supported by the available brains, computers and data’.

In this thesis I will advocate the use of simpler or simplified models with
relatively small data requirements, with a relatively high degree of certainty, above
complex models with large data requirements, that are difficult to fulfil. Because, even
if the model structure is correct (or at least adequately representing current
knowledge), the uncertainty in the output of complex models may still be large due to
the uncertainty in the input data. A theoretically justification for the use of model
simplification in order to obtain more reliable results can be performed by uncertainty
analyses (cf. Hornberger er 4/, 1986; Hettelingh, 1989; Janssen, 1994; Heuvelink,
1998b).



1.3 Overview of the biogeochemical models used in
this thesis

General overview

NUCSAM, RESAM and SMARTZ are all process-oriented deterministic models. The
trade-off berween detail and reliabihty of information obtained and regional
applicability is reflected by the desired degree of spatial resolution in model output.
This 1s a factor of crucial importance when selecting the level of detail in both the
model formulation and its input data. Application on a coarser scale justifies the use
of a simpler model, see Table 1.

Table 1 Characteristics of the used dynamic biogeochemical models

Name Complexity Soid layering Temporal  Spatial Application scale
resolution  resolution

NUCsAM complex multi-layer one day 11 m? site

RESAM intermediate multi-layer one year 100x100 m?2  Netherlands

SMART2 simple one-laver one year 500x500 m2  Netherands/Vurope

The regional-scale models SMART2 and RFESAM can be seen as simplified
versions of the ‘site-scale’ model NUCSAM, to reduce input requirements, NUCSAM is a
quantitative mechanistic site-scale model with a complex process description, spatial
(vertical) and temporal resolution. This model represents the basic model that has the
same spatial and temporal resolutions as the data gathered at intensively monitored
research plots. The simplifications made in RESAM and SMARTZ consist of: (i)
reduction of temporal resolution, i.e. using an annual time resolution, thus neglecting
interannual variability of both model inputs and processes, (i} reduction in spatial
resolution, by using a smaller number of soil compartments and (i) the use of less
detailed process formulations. To apply a model on a regional scale, the various
processes occutring in the soils have either been limited to a few key soil processes, or
represented by simple conceptualisations (process aggregation). The degree of process
aggregation in the models increases (complexity decreases) when the availability of
data decreases, which occurs with an increase in the geographic area of application.

NUCSAM was developed to describe the biogeochemistry of intensively (mostly
biweekly) monitoted sites during a relatively shott-time period. Validation of dynamic
models with a one-year temporal resolution such as RESAM and SMARTZ, is
problematic due to a lack of long-term observation records on soil chemistry data.
However, long-term simulations with SMART2 and RESAM can be compared to those
made with the validated NUCSAM model, that serves as a reference. In this way an
indirect model output validation can be accomplished for the regional models RI:SAM
and SMARTZ.

The multi-layer model RESAM gives insight into the spatial (vertical) variation in
soil (solution} chemistry within the root zone. The hydrology of the one-layer model
SMART2 eventually only yields the annual precipitation excess draining from the root
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zone. Therefore, SMART2 only predicts soil solution chemistry at the bottom of the
root zone. Important acidification indicators such as the Al concentration and Al/Ca
ratio, however, increase with depth due to Al mobilisation, transpiration and Ca
uptake. Since most fine roots, responsible for nutrient uptake, occur in the upper soil
layer (0-30 cm soil depth), it is important to obtain reliable estimates for this layer by
including water uptake with depth and nutrient cycling (foliar uptake, foliar exudation,
litterfall, mineralisation and nutrient uptake) within the root zone.

History of model development

The models that are addressed in this thesis each have their own specific background.
‘The model development started in the mid eighties with the development of RESAM
as part of the Dutch Acidification System {DAS, Olsthoom ef @/, 1990). RESAM has
been applied at vatious generic sites (De Vries and Kros, 1989; De Vries ef 4/, 1995a).
to the Netherlands as a whole (De Vries e a/, 1994a). Furthermore, this model was
subjected to a sensitivity and uncertainty analysis (Kros, e/ 2/, 1993). At that same time
the European scale model SMART was developed to act as a successor of the existing
soil module (Kauppi ef 4/, 1986) in the RAINS-model (Alcamo ¢ 2/, 1990). SMART has
been applied at particular generze sites (De Vries ef al, 1989) and Europe as a whole (De
Vries e¢f al, 1994b). In the beginning of the nineties the Dutch National Institute of
Health and Environment (RIVM) requested for a soil module for an integrated model
for the evaluation of nature conservation policy (Alkemade e ai, 1998). Because
RESAM was considered too complex for this purpose and SMART too simple, it was
decided to develop the model SMART2. During the development petiod op the models
RESAM, SMART and SMART2, little attention was paid to serious model evaluation.
Eventually, during the third and final phase (1991-1995) of the Dutch Priority
Programme on Acidification emphasis was put on model validation. In that petiod the
model NUCSAM (Groenenberg ef 4/, 1995) was developed in order to make use of data
records from intensively monitored sites for the validation of the models SMART,
SMART2 and RESAM. Thereafter, successively more and more attention has been paid
to model evaluation.

Process descriptions

NUCSAM, RESAM and SMART2 are all based on the principle of ionic charge balance
and on 2 simplified solute transport description. All models assume that: (i) a soil layer
is 2 homogeneous compartment of constant density and (i) the element input mixes
completely in a soil layer. Furthermore, N-fixation, SO4 reduction and SO,
precipitation are not included, and the various process descriptions for biological and
geochemical interactions are simplified to minimise input data requirements. Going
from NUCSAM to SMART2 process aggregation is achieved by (1) confining to one soil
layer, (i) a simpler hydrological description, (iil) simpler descriptions of processes (e.g.
equilibrium equations instead of rate-limited reactions), (iv) ignoring (phosphorous) or
lumping elements (e.g. sum of divalent base cations, BC, instead of Ca and Mg
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separately), and (v) ignoring several processes (e.g. NI, adsorption), In RIISAM and
SMART2 the annual water flux percolating through a soil layer is constant and equals
the infiltration minus the transpiration, whereas NUCSAM contains a separate
hydrological model. These differences are summarised in Table 2.

Biological processes are all described by rate-limited reactions, usually first-
order reactions. An exception is the canopy interactions which are described by linear
relationships with atmospheric deposition (cf. Table 2). In SMAR12, geochemical
reactions are described by equilibrium equations {dissociation of COz, cation exchange
and SOy adsorption), except silicate weathering, which is described by a zero-order
reaction (Table 2). So, unlike SMART2, NUCSAM and RESAM account for the effect of
mineral depletion on the weathering rate. In NUCSAM and RESAM the geochemical
reactions are either described by equilibrium equations or first-order reactions
{(protonation of organic anions and weathering of carbonates, silicates and secondary
Al compounds).

1.4 Evaluation of the biogeochemical models used

As mentioned before, the aspects of model evaluation that will be addressed 1n this
thesis are (i) calibration and validation by comparing of model results with
measurements, {ii) assessment of the uncertainty in model results due to uncertainties
in model structure and model inputs and (jii) intercomparison of results of different
madels.

Table 2 Processes and process formulations included in NUCSAM, RESAM
and SMART2

Processes NUCSAM RESAM SMART2

Hydrological processes:
Water flow

Biological processes:
Fohar uptake

Foliar exudation

Litterfall

Root decay
Mincralisation/
immobilisation
Growth uptake

Maintenance uptake
Nitrification

Denttrificarion

I lydrological submaodel

Proportional to total
deposition

Proportional to Hand

NIk deposition

Fiest-order reaction -

First-order reaction
First-order reaction?

Constant growth
Laogistic growth
Forcing functon?
First-order reaction”

First-order reaction?

Water balance for
multiple layer

Proportional to total
deposition
Proportonal to 1T and
NI deposition
First-order reaction
First-order reaction
First-order reaction

Constant growth
Logistic prowth
Forcing function?
First-order reaction

First-order reaction

Water balance for
the root zone

Proportional to total
deposition
Proportional to 1
and NIT; deposition
Modcl input

Maodel input
Proportional to N
deposition
Constant growth
Logstic growth
Forcing function?
Proportional to net
Nt input
Proportional to net
N3 input
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Table 2 (Continued)

Processes

NUCSAM

RESAM

SMART2

Geochemical processes:

C(3; dissociation
RCOQO protonation
Carbonate
weathering

Silicate

weathering

Al hydroxide
weathering

Cation exchange?

Sulphate adsorption

Equilibrium equation
First-order reaction
First-order reaction

First-order reaction®
First-order reaction
Elovich equation

Gaines-Thomas
equations for:

IT, AL NI, Ca, Mg, K

and Na
Tangmuir equation

Equilibrium equation
First-order reaction
First-order reaction

First-order reaction®
Tirst-order reaction
Flovich equation

Gaines-Thomas
equations for:

H, Al NI, Ca, Mg, K

and Na
Langmuir cquation

Equilibrium equatinn
I'irst-order reaction
Equilibrium equation

7wero-order reaction

Lquilibrium equation

Gamnes-Thomas
equations for:
I, Aland BC2
(=Ca+Mg)

Langmuir cquation

Phosphate Tangmuir equation - -
adsomtion

Complexation Liquilibrium equations - -
reactions

b In NUCSAM, these processes are also deseribed as a funenon of emperature

A In RESAM and NUCSAM the maintenance uptake equals it the sum of breerfall, root tumover and fohar exudation
manus foliar uprake.

B [n RiSAM and NUCSAM there is also the option to include a dependeace of pl on the weathering rate.

Calibration and validation

In this thesis ca/bration is used m a broad sense, i.e. the determination of model input
data, eg parameters, initial and boundary conditions, by using available
measurements. Some authors use the term parameterisation either with or without a
fitting procedure based on measurements (cf. Addiscott et 4/, 1995). Following this
definition, calibration, as it is used here, equals parameterisation with a fitting
procedure. In order to cope with ill-defined and information-poor situations where
data are sparse and uncertain, calibration can be helpful in order to reduce the
prediction uncertainty.

The basic question whether we can vafidute a model is both a philosophical and
a scientific one. Addiscott ef @/. (1995) stated in an evaluation on both questions that
from a philosophical point of view ‘although we may be able to discriminate between
models, we can never vafidate a model in the sense of proving that it is correct’. On the
other hand validation is derived from salides, meaning strong, whereas in legal and
theological parlance it also means ¢ffiaions or ‘producing the intended effect’. In a
modelling context validation can be defined as “the art of the applicable’ (cf. Addiscott
et al., 1995). In this chesis swlidation is used in a more operational way (cf. Konikow and
Bredehoeft, 1992), i.e. the goodness of fit of simulations to measurements or even the
confrontation of the model output(s) with expert judgement or personal experience.

A widely accepted approach of calibration and validation, s, after the model
has been calibrated successfully to a particular data set, the model is (in)validated by
comparing model outputs with an independent data set. In practice, however,
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validation is in fact a sort of evaluation of an applied model. In this context Janssen
and Heuberger (1995) distinguished:
- the abiiity of the model to reproduce the system behaviour
- the suitability of the model for the intended use
- the rbustness of the model for model input data

Furthermore, model validation is not a ome-and-for-all activity leading to an
absolute and definite judgement on the model’s adequacy. Rather it 1s an ongoing
process, which is always performed in a certain evolving context against which the
statements should be expressed and interpreted (cf. Janssen and Heuberger, 1995). In
many situations, a thorough validation will be impossible or limited, usually due to a
lack of data or time, where both are often a result of limited financial resources.

Uncertainty analysis

Although models for regional scale assessments have great potentials, they should be
used with caution, because both models and data often have a high and variable level
of associated uncertainty (cf. Loague e @/, 1998). Consequently, it is crucial that these
uncertainties are quantified. However, knowledge and information on these problems
is typically limited, uncertain and poor. For reliable development and application of
such models, a thorough semsitivity and uncertainty analysis is essential. These help to
clarify the origins and effects of model uncertainties. In literature the distinction
between uncertainty analysis and sensitivity analysis is not always clear. Sensitivity
analysis is primarily concerned with the question how model outputs are affected by
(small) variations in values of model input data (i.e. parameters, initial conditions,
inputs). This provides useful information for model calibration and further model
development (cf. Janssen, 1994). In an uncertainty analysis situations are considered
where uncertainty and/or risk play a crucial role. This is achieved by assuming that
values of model input data and the model as such are uncertain, due to uncertainty
sources, and how these uncertainty affect the model outputs. The uncertainty in
model outputs of a dynamic mode! originates from errors or misspecification of (i)
madel structure, (i) parametets, (iii) initial conditions, (iv) model inputs and (v) model
operation, due to incomplete knowledge, data or natural variability.

A variety of techniques for uncertainty analyses has been reported (cf. Iman
and Helton, 1988 and Janssen e 4/, 1990). Roughly, we can distinguish (i) Monte
Carlo based methods and (if) analytically based techniques. For the analysis of process-
oriented dynamic models Monte Carlo methods are preferred, since they are simple
and straightforward. They rely on the assumption that the uncertainty in model input
data can be described by specifying probability distributions and mutual correlations.
From these probability distributions, multivariate sets of model input data are drawn.
These samples are used to run the model, i.e. 2 Monte Carlo simulation. This results in
a multivariate set of model outputs that are stored for further analysis. This analysis
consists of calculating (i) the basic statistical information of the model outputs and (i)
the uncertainty contribution of the various uncertainty sources to the model outputs.
Monte Carlo methods, howevet, also have drawbacks, including huge computational
loads. In order to cope with this problem several more sophisticated Monte Carlo
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methods are available, e.g. Latin Hypercube Sampling McKay e @/, 1979) and
Controlled Random Search (Price, 1983).

Examples of uncertainty analyses in the field of biogeochemical modelling at
the plot scale are the quantification of uncertainties for pesticide leaching for one
generic soil landuse combination (Tiktak e @/, 1994} or for one mapping unit in a
region (Finke ef a/, 1996). In regional scale assessments, model input data are usually
derived from generally available data, ep soil and landcover maps, using
(pedo)transfer functions (Bouma ef @/, 1986; Tiktak ef 4/, 1998). Finke ef a/ (1996)
quantified the output uncertainty resulting from both spatial variability and the
uncertainty in pedotransfer functions by a Monte Carlo analysis and analysed how
much these sources contributed to the total variance.

Model comparison

Comparison of outputs of various models provides insight in the uncertainty due to
the model structure. This can be either a comparison between models that totally
differ in the modelling concept or models that differ in degree of detail. Among
modellers the benefit of model comparison is widely recognised. Several studies on
this topic have been performed, e.g. in 1993 during ‘a workshop 16 forest-soil-
atmosphere models wete compared, using a long-term data-set from Solling, Germany
(Tiktak and Van Grinsven, 1995).

To compare model outputs either with data or with outputs from other models,
both qualitative and quantitative methods should be used. Qualitative methods are
based on visual inspection of the model results in conjunction with the associated data
using, e.g. scatter plots, time seties, distribution functions. Quantitative methods try to
express the degree of agreement numerically, i.e. by a performance measure (Janssen
and Heuberger, 1995).

1.5 Research questions of this thesis

Until now in the Netherlands a lot of research has been performed on modelling
nutrient cycling and soil acidification (cf. De Vries, 1994; Van der Salm, 1999). The
model RESAM has been applied for the Netherlands (De Vries ¢f 4/, 1994a) and on a
site scale (Van der Salm ef 4/, 1999). The same is true for the precursor of the model
SMARTZ (cf. De Vries ¢ 4/, (1989) for a site application and De Vries e al. (1994b} for
a European application). This previous tesearch focussed on (i) process identfication,
(i) data derivation and (iti) model development. At that time, these models were also
used for scenario evaluation without rigorous validation, calibration and uncertainty
analysis. This implies that the validity of the results could not be presented, but only
the plausibility. Ever since, however, more and more attention has been paid to model
evaluation. A selection of the research on evaluation of these models forms the core
this thesis. It aims at the evaluation of the reliability and validicy of a set of
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biogeochemical models developed for various spatial and temporal scales. The
research summarised in this thesis was based on the following hypotheses:

Adequate simulation of temporal responses in soil solution chemistry on a daily
basis at vatious depth requires a detailed muli-layer biogeochemical model;

Annual average responses in soil solution chemistry at the bottom of the root zone
can be adequately simulated with a simple, one-layer biogeochemical model;
Simulation of soil solution chemistry on a regional scale requires a simplified
model;

Adequate simulation of soil solution chemistry on a regional scale requires
parameterisation, calibration, validation and uncertainty analysis on that scale.

More specifically, I will try to answer the following questions:

What is the adequacy of a detailed tertestrial biogeochemical model in predicting
soil solution chemistry at short time interval and vatious soil depth? (cf. Chapter
21)?

Is uncertainty analyses, which give insight in the relative contribution of processes
to the model outputs, beneficial in simplifying a detailed terrestrial biogeochemical
model (cf. Chapter 2.2)?

What is the adequacy of a simple one-layer terrestrial biogeochemical model in
simulating soil solution chemistry (cf. Chapter 2.3)?

What is the change in model performance at various soil depth and time scales due
to model simplification, including spatial and temporal aggregation of a terrestrial
biogeochemical model in simulating soil solution chemistry (cf. Chapter 2.4)?

What is the applicability of a simplified model on a regional scale in view of data
availability (cf. Chapter 3.1)?

What is the prediction uncertainty due to uncertainty in geographical data and
model parameters when applying a model on a regtonal scale? (cf. Chapter 3.2)?
What is the gain in model performance on a regional scale after regional model
calibration (cf. Chapters 3.3)?

What is the adequacy of simple biogeochemical models as a tool for policy makers.
(ct. Chapter 4)?

Figure 1 illustrates the steps taken in this thesis in the transition from modelling on a
site scale towards application on regional scales.
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Figure 1 Outline of the model evaluation procedure used in this thesis. Numbers refer
to the actions listed in the text

On a site scale:

1.

12

Develop a quantitative mechanistic site-scale model with a high degree of process
knowledge, spatial (vertical) and temporal resolution. Calibrate and validate the
site-scale model on high resolution data, (in depth and time) of intensively
monitored sites by (cf. Chapter 2.1):
- Minimising the uncertainty and difference between observations and model
results by calibrating poorly defined model parameters (calibration)
- Comparing model results with (another) high resolution data-set (validation)
Perform a sensitivity and uncertainty analysis to determine the most important
model parameters and associated processes (cf. Chapter 2.2)
Simplify the site-scale model (3a) into a regional-scale model by (i) aggregation of
processes and input data based on the desired temporal resolution at regional
scale (temporal aggregation) and (i) aggregation of soil layers (spatial aggregation).
Calibrate the regional scale model (3b) at an (intensively) monitored site, and
validate at another site (cf. Chapter 2.3). Preferably, the simplification of the
process description is based on the sensitivity analysis of the detailed model. (cE.
Chapter 2.2)
Compare the performance of the site-scale and regional-scale model on the same
intensively monitored sites, using (i) the original high resolution data and (ii)
ageregated data at the same temporal resolution as the model. Compare predicted
long-term trends of the site-scale and regional-scale model for the appropriate
temporal resolution (cf. Chapter 2.4)



On a regional scale:

5. Validate the regional-scale model on low resolution (spatial) data at a coarse
spatial scale (cf. Chapter 3.1}

6. Reduce the uncertainty by calibrating poorly defined model parameters at a large
spatal scale {cf. Chapter 3.3)

7. Specify the uncertainty in the model results at a regional scale (perform an
uncertainty analysis of the regional-scale model in a spatial context) (cf. Chapter 3.2)

8. Compare the results of the regional scale model with other models (cf. Chapter 3.4)

1.6 OQutline of this thesis

The research questions will be answered in chapters II and III, where chapter II
addresses the evaluation and reliability at the site scale and chapter TIT at the regional
scale. Both chapters subsequently conduct (i) model validation and calibration, (ii)
uncertainty analysis and (iif) model comparison {cf. Table 3).

Table 3 Outline of rhe thesis in terms of reliability action and scale,
numbers refer to Chapter numbers

Reliability action Scale

Local scale Regional seale
Validation and calibration 21,23 31,33
Uncertainty analysis 22 32
Maodel comparison 24 34

Part II starts with a detailed description of the soil acidification and nutrient cycle
model NUCSAM and a validation of the model on the Dutch experimental forest site at
Speuld (Chapter 2.1). As a next step the uncertainty in model predictions due to the
uncertainty in input data at a site scale was investigated using a simpler version of the
NUCSAM model, the model RESAM (Chapter 2.2). The regional scale model SMART2,
derived from NUCSAM, is described in Chapter 2.3. This chapter also presents the
calibration and validation of this model at a manipulated monitoring site (Risdalsheia,
Norway). In Chapter 2.4 all three models (NUCSAM, RESAM and SMART2) are applied
and compared at one intensively monitored location (Solling, Germany). In order to
increase the confidence of long-term predictions of the simplified regtonal scale model,
also long-term predictions of the three models are compared.

Part 111 of this thesis starts with the application and validation of the regional-scale
model SMART2 for the Netherlands (Chapter 3.1). The uncertainty assoctated wath the
SMART2 application at a large spatial scale is presented in Chapter 3.2. Chapter 3.3 shows
how the uncertainty in model results at a national scale can be reduced by performing a
calibration wsing regional scale data. In Chapter 3.4 the performance of the SMART2 model
on the national scale is compared with two other models.

This thesis concludes with part IV where the results and conclusions of the
model evaluation are summarised and evaluated with respect to the research
questions.
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Nutrient cycling and soil actdification modelling on a site scale

A revised version of:

- NucsAM: a model for evaluating nutrient cycling and soil acidification
in forest ecosystems
By: J. Kros, J.E. Groenenberg, C. van der Salm, W. de Vries and
N. van Breemen
Submitted to Ecological Modelling

The uncertainty in forecasting trends of forest soil acidification

A slightly revised version of:

- The uncertainty in forecasting trends of forest soil acidification
By: J. Kros, W. de Vries, P.ILM. Janssen and C.I. Bak
Published in: Water, Air and Soil Pollution, 66:29-58

Modelling effects of acid deposition and climate change on soil and runoff

chemistry

A combination of revised verstons of:

- SMART2: Modelling of soil acidity and nitrogen availability in natural
soil ecosystems In response to changes In acid deposition and
hydrology
By: J. Kros, J.P. Mol-Dijkstra, W. de Vries and G.J. Reinds
Submitted to Ecological Modelling

- Modelling effects of acid deposition and climate change on soil and
runoff chemistry at Risdalsheia, Norway
By: Janet P. Mol-Dijkstra and Hans Kros
Published in: Hydrology and Earth System Sciences: 5:487-498.

Validation and comparison of soil acidification models with different
degrees of process aggregation on a site scale
A combination of revised versions of:
- Application of soil acidification models with different degrees of
process aggregation on an intensively monitored spruce site
By: C. van der Salm, J. Kros, J.E. Groenenberg, W. de Vries and G.].
Reinds, 1995
Published in: 8.T. Trudgill (Ed.): Solute modelling in catchment
systems, John Wiley, Chichester, UK: 327-346.
- Uncertainties in long-term predictions of forest soil acidification due
to neglecting seasonal varability
By: . Kros, J.E. Groenenberg, W. de Vries and C. van der Salm
Published in: Water, A1, and Soil Pollution: 79:353-375.
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2.1 Nutrient cycling and soil acidification modelling
on a site scale

Abstract

A detailed s0il and nutrient cycling model for forest ecosystems (INUCSAM) is described here. The
model integrates the hydrological- and mutrient cycle and soil chemical processes, while including all
relevant processes in the forest canopy, organic surface layer, mineral soil and soil solution, that are
known according 1o curvent knowledge. The hydrological cycle is modelied by a separate Darcy-luw-
based hydrological model. Nutrient cycling involves nutrient uptake, litterfall, root turnover and
mineralisation. Forest growth is described by a logistic growth function. Equilibrium and rate limiting
chemical reactions are explicitly modelled in a chemical module. Chemical reactions rates depend on
lemperature, whereas biochemical processes depend on temperature, moisture content and pEi.

The NUCSAM model was applied to the Speulderbos Donglas fir stand, and validated using
measured data on soil and soil solution chemistry. Results mostly showed a reasonable to good
agreement with observations. However, the pH was overestimated in the topsoil and underestimated in
the subsail, The Ca concentration in the topsoil and Cf in the subsoil was s/ightly underestimated,
Long-term (60 a) impacts of acid deposition of three deposition scenarios on two generic forest soil
combinations were also evaluated with NUCSAML Scenario analyses showed a fast response of the Al
and SOy concentration after a decrease in SO, depoiition and a time-delay in decrease of the NO;
concentration resulting from a decrease in INO. deposition and bigher soil solution concentrations
below Douglas fir.

211 Introduction

There has been a continuous interest in developing and using detailed process-
oriented ecosystem models for the simulation of vegetation and soil processes, cf.
reviews by Agren e a/. (1991), Tiktak and Van Grinsven (1995) and Ryan ef al. (1996).
Such models are of interest for linking experimental data and hypotheses testing in
view oft general ecosystem research, acidification, eutrophication, biodiversity and
climate change. A detailed ecosystem model must integrate the hydrological cycle,
nutrient cycling, and other soil processes. Furthermore, such a model must include all
televant environmental factors that affect these processes,

Several hypotheses that link forest growth and forest vitality to air pollution,
atmospheric deposition, soil acidification and disturbed nutrient cycling have been
developed. Examples are the. Al-toxicity hypothesis (Ulrich, 1983) and the nitrogen
saturation hypothesis (Skeffington, 1988). Such hypothetical effect relationships can
be tested by applying mechanistic and comprehensive simulation models. As a first
step, the integrated Dutch Acidification Systems model (IDAS) has been developed
during the Dutch Priority Programme on Acidification (Heij and Schneider, 1991).
This model aims at evaluating the long-term effectiveness of acidification abatement
strategies on a number of receptor systems (forests, forest-soils, heathland and aquatic
ecosystems). The model describes the complete causality chain from emissions to
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effects in a regionalised way. An important effect module within DAS is the forest soil
model RESAM (De Vries ef af,, 1995a; Chapter 2.2), which has 2 temporal resolution of
one year. Later on, within the context of the national planning bureau’s (NPB, MPB),
an even more integrated simulation model was developed, the Natuurplanner
(Alkemade ef af, 1998). This required a more simplified biogeochemical model, for
which we developed the model SMARTZ2 (see Chapter 2.3).

The regional models RIESAM and SMART2 include various simplifications such
as a yearly time scale, single soil layer (SMART2) and lumped process formulations.
Validation of such regional models is, however, cumbersome, as most measurements
are carried out at the stand level. Validation at that level of detail is problematic since
the model outputs of these models is in the form of yearly average concentrations that
cannot be compared directly to (biweekly or monthly) monitoring measurements,
which show high temporal dynamics. Furthermore, RESAM and SMART2, which aim at
predicting long-term changes, cannot be validated with results from relatively short (3-
10 a) monitoring programmes. To overcome this limitation we built a detailed stand-
level model with a high degree of process knowledge and a higher temporal
resolution: the Nutrient Cycling and Soil Acidification model (NUCSAM). Besides the
necessity of having a detailed biogeochemical model as a research tool, the most
important reason for developing NUCSAM was validation and scientific justification
for the regional models RI:SAM and SMART2. The model NUCSAM has been applied
previously to the Solling experimental forest in Germany (Groenenberg et af, 1995)
and to a roofing experimental site Speuld, the Netherlands (Van der Salm ef 4/, 1998).

In this Chapter, a comprehensive description of the model NUCSAM is given
together with a validation of the model to a Dutch Douglas fir stand in the
Speulderbos. Data on forest hydrology, soil chemistry and tree growth were available
for the period 1986-1990 (Heij and Schneider, 1991; Evers ¢f 4/, 1987). Furthermore,
the results of scenario analyses are presented.

212 Model description

Model structure

NUCSAM is a process-otiented model that simulates the major hydrological and
biogeochemical processes in the forest canopy, organic surface layer, and mineral soil.
It considers evapotranspiration, heat transport, canopy processes, litterfall,
mineralisation, below and above ground nutrient uptake, soil processes and solute
transport. The change in soil solution and solid phase chemistry is calculated from a
set of mass balance equatons, describing the input, output and interactions in each
compartment. Vertical heterogeneity is taken into account by differentiating between
soit layers. Each soil layer is a completely mixed homogeneous compartment of
constant density.

Processes in the model are generally described by zero-order and first-order
rate equations and equilibrium equations. To incorporate the effect of environmental
changes, most process parameters are described as a function of temperature, soil
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moisture content and pll. The model includes all major ions playing an important role
in nutrient cycling and soil acidification: H, Al, Na, K, Mg, Ca, NH4, NOs, POq, SO4,
Cl and organic anions (RCOQO). The model is specially developed for application at
forest stands that are intensively monitored for atmospheric deposition, precipitation
(meteorological conditions), litterfall and soil solution chemistry. The model inputs
include atmospheric deposition, global radiation, precipitation and air tetnperature.
Ideally, the model requires these inputs on a daily basis. However, less detailed input ts
also conceivable. This is especially true for deposition, which is generally available at a
larger time scale. The model computes fluxes and concentrations in the vegetation
compartments and the soil layers on a daiy basis. The basic structute of the model is
given in Figure 1.
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i« foliar uptake ; Foliage e branches :_'I"ree growl.hi )
*-¢_foliar exudation .- [ J --------

Throughfall: i Litterfall

R

Litter layer

- -~

 Soil processes: .

/& Mineralisation %

; o Nitrification . Minerai
« Denitrification soil layers
* Weathering

'\ + Cation exchange |

N, * Alrelease .

*.. * Sulphate sorption .’

S -
~ .
e ee- -
P

Figure 1 The basie structure of NUCSAM, showing the key pools and fluses

Biochemical processes
Nutrient cycling

Nutrient cycling includes the daily uptake of nutrients by the growing forest and the
return of nutrients to the soil by means of litterfall and root turnover. This cycle is
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closed by mineralisation. The vegetation removes nutrients from the soil solution and
through above ground uptake in order to produce biomass. Losses of nutrients from
the vegetation are caused by litterfall, root turnover and foliar exudation. Litterfall is
deposited onto the organic surface layer of the soil, whereas roots are decomposed in
the organic surface layer and deeper soil layers. Nutrients return to the soil solution by
mineralisation of litter and dead roots.

Canopy interactions

The solute fluxes to the soil surface by throughfall are calculated in NUCSAM from the
total deposition corrected for canopy interactions, ie. foliar uptake and foliar
exudation. In NUCSAM the total input through atmospheric deposition is derived from
the input through dry deposition en bulk deposition. Dry deposition must be specified
as model input, whereas bulk deposition is derived from precipitation fluxes and
precipitation chemistry. Total deposition of NHs, NOs, 8Oy is calculated from the
input by dry deposition and bulk deposition:

FX, = X, -FX, +P-X, (1)

where FX (mol. hat d) refers to the flux of element X, fXu (-) 1s the forest filtering
factor for dry deposition of element X, P the precipitation (m d1}, ¢ the concentration
of element X in wet deposition {mol. m~) and where the subscript # refers to total
deposition, 4 to dry deposition.

The total deposition of the base cations Ca, Mg, K, Na as well as Cl is
calculated from the input by bulk deposition solely:

FX, = fu FXy 2

where FX (mol ha! d) refers to the flux of element X, iz (-) 1s the forest filtering
factor for bulk deposition for base cations and Cl. Note that contrary to fXu, flu
implicitly correct for the input of dry deposition. This is because there is only data
available on the bulk deposition of base cations and Cl. Deposition of Al and P is
assumed to be negligible, and not included in the model.

Foliar uptake of NHa, NOs, SO4 and H is described as 2 linear function of the
dry deposition of these elements:

FX, = X, -FX, 3)

where FX (mol. ha' d'1) refers to the flux of element X, X, () is the uptake fraction
of element X and where the subscript f# refers to foliar uptake and 44 to dry
deposition.

Foliar uptake of NH; and H is counterbalanced by exchange with Ca, Mg and
K (Draayers, 1993):
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FCa, +FMg,+FK, =FNH, ,+FH,, @

where the subscript f refers to foliar exudation and f¥ refers to foliar uptake. The
foliar exudation flux of each individual cation, FXj; (mol. ha a'!) is calculated as:

FX,= fiX,-(FNH, , +FH ) (5)
where X} (-) is the foliar exudation fraction of Ca, Mg and K. The sum of these

fractions equals 1.

Accumulation and leaching from the canopy

To calculate the fluxes and concentrations in the leachate from the canopy
(throughfall}, it is necessary to determine the throughfall volume and the interception
capacity (ly.m (m)). The calculation of the throughfall waterflux (IT) is described in
Section Canagpy interception. When precipitation exceeds the interception capacity (Aeom
(m)}, accumulated dry deposition and exudated base cations are leached from the
canopy. This is modelled by a first order equation.

The accumulation and leaching of constituents form the canopy is calculated
from the following mass balance:

%ﬁrcp.fx,.,+ﬁXM-FXM+FXﬁ~TF-LXM ©)
i1

where [/, is the amount of accumnulated deposition in the canopy {mol m2), Pand TF
are the daily precipitation and throughfall (m d') respectively, eXi and X are the
constituent concentration in the solute entering and leaving the canopy respectively
(mol. m?). Integration of Eq. (6) leads to:

ORI P()
X ()= X, (X () ——=-2X_ }-exp| — -t
¢ am’() TF(t) 2 i (f o ( :IF(I) . nr) e)‘p (A"_,mx) (7)
The daily throughfall is then calculated by:
FX (=TF(f) eXoa(t) (8)

Litterfall and root turnover

Litterfall and root turnover are the input to the otganic pools of N, P, Ca, Mg, K and
S. Both processes are described by first-order rate reactions:
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FX;’=(1-ﬁ“Xn’&‘)'léX§r‘Am‘&,'ftX&, (9)
FX,y = (1= X, ) kX 4~ Am, X, (10

where kyand £ (a!) are the rate constants for litterfall and root umover, A, and
Amy (kg ha') are the amounts of leaves and fine roots, ¢2Xj and X, (mol kg?') are
the contents of element X in leaves and roots, and frXes and fiX., () are the
reallocation fractions for element X in leaves and fine roots, respectively. Am; and
Ay are directly derived from the given maximum amounts of leaves and roots (see
Section I'orest Growth). The contents of P, Ca, Mg, K and S in leaves and fine roots are
assumed to be constant in time. As high contents of nitrogen are caused by high
nitrogen deposition rates, the nitrogen content in stems, branches, leaves and fine
roots is calculated as a function of nitrogen deposition by:

fme" ﬁf N.'d S Nld,fmr
_ ) Nfd - Nfa',»m
N =9aN,, +(aN,, ~aN,, ) ————""~  for N, <N, <N, .. (11)
Nm',m.r - N!J,nﬂ
ﬁ‘me ﬁr N.'d 2 N.'d,m.\'

where ?Npy and N, (mol. kg!) are the minimum and the maximum nitrogen
content in stems, branches, leaves or fine roots, respectively and FNigm and FNigm.
(mol; ha' a') are the minimum and the maximum deposition levels between which
the nitrogen content in biomass is affected. Furthermore, a certain delay period
between deposition change and change in N content is considered in NUCSAM.

The resulting annual litterfall and root turnover is distributed over the year,
using a monthly varied coefficient to derive monthly variable fluxes.

Mineralisation

To describe the dynamics and mineralisation of organic matter we consider three
organic matter pools. Models with only one pool are not able to describe the long-
term dynamics of mineralisation, because of the apparent change of the decay
constant with time. Several models, such as SOM (Jenkinson and Rayner, 1977),
CENTURY (Parton ef a/, 1987), NICCE (Van Dam and Van Breemen, 1995) and
MERLIN (Cosby et af, 1997), distinguish two or more organic matter pools with
different decay rates. A similarity of these models is that the organic matter pools are
only discernible conceptually and not physically or chemically. A drawback of the use
of such a concept is that the pools of organic matter and nutrients are hardly
measurable. Consequently, within NUCSAM we choose for pools that can be related
with field obsetvations (cf. Groenenberg et 4/, 1998).

In NUCSAM the three pools: litter, fermented material and humic material were
assigned to three morphological distinguishable pools ie. the L, F and H horizons of
the organic surface layer. These morphologically distinguishable pools can be sampled
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in the ficld separately in order to measure pools of organic matter and contents of
nutrients. The pools represent successive stages in the decomposition of organic
matter, of which the litter compartment is the most easy decomposable compartment
and humus, the most refractory compartment. Besides litter input from above ground
material the F and H horizon also derive organic matter by the tumnover of fine roots,
as described before (Fq. 14). Decomposition of roots is described analogous to the
decomposition of above ground litter.

Figure 2 gives a schematic presentation of the organic mater pathways in
NUCSAM. (cf. Groenenberg ef al., 1998).

oy
. o
~
Litter fail i, = mineralisation of filter
» mf" fr, = transformation of litter to farmanted material
L 1 > mf'ﬂ,ﬂ = mineralisation of fermenied matarial
trfm = transformation of fermented to humic material
] miy, = mineralisation of hymic material
o 1 M
Root death N, mi, >
try
hu ] My,
A H Mig,
Root death .
mi
it
.
tr,

Figure 2 Organic matter pathways in NUCSAM

Fresh organic material (litterfall and root turnover) is added to the litter
compartment. Material from the litter compartment is mineralised to CO;z and DOC
(i) and transformed to fermented material (fr3). Fermented material is mineralised to
CO:z and DOC (744 and transformed to humic material (#1;). Humic material is the
final stage of organic matter decay and therefore is only mineralised (#is,). Part of the
humic matetial from the organic surface layer may be transferred to the minetal soil as
a result of bio-turbation. Organic matter in living biomass is lumped with death
organic material because living biomass is only a small fraction of organic matter in
soils.

Mass balances of carbon in the various organic pools are determined by the
input to the compartment either by addition of fresh organic material (litter
compartment) or by transformation of organic matter (fermented and humus
compartment) and by the output due to mineralisation and further transformation.
Mineralisation and transformation of the organic carbon, nitrogen, phosphorous and
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base cations in the pools are modelled as first order processes. For the litter and
fermentation layer, the mass balances (mol. ha' a) thus equal:

7 =(1= ) FXy = (ki + oy ) Ay iX,, (12)
d(Am,-aX )
e Ry Ay Xy~ (R ) A X (13)

where fr. (-) is the leaching fraction, this fraction represents the immediate release of
nutrients {usually mainly K and Na} to soil solution &4y (a') is the mineralisation
constant for the litter layer, £s,4 (2!) is the humification constant for the litter layer,
Emifm (21) is the mineralisation constant for the fermentation layer and &4, (a!) is the
humification constant for the fermentation layer, ¢#X) and X} (mol. kg?) are the
contents of N, P, K, Ca, Mg and § in the litter and fermentation layers, and Am; and
A (kg hal) are the amounts of litter and fermented material, respectively.

In the model the carbon content of organic matter does not change with
ongoing decomposition ie. tCay = e#Cs = Cpm = Ch, this according to the similar
carbon content found in bulked samples of the L. and F horizons compared to H
horizons as determined in a field inventory of 150 forest stands (De Vdes e al,
1995b). The contents of other components are dynamic through differences in
mineralisation rate (only for N) and the differences in element contents in lirterfalt and
toot turnover. The input flux of fresh organic material (root turnover and litterfall}
depends on the amount of leaves and roots according to (see Eqs. 9 and 10).

For each soil layer within NUCSAM, a mass balance (mol. ha! a!) can be written
for soil organic matter:

d(Afm,! : ftXﬁlr,!) =
i (14)
oy (Am X v by Am X = Ry, Amy, X, )

where fr (-) is fraction of soil organic matter in soil layer 4 & 4w (a!) is humification
constant for the fermentation layer, & (a!) is mineralisation constant for the root
necromass, and &ms (a1) s mineralisation constant for the humus layer. The flux of
organic anions, RCOOm, produced during mineralisation of all distinguished organic
matter compartments (mol. ha? a) is calculated from charge balance considerations:

RCOO,, = NH, ,, +Ca,; +Ca,; +K,, - 5O, ., — H,PO, ., (15)

4 pef

Part of the organic matter from the humus compartment may be transferred to
the mineral soil by bio-turbation. In NUCSAM this is modelled by transferring a
constant fraction of the newly formed humus over the mineral soil. layers according to
the root distribution.
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Mineralisation and transformation rates depend on temperature and moisture
content. In NUCSAM maximum rate constants are corrected for non-optimal
temperature and moisture effects by multiplying the rate constants with correction
factors.

Mineralisation of nitrogen in each organic matter compartment was coupled
with carbon mineralisation. At low N contents the rate of nitrogen mineralisation is
reduced by multiplying the actual mineralisation rate constant with a2 C/N ratio
dependent reduction factor (#fmcn) to account for nitrogen immobilisation. This
reduction factor is calculated as (Janssen, 1984; De Vries ¢/ 4/, 1994a):

1 Jor CN,SCN,,
CN,-CN
wony S9lm—2——" for CN, <CN,<(1+DA_)-CN 16
Tucx =(I=poi ( )-CN,, (16)
0 Jfor CN,2(14DA_)-CN,,

with CN; the C/N ratio of the incoming organic material by leaf fall, root turnover or
transformation of the litter or fermented compartment, CNm, is the C/N ratio of the
micro-organisms decomposing the substrate (-) and DAm, 1s the dissimilation to
assimilation ratio of the decomposing microbes (-).

Actual values for the mineralisation rate constants are also reduced by factors
such as soil moisture. In NUCSAM, the same reduction functions where used as for the
SMART2 model (see Chapter 2.3).

Nitrogen transforrmations

Nitrification (mol: ha! a™) is described as a first-order reaction by:
INH,,=~f8-TL-k_ -NH, (t7)

where 6 (m3 m*) is the volumetric water content, TL (m) is thickness of the soil layer,
£+ (a1} is the nitrification rate constant. As with mineralisation, the nitrification rate
constant is adjusted on the basis of soil temperature, water content and pH (De Vries,
1988). The nitrification rate constant is reduced at high water contents.

Denitrification (tnol ha! a') is also described as a first-order reaction by:

FNO,, =16 -TL-k, -NO, (18)

As with mineralisation, the maximum values for the nitrification and
denitrification rate constant, £, and &g, are adjusted by the moisture content and pH:
In NUCSAM, the same reduction functions where used as for the SMART2 model (see
Chapter 2.3).

25



1T Evaluation on a site scale

Uptake of nutrients by roots

Total uptake of NHs, NOs, Ca, Mg, K, POs* and 5O, (mol. ha' a') is described in
NUCSAM by a demand function, which consists of maintenance uptake and growth
uptake in stems and branches according to:

FX, =X, +FX, +FX, +FX, +IX, (19)

where the subscript 7# refers to root uptake, / to litter fall, 7/ to root turnover, f to
foliar exudation, fx to foliar uptake and gz to growth uptake. The growth uptake is
directly related to stem and branch growth:

FX , =dAm (aX , + [,

wir X4 (20)
where fruir (-) is the fraction of growth uptake for branches, &7y (kgha'a?) is a
logistic rate constant, d-1m, (kg ha' a') is the stem growth, Amym (kg ha?) is the
maximum amount of stemwood, #Xy (mok kg') is content of element X in
stemwood, X, (mol: kgt) is content of element X in branches, 7 (a) is time, 25 (a) is
time at which the amount of stemwood is 0.5 - A7m and age (a) is the stand age at
the start of the simulation. The contents of P, Ca, Mg, K and $ in stemwood are
assumed to be constant in time, The concentration of nitrogen in stems is described as
a function of the nitrogen deposition according to Eq. (11).

The nutrient uptake from a given soil layer / is determined by the given root
distribution:

FXW.J’:FXm'ﬁrfi (21)

where FX,, (mol: ha! a'} is uptake of element X from soil layer 4, FX,, (mol ha a)
is total uptake of element X, fry is the root fraction in soil layer 7 The uptake of
nutrients for each layer will be extracted from the soil solution. When there is a
shortage in a particular layer, this can be compensated by additional uptake from other
layers. When there is a shortage for the whole soil profile uptake will be reduced,
resulting in lower contents n the vegetation compartments.

Preferential uptake of NHs over NO; is calculated according to {Gijsman,
1990):

ENH,, = —-—-Ll-— FN,, 22
+—_—
f,NH,,

where fNH,, (-) is a preference factor for the uptake of NI, over NOs. NO; uptake
is calculated as the difference between total nitrogen uptake and NI, uptake:
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FNO,, =FN, —-FNH, , (23)

The resulting nutrient demand is distributed over the year, using a monthly
varied coefficient to derive monthly uptake fluxes from the annual uptake (cf. litterfall
and root turnover distribution over the year):

FXm,mfb = .ﬁ up onth 1 X ru aunwal (2'4)
With:
12
3 s =1 @
manth=1
Forest growth

Forest growth is simulated by a logistic growth function. There is no feedback of
nutrient cycling on growth rate. Stem growth and canopy growth are calculated as
annual fluxes. The model uses monthly varied coefficients to relate annual growth
fluxes to monthly nutrient uptake fluxes and litterfall fluxes. Growth constants are
taken from available ficld and literature data. Stem growth, dm. (kg ha! a?), is
described with a logistic growth function:

Am,
il (26)

dldm =
L+ exp(—4r,, -(age+ 1t —15,))

L

where (krgn kghatal)isa logistic rate constant, d-1m, (kg ha'a?) is the stem growth,
Antum: (kgha') is the maximum amount of stemwood, 7 (a) is time, #s (a) is tme at
which the amount of stemwood is 0.5 + Ay and age () is the stand age at the start
of the simulation. ‘

Growth of branches (kg ha'! a'') is derived from the stem growth using a fixed
branch to stem ratio Sroes ()

d4”"br = frbﬂf dAm o (27)

The actual amounts of leaves and roots (kg ha') are described as a fraction of
the maximum amounts:

Am,

Amy, =
Am

: Amk!n,nx (28)

5 my
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where Ami;e (kg ha') is the actual amount of foliage () or roots(r) and Amiyrm:
(kg ha! a1} is the given maximum amounts of foliage (#) or roots(r7). Generally the
maximum amount of leaves and roots is achieved several decades earlier than the
maximum amount of stems, but this was not considered in this verston of NUCSAM.
The nutrient contents of base cations and sulphur remain constant in all biomass
compartments, whereas the nitrogen contents are calculated as a function of the
atmospheric deposition. In NUCSAM we used the same relation between N content in
leaves and N deposition as used in RESAM {cf. De Viries ¢f 2/, 1995a) and in SMART2
(see Chapter 2.3).

Geochemical process

Rare limited reactions

Protonation of organic anions and weathering are described by rate-limited first-order
reactions, Protonation (the association of organic anions with H) i1s described
according to:

FRCO0,, =—6-TL-k,, -RCOO 29)

where £, (a!) is a pH dependent protonation rate constant, 8 the volumetric moisture
content (m m>), TL the thickness of the soil layer {m) and cRCOQ the concentration
of organic anion in the soil solution.

Weathering (dissolution) fluxes of Al and base cations from carbonates, silicates
(primary minerals) and aluminium hydroxides (mol; ha' a1} are described by first-
order rate reactions and Elovich reactions respectively. The flux of calcium from
dissolution of carbonates is described by:

FCa,, ,=p-TL-kCa,, ,-dCa, -(«Ca, ~Ca) (30)

where p (kgm?) is the bulk density, £Cass (m?molt a') is a weathering rate
constant, #Cas (mole kg') is the content of Ca in carhonates, and «Ca and «Ca. (mol
m3) are the concentration and equilibrium concentration of calcum (cf. Eq. 30),
respectively, When the soil solution is supersaturated with respect to calcite,
equilibrium is enforced. The flux of base cations from silicates (primary minerals) is
described by (Van Grinsven, 1988):

FX,, . =p-TL-kX,, . -aX,, H" (31)

ne, pm

where &£Xupr (m®molc! 2'') is a weathering rate constant, #X,, (mol kg?) is the
content of base cation X in primary minerals, 1 (mol m?) is the H concentration

and o (-} is a parameter. The weathering of aluminium from primary minerals is
described by:
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F4,,,, =3FCa,, ,, +06FMg,, ,, +3FK,, , +3FNa,, ,, (32)

ar,pm nv,pﬂr

This equation comes down to congruent weathering of Anorthite (Ca), Chlorite (Mg),
Microcline (K) and Albite (Na). When the solution is under saturated with respect to
natural gibbsite, the release of aluminium from hydroxides is described by an Elovich
equation:

KAl . =p-TL-kE! -exp(kEl, -aAl ) -(eAl, —eAl) (33)

!'( o

with ¢Al and ¢Al, (mol. m™?) as the actual and equilibrium concentration of aluminium
in the soil solution, and £E/1 {m® mol.? at) and £E/2 (kg mol1) as Elovich constants.
As with calcite, equilibrium 1s enforced with respect to Al hydroxide when the soil
solution is supersarurated (cf. Eq. 33).

Weathering of P is described by the rate-limited equation:

FP_=p -TL &P, -eP, -(cP, —cP) (34)

where g (kg m?) is the bulk density, &P,, (m?® mol;! at) is the weathering rate
constant for P, oP, (mol: kg'!) is the total phosphate content, L {(mok m3) is the
actual phosphate concentration in the soil solution, and &, (mol. m?) is the
equilibrium concentration of phosphate with apatite, variscite or strengite.

Equilibrium reactions

We assume chemical equilibrium for the dissociation of COy, the concentration of Ca
in the presence of Ca carbonate, the concentration of Al in contact with Al hydroxide,
adsorption/desorption of SQ4 and cation exchange. The concentration of Ca in
equilibrium with Ca carbonate is calculated as:

Ca. = KCa, -—2C02

LY 33
‘ ? (HCOS ) 2

where KCa,; (mol? L2 bar?) is the equilibrium constant for Ca carbonate dissoluton
and pCO; (bar) is the partial CO:2 pressure in the soil. In NUCSAM we assumed the
PCOs in the soil to constant. The bicarbonate concentration in the soil solution
(mol. m-3) is calculated from:

(KCO, - pCO )

Iy

HCO, = (36)
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where KCO; (mol? L2 bar) is the product of Henry’s law constant for the equilibrium
between CO: in soil water and soil air, and the dissociation constant of HzCOs;. The
concentration of Al in equilibrium with natural gibbsite is calculated by:

el = KAl - of 37

where KAlx (mol21?) is the equilibrium constant for aluminium hydroxide
dissolution.

Cation exchange is desctibed by Gaines-Thomas equations with Ca as reference
ion according to:

f’wa kxS

ﬁCd‘n_\'X £axx

(38)

with 2 (-) as the valence of cation X, KX.. ((mol L)*x?) as the Gaines-Thomas
selectivity constant for exchange of cation X against Ca, frX. (-} is the fraction of
cation X on the adsorption complex. X equals H, Al, Fe, Mg, K, Na or NH..

frXa is calculated by:

—_— ftX a0
CEC

X (39)

where CEC (mol. kg') is the cation exchange capacity. The sum of all fractions is
equal to 1.

SO4 and H:PO4 sorption in each soil layer are described with a Langmuir
equilibrium equation according to:

X5C-eX

aXy = 1

(40)

+eX
ad

where X (molk kg') is the sorbed amount of anion X, XSC (mol. kg") is the
sorption capacity for X (cf. Eq. 75 for S and Eq. 76 for P), and KX.4 (m3 mol?) is the
equilibrium constant for sorption of anion X.

NUCSAM also includes ion speciation, such as the hydrolysis of Al and
complexation of aluminium with organic anions. All equilibrium reactions are
calculated with the chemical equilibrium program EPIDIM (Rijtema ¢ af, 1999). In
EPIDIM the chemistry of soil solution is defined by a set of chemical components
(such as H and NOs) and a set of ion species or complexes (such as HCO; and
AlSO4) with associated specific formation constants. The formation of a certain
species out of the components can be written as:

30



Chapter 2.1

My

A,’ =Zai.ij for i=I!“"N (41)
j:

where a;;is the stoichiometric coefficient of component 4, in the formation of species
B, and Mp the number of species B and N the number of components.

The concentration of each species can be expressed in the concentration of the
components according to:

a

.\Y
Bj =KJ.HA;"" for/=1,..., My (42)

i=1

where B; is the concentration of species /, A1, is the concentration of component 7 and
N the number of components, K; the formation constant of species i a; is the
stoichiometric coefficient and My the number of species B. For each component the
total concentration is calculated as:

Ay =>1a, K f[ Al (43)
i=1

j=

where 1T is the total concentration of component &

The total concentrations {(Ax™) are known from the mass balance calculations
{see Eq. 08). This results in a set of N equations with N unknowns, ie. the
component concentration. This set of equations is then solved numerically with a
Newton Raphson iteration scheme.

To correct for the non ideal behaviour of ions, the formation constants K used
are the conditional constants, cotrected for the ionic strength in the soil solution.
These modified constants are calculated from the thermodynamic formation constants
of the species and activity coefficient of the species and components:

N -
17~

— N _i=i ;
K=K ()
7

where y; and y are the acﬁvity coefficient of the component ¢ and species
respectively, K; the cotrected formation constant and K? the standard formaton
constant. Activity constants are calculated with a Davis approximation {cf. Stumm and
Morgan, 1981).
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Water, heat and solute transport

Watet transport

To simulate evaporation, transpiration, sotl water fluxes and soil water contents, an
adapted version of the SWATRE model (Belmans ef al, 1983) was used as hydrological
submodel, as described below.

Potential evapotranspiration

Potential transpiration is calculated by multiplying the reference evapotranspiration
according to Makkink (1957) by an empirical, season dependent crop factor. For
conditions in the Netherlands, the Makkink equation is written as:

B_s .
e ki, (45)

in which E, (m d') is the Makkink reference evapotranspiration, s (gg!' K1) is
derivative of the saturation water vapour pressure temperature curve, y (g gt K1) is
psychrometer constant, K (W m?) is global radiation, 4 (J g') is specific heat of
evaporation and § (-) is empirical constant related to the geographical latitude, which
for conditions in the Netherlands is equal to 0.65.

Canopy interception

Water is supplied to the canopy by precipitation and lost by throughfall and
evaporation of intercepted water. The daily throughfall is calculated as:

TF=P-E, 46)

where P (m d') is daily precipitation, TF (m d') is daily throughfall and E; (m d!) is
evaporation of intercepted water. The amount of water intercepted is calculated by
using a coefficient of free throughfall in combination with a threshold value. A
relatively simple empirical one-layer canopy-interception submodel is used in order to
calculate the throughfall flux (TF).

The calculation of the interception evaporation is based on Gash (1979). An
analytical approximation is used to calculate daily interception. However, unlike the
original Gash model, NUCSAM uses daily evaporation rates instead of yeatly average
evaporation rates and takes in to account the changes in the amount of water stored in
the canopy. As evaporation rates are lower during rainfall, empirical correction factors
have been introduced for the dry and wet part of the day. First the amount of rainfall
required to saturate the canopy, P {m), is calculated:
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R E, - 1
P=—A R ]11(1-—-—-—5—*£—E-'5’—-—]- (47)

where s¢ (<) the soil cover fraction, E, (m d') the reference evapotranspiration, fF., (-}
a correction factor for the evaporation rate during rainfall, R (m d') the average
rainfall intensity, P (m) the precipitation and ., (m) the maximum amount of water
stored in the canopy:

Ay = Ay — A (1) (48)
with Ayem 15 the maximum amount of water that can be stored in the canopy and

Auft-1) 1s the amount of water in the canopy at the previous time step.
The maximum interception evaporation (Eima) is calculated as:

P-se if P<P
E e = E, - 49
: P,-Jc+Tﬁﬂi~(P—P;) ifP2P 49
The amount of water stored in the canopy directly after rainfall equals:
AW-U = An'r(t - ]) + Ei,ma.x (50)
The canopy water storage at the end of the day is calculated as:
A.}r(f) = Aw.' e A s (51)

where A,. (m) is the water storage at the end of the day, A, (m) the water storage at
the start of the dry part of the day, fEa, () 2 correction factor for the evaporation rate
during the dry part of the day, and 7 (d) the length of the dry part of the day, which is
calculated from the precipitation and average rainfall intensity:

I=1-= (62)

The actual daily interception evaporation equals the maximum interception
evaporation minus the change in water storage in the canopy:

_ A=A, =1)
¢ i, max A/

(53)
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Transpiration and soil evaporation

Patential transpiration and potential soil evaporation are calculated by partitioning the
potential evapotranspiration on the basis of the available energy by a method
equivalent to Van Grinsven ef 2/ (1987) and Tiktak and Bouten (1992):

E;I':j-c.(‘w.Er_ﬂ‘Ei) (54)
E. =(1-4)-E,

where E'n {m dY) is the potential transpiration, E% {m d) is the potential soil
evaporation, f; (-) is an empirical factor that accounts for crop characteristics, s¢ () is
the soil cover fraction, I; (m d1) is evaporation of intercepted water, and f; {-) is the
fraction of the daily interception that reduces the potential transpiration. The soil
cover is calculated on the basis of the leaf area index.

The actual soil evaporation rate is calculated as a function of time since the last
rainfall event according to Black ¢z 4/ (1969):

E =elJr+1-1, ) E . (55)

where E, (m d*) is actual soil evaporation, / (d) is time {rom the start of a drying cycle
and ¢ (d1/2) is an empirical parameter. The potential transpiration is distributed among
soil layers on the basis of the root length distribution. Reduction of water uptake
occurs when soil water pressure heads drop below or exceed a threshold value. The
root water uptake fluxes are summed to get the actual transpiration.

Snow accumulation and snowrmnelt

A snow module based on the Birkenes model (Christophersen ef af, 1983) was
included in NUCSAM. Precipitation is pattitioned into snow and rain as a function of
the average daily temperature:

P ifT. 2T,
T-T -
P =4P. L ifT,<T<T, (56)
Tf‘ - TS
0 ifT,2T,

where P, is the total amount of rainfall (mm d1}, P is the total daily precipitation
(snow and rain, expressed as the total amount of water) in mm d?, T the mean daily
temperature, T, the temperature above which all precipitation is rainfall and T, the
temperature below which all precipitation is snow. The snow part P; (mm d) follows
then from:

P=P-P, 7)
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Snowmelt (Sm) was calculated according to Bergstrdm (1975), which included a
degree-day approach combined with a parameter that allows an increasing effect of
temperature on the snowmelt as the snowmelt proceeds:

Ju=Co(1+Cg'zM,)(T_To) (58)

where Gy is the initial degree-day factor {mm °C"! day 1), Gy the rate of increase of the

degree-day factor {mm?), YM, the accumulated melt during a period of snowcover

(mm), T the mean daily temperature and Tp the threshold temperature for snowmelt.
Sublimation of snow is calculated as:

S = fos " Er _ 59

where fus is a factor to calculate snow sublimatdon form the potential
evapotranspiration.
Snow accumulation is calculated in terms of the amount of water in the snow

pack, by:
S=5,+(P~-5,+5,) At (60)

where § and S are the amount of water in the snow pack in the actual and former
time step (mm), Ps the amount of snowfall (mm d), 5, the sublimation rate (mm d1),
S» the snowmelt rate (mm d) and IT the time step, which is one day. Sublimation of
stiow was calculated as a fraction of daily evapotranspiration.

The concentration in snowmelt is included in the as first-order process (see
Chen ef 2/, 1983):

X, =X, , g b (61)

.t

where k&, is the leaching coefficient (-), &X,,./ is the concentration of X in the
snowpack at the beginning of the time step and X, at the end of the time step (molk
m),

Soil water transport

Transport of water through the soil is calculated with a numerical solution of
Richard’s equation:

a8 9 db
s;—a—zli,é(b)-(—gz-+l)]—5(b) (62)
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where # {m? m?) is volumetric water content, # (d} time, g (m) vertical position in the
soil, # (m) soil water pressure head, K (m d') hydraulic conductivity and § (d'%) sink
term accounting for root water uptake. The model allows for upward water transport.

Soil heat transport

Soil temperature influence the rate of the biogeochemical processes and the chemical
equilibrium constants. The soil temperature module in NUCSAM is almost identical as
used in the ILWAS-model (Gherini ef 4/, 1985). In the simulation of soil temperature, it
is assumed that the forest floor is covered by canopy such that the direct solar
radiation reaching the soil is negligible. The heat fluxes over the soil layerts are driven
by advection through the infiltration of water and conductance by the soil media.
Fach layer has a heat capacity that is a function of the soil moisture content:

2: =(1-6,)C, +6,(NCy (63)

where £ is the heat capacity of layer / (k] m? °C?), C, is the heat capacity of the solid
phases: 2500 k] m3 C1 for organic matter and 2000 k] m3 C?' for mineral phase
{values taken from Koorevaar e 2/, 1983), Cy is the heat capacity of water, 85 the
potosity of the soil (m® m3) and 6, () the actual soil moisture content at t=¢. The heat
capacity of air is negligible.

The thermal conductivity of the soil media 1s also calculated as a function of the
actual soil moisture content, as an average per soil layer (7):

A= 6, (DA + f(1-0:)A, (64)
6, (+ f.(1—65)

where A5 and Ay are the thermal conductivity (kJ m3 °CY) if soil layer / (that includes
organic matter and mineral phase, 0.25 and 8.8 ] m! s °C- for and water respectively
and f, a weighing factor dependent on the bulk density of the soil.

With the heat capacity and conductivity of the soil media, the soil heat input
flux (Fp,,) and output flux (Fga)} (k] d) per soil layer reads:

PQ,J‘n,i = Fu’/,i—l(t)T + ’1."—1(.1:' -T.) (65)

i-1

F Domi = F w (0T, +A,(T,-T.) (66)

where Fi(#) is the water input flux from layer i1 (m?* d1), Ti1 and T; the temperature
of layer i1 and  (°C}, and J, the thermal conductivity of layer 4
The heat balance for each soil layer is defined by:

.F,Q,m,z —Fp i = 2T, —D)-T,(#)) 67)
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where (J; is the heat capacity of layer 7/ (k] m? °C) and T{1) and T{) the
temperature (°C) of layer / at the beginning and at the end of the time step
respectively. The heat balance equation for each soil layer can be written in a
tridiagonalmatrix with the temperature (T}) of each layer on the diagonal. From this
systemn the temperature for each layer is solved using an implicite solution method.
For the upper boundary, the temperature of the ambient air is used. The lower
boundary is set to a constant temperature of 10 °C, which is the average temperature
of groundwater in the Netherlands.

Solute transport

Solute transport within NUCSAM is calculated by the solute transport module
TRANSOL (Rijtema e¢f al, 1999). The basic equation of TRANSOL is the convection-
dispersion equation:

%9}= 9. et AR =R (©8)

where 0 is the soil moisture content (m m™), ¢ the concentration of a constituent in
the soil solution (mol: m3), [, the vertical solute flux (mok m2 d1), g the soil depth
(m), Rowr 2and Ruwe the source and sink terms (mol m? d) respectively. Within
TRANSOL the convection-dispersion equation is solved semi-analytically. Since the
incoming and outcoming fluxes are constant with time during a time-step, the soil
moisture content varies linear with time, according to:

0(r) =8(1,) + ¢ (69)

where 8 (#) is the moisture content at the beginning of the time-step #and @ the rate
of change of 0 within the time-step. The value of @ is calculated every time-step on

the basis of s from the two previous time-steps. Using the left hand side of Eq. 68,
the rate of change in the soil solution is defined by:

00 ¢ _ or .
L) 7o)

When neglecting the second order term of diffusion/dispersion, the remaining
first order equation can be solved analytically. The transport term is numericaily
approximated by:

], 9
PR Py
a7 ag(qc

a(,‘ qi—-‘- q.'+1
—_— | — = 2 £, 1
dd dz Az €i Az i (71)
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where ¢ is the waterflux (m d!) and D, diffusion/dispersion coefficient (m? d!). The
diffusion/dispersion is then mimicked by numerical dispersion by choosing an
appropriate layer thickness.

213 Data used for the NUCSAM application to the Speulder forest

Site description

Input data were derived mainly from the data set of the Speuld location as described
in Tiktak 7 2/ (1993). The Speuld site is located in a 2.5 ha Douglas fir stand at an
altitude of 50 m. The stand is surrounded by a large forest of approximately 50 km?
the nearest edge is at a distance of about 1.5 km. The soil is a well-drained Typic
Dystochrept (USDA) or Cambic podzol (FAO, 1988) on heterogeneous sandy loam
and loamy sand textured ice-pushed river sediments. A full soil profile description is
included in Tiktak e 4/ (1988). The water-table is at a depth preater than 40 m
throughout the year. In 1988, the start of the monitoring period, the stand was
29 years old.

The characteristics of the data-set

Measurements were carried out at different spatial scales and at different positions
within the stand. Most soil hydrological measurements were carried out at one plot of

30%30 m?, although an attempt has been made to scale these measurements to stand
average values (Bouten ¢ af, 1992). Soil chemical measurements are ‘point’
measurements. Samples were taken from three plots and the volume of soil sampled is
small. Also the tree physiological measurements were carried out at one point within
the forest stand. On the other hand, eddy correlation measurements of deposition and
transpiration are representative at a scale which is larger than the stand. Measurements
of throughfall amounts, throughfall quality and of forest growth, although point
measurements, were scaled to average values. However, all these measurements were
carried out at the Eastern half of the stand, possibly leading to a deviation from stand
average values.

Due to these different spatial scales it is almost impossible to combine all
measurements within one data-set. Consider the following example: If the
hydrological part of NUCSAM is calibrated using the average transpiration measured by
eddy correlation as a criterion, the hydrological regime will be different from the
hydrological regime at the soil chemical sampling points. For this reason, the
hydrological part of NUCSAM (i.e. an adapted version of the model SWATRE, cf.
Section Water traniporf) was calibrated using data from the soil monitoring plot only.
This calibration is not representative for the stand as a whole, but can be used in
combination with the soil chemical data-set. For the derivation of the geo-chemical
input parameters of NUCSAM, the data-set for plot B was used (see Tiktak e 4/, 1995).
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Hydrological data

Vegeration dependent properties

The most important vegetation dependent hydrologic parameters are presented in
Table 1. Interception capacity and efficiency are based on measurements with a
microwave transmission technique and calibration of detailed interception models
(Bouten, 1992). Soil cover fraction, reduction point and wilting point and crop factor
ate based on calibration of the hydrological model SWIF on the Speuld site (Tiktak
and Bouten, 1990, 1994). Average precipitation intensity and evaporation factors are
based on the calibration of the measured amount of throughfall. Root density data are
based on measurements in June 1989 (Olsthoorn, 1991).

Table 1 Vegetation dependent hydrologic patameter values for the
Speulderbos site

Parameter Symbol Value Unit
Soll cover fraction V) $¢ 0.9 -
Average precipitasion intensicy 2 R 10.0 mm
Interception capacity 2 A mae 2.1 mm
Factor for evaporation 9
during dry part of day: Ty 1.5 -
during wet part of day: SEan 05-90 -

Reduction point D bra -600 cm

Wilting point ¥ bw -6000 cm

Crop factor 1 f 0.85 -

Root density distribution?:

Litter R; 0.05 -
0-20 cm R, 0.30 -
20-40 cm R 0.34 -
40-60 cm R; 0.15 -
60-80 cm R; 0.08 -
> 80 cm R,

0.08 -
Y Based on Tiktak and Bouten {19905 1994). ‘

3 Measuted by Bouten (1992).

# Based on root length distribution measurements by Olsthoorn (1991).

% Based on the calibration of SWATRE to Speuld.

Soil physical characteristics

Water retention characteristics were obtained from simultaneously measured average
water contents and pressure heads at a plot of 30 X 30 m?2 The physical characteristics
are valid for the same plot as the monitoring data. To extrapolate the retention
characteristics outside the range of pressure heads that can be measured with
tensiometers the measured data were fitted to the Mualem-Van Genuchten functions
(Van Genuchten, 1980):
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e -0
o =0 +—"—F—— 2
( ) r+[1+(a.]b),}, (7)

where , {m® mJ) is saturated volumetric water content, &, (m* m%) residual water
content, » {m) pressure head, a (m") reciprocal of the air entry value, » (-) a fitting
parameter and » = 1-1/n. Table 2.3 summarises the results of the fitting. Conductivity
characteristics were not measured for the Speuld site because of the high spatial
variability of the Speuld site and the associated large number of samples which have to
be analysed to obtain representative conductivity data. Alternatively, theoretical
conductivity characteristics were used according to the Mualem model (Van
Genuchten, 1980):

=k, oL @

= (73)
[1+(a-|#)")?

where, K s (m d?) is the hydraulic conductivity. Values for the saturated hydraulic
conductivity were based on calibration on the Speuld data set during the winter pertod
when evapotranspiration is small (Tiktak and Bouten, 1990).

Table 2 Parameters of the Mualem-Van Genuchten functions to describe
the soil physical properties. Source: Tiktak and Bouten (1992)

Depth 4, 6.

K

a n 5
{m? m¥ (m? m3) {cm ™" ) {cmd?h
lirter 0.50 0.00 0.10 1.25 800
0-60 cm 0.33 0.00 0.10 125 800
> 60 cm (.21 0.00 0.04 1.40 100
Snow parameters

Unlike the previous parameters, snow parameters were not based on measurements at
Speuld, since they were not available. Most snow parameters (Table 3) were taken
from Bergstrom (1975), except for the rate of increase of the degree-day factor (Cp)
the snowmelt rate (§,) which was calibrated on data from an experimental forest stand
in Solling, Germany (cf. Groenenberg ef 4/, 1995) and the leaching coefficient (£.,)
which was set to 1.
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Table 3 Parameters used to calculate snow processes

Parameter Value Unit

T: -1.5 ‘C

T, 1.6 *C

T, 0.0 *C

Cy 0.25 mm'!

Gy 0.1 mm ‘C1 day!
' 1 ]

Geochemical data

Measured soil data used for the derivation of geochemical parameters were often
available for different depths in the soil profile. In order to obtain a coherent set of
parameters and initial conditions of varables, input data were scaled to the same
depths according to:

}“{" — Az, X, +Az X, (74)

b Az +Ag,
where X is the estimated value of state variable X at depth g, Xi/2 is the measured
value of state variable X at depth g1/2, and g5/2 is the nearest depth with measurement
21 < g < g For state variables related to a soil layer with thickness 1z, % is the depth
in the middle of that layer.

Exchange constants

Gaines-Thomas exchange coefficients were calculated from the long-term average soil
solution concentrations extracted with cups (plot B; Tiktak ef al, 1995) and the
measured amount of exchangeable cations (Tiktak e a«f, 1995). From the
concentrations, activities were calculated with the chemical equilibriuvm program
EPIDIM (Rijtema ef al, 1999). Coefficients were calculated with Eq. (33) using Ca as
the reference ion. As the content of exchangeable base cations was below the
detection limit, the exchangeable fractions (fraction of total CEC) of all base cations
were set to 0.01 to calculate Gaines-Thomas exchange coefficients and to initialise the
model. Results are shown in Table 4.
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Table 4 Gaines-Thomas exchange coefficients {mol 1'1)2-?2 and cation
exchange capacity (mmol: kg'!)

Depth Gaines-Thomas exchange coefticient relative to Ca (mol 102 CEG
{cm) 1! Na K NH, Mg Al+le {mmol. kgD
9-0 4.00x104 42,9 1519 1890.9 3.4 5017 245.7
0-5 1.70x10+ 223 128.3 2891 25 813.7 96.9

5-10 0.57x10* 6.7 80.6 13.6 1.2 127.5 58.3

1020 0.13%10¢ 6.0 1208 6.7 11 730 57.1
2030 0.87x10¢ 8.6 267.0 11085.1 14 322 428
30-40 6.66x104 5.1 162.5 21304 0.9 1.8 29.0
40-50 2. 50x105 33 93.7 16247 0.7 04 269
50-60 2.95%105 31 69.6 10526.7 07 0.4 257
6070 2.43%105 35 59.2 19454.1 08 0.7 277

7080 2.33x105 45 56.5 3625.4 1.0 1.4 288
80-100  283x10% 6.6 525 0.0 1.2 25 39.7

Weathering rate parameters

Parameters for weathering of silicates (Eq. 31) were calculated from results of batch
experiments (De Vries, 1994) for a generic Cambic Podzol (Table 5). They estimated
the total weathering flux for a 70 cm profile by dividing the fluxes derived from the
batch expertments by 50. This factor was introduced to account for differences
between field and laboratory conditions. The fluxes presented by De Vries (1994)
were multiplied by a factor 10/7 to calculate the weathering fluxes for 2 1 m profile.
The weathering rate constant for the Speuld profile, £X,epm, is calculated as follows.
The coefficients g and &X,.py are assumed to be layer independent. Parameter a was
taken directly from De Vries (1994). The average pH value as measured for plot B by
Van der Maas and Pape (1990) was substituted. Total element contents and the bulk
density were taken from Tiktak e @/ (1988). Equation (20} can be written down for
each soil layer. By substituting all parameters into equation (26), and by assuming that
the total weathering fluxes calculated by this equation equals the weathering flux by
De Vries (1994), the weathering rate constant can be calculated. The results of the
calculations are presented in Table 5.

Parameters for weathering of secondary Al compounds (Table 6) were taken
from batch experiments as described by De Vries (1994). They investigated a total
number of 15 sites throughout the Netherlands. For the model applications, we
selected the soil horizons that showed most resemblance to Speuld. These included
the Ah, Bhs, BCs and C horizons.
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Table 5 Parameters for weathering of silicates (Eq. 31)

Cation Total weathering pli dependent pH ndependent
ﬂux') /&Xaq»- o leXn,p-
(mol. halal) @h Q ()
Na 80 8.43x10-2 0.87 4.19x10-%
K 75 2.33x101 1.02 487102
Ca 45 2.26x10+1 0.85 711103
Mg 20 1.92x10! 1.54 8.831x10!

Y source: De Vs (1994)

Table 6 Parameters for the calculation of weathering of oxalate extractable
Al (De Vries, 1994)

Depth AE!N EER Horizon in
—_{em) (kg'a™) (m* mol) De Vries (1994)

0-10 1.13%x10% 11.4 Ah

10-40 2 04x10+ 9.1 Bhs

40-80 7.49%10+ 73 Bes

80-100 1.67%10- 9.8 C

Sulphate and phosphate sofption parameters

The sulphate sorption capacity, S5C (mmol. kg'), was calculated from the oxalate
extractable amount of secondary Al according to (Johnson and Todd, 1983):

$5C=0.02- A/, (75)

The phosphate sorption capacity, PSC {mol. kg'), was calculated from the
equation (Van der Zee, 1988):

PSC=02-(aAl +dFe,) (76)

Contents of oxalate extractable Al were taken from Tiktak ef o/ (1988) and
contents of oxalate extractable Fe from measurements on comparable Cambic
podzols (De Vries, unpublished results). Results on SSC and PSC are shown in Table
7. The Langmuir adsorption constant for SOu, KeSO4 44, was set to 2 m* mol?, which
was taken from the RESAM database (De Vries ef a/, 1994a). The Langmuir adsorption
constant for phosphate, KeH:POy .0 was set to 12 m?* mol', which was determined
from A1:PQ, (phosphate in soil solution) and aP.s (oxalate extractable phosphate) as
determined in 150 forest stands in the Netherlands (KeH:POy oy =P/ (H2PO, (PSC-
aP.)), see Eq. (40)).
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Table 7 Sulphate and phosphate sorption capacities for the different soil
layers

Depth S5C BYCH

{cm) {mmol, ker®) {mmol, keh
0-5 33 59
5-10 34 60

10-20 5.7 99
20-30 81 123
30-40 98 144
40-50 7.6 118
50-60 6.3 106
60-70 5.6 98
70-80 52 94
80-100 54 66

% Denved from generic data for a Cambic Podzol

Soil layer independent parameters

The Al equilibrium constant and parameters for nutrient cycling are presented in
Table 8.

Table 8 Values for soil-layer independent model parameters

Process Parameter Value Unit
Foliar uptake® SiNH. 5 0.21 -
Jridy 0.58 -
Foliar exudation? N L 0.18 -
My 0.11 -
Sk 071 .
Nitrification? K 100.0 al
Al dissolutiond KAL, 5.0x108 12 mol2

% Based on throughfall data over the pesiod 1987-1990 (Van der Maas and Pape, 19909,

% Obtained by calibration. The genenic value for &eis 40t

% Avcrage TAP for ANOID: ar 90 ¢m over the period 1987-1990, activities caleulated from measurcd
concenirations (Van der Maas and Pape, 1090).

Forest growth data

The main ecophysiological research and growth analysis was carried out from 1987
undl 1989 (Evers ¢ a/, 1991) in a plot adjacent to the plot where most of the soil
research was done. The ecophysiological subplot had a somewhat lower stand density
compared to the soil research plot (765 vs. 812 trees ha'). After 1989, the biomass
analysis was moved to the soil research plot, causing a discontinuity in the data series.
Table 9 gives an overview of basic stand data for the soil plot and for the tree
physiological plot as measured in December 1988,
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Table ¢ Tree growth patrameters as derived from the ecophysiological plot
1 (Jans er a/, 1991) and the soil research plot {Olsthoorn, 1991)

Paramceter Symbol Unit Value
Stand age ages a 30
Logistic growth constant kry at 0.094
Maximum amount of stems Awista Mgz ha?! 543.8
Amount of foliage Aw. Mg hat 19.5
TTalf life ime growth function /5 at 38
Branch stem ratio Sronst - on
Litterfall rate® &l at 0.15

1 [itterfall was measured directly using 12 litter craps with a surface area of 1 m* (Van der Maas and 'ape, 1990).

State variables that must be known at the beginning of the simulation include
the element contents in needles, stems, branches, roots and litter. Data related to these
compartments are given in Table 10. Data are given for the end of the year 1988.

Table 10 Data on biomass and element contents of needles, toots and
stems of Speuld stand

Compartment Biomass Element content (% of dry weight)

(M hat) N P K Ca Mg S
Foliage (An)t 18.5 1.84 0.11 0.58 0.33 0.09 0.14
Branches (Ani,)? 14.0 0.30 0.04 .10 0.05 0.03 0.05
Stemns (Am,)? 60.0 0.20 0.01 .10 0.05 0.01 0.05
Fine roots (Am,)d 32 1.00 0.10 0.08 0.16 0.04 0.10
Litter (Amy)® 35.0 - - - - -

b Measured in the ecophysiological tescarch (Fvers ef ol, 1991).

3 Nutrient cantents in branches, wood and roots inferred from general data (Berdowski e af, 1991),

% Measured in the soil research plot by Olsthoorn (1991).

9 Measured by Tiktak and Bouten (1992). The litter mass is an average value for 485 samples, Ilement contents in
licter are calculated by the model using the foliage contents as initial values.

214 Model calibration procedure

The applied model contains parameters, inidal and boundary conditions, which are
incompletely known. More information on these quantities, which are often not
measurable, is required to improve the model petformance. Hence, model calibration
is required to determine these values accurately from the available measurements,
taking into account the intended model use and available prior knowledge.

Model calibration thus becomes a critical phase in the modelling process.
Despite its importance, the required actvities for calibration are often given little
consideration, and in many cases the model is calibrated using non-structured arbitrary
methods. As the model under consideration contains a large number of parameters, a
well-structured and systematic calibration approach is needed, supported by useful
guidelines,
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Stratcgy

Janssen and Heuberger (1995) present a general outline of the calibration process, and

distinguish various important steps:

- Identify the characteristics of the data-set.

- Identify the parameters that need calibration, preferably by performing model
analyses (sensitivity and uncertainty analyses).

- Specification of model performance criteria, which express the discrepancy
between measurements and model results,

- Solution of the calibration problem, which often consists of adjusting the model
patameters such that the model results match the measurements adequately (e.g.
minitnal misfit).

The calibration process is usually completed by assessing the accuracy and quality of

the obtained model (validation aspects; cf. Janssen and Heuberger (1995)). In the

sequel it is briefly addressed how the above mentioned issues were used for the
calibration of the NUCSAM model to the Speuld data-set.

Parameters that need calibration

The choice of the model parameters that need calibration was based on an uncertainty
analysis for the model RESAM (Chapter 2.2 and Kros e al, 1993). Table 11
summarises the parameters for which the solute concentrations were most sensitive,
uncertain or hard to derive.

Table 11 NUCSAM model parameters that were calibrated

Calitbrattion  Parameter Description Affects concentrarion of:
order
1 B0 forest filtering factor SOz 44 50,
2 JANO forest filtering factor NQOy N and NI,
3 IINH forest filtering factor N1y ga NQOs and NI
4 S forest filtering dry deposition
base cations and Cl Na, K, Ca, Mg and Ci
5 £ty nitrification rate constant Ny and NI,
6 EES Llovich constant Aland I
7 AN Maximum N-content of leaves NOs and NI,
8 £rCay, rate constant for Ca-weathering Ca
9 krMg,. rate constaat for Mg-weathering My

These parameters have been chosen for model calibration. To calibrate soil
chemistry, simulated soil chemical variables were compared with measured soil
chemical variables using statistical measures. For the calibration only concentrations in
the soil solution were used since these were the only variables measured in time, soil
contents (e.g. oxalate extractable Al) were only measured once. Solute concentrations
were measured with cups and plates at different depths for three plots (cf. Tiktak e af,
1995). Because of the large variation in measured concentrations between these three
plots (cf. Tiktak ez 2/, 1995) it was decided to choose one plot for calibration {plot 5}
because otherwise no trends in soil chemistry would be visible. Model outputs used
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for calibration are: pH and the concentrations of Al, Ca, Mg, K, NOj;, NH,, $O4 and
Cl at 10, 20 and 90 cm depth, two depths for the topsoil and one in the subsoil below
the root zone. The choice of the hydrological parameters to be calibrated (not shown
in Table 11) was based on Tiktak and Bouten (1992),

Performance criteria

For the evaluation of model performance in relation to observation data in Speuld,
two different performance measurements were used (Janssen and Heuberger, 1995):

P -0.
NME=T Tn

1y

N |P:‘—oi|

NMAE=—"——
o

f

(78)

where, NME (-) is the Normalised Mean Error, NMAE (-} 1s the Normalised Mean

Absolute Error, P is the predicted value, O; is the observed value, O and P are the
averages for the observed and predicted values and N is the number of obsetvations.
The NME compates predictions and observations on an average basis (ie. over the
whole time-span). The NME thus expresses the bias in average values of model
predictions and observations and gives a rough indication of overestimation (NME >
0) or underestimation (NME < 0). The NAMAE is an absolute indicator for the
discrepancy between model predictions and observations. The NALAE does not allow
for compensation of positive and negative discrepancies. An NAL4E of zero is
considered optimal.

These criteria can be defined and evaluated for various model quantities,
individually as well as jointly. For a fair comparison between model results and
observations, their temporal and spatial scale should be compatible. For modet
calibration, model results were compared with accumulated throughfall amounts, soil
water contents and soil solution composition.

Solution of the calibration problem

Several automated and objective calibration procedures are available for the
calibration of time-series resulting from dynamic models e.g. the Rotated Random
Scan method (Janssen and Heuberger, 1995). Such automated calibration procedures
have been applied to a simplified regional scale models e.g. MACAL, a steady state soil-
vegetation model (Kros ef a/, 1994a) and SMARTZ, a dynamic soil-vegetation model
(Chapter 3.2; Kros e al, 1999). However, even for these simplified models
identification problems occurred and some additional assumptions were necessaty in
order to achieve a solution. Considering the large number of model parameters and
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their mutual interaction in NUCSAM, it will definitely result in identification problems.

Consequently, we decided to calibrate the different NUCSAM parameters manually and

sequentially by comparing model output and measurements using performance criteria

(cf. Eq. 77 and 78). Therefore we followed the subsequent sequential steps:

- Calibration of the hydrological submodule using time sertes of throughfall and soil
watercontent measurements

- Calibration of the biogeochemical modules using seil solution concentrations.

Table 11 gives the order in which parameters of biogeochemical modules were
calibrated. Comparison between model output for different parameter values with
measured data was done by comparing the statistical measures for the most effected
(sensitive) model output (cf. Table 11). In case of an (almost) equal model
performance with respect to the most sensinve variables, differences in model
petformance for other model outputs were taken into account ro choose the most
optimal parameter value.

The presented misfit criteria consider only specific aspects of the system under
study, and express the agreement berween modcl data and data in a very condensed
form, ie. in one number. Therefore, the use of these quantitative criteria has been
supplemented by qualitative techniques (e.g. visual comparison of measurements and
model results). )

2.1.5  Scenario analyses

NUCSAM was also used to assess the long-term development of soil solution
chemistry, in particular Al concentration in the soil solution, Al/Ca ratio, the content
of secondary aluminium compounds and the soil nutrient status. This goal was
achieved by performing scenario analyses for two generic forest-soil combinations, i.e.
Douglas fir on a Cambic podzol (DFCP) and Scots pine on a Haplic Arenosol
(SPIHA). The combination DFCP was chosen because this acts as a reference, whereas
the combination SPHA is a very common tree soil combination in the Netherlands.
Model simuladons were carried out with deposition scenarios that are representative
for Dutch regions with low, average and high deposition rates, respectively. It was
assumed that in a clean region, the target acid deposition load of 1400 mol ha' a! is
reached in 2010, whereas in average and polluted regions these loads are reached in
2050 and 2100, respectively (Keizer, 1994). Recently, the deposition targets has been
adjusted (see Chapter 3.1). This scenario is a rather optimistic one with respect to the
reduction of deposition. Weather data were randomly selected by a statistical model of
historically observed weather data (Richardson and Wright, 1984). The results of these
scenario analyses were primarily meant as an example of model use for predictive
purposes, as only one deposition scenario and one realisation of weather data was
evaluated.
Table 12 presents the deposition scenarios for the two combinations evaluated.
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Table 12 Total acid deposition (mol. ha'! a1} for generic Scots pine (SP)
and Douglas fir (DF) stands in the Veluwe (Central Netherlands)

Year Total acid deposition (mol ha! 21

sP DI
1980 1 8300 8700
1990 1 5400 6400
20002 20600 3000
20102 2000 2300
2050 2 1400 1600

) Inferred from DEADM calculations {see further text).
3 Deposition tarpet (Keizer, 1994). These target has been adjusted recently (ef. Chaprer 3.7)

For the perod between 1980 and 1991, the deposition of acidifying
components was estimated with the DEADM model (Erisman, 1993). The DEADM
model was used to generate data for an average stand, based on meteorological
measurements and measurements of concentrations in the atmosphere and
precipitation. For the period before 1980, concentration measurements wete not
available and the deposition was inferred from historical deposition data which were
based on emissions in those years (Thomas ef 4/, 1988). The historical deposition was
scaled to the DEADM deposition, using the following equation:

Aoy o
1, DEEADM
Ae= A o pist T (79)

Ae td bist

where A (mol. hat a) is the total deposition of acidity, Ay (mole ha! at) is the

deposition based on emissions, .4¢,;pp:gpay (MOl ha! a) is the average depositon of

acidity calculated with DEADM for the period 1980-1991 and Ac,,,,, (molc ha'a?) is

the average deposition of acidity based on emission data for 1980-1991. Future
deposition data of acidity (1992-2050) were inferred from average DIADM results for
1989-1991 and the deposition targets (Table 12) by linear interpolation. Moreover, it
was assumed that the relative contributions of SOy, NOy and NH, were constant and
equal to the contributions for 1991. The average deposition figures were converted to
deposition figures for Douglas fir and Scots pine by applying filter factors (De Vries,
1991). Scots pine was assumed to behave as an average tree with respect to dry
deposition, so the calculated deposition figures directly apply to Scots pine. Dry
deposition for generic Douglas fir was inferred from the DEADM results using a dry
deposition filter factor of 1.2. Finally, the deposition of base cations was calculated
using a filter factor of 2.5 for Scots pine, and 3.0 for Douglas fir.

An overview of the used generic hydrological, soil chemical and forest growth
data is given in Kros ef a/. (1996).
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2.1.6 Results of model calibration

Hydrology

Interception and throughfall

The hydrological submodel was calibrated in two steps: (i) calibrating the interception
losses using measured throughfall values and (i) calibrating the transpiration and soil
evaporation fluxes using measured water contents. The interception fluxes were
calibrated using data for the year 1988 only, because for this year the differences
between the daily precipitation at station Drie and the weekly site measurements
where the smallest. The transpiration and soil evaporation fluxes were calibrated by
using data for the year 1989, because frequent measurements on water content were
available for that year only.

Simulated throughfall amounts for the years 1988 and 1989 are presented in
Figure 3. Table 13 presents the annual water balances for the period 1987-1989. The
calibrated NUCSAM model overestimated the accumulated throughfall amount for
1989 and underestimated the throughfall amount for 1987. For 1988, throughfall
amounts are in close agreement with measured throughfall values (maximum deviation
< 10% of observed value). The overestimation of throughfall for 1987 and 1989 are
partly caused by deviations between the precipitation at station Drie and the on-site
precipitation (see Table 13). A second explanation for the deviations in 1987 and 1989
are differences in average rainfall intensicy, Tn 1989, rainfall mainly occurred as large
storms. After such storms, a large part of the total precipitation drains instantaneously
from the canopy and evaporation loss is relatively small. In 1987, however, a large part
of the annual precipitation was in the form of small storms and evaporation losses
were high. Since NUCSAM uses an average rainfall intensity (R), this may also lead to
deviations.

TF (mm) 1988 1989
600 . Measured
.......... NUCSAM

Precipitation
400

200

0
J FMAMJDJIJASOND J FMAMUJ J ASOND

Figure 3 Accumulated simulated and measured throughfall (TF) and measured daily
precipitation () for the years 1988 and 1989
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Table 13 Simulated water balance terms for the Speuld experimental forest

1987 1988 1989

Observed NUCSAM Observed NuCsSAM Observed  NUCSAM

I'luxes (mm a!)
l’rccipitati(m 950 1) 9762 9351 933 % 7on 806 2
Interception - 357 - 33 - 285
Throughfall 660 619 618 602 449 521
Lvaporation - 55 - 56 - 66
Transpiration - 365 - 323 - 37
Drainage - 199 - 221 - 84
Transpiration - 0.8 - 13 - 16

reduction (%)

Y On-site measured precipitation, These values were not used by NUCSAM, because on-stie measurements were
nat carried out daily.

3 Precipitation measured at station Drie was used as input to NUCSAM.

Soil water contents

Sitnulated soil water contents for 1989 are shown in Figure 4. Table 14 gives an
overview of petformance criteria for the discrepancy between the observed and
measured soil water contents. The performance for the 0-50 cm soil layer appeared to
be reasonably good, whereas for the 50-100 cm soil layer, soil water contents are
underestimated. Fowever, differences mainly occur in autums, indicatdng that
rewetting of the soil occurs too late. NUCSAM was not able to predict the dynamic
behaviour of measured soil water contents correctly, probably indicating that fingered
flow is a relevant hydrological process for Speuld.

8 (m? m-3
(m m%) 050 cm 50-100 ¢m
0.30 - .
e
0.25 L — NUCSAM 2
x TDR 2
0.20 8 + Neutron probe
0,15
0.10
0,051
JIFTMTATMT D TUTATSTOTNT DI JTF MTATMTJT) TATSTO'NTD
1989 . 1989

Figure 4 Comparison of observed and simulated water contents in the 0-50 and 50-100
cm soil layers for the year 1989
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Table 14 NUCSAM Performance criteria for the discrepancy between
observed and measured soil water contents

Layer NMEED NMAE S
0-50 cm® 0.10 0.25
50-100 cm¥ -0.13 0.17

S Normalised Mean Feror (see Ey. 77)

3 Normalised Mean Absolute Frror (see Iig. 78)

# Model output compared with TIDR measurements (n = 85),

4 Model output compared with neutron probe measurements (plot B; o = 43).

Soil solution concentrations

Results of the calibration are shown for 20 cm and 90 c¢m depth in Figure 5. Table 15
shows the NME and NMA4E (Eq. 77 and 78) for the major components for 10, 20 and
90 cm depth.

Simulated pHl values are calculated from the charge balance in NUCSAM,
implying that they are affected by virtually all biogeochemical processes in the model.
Simulated pH values showed to be over estimated for 20 ¢cm and slightly under
estimated for 90 cm. At 10 cm depth the agreement was good (figure not shown).
This is also reflected by the performance criteria, i.e. the Normalised Mean Absolute
Error (NMAE) for H concentration at these depths (Table 15).

Table 15 Performance of NUCSAM during the observation period

Parameter  Performance measurement () and number of observarions ()

Il Al (a My K NQO), NI, S0 Cl

Depth 108 cm
N 48 37 37 37 37 41 44 41 41
NMALED 0.39 0.60 0.52 0.86 0.83 0.54 0.84 0.62 0.65
NMIED -0.37 -0.30 -0.45 -0.86 0.80 -0.37 -0.82 -0.60 -0.65

bIg 20 cm.
N 48 41 40 40 40 46 44 44 46
NMAK 0.81 0.49 0.63 0.86 216 0.41 470 0.44 0.47
NMiL: -0.81 D.1¢ -0.63 -0.86 2.16 -0.24 394 -0.33 -0.40
Depth 9¢ cm.
N 48 35 35 35 35 43 34 43 43
NMAF: 0.32 0.57 0.40 0.54 0.84 0.53 0.97 0.40 .52
NAE 0.20 0.28 -0.34 -0.54 -0.84 0.02 -0.90 0.02 0.04

4 N 13 aumber of observations
3 NaL4E s Normalised Mean Absolute Error and NME 1s Normalised Mean Leror (see Iy, 77 and 78).
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Figure 5 Simulations of soil water chemistry by NUCSAM for 20 cm (feft) and 90 c¢m

{right} depth
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The Al concentration was simulated fairly well at both depths. Regarding the
calibration results for both the pH and the Al concentration, it can be concluded that
the pHl and Al behaviour in Speuld cannot be described adequately with a
combination of the Al-hydroxide equilibrium model (Eq. 33} and rate-limited
dissolution of Al-hydroxides {Eq. 37). This was also noticed in a model comparison
study for the Solling site in Germany (Groenenberg ¢f al, 1995; Kros and Warfvinge,
1995). Wesselink and Mulder {1995) could also not reproduce both pll and Al
concentrations by Al oxide solubility. They attributed this to Al complexation with
dissolved organic matter.

The Ca concentration at 20 cm depth was underestimated. This is also reflected
by the NAME, which is £-050. At 90 cm depth, NUCSAM gives a slight
underestimation. The underestimation of the Ca concentration at 20 cm depth is
probably due to either an overestimation of the calcium root uptake in the topsoil or
an underestimation of the return of calcium by litterfall. Changing the internal cycling
of base cattons within the system will lead to higher calcium concentrations in the
topsoil, without affecting the calcium concentrations below the root zone (ie. > 90
cm). Because of the reasonable fit of the Ca concentration at 90 cm depth (i.e. below
the root zone), we assume that the calcium input by weathering and deposition is
correct. )

NO; concentrations were reasonably well reproduced by NUCSAM
(NMAE = 0.41 - 0.54). This is in contrast with a previous application of the NUCSAM
model within a2 model comparison study at Solling, Germany (Groenenberg ¢t al,
1995; Kros and Warfvinge, 1995), from which it appears that the behaviour of
nitrogen could not be simulated reasonably well. SO, concentrations were also
predicted reasonably well. Cl concentrations, however, were clearly underestimated,
especially at 90 cm depth for the years 1987 and 1988. This is striking because are
rather conservative anions in Dutch forest sofls. The poor performance for these
anions is most likely caused by the strong spatial variability of throughfall fluxes and
spatial patterns of water uptake by roots. This indicated that the hydrological
calibration, which was based on another plot (sce Site description), is not valid for the
soil chemical monitoring plot.

2.7 Model predictions in response to a deposition scenario

Hydrology

Table 16 shows the long-term average simulated water balance for Douglas fir on a
Cambic podzol and Scots pine on a Haplic Arenosol in the Veluwe’ region. Some
general conclusions can be drawn from the table:

- NUCSAM simulates a lower average interception evaporation for Scots pine than
for Douglas fir, which is in line with Molchanov {1960). who found an interception
fractions of the precipitation of 37 % for Spruce forest and 21% for pine forest.

- Actual transpiration for Douglas fir 1s much higher than for Scots pine due to a
higher potential transpiration. This is mainly because of the higher crop factor and
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the lower canopy gap factor for Douglas fir. This demonstrates that feed-backs
between the hydrological submodel and the forest-growth submodel should be
considered during forest succession. Compared to transpiration values given by
Roberts (1983) for an average forest in Europe (330 mm a ), values for Douglas fir
are higher and for Scots pine lower.

- Soil evaporation is lower under Douglas fir than under Scots pine. This is mainly
caused by the lower Leaf Area Index and higher canopy gap fraction for Scots
plne.

- Variation in time of potential transpiration, interception evaporation, actual
tanspiration and soil evaporation is much smaller than variation in time of
precipitation.

- 'There is hardly any reduction of soil evaporation calculated by NUCSAM. This is
the consequence of using the approach by Black e @/ (1969), which is only
sensitive to the length of the period with a daily precipitation less than 0.3 mm.
The generated meteorological dataset contains correct drought intervals but
apparently underestimates the length of periods without precipitation.

- The average precipitation surplus for Douglas fir is very small.

The actual transpiration for Douglas fir 1s almost similar to that for Speuld. The
actual transpiration simulated by NUCSAM for Scots pine (268 mm a'') compares well
with that from previous SWATRE simulations by De Visser and De Vries (1989) (281
mm a?). For Douglas fir, however, the NUCSAM flux (371 mm a') is substantially
higher than that simulated by De Visser and De Vries (198%), viz 328 mm a'l.

Table 16 Average simulated water balance for Douglas fir on 2 Cambic
podzol and Scots pine on a Haplic Arenosol in tegion ‘Veluwe’ for the
period 1980-2050

Tree/Soil Fluxes and standard deviation (mm a} U a ()2
Combination P I E, E; Fs

Douglas/Podzol 804198 304%35 371120 5913 74140 0.9610.06
Pine/Arenosol 804198 288134 268%11 95+4 18838 0.99+0.03

Y P (mma?) is precipitation, | (mm 2"} is interception loss, Ly (mm a'?) is cranspiration, E is soil evaporation, and
PY {mm a"} is precipitation surplus.
3 & (-) 18 ratio of actual transpiration over potential transpiration (Lu/ Iy

Soil chemistry

Figure 6 shows the simulated yearly average soil solution concentrations for the
“Veluwe’ region. Concentrations of sulphate and Al are higher and the pH is lower in
the soil under Douglas fir than under Scots pine due to higher filtering of air
pollutants by Douglas fir, and a lower precipitation surplus. NUCSAM simulates a fast
response of the sulphate concentration after a reduction in SOy deposition, whereas
the response of Al shows a considerable time delay. The pH increase under Douglas
fir is clearly higher than the increase under Scots pine. This difference is mainly due to
the use of a log scale. When inspecting the H concentration (not shown), the decrease
in H concentration was mote or less comparable.
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Figure 6 Simulated soil water chemistry at for Douglas fir on 2 Cambic podzol and for

Scots pine on a Haplic Arenoscl {right) in the “Veluwe’ region at 20 cm depth (left} and
at 90 cm depth (right) for a reducing deposition scenatio

Results showed a higher concentration of NOs under Douglas fir than under
Scots pine. As with sulphate, this is caused by higher filtering of NO, and NH, by
Douglas. NUCSAM also simulates a time delay for the decrease of the NO;
concentration in the soil solution after a decrease in NH, and NO, deposition, caused
by the release of nitrogen previously stored in living biomass and litter. The NO;
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leaching fluxes at 90 cm depth show the same behaviour as the NO; concentrations at
90 cm depth.

Table 17 shows that root uptake of NHs and NO; in 2010 is approximately
66% of the uptake in 1990. There is a clear reduction in N root uptake flux in 2010.
This is caused by a fast decrease of the nitrogen content in needles simulated by this
model, which in turn is a result of the assumed empirical relationship between the
nitrogen content in needles and the nitrogen deposition (see Section Forest groweh). As
these results apply to two individual years, conclusions with respect to time-trends
must be drawn carefully. This is especially true with respect to mineralisation.

Table 17 Annual simulated fluxes of NO3 and NHy for Douglas fit on a
Cambic Podzol for the *Veluwe’, for 1990 and 2010

Process Fluxes U {mol hat at)
NI, N4
1990 2010 1900 2010
Throughfall 320 1.09 1.42 0.54
Mineralisation 6.57 305 0.00 0.00
Root uptake -3.92 -1.68 -2.61 -1.12
_leaching -0.15 -0.49 292 253

I Posive fluxes ndicate an merease in the soil solution concentration
ARefersto 1 m depth

Differences between Douglas and Scots pine showed again to be large. A
considerable time delay was found for the Al/(Ca+Mg+K) ratio, which continues to
f1se for a short time after deposition reduction. This phenomenon was also observed
in an application on a Norway Spruce stand at Solling, Germany (Groenenberg ¢f 4/,
1995). It can be explained by exchange of Ca from the soil solution against sorbed Al
This is less pronounced in this study than in Solling, due to the smaller CEC of the
soils used in this study. Both the Al/(Ca+Mg+K) ratio and the time-delay for decrease
of this ratio is larger for Douglas compared to Scots pine, which is caused by the
higher acid load for a soil under Douglas. Regarding the criteria for indirect effects on
forest stress several criteria have been propagated. Sverdrup and Warfvinge (1993)
showed that based on laboratory experiments a critical Al/(Ca+Mg+K) ratio can be
derived above which harmful effects on root and shoot growth occur. For a spruce
forest the critical value for the Al/{Ca+Mg+K) is 2 and for pine 0.8. The results show
that at 20 cm depth an Al/(Ca+Mg+K) ratio < 0.8 for pine was reached in 2000 and
an Al/(Ca+Mg+K) ratio < 2 occusred around 2040. In the subsoil the criteria were
met about 10 years later.

In conclusion, results show a fast response of the sulphate and aluminium
concentrations after a decrease in SO, deposition, a time-delay for the NO;
concentration following a decrease in deposition, and higher soil solution
concentrations for Douglas.
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2.1.8 Discussion and conclusions

Major conclusions

NUCSAM could reproduce the general magnitude of measured quantities. The scenatio
analyses showed a fast response of the sulphate and aluminium concentrations in the
soil solution after a decrease of the SO, deposition, time-delay for the NO;
concentration following a decrease in nitrogen deposition, and depletion of the pool
of secondary aluminium compounds in regions with high deposition.

Model validation

A major conclusion arising from this exercise should be that the detailed NUCSAM
model is now thoroughly tested against 2 common data-sets (Speuld), and that it
provides a wealth of opportunities to test hypotheses about the interactions between
forest, soil and atmosphere. Furthermore, the long-term results from the scenario
analysis show plausible results. It is, however, not absolutely proven whether the
model is a suitable instrument for long-term predictions and scenario analyses. It is
obvious that the Speuld data-set was too short for ‘true’ model-validation. Moreover,
due to the large spatial variability of throughfall, soil solution chemistry and stand
structure, it was almost impossible to build a meaningful and representative data-set.
A major reason for this was that the monitoring at Speuld followed a ‘disciplinary’
approach, with separate subplots for hydrology, soil chemistry and forest growth.
Either was the number of sampling replicates too small to calculate stand averages
(soil chemistry), ot it was impossible to select more or less homogeneous subplots
(hydrology and biomass inventory). Furthermore, individual monitoring groups came
with different data for some model parameters. Nevertheless, NUCSAM could
reproduce the general magnitude of measured quantities, such as soil water contents
and soil solution chemistry. However, NUCSAM was not always successful in
simulating measured seasonal dynamics and the Al chemistry.

Uncertainties

One of the problems with calibrating a complicated model is that it is difficult, if not
impossible, to find a unique set of model parameters. One way to improve the
uniqueness of the obtained calibratton is using automated and objective calibration
procedures. In view of the large number of model parameters that need calibration,
such a calibration procedure is very time-consuming. For this reason, automated
calibration procedures have not been applied to NUCSAM, but strict (manual)
calibration procedures have been postulated. However, if the uniqueness of the
calibration remains questionable, results of scenario analyses are also uncertain. Model
uncertainty can be assessed by performing thorough and systematic uncertainty
analyses. Confidence in predictions from an individual model will also increase when
other models predict the same magnitude and trends of model outputs. Therefore,
NUCSAM was used in two model comparison studies (Van Grinsven ¢f 2/, 1995 and
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Tikeak ef al, 1995). Results showed that the compared models were able to identify the
general trends and levels of ion concentrations and fluxes. Arguably, stress factors (cf.
pH, Al and Al/Ca ratios) may be modelled with a level of detail corresponding to the
uncertainties in how the trees reacts to chemical stress in the rhizosphere (Sverdrup ef
al, 1994). Problems remain, however, when inspecting the details (e.g. seasonalility)
especially for modelling of Al, pH and N behaviour. Most probably the Al behaviour
can be improved by taking the Al complexation with dissolved organic matter into
account.

Scenario analyses

Scenario analyses were carried out for a Douglas fir and a Scots pine on an Haplic
Arenosol. The most important trend were a fast response of the sulphate and
aluminium concentrations after a decrease in SO, deposition, time-delay for the NO;
concentration following a decrease in nitrogen deposition, higher soil solution
concentrations in the soil below Douglas fir, and depletion of the pool of secondary
aluminium compounds.

Recommendations for future research

After application of the integrated model NUCSAM at the stand-level, some
uncertainties still remain, Despite these uncertainties progress was made. This exercise
clearly shows that for further hypothesis testing and validation of the model NUCSAM,
there is a nced to continue intensive monitoring programs, but the balance between
data acquisition in the various compartments of the ecosystem should be emphasised.
Moreover, much more attention should be paid to bridging the gap between models
and experimental data. NUCSAM should be used to select the most important
parameters to be monitored. Furthermore, NUCSAM can be used to set-up sampling
Strategies (in particular sampling frequencies). Another major point of concern should
be the issue of guality control. The current exercise shows that both the model and the
dataset were poorly adjusted. Perhaps the only way to guarantee that integrated data-
sets become and remain available is by building databases, which are maintained by a
small group of researchers that consists of both modeller and field scientists. Besides
long-term monitoring of important model parameters, there is a need for
measurement campaigns aimed at reducing the uncertainty in the model results.
However, such campaigns should be directed by the requirements of integrated
models, and not follow a disciplinary line. Besides intensive monitoring progtams
there is a need for extensive monitoring on a larger number of locations. Such
extensive monitoring programs are mandatory for calibration of regional models (see
Part IIT of this thesis). However, as with the intensive monitoring programs, much
more attention should be paid to bridging the gap between models and measurements.
In extensive monitoring, the need for using models to set-up measurements
campaigns is even more evident than in intensive monitoring programs.

After the application and validation of the stand-level model NUCSAM, some
uncertainties still remain, and new uncertainties arose. For further hypothesis testing
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and validation the model has been applied to a roofing experimental site Speuld (Van
der Salm er 4/, 1998). Results of that study were comparable with a NICCCE
application to Speuld (Koopmans and Van Dam, 1998). However, NUCSAM should be
used to further explore available manipulation experiments, which serves two goals (1)
further validation and testing of the model and (i) use the model to integrate and
interpret the data records collected at those sites.

Finally, present site calibrations could be used to assess the uncertainty of
predictions for Speuld, and the deposition scenarios. This will be presented in the next
Chapter. Instead of using NUCSAM in order to assess the uncertainty in long-term
predictions the simplified version RESAM was used.
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2.2 The uncertainty in forecasting trends of forest soil
acidification

Abstracet

A Regional Soil Acdification Model (RESAM) has been developed to gain insight in long-term
impacts of deposition scenarios on _forest soils in The Netherlands. Mode! predictions of such large-
Scale environmental effects of avid deposition require extrapolation of site specfic data fo large
geographical regions. The major aim of this study is to quantify the uncertainty in model response fo a
Liven deposition scenarto, due Yo uncertainty and spatial variability in data, Furthermore, the
uncertainty analysis was performed to determine which additional data will most likely improve the
reliability of predictions, An efficient Monte Carlo technique was used in combination with regression
analysis. The analysis was restricted to one forest soil ecosystem: a lepiic podrol with Douglas fir,
subyect to a scenario of decreasing atmospheric deposition. The investigated ontput variables were pH,
Al Ca ratio and NH:/ K ratio in the root Sone, which are generally used as indicators of forest soil
acidification and of potential forest dumage. In most cases the relation between the parameters and
model ontput can be satisfactorsly described by a linear regression model. The contribution of the
uncertainty of varions pavameters lo the uncertainty of the considered output variable depends on soil
compartment and time. The uncertainty, as measured by the coefficent of variation, appears to be high
Jor the NH/K and Alf Ca ratios, whereas it war relatively low for pH. Results show that the
uncertainty in the depositions of SOy, NO, and NH, in a receptor area and the uncertainty in the
parameters and variables defermining the nitrogen and aluminium dynamics contribute most ts the
resulting uncertainty of the considered model output.

221 Introduction

The long-term impact of acid deposition on soils is an important ecological problem.
The development of unfavourable Al/Ca ratios and NIL/K ratios, either by the
mobilisation of Al (acidification) or the accumulation of ammonium (eutrophication),
may lead to forest deterioration induced by the inhibition of the uptake of nutrients
such as Ca and Mg (Ulrich and Matzner, 1983; Roelofs ¢ af, 1985; Boxman ef al,
1988). '

) Several process-oriented models have been developed to predict the long-term
effects of acid deposition on soil (e.g. Arp, 1983; Chen ef 4/, 1983; Reuss and Johnson,
1986; Cosby er @/, 1985; Bloom and Grigal, 1985; Levine and Ciolkosz, 1988).
However, most of these models do not include the effect of the nutrient cycle,
although this is very important for making predictions of the Al/Ca and NH./K
ratios in the upper soil horizons. A notable exception is the ILWAS model developed
by Chen ¢ 4/ (1983), but this model is difficult to apply on a repional scale, because of
its extensive data input requirements. Therefore, 2 Regional Soil Acidification Model
{RESAM) has been developed for analysing long-term soil responses to acid deposition
on a regional scale (De Vties ef 4/, 1994a). It is used for predicting the annual average
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fluxes and concentrations of the major elements in characteristic forest/soil
ecosystems in the Netherlands.

For its regional application RESAM has been linked as a submodel in an overall
framework predicting environmental impacts of S and N emissions to evaluate the
effectiveness of abatement strategies: the integrated Dutch Acidification Simulation
(DAS) Model (Olsthoom ez g/, 1990). The regional application has been performed
for 20 predefined deposition tegions (De Vries et a/, 1995a). For each region the long-
term impact of acid deposition on the most relevant combinations of soil and
vegetation has been evaluated by RuSAM. The deposition scenario for each region is
delivered by the deposition module of the IDAS model.

As part of the DAS model, REESAM holds a central place in the analysis of the
acidification problems and the evaluation of abatement strategies. In connection with
such policy applications it is imperative that the uncertainty of the model results is
analysed, particularly since the lack of long-term series of observations to calibrate a
model makes it difficult to indicate the reliability of long-term predictions.

Uncertainty in long-term predictions is mainly due to: (i) insufficient knowledge
of the investigator, (ii) uncertainty of data and (iti) model implementation. Insufficient
knowledge is reflected by the model structure which includes several assumptions and
simplifications with respect to the modelled processes. Essential processes in
acidifying systems which are imperfectly known include (Jenkins er 4/, 1989): (i) the
dynamics of organic matter, including the behaviour of dissolved organic matter; (i)
the dynamics of solid phase Al including complexation of inorganic Al by organics;
(iii) N cycling through the vegetation, especially nitrification/denitrification, and (iv)
the dynamics of forest growth in relation to the acidification status of the soil.
Although the model structure is possibly an important uncertainty source, it is very
difficult or even impossible to asses. An indication may for instance be obtained by
model comparison or by comparing different process formulations.

Apart from the model structure (and implementation), the uncertainty in model
outputs is also due to uncertainties in data, viz source terms, initial conditions of
model variables, and model parameters (e.g. Homberger et al, 1986; Alcamo and
Bartnicki, 1987). The uncertainty in data is due to natural variability and inaccurate
and insufficient measurements. In order to represent the natural variability (spatial
and/or temporal) of the processes under consideration, one usually specifies a (joint)
probability distribution for the associated model inputs, reflecting the expected range
of values (see e.g. Hettelingh, 1989). Simularly, in situations where the uncertainties in
model inputs are mainly due to inaccurate and/or insufficient data, one usually also
applies probability distributions to specify the possible range of values which one
expects (Le. reflecting the ‘degree of belief’). Both situations are closely related and can
be approached through an analysis of how model output depends upon model inputs
(Hornberger ef al, 1986). The difference is, however, that (spatial) variabiliry is a fact
of nature whereas pootly defined inputs can be constrained by additional data to
reduce the uncertainty in model predictions.

Several publications analysed the effects of uncertain inputs, initial conditions
and model parameters in the field of environmental modelling, for instance in the
fields of long-range air pollution transport (Alcamo and Bartnicki, 1987), watershed
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acidification (Flornberger ef af, 1986; Kimir ef a/, 1986; Hettelingh, 1989), and water
quality modelling (Beck and Van Straten, 1983). In most cases, 2 Monte Carlo analysis
approach was used. One of the underlying premises in nearly all these studies is that
the model structure is ‘correct’ or at least represents current knowledge adequately.
The same assumptions have been made in our study. An indication of the influence of
model structure is planned to be published later by a comparison with other models
which differ in complexity and type of process formulations (see Chapter 2.4).

The major aim of this study is to gain insight into: (i) the uncertainty in RESAM
output variables due to uncertainties in the model inputs; (i) the importance of the
model inputs in order to have a guideline as to which additional data will most likely
improve the reliability of predictions; (i) whether average model inputs produce
adequate average model outputs, to venfy whether simulation with average model
inputs, as will be used in a regional application to limit the computation time, is
acceptable. The analysis is restricted to one forest soil, a leptic podzol with Douglas
fir, subject to a scenario with decreasing deposition. The investigated output variables
are pII, NIL,/K and Al/Ca ratios in the root zone, which are generally used as
indicators of soil acidification and of potential forest damage.

2.2.2 Model structure of RESAM

The acidification process in RESAM is conceptualised as a disturbance in forest
element cycling. The model structure is based on this concept. RESAM simulates the
major biogeochemical processes occurring in the forest canopy, litter layer and mineral
soil horizons. The biogeochemical processes accounted for in the model are: foliar
uptake and foliar exudation, litterfall and root decay, mineralisation, root uptake,
nitrification and  denitrification, protonation of organic anions, carbonate
dissolution/precipitatdon, weathering of primary minerals containing Al and base
cations (Ca, Mg, K, Na), aluminium hydroxide dissolutton/precipitation, cation
exchange of 1, Al, base cations and NIl SO4 adsorption/desorption and
dissolution/speciation of inorganic C. Here we used a simplified version of RESAM in
order to limit computation time. The simplificaion mainly concerns the use of a
steady-state nutrient cycle instead of a dynamic one.

Table 1 gives a brief overview of the model formulations used. The general
construction of the notation of the source terms, variables and parameters used in
RIisAM is given in Table 2.
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Table 1 Description of the most important processes included in the
model

1. Foliar uptake and foliar exudation

FNH, , = /NH, ,-FNH, ,

mﬁ='éXfe'A.‘v'”Xﬁ- X =Ca, Mg, K
2. Litterfall and root decay
FXg=’éX;'A.'r'”Xﬁ- X=M5Ca, Mg K
FXd = kﬁi _A” -L‘IX” X=N,§,Ca, Mg, K
3. Mincralisation (steady-stare option)
FXM. = FX! + FX,# X=N,§,Ca, Mg, K
4. Root uptake (steady-state option)
FX,=FX, +FX,+FX,-FX +FX, X =N,85,Ca, Mg, K
Distribution of N over NOs and NE, ¢

NH,

FNH, = fpr, NH, 4 .
4 = JrpNH 0 NH, +NO, ~ ™

FNO,,, =FN, —FNH, ,

5. Nitrification and denttrification

FNH,, =@-D-k,-NH,
INO,,, =8-D-k, -NO,

6. Protonation

3.

FRCOO=8-D-k,, -RCOO

7. Carbonate dissolution/precipitation

FCa, ,=p-D-kCa,, ,-ctCa, - (Ca, —cCa)
CO
«Ca, = KeCa,, L
HCO,
with:
cCCa, = equilibrium concentration
pCO; = partial COy pressure
8. Weathering of primary minerals

FX :p.D.‘éX .ﬂ‘X X=Ca,Mg,K,Na

we, por wt, prm o
EAl,, ,, =3-FCa,, ,, +0.6-FMg,, , +3-K, ,, +3-Na

n’e,p.w M,/J.w
i.e. congruent weathering of equal amounts of anorthite (Ca), chlorite (Myr), microcline (K) and

albite (Na)

9. Aluminium hydroxide dissolution/precipitation

ae, pa

FAl,, =p-D-kAl_-aAl_-(cAl —cAl)

el = kAl - cH?

with: cAl: = equilibium concentration
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10. Cation exchange

X X2
—fr—-‘+“=Keth- ‘Xh :
SrCax Ca*

aX ac

with: _)9( L=
“ CEC
x valence of cation X

11 SOy adsorption

X ="H, Al, Nig, K, Na, N1,

$5C-KeSO, ,, 5O,
Y T 1+ KeSO, ,, ¢SO,

SO

_12. Dissolution/speciation of inorganic C

PCO,
o]

HCO, = KCO, -

Table 2 Notation of RESAM source terms, variables and parameters

Entity Constitnent Process Compartment
A amount [kg ha'!] N ad dry deposition a adsorption
complex
¢ concentration in the  NO» de denitrification ad sOrption site
sudl solution |mol,
m?
o content fmmol: kg'!'] - NG dw wet deposition ch carbonates
CEC  cation exchange NIy ex exchange I leaves/
capacity [mmok kg needles
D layer thickness fm] NIL o foliar exudation ox oxides
S fracrion |- 5 Su foliar uptake pm primary
mincrals
Jpr prefecence factor -] 8O net (growth) uptake o roots
F flux [mol; ha! 2] SOy it stems
£ rate constant [a°!] Ca
K equilibrium constant Mg
[molx 1¥]
the  bulk density [kgm? K
I5C  sulphate surption Na
capacity fmmol, kg
# volumetric moisture (]
content [m? m-
H-
Al
HCO,
RCOO
O

mincralisation
protonation

gﬂ
¥ litterfall
ni
pr

rd root decay
i root uptake

w weathering

Foliar exudation, litterfall, root decay, nitrification, denitrification, protonation
and weathering are described by first-order reactions. Foliar uptake is considered a
fraction of the dry atmospheric deposition. Root uptake is equal to the sum of
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litterfall, foliar exudation and root decay minus foliar uptake plus a given net growth.
Net growth is either described by a logistic function or as a constant increase. Here we
used the latter option. Root uptake per soil layer is assumed to be proportional to the
transpiration per soil layer. The dissolution of Ca and Al from carbonates and
hydroxides respectively, is described as a first-order reaction, which s rate-limited by
the degree of undersaturation. If supersaturation occurs, the Ca or Al concentration is
set to equilibrium. Cation exchange and sulphate sorption are treated as equilibrium
reactions, using Gaines-Thomas equations and a Langmuir isotherm, respectively.
Speciation/dissolution of inorganic C is computed from equilibrium equations, A
complete overview of the model structure of RESAM is given in De Vries ef af (1994a).
The model input includes atmospheric deposition and hydrologtcal data. Initial
concentrations of cations and anions in the soil solution and the adsorption cotnplex
are calculated from an assumed equilibrium with the present atmospheric deposition.

2.2.3 Methodology

Monte Carlo simulation

There are various techniques available for performing uncertainty analysis (e.g. Janssen
et al, 1990). The most commonly used method for evaluating the uncertainty
associated with parameter uncertainty in environmental modelling is related to Monte
Carlo simulation. Monte Carlo methods suppose that the uncertainty of the various
sources of uncertainty Le. source terms, variables and parameters (in the following all
these ‘model inputs’ will be referred to as parameters) can be chatacterised by their
distribution functions and their correlations. Next, simulations are carried out with a
randomly selected set of parameter values from the distribution functions. From the
results, the distribution functions and the variance for the particular output variables
can be estimated.

In performing uncertainty analysis with Monte Carlo techniques we distinguish
two major steps: (1) sampling of model parameters followed by model simulation, and
(i) quantifying the {overall) uncertainty in the model output variables and determining
the contribution of the model parameters to this uncertainty by using statistical
techniques.

Sampling method

The number of Monte Carlo simulations needed for accurate estimates depends on
the applied sampling method and on the number of considered sources of uncertainty.
Especially in the case of RESAM, Monte Carlo analysis with straightforward drawings
will lead to numerous and unnecessary computer runs.

An efficient sampling method has been developed named “Latin Hypercube
Sampling’ (LHS) (McKay ef 2, 1979; Iman and Conover, 1980). The principle of this
method is a combination of two common statistical techniques. First, for each input
parameter the parameter range is divided into N strata with equal probability 1/N,
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where N is a specified number equal to the number of Monte Carlo simulations. In
each stratum a value is randomly sampled. Second, the values for each parameter are
combined randomly, or with a specified correlation, with values of the other
parameters to form a multivariable sample of N parameter combinations.
Consequently it uses a relatively small number of model simulation runs. This method
has been used successfully in various applications (Downing ¢ @/, 1985; Iman and
Helton, 1985, 1988; Gardner ef @/, 1983; Kamiri ef a/, 1986; Hettelingh, 1989).

In this study we have applied an adapted version of the software package
PRISM (Gardner e af, 1983). This is a package for performing uncertainty analyses by
using Monte Catlo simulations with Latin IHypercube Sampling (LHS) in combination
with statistical techniques.

Statistical analysis

The first purpose of the analysis is to quantify the overall uncertainty in the response
vatiables by computing means, variances, percentiles, frequency distributions etc.

The second purpose is to identify which sources of uncertainty contribute most
to the overall uncertainty/variability in the output variable. In general this is done by
cortelation and regression analyses. An extended overview of these techniques is given
by Janssen ef ol (1990). Here we restrict to a short summary of regression analysis.
Linear repression analysis is applied to explain variability in a response variable (say y)
by considering a set of potential explanatory variables (say xi,...,%x;). In this context the
response variable is the output variable of RESAM and the explanatory variables are
the sources of uncertainty. The linear regression model has e.g. the following form:

Y=B+ B x4 By %yttt B ox +E ey

where: ﬂ“}i2 (£ = 0,1,..., p) denote the estimated regression coefficients (using
the least-squares method) and & denotes the residual term which is left unexplained by
linear regression. '

The coefficient of determination {COD) (also called R?) of this regression is
equal to:

R"—coz)—l—s—*2 (2)
= - a ‘ >
J

where § is the standard deviation of the regression residual, and S, is the standard
deviation of the response variable. COD is a number between 0 and 1. Tt measures the
fraction of the variance in the response variable which is explained by the linear
regression model. In fact, COD expresses the validity of the linear model to

approximate (fit) the original model output y (COD = 1 means a good fit).
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When the regression model gives a good fit (COD = 1), the coefficients B,e
appropriately express the sensitivity of the model output y to variations in the

parameters Xy. yi] . however does not account for the uncertainty in the explanatory

vatriable x.. In order to include this uncertainty, it is useful to scale the original
regression model (Eq. 1) with respect to the mean values and the standard deviations
of y and xi.

‘This results in the standardised regression model (Draper and Smith, 1981):

Y0 _ pesy XX 25 Xp "X L an
= .-.——+.o.+ -—+e 3
AT B = 3)

> xy xp

where ﬂi” (£ =1, .., p) represent the estimated standardised regression coefficients

(SRC), which are related to the coefficients Bé by:

5.,
s

J

SRC, =0 = f,- @

Here Sy, and S, denote the standard deviations of x and y. The subscript i denote the

average values of y and xu.

From Eq. (3) it is obvious that the standardised regression coefficients (SRC)
indicates the increase or decrease in the model output y (in terms of its standard
deviation f,) due to an increase in parameter xi (in terms of its standard deviation §,,),
while the other parameters x; remain unchanged. Therefore the SRC can be used to
assess the importance of each parameter Xy in explaining the uncertainty of the
considered model output. Usually this is done by ranking the sources of uncertainty
on the basis of the SRC. This method has the following disadvantages: (i} the SRC can
be misleading in case of strong non-linearity in the relation between xi and y; and (i)
the SRC does not account for the influence of other parameters on y besides x.

Ad. () The SRC is only a measure for the linear relationship between
parameters and the associated model output. Therefore it is always important to
tnspect the COD. When the COD is low, there are strong non-linear relationships and
the use of the SRC 1s not justified. When strong non-linearity occurs, it is worthwhile
to apply data transformation (e.g. a logarithmic transformation) to the parameters
and/or the model output. Iowever, an appropriate data transformation is sometimes
hard to find. Generally rank transformation is used, which is shown to be a robust and
powerful transformation (Iman e &/, 1981). The uncertainty contribution is then
analysed by studying the standardised rank transformed regression coefficients
(SRRC). In fact, rank transformed regression analysis only gives information about the
monotony of the relationship between parameters and associated model output.
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Ad. (i): Although the SRC and/or SRRC are tecommended in literature (Dale
et al., 1988; Iman and Helton, 1988), it is shown by Janssen ef @/ (1990) that they are
impetfect when the parametets are correlated. For this reason Janssen ef a/ (1990)
introduced a new improved measure, which determines the relative change in the
uncertainty () of the model output y as a result of a (small) relative change in the
uncertainty (§y) of the parameter xy, taking the influence of the correlated sources

into account. This results in a compound measure named the partial uncertainty
contribution (PUC):

ro. ’
PUC, =Y BV or orl =) SRC,-LCC,r, )
7= ' s=l

where Py and Ly Are the correlation coeffictents between x; and y, and xi and x;
respectively. The quantity 7 will in the sequel also be denoted as LCC; (Linear

Correlation Coefficient).
When there are no correlations, the PUC can be simplified to (Janssen ¢ al,
1990):

PUC, =SRC, - LCC, = SRC} (6)

In this specific case the SRC is equal to the root of the PUC (C), which we will
call the root of the (partial) uncertainty {coefficient) (RTU). When the SRC differs
from the RTU, this is an indication for a correlation between the parameters
considered. Contrary to the SRC, the RTU is always positive.

In this study we use the RTU as a2 measure for the uncertainty contribution,
unless the COD appears to be very low. In that case we perform rank analysis and use
the SRRC.
' Apart from using regression analysis in quantifying the uncertainty
distributions, we have applied this technique to get a justification for using averaged
Parameter values in a regional application: if the COD is close to 1 during the
simulation petiod, the model has a strong linear behaviour, and the average output of
all the Monte Carlo simulations will be close to the output of a simulation carried out
with average parameter values.

Furthermore, we have used the results of the regression analysis to see whether
the (linear) regression models, that can be seen as 2 model simplification of the ‘real’
model (i.e. a so-called meta model; Kleijnen, 1987; Rotmans e @/, 1988}, could
possibly replace RESAM for a regional application.
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2.24 Uncertainty in model input

Restrictions

The investigated output variables have been restricted to the pll, NH,/K ratio and
Al/Ca ratio in the root zone of a leptic podzol covered by Douglas fir. The soil profile
consists of four horizons (layers): O {litter layer, 4 cm), A (15 cm), Bh (25 cm) and C
(20 cm). For this soil profile, with four layers, RESAM needs about 200 source terms,
variables and parameters, which have to be estimated on the basis of rather uncertain
a priori information.,

In order to restrict the number of (uncertain) parameters, and consequently also
the number of Monte Carlo simulations, we have assumed a steady-state nutrient cycle
with a constant net uptake (i.e. tree growth), which implies that the total uptake (foliar
uptake and root uptake) is equal to the sum of litterfall, foliar exudation, root decay
and net uptake. Consequently, there is no accumulation of N and S in needles, roots
and/ o licter layer. Furthermore, a feedback between teducing depositions of N and $
and their contents in the needles is not considered. Especially for N this might be an
important mechanism. It is likely that in the long run the assumption of a stationary
nutrient cycle will lead to an overestimation of both the NH,/K ratio and the Al/Ca
ratio and to an underestimation of pIl for the decreasing-deposition scenario
considered (see Section Data).

Furthermore, we have assumed a constant hydrology, by taking 2 constant
annual precipitation volume. Finally, uncertainties in various parameters which were 2
priori considered as insignificant of the investigated model output, have not been
investigated. Examples of these are: Ca, Mg, K and Na contents in primary minerals;
exchangeable fractions of NHs, Ca, Mg, KK and Na, and the selectivity constants of Mg
and Na. Using these assumptions, the number of parameters for which probability
distributions have to be specified has been reduced to 70.

Data

Deposition data (source terms)

Uncertainty in deposition is related to spatial variability caused by concentration
gradients and varation in filtering dry deposition. The uncertainty and spatial
variability in wet and dry depositions is restricted to one receptor area in the centre of
the Netherlands with intensive animal husbandry. The source terms consist of both
dry and wet deposition of SOz, NQs, and NH; and wet deposition of base cations (Ca,
Mg, K, Na) and chloride. The dry deposition of base cations, chloride and sea salt
sulphate is described by a dry deposition factor (f). This is a factor by which the wet
deposition must be muitiplied to determine the dry deposition.

The deposition values used are given in Table 3. Data have been derived from
wet deposition and throughfall measurements of SO, NOs, NH; and Na in 27
coniferous forest stands in the Nethetlands (Tiktak er o/, 1988; Ivens e af, 1988,
Kleijn e al, 1989; Houdijk, 1993). The ratio of Na in throughfall minus bulk
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depositon to Na in bulk deposition was used to estimate fi (Bredemeiet, 1988). The
values for NH4 and SO, were considered representative of a deposition region with
intensive animal husbandry.

Table 3 Ranges and distriburions of deposition fluxes (mol; ha'! a-!} and
the dry deposition factor {-)

_loput Mean s Min. Max,
F50; 4 875 225 690 1410
FS0; 4 2965 1025 1650 4260
FNO; 4, 440 35 370 470
FNO» 4 530 230 320 1100
FNH; 4 1310 220 945 1730
FNH; i 2885 1050 1530 4810
FCa g 240 125 135 490
Fhg g 190 65 130 . 360
FK 4 240 60 150 340
FNa 4 730 165 495 970
FCla 1125 315 640 1610
it 0.98 0.55 0.31 1.96

The deposition scenario used is based on the emission reduction policy in the
Netherlands (Schneider and Bresser, 1988). Although the intended reductions are
subject to various uncertainties, which are mainly due to political and technical factors,
we do not consider them here. The emission scenatio is divided into two periods:
1987-2000 and 2000-2010; the corresponding reduction fractions are given in Table 4.
The reduction during these two periods is considered linear. The reduction is only
applied on SOy, NOy and NIl the depositons of the base cations and Cl remain

constant.

Table 4 Reduction fractions for total deposition fluxes of 8O,, NO; and
NI,

Perind S0, NO, NI,
19872000 0.63 0.40 - 0.58
2000-2010 0.58 0.29 0.40

Here we restrict the uncertainty in the source terms to the initial (ie. 1987)
values as specified in Table 3. The deposition scenario for each Monte Carlo
simulation is obtained by multiplying the by LHS sampled initial deposition value for
SOy, NO, and NI by the corresponding reduction factor.

Initial values of variables

An overview of the distributions specified for the initial values is given in Table 5.

71



II Evaluation on a site scale

Table 5 Distributions of initial conditions

Vartable'  Unit Distribution  Mcan s Min. Max.
type

Az kg ha'! normal 9500.0 3135.0 34000 16000.0

Ay kg ha' uniform 3750.0 - 1350.0 6300.0

St - normal 0.39 0.13 0.06 (.66

Ji2 - normal 0.41 0.12 0.04 0.78

€Ny % normal 0.11 3.015 0.08 312

otCay % normal 0.07 0,035 0.04 013

Ky Yo normal 0.04 0.016 0.02 0.07

LAY % normal 0.02 0.008 0.01 0.04

Ny Y% nocenal 2.80 0.59 1.49 3N

ofCay, % normal 032 0.14 0.13 0.79

oK, % normal 0.36 0.08 0.20 0.66

PFAYR % normal 0.24 0.05 0.17 0.36

Ny % normal 0.34 0.05 0.25 0.40

Cay % normal 0.25 0.07 0.16 0.34

K, % normal 0.22 0.07 0.13 0.44

5, % normal 0.05 0.01 0.03 0.07

rhon kg m3 normal 150.0 60.0 220 454.0

rhay kg m3 normal 1310.0 139.0 790.0 1530.0

rhoz kg -3 normal 1450.0 480 13000 1540.0

rbos kg m3 normal 1540.0 35.0 1300.0 1600.0
adlyr  mmolckg!  lognormal 418 (65.000 066  2.46 (12.0) 5.21 (184.0)
aAler  mmolkg'  lognormal 5.01(1560) 061 295 (19.0) 6.65 {177.0)
Al mmol. kg!'  lognormal 4.98 (145.0) 0.41 3.77 (42.0) 6.01 {406.0)
ARY S mmol; kg'  lognormal 0.26 {1.3) 0.47 -1.42 (0.25) 1.31 3.7)
35 mmol, kgt lognormal 330012 0.48 -7.0 (0.0 274 (15.5)
$5C; mmol, kgt lognormal 290 (1.1) 032 -7.0(00) 209 (8.1)
CEC mmol kg!  normal 282.0 68.0 108.0 700.0

CEC, mmol kgt lognormal 3.4 (30.0 072 0.69 (2.0) 5.2 {186.0}
CEC; mmol kgt lognormal 24011 0.67 0.0 (1.0) A8 (43.09
CEC; mmol kg!  lognormal 1.6 (4.8) 0.68 0.0 (1.0) 2.9(19.0)
JAlo - norm:l 0.05 0.03 0.02 0.11

fAL > - normal 0.53 0.15 0.37 0.78
JAL - normal 0.73 0.15 8.52 0.89

U For lognormal distnbutions values in brackets denote the nomenal values; the other values concern the log-
transformed counterparts

The initial values that must be specified with respect to the tree species are
amounts and element contents in needles, roots and stems and the root distribution.
The needle biomass (A1s) and element contents in stems (X, X = N, §, Ca, K) and
roots (¢#Xs, X = N,S,Ca,K) are based on literature data (a.0. Kimmins e a/, 1985).
Element contents in needles (#X;, X = N,5,Ca,K), root biomass {1, and root
distribution dara (f;,, # = layer number) are based on field research in eight Douglas
forest stands in the centre of the Netherlands (Oterdoom ef ai, 1991). Note that
extremely high N contents occur in the needles, up to 3.7% (Table 5). They are due to
the high NI, input in the investigated area. A decreasing deposition may lead to a
decrease in the N content, but this is not included in this model analysis. Data for the
root biomass (A4, and the root distribution fractions (f; ., #=1,2,3) are related to the
fine roots (< 2 mm), which are active in water and nutrient uptake. Naturally, in the
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case of three layers only two fractions are independent. We calculated the fraction in
layer 3 from the other two: fy3 = 1 - fu1 - fr 2 Afterwards we checked whether the
distribution of f; 3 matched with the measured one. The field survey of Oterdoom ef 4/,
(1991} gave no information about roots in the litter layer. Consequently, we did not
include roots in the litter layer; however, it is likely that the litter layer contains a
considerable amount of (fine) roots (Grier ef @/, 1981; Persson, 1983).

Investigated variables telated to the soil are bulk density (rb), content of
alominium hydroxides (i244.), sulphate sorption capacity ($5C), cation exchange
capacity (CEC), and fraction of exchangeable aluminium (£4)). The distributions of
rho and CEC in the litter layer (layer 0) were derived from the field survey in eight
Douglas stands mentioned earlier (Kleijn ef 2/, 1989). Values for ¢£-1%. and S5C in the
litter layer were assumed to be zero. For the mineral layers rho, 14, and CEC were
derived from the soil information system available at the Winand Staring Centre. S5C
was related to o1/, using literature data (Johnson and Todd, 1983). The aluminium
occupation of the exchange complex ({14 », #=0...3} was derived from the field survey
in eight Douglas stands (Kleijn e 4/, 1989).

Model parameters

A summary of the relevant model parameters is given in Table 6. The investigated
model parameters related to the vegetation are the foliar uptake factor of NH;
(NIL;z), the preference factor for the NIy uptake by roots (NI ), foliar
exudation constants (£Xz, X=Ca, K, Myg), litterfall (£) and root decay (£, constants,
The distributions used for the foliar uptake fraction and the root uptake preference
factor of NI are more or less arbitrary. Foliar uptakes of SOz and NO: were
constdered negfigible. Distributions of the foliar exudation of Ca, K and Mg were
derived from the differences between throughfall and estimated total deposition in 15
Douglas stands (Tiktak e @/, 1988; Kletjn er o/, 1989; Houdijk, 1993). Total deposition
was estimated by adding the measured bulk deposition (4#) to the dry deposttion,
calculated by multiplying the fi factor with the bulk deposition (see Table 3). Litterfall
values were based on a national inventory of the forest vitality in the Netherlands (P.
van der Tweel, pers. comm.). The distribution of the root decay constant was derived
from data given by Santantonio and Hermann (1985).

Investigated model parameters related to the soil are the nitrification constants
{Kuin, #=0,1,2,3), protonation constant (£»), weathering rate constants of primary
minerals (£X,.pm X=K/Na, Ca/Mg) and aluminium hydroxides (&5, o » n=1,2,3),
the aluminium hydroxide equilibrium constant (KAL), the sulphate adsorption
constant (K5O, .j) and the exchange constants taking Ca as the reference ion (KX,
X=H, Al, NH,4, K).
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Table 6 Distributions of model parameters

Parameter Unit Distribution Mean sD Min. Max,
tvpe

INH; - uniform 0.t - 0.0 0.2

JuNH o - unifeorm 1.5 - 0.0 20

£Cay normal 0.14 005 008 0.23

kMg, at normal 0.26 0.04 019 0.31

£K; at normal 0.22 ¢.08 0.09 .32

k.4 at uniform 2.0 - 1.5 25

Y at unifarm 85.0 - 50.0 120.0

Ko 1 al 200 - 10.0 30.0

f a'l uniform 20 - 0.0 50

Byt al uniform 20 - 0.0 5.0

£y a! uniform 50.0 - 250 75.0

£K/Nawpn ! uniform 1.1-10-+ - 2.0-109 2.0-104

ECa/ Mgrepw 2! uniform 5.25-10+4 - 5.0-10% 1.0:103

&ALy ovt al uniform 0.02 - 0.01 0.03

£lyeanc2 2’ uniform 0.20 - 0.10 0.30

AL, o a’l untform 0.20 - 0.10 0.30

KAds (mol 12 uniform 7 - 1081 1093

KH,.0 {mol )1 [ognormal 3.50 (33.09 1.00 1.50 (4.5 5.50 (2.5)

KH..: {mol Iy lognormal 6.79 (889.0) 1.29 4.76 (117.0) 9.19 (9800.0)

KH, 2 (ol 1) lognormal  7.83(2515.0) 196 4.01 (55.0) 10.3 (2533.0)

Ko (mol I} lognormal  7.72(22520) 352 2.62(14.0) 12.2 (98789.0)

KAl.s mol I lognormal 4.30 (74.0) .00 230 (10.0) 6.30 (545.0)

KAl s mol 1 lognormal ~ -1.18 (0.3} 132 -298 (0.1} 0.9 (0.6)

KAL,» mol 11 lognormal -0.18 (0.8) 138 -219(0.1) 1.6 (0.1)

KAl s maol I logmoemal — -0.14 (0.9) 144  -1.80(0.2) 27(5.5)

KNH; o (mol 1)1 lognormal 140 4.1) 0.20 1.00 2.7) 1.80 (6.0}

KNHior  (mott)? logaormal  1.69 (5.4) 133 -05(0.6) 3.58 (36.0)

KNH, o 2 (mol )1 lognormal 5.23 (187.0) 191 1.64 (5.2) 8.06 (3165.0)

KNHyns  (moll)! lognormal  7.62(2039.0) 193 479 (120.0)  10.6 (3478.0)

KK..0 (mol 11y lognormal 2.50 (12.0) 0.70 1.10 (275.0) 3.90 (49.0)

KKyt (mol [} lognormal — 3.60 (37.0) 6.69  240(11.0 4.4 (6.0)

KK..» (mol [ lognormal 4.77 (118.0) 0.63 3.61 (37.0) 5.5 (52.0)

KK, ; (mol LYyt lognormal 6.17 (478.0) 0.87 5.02 (151.0) 74 (772.0)

KSO, m® mol! lognormal  0.00 (1.0) 115 230 (0.1) 2.3 (10.0)

Y For lognommal distmbutions, valucs i brackets denote the nomnal values; the other values coneem the log-

transformed counterparts.

The distributions of the nitrification, protonation and aluminium hydroxide
weathering rate constants were chosen somewhat arbitrary around a calibrated value,
since very little is known about the uncertainty/variability of these parameters. The
distribution type was assumed to be uniform. The distributions of the base weathering

constants were based on information in De Vries and Breeuwsma (1986), whereas the

aluminfum hydroxide equilibrium constant distribution was derived from Lindsay

(1979) and May e 2/ (1979). Distributions of the selectivity constants were derived

from a ficld survey by Kleijn ef o/ (1989). Contrary to other soil parameters, the
distribution type of the selectivity constant was assumed to be lognormal.
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Correlations

Naturally, various parameters are correlated. Here we only consider those correlations
for which we have obvious indications, i.e. those with a correlation coefficient greater
than 0.5. Correlations for deposition parameters, turnover parameters of roots and
needles and selectivity constants included in the analysis are given in Table 7.

Table 7 Correlations used

Parameter 1 Parameter 2 Corrclation cocffrcient
F30; 4 FENO» 0.77
FS0, 4 FINH, 44 0.89
FNO:> i FNH; 4 0.51
FCli FNa 4 0.80
ky A, 20.80
‘éuf A.f ‘0.60
! j;f 2 -067
KT, KAL. 0.52
KK, KNH; o 0.76

Especially, the dry deposition fluxes of SO, and NHy appear to be strongly
correlated. The same is true for the wet deposition fluxes of Na and Cl The
correlations between deposition parameters are based on bulk precipitation and
throughfall data in the 27 coniferous stands mentioned before (Houdijk, 1993; Tvens ef
al, 1988; Kleijn ¢t al, 1989). The correlation between £y and A, is based on the
knowledge that the product £y 1, lies between 1-10% and 4-10% kg ha'! a* (Kimmins
et al., 1985; Tiktak e a/, 1988). The correlation coefficient used was determined by trial
and error. The same holds for the correlation between &w and .. The correlation
between the root distribution parameters (fy  and f 5) was based on the field survey of
Oterdoom e al (1991). A cotrelation with f; ; was introduced implicitly by the relation
Jr3 =1« fy1 - fu2 (see Inidal values of varables). The correlations between the
selectivity constants of Al and H, which together occupied about 90% of the exchange
Eomplex, and between K and NI were based on the ficld survey of Kletjn ¢f af

1989). :

225 Results

Introduction

The presentation of the uncertainty in model output is restricted to the pH, NH,/K
ratio and Al/Ca ratio in two layers of the leptic podzol soil profile: the top of the root
zone (A, 15 cm) and the bottom of the root zone (C, 20 cm).
The uncertainty in the model output is presented by:
- the mean, the standard deviation (SD) and the coefficient of varation (CV) (ie.
SD/mean) at the beginning (1987), halfway (2000) and at the end (2010) of the

simulation period;
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- the trajectory of the mean, median (50 percentile), 97.5 percentile and 2.5
percentile during the simulation period (i.e. 1987-2010).

Furthermore, we give the model output of a simulation carried out with mean
parameter values, referred to as reference run, n order to investigate the
correspondence between this result and the mean of all the Monte Catlo simulations.
With this we can check if one simulation with mean parameter values suffice for a
regional application, planned in the near future.

The contribution of the model parameters to the uncertainty is presented by
the trajectory of the root of the (partial) uncertainty (coefficient) (RTU) of the three
most important parameters either at the beginning or at the end of the stmulation
period.

pH

‘The mean, the standard deviation (SD) and the coefficient of variation (CV) of the pH
in layers 1 and 3 in 1987, 2000 and 2010 are given in Table 8. The model results show
that the absolute uncertainty (SD) in the plI in the subsoil is slightly higher than that
in the topsoil, whereas the opposite is true for the relative uncertainty (CV). Both the
absolute and the relative uncertainty remain fairly constant in both layers during the
simulation period. The pH in both layer 1 and layer 3 increases during the simulation
period, due to the decreasing deposition.

Table 8 Mean, §D and CJ” of the pH in layers 1 and 3 in 1987, 2000 and
2010

Taver Year Mean sb vV

1 1987 30 0.11 0.04
1 2000 31 0.11 0.04
1 2010 12 0.13 0.04
3 1987 4.1 0.13 0.03
3 2000 42 013 0.03
3 2010 4.3 014 0.03

Figure 1 shows the trajectories of the mean, various percentile values, and the
reference run in both layers during the simulation period. At the initiation of each
simulation, model outputs are in steady state with respect to deposition. This is done
by running the model 25 years in advance while keeping all the ‘capacity’ variables
constant,

The reference run and the mean correspond very well. In the reference run the
pH is only about 0.01 to 0.08 lower than the mean. There is a slight difference
between the median and the mean in layer 3 (median > mean), which indicates that
the pH distribution is skewed to the left.
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pH
Layer 1 Layer3
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Figure 1 Temporal evolution of the mean, the median, the 97.5 and 2.5 percentiles, and
the reference run of the pH in layers 1 and 3.

The temporal evolution of the three parameters with the highest RTU with
respect to the pH in layers 1 and 3, either at the beginning or at the end of the
simulation period, is shown in Figure 2. During the simulation period, the coefficient
of determination (COD or R?) of the regression models lies between 0.92 and 0.96 in
layer 1, and between 0.87 and 0.88 in layer 3.

RTU Layer 1 Layer 3
101 s ctAly, —
"""" FNHagg = — == FSO,4
---— CEC, e,
.............. KAl o
Y - T
.................. -— — F50, 4 3
03 — mmm-—_—"“"-",‘__‘___}“' e [
/ . —_— -
0.0 ] | 1 ] y === R ! I
1990 2000 - 2010 1590 2000 2010
Time (a)

Figure 2 Temporal evolution of the RTU between model parameters and the pH in
layers 1 and 3

Figure 2 shows that the uncertainty of the pll in layer 1 is mainly determined
by uncertainty in the amount of aluminium hydroxide (/44 1) in that layer, whereas
the uncertainty in the equilibrum constant of aluminium hydroxide (KAZ%,) mainly
determines the uncertainty of the pH in layer 3. Both 24/, and K1/, determine the 11
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buffering by aluminium hydroxides. The fact that ¢4/, is important in layer 1 is due
to a stfong undersaturation with respect to aluminium hydroxides. In this layer the
KA, hardly affects the Al dissolution. However, in layer 3 saturation occurs with
tespect to aluminium hydroxide, thus explaining the importance of KA/4. Both the
uncertainty contributions of at44. and K-/, decrease during the simulation period,
which is due to the decreasing deposition.

Next to the Al dissolution parameters, the dry deposition of NI (FNH; 4) and
SO: (F50: 4), which are the main contributors to the acid load, determine the
uncertainty of the pIl in both layers. Tt must be noted, that the high RTU value of
FS0; w is mainly due to the cotrelaton between ISO: 4 and FNH; 4 This is
confirmed by inspecting the standardised regression coefficients (SRC), a measure
which does not account for correlations (see Section Statistical Analysis). The SRC of
F50: 4 in layer 1 lies between -0.21, in 1987, and -0.01, in 2010, and the SRC of FINH;
between -0.18, in 1987, and -0.22, in 2010. For layer 1 the N content in needles (/Ny)
and the CEC in that layer (CEC)) also appear to be important, especially as the
simulation period proceeds. For ¢Nj, this is due to the increase in the relative
contribution of the internal N cycle to the acid load. It must be noted, however, that
the N content in the needles has been kept constant over the simulation period (see
Section Restrictions), whereas it will most probably decrease as a result of the decreasing
N deposition (Van den Burg e al, 1988, Van den Burg and Kiewiet, 1989). The
uncertzinty contribution of ¢#N; might thus be overestimated. The increase in the
uncertainty contribution of CLC; with time, is also caused by the change in
deposition: a decrease in H load leads to less aluminium dissolution resulting in Al
desorption and H adsorption. However, the contribution of the CEEC is temporal:
when the depositdon level remains constant after the deposision reduction period, a
new equilibrium is installed. Consequently the uncertainty contribution will decrease.

Molar NH4/K ratio

The mean, the SD and the CV of the molar NH4/K ratio in 1987, 2000 and 2010 are
given in Table 9.

Table 9 Mean, §D and CV of the molar NH4/K ratio in layers 1 and 3 in
1987, 2000 and 2010

Layer Year Mcan s CV
1 1987 34 1.2 0.35
1 2000 1.8 0.7 0.40
1 2010 1.2 6.0 0.45
3 1987 05 0.6 1.t
3 2000 0.2 03 1.6
3 2010 0.0 0.1 32

These model results show that the absolute uncertainty (SD) of the NH,/K
ratio in the topsoil (layer 1) is greater than in the subsoil (layer 3), whereas the
opposite is true for the relative uncertainty (CV). In both layers the absolute
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uncertainty decreases during the simulation period, due to the decrease in (N)
deposition. On the other hand, the relative uncertainty increases, especially in layer 3.
The deposition reduction leads to a depression of the mean molar NH./K ratio in
both layers. The molar NI14/K ratio in layer 3 is permanently about 1 to 2 units lower
than in layer 1. This is mainly caused by nitrification and to a lesser extent by NH,
uptake. During the entire simulation period the molar NH/K ratio in the topsoil
temains below 5, which is generally considered to be an acceptable ratio (Roelofs ef af,
1985; De Vries, 1988).

NH,_ /K
» 9 Layer 3
8o Layer - 4
caversssnenns @75
—e= Median A
------------------ p2.5 R
53 —— Mean I g
-, = = = - Referance Run *
27 -
—— e
00 I e 1Py :
1990 2000 2010

Time (a)

Figure 3 Temporal evolution of the mean, the median, the 97.5 and 2.5 percentles, and
the reference run of the NH,/K mol ratio in layets t and 3

Figure 3 shows the time evolution of the mean, various percentile values and
the reference run of the molar NIL/K ratio. Figure 3 clearly confirms the difference
in absolute uncertainty between layers 1 and 3 shown in Table 9 In layer 1 the
reference run lies somewhat lower than the mean, but the similarity is striking. In layer
3 the difference is more substantial. The median lies also below the mean, which
implies that the distribution is skewed to the right.

Figure 4 shows the RTU trajectories of the three parameters with the highest
RTU either at the beginning or at the end of the simulation period. During the
simulation period the COD of the regression models lies between 0.92 and 0.94 in
layer 1, whereas it decreases from 0.82 at the beginning to 0.46 in layer 3. Although
the COD at the end of the simulation petiod is low, we still use the RTU for the
analysis, because data transformations did not improve the COD. Howevet, one
should bear in mind, that the COD in layer 3 is decreasing at the end of the simulation
perted to an unacceptably low value, which means that the RTU is no longer an

Optimal measure to quantify the uncertainty.
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Figure 4 Temporal evolution of the RTU berween model parameters and the NIL/K
mol ratio in layers 1 and 3

At the beginning of the simulation period the uncertainty in the molar NH,/K
ratio in layer 1 is mainly determined by the dry depositions of NI (FINF ;s 4) and SOz
(F50:2 4) and the dry deposition factor (fu). During the simulation period, the
uncertainty contribution of the deposition parameters decreases, whereas the influence
of the N content in needles («#N;) and the nitrification rate constant (&, 1) increase.
This means that the uncertainty contribution of the internal N cycle becomes greater
than the contribution of the external N load (compare the pHl). The uncertainty
contribution of fj; remains more or less constant.

Contrary to layer 1, the uncertainty in layer 3 is mainly determined by
parameters influencing the NH; concentration. As in layer 1, FNI{; 4 and FSO: u
mainly determine the uncertainty at the beginning of the simulation period, whereas
their influence decreases when the simulation period proceeds. For both layers it is
remarkable that FSO; 4 strongly contributes to uncertainty in the molar NIH4/K ratio.
This is caused, however, by the predefined correlation between FSO; w and FINH; 44
(see Section Correlations). Similar to layer 1, the influence of the internal N cycle
increases with time. In the year 2010 the biomass amounts of roots (1) and needles
(As) contribute strongly to the uncertainty of the NI1/K mol ratio. Remarkable is
also the relatively high uncertainty contribution of the NH, selectivity constant in layer
3 (KNH; ¢ ). As in layer 1, the impact of the deposition parameters decreases,
whereas, unlike in layer 1, the nitrification rate parameter in layer 2 (k. ;) decreases
too.

Molar Al/Ca ratio

The mean, the SD and the CV of the molar Al/Ca ratio in 1987, 2000 and 2010 are
given in Table 10.
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Table 10 Mean, SD and CV of the molar Al/Ca ratio in layers 1 and 3 in
1987, 2000 and 2010

Laver Year Mean sb (Y
i 1987 23 1.2 0.53
1 2000 1.5 09 0.59
1 2010 1.0 0.6 0.59
3 1987 9.8 5.0 0.51
3 2000 10.5 11.6 11
3 2010 5.3 6.5 12

From these model results it is clear that both the absolute (SD) and the relative
(CV) uncertainties in layer 3 are much greater than the uncertainties in layer 1. The
absolute uncertainty in layer 1 decreases with time, whereas the relative uncertainty
temains fairly constant. On the other hand in layer 3 there is a dramatic increase in
uncertainty, especially in the period between 1990 and 2000 both in the relative and
_the absolute uncertainty. Furthermore the mean also increases during this period. This
18 caused by changes in the adsorption complex. As a result of the decreasing
deposition, the concentrations of I and the Al decrease too. This leads to exchange
of Ca against H, which results in a relatively stronger decrease in the Ca concentration

than the dectease in the Al concentration, leading to a temporal increase in the molar
Al/Ca ratio,

:\Ql.f(':a Al/Ca
olar ratio Molar ratio -
100 - £0.0 Layer 3 2
p97.5 g
Median
------- p2.5
| Mean
67 - = = - Reference Run 33 *,
33 - 16.7 -
R PRI ST
0.0 0.0 ' : : B
1990 2000 2010
Time (a)

Figure 5 Temporal evolution of the mean, the median, the 97.5 and 2.5 percentiles, and
the reference run of the Al/Ca mol ratio in layers 1 and 3

Figure 5 shows the time evolution of the mean, various percentile values, and
the reference run of the molar Al/Ca ratio. In layer 1 the reference run is more or less
equal to the mean. In laver 3, however, the reference trajectory clearly deviates from
the mean after 1996.
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It is clear that eventually the decrease in deposttion has a positive effect on the
molar Al/Ca ratio. In both layers the mean molar Al/Ca ratio decreases by about
50%. However, when a dynamic nutrient cycle would have been considered, the
decrease in molar Al/Ca ratio would probably have been less. As a result of decreasing
N contents in the needles, the acid production caused by the N mineralisation
followed by nitrification would be lower.

It is remarkable that, in spite of the strong reduction in deposition, the mean
Al/Ca ratio in layer 3 remains above 1, which can be considered an acceptable value
(De Vries, 1988). However, simulations over a longer time period showed that the
mean Al/Ca ratio in layer 3 will decrease further by 3 units in the period 2010 to 2030,
due to a decrease in Ca adsorption.

Contrary to the other analysed model outputs, we used the rank transformed
data of the molar Al/Ca ratio in layer 3. This is done, because a linear regression with
the original data resulted in a bad “fit’ (low COD), which was highly improved by rank
transformation as shown in Figure 6. The COD in layer 1 lies, during the entire
simulation period, between 0.94 and 0.96.

COD RCOD
10 10 ~
2
0.7 0.7 - g
03— 03
0.0 1 ] t ; ] 0.0 i ] : 1 )
1990 2000 2010 1990 2000 2010
Time (a)

Figure 6 The COD and the RCOD in layer 3 during the simulation period

Figure 7 shows trajectories of the three parameters with the highest RTU in
layer 1 and the highest standardised rank transformed regression coefficient (SRRC) in
layer 3, either at the beginning or at the end of the simulation period. The uncertainty
of the Al/Ca ratio in layer 1 is mainly determined by the content of aluminium
hydroxide (ct-2% 1), the deposition of Ca (I'Caus), and the Ca content in the needles
(c#Caz). The uncertainty contribution of 24/ s slightly increases with time, which is a
result of a decrease in A/, s during the simulation (dissolution of aluminium
hydroxide due to acid deposition). When simulations are carried out over a period of
100 a (De Vries and Kros, 1989) the uncertainty in the Al/Ca ratio is almost
completely determined by the uncertainty in oA/, 1. The influence of FCau and oCay
on the uncertainty remains fairly constant during the simulation period.
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Figure 7 Temporal evolution of the RTU between model parameters and the Al/Ca
mol ratio in layers 1 and 3

At the bottom of the root zone, it is mainly the Ca deposition (FCaa, fu) which
determines the uncertainty in the Al/Ca ratio, although it slightly decreases during the
simulation period. Rematkable is that also the Ca weathering constant of primary
minerals (£Can) significantly contributes to the uncertainty. In this context, it is
important to note that the values of the SRRC in layer 3 are negative, since higher
values of FCua, Jas and &Ca, result in higher Ca concentrations and thereby in lower
Al/Ca ratios. The RTU is always positive (see Section Statistical Analysis).

22.6 Discussion and conclusion

Discussion

The information provided by the uncertainty analysis can be used as a basis for further
model development and data collection. The processes related with the relatively
Certain parameters could be aggregated. However, one should be aware that the
uncertainty depends strongly on the considered output. For example, the uncertainty
contribution of £Mg. would be more pronounced when the Mg concentration was
considered. In order to reduce the uncertainty of the most critical parameters, it is
necessary to make a distinction between uncertainty due to natural varability and
uncertainty due to a pootly defined model parameter distribution. Important
barameters whose uncertainties mainly originate from inaccurate and/or insufficient
data are KA, fas #u. The uncertainty related with these parameters can be reduced by
additional data collection and/or calibration on relevant field measures. The
uncertainty of the other group of important parametets originates mainly from natural
Vatiabil_ity, ie. main]y el FINH 44, FS0> 4, etNp The uncertainty related to those
Parameters is simply a fact of nature.
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In general, the model outputs of a simulation with average parameter values
correspond quite well with the average of the outputs from all the Monte Carlo
simulations. This is related to the linear behaviour of most model outputs, which is
expressed by a COD value close to 1 for most regression models. However, replacing
the original RESAM by these linear regression models (frequently called ‘meta-model’)
in further studies is not suitable.

The regression models are mainly descriptive and have not much explanatory
value. The coefficients in these models are highly time-dependent. Moreover, their
values depend on the specific deposition scenario considered in this study. The
relation with the important processes at hand does not show up clearly and explicidly,
and therefore their use for further in-depth studies is rather limited.

Conclusions

A decrease in deposition leads almost directly to a strong decrease in NHy/K ratio, a
slight decrease in Al/Ca ratio, and a slight increase in pII. When a non-stationary
nutrient cycle had been considered, the observed effects would probably have been
stronger, since the assumption of a stationary hutrient cycle may have led to an
overestimation of the NH4/K and the Al/Ca ratio, and an underestimation of the pI.

The relative uncertainty, determined by the variation coeflicient, strongly
depends on the considered model output, soil layer and time and is:

- high for the NH4/K ratio and the Al/Ca ratio and low for the pl;

- always larger in the subsolil than in the topsotl;

- neatly constant for the pH in both topsoil and subsoil and for the NIH4/K and
Al/Ca ratios in the topsoil, whereas it strongly increases with time for both ratios
in the subsoil.

The uncertainty contribution of model parameters on model outputs depends

- on the considered model output, soil layer, and time as shown in Table 11.

Table 11 The most important uncertainty sources for the pH, NHy/K and
Al/Ca ratios in the topsoil and the subsoil at the beginning (1987) and at
the end (2010) of the simulation periond.

Model output pH NIL/K Al/Ca
Begin End Begin Find Begrin Iind
Top soil ctAl, AL FNH; 4 Ny et AL AL
FSOs 4 N, FSOs S FCaye FCay
FNHju CEC S ki aCay, aCay
Sub soil KA, KAlL. FINH; 4 A FCay, FCau
FNH;»w  FNH;u FS0O; 4 Ay Ju S
FSOs 4 FSOs u £y KINH, . £Ca, £Ca,.

The uncertainty in pH is mainly determined by the content of aluminium
hydroxides («£1/.) in the topsoil and the aluminium hydroxide equilibrium constant
(KAL) in the subsoil. Furthermore, the dry depositions of NH; (FINH 4 and SO;
(F50: 4 also contribute strongly to the uncertainty of the pII in both the topsoil and
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subsoil. However, at the end of the simulation period, at a low acid deposition load,
the uncertainty contribution of the deposition decreases (external N cycle) and the
contribution of the N content in needles (e2N;;) increases (internal N cycle).

At the beginning of the simulation period, the uncertainty in the NH4/K ratio,
is mainly determined by the dry deposition of NH; (FNNH} 4 for both the topsoil and
the subsoil, the dry deposition factor of base cations (fu) for the topsoil, and the
nitrification constant (4,) for the subsoil. At the end of the simulation petiod, the
influence of the dry deposition of ammonia decreases (external N cycle), and the
uncertainty contribution of the nitrification constant (&, topsoil), the N content in
needles (N, topsoil), and the amounts of roots and needles (A Ay, subsoil)
increase (internal N cycle).

The uncertainty in the Al/Ca ratio in the topsoil is mainly determined by the
content of aluminium hydroxide {(c244.), followed by the wet deposition of Ca (FCau)
and the Ca content in needles (¢/Ca;). In the subsoil it is mainly the total deposition of
Ca (FCam, fu), followed by the Ca weathering rate constant of primary minerals
(kCay), which determines the uncertainty. The uncertainty contribution of these
parameters remains more or less constant during the simulation period.

The parameters that hardly influence the uncertainty of the considered model
outputs are the bulk density (rh) of all soil layers, the S content in leaves (:z5)), stems
(Lrj'g) and branches (¢£5;), the foliar exudation rate constant of Mg (kMg and the
foliar uptake constant of NHs (INHa ).
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2.3 Modelling effects of acid deposition and climate
change on soil and runoff chemistry

Abstract

Estevated CO; levels, caused by antbropogenic emissions of CO; to the atmosphere, and higher
lermperatures may also lead to increased plant growth and uptake of N, but increased temperature
may lead to increased N mineralisation, cansing enhanced N-leaching. The overall result of both
counteracting effects, particular in the long run, is largely unknown. To gain insight in those long-term
effects, the geochemical model SMARTZ was applied, nsing data from the catebment-scale experiments
of the RAIN and CLIMEX projects, conducted on boreal forest ecosysterns at Risdalsheia (southern
Norway). These unigue series of experiments at the ecosystem scale provides information on the short-
termt effects and interactions of N deposition and increased temperature and CO;z on C and N cyeling
and especially the rungff chemistry. To predict changes in soil processes in response to cimate change,
the model was extended, by inciuding the temperature effect on mineralisation, nitrification,
denttrification, Al dissolution and mineral weathering. The extended model was tested on the two
manipulated catchments at Risdalsheia and Jong-term effects were evaluated by performing long-time
rins, The effects of climate change treatment, which resulted in increased N fluxes at both catchments,
were slightly overestimated by SMARTZ. The temperature dependency of mineralisation was simulated
adequately, but the temperature effect on nitrification was slightly overestimated, Monitored changes in
base cation concentrations and pH, though were simulated guite well with SMARTZ. The long-term
sinlations, indicate that the increase in N runoff is only a temparal effect; on the long-term, no effect
on total N-leaching is predicted. At higher deposition level the temporal increase in N-leaching lasts
longer than at low deposition level. Contrary to N leaching, a lemperature increase leads to a
Permanent decrease in Al concentrations and pH,

231 Introduction

Eﬂlissions of CO:z and other greenhouse gases to the atmosphere may lead to an
Increase in global temperature over the next decades. Largest changes are expected at
high latitudes (Houghton ef a/, 1990). Primary productivity in boreal ecosystems has
Increased in large regions of northern Europe and eastern North America due to
enhanced N deposition, since these systems are N-limited (Kauppi ef 2/, 1992). Higher
CO: concentrations may lead to increased plant growth, C sequestration and uptake of
N. Increased temperatures, on the other hand may lead to increased mineralisation
(Stanford e al, 1973; Edwards, 1975), causing CO; production and enhanced N-
leaching. The overall result and in particular the long-term effects are largely
unknown.

Large-scale whole-ecosystem experiments provide one of the tools to study the
tesponse of the ecosystem and to evaluate geochemical mode_ls that include global
Change processes. At Risdalsheia, southern Norway, the effects and interactions of N
deposition and increased temperature and COz on C and N cycling and especially the
runoff chemistry have been examnined at catchment-scale experiments on boreal forest
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ecosystems (Van Breemen ef a/, 1998; Wright, 1998). Runoft chemistry is of particular
interest. It provides a sensitive integrated signal of change in terrestrial catchments;
while changes in the internal N cycle are often difficult to discern directly due to
spatial and temporal variability.

To quantify the impacts of acid deposition, land use and climate change at large
{regional to national) scale, simulation models are being used. The models MERLIN
(Wright et 4/, 1998b) and MAGIC7 (Wright e @/, 1998a) have been applied at
Risdalsheia to test effects of climate change on runoff chemistry. In this paper we
evaluate the enhanced SMART2 model (Mol-Dijkstra and Kros, 2001) using the control
and the manipulated catchments at Risdalsheia. SMART2 has been developed in order
to integrate soil acidification processes and nutrient cycling, and to predict long-term
effects of acid deposition scenarios on a national and continental scale. To quantify
the effects of climate change on soil processes, we included the effect of temperature
on these processes to integrate effects of climate change, acid deposition and nutrient
cycling in a quantitative way. This extended version of SMART has also been applied
on the European scale (Ferrier and Helliwell, 2000). The Risdalsheia experimental
catchments are very suitable for application of SMART2, because the experimental
design of the experimental catchments corresponds with the temporal and spatial
resolution of the model output. We used annual fluxes of solutes in runoff (Wright ef
al., 1998a), corresponding to the time steps of one year that is used by SMART2.

The major aims of this paper are to (i) test the hypothesised temperature effects
by calibration and validation of the model on a manipulated catchment and (i)
evaluate long-term effects of climate change on C and N cycling and especially on N
runoff. To test the temperature effect in SMART2, we first calibrated the model at the
control catchment ROLF, and next, after the incorporation of the temperature effect,
at the EGIL catchment where soil temperature was increased. Finally, we evaluated
the model at the KIM catchment which was subjected to elevated air temperature and
COz-pressure. The effect of deposition reduction was only evaluated at the KIM
catchment. Long-term effects of deposition reduction, temperature rise and increase
of COz-pressure were evaluated by extrapolating the existing treatments at Risdalsheia
for 30 years.

2.3.2 Modelling approach

Model structure

SMART2 is a simple, single-layer soil acidification and nutrient cycling model. Tt
includes the major hydrological and biogeochemical processes in the vegetation, litter
and mineral soil. The model simulates changes in H, Al divalent base cations
(BC2=Ca+Mg), K, Na, NH,, NO;, S04, HCOs and Cl concentrations in the soil
solution. In addition, it simulates changes in solid phase characteristics connected to
the acidification status, ie. carbonate content, base saturation and amorphous Al
precipitates. The SMAR12 model consists of a set of mass balance equations,
describing the soil input-output relationships, and a set of equations describing the
rate-imited and equilibrium soil processes. SMART2 is an extension of the SMART
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model (De Vries e al., 1989). Since the (original) SMART model does not include a
complete nutrient cycle, it is not suitable for calculating N availability. Furthermore, it
does not include upward solute transport. Therefore, the model SMART was extended
with a nutrient cycle (litterfall, mineralisation and uptake) and an improved modelling
of hydrology, including runoff, upward and downward solute fluxes. Most of the
extensions were derived from the dynamic multi-layer model RESAM (De Vries ef 4/,
1995a) and the steady-state multi-layer model MACAL (De Vries ef al, 1994c). Figure 1
gives a schematic representation of the SMARTZ model. The included processes are
summarised in Table 1.

g8
g -g- Deposition
-4 =
i 8

WATER BALANCE PSR, 5 T A NUTRIENT CYCLE

Groundwater

Figure 1 Schematic representation of the processes included in the SMART2 model
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Table 1 Overview of processes included in SMART2

Process Illement Process description
Inpur:
Total deposition S0y, NO4, NIT,, inputs; deposition fluxes are multiplied by an
BC2 Y, Na, K, 1 clement- and vegetation-dependent filtering factor®
Upward seepage SOy, NO4, NI, Inputs
BC2 Y, Na, K, C
Water Balance - Inputs: precipitation, upward scepage,
cvapotranspiration
Rate-limrited reactions:
Faliar uptake NI, Linear function of total deposition
Foliar exudation RC29, K Fiquals foliar uptake
Litteefall BC21, K, Logistic growth
Nily, NOy
Root decay BC2 0K, Lincar function of litterfall
NI, NO;,
Mineralisation BC2W K, First-ordes reaction and a function of pl], Mean
. Spring Water table (MSW) and C/N ratio of the
litter
NIlLs, NOy .
N immobilisation NI, NQO;, Proportional to N deposition and a function of the
C/N ratio soil organic matter
Growth uptake BC20, K, Logistic growth
Ny, NOs
Nitrification NH,, NO),y Proportional to net NHy input and a function of
: L, Mean Spring Water table (MSW) and C/N
ratio
Denttrification NO; Proportional to net NQj input and a function of
pl1, Mean spring water table (MSW) and C/N ratio
Silicate weathering AL BC21 Na, K Zero order reaction
Eguilibrizm reactions:
CO2 Dissociation HCOs CO; equilibrum
Dissociation of RCOO Oliver equation
organic acid
Carbonate weathering BC2Y Carbonate equilibrium
Al hydroxide Al Gibbsite equilibrium
weathering
Cation cxchange H3 ALBC2Y Gaines-Thomas equations
Sulphate sorption H 3, 80, Langmuir equation

1) BC2 stands for the sum of divalent base cations (Ca + Mg)
2 The vegetation-dependent filtering factor takes the roughness length of the canopy into account
) Implicitly, I is affected by all processes. This is accounted for by the charge balance

SMART2 was constructed using a process-aggregated approach to minimise
input data requitements for applications on a regional scale. This implied the
following simplifying assumptions:

i, The various ecosystem processes have been limited lo a few key processes:

The soil solution chemistry in SMART2 depends solely on the net element input
from the atmosphere (deposition), groundwater (upward seepage), nutrient cycling
processes (uptake, litterfall, mineralisation and tmmobilisation) and the geochemical
interaction in the soil ((de)nitrification, COz equilibria, weathering of carbonates,
silicates and/or Al-hydroxides and cation exchange). Processes that are not taken into
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account, are: (i) N fixation and NIy exchange, (i) uptake, immobilisation and
reduction of SO4 and (iii) complexation of Al with OH, $O4 and RCOO.

#i. The included processes bave been represented by simplified conceptualisations:

Soil interactions are either described by simple rate-limited reactions (e.g.
uptake and silicate weathering) or by equilibrium reactions (e.g. carbonate and Al-
hydroxide weathering and cation exchange). Influence of environmental factoss such
as pll on rate-limited reactions and rate-limitatton of weathering and exchange
reactions are ignored. Solute transport is described by assuming complete mixing of
the element input within one homogeneous soil compartment with 2 constant density
and a fixed depth (at least the root zone). Because SMART2 is a single layer soil model
neglecting vertical heterogeneity, it predicts the concentration of the soil water leaving
the root zone. The annual water flux percolating from this layer is taken equal to the
annual precipitation plus upward seepage minus evapotranspirations, which terms
must be specified as a model input. The time step of the model is one year, so
seasonal variations are not considered. Justifications for the various assumptions and
simplifications have been given by De Vties ef o/, (1989). Furthermore, Chapter 2.4 of
this thesis will address the consequences of model simplification into more detail.

Process descriptions

In this section an overview of the process descriptions used in the SMART2 is given.
An explanation of the symbols used is given in Annex 1.

Mass balances

For each of the cations (Na, K, BC2=Mg+Ca, NH,, Al) and strong acid anions (SO,
NO,, Cl) considered in SMART2 the mass balance equation for a compartment with
depth £, is given by:

; .
= Xu(2)= X, + X, (2) = PER) XN+ X(2) )

Where X.(5) is the total amount of ion X in the soil solution (mol. m?2) of a soil
compartment with depth g (m). Xi is the sum of all input fluxes to the soil
(mol. m2 a1). Xin(3) is the.sum of all interaction fluxes (mol. m2a') in the soil at
depth % (m). Xu(g) is the net seepage flux (mol. m2 a ) entering a soil compartment
with depth g (see Eq. 6). [X](9) is the concentration of ion X (mol. m?) in the soil
compartment with depth 5 In SMARTZ the precipitation excess at depth g, PE(g) is
calculated as:

PER)=P-(1- fo) = frul2) Tr @)
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where P is the precipitation, Tr the actual transpiration, f,, the interception fraction (-)
and fr,(3) the cumulative transpiration (water uptake by roots) fraction (-) in the root
zone at depth g, which is calculated as:

1 E__{ o Jorz<T

g or 2 >

Jr(2)= T, A 3)
1 Jorz>T,

where T is the thickness of the root zone (m) and 7. is an exponent determining
the water uptake pattern.

Upward seepage

Upward seepage is included in the mass balance, Eq. (1), as a net term, i.e. the input of
the upward seepage flux (X,) minus the lateral output flux (X). Figure 2 gives an
overview of the water balance in the soil system, including seepage.

froy (2)-TF R(1£,) 3
Transpiration Troughfall E
flux flux
Za0 -
——
fr,, (2)-Se
Lateral
flux
Z=Z
(1-fr,)-Se
P(1-f, )-fr, (z)-Tr fr..(z)-Se Lateral
v flux
z=Trz R (1 'fim)' Tr Se
Precipitation Seepage flux
excess
Y

Figure 2 Water balance in SMART2

The input to the soil system consists of the throughfall flux, P - (1 - fi) and the
upward seepage flux, Se. In SMART2, upward seepage is defined as the flux at the
bottom of the root zone. The upward seepage flux is assumed to be reduced at
shallower depth. For the sake of simplicity for seepage input into the root zone, the
same reduction function with depth is used as for transpiration, i.e. fr(3), cf. Eq. (3).
Consequently, the seepage input to the compartment with depth 1 equals: fr.(3) - Se.
The seepage flux of ion X is described as:
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X ()= fra(R) Se-[X], 4

where [X]. stands for the concentration of ion X in the seepage water (mol. m-%) and
Se the upward seepage flux (m a'). Because it is stated that the transpiration is
independent of the upward seepage flux, e, there must be a lateral output flux which
equals the seepage input: - fr(3) - Se.

The concentration of ion X in the lateral output flux at depth g equals the
concentration in the soil compartment, {X](z). Consequently, the lateral output flux of
ton X is described as:

Xu(R)==fra(z)- S {X](R) (3

where Se is the upward seepage flux (m at). The net effect of seepage at depth g,
Xscn(-'\"}, is thus:

Xl = fra(2)- Se- ([ X, 1-[X]2D) 6)

From Eq. (6} it is follows that the influence of upward seepage on the
concentration in the considered soil compartment is larger as the concentration of ion
X in the upward seepage water deviates more from the concentration in the soil
solution. Note that the remaining part of the upward seepage flux that does not reach

depth gis draining laterally. This lateral flux equals: - (1 - fro(2)) - Se- [X.].

Inpur fluxes

The external input by atmospheric deposition to the soil compartment is influenced
by the total deposition (#4), foliar uptake (f#), foliar exudation () and mineralisation of
litter (#27). Their presence depends on the component involved:

Aiiu =0 @
BC2, =BC2,+BC2,+BC2, 8)
K,=K,+K,+K, ©)
Nz, = Na,, (10)
NH,, =NH,,~NH, ,+N,, (11)
IVO},:'N =N Os,mf (12)
50, , =50, , (13)
HCOM” =0 _ (14)
Rcoo, =0 (15)
a,=d, (16)
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And the input of H is calculated from the charge balance:

H, =50, , +NO,,, + HCO; , +ClI, +RCOO, - )
—NH, , —Al, -BC2, ~K, — Na,

4,08

Canopy interactions

The canopy interactions included in SMARTZ were taken from the RESAM model (De
Vries ¢t al., 1995a). Foliar uptake of NHs and H 1s described as:

X, =X, X, (18)

where frX, is the foliar uptake fraction of I ot NH4. For Fij, the deposition of free I
(F.3) is calculated from the charge balance:

Hrd = 304,“- +1\TO3’M +Cl:d —NH,;',,; _Bcz:d —K.fd _N‘gm’ (19)

Foliar exudation of the cations (K, BC2} is taken equal to foliar uptake of NH,
and H (cf. De Vries et al, 19952), and is assumed to be triggered by exchange with

these ions (Roelofs ¢f 4/, 1985 Ulrich, 1983). The foliar exudation of each individual
cation is calculated as:

X,=fX,(NH, ,+H,) 20)

with X=K, BC2, X} is the foliar exudation fraction of K and BC2 (-), and sum of fiK,
and frBCZ; equals 1.

Litterfall and root decay

The inputs by litterfall and root decay in SMART2 affecting the mineralisation flux,
were also taken from the RESAM model (De Viies ef a/, 1995a). In SMART?2, hirterfall is
the input to an organic pool containing N, BC2 and K. Contrary to RESAM, SMART2
does not include a physical litter layer in which a separate concentration is calculated.
Only an organic pool is modelled, which has the same soil solution concentration as
the mineral soil. Input fluxes of N, BC2 and K by litterfall, Xyare described as:

Xy =(1— fiX,) Amy -aX, | (1)
where Amyis the amount of litterfall (kg ha! a't), X, is the contents of element X in
leaves (mole kg?) and frX, ate teallocation fractions for element X in leaves ().

Reallocation of K and BC2 in leaves prior to litterfall is considered negligible (1.e. K.
= frBC2, = 0). The amount of stems and litterfall are described by a logistic growth
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function (see Eq. 54 and 55). High contents of N in leaves and fine roots in Dutch
forests are caused by the high N deposition level. To account for this effect, the N
content in leaves is calculated as a function of the N deposition according to:

Ny Jor Ny<N,

d ,mn
N - N ‘N Nf{f _N:‘d,mlf N N
22 o le&‘,,wn +(d fr mx —l ﬁ'.mn). N jb.?' 1d mn < Nﬂi < 1, mx (22)
o NM‘,M:
K’Nﬁ'.w_\' .ﬁ? r N.' 2 Nm’,w.\'

where @Njme and ofNjm are the minimum and maximum N content in leaves (mol.
kg") and Nyjme and Nim are the minimum and maximum total deposition levels of N
{mol hat! atl) between which the N content of leaves is influenced. For the
Netherlands Ny = 1500 mol: hat a' and Ny = 7000 mol, ha' a! were used.
Contrary to RISAM the reallocation fraction (#X,) is not considered as a function of
the N content in the foliage, X, remains constant during the simulation period.

The dynamic turnover of fine roots is coupled with the amount of litterfall and
divided between the litter compartment (depth independent) and the mineral soil
(depth dependent). The root decay flux in the litter compartment (X,4s) is described
as;

Xni,ll = XJ" nef - g (23)

where nif is the nutrient cycling factor (-), which is defined as the ratio of the root
turnover (related to nitrogen) and the above ground nitrogen cycle (litterfall flux), and
Jua is the fraction of fine roots in the litter layer (-). The depth-dependent root decay
flux in the mineral soil (Xund{3) 15 described as:

X ot s ()= Jrn () X 1f (1= fra) _ @4

Mineralisation

As with canopy interactions, litterfall and root decay, mineralisation in SMART2 is also
taken from the RiisAM model. For the simulation of the decomposition of above-
ground organic matter (litter, including dead roots in the litter layer) a distinction is
made between a rapidly decomposing pool of fresh litter (less than one year old) and a
slowly decomposing pool of old litter {more than one year) (Janssen, 1984). The
mineralisation flux of N (during mineralisation N is released as NHy), K and BC2
(mol: hat a1) from fresh litter, X, is described as a fraction of the input of X by
hitterfall and root decay in the litter compartment according to:

X =X+ fro (1= X Xy - (U mf - fr, ) (25)
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where fr is a mineralisation fraction (-) and X} is a licter leaching fraction ().
Leaching only refers to the release of BC2 (=Ca+Mg) and K from fresh litter just after
litterfall, a2 process which is especially important for I Litter leaching is a process
which differs from mineralisation because organic matter is not decomposed.

Fresh litter which is not mineralised s transferred to the old litter (humus)
pool. The mineralisation flux of NH4, K and BC2 from this litter pool, Xpis, is
described by first-order kinetics (Van Veen, 1977}

X

mi i

=k

i Ay Xy (26)
where &z is the mineralisation rate constant from old litter (a'), Amy is the amount
of old litter (kg ha') and Xy is the content of element X in old litter (mol. kg"). At
present, mineralisation of organic matter in the mineral soil layers is not considered in
SMART2, except for the mineralisation from root necro-mass, which is fed by root
decay as described before. The total input by mineralisation (X} in the litter layer
consists of the sum of mineralisation of fresh litter, old litter and the root decay in the
litter layer:

X i =Xm‘,ﬂ +Xmi,ﬂ+an,f1 @7

Root decay in the mineral soil is considered to be mineralised completely. ‘The
total mineralisation flux at depth z becomes equal to:

Xm',m.‘ (%) = Xm',lr + Xm‘l',ﬂ + Xn'.’,!! + Xni,aw.r (Z) (28)

The flux of organic anions, RCOO iz, produced during mineralisation from
both fresh and old litter and from dead root {mol; ha' a) is calculated from charge
balance considerations:

RCOOM’,IN ({) = Nm',m ({) + BCZM’,M (‘z) + Kmi,!of ({) (29)

Actual values for the mineralisation fraction (fmgand fr) and mineralisation
rate constant (7 and &) are described in SMART2 as maximum values, which are
reduced by factors such as soil moisture (water-table), pH and the C/N ratio. For all
constituents the maximum value (£mim: and fum) is influenced by the mean water-
table during spring time (Mean Spring Water table, MSW) and the pH. The N
mineralisation is also influenced by the C/N ratio:

S = 11, i 7, i MW 1, mipH f, i (N (30

B = R i MW #m', pre i ON (1)
where fuirsw, Homipri and rfmav ave the reduction factors for water-table, pH and N
content (C/N ratio) respectively (-). For BC2 and K, rfmcv = 1. The reduction
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functions for water-table and pH were partly taken from RESAM (cf. De Vries e al,
1988).

0.25 Jor MSW <0.45
Wi sy =13 1og (4 MSW)  for 0.45 < MSW < 2.50 (32)
1 Jor MSW 2 2.50
0 Jor pH €25
ﬁ;ﬁ for 2.5< pH <3.5
Vrm,pn =1 (33)
ﬁﬁls—l Jor35< pH<6
1 Jor pH26

.

The N mineralisation values are reduced at low N contents (high C/N ratios) to
account for immobilisation by microbes according to (Janssen, 1984):

1 Jor CN, SCN,,
CN,—-CN,
wiony = 1m————= for CN_ <CN,<(1+DA,)-CN 34
Uf JLON DAIM'CNW f ( ) w0 ( )
0 Jor (N, 2(1+DA,)-CN,,

Wwhere (N, is the C/N ratio of the micro-organisms decomposing the substrate OR
CN; is the C/N ratio of the substrate (fresh litter (s=/), old litter (-=/2) and D.A,, is
the dissimilation to assimilation ratio of the decomposing microbes (-). Values for
DA,, and CN,, are related to fungi because they are mainly responsible for
mineralisation of forest litter.

N immobilisation

Besides implicitly modelled immobilisation by mineralisation, SMART2 includes also a
description of N immobilisation by soil organic matter, which has also been included
in the SMART model (De Vries #f af, 1994b). The description of N immobilisation is
based on the assumption that the amount of organic matter (carbon) is constant.
Consequently, immobilisation of carbon and base cations is not accounted for the
mineral soil.

N immobilisation is described by an increase in N content in organic matter.
When the C/N ratio of the soil (CINLy) varies between a critical (CN,) and a minimum
value (CN,,,), the immobilisation rate is assumed to decrease according to:
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0 frCN,, SCN,
N, ={(Ny=N, =N, ) %ﬁ&% for CN,, <CN,, <CN, (35)
NIJ_NJH_N.#,&# Y - _fbrC_NM ZCN"’

The minimum N leaching rate (Ni = is calculated by muliiplying the
precipitation excess by a natural background NOj concentration in drainage water of
0.02 mol. m?3 (Rosén, 1990). During the simulation, the C content is fixed whereas the
N content is annually updated, by adding the amount of N tmmobilised during each
time step to the N amount in the mineral topsoil. The C/N ratio is in turn updated by
dividing the fixed C pool by the variable N pool according to:

P T aCy

<

CN,, =————
AmN,_+N,,

(6)
Because N immobilisation mainly occurs in- the humus layer and the upper

mineral soil (Tietema, 1992), the thickness of the zone where N immobilisation (Ti.)
occurs 1s taken at 20 em.,

Interaction fluxes

The interaction fluxes for Al, BC2, K, Na, NII and NOj accounted for in SMART2
are base cation and Al weathering (w¢), root uptake (), nitrification (n),
denitrification (4) and rootdecay in the mineral soil (n/ mi). For nitrification and
denitrification reduction functions as a function of pll and groundwater level are
included (see Eq. 60 and 61). The interaction fluxes for a compartment with depth £
are described as:

Al (R)= A% (37)
BC2, (xy=BC2,,-3—- fr (3} BC2, (38
K, (=K, 2~ fra(z}-K, (39)
Na,,(2)=Na,, -3 (40)
NH, () == fr{2)-(NH, ,; + NH, ) (41)
NO;, ()= fro(2)(NH, ; = NO, , ~NO, ;) (42)
30,,,(2)=0 (43)
HCO,,,(x)=0 (9
RCOOG,,(z)=0 (45)
cl (=0 (46)
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H,.(2)= 50, 42} + NO, , (2} + HCO, , () + (4, (2) + RCOO,, () -

47
NH ey + Al ()= BC2,,(2) - K, ()~ Na,, (2)

Mineral weathering

Weathering of divalent base cations (BC2=Ca+Mg) and monovalent base cations (Na,
K} is include as a zero-order reactton. The weathering of Al is related to BC2
weathering according to:

Al =r-BC2,, (48)

where r is the stoichiometric equivalent ratio of Al to BC2 in the congruent
weathering of silicates. In SMART2 this value is fixed to 2, which is based on an
average for Ca and Mg (cf. IDe Vries ef 4/, 19952).

Nutrient uptake

Nutrient uptake is taken from the MACAL model (De Vries ef a/, 1994¢). Total root
uptake of NI, NOs, BC2=Ca+Mg, K is described as a demand function, which
consists of maintenance uptake, to re-supply the needles/leaves/shoots and roots
(steady-state situation), and net (growth) uptake in stems and branches. The total root
uptake fluxes for NH;, NOs, BC2 and K (mol; ha! a1} are thus described as:

NO,,,
NO,, =(N,-N, +Nx,,)--7\r—;— (49)
NH,,
NH,, =(Ny,~N,+ Ng,)-—l—\r-;'— (50)
BC2, =BC2, +BC2, +BC2,, . (51)
K, =K, +K,+K, (52)

where gu stands for growth uptake, and N = NH4+NOa. In case of nutrient shortage
the nutrient contents in the foliage are reduced according to the maximum available
nutrients. However, the model does not include a feedback of nutrient shortage on
growth.

Growth uptake is calculated as:

X =(Am (1)~ Am (1 -1)- X, (53)

where Am ) - Am2-1) is the increment in amount stems for the current year (=time
step) (kg ha' ') and #X, is the content of element X in stems (mok kg?). The
current amount stems and branches is forced by a logistic growth function:
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Aml‘f Lay
Am, ()= L (54
i+ cxp(—.ég‘. . (age,x +7~ t}é))

where Am,(f) is the amount of stems (and branches) for simulation year 7 (kg ha?),
Artam: the maxitnum amount of stems (kg ha"), age, the initial age of the vegetation
(forest), #; the half life-time (a), &y is the logistic growth rate constant (a”).

In the model the amount of lirterfall is linked to the stem growth parameters by
assuming that the maximum amount of listerfall is reached with a three times higher
growth constant than the maximum amount of stems:

Amy_m
1+exp(=3- &, -(age, +1—1y))

Amy(£)= (55)

where Ay m is the maximum amount of litterfall (kg hat a).

Nitrification and denitrification

Nitrification and denitrification for the complete sotl layer (mol: ha! a1) are described
in SMART2 as a fraction of the net input:

| - NH,,
NH«;,W' = ﬁ]u' '[NFLLJ» _N[{4,m +’"‘"ﬂ' (Nm',.w “an )J (56)
. NO,,
1\’03,{# =0 Noj,r'n _NO3,m + NH4,m‘ - N — N, (57)

where fr,; and fry are the nitrification and denitrification fractions (-), NHy;o and NO,,;,
stand for the gross input fluxes of NH, and NOs, respectively, cf. Eqgs. (11) and (12),
NHyn and NO; 4 stands for the root uptake fluxes of N4 and NO; respectively, cf.
Eqs. (47) and (48), NHi» and NO;; stands for the immobilisation fluxes in the
mineral soil of NHy and NOs respectively, Eq. (15), N is the total mineralisation
flux, c¢f. Eq (28) and NH,. is the nitrification flux, cf. Eq. (56). As with
mineralisation, the maximum values for the nitrification and denitrification rate
constant, fum and _fum, are adjusted by the mean water-table and pH:

S = ﬁm’,mx : mi,MSW' : ffm',pu (58)

Jr = ﬂdc,wx '(fde,MSW’ "f.f.,pn (%
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where rfusaasie and ffizapn are the nitrification and the denitrification reduction
factors for the water-table and pll respectively (-). Maximurm values are reduced with
a decreasing mean spring water-table for nitrification, because this process is restricted
to aerobic conditions, whereas the opposite is true for denitrification. Both rate
constants are also reduced with decreasing pIlL

The nitrification reduction functions for mean spring water-table is described as:

T MW e Sor MSW < ¢,
MSW = ]
Foiatswr = Wi pswr o+ (Toistswr e = Wi ptswr n )= vz Jor 5 <MSW <2, (60)
i .
i MW for MSW 22,

Were Iffimsime is the soil dependent minimum value of the reduction function (-), and
%1 and g» are soil dependent MSW (m) values where the reduction function is changed.
The nitrification reduction function for pH is described as:

1
1+exp(4- (275~ pH))

U;i,pu = (61}

The denitrification reduction function for mean spring water-table is described
as;

tfde R PN

for MSW < 0m
MSW ) )
'f‘dr,M.Yu? = Urde_m_w,w\ ’j.n'c’ o o tfrk PR TN ) ﬁ?’ 0< Afju, < {I& (6_)
e
U(dr ISR WA jbf" MSW = Rk

where g (m) is the soil-dependent depth of the MSW below which the reduction by
Hiesssw (=)

The denitrification reduction function for mean pH is described as:

0 for pHS35
Yaeopit = PH-35 for 3.5< pH<6.5 ©3)
1 Jfor pH26.5

Cation Exchange and chemical equilibria

Cation exchange is included for H, Al and BC2 described by Gaines-Thomas
equations using concentrations instead of activities (cf. De Vries ¢/ a/,, 1989):
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fHa gy AT

FBC2. " [BCY] )
#BC2, BCT

The charge balance for the exchange complex requires that:
AL+ fBC2, + frl, =1 (66)

Sulphate adsorption is described by 2 Langmuir equation:

. 2-
61'5‘04.‘” :M (67)
Cipa +5077]
where #50; (molc kg?) is the sorbed amount of SO,, SSC (mol kg') the sulphate
sorption capacity and Cy, the half-saturation constant (mol. m¥). The dissociation of

CQOa, the dissolution of Ca carbonate (calcareous soils only) and the dissolution of Al
hydroxide is described as (cf. De Vries ¢ af, 1988):

PCO,
WICO3]=Kep, o (68)

247 . ("b P O
BC*)= O (69)
(AY]=K 1T (70)

The dissociation of organic acids (humic +fulvic acids) is modelled as (cf.
Posch et al, 1993):

K,

[RCOO™]=[RCOO,, }- m

)

where K, is a pf{ dependent dissociation constant, according to (Oliver ef @/, 1983):
~log,,K,=a+b- pH —c- pH* (72)

where the g, b and ¢ are based on experimental data. Oliver ¢f 4l derived the values 4=
0.96, $=0.90 and ¢=0.039 for surface water.
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The H concentration is determined by charge balance, Eq. (14), because the
model structure of SMART2 is based on the anion mobility concept (Reuss and
Johnson, 1986). The charge balance for the soil solution concentrations equals:

[H']=[SO; ]+ [NO;j |+ [HCO; ]+ {CI"]+[RCOO™ |-

2+ + + -+ 3+ (73)
[BCT]-INH, |- [Na"]-{K"[-[Al"]
Concentrations of K, Na, NHs, NO; and Cl are fully determined by the mass

balance equation, cf. Eq. (1). The concentration of base cations in non-calcareous soils

is determined by both the mass balance equation and a change in the adsorbed
amount of base cations determined by cation exchange equilibtium reactions, Eqs.

(62) and (63). The concentrations of HCOs and Al are determined by both the mass

balance equations and an equilibrium with H, c¢f. Eqs. (66), (67) and (68). The

concentration of divalent base cations in calcareous soils is determined by both the
mass balance equation and a change in carbonate content. In these soils carbonate
weathering is included, Eq. (67), but silicate weathering, Al hydroxide weathering and
cation exchange are neglected (the Al concentration is thus set to zero). The
dissociation of organic acids is modelled by Eq. (69). Sulphate sorption is described by

a Langmuir isotherm, Eq. (65). The pH is thus influenced by all rate-limited and

equilibiium processes causing proton production or consumption.

The dissolved and adsorbed concentrations are calculated by solving fourteen
equations with fourteen unknowns, i.e. ten concentrations ([[1*], [Al%], [K*], [Na*],
[BC21], [SOL2], INOs], [Cl], [HCO5], [RCOOY), three exchangeable fractions (1,
JFBC2,, frAL) and adsorbed SO (@504} The numerical solution procedure is given
in Posch ez a/. {1993).

Inclusion of the effect of temperature

The effect of temperature was considered for (1) the mineralisation of old litter,
nitrification and denitrification, (if) Al hydroxide dissolution and (i) weathering of
primary minerals. A direct temperature effect on growth was not included because
observations did not clearly indicate a change in growth (Van Breemen ef al, 1998)
and the effects of temperature rise and increase of CO; on growth are still ambiguous
(Mohren, pers. comm.). There might be, however, an indirect effect of temperature on
growth because of a larger N availability due to increased mineralisation. In SMART2,
this would increase N uptake, but not biomass, so, the N-content in biomass would
increase until a given maximum nitrogen content.

We choose the same dependency for mineralisation, nitrification and
denitrification, as the temperature dependencies of these processes are similar. The
temperature effect on N mineralisation is often described by a Qy function. Kitterer
e al (1998) and Stanford et @/ (1973) found Qi values between 2.0 and 2.5.
Kirschbaum (1995) found a temperature dependent Q1o for mineralisation with higher
values at lower temperatures, which is in agreement with Ross and Bridger (1978).

103



Il Evaluation on a site scale

The temperarure dependency of nitrification (cf. Grundmann ef 4/, 1995; Stark,
1996) and denitrification (Grant, 1991; Némmik and Larson, 1989) are mostly
described by an Arrhenius equation. A Qu-function is, however, also used (eg.
Knowles, 1982 who gives in a review Qio values of 1.5 to 3.0 for denitrification). To
have a comparable description, we choose a Qu function for all three microbiological
processes as (cf. Kirschbaum, 1995):

T

KT)=k(Tr) L w0 (74)

where £ represents either the mineralisation rate constant of old litter (a'), or the
nitrification factor (-) or the denitrification factor (=), T is the temperature (K) and Ty
is the reference temperature {K). For all these nitrogen transformation processes, we
obtained a fitting Qq, value of 1.6. The temperature effect on mineralisation refers to
the mineralisation of old litter, because the decomposition rate of fresh litter did not
change under the different treatments (Verburg, 1998).

For the Al oxide dissolution the temperature dependency was described by Van
’t Hoff’s equation {e.g. Stumm and Morgan, 1981):

AH® 1 1
] (75)

KA/_, (T)= KA.'“ (Trrf ) exp (T(T - ?’)
rf

where K. o is the Al oxide dissolution constant {mol? L?), AI1° is the reaction
enthalpy (= -95.5 kJ mol) and R is the universal gas constant (8.3-103 k] mol! K7).
Temperature rise will lead to a decrease of K/

The temperature effect on weathering rates was described as (Sverdrup, pers.
com.):

11
X (T)=X.(Ty) BXP[%OO {T—”f - ;D (76)

where X,. is weathering rate (mol. m a*). A temperature increase from 5 °C to 8.7 °C
implies an increase in weathering of 20%.

The effect of increased CO; pressure was not included for the biochemical
processes, but for the geochemical equilibria pCO: s included. The pCO: in soil air is
calculated as a multiple of the pCO: in the atmosphere. Consequently, increase in CO
pressure in the atmosphere directly implies an increase in pCO: in soil air.
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2.3.3  Site description and manipulation experiments

Site description

Risdalsheia is located near Grimstad, southern Norway (58°23'N, 8°19'E) ar 300 m
above sea level (Wright e al, 1998a). The site is representative for large areas of
upland southern Norway. Mean annual precipitation is 1400 mm, runoff 1200 mm
and mean annual temperature is 5°C (mean of -3°C in January and +16°C in July).
Vegetation is mainly a sparse cover of pine (Pinus syivestris 1..) and birch (Betula pubescens
L.) with heather (Calluna vuigaris L) and blueberry (Vawiniwm myrtilius 1) as dominant
ground species. Risdalsheia receives relatively high levels of acid deposition with mean
values for 1984-1992 of 113 mmok § m2 2! and 132 mmol. N m2 a''. (Wright ef 4/,
1993).

Manipulation experiments

Two sets of manipulation experiments have been conducted at Risdalsheia (Table 2).
The first set of experiments (the RAIN-project: Reversing Acidification In Norway)
entailed exclusion of ambient N and S deposition (Wright 7 4/, 1993) at the roofed
KIM catchment from June 1984 until August 1999. The roofed EGIL catchment
received recycled ambient acid rain. The uncovered catchment ROLF served as
outside control. The decrease in S and N deposition resulted in a strong decrease of
SO, and N concentrations in the runoff, accompanied by decrease in base cation
concentrations, and increase in acid neutralising capacity (ANC) (Wright ef o/, 1993;
Wright and Jenkins, 2001).

Table 2. Overview of the treatments at the catchments at Risdalsheia in
the CLIMEX project

Name | reatiment Deposition! Chmare?
ROLF Control Ambicnt none
EGI, Control Ambicnt none
Treatment Ambient Soil warming
KIM Control Clean nonc
Freatment Clean CO: + air warming

! Dg‘pt:siti(m manipulation stareed in 1984
2 Climate manipulation started in 1994

The second set of experiments (the CLIMEX-project: CLIMate change
EXpetiment) began April 1994 and involved manipulation of CO> and temperature.
ese new treatments (Dise and Jenkins, 1995) were superimposed on the ongoing
RAIN treatments. Both the KIM catchment and the EGIL catchment were divided in
4 treatment section and a control section. At the KIM catchment, CO: was added to
the air during the growing season at target concentration of 560 ppm and the air was
Warmed by +5°C in January and +3°C in July, with intermediate temperature during
the intervening months. Runoff chemistry of both treatment sections was analysed.
Wright (1998) found increased NOs and NI, concentrations in runoff in response to
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elevated temperature. At the EGIL catchment, the soil was warmed by means of
electric heating cables placed beneath the litter in the treatment section, resulting in an
average soil temperature rise of 3.7°C at 5 cm depth during the first 3 years of
treatrnent. The runoff chemistry was analysed only in the treatment section of the
EGIL catchment. Litkewille and Wright (1997) found a significant increase in N
concentrations in runoff in response to elevated soil temperature during the first 15
months of treatment.

At the EGIL catchment, there was no change in growth or biomass of the
shrubs or pine trees, and no change in N concentrations in the shrub foliage (Arp,
pers. com.). Beler and Rasmussen (1997) found a small increase in N concentrations
in pine needles at both catchments. Arp and Berendse (1997) found a small increase in
growth of the shrubs at the KIM catchment.

Mineralisation and nitrification measurements were performed for 3 years: one
control year (1994) and two treatment years (1995 and 1996). Verburg (1998) and
Verbutg ef @/, (1999) found an increase in net N-mineralisation and nitrification due to
climate change, but variability was high. At the EGIL catchment there was no
significant change in mineralisadon and nitrification. At the KIM catchment the
increase in net mineralisation was significant. Decomposition rates of fresh litter were
not affected by temperature and COs; treatments.

Model parameterisation

To test the model and the included temperature dependencies, the SMART2 model was
applied to two catchment experiments at Risdalsheia. For the simulation of the
concentrations of different elements in the runoff the model was calibrated at the
ROLF catchment. 'The Al oxide dissolution constant, the mineralisation constant and
the nitrification factor were calibrated manually, using the concentrations of NOs,
NH,, BC2 and Al and pll in the runoff . The inclusion of temperature-dependencies
of N-processes and of the Al oxide dissolution constant was tested as from 1995, the
year the temperature rise started, at the EGIL catchment. The SMART2 model was
validated for both temperature and deposition changes by applying it at the KIM
catchment.

The soil parameters were either derived from measurements (Wright ez al,
1993) or from the MAGIC7 calibration at Risdalsheia (Wright ez 4/, 1998a) (Table 3).
The selectivity constant for Al-BC exchange (KA4) and H-BC exchange (KIF..) were
calculated by using Gaines-Thomas equations (see Eq. 64 and 65). The adsorbed
fractions and runoff concentrations were derived from Wright & a/ {1993}, Averages
of measured absorbed fractions and concentrations at the three catchments were
taken.

The vegetation parameters (Table 3) were cither taken from measurements or
from estimates.
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in calibration of

SMART2.

Parameters Derived  Reference

Soil parameters ROLEF  EGIL  KIM

Soil depth (m) 0.10 0.10 010  measured (Wright & af, 1998a)

Bulk density (g cm3) 0.66 0.53 073  measured (Wright e/ af, 1993)

Porosity (m m'f) 0.5 0.5 0.5 measured  (Wright et af, 19982)

CLC (mmol kg 87.0 97.0 97.0  measured (Wright o 2/, 1993)

Orpanic matter kg kgD 0.25 0.26 0.24  measured (Wright of of, 1993)

Initial C/N (=) 25. 25. 25. calibrated  (Wright ef &/, 1998a)

80,-ads. Half saturation (mol; m3) 60, 60. 60.  measured  (Wright ¢f af, 19982)

50-ads. Max. capacity (mol. m3) 6.0 6.0 60  measured (Wright & 2/, 19984}

Solubility A{OIT) (ogw) 72 72 7.2 calibrated  "Yhis study

Sel. constant ALBC exchange (fogw)  -1.63 ~1.63 -1.63  calculated  Required data from
Wright e ad {1993)

Sel. constant [T-BC cxchange Jogio)  2.85 2.85 285  calculated  Required data from
Wright ef af (1993)

Total organic acid (mol, m'Y) 012 0.12 012 measured  (Wright of af, 19982)

pCO; (multiple of pCO; in air} {) 6.32 0.32 6.32  measured (Wright er af, 19982)

BC2-weathering (mol. m3a'l) 0.005 0.005 0.005  calibrated (Wright o af, 19982)

Na-weathedng (mol, m3 a') 0.001 0.001 0.001 calibrated (Wright &/ 4/, 1998a)

K-weathering (mole m a™) 0.000  0.000  0.000 calibrated (Wright ef af, 19984)

_Yegetation paramerers

Ammontum foliar uptake fraction () 0.4 04 estimated  (Kros ef af, 1995a)

Proton foliar uptake fraction () 0.4 04 estimated  (Kros ef af, 1995a)

K foliar exudation fraction (- 0.65 0.65  cstimated (Kros e 2/, 1995a)

Max. amount of litterfall (kg m2aT) 0.175 0.209  measured (A, pers comm;
Beier, pers comm.)

Reallocation fraction (-} 0.10 010  estimated (Kros ef o, 1995a)

BC; leaf contents (%) 0.81 0.61  measured (Arp and Berendse,
1997)

K lcaf contents (o/n) 0.73 0.53 mcasured (\l‘p and Berendse,
1997)

N contents in litterfall (%) 0.96 0.84  measured  (Arp, pers comm.;
Beier, pers comm.)

Logistic growth rate constant (a1 0.15 0.15 derived (Kros ef al, 1995a)

Growth half time (a) 10. 10. derived (Kros ef af, 1995a}

Max. amount of biomass (kg m3) 32 31 estimated  (Arp, pers comm,;
Beder, pers comm.)

N nutrient content {%6) 1.13 0.63 measured  (Arp and Berendze,
1997)

BC; nutricnt content (%) 0.002 0002 measured {Arp and Berendse,
1997)

K nutrient content (%) 0.002 0.002 measured  [Arp and Berendse,
1997)

Mincralisation factor fresh litter () 0.4 04 esumated (Kros ez al, 19952)

Min. tate constant old litter (a1} 0.16 0.1 calibrated  this study

Fraction roots in litter layer (-) 0.75 075  estimated (Kros ef 2, 19954)

Nutrient cycling factor () 177 182 caleolated  Data from Ap and

Beier, pers. comm.

Y Yor ROLF and FGILL the same vegeration parameters were used

107



11 Evaluation on a site scale

For shrubs we derived data from Arp and Berendse (1997} and Arp (pers.
comm.), while for trees the data were based on Beier and Rasmussen (1997) and Beiet
(pers. comm.). Parameters that were not measured or estimated at Risdalsheia were
taken from Kros e 4l (1995a), using the values for heather. The measured
aboveground litterfall of shrubs (Arp, pers. com.) and of the trees Beier (pers. com.)
were summed. The root turnover was calculated using the measured litterfall and
assuming a nutrient cycling factor (nf; see Eq. 23) of 0.5 for trees and a nf of 3.0 for
shrubs (Kros e al, 1995a). These amounts of litterfall in combination with these
nutrient cycling factors resulted in a biomass weighted average #f of 1.8. At the EGIL
catchment, N-mineralisation flugxes were 10 — 15 % higher than the measured N
mineralisation fluxes. (Table 4). The total litterfall values are much lower
(approximately less than half) than the values mentioned in Wright e 2/ (1998b), who
only used estimates since measurements were not available at that time.

We excluded the influence of soil solutton pH on minetalisation, because it had a
too strong a positive feedback: increased pH which in turn increased mineralisation,
causing an unrealistic overestimation of the nitropen concentration. Furthermore,
experimental support for the positive feed back of pH on mineralisation is rather weak.

2.3.4 Results

Model calibration

‘The calibration of the simulated runoff chemistry without temperature effect was
petformed by comparing simulated concentrations with observed concentrations from
the ROLF catchment (Figure 3). The temperature effect was calibrated at the EGIL
catchment from 1995 (Figure 4).

Calibration at the ROLF control catchment

Cl concentrations were reproduced very well, indicating a well-simulated hydrology
(Figure 3). The NO; and the NH,4 concentrations wete reproduced quite well too. The
dynamics in SO4 and BC2 concentrations were not fully reproduced by SMART2. The
fluctuations of SO, concentrations were underestimated, as was also found by Van der
Salm et al. (1995), who attributed this effect to the lack of vertical heterogeneity of the
model. SMART2 considers the mineral soil as one-layer neglecting vertical
heterogeneity and consequently it underestimates the retardation of absorbing
compounds. The pH was overestimated for the years before 1990, whereas the Al
concentrations were overestimated during the entire simulation period. Changing the
Al oxide dissolution constant leads either to increased or decreased both of pH and Al
concentrations, so calibration of the Al oxide dissolution constant cannot improve
predictions of pH and Al concentrations at the same time. The same problem was
found by Wesselink and Mulder (1995), who could not reproduce both pH and Al
concentrations by Al oxide solubility. They attributed this to Al complexation with
dissolved organic marcter. We calibrated the value of the Al oxide dissolution constant,
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such that it resulting satisfactory pIl values and BC2 concentrations. Taking into
account Al complexation with organic compounds might lead to better results.
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Figure 3 Measured and simulated concentrations of SO4, NOs, NH,, pH, BC2, AL BC
and Cl for the ROLF control catchment
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Figure 4 Measured and simulated concentrations of SO,, NO;, NI, pH, BC2, Al, BC
and Cl for the EGIL catchment with a soil temperature increase starting in 1994

Calibration of the temperature effect at the EGIL catchment

The incorporation of the temperature effect was calibrated at the EGIL catchment,
using the measured mineralisation and nitrification rates (see section 3.2). The
observed and the simulated relative increase in N-mineralisation were comparable,
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about 10% (Table 4). The nitrification at EGIL was underestimated, but the relative
temperature effect was overestimated, which is an indication that the Qj for
nitrification might be too high. Figure 4 shows an increase in simulated NO3 and N4
concentrations starting from 1995. This is also found for the observed concentrations,
though to a less extent. The concentrations before 1995 were clearly underestimated,
resulting in an underestimation of the 3 years pre treatment N-leaching fluxes. This
was probably caused by an overestimation of N-uptake, since N-mineralisation was
slightly overestimated (Table 4). The relative increase in N leaching due to
temperature rise was overestimated by SMARTZ. The observed increase was 68%
whereas the simulated increase was 200 % (Table 4).

The higher measured N-contents in needles (Beier and Rasmussen, 1997)
indicate a higher N-uptake after temperature rise, which was not predicted by
SMART2. Even though SMARTZ2 calculates a higher mineralisation and therefore a
higher N availability, the N-uptake did not increase, because the N-content in the
biomass had already reached the maximum value before the temperature rise. In
SMART2, N uptake can only increase if the N content in biomass is not maximal.

The lower actual Al hydroxide dissolution constant due to temperature rise (see
Eq. 75) caused a decrease in calcolated Al concentrations and pt with temperature
tise. Furthermore, BC2 and BC concentrations increased due to higher weathering
rates, This effect, however, was not sufficient to compensate the pH decrease due to a
shift in the Al hydroxide equilibrium and the increase in NO; concentration due to
enhanced mineralisation.

Evaluation at the KIM catchment

Deposition reduction (1984 — 1994)

After calibration the model was evaluated to the KIM catchment, using the same
parameter set for the soil, except for bulk density, CEC and organic matter (Table 3).
The vegetation related parameters differed at the two catchments: at the KIM
catchment the ground vepetation was mainly Ca/luna vufgaris L., whereas at the EGIL
catchment it was Vawinium myrtillus L. The predicted trends in 8Oy, NO; and NIH,
concentrations in runoff corresponded well to the observed trends, but SMART2
underestimated the SOs, NOs, NH4 and BC2 concentrations and overestimated pH
(Figure 5), Al, BC and Cl concentrations were predicted well. The underestimation of
the concentration of SO4, NOs, NHy and BC2 might be caused by a too strong
tesponse to the reduction in deposition, which may be caused by an underestimation
of sulphate desorption and a too fast release of nitrogen. Divalent base cation
concentrations are strongly cotrelated to SOy input. Higher acid input due to higher
SOy input induces an exchange of base cations by H and Al resulting in higher BC2
concentrations.
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and Cl for KIM catchment with deposition reduction as from 1984 and a CO; and air

temperature increase starting in 1994,
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Figure 6 Simulated concentrations of NO;, INHy, total N and nitnfication for the EGIL
catchment in the long-term
Tfmpemrure rise

The response of N concentrations to temperature rise after 1994 was simulated fairly
well (Figure 5), especially the increase in nitrate concentrations was reproduced well.
In contrast to the EGIL catchment, SMART2 simulated an increase of N uptake due to
temperature rise (Table 4). At the KIM catchment, the N content in the leaves
m_Creased, because the maximum N content was not reached vet, which resulted in a
higher N uptake (see Eq. 22),

‘The ficld experiments show a little treatment response to BC2 concentrations
and no response to SO concentrations, whereas the model gave a decrease in BC2
concentrations and no response to SOy concentrations (Figure 5). SMART2 predicted a
PI increase in response to temperature rise, whereas the observed pH actually fell.

€ Al concentradons were adequately simulated both before and after the
temperature rise, although the effect was small. Both simulated and measured Al
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concentrations decreased due to temperature tise. The respond of BC concentrations
on temperature rise was simulated well. Both the simulated and observed BC
concentrations increased in response to temperature rise.

Since the short-term effect of the soil heating was rather small, we decided to
evaluate the possible long-term effect of temperature rise. Therefore the soil heating
treatment of EGIL was stmulated for a period of 200 years. The deposition during
this 200 year period was taken as the average of 1995-1998, SMART2 predicts the
climate change effect on N-leaching to be temporal (Figure 6). After 100 years, the N
leaching in the treatment run is equal to that of the control run. At the actual
temperature it took more than 100 years to reach a steady state (N saturation),
whereas at the elevated temperature it took less than 50 years. At higher temperature
less N was accumulated in the soil, because of a higher mineralisation rate. The
NQO;/NI1; ratio changed, due to increased nitrification. In the long-term, NQO;
concentrations increased whereas NIHs concentrations decreased. At the KIM
catchment (low deposition) a new steady state was already reached within 3 years
(Figure 5). Due to the lower Al oxide dissolution constant at 8.7 °C than at 5 °C, the
Al concentrations after temperature rise were lower than before, resulting in lower pH
values,

2.3.5 Discussion and conclusions

In general, the observed time-series in runoff chemistry in response to deposition
reduction and temperature rise were well reproduced by the model SMARTZ. At the
roofed sites, however, SMART2 tended to underestimate the concentrations of SO,
NQO;, NH, and BC2, though the simulated trends were reproduced well, Mol-Dijkstra
et al (1998) tested the performance of SMART2 in response to deposition reduction at
a spruce forest (Speuld) in the Netherlands, where bi-weekly soil solution samples
were taken with 4 replicates. The SMART2 results were compared with flux-weighted
averaged concentrations obtained from observed soil solution chemistry and modelled
hydrology. This uncertainty in fluxes due to high soil variability at Speuld thwatted the
model validation. In contrast to the observations at Speuld, the observations at the
Risdalsheia catchments are ‘real’ annual average concentrations from the runoff of the
whole catchment, which means that the ime and space resolutions of measurements
and modelling are similar. This application, with quite a long observation period,
contributes to an increase in confidence in using SMART2 at the regional scale,
especially to evaluate deposition scenarios.

The inclusion of the climate change effect in SMART2 was restricted to the
temperature effect on mineralisation of old litter, nitrification, denitrification,
weathering and Al oxide dissolution constant. For the N related processes we
obtained a2 Qu value of 1.6. Katterer ¢/ al (1998), however, found Qi values for
mineralisation of about 2.5 for comparable soil and vegetation types. Kirschbaum
(1995), even, found a Qy value of 5.0 at a temperature of 5 °C, Alth.ough there was an
indication that N-uptake increased, the temperature effect on growth was not included
because the effect on growth is not clear and the temperature dependency as well as
the CO: dependency of growth is not well known. An increase in N ‘availabi]in',
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however, induced an increase in N-uptake at the KIM catchment, which was caused
by an increase in N content in the biomass. This inctease was possible since at that
low N input, the N content in the biomass was below its maximum. At the EGIL
catchment the maximum N content was already reached due to higher N input, so
there was no tesponse of N uptake. The inclusion of the temperature dependencies
gave satisfactory results. The observed increase in N-runoff was reproduced well by
the model, just like the observed increase in mineralisation and nitrification. Still, there
is a need to pay attention to the N-cycling in SMART2, considering the adaptation of
the piI influence on mineralisation in this application.

Table 4 Three years average pre and post treatment N-fluxes as calculated
by SmarT2, MERLIN and observed (mmol m2 al!). The standard
deviations are given in brackets

N-flux SMART2 MERLEN Observed
pre poOst pre post pre post
EGIT, Deposition 7702 83 (21) 76 39 7722 8 2n
Lirterfalt 262{6) 257 (1) 485 487 - -
Mincralisation 269(N N2y 413 456 250 2157
Uptake 307(6) 3013 486 485 - -
Nitrification 10{7) oM - - 45 (Y 67 (11)2
Demirification 0(0) 2 - - - .
Teaching 18(13) 5412 28 48 28 (6) 47 {10)
KM Deposition (8 00 14 0 2@ 00
Litterfall 1954 197 (%) 469 477 ) )
Mincralisation 2252y 256 () 437 472 47 (¢ 201 (7)2
Uptake 238 (2 247 (3) 470 482 - -
Nitrification 4 (3) 82 - - 2y 30
Denitafication 0O 0 - - _ B
Teaching 5 (5) 18] 4 9 3 9

PP
b= -}
it
[ e

Wright et o/ (1998b) applied MERLIN at Risdalsheia. This model is of
Comparable complexity as SMART2 and gave comparable results. MERLIN is a simple
Process-orientated model focused on simulation of concentrations of inorganic
Ritrogen in soil leachate and runoff in terrestrial ecosystems (Cosby e o/, 1997). The
Model links the C and N cycles. The ecosystem is simplified to one plant
fompartment and rwo soil organic matter compartments (labile and refractory organic
Mmatter), the effect of temperature was included by changing the decomposition rate in

95, the year the temperature treatment started. MERLIN calculated a higher N
trnover than SMART2, due to 2 higher N input via litterfall (Table 4). Wright ef @/
(1998b) used estimated litterfall fluxes for shrub vegetaton, whereas we used recently
Measured litterfall fluxes (Arp, pers. com.). However, both models calculated
Comparable N leaching fluxes. Considering the 3 years pre and the 3 years post
freatment, MERLIN calculated the increase of N leaching very well, but the year-to-
Year variations were not well reproduced. As with SMART2, MERLIN predicted
nereased N runoff in response to temperature rise. On the long-term, however,
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MERLIN predicted an enduring higher N runoff in response to temperature rise
(Wright ef 4/, 1998b), while SMART2 predicted only a temporal increase.

The length of the period with increased N runoff in response to elevated
temperature depends on deposition level. The SMART2 simulations indicate that with
high deposition levels, the temporal effect of increased N leaching is longer than with
lower deposition levels. Due to increased nitrification, the ratio between NO3 and
NH4 concentrations changes. NO; concentrations increase and NHy4 concentrations
decreased.

It seems that the biochemical processes give a temporal response to
temperature tise, whereas the geochemical processes change is permanent. To test the
model more rigorously in its suitability to predict responses to climate change,
additional years of treatment would be needed. For instance, the strong temporal
variability in the mineralisation and nitrification measurements makes it difficult to
test the model behaviour in response to temperature rise over such a short period.
Application to other soil warming experiments (Rustad e 4/, 2001) would be
additional to test the prediction climate change response of the model. The long-term
runs showed a temporal effect of temperature rise dependent on deposition level. It
would be recommendable to test this effect in the field.
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2.4 Validation and comparison of soil acidification
models with different degrees of process
aggregation on a site scale

Abstract

A one-layer (SMARTZ) and a mulsi-layer (RESAM) soil acidification model with a vesolution of one
Jear and a multi-layer soil acidification model with a temporal resolution of one day (NUCSAM) were
applied to an intensively monitored spruce site at Solling, Germany. SMARTZ was specially developed
Jor the application on a national and Exropean scale, RESAM for application on the regional to
national scale, whereas NUCSAM is a typical site-scale model. Contrary to SMART2 and RESAM,
NUCSAM takes seasonal variability into account since it simulates sobule transport and
biogeochemical processes on a datly basis. Consequently, NUCSAM accounts for seasonal variation in
deposition, precipitation, Iranspiration, litterfall, mineralisation and root uptake.

The major aim was to study the influence of model simplifications, in terms of process detal,
number of soil layers and temporal variability, on the modelled of soil solution comcentrations and
leaching fluxes. To that aim, the models where first validated by comparing simulated concentrations
and leaching fluxes with measured values at the Solling site during the peviod 1973-1989. Nexz,
long-term soil and soil solution response simulated with three models were compared using two
deposition scenarior for the period 1990-2090. Input parameters were derived from measured data at
the Solling site. Outputs from the one-layer model SMART2 were compared with measured soil
Solution concentration averaged over depth.

Al models were able to simulate most of the concentrations during the examined period
reasonably well, However, the one-layer model, SMART2, bad some difficulties to simulate strong
changes in soil solution concentrations due to a lower relardation in the soil system. RESAM
Simulated a somewhat stronger vise and fall in base cation and SOy concentrations in the subsoil,

Althongh both the seasonal and the interannual variation in the soil solution concentrations
as modelled by the three models showed large differences, the long-term trends corvesponded quite well
and the leaching fluxes were almost similar. Generally it appeared that the uncertainty due to time
resolution and vertical heterogeneity in long-term predictions was relatively small. So, the use of the
simplified model SMART2, that neglects seasonal variation and vertical heterageneity, is in most
aspects acceptable for the evaluation of long-term trends in soil and soil solution chemistry.

24.1 Introduction

Various models have been developed to analyse the long-term response of surface
waters and soils to acid deposition. These models have been designed for use on a
continental to national scale, such as MAGIC (Cosby e/ 2/, 1985) and SMART (De Vries
ef al., 1989), SMART2 (Chapter 2.3; Kros ef 4/, 1995a,b) and RESAM (Chapter 2.2; De
Vries er a/,, 1995a) or for use on a catchment or site scale, such as ILWAS (Chen e 4/,
1983) and NUCSAM (Chapter 2.1; Groenenberg ef al., 1995).

Models designed for regional predictions tend to be more simplified than site
scale models to minimise input requirements. Simplification may involve (i) less
detailed process formulations, (i) reduce temporal resolution, for example using an
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annual time resolution, thereby neglecting variability within a year of both model input
and processes and (i) reduced vertical resolution, by using a smaller number of soil
compartments. These simplifications may cause errors in predictions. Seasonal
variability is generally driven by climatic (e.g. precipitation, deposition, evaporation,
snowmelt) and biotic factors (eg litterfall, mineralisation, nutrent uptake).
Georgakakos et «l (1989) indicated that the neglect of such natural day-to-day
variability, may significantly affect long-term predictions of lake alkaliniry. Similarly,
Warfvinge and Sandén (1992) showed that the long-term trend in soil solution ANC is
affected by time resolution.

Another problem with long-term large scale (sotl) acidification models is the
lack of sufficient long-term (> 50 years) series of observations, which makes these
modecls difficult to calibrate and validate. A thorough calibration and validation on
short-term (< 10 years) series is hardly possible because these models do not account
for seasonal variability which plays an important role in short-time data recotds.
Iowever, results of the long-term large scale models can be compared with results of
more detailed models which are validated on relatively short-term data sets.

The objective of this study is to characterise the effect of model
simplifications on soil solution response, with emphasis on the influence of temporal
and vertical resolution. For that purpose, we compared the results derived with
SMART2 (one soil layer, annual resolution), RESAM (multi-layer, annual resolution),
and NUCSAM (multi-layer, daily resolution). The three models were first tested and
validated using measured concentrations of an intensively monitored spruce site at
Solling, Germany. At this site inputs, solute concentrations and solid phase element
contents have been measured continuously for mote than twenty years (1973-1990),
along with plant physiological, hydrological, micrometeorological and soil biological
monitoring programmes. Next, we characterise the effect of model simplification on
long-term predictions of soil 2nd soil solution response. The long-term simulations
with the three models were performed for two atmospheric deposition scenarios over
a 100-year period.

2.4.2 Models used

SMART2 is a one-layer model, whereas RESAM and NUCSAM distinguish a litter layer
and several mineral soil layers. SMART2, RESAM and NUCSAM all simulate the major
biogeochemical processes in the canopy, litter layer and mineral soil horizons. SMART2
was especially developed for the application on a national to the European scale.
RESAM has been developed to analyse the long-term soil response to acid deposition
on a regional scale. NUCSAM accounts for seasonal variation in deposition,
precipitation, transpiration, litterfall, mineralisation and root uptake and all the
biochemical and geochemical processes are modelled as a function of temperature,
and is especially designed for application on a site-scale.
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NUCSAM

NUCSAM (Chapter 2.1; Groenenberg ef af, 1995) includes hydrological processes, i.e.
(1) partitioning of precipitation into rainfall and snowfall, (i) snowpack accumulation
and snowmelt, (i) interception evaporation from the forest canopy and soil
evaporation, {iv) transpiration and snowmelt, and (v} one-dimensional vertical
transient water flow.

Water fluxes and soil water contents are calculated with 2n adapted vetsion of
the SWATRE (Belmans ¢f 4/, 1983) model, a finite difference solution to the Richard’s
equation. The adapted version includes an interception evaporation based on Gash
(1979), a snow module and divides root uptake over the different soil layers according
to a fixed root distribution {see Chapter 2.1).

The biogeochemical processes accounted for in NUCSAM are basically the same
as used in RISAM except for mineralisation. In NUCSAM (i) litterfall, root decay,
mineralisation and root uptake are distributed over the year by given monthly
coefficients, (i) both upwards and downwards solute transport is simulated and (i)
speciation of inorganic carbon is computed from known equilibrium equations. All
chemical equilibrium and rate-limited equations are solved with a separate chemical
equilibrium module EPIDIM (Rijtema ¢ af, 1999), which calculates aluminium
complexation with organic and inorganic anions.

RESAM

RESAM (Chapter 2.2; De Vries e al., 1995a) simulates all processes occurring the forest
canopy, litter layer and mineral soil horizons which significantly influence the
concentration of major ions in the soil solution. The model consists of a set of mass
balance equations, kinetic equations and equilibrium equations. Mass balance
equations describe the input-output relationship in each soil layer for all ions, except
for H and HCO:s. The concentration is determined by the CO; equilibrium equation
(cf. Chapter 2.2), whereas the H concentration is determined from the charge-balance.
Model input includes atmospheric deposition and hydrological data.

The soil layers are considered as homogeneous compartments of constant
density and the constituent input mixes completely within each soil layer. The time
resolution is one year. However, the time-step of the model is one to five days to
avoid numerical instability and to minimise numerical dispersion.

SMART2

The one-compartment soil acidification and nutrient cycling model SMART2 (Chapter
23; Kros ef al, 1995ab), includes the major hydrological and biogeochemical
Processes in the vegetation, litter and mineral soil. Apart from pH, the model also
predicts changes in aluminium (Al), divalent base cation (BC2, i.e. Ca+Mg), sodium
(Na), potassium (K), nitrate (NO3) and sulphate (SO4) concentrations in the soil
solution, and solid phase characteristics restricted to the acidification status, ie.
carbonate content, base saturation and amorphous Al precipitates. SMART2 was
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developed from the dynamic soil acidification model SMART (De Vries ¢ 2/, 1989), by
including a nutrient cycling and improving modelling of hydrology. The SMART2
model consists of a set of mass balance equations, describing the soil input-output
relationships, and a set of equations describing the rate-limited and equilibrium soil
processes.

Methodology

General Approach

To objectively compare differences in predictions by these three models differences in
parameterisation must be minimised. Data for the models were derived from the
Solling data set (Bredemeier ef @/, 1995). Where the models used the same state
variables and process parameters with the same vertical ot temporal resolution, we
simply used the same values for the three models. Parameters for SMART2 were
derived by depth-averaging of the values which were used for RISAM and NUCSAM
(input mapping: Rose ¢/ 4/, 1991). Annual deposition and water fluxes, which are
input to the model RESAM and SMART2, were derived by accumulating the daily
NUCSAM values to annual values. :

Vertical configuration and simulation period

At the Solling site NUCSAM and RESAM considered a litter layer of 7 cm (at the start of
the simulations) and seven mineral soil layers to a depth of 90 cm (Fable 1). For
SMART2 two separate simulations were performed: (i} with a single mineral soil layer
of 10 cm thickness and (i) with a single layer of 90 cm thickness.

All models were run for the pertod 1971-1990. The period 1961-1970 was used
as an initialisation period to estimate solute concentrations in 1970 and to equilibrate
solute concentrations with exchangeable cations and adsorbed SO.. During that
period, amounts of exchangeable cations and adsorbed amounts of SO, were
continuously updated while pools of cations in primary minerals and of Al in
amorphous precipitates were kept constant.

Model adaptations

In regional applications, SMART2 and RESAM use annual average hydrological fluxes,
which are kept constant throughout the simulation period in order to study focuses on
the influence of differences in biogeochemical process descriptions and their vertical
and temporal resolution (one day versus one year). SMART2 and RESAM were slighty
adapted to account for variations in hydrological fluxes berween the years.

The SMART2 model is normally applied to calculate concentrations at the
bottom of the root zone. To apply the SMART2 model at shallow depth (10 cm), the
calculation of N-immobilisation was slightdly adapted. In the standard version of
SMART2, N-immobilisation is supposed to occur in the upper 20 cm of the soil. For
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the simulation of concentrations at 10 cm depth, the total N immobilisation flux was
multiplied by the ratio of the amount of organic C in the considered layer and the
amount up to 20 cm depth.

Model comparison

The modelled flux-weighted annual averaged concentrations by SMART2 and RESAM
can not be directly compared with the monthly measured soil solution concentration.
Possibilities to compate the results of the three models with observation data are
comparing: (i) monthly observed concentrations with estimated monthly
concentrations derived from RESAM and SMARTZ2 output by linear interpolation
between annual values, or (i) estimated flux-weighted annual averaged measured
concentrations (or leaching fluxes) with simulated values. Annual leaching fluxes can
be obtained by multiplying measured monthly concentrations with monthly simulated
water fluxes (sce ! {ydrolggical datd). Flux-weighted annual averaged concentrations were
derived by dividing the ‘measured’ leaching flux by the annual water fluxes.

In this study, a combined approach was used: simulated concentrations were
compated with measured concentrations (according to (1) and simulated cumulative
annual leaching fluxes were compared with (calculated) measured annual leaching
fluxes. A comparison of measured concentrations with simulated concentrations and
Cumulative fluxes gives a good impression of the performance of the models and the
ability of the models to simulate trends and extreme values.

For a more objective comparison of the model outputs two statistical measures
were calculated, i.e. the Normalised Mean Absolute Error (NAL4E) and the Normalised
Mean Error (NAE) (cf. Janssen and Heuberger, 1995 and Chapter 2.1):

L3 -0)
T Pi_or‘
I\T{l

NMAE = —_ (1)
Oi
RS
E Z (Oi - P, )
I\'AIE = —_’""5— (2)

L

Where P, is the modelled value, O is the observed value, O is the average of the
observations, and N is the number of observations. NMAE quantifies the average
deviation between model pfediction and measurements. NME indicates of the
tendency of the model to underestimate (positive value) or overestimate (negative
value) the ohservation data. NMAE and NME for the three models were calculated
Using monthly concentrations for model results and measuretments.
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Model input data

Hydrological data

For all models hydrological fluxes and water contents were calculated by an adapted
version of the SWATRI: model (cf. Chapter 2.1). Drainage fluxes, root uptake fluxes
and water contents from SWATRE were directly used by NUCSAM. For RESAM and
SMART2 annual root uptake fluxes were detived by accumulating the daily root uptake
fluxes to annual values. To keep water contents constant throughout the simulation
period, annual drainage fluxes were calculated by subtracting the root uptake fluxes
from the input flux for each layer. For RIISAM, water contents for each layer were
averaged over the simulation period. The data for SMART2 were detived by depth
averaging the water contents that were used for RIESAM. An overview of the main
hydrological fluxes and water contents is given in Table 1.

Table 1 Average drainage fluxes and water contents used in NUCSAM,
RESAM and SMART2

Layer Average drainage flux Average soil water content
{cm) {cm ah) {m> m-7)

NucsaM/RisSAM SMART2 - NUCSAM/RESAM  SMART?2
0-10 73.6 73.6 0.40 0.40
10-20 701 - 0.39 -
20-30 64.0 - 0.36 -
30-40 55.7 - 0.36 -
40-60 477 - 0.37 -
60-80 43.0 - 0.34 .
80-90 1 41.0 1.0 0.34 0.36

D SMART2 soil layer -01} cn

Biological data

An overview of the biological data and their derivation is given in Table 2. The
parameters for N cycling in NUCSAM/RESAM and SMARIT2 were derived
independently from the Solling data set as the process description in the models is
different. RESAM/NUCSAM use an overall nitrification rate, which is reduced by
moisture content, pH and organic matter content. For SMART2 separate nitrification
fractions, based on input-output budgets, wete derived for the run with the 10 em soil
layer and the run with the 90 cm soil layer. The relationship between moisture
content, pll, organic matter content and nitrification rate, which was used in
NUCSAM/RIISAM was not calibrated on the site data.
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Table 2 Values for soil layer independent model parameters used in the
simulation based on the Solling data set (Bredemeier ¢f a/., 1995)

Process Parameter Unit Value Model
Foliar uptakes JriNILyg - 0.1 NucsaM, RESAM
Filg - 0.33 NUCsAM, RESAM
Foliar exudations  fr Cag - 0.49 Nucsam, REsam
SrMge - 0.09 NucsaM, RizsaM
K - 0.42 Nucsas, RusaM
frBC2: - 0.58 SMART2
Tree growth® £t a! 0.10 NucsaM, RESAM, SMART2
A kg ha'! 3.8x10% NucsamM, RESAM, SMART2
5 a 69.2 NuCsaM, RESAM, SMART2
Liteerfalls ks al 0.19 Nucsan, RESAM
Root decay &g at 14 NUCSAM, RESAM
Nutrient cycling ~ »f - 0.5 SMART2 ¢
factor
Root uptake P - 6.58 SMART2 €
pattern
Mineralisation Srmist 04 NUCSAM, RiSAM, SMART2
Komi 0.05 NucsaM, RESAM, SMART2
Nitrificationf Eoni e a'l 100.0 NUCSAM, RESAM
Jriiomx - 4.5 SMART2
Denitrificatione y . al 10.0 Nucsam, RESAM
Jra - 0.10 SMART2
N immohilisationt  C/N 19.5 SMART2

a
b

<

Based on average throughfall and deposition dara over the peniod 1974-1990

Derived by curve fitting of the biomass measurements, which were corrected for thinning (62.9%).
Average needlefall rate over the pedod 1967-1973, taking into account that 92.5% of the litterfall is
needlefall

n refers to the ratio of root decay to litteefall (sce Chapter 2.3). This ratio was detdived from the
anoual average root decay (1.49) to litterfall (2.96 ) in Solling

iy refers to the exponent determine the water and nutrient uptake pattern in SMARTZ (see
Chapter 2.3). This ratio was derived by assuming that 50%.0f the nutrient uptake take place in the
top 10 em of the soil profile.

Aoimec 18 derived from average throughfall and mineralisation fluxes over the period 1970-1985,
assurning that all mineralised N is released as NEHs. f is dedved form average throughfall and
average drainage fluxes and calculated average root uptake fluxes for the penod 1973-1990
Derived from De Vrics e &/, (1995a). -

Based on 1973 data for Corg and Nog

Growth uptake in all three models was calculated by multiplying a given

(logistic) growth rate (see Chapter 2.1, 2.2 and 2.3) by the element content in 1968 in
stems and branches respectively. N content is calculated with a lincar relationship
between N content and N deposition. N content is minimal at a N deposition of
1500 mol. ha' a't and maximal at a N depositon of 7000 molk ha! al. Element
contents of other nutrients were assumed to remain constant. Growth uptake fluxes in
SMART2 at 10 cm depth were automatically generated in the model by the depth
dependent root uptake function (see Chapter 2.3). This root uptake function is
calibrated such that 50% of the nutrients are taken up in the upper 10 em of the soil
profile. Parameters related to forest growth were kept constant, the stand remains a
mature forest with a very low net growth and a relatively high nutrent cycling
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throughout the simulation period. The monthly distribution fractions for litterfall,
root decay, mineralisation and root uptake as used in NUCSAM are given in Table 3. In
RIESAM and SMART?2 these fractions wete equally distributed over the year.

Table 3 Monthly distribution fractions (-) for litterfall (/f), root decay (rd),
mineralisation (m7) and root uptake {ru) as used in NUCSAM

Month ¥ rd i m

January 0.00 0.06 0.00 0.01
February 0.00 Q.00 0.00 0.01
March 0.00 0.00 0.10 0.05
April (.00 0.00 0.15 0.08
May 0.10 0.10 0.15 015
June 0.10 0.10 0.20 0.15
Tuly 0.10 0.10 0.20 0.15
Augusy 0.10 010 D.15 0.15
September 0.20 0.20 0.05 0.10
October 0.20 0.20 0.00 0.09
November Q.10 0.10 0.00 0.05
December 10 0.10 0.00 0.01

Geochemical data

NUCSAM and RESAM

Geochemical data for NUCSAM and RESAM as given in Table 4 to Table 6, were
directly derived from the Solling data set (Bredemeier ¢f a/, 1995). Gaines-Thomas
exchange constants (for all three models) were based on average soil solution
concentrations measurements in 1983 and solid phase analyses in the same year (Table
6). Sulphate adsorption constants for NUCSAM and RESAM (Table 6) were derived
from data in Meirwes (1979).

Table 4 Soil properties used for NUCsSAM, RESAM and SMART2. Bulk
density (g), cation exchange capacity (CEC), amorphous Al (hydr)oxide
content (ctA7,) and sulphate sorption capacity (§5C)

Soil layer ) CLC Al AN
{cm) (kg m3) (mmol, kgt fmmol, kg {mmol, kgt
NucsaM and ResaM
0-10 930 132 97 1.0
10-20 1140 79 97 45
20-30 1190 58 185 4.5
30-40 1390 45 185 4.5
40-60 1394 56 185 4.5
60-80 1690 56 176 6.7
80-90 1690 76 94 6.7
SMART2
0-10 930 132 97 1.0
0-90 1389 66 156 51
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Weathering fluxes of primary minerals in NUCSAM and RI:SAM were described
by a first-order equation (sce Chapter 2.1 and 2.2). Rate constants for this equation
(Table 5) were derived from a budget study (Wesselink & 4l, 1994). Dissolution
parameters of Al-hydroxides (Elovich equation; see Chapter 2.1) in RESAM and
NUCSAM, are given in Table 5 together with their dertvation.

SMART2

Most data for SMART2 were derived by depth averaging the data that were used for
NUCSAM and RESAM (Table 5 and Table 6). Some parameters that were only used in
SMART2 were directly obtained from the Solling data set. Soil properties which were
used in SMART2, ie. bulk density {p), cation exchange capacity (CEC), sulphate
sorption capacity (S5C), amorphous Al (hydrjoxide content (i244,) (Table 4) were
derived by depth averaging the data used in NUCSAM and RESAM (Table 4). To
calculate Gaines-Thomas exchange constants for SMART2 (Table 6) concentrations
and solid phase analyses were depth averaged for the 10 cm and 90 cm soil
compartment. A depth weighted sulphate adsorption constant for SMARTZ was
detived in three steps. First adsorbed amounts of sulphur were calculated for all layers,
considered in NUCSAM/RESAM, using a Langmuir equation (sce Chapter 2.1, Eq. 67)
and the sulphate adsorption constants from Meiwes (1979), assumed the same range
in dissolved SO, concentrations with depth. Next, the calculated adsorbed amounts
were depth-weighted. Finally, the depth-weighted sulphate adsorption constant was
derived by fitting the depth-weighted adsotbed SO, amounts against the SO,
concentration range.

Table 5 Weathering rate constants of amorphous Al (hydr)oxides and
primary minerals used in the simulation by NUCSAM and RESAM

Laycr ErEi b krEL 2 KA/, » Weathenng rate constants 4
m  (wkgta?) Ggmok?) FEmod (1034
Ca Mg K Na

0-10 0.6 x107 750 35x108 6.5 93.6 0.01 0.021
10-20 2.0 x107 750 3.5x108 6.0 73.2 0.008 0.015
20-30 5.1 x107 750 3.5x108 5.6 66.9 0.007 0.013
30-40 5.1 x107 750 3.5x10# 54 63.7 0.606 0.010
40-60 5.1 x107 750 3.5x108 5.3 61.8 0.005 0.011
60-80 5.1 x10-7 750 3.5%108 6.2 51.7 0.005 0011
8090 5.1 x107 750 3.5%108 10.9 25.8 (.003 0.011

Y Flovich constant, see g (33), Chapter 2.1 Denved from average soil solution concentrations of 1 and Al in
1983, assurming K14.=3.5x10° and £rFEA=T7.5x10"

3 Elovich canstant, see Fq. (33), Chapter 2.1. The average of values given in De Vries (1994).

¥ Al (hydnoxide equilibrium constant, see Eq. (3T), Chapter 2.1. Average IAP for A(OH)s at 90 cm over the
period 1973-1991. The value given, is the value at 25 °C, which s derived from the value at field teraperature (10
o).

# B;)sed on total analysis and weathering fluxes of base cations from Wessclink o af (1994) and average 11
concentration in 1983.
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Table 6 Gaines-Thomas exchange constants and SOy sorption constants
used in the simulation by NUCSAM and RESAM

Soil layer Lxchange constants 1) K502
(emy (mol [Nz x2 I mol)
11 Al Mg K Na NI

0-10 5180 0.97 1.60 647 84 1.05 0.5x103
10-20 57.5 26.2 2.56 3oeo 29 6.53 7.6x10%
20-30 15.3 875 65.3 7476 212 30.7 1.5x108
30-40 153 137 0.42 18700 320 307 1.5x10%
40-60 15.3 7.37 1.25 16900  36.2 307 2.4x103
60-80 15.3 262 1.25 16900 362 30.7 24x10%
80-90 15.3 26.2 1.25 16900 36.2 30.7 24108

% Based on average soil solution concentration measurements in 1983 and solid phase analyses in the
same year except for NI which is taken from De Vrics ef al. {19952)
L Derived from Meiwes (1979).

In SMART2 weathering fluxes are input to the model and were directly derived
from the above mentioned budget study (Table 7) and dissolution of Al-hydroxide
was described by equilibrium with an Al-hydroxide. Solubility products for the Al-
hydroxide at 10 and 90 cm depth were derived from average soil solution
concentrations of H and Al in 1983 at these depths. The solubility product for Al-
hydroxide at 90 c¢m depth was also used in RIISAM and NUCSAM to calculate the Al
concentration at equilibrium.

Table 7 Geochemical parameters for SMART2

Parametee Unit Values

: 10 ecm 90 ¢cm
KAL D 12 moi-2 4.0x107 2.0x10°
FBCZ,, % mol, m3 a’! 0.039 0.043
FBC1,, % mol. m-3 a1 0.011 0.012
KAL, 1 mol! 0.7 3.5
KH,. mol 1 4786 1862
KSO,4 1 mol-t 4.2x108 3.9x103

b Average [AP for AOI D3 at 10 and 90 em based on measured Al and H concentrations in the period 1973-1990
3 For 10 cm based on NUCSAM weathering rates and average H concentrations at 10 cm depth for the period
1973-1990, for 90 em depth directly based on weathering fluxes from Wesselink e ol (1994)

Deposition data and scenarios

For the deposition during the observation petiod 1973-1990 we used yearly values for
wet and dry deposition as desctibed in Bredemeier e a/. (1995).

For the long-term application of the three models, we used two atmospheric
deposition scenatios for the period 1990-2090, i.e. (i) Business as Usual (BU): deposition
values from the Solling data set in 1990 were kept unchanged for the period 1990-
2090, (i) Improved Environment (IE): deposition of SO, NOy and NH, were reduced
linearly with time between 1990 and 2000 by 75% and kept constant afterwards. For
all other constituents the values of 1990 were kept constant, except for H, which is
calculated from the charge balance. The values for the total deposition fluxes (in molk
ha't a1} used for 1990 were: 1473 for NH,, 1410 for NOs and 3641 for SO,. For base
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cations and Cl the total deposition fluxes were 458 for Ca, 344 for Mg, 44 for K, 875
for Na and 1052 for CL.

24.3 Results and discussion

Validation and testing

To characterise the effects of differences in the models, the simulated concentrations
and leaching fluxes wete compared with measured concentrations and leaching fluxes
in the topsoil {10 cm) and subsoil (90 e¢m) for SO, Cl, NO;, NH,, Al and BC2
(divalent base cations). Simulated and measured concentrations are shown in Figure 1
(SO4 and CI), Figure 2 (NOs and NH,) and Figure 3 (Al and BC2). An overview of the
statistical measures, NMAE and NME, for the various substances in topsoil and subsoil
is given in Table 8. All models simulated the measured concentrations reasonably well.
Differences between the output of the models SMART2, RESAM and NUCSAM were
rather small. A notable difference occurred for the SO, concentration in the subsoil,
During the first five years SMART2 clearly performed less than RESAM and NUCSAM,
whereas during the period 1980-1985 the opposite is true. Another remarkable result
from the performance measures (Table 8) is that SMART2 showed in most cases the
lowest values for both NALAE and NME (i.e. the best performance), whereas NUCSAM
showed the highest values (i.e. the worse performance). A more detailed discussion on
the performance of the models to simulate the individual ions is held in the following
sections where the influence of the model differences is presented.

Table 8 Normalised Mean Absolute Error (NMAE ) and Normalised Mean
Error (NME ) for simulated concentrations

NMALL NME
f:{lmponcnt Dcpth SMARTZ RESAM NuUesan SMARTZ RESAM NUCSAM
S0 10 0.25 0.24 0.37 0.17 0.05 -0.01

920 0.29 0.24 0.25 0.06 012 0.18
N(y 10 0.49 .50 0.62 0.19 0.09 -0.04
20 0.53 0.63 0.76 0.23 0.36 -0.25
NI, 10 1.6 6.0 5.0 -0.26 -6.0 -49
90 1.0 0.93 0.88 099 0.03 0.80
RBC2 10 0.29 025 0.41 0.03 0.21 0.1
90 0.29 0.16 0.46 -0.23 0.02 -0.43
Al 10 0.33 0.33 0.52 032 012 0.02
20 0.34 0.37 0.33 0.19 0.34 0.30
5 10 0.47 0.47 0.53 047 0.45 0.51
90 0.40 “0.49 0.49 0.36 0.48 0.47
a 10 0.26 0.28 0.41 011 0.03 -0.04
90 0.25 0.16 023 0.06 0.06 0.16

Influence of vertical resolution

The influence of vertical resolution is best illustrated by the SO, concentrations and
leaching fluxes (Figure 1), as deposition and adsorption of SO4, was described in all
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models in practically the same way. The trends in SO4 concentrations, as simulated by
NUCSAM and RESAM, were generally in good agreement with the observation data.
SMART2, howevet, overestimated SO concentrations at 90 em depth from 1972-1978,
during that period a strong rise in SOy concentrations took place at this depth. This
overestimation is caused by a larger dispersion of the SOs front in a one-layer system
compared to a multi-layer system. In a multi-layer system elevated atmospheric input
of SOy initially stores the absorbed SOy in the upper soil layers only. In a one-layer
system, elevated input immediately leads to a (small) rise in the absorbed amounts and
concentrations for the whole soil profile. Although concentrations were overestimated
by SMART2 in the subsoil, from 1973-1975, the performances for SO, in both layers
for the whole trajectory were comparable with the other muld-layer models. SMART2
even showed the lowest value for the NAE (Table 8). Cumulative leaching fluxes for
SO4 and Cl at 10 cm depth were simulated rather well. Leaching fluxes at 90 cm were
slightly overestimated for Cl by all three models and slightly underestimated for SO,
by RESAM and NUCSAM.

As a result of the smoothed SQOj front, the rise in Al due to weathering in the
period 1972-1978 is less pronounced in SMART2. This causes a lowet exchange of
adsorbed base cations against Al compared to the other models. This lower BC2
desotption in turn leads to a lower rise of the BC2 concentrations in the subsoil, as
simulated by SMART2 (see Figure 3). )

Influence of process description

The main differences in process description between the models occur in the
description of processes involving the nitrogen dynamics. All three models account
for storage of N in the litter layer and for mineralisation. FHowever, SMART2 and
RESAM only made a distinct between old and fresh litter, whereas NUCsAM includes a
three compartment model (see Chapter 2.1). Furthermore, (de)nitrification in SMART2
is described in a different way than it is in RESAM and NUCSAM.

Nevertheless comparable results for the NO;3 concentrations in both soil layers
were obtained (Figure 2). This is confirmed by the NAL4E and NME (see Table 8). The
NH, concentrations in the topsoil (Figure 2) were clearly overestimated by NUCSAM
and RESAM (NME < (), whereas SMART2 underestimate this concentration. In the
subsoil, all modecls simulated comparable NH: concentrations, which were
underestimated with respect to the measurements (see NME values, Table 8). The
relatively good agreement berween observed and simulated concentrations with
SMART2 in the topsoil, is partly due to the fact that in SMARTZ different nitrification
constants at 10 and 90 cm depth were used, which were directly derived from the
Solling data set. RESAM and NUCSAM, however, used one overall nitrification
parameter.
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Figure 1 Measured and simulated SO, and Cl concentrations and leaching fluxes at 10

(left) and 90 cm depth (right)
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Another difference between SMART2 and RESAM/NUCSAM is the way in which
Al concentrations are calculated. SMART2 assumes equilibrium with Al-hydroxide,
whereas RI:SAM and NUCSAM use a kinetic description (see Chapter 2.1 and 2.2).
Figure 3 shows that results for the simulation of Al (main cation) were compatable
with those for the main anion SQs The way in which Al concentrations were
calculated appears to have hardly any influence on the results for the chosen petiod,
both in the topsoil and the subsoil. In long-term predictions NUCSAM/RESAM and
SMART2 may giVE different Al concentrations, partjcu]ar]y in the t()psoﬂ where the
dissolved Al is far from equilibrium with gibbsite, Exhaustion of solid Al-compounds,
will lead to a lower simulated Al concentration by NUCSAM/RESAM, whereas that
simulated by SMART2 will remain constant. This effect, however, does not occur in
this case, see Figure 4.

Influence of temporal resofution

The influence of neglecting seasonal fluctuations on solute fluxes can best be
identified by comparing RESAM and NUCSAM, models with a comparable process
description and a difference in temporal resolution. The most direct influence of the
chosen temporal resolution is on Cl concentrations and fluxes. For example, NUCSAM
with daily up- and downward water fluxes gives stronger fluctuations in
concentrations than RISAM (Figure 1). NMAE values for the Cl concentrations,
however, showed that the simulation of the Cl concentrations by NUCSAM was not
better than for the other models. In the topsoil, the simulated fluctuation of the Cl
concentration was sometimes out of phase with the measured fluctuation. In the
subsoil, NUCSAM underestimated Cl concentrations in wet periods (Table 8).

The influence of the chosen temporal resolution can particulatly strong for the
NQO;, NH, and base cations concentrations, which are strongly influenced by seasonal
Processes as nutrient uptake and mineralisation. NOs concentrations (Figure 2, Table
8) simulated with NUCSAM and RESAM were in close agreement with the
measurements in the topsoil. Although, NUCSAM simulated the seasonal peaks in NO;
concentrations NMAE values in the topsoil were somewhat higher for NUCSAM
compared to RISAM. NO; concentrations in the subsoil were poorly simulated by
RISAM up to 1980. From 1980 onwards concentrations simulated by NUCSAM and
RESAM were in the same range as measured values (relatively low NAL4E and NAE).
However, fluctuations in simulated concentrations by NUCSAM occurred more
frequent than the measured multi-year fluctuations in concentrations. The differences
in simulated NOs concentrations in the subsoil, between NUCSAM and RESAM is
Caused by the fact that in NUCSAM total N uptake is lower. N uptake in NUCSAM is
lower due to a restriction of the N uptake to the growing-season, which leads in
Certain years to a higher N demand than available in the soil solution, causing a lower
total N uptake in that year.

Cumulative leaching fluxes for NOs in the topsoil (Figure 2) were in close
agreement with measured leaching fluxes both for NUCSAM and RESAM. Cumulative
leaching fluxes in the subsoil, were underestimated (-0.3 mol. m?) by RESAM, due to
the underestimation of the concentrations (positive NME) in the period up to 1980
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and overestimated (+0.4 mol. m?) by NUCSAM due to the overestimation of seasonal
peak concentrations (negative NME).

The correspondence between simulated and measured NH, concentrations
(Figure 2) was poor for RESAM and NUCSAM. The periodical fluctuations in
concentrations in the subsoil were not simulated by NUCSAM and in general NH,
concentrations were overestimated in the topsoil. Although, both measured and
simulated NH, concentrations were relatively low, the deviation between measured
and simulated values leads to a serious overestimation {about 0.5 mol m?) in the
period 1983 to 1989.

Topsoil {10 cmy) Subsoil (90 cm)
A (mol, mJ)
5 . Measured B 3
NUCSAM B
4 e RESAM - g
............... SMART2 H
3 I -
2 -
1 L~
0
[BC*] (mol, m3)
1.0
0.8
06
0.4
0.2
0.0
1970 1975 1980 1985 1990 1970 1875 1980 1985 1990
Time (a)
Figure 3 Measured and simulated Al and BC2 concentrations at 10 (left) and 90 ecm

depth (right)

Base cation concentrations (Figure 3) are influenced both by processes with a
strong seasonal magnitude, such as mineralisation, solute transport and ion-exchange.
The general trend in divalent base cation concentrations in the topsoil was reasonably
simulated both by NUCSAM and RESAM. NUCSAM and RESAM overestimated the rise
in BC2 concentrations in the subsoil up to 1978. From 1982 onwards all models
overestimated BC2 concentrations, probably due to an underestimation of tree growth
during this petiod. RESAM produced a somewhat stronger rise and fall in BC2
concentrations in the subsoil than NUCSAM. This is caused by a stronger desorption
of BC2 in RESAM. The same phenomenon, can be observed for SOy, albeit to a lesser
extent (Figure 1). RESAM simulated slightly higher SO4 concentrations than NUCSAM
from 1975-1980. The deviation between RESAM and NUCSAM is induced by slight
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differences in hydrology as reflected by the differences in simulated Cl concentrations
in the subsoil.

Long-term predictions with NUCSAM, RESAM and SMART2

Model performance using annual average concentrations

Contrary to the Validation and festing section, we quantifted the long-term model
performance by comparing the flux-weighted annual averaged simulated
concentrations with the corresponded observed ones. Figure 4 presents the long-term
flux-weighted annual average concentrations as simulated by the three models for the
Business as Usual (BU) scenario. Results for the Improved Environment (IE) scenatio are
given in Figure 5. Figure 4 and Figure 5 also include the observed flux-weighted
annual average values. These values were calculated from the observed concentrations
which were weighted with stmulated soil waterfluxes that correspond with the period
between the current and previous sampling date.

Regarding the performance of the three models to simulate the observed
concentrations and ratio in terms of the NMA4E (Table 9), we can conclude that the
results for all models are quit comparable. Notable exceptions are, however, the
Al/BC ratio at 10 cm and the SOy concentration at 10 ¢cm for SMART2 and the NOs
concentration at 90 cm for NUCSAM. Inspecting the individual values of the NMAE
(the closer to zero the better the predictions), results appeared to be good (NMAE <
0.30) for the SO, concentrations in the topsoil and subsoil and the Al concentration in
the subsotl for all models, for the NO;3 concentration in the topsoil for NUCSAM, and
for the Al concentration in the topsoil for RESAM, moderate (0.30 < NMAE < 0.60)
for the NOj concentration in the topsoil and subsoil for SMARTZ2 and RESAM, and the
Al concentration in the topsoil for SMART2, and bad (NMAE 2 0.60) for the NO;
concentration in the subsoil for NUCSAM and the Al/BC2 ratio in the topsoil and
subsoil for all models.

Concerning the performance of the model SMARTZ, Table 9 shows that for the
804, NO; and Al concentrations in the subsoil the performance is always either better
than RESAM or bettert NUCSAM. The performance of SMART2 for these concentration
in the topsoil is always less than the performance of RESAM and NUCSAM, although
the deviations were small. For the Al/BC2 ratio the performance of SMAR12 is always
the poorest. However, RESAM and NUCSAM also showed a tathet poor performance,
which is not much better than that of SMART2. The bad petformance of this
compound model cutput was due to an overestimation of the Al concentration and an
underestimation of the BC2 concentration (see Figure 3).

Also from this comparison based on the annual average concentration, it can be
concluded that the performance of the regional scale model SMART2 yield to
comparable performance as obtained for the models RESAM and NUCSAM. This is an
important result, since the annual average concentration is usually the temporal
aggregation level used in national assessments by the Environmental and Nature
Policy Assessment Office.
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Table 9 Performance of the two models during the observation period
expressed as the Normalised Mean Absolute Error (NMAL)

NMAF

SO, NO; Al Al/BC2

10 cm 90 cm 10 cm 90 cm 10cm 90 cm 10em  9cm
NUCSAM 016 0.15 0.26 0.70 0.30 0.21 4.0 127
RrsAM 0.14 0.10 0.32 Q.57 o1 0.25 39 13.2
SMART2 0.26 0.11 0.38 (.39 0.36 0.24 42 21.2

Scenario analysis

General features

Under the BU scenario (Figure 4) the Al concentration gradually increased in the
subsoil. In the topsoil, however, Al concentration decteased. This is due to a depletion
of the Al hydroxide pool in topsoil. As a result of the depletion of the Al hydroxide
pool, which highly determines the buffer capacity, the pll decreased (cf. De Vries e
al,, 1994a). Under the IE scenario, the Al concentration (Figure 5) strongly decreased
in both the topsoil and subsoil, due to deposition reductions.

Under the IE scenario SO4 and NOj strongly decreased in response to the
decrease in atmospheric deposition. Due to SOy desorption and N mobilisation from
the humus, there was a retardation in the concentration response, especially in the
subsoil. Afterward, the SO4 and NO; concentrations showed a constant level for both
scenarios.

The molar Al/BC2 ratio in the topsoil showed a similar trend as the Al
concentration, For both scenarios the molar Al/BC2 ratio decreased below 2, Le. the
critical value for spruce forest. Under the BU scenario this decrease was accompanied
by a decrease in pH due to depletion of Al (hydr)oxides, and the pH buffering it
provides. In the subsoil the Al/BC2 ratio gradually increased with the BU scenario.
Undet the IE scenario the Al/BC2 ratio initially showed a delayed response to the
decrease in deposition. The delay time for the multi-layer models, RISAM and
NUCSAM, was considerably shorter than for the single-layer model SMART2,

Differences between SMART2, RESAM and NUCSAM predictions

The agteement between flux weighted annual averaged concentration stmulated by
SMART2, RISAM and NUCSAM, was generally good for all presented constituents. The
most remarkable difference between the two model results was that the NUCSAM
outputs strongly fluctuating while the SMART2 and RESAM outputs were smoothed.
This is, of course, inhetent to the temporal resolution of the models; daily based
versus annual average based. From 1970-1990, however, the SMART2 and RESAM
results also showed a slightly fluctuating behaviour, which was caused by using the
measured yeatly values for deposition duting this period.

134



Chapter 2.4

3 3 10cm 90 cm
(A (mol, m™®) Al 3
0r ——————— NUCSAM 301 g
------- RESAM B g
1B e SMART2 2.4
12 © Cbserved

S0
30
16 - 24 1~
1.2 1.8 9o
08 ;'-.. ; 12 " ...
0.4 0.6
0.0 : ' ' 00 ' ' ' ‘
INO,7] (mol, m™) NO
10
0.8
0.6
0.4
0.2
0.0
Al/BC2 (mol, m™®)
3.0 - 10
24 - »

1.8
1.2
0.8

o N & 3 o

0.0 \ | ] il 1 1 1 ]
1970 2000 2030 2080 2090 1970 2000 2030 2060 2090
' Time (a)
Figure 4 Flux-weighted annual averaged concentrations simulated with NUCSAM,
RESAM and SMART? of the concentrations of SOy, NOj, Al and the Al/BC2 ratio at 10

cm (left-hand side) and 90 cm (right-hand side) depth, under the Business as Usnal
scenario. The observed flux-weighted annual averaged concentrations are also given
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Comparing the NUCSAM results for the two scenarios in general, it was striking
that seasonal variability under the IE scenatio was much smaller than under the BU
scenario. This especially holds for the SOs concentration in the subsoil, where
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eventually all seasonal variability ceased. To a lesser extent this also happened for the
SO4 concentration in the topsoil and the Al concentration and the Al/BC2 ratio in
both considered soil layers. This was caused by the relative increase in importance of
SQO4 sorption and cation exchange at lower concentration levels, resulting in a stronger
buffering of concentrations. This also explained that the seasonal variability of NOs
was the same for both scenarios, which is difficult to see in Figure 4 and Figure 5.
However, this was checked by normalising the NUCSAM concentrations by dividing
them by the concentrations calculated with RESAM, which showed clearly that the
seasonal variability under both scenarios was comparable.

The long-term trends show that the models produce very similar trends for
both scenarios. For most model outputs the NUCSAM tesults fluctuating around the
SMART2 and RISAM results. A notable exception is the Al/BC2 ratio in the subsoil
under the IE scenario. The SMART2 simulated a much quicker response of the
Al/BC2 ratio to the deposition reduction than the models RESAM and NUCSAM. To a
lesser extend this is also true for the SO4 and Al concentration. Again, this difference
in time-delay is due to the difference in considered soil layers. Figure 5 clearly shows
that the differences vanished several decades after the deposition reached a new
constant level, i.e. the year 2000 (see Section Deposition data and scenarios).

Cumulative leaching fluxes

Cumulative leaching fluxes of Al, SO4, NO; and NHy4 over a period of 120 years
predicted by SMART2, RESAM and NUCSAM are presented in Figure 6 and Figure 7. All
modes gave similar leaching fluxes for SOa. Although, the SMART2 flux in the subsoil
for the BU scenario was slightly higher and in the topsoil for the IE scenario slightly
lower. The Al and NOs leaching fluxes predicted by SMART2 and RISAM were
invariably lower than the NUCSAM fluxes, for both scenarios and both depths. The
low Al and NO5 fluxes were mainly due to ignoring seasonal variability. Although
ignoring seasonality created additional model uncertainty, the identified differences are
acceptable when making long-term predictions.

This study showed that time resolution has only a rather small effect on the
uncertainty in long-term (> 100 year) soil acidification. On a shorter time scale (10-50
years), during strong changes in deposition, the effect is more significant, especially
for the Al/BC2 ratio.
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using the Improved Environment scenatio
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2.44 Conclusions

Testing and Validation

The validation of NUCSAM, RESAM and SMART2 at the Solling site, shows that the

models reproduce the main features of the concentration variations over time for

most concentrations. In particular:

- trends and dynamics of the concentrations of NQs, 504 and Al are reproduced
well;

- simulated NHy concentrations in the topsoil 1s reproduced fairly by SMARYZ, but
overestimated by NUCSAM and RESAM;

- simulated Al/BC2 ratios in the subsoil are too low. This is of concern because the

Al/BC2 ratio is an important criterium in critical acid loads.

Despite differences in their process descriptions, SMARTZ2, RESAM and NUCSAM
simulate most of the solute concentrations reasonably well. Whether the dissolution of
Al-hydroxides was modelled by a rate-limited reaction (NUCSAM, RIISAM) ot by an
equilibrium equation (SMARTZ) hardly affected modelled Al concentrations. The
differences in N cycling processes also hardly affect the quality of the modelled NO,
and NI, concentrations.

The influence of vertical resolution of the models was clearly shown by the
simulated concentration of SO, and base cations in the subsoil. All models mimicked
the observed a rise in SO, concentration between 1975 and 1980, due to a decrease in
sulphate adsorption. However, the one-layer model, SMARTZ, overestimated the initial
rise in dissolved 8Os, due to a large dispersion of the sulphur front in a one-layer
system. On the other hand for the simulation period as a whole SMART2 showed the
best performance for SO4 in the subsoil.

We expected 2 strong influence of temporal resolution in the simulation of
NO; by NUCSAM compared to RESAM and SMARTZ. In the topsoil, NO;
concentrations simulated by these models were in the same range as the
measurements. Subsoil NO3 concentrations were slightly underestimated by RESAM
and SMAR12, as these models simulated a higher N uptake than NUCSAM. Albeit,
NUCSAM slightly overestimated the subsoil NO; concentrations, and the temporal
fluctuations were poorly simulated. The same is true for the NH, concentrations. The
NMAE values for the NOj concentrations in the top- and the subsoil were higher for
NUCSAM than for RIiSAM. In the topsoil the higher NMAE values resulted from the
fact that simulated fluctuation were sometimes out of phase with the measured
fluctuations. The NI, concentration in topsoil was best modelled by SMART2, the two
other models seriously modelled too high NH; concentration in the topsoil. All three
models underestimated the NH; concentrations in the subsoil, but the observed NH,
concentration in subsoil are already very low.

In general it can be concluded that the performance of the regional scale model
SMART2 15 as good as the performance of the more complex models RESAM and
NUCSAM. A model such as NUCSAM proved to be a valuable link between relatively
short data records and long-term predictions generated with RESAM and SMART2.
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Long-term predictions

RisaM, which does not include seasonal variation, simulated the observed flux-
weighted annual averaged concentrations (and ratios) comparable or even better than
NUCSAM. Because the uncertainties in long-term predictions of soil and soil solution
response induced by ignoting seasonal variability are rather small, it can be concluded
that RISAM, which neglects seasonal variability, is acceptable for making long-term
annual average predictions.

SMART2, which does not take into account seasonal variation and vertical
heterogeneity, yields in most cases results that are as good as the model NUCSAM and
Ri:saM. However, during abrupt changes in inputs the concentrations and fluxes of
adsorbing compounds, such as SO4 and Al, some deviations may occur. Bearing this
in mind, it can be concluded that the use of the slmphﬁed model SMART2, that
neglects seasonal variation and vertical heterogeneity, is in most aspects acceptable for
the evaluation of long-term trends in soil and soil solution chemistry.
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3.1 Modelling of soil acidity and nitrogen availability
in natural soil ecosystems in response to changes
in acid deposition and hydrology

Abstract

SMART2 has been developed to provide a simple, nationally applicable model to gain insight into the
effects of bydrology, atmospheric deposition and nuirient cycling on soil and soil water guality.
SMART2 was derived from a dynamic soil acidification model SMART (Simulation Model for
Avidification’s Regional Trends), aimed at the evaluation of the effectivencss of emission control
strategies for $Qz, NO,. and NH; at the European scale. SMART is a one-compartment model
which only includes geochemical buffer processes (e.g. weathering and cation exchange). SMART2
Surthermore, includes nutrient cycling and solute input throngh upward segpage. The SMARTZ mode!
is linked fo the Multiple stress mOdel for V'Egetation (MOVE), that predicts the probability of
occurrence of individwal plant species as a funciion of the acid, nutrient and moisture status of the soil.

In this paper we evaluate SMARTZ for various acidification and seepage scenarios (1990-
2050) in the Netherlands. The resulis are focused on pH and nitrogen availability. We considered
combinations of five vegetation structure hypes (three forest types, heather and grass) on seven soil types
(three sandy soils, two clay soils, peat and loess soils) and five water-table classes, using a 250 x 250
kn? grid. Effects of changes in pH, as caliniated with SMARTZ2, on the forest understorey in a
nutrient poor deciduons forest were evalnated with MOV'E.

Model simulations indicate that reductions in acid atmospheric deposition lead to a relatively
Jast increase in pH and base saturation and a decrease in N avatlability. As a result of deposition
reductions the predicted number of species in the forest understorey in a nutrient poor dectduons forest
increases from 40 to 80% in 1990 1o 60 1o 100% in 2050.

311 Introduction

Changes in vegetation are often caused by changes in site factors, such as pH and
nittogen availability {cf. Huston, 1979; Grime, 1979; Tamm, 1991). Abiotic site factots
are affected by changes in atmospheric deposition (Galloway, 1995), water-tables (Van
Wirdum, 1986), changes in management. and land use and internal processes such as
vegetation succession. Changes in abiotic site factors may affect the structure and
functioning of semi-natural ecosystems, and thus to biodiversity {cf. Bobbink ez a/,
1998). Often, ecosystems are affected by various threats simultaneously (multiple
stress effect). Environmental effects on ecosystems are usually studied for one stress
factor at a time.

Started in the second half of the 20t century, Dutch ecosystems received
increasingly inputs of NI and SO4. These affected soil solution concentrations, pH
and nitrogen availability (Van Breemen e af, 1982). Two groups of effects of
enhanced atmosphetic deposition of sulphur and nitrogen can be distinguished: (i)
(soil) acidification, leading to enhanced leaching of base cations, and increased
dissolution of potentially toxic aluminium, and (ii) eutrophication by nitrogen only. In
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wet ecosystems eutrophication is also due to input of polluted ground- and surface
watet. A thorough review of the impacts of N inputs on semi-natural ecosystems, i.e.
bogs and wetlands, species-rich grasslands, heathlands and forest, related to vegetation
changes, is given in Bobbink ez 2/ (1998).

Research on forests indicated that increased nitrogen inputs cause high
concentrations of NIl; and NO; in the soil solution (Roelofs ef af, 1985; Kleijn ef al,
1989), associated with a shift towards nitrophilous grass-species in the forest
undcrstorey (Hommel e al, 1990). pH decrease may affect the original ground
vegetation (Bobbink ¢f 4/, 1998). Besides vegetation changes, increased mtrogen mput
and acidification may lead to: (i) nutrient imbalances, resulting from an increase in
biomass, cavsing an increased demand of base cations (Ca, Mg, K) and the
counteracting effect of freduced uptake of these cations due to increased NI,
concentrations (Boxman and Van Dijk, 1988) and (i) increased susceptibility to
secondary stress factors such as frost (Aronsson, 1980} and fungi Roelofs ef 4/, 1985).

~ In heathlands high inputs of atmospheric nitrogen are a significant factor in the
transition of heathland to grassland (Heil and Diemont, 1983). Apart from the
changes in competitive interactions between heather and grasses under the influence
of nitrogen accumulation in the soil, heather beetle plagues are important factors in
vegetation changes in heathlands (Berdowski and Zeilinga, 1987; Betendse et al,
1987). Generally, the species that contribute most to biodiversity tend to grow on soils
with a relative high pH, low nitrogen content, and low Al/Ca ratio (Bobbink ez 4/,
1998).

Also in semi-natural species-rich grassland, increased nitrogen availability that
gives mote highly productive grassland depresses botanical diversity (Bobbink ef 4/,
1998). Wetland ecosystemns showed also a significant decrease in diversity at elevated
nitrogen inputs (Vermeer and Berendse, 1983).

In the Netherlands many vegetation types used to depend on shallow watet-
table. In the last decades, these vegetation types have suffered severely from lowering
of the watet-table, by intensive drainage and groundwater abstraction (Van Amstel e
al, 1989). In addition, Hendriks (1994) showed that 29% of the Dutch forests suffers
from drought. Decrease upward seepage water quality has also affected species
diversity in many wetland ecosystems (Van Wirdum, 1991}).

To evaluate effects of eutrophication, acidification and drought on species
diversity, a conceptual, species-centred, Multiple stress mOdel for VEgetation (MOVE)
has been developed (Latour and Reiling, 1991). MOVE calculates the probability of
occurrence of plant species as a function of soil pH, soil nitrogen availability and
depth of the groundwater-table in spring. Because combined samples of vegetation
and these site factors are rare, the indication values of plant species by Ellenberg ez a.
(1991) are used to assess the site factors. The Fllenberg’s indication values were
calibrated with samples of vegetation relevés combined with measured site factors
(Wiertz e al., 1992},

To evaluate the soil pH and nitrogen availability in response to acidification,
drought and eutrophication scenarios the SMART model (De Vries ef 4/, 1989) was
extended to serve as soil module for the MOVE model. The dynamic soil acidification
model SMART was developed to evaluate the effectiveness of emission control
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strategies for SOz, NO, and Nil; on a European scale. SMART is a simple one-
compartment model which mainly includes geochemical buffer processes such as
weathering and cation exchange. To model abiotic site factors in both dry and wet
natural ecosystems SMART was extended with nutrient cychng and improved
hydrology (including upward seepage transport). The extended model is called
SMART2.

With the combination of the SMART2 model and the MOVE model (see Figure
1) it is possible to evaluate the response of site factors of terrestrial ecosystems to
deposition and upward seepage scenarios to (i) assess the effectiveness of the
combination of emission-deposition reductions and reduction in groundwater
abstractions on a national scale, and (i) identfy areas with a large probability of
occurrence of specific plant species. shows the general concept of the integrated
SMART2-MOVI model.

5
H
SMART2 MOVE
Environmental Species
scenarios Soil : Vegetation diversity
module { N : module
: availability {1

Figure 1 Schematic presentation of the integrated SMART2-MOVE model

The major objectives of this Chapter are (i) to present a simple, nationally
applicable model to gain insight into the effects of upward scepage, atmospheric
deposition and nutrient cycling on terrestrial ecosystems, (i) the validation and
evaluation on a national scale using regionally available data, and (iif) an application of
the model on a national scale using various deposition and hydrology scenarios. A
complete description of the model SMART2 is given in Chapter 2.3. This Chapter
provides an evaluation and validation of SMART2 on a national scale using a nation-
wide inventory and the background on geographical information and data used for a
national application of SMARTZ, as well as an indicative application of the combined
SMART2-MOVT: using two deposition scenatios.

312 ‘The SMARTZ Model

SMART2 (Kros ef al, 1995a) predicts changes in H, Al, divalent base cation (BC2),
NO; and SO, concentrations in the soil solution, as well as solid phase characteristics
depicting the acidification status, 1.e. carbonate content, base saturation and
amorphous Al precipitates. The SMART2 model consists of a set of mass balance
equations, describing the soil input-output relationships, and a set of equations
describing the rate-limited and equilibrium soil processes (Table 1).
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Table 1 Processes and process descriptions inc¢luded in SMART2

Process Flement Process description
Inpur
"Total deposition S0y, NQOs, NI, Inputs: deposition fluxes are multiplicd by
BC2 4, Na, K 2n element- and vegetation-dependent
filtering factor?
Upward seepage S0y, N3, NT1, Inputs
BCZ D, Na, K
Water Balance - Inputs: precipitation, upward scepage,
evapotranspiration
Rate-lmited reactions:
Foliar uptake NI Linear function of total deposition
Folir exudation BC2L, K Fquals foliar uptake
Lirterfall BC2U,K, Logistic growth
NH4, NO;
Root decay BC2 K, lincar function of litterfall
NI, NO;3
Mineralisation BC28H, K, first-order reaction and as a function of pll,

Mean Spring Water table (MS1#) and C/N
ratio of the litter

NiTy, NOs
N immobilisation NI, NO; Proportional to N deposition and as a
function of the C/N ratio soil organic
matter
Growth uptake BC2 9, K, Logistic growth
NIy, NO;
Nitrification NI, NO; Proportiemal to net NiTy input and as a

functon of pH, Mean Spring Water table
(MSW? and C/N rario

Denitrification NOs Proportional to net NOy input and as a
function of pt1, Mean Spring Water eable
(MSW) and C/N ratio

Silicate weathering AL BC2,Na, K Zero order reaction

Equilibrium reactions:

Dissoctation/association HCOs CO; equilibrium cquation
Carbonate weathering B2 Carbonate equilibrium equation
Al hydroxide weathering Al Gibbsite equilibrium cquation
Cation exchange 113, Al BC2 Gaines-Thomas equations
Sulphate sorption i1, 80, J.angmuir equation

b BC2 stands for divalent base catons (Ca, Mg}
% The vegetation-dependent filiering factor takes into account the roughness length of the canopy
» Tephicitly, H is affcered by all processes. This is accounted for by the charge balance

The soil solution chemistry in SMART2 depends on the net element input from
the atmosphere (the product of deposition and filtering factor, i.e. a correction factor
for the roughness length of the canopy) and groundwater (upward seepage), canopy
interactions (foliar uptake, foliar exudation), geochemical interactions in the soil (CO:
equilibria, weathering of carbonates, silicates and/or Al hydroxides, SO4 sorption and
cation exchange), and a complete nutrient cycle (litterfall, mineralisation, root uptake,
nitrification and denitrification). The growth of the vegetation and litterfall are
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modelled by a logistic growth function, which acts as a forcing function. Nutrient
uptake only stops when the soil solution concentration of the corresponding nutrient
becomes zero. Soil interactions are either described by simple, rate-limited (zero-
order) reactions (e.g. uptake and silicate weathering) or by equilibriumn reactions (e.g.
carbonate and Al-hydroxide weathering and cation exchange). The influence of
environmental factors, e.g. pH and temperature, on weathering and exchange
reactions is ignored. Solute transport is described by assuming complete mixing of the
element input within one homogeneous soil compartment with a constant density and
a fixed depth (generally the root zone), so SMART2 only predicts the solutes leaving
the toot zone. The annual water flux percolating from this layer equals the annual
precipitation excess, which must be specified 2s 2 model input. The time step of the
model is one year, so seasonal variations are not considered.

313 The vegetation effect module MOVE

We used the model MOVE (Latour and Reiling, 1993) to evaluate the effects of a
changes in soil pH and N availability, as calculated by SMART2, on species diversity for
plant species of nutrient-poor deciduous forests. MOVE predicts the probability of
occutrence of plant species as a function of three abiotic soil factots: soil acidity,
nutrient availability and soil moisture. With regression statistics the probability of
occutrence of a species can be calculated for each combination of soil factors or for
each environmental variable separately resulting in species-response curves. Species-
tesponse curves of about 900 plant species have been determined for soil moisture,
nutrient availability and soil acidity (Wiertz o «/, 1992) using Gaussian logistic
regression models. Although, it is known that species diversity is affected by several
nutrients (cf. Olde Venterink, 2000), MOVE only take N into account.

Regression was based on an extensive database developed for a revision of the
Dutch classification of plant communities (Schaminée ef 4/, 1989). This database
consists of 30 000 vegetation relevés. However, no information on abtotic site factors
of these vegetation relevés was available. Hence, abiotic site factors were assessed mn
retrospect based on Ellenberg indication values (Ellenberg e 4/, 1991), using the
method of Ter Braak and Gremmen (1987). Ellenberg indication values indicate the
relationship between the occurrence of a plant species and nutdent availability, acidity,
soil moisture, salt dependency, and temperarure. These values have been assigned to
most plant species of western and central Europe, and the Netherlands (Wiertz ef 4/,
1992). The abiotic site factors of each vegetation relevé are assessed by averaging the
indication values of all the observed species. Calculated averages of the Ellenberg
indication values are used as a semi-quantitative assessment of the abiotic soil factors.
Next, the frequency of probability of occurrence of each species is derived as a
function of the average Ellenberg indication values of the vegetation televés, using
Gaussian logistic regression models (Jongman ez a/, 1987). Because this analysis used
only floristic information to assess the abiotic site factors, any (historical) vegetation
televé can be included in the analysis. Moreover, such an analysis excludes potential
bias caused by high temporal and spatial variation in the actual measurements of
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abiotic site factors. Species occurrence has been described as being significant for 95%
of the species using unimodal and linear regression modcls. Most of the significant
models were unimodal. Linear models were found for nutrients (4%) and salt (20%).

Ellenberg indication values were calibrated with quantitative values for the
abiotic soil factors using combined samples of vegetation and environmental variables.
This calibratton connects SMART2 with MOVE. For this purpose a database has been
compiled with combined samples for pkl (N = 3988), mean spring water table (ASW")
N = 13) and N availability (N = 266). For pH, MSW, biomass production and N
availability satisfying relations with Ellenberg values were found, explained variances
of tespectively 0.58, 0.54, 0.59 and 0.58 (Alkemade ez a/, 1996).

MOV input consist of a yearly average pll and N availability in the root zone
and the (MSW). The pll and N availability were calculated by SMART2, wheteas the
MSW was provided by the hydrological scenario derived by the national groundwater
model (LGM, Pastoors, 1993; cf. Section Flydrology scenariv). The pH in SMAR12 refers
to a ‘real’ pIl of the soil solution, which must not be mixed up with regular soil
analysis parameters like plI(KCl) and pH{II:O). In this study the N availability is
defined as the sum of the N throughfall flux and the mineralisation flux. This can be
regarded as a gross N availability, which is available for root uptake, immobilisation
and denitrification. The remainder will be leached from the root zone.

Characteristic species for nutrient-poor deciduous forest Quercion Roboti-Petracae
and Fago-QOuercetum were inferred from Loopstra and Van der Maarel (1984).
Ecological response curves of 13 plant species were inferred from Wiertz ef a/ (1992).
These species are: Convallaria majalis, Ceratocapnos claviculata, Deschampsia  flexcuosa,
Hieracium laevigatum, | lieracium umbellatum, Holous mollis, Luzpdla pilosa, Lisula syivatica,
Melampyrum pratense, Polypodium vulgare, Pleridium aguilinum, Solidago virgauria, and Teucrium
scorodonia.

For each species the 10 and 90 percentiles of the species-response curves were
calculated. The 10 percentile corresponds with a reduced probability of occurrence
due to ‘shortage or limitation’, the 90 percentile to reduced occurrence due to ‘excess
or intoxication’. Next, the probability of occurrence was plotted for each grid cell. A
species was considered to have a probable occurrence when both the predicted pH
and N availability in a grid cell were between the 10 percentile and the 90 percentile
value of the ecological response curve. The probability of occurrence for each grid cell
was calculated from the numbet of the mentioned 13 plant species which are probable
to occur.

314 Model parameterisation, calibration and validation

Data acquisition strategy

Data needed to apply SMART2 on 2 national scale, include system inputs (driving
variables), the initial state of model variables and model parameters. System inputs
refer to a specific deposition scenario and upward seepage scenario for each grid cell.
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Model variables and parameters refer to particular combinations of generic soil types

and generic vegetation structure types,

In predicting the long-term impact of atmospheric deposition scenarios on site
factors on a national scale, we distinguished:

- geo-referenced information on system inputs, for each grid cell ie. (i) soil type,
vegetation structure type, and water table class, (i) the deposition of $O4, NOs,
NH.,, base cations and Cl (iii) precipitation and (iv) upward seepage fluxes;

- gencric information, i.e. average values for initial values of model variables and
model parameters for each combination of vegetation structure type and soil type.
Soil type, vegetation structure type and water table class were derived form

national maps, which were generalised en gridded toward a 250 X 250m? grid.

Hydrological information was derived from the National Groundwater Model (LGM;

Pastoors, 1993), with a resolution of 250 x 250 m2 Deposition values of SO2, NO,

and NI for 1980, 1990 and 1997 were available on a 1 X 1 km? grid (Tlerens and Van

Dam, 2000, see section Deposition Scenarios) and deposition values of base cations and

Cl (derived from a 10 X 10 km? grid database; De Vries & 4/, 1994c). The grid-related

information was stored in database tables, whereas the vegetation and soil related

parameter were stored in ascii-files (cf. Mol-Dijkstra ef @/, 2001). The model output
was stored as grid - and time related dara in database tables or grid-ascu-files.

Validaton data

To gain insight into the reliability of the model predictions, we compared model
results of the soil and soluton chemistry for forest with soil and soil solution
measurements at 60-100 cm depth. Validation data were based on an inventory of
about 200 forested stands throughout the Netherlands. For acid sandy soils,
measurements from 150 forest stands were used, which were sampled once during the
period March to May in 1990 (De Vries ef al, 1995b). For clay, loess and peat soils
measurements from 100 forest stands were used, which were sampled once during the
pertod March to May in 1994 (Klap ef 4/, 1999).

It is important to realise that there exists some crucial differences between the
modelled and observed samples (see also De Vries ef a/, 1994a):
- the number of the observed soil/vegetation combinations differed from those that

were simulated and most observations concerning forest on poor sandy soils;
- the soil depth of the observatons was always 60-100 cm, whereas the soil depth

used for the stmulations varied from 20-100 cm (cf. Table 9);

SMARTZ2 simulated flux weighted annual average concentrations, whereas the

field data were single observations in early spring,

Areal distribution of soil-vegetation combinations

We considered seven soil types and five water-table classes, which were derived from
the 1 : 50 000 soil map of the Netherlands. Soil types were generalisation based on soil
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chemical criteria: parent material, presence of calcite, base saturation and texture

{Table 2).

Table 2 Distinguished soil types

Code Soil class Common soil types (FAQ, 1988)
Sp Sand Poor Carbic Podzols, Arenosols

SR Sand Rich Gleyic Podzols, Gleysols

S0 Sand Calcarcous Arenosols

CN Clay Non-calcarcous Fuvisols

CcC Clay Calearcous Fluvisols

PN Peat Non-calcarcous Histosols

I.N Loess Non-calcareous FLuvisols

The relation between the 1 : 50 000 soil map codes and the seven soil types
used is given in Kros ef @/ (1995a). The five water-table classes were the same as used
by De Waal (1992) (Table 3). The corresponding Mean Highest Water-table (MI1I)
and Mean Lowest Water-table (MLW) were derived (weighted averaged) from Van
der Sluijs (1990).

Table 3 Used water-table classes and their corresponding water-table
classes from the 1:50 000 soil map of the Netherlands and the
corresponding averaged MHW, MLW,6 MSW

Water-table Class Water-table Class from the MHIPY MILW MSW
used in this smdy 1: 50 000 soil map (m) (m) (m)
1 | ) -0.05 0.38 0.08
2 11 0.07 0.66 0.24
3 10, 10, 5, v, v 0.24 1.18 0.48
4 IV, VI 0.60 143 0.82
5 VIIL VIV 1.29 2.21 1.51

b Averaged MHIF (Mean Highest Water-table), AL (Mean Lowest Water-table) and AW {Mcan Spring Watee-
tableas given by or caleulated feom Van der Slags (19910)

We attributed the existing vegetation to five classes of ‘functional rypes’ of
vegetation (Table 4), based on difference in canopy characteristics, litter production,
growth and vegetation management.

The areal distribution of the vegetation structure types over the soil types
(Table 5) and the water-table classes (Table 6} was obtained by an overlay of 250 X
250 m? grid maps, i.e. (i) generalised soil map (including water-table information), (if)
the Dutch forest inventory (Nederlandse, 1985), (iif) ‘nature conservation value map’
(Natuurbeleidsplan, 1989) and a detailed vegetation map based on satellite
observations (LGN; Thunnissen ef a/, 1992). Because of the inaccuracy of the various
vegetation maps, more than one vegetation class could be assigned to a 250 X 250 m?
grid cell. For these cases the following allocation sequence was used: (i) first grassland
and heather from the satellite observation map first assigned to the 250 X 250 m? grid
cells; (if) second forest (DEC, SPR, PIN) was assigned only when no grassland and no
heather was assigned during the previous step. This sequence was used because the
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LGN data (dated from 1990} was more recent than the forest inventory data (dated
from 1985).

Table 4 Distinguished vegetation classes

Code Vegetation Class  Common specics
Characteristics

DEC Deciduous forest  Oak, beech, Japanesc larch
Needle or leaf-shedding trees with: low forest filtering, growth rate and
transpiration rate

PIN Pine forest Scots pine and black pine
Evergreen trees with: moderate forest fltering, growth rare and
transpiration rate

PR Spruce forese Douglas fir, Norway spruce
Fivergreen trees with: high forest filtering, growth rate and transpiration
rate

1TEA Heather Calluna, Tirica

GRP Grassland Commen grass species

(nutrient-poor)
no fertilisation or grazing

Table 5 Area of the vegetation/soil combinations considered in the model

application as a percentage of the total vegetation-covered area in the
Netherlands® {326 614 ha}®

Sodl type Arca (%)

Pine Spruce Deciduous Feather Grass Total

forest Torest forest {nutricnt-}

Poor

Sand Poor 35.54 5.97 18.73 370 3.19 67.14
Sand Rich 4.97 31 10.19 0.18 0.29 18.74
Sand Calcarcous 0.29 0.12 1.28 (.00 2.94 4.63
Clay Non-calcareous 0.27 0.30 2.57 0.00 0.27 342
Clay Calcareous 0.02 0.03 221 0.00 0.29 2.54
Peat Non-caleareous 0.22 0.39 1.62 0.12 0.44 279
Loess Non-calcarcous 0.14 0.05 0.52 0.02 0.02 074
Total 41.45 9.97 37.12 4,02 7.44 . 100.00

U Information on the areal distribution of tree speaws and soil types in each gnd ecll was derived by overlaying a
250 % 250 m? grid with vegetation coverage information and a sodl darabase with soil type nformation in a 250 x
250 m? gnd. The latter database was denved by transforming the digitised 1: 50 000 soil polygon map of the
Netherlands {De Vres and Denncboom, 1992).

D 7This value excludes the vegetation coverage i the southern part of the Province of Limburg and the southem
part of the Province of Flevoland.
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Table 6 Area of the vegetation/water-table class combinations considered
in the model application as a percentage of the total vegetation covered
area in the Netherlands (326 614 ha)

Watcr-table: Arca (%)

Class Pine forest  Spruce Deciduous  Tleather Cirass F'oeal
Forest forest (nutrient-)
Poor

1 0.03 0.01 0.28 0.01 0.50 0.82

2 0.21 0.13 1.25 0.01 0.99 259

3 5.66 KXY 11.75 0.61 1.21 22.64
4 577 272 8.81 0.22 1.08 18.60
5 29.76 37t 15.02 318 3.67 55.35
Total 41,43 0998 37.11 4.03 7.45 100.00

Data related to vegetation structure types

Data used for the five vegetation structure types are presented in Table 7. The
vegetation age (agey) was set to 40 years old for forest and 10 years old for short
vegetation. This refers to a semi mature forest which will double in biomass during
the next 50 years. The stand age (ages) for forest (PIN, SPR, DEC) was derived by
assuming that most of the actual forest in the Netherlands was planted at the
beginning of the 20™ century. For heather (IIEA) and grassland {(GRP) is was assumed
that they were sod cutted or ploughed 10 years ago.

Most data on canopy interactions (filtering factors, dry deposition factors,
interception fractions, foliar uptake fractions and foliar exudation fractions), nutrient
cycling (reallocation fractions and nutrient contents in leaves) and growth uptake
(nutrient contents in stems) in forests were directly taken from De Vries ez 2/ (1994c¢).
Values for pine, spruce and deciduous trees related to Scots pine, Douglas fir and Oak
respectively. The amounts of litterfall for these forests were the product of the average
values for leaf biomass and litterfall rate constant given by De Vries e al (1994a).
Nutrient cycling factors (ng), the fraction of roots in the litter layer (fr; ) and
mineralisation constants for forest were taken from a literature survey by De Vries o7
al. (19903,

Filtering factors for heathlands and grasslands were assumed to be 1.0. Dry
deposition factors, foliar uptake fractions and foliar exudation fractions for heather
and grassland were detived from Bobbink and Heil (1993) and Bobbink e @/ (1990),
respectively. Interception fractions for both vegetation structure types were derived
from De Visser and De Vries (1989).

As with forests, the amounts of litterfall in heathlands and grasslands were
calculated as the product of average values of above ground biomass and litterfall rate
constants, using data from Berendse (1988) for Erica (wet heathland) and Moknia
(grass). Reallocation factors, nutrient cycling factors, nutrient contents in above
ground biomass and mineralisation constants were detived from the same source. The
fraction of roots in the humus layer in heathlands was based on Tinhout and Werger
(1988). Actually, these authors found that about 75% of the fine root biomass {(cf.
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Table 7) was in the top 5 ¢m of the soil. We assumed this amount to occur in the litter
layer. The same assumption was made for the organic top-layer in grassland.
Concentrations of monovalent base cations (K) in above-ground biomass in
heathlands and grasslands were based on Heil and Diemont (1983) and Bobbink ef a/.
(1990), respectively. Values for divalent base cations (Ca, Mg) were derived from Pruyt
(1984). Mineralisation constants for heather and grassland were based on Berendse
(1988) assuming that they relate to well-drained soils (no reduction for groundwater
level).

Table 7 Values used for the canopy interactions, nutrient cycling, growth
uptake and mineralisation parameters for the five vegetation structure

types

PParameter D Unit PIN SPR IHC PEA GRP
it a 40 40 40 10 i0
agey a 80 80 80 10 W
Canopy Interaction

J50: - 1.4 1.6 115 1.0 1.0
JNH; - 13 1.5 11 1.0 1.0
JNO, - 0.85 1.0 07 1.0 1.0
Ju - 25 3.0 20 1.5 15
Jra - 0.3 0.4 0.2 01 0.05
JiNH,p - 0.3 0.3 03 0.4 0.3
Sy, - 03 0.3 03 0.4 0.3
ke - 0.63 0.63 0.66 0.65 0.5
Nutricnt Cycling

Amy kgmZatl 0.41 0.30 0.33 0.24 0.30
nf - 0.5 0.5 0.5 3 3
Thep - 2 2 2 2 2
e - 0.36 0.36 0.36 (.10 0.50
Jren - 0.25 0.25 0.25 0.75 0.75
oBCZ; % 0.31 0.54 0.64 0.75 0.75
oKy %o 0.60 0.61 0.92 0.25 070
Ny mn Yo 15 1.5 2.5 0.9 1.6
NG b Yo 2.5 25 35 0.9 1.6
Growth Uptake .

Ny %% 0.12 on 0.17 0 0
#BC2, Yo 0.1 0.08 0.06 0 0
oKy % 0.05 0.04 0.12 0 0
Mineralisation

i moc - 0.8 0.8 0.8 0.4 08
B mc at 0.05 0.05 0.65 03 0.3
I See Annex 1 for explanation of the used symbols, and Chapter 2.3 for the equations in which the parameters are

used. )

Data related to soil types

Data used for the soil parameters of the seven soil types are presented in Table 8.
Data on bulk density, soil moisture content, carbonates, CEC, base saturation, organic
mattet content, total nitrogen content and secondary Al compounds were derived
from an extensive field survey of 150 non-calcareous sandy soils (SP and SR; De Vries
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et al, 1995b), about 50 calcareous sandy soils (Alterra, W. de Vities, pers. comm.), 30
clay soils (CN, CC), 40 loess soils (I.N) and 30 peat soils (PN; Klap ez a/, 1999). Note
that all sampling sites were forest site. Exchange constants and the Al equilibrium
constant were calculated, using the measured adsorbed and dissolved concentrations
of H, Al and BC2 averaged of the considered soil depth. Here we present the median
values related to the root zone for forest, which was set equal for all forest types.
Similarly K/ derived from averaged soil solution concentrations of Al and H for
sites with a pH below 4.5. The pH criterion was also used for the calculation of the
exchange constant and was introduced to prevent use of unrealistic values.

Maximum denitrification fractions (ffum) and the parameters relating
denitrification to water-table (ffamswim and g4) were derived from Breeuwsma ef o/
(1991). Nitrification fractions were calculated as a function of the water-table class,
using data on deposition and leachate concentrations of NH, (:INH,) and NO; (:NO))
in the mentioned 300 forest stands on sandy, clay, loess and peat soils, assuming that
the NI, to NO; ratio at the bottom of the root zone can be described as:

«¢NH, — (I“ﬁai)'l\‘qlmrd 1)
NO,  NO, ,+(1+ fr,)-NH, ,
or:
NH,, &NH,
NO,, «NO
Fa = T @
NH,, (|, &NH,
NO, , «NO;

When deposition data for NI and NO; were not available, a ratio of 2 was
assumed between the total deposition of NH; (Nf{,,) and the total deposition of
NO; (NO;,). The results for the various sandy soils were lumped, because differences
appeared to be small. Using these data, a linear relationship between the nitrification
fraction and MSW was assumed (see Chapter 2.1).

The SOy sorption capacity was set at 2% of the secondary Al compounds
content (Johnson and Todd, 1983). The partial CO:2 pressure was derived from
Kootevaar ef al. (1983). Weathering rates of base cations for the non-calcareous sandy
soils were taken from De Vries (1994), who derived weathering rates on the basis of
one-year batch experiments that were scaled to field observations. Weathering rates
for calcareous soils were derived from De Vries ¢f a/ (19%94a). For peat and loess soils
weathering rates were derived from Van Breemen e/ a/ (1984) and Weterings (1989)
respectively. Note, however, that these weathering rates refer to silicate weathering,
The weathering in calcareous soils is fully dominated by carbonate weathering, cf. Eq.
(69) in Chapter 2.3.
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Table 8 Values used for the soil parameters for the seven soil types,

related to the depth of the root zone for forest

Paramcter v Unit sP SR S CN/CC I.N I'N
Depth m 07 0.6 0.8 10 10 03
Sodl physical praperties

ip - 0.1 0.2 0.2 0.0 0.2 0.0
Oy gem? 1.45 1.26 1.62 1.16 1.52 017
P gem? 0.13 .13 0.13 0.13 .13 0.13
& m3 m-? 0.13 0.18 0.061 027 0.41 0.84
Organic matter
OM kg kg 0.02 0.06 0.0t 0.07 0.03 0.90
CNos kg kgt 15 15 15 15 15 15
N, kg kg 44 40 20 40 40 40
CNow kg kgt 21 26 10 10 21 35
CNpy kg kgt 15 15 15 15. 15. 15,
DA,, ky kgt 15 15 15 15 15 15
(Dejuitrification
Jrai s - 1.0 1.0 1.0 1.0 1.0 1.0
i MSW on - 0.3 03 0.3 0.5 0.5 0.3
ot m 0.1 0.1 0.1 0.0 02 0.5
Rw2 m 0.5 0.5 0.5 0.5 0.85 0.85
Sriem: - 0.9 0.9 0.9 1.0 0.9 1.0
i M mon - 0.25 0.25 0.25 0.7 0.7 0.85
e m 1.3 13 1.3 25 1 1.5
Soil Chemrical Parometers
CEC mmol; kg! 1 41 ) 319 54 414
JrBC2, - 0.07 0.06 0.83 0.89 016 0.58
KAL. log mol 1) 079 0.16 -1.2 -3.4 0.6 -21
KH.. lug (mol I 4.0 s 5.0 6.7 4.2 35
KAl log (mol 1Y) 3.1 79 8.1 9.4 83 6.5
dCay mmol, kg! 0.0 0.0 182.4 0.(109)1 0.0 0.0
AL mmol kgt 85 109 9 196 155 10
$5C mmol kg! 1.7 22 0.18 39 31 3.1
C mol. m-? 1.0 1.0 1.0 1.0 1.0 1.0
pEO2 hPa 0.1 01 0.1 0.2 0.1 0.5
BC2,. mol, m?at 0.009 0.025 0.008 0.030 0.015 0.010
Kie Ny, mol, m?al  0.011 0.020 0.010 0.040 0.020 0.020

% See Annex 1 for explanation of the used symbuols, and Chapter 2.3 for the equations in which the parameters are

used.

3 Value m bracket was used for calcareous clays soils (CC)

Data related to soil-vegetation combinations

Model parameters that depend on both soil and vegetation refer to the depth of the
root zone, transpiration rate and growth parameters. Values used for each

combination of soil and vegetation are given in Table 9.
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Table 9 Values used for the soil and vegetation-dependent parameters for
all soil vegetation combinations

Vegetation Soil T Ir oy t Aty
(m) {mal) @h (@ (kg m'3)
PIN sp 07 0.276 0.067 40 222
SR 0.6 0.292 0.066 39 283
SC 0.8 0.298 0.085 34 10.5
CN, CC 10 0.378 0.085 34 10.5
LN 1.0 0.282 0.066 39 28.3
PN 0.5 0.378 0.085 34 10.5
SPR sp 0.7 0.296 0.072 a8 25.0
SR 0.6 0.304 0.077 37 41.1
sSC 0.8 0.329 0.072 i8 250
CN, CC 1.0 0.417 0.072 38 25.0
PN 0.5 0417 0.072 38 25.0
IN 1.0 0.306 0.077 37 1.1
DIC sp 0.7 0.320 0.088 50 28.8
SR 0.6 0.328 0.088 43 769
SC 0.8 0.34 0.088 48 76.9
CN 1.0 0.397 0.090 49 49.9
CcC 1.0 0.397 0.088 43 76.9
LN 1.0 0326 . 0.088 48 76.9
PN 0.5 0.397 0.090 49 49.9
HIEAZ 5P, 5C 0.2 0.335 0.15 10 14
SR 0.2 0.37 0.15 10 1.4
SC 0.2 0.335 0.15 10 1.4
PN 0.2 0.41 .15 10 1.4
GRP 8P 5C 0.2 0.40 0.15 5 0.5
SK,IN 0.2 0.44 015 5 0.5
8C 0.2 .40 0.15 5 05
CN, CC, PN 0.2 0.48 0.15 5 0.5
b See Annex 1 for explanation of the used symbols, and Chapter 2.3 for the equations in which the parameters arc
used,

3 Heather on loess and clay soals do not occur

The thickness of the root zone and actual evapotranspiration rates for forest
were taken from De Vtries ¢f 4/ (1994c), who derived transpiration fluxes from model
calculations (SWATRE, Belmans ef a/, 1983} for various forest types on sandy soils,
while using expert judgement for forests on peat, loess and clay soils. Actual
evapotranspiration rates for short vegetation on sandy soils were derived from De
Visser and De Vries (1989). Values for loess soils were taken from Van der Salm
(1999). Values for clay and peat soils were set equal to potential evapotranspiration
rates as given in De Visser and De Vries (1989). For sandy soils and loess soils actual
transpiration rates were corrected when the precipitation deviates form 780 mm a*,
i.e. the value used for the water balance calculations (cf. IHootsmans and Van Uffelen
(1991). Growth rate parameters for forest were based on a literature survey by De
Vries ef al. (1990). Growth rates for short vegetation refer to shoot growth only (i.e.
increase in litterfall), and were derived from Berendse (1988). The increase of non
shoot material was assumed to be negligible. This was mimicked in the model by
setting the nutrient contents in stems to zero (cf. Table 7).
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Deposition and hydrology scenarios

The temporal trends of chemical soil parameters predicted by SMART2 are driven by
scenarios for atmospheric deposition and hydrology. Deposition scenario is related to
changes in the atmospheric depositon fluxes of NH;, NOy and 5O The deposition
of base cations and of Cl was kept constant. The hydrology scenario is rclated to the
changes in the quantity of the upward seepage flux and related changes in phreatic
water level. The solute concentrations of the upward seepage flux was kept constant.
For both deposition and hydrology a Basiness as Uswal (BU) and an Improved Environment
(IF9) scenario was evaluated and their mutual combinations (Table 10). The scenarios
were generated for the period 1990-2050,

Table 10 Considered scenarios with respect to deposition and hydrology

1lydrology LYeposition

Business as Usual Improved Favironment
Business as Usual BB iB
Improved Eavironment BI I

b Refers to preopitation .
3 Refers to SO, NOy and NHs. Atmospheric deposition of base cations and chloride was assumed to be constant

Deposition scenatios

The two deposition scenarios consists of: (i) a continuation of the deposition in the
year 1997, BU and (it) 2 reducing deposition scenario, reflecting the planned emission
reductions in the Nethetlands for the next 20 years, IF.

Simulations started in 1980 to initialise the model, using deposition estimates
for the year 1980, 1990 and 1997 (Eerens and Van Dam, 2000). These estimates are
based on calculations with an empirical model (DEADM; Erisman, 1991) of the wet
and dry deposition of these elements on a national scale for a 5 X 5 km? grid, using the
concentrations of NII,, NO, and SO, that were measured at several weather stations
of the National Air Quality Monitoring Network.

For the BU scenatio values for the year 1997 were maintained until 2050. For
the JE deposition anticipated deposition values for the years 2010 and 2030 were
taken from the National Environmental Plan {(cf. Beck ef al, 2001). The Improved
Environment scenario values for the 2010 depositon were related to the National
Emission Ceiling (NEC) for the Netherlands and the Gothenburg protocol for the
rest of Furope. Deposition values for 2030 correspond with deposition values for
which 90% of the semi-natural areas has a deposition below the critical load (cf. Beck
et al,, 2001). For 2050 the same values were used as for 2030.

For all deposition inputs in each 250 X 250 m? grid values from the

corresponding 5 X 5 km? grid were used. For each grid cell values for in berween years
were derived by linear interpolation.
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Table 11 National averaged deposition and emission values used for NI,
NO, and SO, deposition within the scenarios

Year Average depositionh Totl emissions?
{mol. halaf {kron a-!)
Nil, N{(), SO, NIl NO» 50),

1980 1832 834 1478 234 585 431
1990 1823 811 719 231 575 202
1997 1499 642 394 187 453 118
2010 880 361 177 104 238 50
2030 239 {05 77 50 80 40
2050 239 105 77 50 80 40

5 Deposiion values refer to the beginming year of the peniod
3 Navonal crissions

Values used for the deposition of base cations and Cl were taken from De Vries
(1991), who performed an interpolation from 22 monitoring-stations for the period
1978-1985 (Anonymous, 1985) to a 10 X 10 km? grid. For each 1 X 1 km? grid values
from the corresponding 10 X 10 km? grid were used. Base cation and Cl deposition
fluxes were kept constant throughout the simulation period.

Precipitation data were derived from weather stations from the Royal
Netherlands Meteorological Institute (KNMI). Selected records of precipitation
normals from 280 stations over the period 1950-1980 were interpolated to 2 10 X 10
km? grid. As with the base cation deposition, values for each 1 X 1 km? cell were taken
from the corresponding 10 x 10 km? grid and were assumed constant during the
simulation period. Details on the interpolation procedure have been given in
Hootsmans and Van Uffelen (1991). Most values ranged between 700 and 900 mm at.

Upward seepage scenarios

Scenarios for the quantity on upward seepage were generated with the National
Groundwater Model for the Netherlands (ILGM, Pastoors, 1993). The effects of
upward seepage on the site factors were evaluated for two scenarios: (i) a constant
upward seepage flux, using the values for the year 1988 (Pastoors, 1993), Bussiness as
Usual, and (i) 25% reduction of groundwater extractions for public drinking water,
resulting in increased upward seepage fluxes for the year 2010 (Pastoors, 1992),
Improved Environment. For the Improved Environment scenario, values between 1988 and
2010 were linearly interpolated. Tt must be emphasised that the surface area that
showed an increase in upward seepage flux is restricted to about 12% of the model
area, on 9% of the surface area of the Nethetlands (cf. Pastoors, 1992). Calculated
changes in phreatic water level were converted to absolute values by adding them to
the initial phreatic water level (Kros er af, 1995a). These actual values of phreatic water
level were used as input for both SNLART2 and MOVE.

Information on upward seepage water chemistry was based on the National
Survey on landscape ecology (LKN; Bolsius ef @/, 1994). For each 1 km? grid cell, the
LKN groundwater quality database provides a quality class. To assign a chemical
composition to the quality classes, the chemical composition of reference water types
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from Van Wirdum (1991) were used. Using solute concentrations of the reference
samples from Van Wirdum (1991), ionic concentrations were derived for the
considered seepage types (Table 12, cf. Kros ef 4/, 1995a).

Table 12 Groundwater concentrations (mol. m'?) used for the seepage type

Secpage hpe S0y NGO NH, BC2 Y K Na Cl
No seepage 0.20 0.06 0.05 323 0.03 6.30 0.20
Mixed water 0.20 0.06 0.05 3.23 0.03 0.30 0.20
Groundwater 0.27 0.02 .04 6.42 0.05 0.52 0.31
Brackish water 574 0.02 0.12 195 1.05 46.0 541
Sca water 55.0 0.02 4.78 1377 10.0 456.0 538.0
Surface water 1.67 0,27 0.05 493 0.18 4.17 5.01

0 B(Z= (a+ Mg

315 Results

We present results from a validation and an application of the model SMART2 on 2
national scale. Results concerning model outputs required for applications of MOVE,
i.e. pH and N availability. N availability is defined as the sum of the N throughfall flux
and the total N mineralisation flux (see Chapter 2.3, Eq. 28). Base saturation as such is
not an input for the MOVE model, but is also presented because of its
(hydro)ecological implication. For the validadon some other model outputs are
presented as well.

Validation

Soil solution concentrations

To gain insight into the reliability of the model predictions, we compared model
results on soil and soluton chemistry for forests with soil and soil solution
measurements at 60-100 cm depth (cf. Table 13).

Table 13 Median values of important soil and soil solution parameters as
observed at 60-100 c¢m depth (Obs.) and predicted for 1990 (Med.) by
SMART2 for deciduous forest

Soil type Nb pll Al NIL NO;
(mol. m¥) {mol. m-3) {mol. %
O, Mad. Obs.  Mod. Obs.  Mod. Obs. Mad. Ohs.  Mod.

Sand poor 27 44093 4.0 38 042 108 008 0.00 025 0.58
Sand rich 28 1005t 38 3.9 049 052 0.08 0.00 033 023
Peat 30 6363 38 38 Q.04  0.04 024 00 002 00
Locss 40 926 4.3 4.1 018 037 004 019 072 047
Clay 13 6386 63 59 001 000 000 007 011 022
Clav calc. 17 3884 7.4 6.8 0.00 0.00 000 0.00 006 008

Y N represents the number observed and simulated soil/ vegetation combimations,
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The agreement between the observed and simulated pIl was generally good.
The agreement for the Al concentration appeared to be reasonable. Alternatively, the
Al in concentration in poor sandy soils was overestimated. The agreement for NI,
and NO; was generally moderate (deviations larger than 50%). NIy concentrations
wete cleatly underestimated in peat soils. Given that NOj concentrations were slightly
underestimated too, N mineralisation might be underestimated or denitrification
overestimated. For the poor sandy soils and the clay soils the NO; was clearly
overestimated, whereas for rich sandy soils and loess soils it was underestimated.
‘These deviations indicate that the nitrogen dynamics in SMAR1T2 are parameterised
inadequately. It is likely that the mineralisation and or (de)nitrification parameters
need some improvements. Moreover, in SMART2 the N mineralisation flux, which
strongly influences the concentrations of dissolved N, depends largely on the age of
the vegetation and the N content in the foliage (cf. Chapter 2.3) However, nation wide
data on the age of the vegetation and the N content in the foliage is lacking. Finally,
out validation is mainly limited to deciduous forest on non-calcarcous soils. For other
vegetation structure types, additional data gathering on soil and soil solution would be
required.

Nitrogen mineralisation fluxes

We also compared the calculated N mineralisation fluxes with observations, as they
are a substantial part of the N availability. N mineralisation fluxes depend on: (i) the
age of the vegetation, (ii) vegetation management (mowing, grazing or forest
harvesting) and (iif) the N flux in atmospheric deposition. The N mineralisation fluxes
calculated by SMART2 for the year 1990 refer to: (i) relatively mature terrestrial
ecosystems (heathlands/grasslands are assumed to be 10 years old; forests are
assumed to be 40 years old), (if) from which no biomass is removed during the
simulation period and (i) with a high atmospheric N input.

Validation should thus focus on data for similar systems. Mineralisation data are
comparatively scarce, except in steady-state situations when mineralisation equals
litterfall which has been measured more frequently. Table 14 summarised N
mineralisation data. When available, the age of the ecosystem is presented as well.

For heathlands and grasslands, data given by Gorree and Runhaar (1992) for a
steady-state situation (mineralisation equals litterfall) are 2 - 2.5 kmol. ha! a'l. These,
however, do not include root turnover, which is generally 75% of the total N turnover
in these ecosystems (cf. Berendse, 1988). Consequently, the total N mineralisation flux
would be increased by 8 to 10 kmol. ha'! a! at a steady-state. Note that data on
heathlands and grasslands used in SMART2 ate based on Berendse (1988), i.e. Erica
and Molinia respectively. Validation should thus focus on mineralisation data by
Berendse (1988).
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Table 14 Observed N mineralisation rates

Type of ccosysterm Age N mineralisation flux Source

(a) (kmol, ha! a-)
Pine Forest
Gerritsfles ca. 60 51 Van Dobben ef af (19920
Tongbersven ca. 80 5.7 Van Dobben e &/ (1992)0
Deecidnons Forest
Ouak+mixed; Beech 50-100 7-8 Tietema (1992)
Oak+mixed; Birch ca. 45 7-8 Van Breemen ef al (1988)Y
Deciduous forest varying 3-10 Metillo (1981)
Heathland
Calluna varying 0.8-42 Berendse (1990)
Frica 10 05-3.0 Berendse (1988, 1990)
Frica 30 35-70 Berendse (1988, 1990)
Firica 50 82.91 Berendse (1988, 1990)
Grassland
chalk grassland unknowa 35 Van Dam (1990}
Molinia 10 2-3 Berendse (1988)
Molinia 30 6-7 Berendse (1988)
Molinia 50 76-9.3 Berendse (1988)

b These data refurs to brterfall fuxes

N mineralisation fluxes as calculated by SMART2, using the BU scenarios both
for deposition and seepage, are summarised in Table 15. In Table 15 the N
mineralisation fluxes in 1990 for forest (Spruce, Pine, Deciduous) refer to a forest of
40 years old and for short vegetation (Heather, Grass) to a site of 10 years old,
whereas the values in 2050 can be regarded as a mature ecosystem were litterfall equals
mineralisation.

Table 15 Calculated N mineralisation fluxes, under the BU scenario

Vegetation N mineralisation flux (kmol. ha! a1
1990 2050
Spruce 2.8 32
Pine 35 4.2
Deciduous 4.6 53
[eather 27 3.1
Crrass : 4.3 4.6

In general, therefore, comparisons are problematic and should be regarded as
indicative. Model results from Table 15 generally compared reasonable with observed
N mineralisation fluxes. The modelled mineralisation fluxes for short vegetation in
2050 (i.e. 70 years old) were comparable with the appropriate ranges in Table 14,
whereas the modelled fluxes in 1990 (ie. 10 years old) are slightly higher than the
observed values. Modelled mineralisation fluxes for forest were always lower than the
observed fluxes. This might be an indication that the N Litterfall fluxes for forest we
used in this SMART2 application were underestimated. Data used in SMART2 for the N
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litterfall flux are a multiplication of average litterfall fluxes with a varying N content
depending on the N deposition level. Multiplication of observed ranges in litterfall
fluxes and N contents in foliage (Table 16} provides an indication of N mineralisation
rates at steady-state.

Table 16 N litterfall fluxes

T'ree spccics Litterfalil) N contents? N litterfall flux
(Mkg halal) (%) (kmol: hat a'l)

(Scots) Pine 0.5 -850 1.6-3.0 04-12

(Nnrway) Spruce 1.5 -7.50 1.1-23 08- 8

{Oak) Deciduous 1.6 - 5.69 22-32 16- 8

1 Data based on a literature complation for Notthern Europe (Reurslag and Berg, 1993)

2 Data for 45 pine stands, 15 spruce stands and 30 oak stands in the Netherlands (Flendriks ef #f, 1994), Contents
refers to contents of the foliage, for the caleulation of the litterfall flux a reallocation factor of 0.36 was assumed
(cf. Table 7)

9 Data based on a review by De Vrics e a/. (1990); Duvigneaud ef 4 (1971) pives ranges of 4.7-7.5 Mkg hat at

Considering the average maximum litterfall fluxes used in SMART2, ie. ca. 3
Mkg hat a! for the various tree species (lable 7), indicates that for forest the litterfall
fluxes ate underestimated, which in turn result in too low mineralisation fluxes in
forest. ’

Geographical distribution of pH and nitrogen availability

Maps of the median pH. and nitrogen availability per 1X1 km? pgrid cell for all
vegetation structure types in the year 1990 and 2050 for IE deposition scenario (e
reducing deposition) combined with the IE seepage scenario (increasing upward
seepage) are presented in Figure 2 and Figure 3.

Spatial variability in pH was high, which mainly corresponds with the variability
in soil types. Calcareous sandy soils and clay soils along the coast-line, clay soils in
along the rivers are well buffered sols, with telatively high pH values. Non-calcareous
sandy soils in the central part and the southern part of the country have a lower buffer
capacity, resulting in relatively low pH. Figure 2 show that deposition reductions and
inctease in upward seepage tesult in an increase in pH values, especially for the non-
calcareous soils.

N availability will have decreased in 2050 compared to 1990. N availability also
showed a highly spatial vatiability, mainly due to the spatial variability in atmospheric
N deposition. N availabilities appeared to be high in the central part and the southem
patt of the country, were atmospheric deposition of N is high. In the northern part of
the country the atmospheric deposition of N is low, resulting in lower N availabilities.

104



Chapter 3.1

& &
Figure 2 Geographical distribution of dominant values for the pH in the root zone of

semi-natural terrestrial ecosystems in 1990 (left) and 2050 (right), for the IE deposition
scenario combined with the IE seepage scenatio

1990 2050

N availability
(kmol_ha™" a™")

9
3y
Figure 3 Geographical distribution of dominant values for the N availability

(kmolc ha'! a”') in the root zone of semi-natural terrestrial ecosystems in 1990 (left) and
2050 (right), for the /E deposition scenario combined with the IE seepage scenario
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Effects of vegetation and soil on abiotic site factors

Changes in soil pH, N availability and base saturation under different vegetation
structure types are summarised in Table 17. Vegetation structure types influence the
soil chemistry by differences in nutrient cycle, filtering of dry deposition and
transpiration,

Reduced atmospheric deposition and increased upward seepage, is expected to
increase the soil pH and base saturation, and to decrease N availability. The pH and
base saturation increase was rather limited, except in grassland soils. Grassland soils
also showed higher pll and base saturation throughout the simulation period.
However, the relatively high soil pH and base saturation for grassland were biased by
the fact that about 45% of the considered sites ate located on calcareous sandy soils or
clay soils. For other vegetation structure types the differences in pIl and base
saturation were generally small. Deciduous forest, though, show a slightly higher pH

‘and a higher base saturation, which was mainly an effect of soil type and water-table
class. Compared to coniferous forest, deciduous forest are generally located on richer
soils with a higher water-table {i.e. wetter circumstances). The higher base saturation
for spruce forest was most likely due to a higher filtering of dry deposition, resulting
to an higher input of base cations.

Table 17 Effects of vegetation on the predicted median pH, N availability
and base saturation (BS) in the root zone for all soil types in 1990, 2010
and 2050 in response to the IE deposition scenario combined with the IE
scepage scenario

Vegetation  NU pll N availability BS
kmol. ha' a) ()
1990 2010 2050 1990 2010 2050 1990 2010 2050
Spruce 3961 3.7 39 4.1 6.6 4.8 35 2 3 10
Pinc 24435 38 4.0 4.2 73 5.7 4.6 1 2 8
Deciduous 18046 4.0 42 4.5 7.6 6.4 5.8 6 9 27
[leather 6556 38 39 43 58 43 33 1 2 2
Crrass 23362 4.1 45 6.0 6.5 5.8 5.1 51 63 84

U N represents the number of grid cclls evaluated

For all vegetation structure types the N availability was clearly lower in 2010
and 2050 than in 1990. N availability decrease most for heather (43%), spruce (36%)
and pine forest (47%). For grassland (21%) and deciduous forest (24%) reductions
were lower. That the N availability reduced less than the atmospheric deposition,
(which was more than 80%; see Table 11), is due to increased N mineralisation, at
higher pH. In addition, in the beginning of the simulation petiod N accumulated in
soils, whereas in 2050 there was mote ot less a steady-state between litterfall and
mineralisation. Furthermore, the litterfall flux also increased slightly during the
simulation period, because in 1990 the maximum amount of litterfall was not yet
achieved. Between 1990-2050, N mineralisation increased from 2.8 to 3.2 kmol, ha' a-
! for spruce forest, from 2.7 to 3.1 kmol. ha' a' for pine forest and from 4.3 to 4.6
kmol. hat a'! for deciduous forest.
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Soil type (Table 18) influences the soil chemistry by differences in weathering
rates and cation exchange capacity. The effect of soil type was much more
pronounced than the effect of vegetation. Of course, a clear distinction exists between
calcareous and non-calcareous soils.

Calcareous soils have a high pH and base saturation due to the presence of
calcite. There was no effect of the combined scenario on the pl of calcareous soils.
Which was kept at about pll, irrespective of deposition level and seepage input. The
non-calcareous sandy soils have the lowest pl1 and very low base saturation, indicating
that these soil are strongly acidified. Deposition reductions and increase in upward
seepage caused an increase in plH and base saturation in the non-calcareous soils. The
increase was most pronounced for loess soils, indicating that soil acidification is
reversible for these soils. For peat soils the remarkable combination of a pH around
3.9 and a base saturation around 50% is in agreement with field observations (Klap ¢
al, 1999).

Table 18 Effects of soil type on the predicted median pH, N availability
and base saturation (BS) in the root zone below deciduous forest in 1990,
2010 and 2050 in response to the IE deposition scenario combined with
the IE seepage scenario

S()i_l t}'pc NU p[ I N availabi.lity RS
(kmaol ha a-t) _ (%)
1990 2010 2050 1990 2010 2050 1990 2010 2050
Sand poor 44093 38 39 42 71 5.7 4.6 1 2 8
Sand rich 10051 19 4.1 43 7.5 6.2 5.2 3 4 10
Sand cale. 4657 7.0 71 71 5.9 53 49 100 100 100
Clay 6386 5.9 6.0 6.1 7.6 0.3 5.1 87 87 87
Clay calc. 3884 6.8 6.9 6.9 55 48 4.2 0o 160 100
Loess 926 4.1 4.3 5.1 74 6.6 6.3 7 9 26
Pear 6363 38 4.1 4.2 44 37 3.0 51 52 52

U N represents the number of grid eclls evaluated

The calculated changes in pH and base saturation were relatively small
compared to those derived in another evaluation of a similar deposition scenario (cf.
De Vries ef al, 1994a). This study refers to the one box model SMART2, whereas De
Vries ¢f al. (1994a) presented results for the top 30 cm using the multi-layer model
RESAM, Le. the layer where the major changes in pH and base saturation occur. In the
one layer compartment (up to 1 m) considered here, changes in pIl and base
saturation averaged out. The results on N availability, by contrast, were not influenced
by the thickness of the soil compartment, because this output refers to a flux for the
root zone (including the litter layer) as whole.

The N availability of calcareous and peat soils was relatively low, because they
are generally located in areas with relatively Iow atmospheric input of N. For peat
soils, the low N availability was also due to low mineralisation fluxes. The median N
mineralisation flux for peat soil in 2050 was 1.9 kmol: ha' a"', whereas the average
mineralisation flux for all soil was 3.5 kmol. ha! a'. The low relatively low
mineralisation flux for peat soils ts mainly due to the correladon with wet

167



ITI Evaluation on a regional scale

circumstances. Under (man-induced) dry circumstances the N mineralisation in peat
soil can be very high, up to 100 kmol ha! a'! (cf. De Vries e 2/, 2001).

Effects of deposition and seepage scenarios on abiotic site factors

Deposition reductions alone (Table 19; compare the columns BB vs, IB), increased in
median values of pH and base saturation and decrease N availability. Although, the
average pH increase for a specific vegetation structute type was rather small, 0.1 - 0.4
pH, large regional differences occurred (see Figure 2). The largest increase in pH were
found under pine forest and grassland. Compared to the reduction in N deposition,
the reduction in N availability were rather small.

Increase in upward seepage (Table 19; compare the columns IB vs. 1), had only
a slight effect on the median values of pH, N availability and base saturation. The
results for the JE seepage scenario, as presented in Table 19 should be handled with
care. The surface area affected by IE seepage scenario is relatively small, whereas
deposition scenario affects all systems. Increase in upward seepage is restricted to sites
with watet-table class 1, 2 and 3 (cf. Table 3) in the surroundings of groundwater
extraction wells, viz only in 3088 grid cells (ie. 9% of the surface area of the
Netherlands). In addition, the average increase in upward seepage flux for these cell
was only 50 mm a-l,

Table 19 Effects of combinations of the wvarious scenarios!? on the
predicted median pH, N availability and base saturation (BS) in the root
zone of all soil types for the different vegetation structure types in the
year 2050

Vegetation N2 plt N availability BS
_(kmol; halah (%)
BB IB I BB IB i BB IB T
38 41 4.1 63 35 34 2 10 10
Pine 24435 33 42 4.2 7.2 4.6 45 2 8 9
Dectduous 18046 4.1 42 44 7.7 5.8 5.6 12 27 27
Heather 6556 39 4.3 43 5.0 33 33 1 7 7
(3rass 23362 57 6.0 6.0 6.5 5.1 5.1 81 84 84

% The first character refers to the deposition secnario, the second character refers to the seepage scenario, eg I8
refers to {12 deposition scenario and to the BU scepage scenario
3 N represents the number of grid cells evaluated

Effects on plant species in for nutrient-poor deciduous forest

The effects of calculated changes in the output variable soil pH on species diversity
were predicted for plant species of nutrient-poor deciduous forests (i.e. the forest on
non-calcareous sandy soils) for 1990 and 2050 using the vegetation model MOVE
(Latour and Reiling, 1993; see section 3.1.3)

For all soil types the median N availability remained above the optimum value
of 3 kmol hat a' (Latour e 4/, 1993). For the pH Latour ef 2/ (1993) reported an
optimum value of 4.2 for nutrient-poor deciducus forest. Results showed for all soils,
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except the non-calcareous sandy soils and peat soils, a median pH above 4.2 at the end
of the simulation period.

Figure 4 presents the probability of occurrence of species of nutrient-poor
deciduous forests on rich an poor sandy soils for 1990, 2010 and 2050. In 1990 the
predicted number of spe'cies varies on average between 40 and 80% of the considered
13 species. In 2010 this increases to 40 to 100% and in 2050 the occurrence increased
in general to 60 to 100% of the species. In some specific areas the predicted
percentage of species remained below 20%. In these areas the soil pH is higher than
5.8, ie. the upper limit for the considered species in nutrient-poor deciduous forests

(see section ki, e
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Figure 4 Predicted geographical distribution of the probability of occurrence of plant
species typical for nutrient poor deciduous forest (sce section 3.1.3) for 1990 (a) and
2050 (b), in response to the IE deposition scenario combined with the IE seepage
scenario

3.1.6 Discussion and conclusion

Discussion

Uncertainties

The assessment of the uncertainty in model predictions caused by input data due to
the uncertainty and spatial variability in those data will be addressed in Chapter 3.2
and Chapter 3.3. Here we restrict ourselves to a qualitative discussion of the
consequences of crucial assumptions made in this model application.
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Uncertainties caused by modcl structure are due to model assumptions and
simplifications. Assumptions and simplifications are made because of insufficient
knowledge, to limit data requirements and for operational reasons (e.g. application on
a scale, that requires model simplification). The lack of knowledge with respect to
acidification and nutrient cycling models mainly concerns the dynamics of organic
matter, N and Al (De Vrics, 1994; Kros ef 2., 1993). Especially the uncertainties in Al
and N dynamics may seriously contribute to the uncertainty in the results of pH and
N availability.

E.g SMART2 assumes that there is always equilibrium with secondary Al
compounds (cf. section 3.1.2). In reality equilibrium 15 approached only in the subsoil,
while under-saturation prevails in the topsoil. This equilibrium assumption will
accelerate the depletion of secondary Al compounds and will lead to higher pH and Al
concentrations in the top soil. Yet, improvement on the speciation of Al in relation to
organic anions and the dissolution of amorphous Al precipitates have been
incorporated (cf. Posch et al, in prep.)

The N availability highly depend on the N mineralisation flux, which in turn
depend on the age of the vegetation, vegetation management (e.g. sod cutting,
mowing, grazing and tree harvesting), litterfall and N uptake. These aspects have not
yet been adequately incorporated in the model for all vegetation structure types. In
addition, the effect of pII and MSW (cf. Chapter 2.3) on modelled N mineralisation
and N transformation processes have an inadequate experimental basis. Therefore, we
recommend to improve and extend the N transformations processes, especially related
to pI and water-table.

Management aspects, like sod cutting, mowing, grazing and tree harvesting
should be included to properly calculate N avatlability, which highly depend on the
age of the vegetation and the removal of biomass. Our assumption that each
vegetation structure type has a particular age, strongly influences the model results.
Furthermore, we assumed that the net production was nil. This was based on the
assumption that biomass return to the soill equals biomass production. This
shortcoming has tn the mean time been captured by linking the SMART2 to the
succession model SUMO (cf. Wamelink e a/, 2000).

Validation

Validation on solute chemistry yield satisfactory results, however, the validation part
of this study was limited to soil solution concentrations under forests. The validation
on N availability gave good indicative results, but was hindered by a lack of a regional
dataset on mineralisation rates. A more comprehensive validation of SMART2 for all
soil and vegetation structure types especially for the model output on N availability, is
desirable. Obviously, there is a need for additional measurement campaigns aimed at
improving the model descriptions and reducing the uncertainty in the model results.
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Spatial and temporal resolution

In this study calculations are performed for the root zone as a whole (compartments
up to 1 m), whereas most of changes in soil and soil solution occur in the top 30 em,
where also most of the fine roots occur. Since the thickness highly influence the pl, it
is recommended to reconsider the choice of the calculations for shallower depth, e.g.
30 cm. This is especially relevant with respect to the linkage SMART2-MOVE,

The thickness of the soil compartment seriously influenced the model results.
Here we considered the root zone as one homogeneous compartment. This
assumption implies that the calculated concentrations refer to the bottom of the root
zone. Generally there is a strong gradient in soil solution chemistry and fine root
distribution with depth. pll and Al concentrations generally decrease with depth, as
most of the fine roots occur in the top soil. Furthermore, most of the changes in time
in soil and soil solution chemistry occur in the top 30 cm. Consequently, the
assumption of one homogeneous relatively large compartment (up to 1 m) cancelled
out changes with depth. To investigate the effect of soil depth within the root zone in
more detail, both SAART and SMART2, have been extended to multi-layer models with
variable depth of the soil layers. The annual time-scale may affect the long-term
predictions, but this effect is likely to be small (cf. Chapter 2.4 and Kros e7 4/, 1994b).

The use of a 250 X 250 m? grid as a reference grid places various restrictions on
geographical resolution. This resolution is far too coarse to model ecosystems which
forms the topo-sequence within brook-valleys, with potentially high nature
conservation value. Geographical resolution needs to be improved for an adequate
modelling of site factors in wetlands and brook-valleys. Various studies with SMART2
on a more detailed spatial scale have been performed, e.g. in the Drentsche Aa area
(cf. Kros et al, in prep) and in the Beerze Reusel (cf. Van Dobben e 4/, 2001). These
studies show that greater spatial resolution, especially with respect to hydrology,
clearly improved the output. Applying such detail at the national scale, however,
would tremendously increase the logistic problems already encountered in the local
application (see Chapter 2.1}. In conclusion, modelling at that spatial resolution on a
National scale is one step too far for logistic reasons and lack of data.

Conclusions

SMART2 appeared to be a flexible and quick tool to evaluate effects of deposition and
upward seepage scenarios on soil solution chemistry.

Model predictions on pt and Al concentration for deciduous forest showed a
reasonable to good agreement with observatons. Alternatively, the Al in
concentration in poor sandy soils was overestimated. Model predictions for the NO;
and NH; concentrations showed moderate relationship with the observations. A
preliminary validation on N mineralisation fluxes, showed a teasonable agreement
between calculated fluxes and measured fluxes available from literature. N
mineralisation fluxes in forests are likely to be underestimated.

Reductions in N and S deposition lead to an improvement of the abiotic site
factors, i.e. a moderate increase in pII and base saturation in non-calcareous soil and a
clear decrease in N availability for all soils with forest. The spatial varability in all
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investigated model outputs, i.e. pll, base saturation and N availability was large. The
spatial variability in pIT and base saturation is linked with the spatial variability in soil
type, whereas the spatial variability in N availability is linked with the spatial variability
in N deposition. N availability strongly depends on the age of the vegetation. Litterfall
increase followed by mineralisation increase, subsequently resulted in an increase in N
availability that may abolish the reductions in N deposition. Consequently, reductions
in N deposition not necessarily lead to a reduction in N availability,

The effects of JE seepage scenario on the inspected site factors were negligibly
small, which is a result that only a very small parts of the Netherlands is affected by
the reduction in groundwater extractions. The probability of occurrence of typical
plant species in nutrient-poor deciduous forests incteased with 20% in 2050, due to
the evaluated IE deposition scenario combined with the IE seepage scenatio.
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3.2 Uncertainty assessment in modelling soil
acidification on the European scale: a case study

Abstract

When modelling soil acidification on the Enropean scale, it ir inevitably that both model and duta
have varying degrees of associated uncertainty. The present study attempred to quantify the uncertainty
in long-term forecasts of soil solution concentrations of Al and NOj resulting from the uncertainty in
low resolution European-scale maps (1:1000 000) and input data. We used the Netherlands as a
case study, Laroe-scale forecasts were made with a relatively simple dynamic process-oriented model,
SMART2, Model outputs were considered as block median concentrations and the block aral
Jractions in which concentrations exceeded a critical level, As sources of uncertainty we considered (i)
the soil and vegelation maps (categorical data), and (i) the soil and vegetation-related parameters
(continwons duta). The uncertainty in categorical data was quantified by comparing European soil
and vegetation maps, and the more delailed maps of the Netherlands. The uncertainty in continons
data was derived from variows Enropean databases and literature. ‘The uncertainty in model outputs
was quantified by an efficient two-step Monte Carlo simulation approach, which takes spatial
correlation into account. The uncertainty in the input data on the European scale led to major
uncertainties in the predicted Al concentration. Uncertainties in the areas where the Al concentration
exceeded the maximum allowable concentration were much smaller. The uncertainties in soil-related
parameters contributed most to the uncertainty in the Al concentration, whereas the unceriainty
contributed by the soil and vegetation maps was negligible. For the NO; concentration, however, the
s0if and vegetation maps were imporiant sources of uncertainty, Evaluation of the different ervor
sources is of great practical significance, as it identifies which sources need further improvement. ‘The
present study shows that the unceriainty contribution of the different ervor sources dapends greatly on
the model output considered,

3.21 Introduction

Elevated NO; and Al concentrations, in soil water and groundwater in semi-natural
ecosystems are primarily caused by elevated atmospheric deposition. This is a major
European-scale environmental problem. Atmospheric deposition of acidifying
substances (S and N) increase the dissolution and leaching of Al, especially in acidic
sandy soils. The resulting elevated Al concentration in groundwater is a threat to its
use as drinking water both for people and animals, especially from shallow wells. In
the Nethetlands, e.g. elevated levels of Al in shallow aquifers below forests are related
to acid atmospheric deposition (e.g. Mulder ef o/, 1990). Arable land is usually limed to
a soil pll above 5, where the Al concentration is negligible. Consequently, only
groundwater below semi-natural ecosystems is at risk of contamination with AL As
regards NOs, however, a most serlous impact originates from agricultural soils.
According to RIVM (1991), atmospheric deposition of N compounds in the
European Union (EU) accounts for 10% of the total N supply, including both
deposition and direct application of manure and fertiliser. As a result, the threat of

173



I1T Evaluation on a regional scale

NOj leaching from semi-natural ecosystems is less serious than in agricultural soils. In
areas with large atmospheric N deposition, e.g. in north-western Europe, however, the
groundwater quality below semi-natural ecosystems is under threat (De Vries, 1994).
Eutrophication via atmospheric deposition is still a serious problem in the whole of
Europe (IDe Vries, 1994). An assessment of the threat to groundwater in Europe by Al
resulting from acid deposition has been made by Kimir ef 2/ (1990) and RIVM
(1991). Both studies have produced maps of the sensitivity of groundwater to
acidification in Europe.

At present, various models are available for large-scale prediction of ecosystem
acidificatton, e.g. MAGIC (Cosby ef /., 1985), SAFE (Sverdrup e a/, 1995), and
SMART (De Vries ¢t a/, 1989). SMART has been specially developed for the European
scale, to evaluate various deposition scenarios (De Vries ¢f a/, 1994b). Models for
regional scale assessments should be used with caution as both models and data have
varying levels of associated uncertainty (Loague e 4/, 1998). Consequently, it is
imperative that these uncertainties are quantified. Until now, quantification of
uncertainties has mostly been limited to a specific generic soil vegetation combination
(Chapter 2.2; Kros ¢f 4/, 1993) or to one mapping unit in a region (Finke ez a/,, 1996).

In regional scale assessments, model input data are usually derived from
generally available data, e.g. soil and landcover maps, using {pedo)transfer functions
(Bouma e af, 1986; Tiktak er al, 1998). Finke et 4l (1996) quantified the output
uncertainty resulting from both spatial variability and the uncertainty in pedotransfer
functons by a Monte Catlo approach and analysed the contribution of these sources
to the total variance. Finke ef 4/ (1996) considered only one soil mapping unit,
representative for only a part of the Netherlands for which a detailed network of soil
profile descriptions was available. Furthermore, they ignored the spatial correlation of
the model input data. By including spatial correlation of model input data in a Monte
Carlo analysis made it possible to quantify both the spatial variability of the point
concentration within a block (i.e. the spatial variation in values occurring within single
blocks of a single Monte Carlo run} and the uncertainty of block-aggregated values
(i.e. the statistical variation in block-aggregated values among the entire ensemble of
Monte Carlo runs) can be evaluated.

The present study was intended to quantify uncertainties associated with
European-scale forecasts of Al and NO; concentrations in soil water, leaching from
the root zone of semi-natural ecosystems towards the phreatic groundwater. We used
the dynamic and process-oriented model, SMART2 (Kros ef 4., 1995a), an extended
version of the SMART model (De Vrdes e al, 1989). To minimise input data
requirements, SMART2 uses rather simple process formulations and is confined to a
single layer. Tts model input consists of the annual average atmospheric deposition
flux. Parameter values were assigned by using data relating to ecither soil type or
vegetation, irrespective of the location. Aggregated soil and vegetation maps were
used to link parameter values to a specific location, using (pedo)transfer functions.

The objective of the present paper was to quantify the uncertainty in long-term
forecasts of soil solution concentrations of Al and NO; resulting from of the
uncertainty in maps and model parameters available on the European scale. We
focused on the 15 member states of the European Union (EU). Compared to Europe
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as a whole, this means that we could use more detailed information, such as the
1:1 000 000 soil map of the EU (EC, 1985). Furthermore, we limited ocurselves to a
case study, using the Nethetlands as an example. The sources of uncertainty
mnvestigated included: (i) soil and vegetation maps (categorical data), and (ii) soil-
telated and vegetation-related parameters (continuous data). Apart from quantfying
uncertainties in model outputs, the most important aim was to quantify the relative
contributions of the various sources of uncertainty investigated. The uncertainty
associated with the model structure itself was not taken into account.

Uncertainties in model outputs are presented as prediction intetvals (ie. the
90% confidence interval). Prediction intervals were obtained by a Monte Catlo
analysis using Latin Hypercube Sampling of spatially correlated fields. Relative
contributions of individual sources of uncertainty to the output uncertainty were
investigated by an analysis of vartance of the Monte Catlo sample of the model
outputs.

3.2.2 Methods and materials

Model application

The SMARTZ model

SMART2 (Chapter 2.3, Kros ef af, 1995a) predicts changes in F, Al, base cation (BC),
NO; and 8Os concentrations in the soil solution, as well as solid phase characteristics
depicting the acidification status, i.e. carbonate content, base saturation and readily
available Al content. The SMART2 model consists of a set of mass balance equations,
describing the soil input-output relationships, and a set of equations describing the
rate-limited and equilibrium soil processes (See Chapter 2.3).

The soil solution chemistry in SMART2 depends on the net element input from
the atmosphere (the product of deposition and filtering factor, i.e. a correction factor
for the roughness length of the canopy) and groundwater (seepage), canopy
interactions (foliar uptake, foliar exudation), geochemical interactions in the soil (CO;
equilibria, weathering of carbonates, silicates and/or Al hydroxides, SO4 sorption and
cation exchange), and nutrient cycling (litterfall, mineralisation, root uptake,
nitrification and denitrification). The growth of the vegetation and litterfall are
modelled by a logistic growth function, which acts as a forcing function. Nutrient
uptake only stops when the soil solution concentration of the corresponding nutrient
becomes zero. Soil interactions are either described by simple, rate-limited (zero-
order) reactions (e.g. uptake and silicate weathering) or by equilibrium reactions (e.g.
carbonate and Al-hydroxide weathering and cation exchange). The influence of
environmental factors, e.g. pll and temperature, on weathering and exchange
reactions is ignored. Solute transport is described by assuming complete mixing of the
element input within one homogeneous soil compartment with a constant density and
a fixed depth (generally the root zone). Because SMART2 neglects vertical
heterogeneity, it predicts the concentration of the soil water leaving the root zone.
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The annual water flux percolating from this layer equals the annual precipitation
excess, which must be specified as a model input. The time step of the model is one
yeat, so seasonal variations are not considered.

Model inputs and outputs

Input data for the SMARY2 application include system inputs and initial values of
vatiables and parameters. Input data refer to (1) a specific deposition scenatio for each
grid cell, (if) model variables and parameters which are either related to a soil type or a
vegetation ot to a combination of both, and (i) soil and vegetation maps. System
inputs are the atmospheric deposition, hydrology and vegetation development. All
input data were derived as a functions of location (grid cell), soil type or vegetation, or
a combination of vegetation and soil type.

For the European-scale application, the soil and vegetation maps were
aggregated and rasterised towards a 1 X 1 km? grid, using the dominant soil type and
vegetation respectively (Kleeschulte, 1997). Seven soil classes were distinguished: poor
sand (SP), rich sand (SR), calcareous sand (SC), non-calcareous clay (CN), calcareous
clay (CC), loess soils (LN) and peat soils (PN). We used four vepetation structure
types: coniferous forest (CON), deciduous forest (DEC), heather (HEA) and non-
fertilised grassland (GRP) (Tables 2 and 3). The aggregation of soil types was based
mainly on soil chemistry criteria, i.e. presence of calcite, texture, and base saturation.
Moisture condition was not taken into account as a separate criterion, because this
information was not available on the European scale. The range of vegetation
structure types chosen, was mainly determined by the data availability on the
European scale. Ideally, coniferous forest should be split up into spruce forest (Le.
forests with large forest filtering, growth rate and transpiration rate) and pine forest
(Le. forest with moderate forest filtering, growth rate and transpiration rate), but this
was not feasible on the European scale.

Table 1 Soil categories considered

Code Senl Class Common soil types Characteristics
FAQ (FAQ, 19815 USDA-SCS
sp Sand Poor Humic and Orthic Entic Haplortod  Coarse texture, low CHC, low
Podzols (1)0 weathering rate
SR Sand Rich Gleyie Podzols (1) Typic Finer texture, slightly larger
Haplaguod CEC and weathering rate as SP
8C Sand Gleyo-calcaric Hydraquent All calearcous sandy soils
Calcarcous Fluvisol (1)
CN Clay Non- Fluvisols {2,3,4) Hydraquent Large weathering cate, large
calcarcous CEC
(ol Clay Calearic Fluvisols Fydraquent Calcarcous, large weathering
Calcarcous (234 rate, large CLC
PN Peat Non- Histosols (NA) Medihemist CEC
calcarcous
LN Locss Non-  Orthic Luvisols® (3)  Typic Hapludalf  Modcerately large weathering
calcarcous rate and CIC

b Figures in brackets refer to xiure classes: 10 coarse: clay content less than 18%s, 2 = medium: clay content
between 18 and 357 and 3 = fine: clay content greater than 35% 0. NA: not applicable
% For geographical reasons, luvisols outside the loess area were included m the ON class
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Table 2 Vegetation categories considered

Code  Vegetation Class Forest type, from [IU Characteristics
Landcover data base
DEC Dectduous forest Broad-leaved forest Needle or leave shedding trees with
Mixed forest low forest filtering, growth rate, and
transpiration rate
CON  Coniferous forest Coniferous forest Evergreen trees with moderate forest

filtering, growth rate, and transpiration
rate

GRP  {(Nutrient-poor) Natural grassland maderate growth rate, low filtering
Grassland
1A Heathland Moors and hearhland low growth rate, low filtering

Although SMART2 is intended to be used on a regional scale, it still operates at
the point support. In order to assess soil-water quality on a regional or European scale
(e.g. for 5 X 5 km? or larger blocks), the model was applied to many point locations
within each block. Subsequently, model results at these point locations wete
aggregated to yield a single block value. An important reason for not applying the
model directly at the block scale (i.e. ‘upscaling’ the model by feeding it with block-
appregated inputs) was that it is extremely difficult to define the right form of input
agpregation. Because SMAR12 is a non-linear model, simply averaging the inputs prior
to running it will usually not yield the block-averaged model output (Heuvelink and
Pebesma, 1999,

The model output investigated was mainly limited to the annually averaged Al
concentration at a depth of 1 m (ie. below the root zone for all ecosystems
considered). Model outputs were generated for point locations on a 1 X 1 km? grid
located in semi-natural ecosystems. For the Netherlands, which was used as a case
study, this resulted in 7435 1 x 1 km? point locations for which calculations were
performed. Model outputs for these point values were aggregated to block values for
5 X 5 km? blocks, by taking (i) the median concentration value from the points within
each block and (ii) the percentage of the area in which the individual concentration
values exceeded a specific environmental standard.

Within the European Union, the threshold values for the Al concentration in
drinking water are as follows (EU Council Directtve 80/778/EEC). The guide value is
0.05 mg 1! (0.006 molk m*), while the maximum allowable concentration (MAC) is 0.2
mg 1t (0.02 mok m). In the present study, we focused on the MAC value. The MAC
value for drinking water, however, is less relevant when phreatic groundwater is
concerned, as was the case in our study. For the protection of the deeper groundwater
used in the preparation of drinking water, the Al concentration at the bottom of the
root zone could be allowed to exceed the MAC, because considerable immobilisation
of Al may occur between phreatic groundwater and the level of drinking water wells.
Therefore, we used a less stringent threshold, which is related to forest vitality, i.e. 0.2
mol. m3 (De Vries, 1994), although the scientific support for this threshold is rather
weak. For NO,, we used only the MAC as the threshold value, ie. 50 mg 11
(0.8 mol. m3).
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Uncertainty analysis

General Approach

A Monte Carlo approach a large number of equally probable realisations of the model
input data are generated, followed by running the model for each set of realisations.
At a sufficiently large number of runs, the uncertainty in the model output can be
derived from the vartability of the output of all Monte Catlo runs. The teasons for
using Monte Carlo analysis were that (i) no assumptions have to be made about the
modcl, and (ii) it can easy handle the spatial application, te. the inclusion of spattal
correlations. In order to limit the computation load, we used Latin Hypercube
Sampling (cf. Chapter 2.2).

For a given 5 X 5 km? grid cell, a single Monte Catlo run resulted in a
distribution of model results for each point in a 1 X 1 km? grid. The entire Monte
Carlo sample yiclded an ensemble of distributions. Each Monte Carlo sample allowed
us to estimate the median concentration for each block or the areal fraction of each
block exceeding a threshold. Using sample order statistics, we constructed 90%
prediction intervals for the block median concentration and for the block areal
fraction exceeding a threshold. ’

Two Monte Carlo experiments were used, one to quantify the output
uncertainty and one to quantify the uncertainty contributions of the categorical maps,
continuous soil parameters, and continuous vegetation parameters. In order to obtain
the prediction intervals for block-aggregated model outputs resulting from the
uncertainty in all inputs considered, a nested Monte Carlo experiment was carried out
simulating 25 realisations of the categorical map, and 23 realisations of continuous
maps attached to the categorical maps. This led to a total of 625 Monte Carlo
simulations with SMART2 for each 1 X 1 km This was done because the continuous
maps (with the continuous soil-related and vegetation-related parameters) depend on
the categorical maps (i.e. combined EU soil /vegetation).

The relative contributions of the three individual sources of uncertainty were
quantified using an ANOVA experiment (Jansen ef o/, 1994), which was also nested.
For each of the 25 realisations of the combined soil/vegetation map, five realisations
of the soil-related parameters were crossed with five realisations of the vegetation-
related parameters. This also resulted in 625 (25 X 5 X 5) Monte Carlo simulations.
The stability of the calculated variances was checked visually by comparing the
differences between two executions of the experiment. Using analysis of variance for
each 5 X 5 km? block, the total variance of the results was split into contributions
from (i) categorical maps, (i) soil-related parameters, (iii) vegetation-related
parameters, and (iv) interaction. Latin Hypercube Sampling was not used for this
experiment, because the sample size (five) would disturb the spatial correlation too
much.
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Uncertainty in categorical data

The uncertainty in the categorical data, i.e. the aggregated soil and vegetation maps,
was quantified by comparison national maps and EU maps, assutning that the national
maps represent the ‘ground truth’ (Le. the real world). Obviously, European scale
maps having a smaller resolution compared to nadonal maps. For an application on
the European scale, however, European maps are often essential. Data from national
sources either require substantial edge matching at national borders, or might be based
on data collection using different basic assumptions. The second approach leads to
data sets which are difficalt to compare (cf. Kleeschulte, 1997). The maps of the
Nethetlands we used included a aggregated version of the 1:50 000 digital soil map
(De Vries and Denneboom, 1992) and a 25 X 25 m? pixel satellite image for the
vegetation (Noordman et /., 1997). The EU maps comprised the 1:1 000 000 soil map
of the EU (EC, 1983) and the EU landcover database (Corine land cover database,
scale 1:1 000 000; EC, 1993). The soil map of the Netherlands (NL-map) and the EU
soil map (EU-map) were aggregated to seven soil types, while both vegetation maps

were aggregated to four vegetation types. The EU-maps were rasterised to a 1 X 1 km?
grid, whereas the NL-maps remained at their original resolution. An example for the
soil map is shown in Figure 1. Figure 1 illustrates the error introduced by using the
EU soil map instead of the soil map of the Netherlands.

Because it is likely that soil type and vegetation type are dependent, the
different categories were combined to unique categorical variables. The derived error
variances, nugget variances and sill variances were stored in error matrices, as
described in Finke ¢ al (1999). Variograms were only fitted for matrix elements
belonging to an EU-stratum in which the summed NL-classes were larger than 1 500
ha or occupied more than 2.5% of the EU-stratum, this yielded 89 matrix elements.
Using the indicator variables, exponential variograms with a nugget were fitted, using
the geostatistical program GSTAT (Pebesma and Wesseling, 1997). The remaining
matrix elements were modclled as spatial white noise, i.e. no spatial correlation. Using
sequential multiple indicator simulation of categorical variables, equally probable
realisations of the ‘true’ maps were generated. :

The assumption that the maps of the Netherlands represent ‘reality’ causes an
underestimation of the uncertainty in the EU-maps, because (i) the detailed NL-maps
are, of course subject to uncertainty too and (i) the EU maps and the maps of the
Netherlands maps are not derived from independent sources. The uncertainty thus
derived reflected the uncertainty due to the use of European databases instead of
more detailed national data, as was aimed in this study. The uncertainty in the maps of
the Netherlands is known to some extent. The fraction of the area occupied by a land
cover type which actually corresponds to its classification (i.e. the map accuracy) is
near 90% for natural vegetation (Noordman & 4/, 1997). The target accuracy of the
1:50 000 soil map of the Netherlands 1s 70% (Steur and Heijink, 1991).
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Figure 1 Fragments of the 1:50 000 soil map of the Netherlands and the 1:1 000 000
soil map of the EU

Uncertainty in continuous data

The selection of continuous parameters to be included in the uncertainty analysis was
based on the results of a sensitivity analysis and on process knowledge. Parameters
that were a priori considered to be either rather certain, e.g. carbonate equilibrium or
insensitive, e.g. sulphate sorption constants were omitted from the analyses. In
addition, litterfall parameters were not included, because they mainly affect the soil
solution concentration in the topsoil and not at the bottom of the root zone (cf. Kros
et al, 1993). As a result, eight vegetation-related parameters and eleven soil-related
parameters were included in the uncertainty analysis (Table 3). Each vegetation-related
parameter was specified for four vegetation classes, while each soil-related parameter
was specified for seven soil classes, by means of class transfer functions. Each class
transfer function (Le. 11 X 7 + 8 X 4 = 109 class/parameter combinations) consisted
of an average value, 2 minimum value, a maximum value, a variogram and cross
correlations (correlations between variables) with other parameters in the same class.
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Table 3 Characterisation of parameters inspected

Codes  Description Affeetd  Distr. Cross Spatial Derived from
Tvpe?  Correlation®  Corrclation®

Vegetation-related parameters

ﬁoz TForest ﬁltcring 5O, Al N + - litecature®
fINH; Forest filtering NII;  N() N + - literature
JNO. Focest filtering NOy, - NOs N + - literature
Ju Dy deposition factor Al N + - litceature
Trb ‘Transpiration ALNO; N * literature/
calibration
A Amount of stems Ny N Literature
otN,p N content in NO), N Literature
shoot/stem
F - Mincralisation rate ALNOs N * Literature
constant
Soil-related paranscters
CNom C/N ratio of organic - AL NOs L * + | AR DI T
matter
Srums Nitrification fraction AL NOs; N * calibration
Jram Denitrification ALNGOs N * calibration
fraction
KAL, Dissolution constant Al N + Derived from
Al 250 monitorng
sites in the
Netherlands
ALY sccondary Al Al 1. + EFSDIE#
compounds
Na,.?  Nawcathenng rate Al N * Literature/
EFSDE
BC2,.% BC2 weathernng rate Al N * Literarure/
LEFSDF
CECY»  CEX Al L * + EISDF
JFBC2,.Y Fraction BC2at CEC Al N * + LISDE
KAL, Al-BC.2 exchange Al N + Derived from
constant 250 monitoring
" sites in the
Netherlands %
KH,,. 11-BC2 exchange Al N + Derived from
constant 250 monitoring
sites in the
Netherdands 9

Y “T'ranspiration rate basically depends un both vegetadon and soil, but we have only included the dependence on vegetauon
B Kae was set equal to N :

3 Refers to soil solution concentrations of Al and NOw; other model outputs weee not considered in the present study

9 N = nomal; L. = lognormal

% The symbaols " and "+ indicate groups of parameters which were cross-correlated, no symbol means no cross-corrcladon
assumed

" no spadal correladon, simulated as white noise; ™" spatal correlation was esimated, based on process knowledge; '+%
spatial correlation was deved from fitting expenmental varograms, using data from 250b monitening sites (Leeters ef af,
1994, Klap et al, 199

‘literature” refers to Kros e 4 (1993), Kros ¢f al {1995a), and references therein

European Forest Soil Data Base (Reinds, 1994)

% See Lecters e af. (1994) and Klap ¢f ol (1999)

o)

& o
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Cross corrclations across classes were not taken into account. Parameter
distributions types were assumed to be either normal or lognormal. The uncertainty in
continuous data was based on the literature, on a database covering about 250
extensively monitored forest sites in the Netherlands (NLEFSDB, Leeters ef a/, 1994;
Klap ¢t 4/, 1999), and on a European Forest Soil Database (EFSDB, Reinds, 1994).
For those model parameters for which it was not possible to derive statistical
properties from existing data sets, the minimum and maximum values were estimated.
These parameters included forest filtering, nitrification and denitrification fractions,
and weathering rates. In these cases, the standard deviation was estimated from the
minimum and maximum value by (max-min) / 4 and the distribution type was
assumed to be normal. Minimum and maximum values from national sources were
decreased by about 10% and increased by about 10% respectively, in order to derive a
range for the Furopean scale.

Cross corrclations were included between all forest filtering factors (Table 3),
based on process knowledge (Kros ef al, 1993). Cross correlations were assigned to
the C/N ratio of organic matter (CN.), cation exchange capacity (CLC} and the initial
base saturation (fBC2.,.), based on data in the NLFSDB and EFSDB.

As with the categorical data, spatial correlation was also included for the
continuous data. Therefore, variogram models were fitted with exponemiﬂl
variograms using the available data (1.e. NLFSDB). When no data was available for the
derivation of spatial correlation, spatial correlation was taken into account by
assuming a spatial correlation over a distance of 5 km. Spatial corrclation was omitted
only for those parameters that obviously lacked spatial dependence. These parameters
were simulated as spatial white noise, i.e. no spatial correlation (Table 3).

The distribution attributes and the variogram parameters for each generated
combined soil/vegetation map (i.e. categorical data) were used to generate equally
probable realisations of maps, using non-conditional, stratified, sequential,
multivariable Gaussian simulation (Pebesma and Wesseling, 1997).

The following uncertainties in model input data were excluded from the
uncertainty analysis: (i) deposition scenario (variable in space and in time) and (if) soi!
or vegetation-related parameters. Because the product of the filtering factors ({502
JNH;, INO3) and the deposition yields the site specific deposition flus, all of the
uncertainty in the spatial pattern of the deposition was loaded on the forest filtering
factors. Uncertainties in the temporal evolution of the deposition scenario were
excluded because these are mainly the result of political and technical factors (e.g the
feasibility of emission reduction measures).

.'Ihe uncertainty analysis was performed using an existing natonal deposition
scenario, because no detailed scenarios were available on the European scale. We
believe that existing acidification scenatios (Alcamo ¢7 a/, 1990} are too rough for our
purpose. Consequently, we used an official deposition scenario from the Netherlands
Environmental Outlook (RIVM, 1997). This scenario includes predictions of SOz
NO,, and NH; deposition for the years 1995, 2000, 2010, and 2020, for each 1 X 1
km? grid cell. Annual averaged values are presented in Table 4. In order to mimic
European data, the deposition scenario was aggregated to a 20 X 20 km? grid, because

182



Chapter 3.2

it is likely that Furopean-scale scenarios with this level of detail will become available
in the near future.

Table 4 Average vilues of N deposition and potential acid deposition for
the deposition scenario!) used

Year N depositum Potential acid
{mol. ha'ah

1995 2119 3193

2000 1858 2653

2010 16061 2281

2020 1642 2301

! The Netherands Envieonmental Outlook presents three scenanos for atmeosphene depositon, For this study we
used the ‘middle-of-the-road’ scenaao, called the Furopean Co-ordination {15C) scenario

Although annual precipitation values are available for Europe, we also used
precipitation data from the Netherlands. We used data representing the long-term
annual averaged precipitation on a 10 X 10 km? grid data (cf. De Vries ef al, 1994c). As
with the deposition data, the 10 X 10 km? grid data was aggregated to 20 X 20 km? grid
mean valucs,

3.2.3 Results and discussion

Uncertainty in Model Predictions

Uncertainties in model forecasts are presented as 90%% prediction intervals for 5 X 5
km? block-aggregated values in 1995 and 2020 as: () the block median Al
concentration (Figure 2), (ii) the block areal percentagt.:“\\'here the Al concentration
exceeds the MAC value (0.02 mol. m; Figure 3}, and (iu} the block areal percentage
where the Al concentration exceeds the forest vitality criterion (0.2 mol; m3; Figure
4).

It is clear that the uncertainty in the predicted Al concentration was large
(Figure 2). For a substantial part Ot: the country, the block median concentration
exceeded 0.2 mok m 3, ie. the critical value for forest vitality, both in 1995 and 2020.
This is also illustrated by Table 5, which presents the median values_ of all 5x5 km?
blocks (Le. the entire m;ap) for different statistical parameters. Despite the high lgvels
of uncertainties, the spatial differentiation was large. The largest concentrations
Occurred in the central and southem parts of the country. These are tbe areas with
Ial‘ge atmospheric deposition and poor sandy soils (SP). Low concentrations occ;urred
along the western coastline, where calcareous sandy soils (SC} dominate, and in the
Centre of the country, i.e. newly re-claimed land with calcareous clay soils (CN).

CCause the spatial variation in pH and the related Al concentration arc_mainly
determined by the soil-related parameters (Kros ef af, 1995a), Table 6 summarises the
Median values, for all 5 X 5 km? blocks (i.e. the entire map), of vanous stat%st%cal
Parameters per soil type. The uncertainty was found to be smaller (90% pre_dlcuon
Nterval about [0, 1] in 1995, cf. Table 6) for the low concentration areas (mainly SC
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and CN) than for the areas with large concentrations (mainly SP) (90% prediction
interval about [0.1, 2.8] in 1995, Table 6). In terms of the coefficient of variation (CV),
however, the opposite was found: a large CV for SP and CC soils and a low CV for SP
soils. The reducing deposition scenario clearly resulted in a decrease in the spread of
the prediction interval, and a clear shift towards smaller values: both the lower side
(P05, ie. the 5-percentile) and the upper side (P95, ie. the 95-percentile) of the
prediction interval decreased. As for the median values for the map as a whole (Table
5), the lower side (P05) decreased from 0.02 to 0.01, while the upper side (P95)
decreased from 2.1 to 1.3. The deposition scenario clearly affected the various soil
types in the same way, ie. smaller mean and median values and a narrower 90%
prediction interval, although the CV hardly changed.

1995 Upper side

AP (molm3)
- <0.02
I 0.02-02

Figure 2 The 90% prediction interval (left: lower side; right: upper side) of the block
median Al concentration for 5 x 5 km? blocks, for 1995 (top) and 2020 (bottom)
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1995
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B 10-20
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Bl 40-80
I 80-100
[] na

M248 3.2-3

2020

Figure 3 The 90% prediction interval (left: lower side; right: upper side) of the block
areal percentage where the Al concentration exceeds the MAC value for Al
(0.02 mol. m3) for 5 x 5 km? blocks, for 1995 (top) and 2020 (bottom)
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Table 5 Median values over the entire map of 5 X 5 km? blocks of the 90%
prediction intervals (P05 = lower side; P95 = upper side), the median, the
mean, and the coefficient of variation {CV) of the Al concentration (Al),
areal exceedances for the Maximum Allowable Concentration (Alex 0.02),
and the forest vitality criterion (Alex 0.2}, for 1995 and 2020

Qutpurt Year 105 P95 mcedian mean (A%

Al 1995 0.02 2.09 0.40 0.66 0.99
(mol, m3) 2020 0.01 1.33 0.28 0.42 0.00
Alex a2 1995 71 100 100 93 0.12
(%) 2020 63 100 95 89 0.15
Al 1995 25 100 71 67 0.35
(%) 2020 14 100 60 60 0.43

The uncertainty in the percentage of the block area where the Al concentration
exceeding the MAC value (Figure 3) was small, especially in the areas with large
concentrations. This was obviously, due to large predicted Al concentrations {median
value about 0.4 mol; m3) in comparison with the MAC criterion (0.02 mol. m3).
Exceptions were the calcareous soils, along the western coastline (i.e. sandy soils) and
the newly re-claimed land in the centre (i.e. clay soils), in which the predicted Al
concentrations were much smaller (90% prediction interval about [0, 67)). Using the
less stringent forest vitality criterion (0.2 molc m-?) yielded a much larger uncertainty in
the exceedance area, but it was still smaller than the uncertainty in the Al
concentration (see also Table 5). Furthermore, unlike the exceedance area of the MAC
value, that for the forest vitality criterion showed a decrease in exceedance as a result
of the decreasing deposition scenario. Although this decrease was restricted to the
areas with relatively low Al concentrations.
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Figure 4 The 90% prediction interval (left: lower side; right: upper side) of the block
areal percentage where the Al concentration exceeds the forest vitality criterion for Al
(0.2 mol. m~) for 5 x 5 km?® blocks, for 1995 (top) and 2020 (bottom)
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Table 6. Median values over the entire map of 5 X 5 km? blocks of the
90% prediction intervals (P05 = lower side; P95 = upper side), the
median, the mean, and the coefficient of wvariation (CV) of the Al
concentration {mol; m?) in 1995 and 2020 for various soil types?

Soil type Year P05 195 median mean CY
Sp 1995 0.09 2.80 0.82 1.10 0.80
2020 0.07 1.90 0.66 0.78 0.74
SR 1995 0.03 243 0.60 0.85 0.91
2020 0.02 t.61 0.44 0.58 0.88
SC 1995 0.00 0.73 0.00 0.09 3.85
2020 0.00 0.45 0.00 0.06 3.84
cC 1995 0.00 1.08 0.00 0.15 254
2020 0.00 0.59 0.00 0.09 276
CN 1995 0.01 2.07 0.28 0.56 1.15
2020 0.00 1.22 0.16 .33 115
N 1995 0.00 1.36 0.19 0.57 1.25
2020 0.00 0.80 0.10 0.21 1.32
IN 1995 0.00 1.47 0.09 0.30 1.61
2020 .00 0.85 0.05 0.17 1.62

1) Dominant soi type within a 5 X 5 km? grid cell according the EU soil map

Relative Uncertainty Contribution

The relative contributions of the three uncertainty sources (i.e. the combined
soil/vegetation map, continuous soil-related, and continuous vegetation-related
parameters), are presented as (i) the corresponding variances for the median Al
concentration for the 5 X 5 km? blocks (Figure 5} and (i) summarised in a figure
ptesenting the average variances for the maps of 5 X 5 km? block aggregated values
for the Al and NOj concentrations and the exceedances (Figure 6).

The results show that the variance in soil parameters accounted for more than
50% of the total variance for almost all grid cells, whereas the vegetation parameters
accounted for less than 10% of the total variance for almost all grid cells (Figure 5).
The contribution of the categorical maps to the total uncertainty was clearly larger
than that of the vegetation parameters. Remarkably, the uncertainty contribution of
the categorical data was large mainly for soils with low Al concentrations (i.e. mainly
caleareous soils). This was probably due to mis-classification of calcareous soils in the
EU map. A calcareous soil results in a negligible Al concentration, whereas under the
same circumstances 2 non-calcarecus poot sandy soil may result in a considerable Al
concentration. Note, however, that Figure 5 only presents the main effects of the
three sources of uncertainty, scaled to the sum of the three main effects.
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0 29 40 60 B0 100%

Figure 5 Relative variance (percentage of the sum of the three main variance
components) of the soil and vegetation maps (Categorical), continuous soil-related
parameters (Continuous Soil) and continuous vegetation-related parameters
(Continuous Vegetation) for the median Al concentration for 5 X 5 km? blocks, for
1995

Relative uncertainty contributions were summarised by calculating the average
contributions of the variances of the three uncertainty sources to the total variance of

the inspected model outputs for the whole map with 5 X 5 km?2 blocks (Figure 6).
Contrary to Figure 5, the main effects were not scaled to the sum of the main effects,
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so the figure presents an interaction term. It is clear that the uncertainty in the
continuous soil parameters contributed most to the uncertainty in the Al
concentration, as well as to the uncertainties in areal exceedances. This was confirmed
by an uncertainty analysis performed with comparable models (see Chapter 2.2; Kros
et al, 1993), which concluded that the uncertainty in the Al concentration at the
bottom of the root zone, as well as the associated pli, is mainly determined by
typically soil-related parameters, e.g. KAk and Al It should be stressed, however,
that the situation in the top soil may differ, because the Al concentration and the
associated pll in the top soil are strongly affected by the nutrient cycle (sce Chapter
2.2, Kros et al, 1993) through vegetation-related parameters such as ¢Ny and &mim.
This is, however, not relevant for leaching towards the phreatic groundwater.

Caontribution to
total variance (%)

2
100 — g
TOTd JM =
o continuous
vegetation
60 .
cordinuous
s0il
40
20 - —] catagorical
0

Al A'axo.z Alex 0.02 N03 NO

3 ex

Figure 6 Average variances over the entire map of 5 X 5 km? blocks of the three main
components and the interaction component explaining the total vadance in various
model outputs for 1995

Results for NOs;, however, were markedly different. For both the NOs
concentration and the exceedance, the largest uncertainty contribution originated from
the categorical data, followed by the continuous vegetation-related parameters,
whereas the smallest contrbution stemmed from the continuous soil-related
parameters. Unlike Al, the NOs concentration and exceedance at the bottom of the
root zone were generally determined to a larger extent by vegetation processes, e.g.
Ny, fINH;, INOs, making the uncertainty contribution of the vegetation parameters
more important than that of the soil parameters. Remarkably, the three exceedance
parameters showed a latger interaction term than the two concentrations. This might
be due to the fact that the exceedance parameters range from 0 to 1, whereas the
concentration ranges from 0 to infinity. A 0 to 1 scale usually leads to skewed
distributions, which may lead to large interaction terms. The skewness of the

distributions is illustrated by the differences between the mean and median values in
Table 6.
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Regarding the uncertainty thus quantified, it is important to stress that the size
of the grid cell considered (i.e. the size used for presenting the results) is critical,
because aggregation to larger blocks leads to more accurate results (narrower
prediction intervals) at the cost of the spatial resolution of the results. The number of
categories used for soil type and vegetation (seven soil classes and four vegetation
classes) may also affect the results. If more categories had been distinguished, the
uncertainty in the contnuous data could have become smaller, whereas the
uncertainty in the categorical data could have become larger. For instance, the
uncertainty in CEC might become smaller if the poor sandy soils are split into soils
with high organic matter contents and those with low organic matter content. At the
same time, the uncertainty in the two new soil classes would become larger. Thus,
there is a trade-off in the uncertainty contribution between the categorical data and
the continuous data, depending on the extent of aggregation. For the application of
SMART2 on the Furopean scale, splitting soil types or vegetation any further than was
done here makes little sense, unless additional data necessary to estimate the newly
introduced class transfer functions become available.

3.2.4 Conclusions

It is showed that the width of the prediction interval largely depends on whether block
median concentrations or block areal exceedances are considered. The Al
concentration showed wide 90% prediction intervals both for areas with low Al
concentrations (i.e. SC and CC soils) and for areas with high concentrations {mainly
SP soils). The implications of these wide mntervals are probably most important for the
calcareous soils (SC and CC). It is for these soils that the environmental thresholds
(both 0.2 and 0.02) were within in the 90°% prediction interval (0 to 1.1 mok m?) in
1995, whereas for the S soils the 90%% prediction interval in 1995 ranged from 0.09 to
2.8 mol: m*. In conclusion, it is highly certain that the environmental threshold is
exceeded in areas with high concentrations, but not in those with low concentrations.
This effect was clearly illustrated by the 90% prediction intervals for the block areal
exceedance of the MAC threshold, which showed a narrow prediction interval for the
large concentration areas (SP soils) (95 to 100°% in 1995 and 92 to 100% in 2020) and
a wide interval for the low concentration area (SC and CC soils) (0 to 67%, both in
1995 and 2020). For the less stringent forest vitality criterion, however, this contrast
was less pronounced.

For the scenarios evaluated, the model was able to predict a considerable
decrease in Al concentration, despite the large prediction intervals due to uncertainty
i the model input data. This effect was, however, less profound for the exceedances,
which was especially true for the block areal exceedances of the MAC threshold.

The relative uncertainty contribution largely depended on the model output
considered. For the Al concentration and the exceedances of the rwo Al thresholds,
the soil-related parameters contributed most to the output uncertainty, whereas the
uncertainty contribution of the vegetation-related parameters was negligible. By
contrast, the results for NOj showed that the average uncertainty contribution mainly
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stemmed from the categorical parameters, followed by the continuous vegetation-
related parameters, whereas the continuous soil-related parameters contributed least.
The larger contribution of the vegetation-related parameters to the uncertainty of the
NOs concentration is due to the fact that N processes are dominated by the
vegetation-related processes rather than by soil-related processes.

Given the large costs associated with measures to prevent increased Al and
NO; concentrations, it is important to assess whether the collection of more data
would result in 2 reduction of the prediction interval. From the present study useful
information can be derived to support decisions on different alternatives for reducing
uncertainties associated with long-term model predictions. Possible alternatives are
either improving of the EU soil and vegetation maps (categorical parameters) or
collecting additional input data in order to reduce the uncertainty in parameters
(continuous parameters). Our study showed, however, that this largely depends on the
model output considered.

Finally, it is important to notice that the present study only assessed the
uncertainty in model output resulting from uncertainty in model inputs. We ignored
sources of uncertainties related to the parameters not considered as uncertain, or
those related to the model structure. Therefore, the presented prediction intervals
should be considered with caution. If all input uncertainties were modelled correctly,
the prediction intervals of the model output would at the best underestirnate the true
uncertainty. Further insight into the extent of underestimation would requite a
comparison of model results with measured values.
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3.3 Assessment of the prediction error in a large-scale
application of a dynamic soil acidification model

Apstract

The prediction ervor of a relutively simple soil acidification model (SAMARTZ2) was assessed before and
after calibration, for the Al and NO; concentrations on a block scale. Althongh SMART2 was
especially developed for application on a national to Enropean scale, it still runs at a point support. A
5 X 5 km? grid was used Jor application on the European scale. Block characteristic values were
obtained simply by taking the median value of the point support values within the corresponding grid
cell In order to increase confidence in model predictions on larger spatial scales, the model was
calibrated and validated for the Netherlands, using a resolution that is feasible for Enrope as a whole.
Because observations ave available only at the point support, it was necessary to transfer them to the
block support of the model results. For this purpose, about 250 point observations of soil solution
concentrations in forest soils were upiialed to @ 5 X 5 km® grid map, using maltiple linear regrecsion
analysis combined with block kriging. The resulting map with upscaled observations was used for both
validation and calibration. A compartson of the map with model predictions using nominal parameter
values and the map with the upscaled observations showed that the model overestimated the predicted
Al and NO; conventrations. The nominal model resulis were still in the 95% confidence interval of
the upscaled observations, but calibration improved the model predictions and strongly reduced the
riodel error. However, the model ervor afier calibration remains rather large.

331 Introduction

SMART2 is a model developed for the assessment of soil acidificaion and
eutrophication on a large spatial scale (Kros e al, 1995a). It is a relaavely simple
dynamic one-layer model that predicts soil and soil solution concentrations of major
ions in non-agricultural soils in response to atmospheric deposition.

The reliability of large-scale forecasts with SMART2 is sertously hampered by
uncertainties in the input data. In Chapter 3.2 (see also Kros ef af, 1999; Pebesma ef
al.,, 2000) the prediction uncertainties in Al and NOj concentrations on a European
scale due to uncertainty in input data have been quantified. These studies indicated
that model predictions were very uncertain, mainly because of the uncertainty in
model parameters related to crucial soil processes. To reduce these uncertainties and
increase confidence in model predictions for large spatial scales, the model resuits
need to be compared with observations. Although in most cases, model inputs and
vatiables can be directly derived from the available literature or measurements, certain
model parameters can only be derived in an indirect way. Consequently, there is a
general shortage of knowledge about the precise values to be used, which seriously
affects the credibility of the model results. _

Reduction of uncertainty in simulated soil solution concentrations on a large
spatial scale, may be achieved by a calibration in order to deduce more reliable values
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for these parameters. Therefore, in the present study we calibrated the model SMARTZ
by using soil chemistry data for the Netherlands, assuming that the adaptation of
model parameters would lead to more accurate model predictions at large spatial
scales, In this paper, the term calibration is used for model parameter adjustment in
view of observations of corresponding model cutput vatiables. The benefits of the
model calibration procedure can be assessed by quantifying the model error for both
the non-calibrated, using nominal parameter values, and the calibrated modcl. The
only way to quancfy the model error is through a model validation, achieved by
comparing model results with independent observations, cf. Heuvelink and Pebesma
(1999). Usually, observations originate from conventional soil sampling, resulting in a
data set containing multiple values in some cells and no values in others. Furthermore,
the scale of the observations for calibration and validation usually does not
correspond with the scale of the model application. One of the expected effects is that
variability caused by natural variability and ouiliers decreases as a result of the
conversion from point support to block support {lHeuvelink and Pebesma, 1999).
Therefore, a procedure was developed to convert point scale data from about 250
forest stands in the Nethetlands to a block scale data set.

In addition to model calibration, the upscaled monitoring data were also used
to quantify the prediction error of the model. According to Heuvelink and Pebesma
(1999), the only way to quantify the model error is through model validation. Like
calibration, model must also be validated at a block support. The model error itself
can be divided into a structural part and a part that originates from input uncertainty.
The latter, the model input error, has been quandfied previously (Kros 7 a4, 1999).

The present paper illustrates the benefits and feasibility of calibration on a large
spatial scale (i.e. the Netherlands), in which point observations on soil solution
chemistry were upscaled to the same support as the model results. Furthermore, we
illustrate how to subdivide the madel error into a model structure error and a model
input error. The aim of this study was to reduce the level of uncertainty, and increase
confidence in the quantification of the effects of soil acidification on the European
scale. This was done by (i) searching for parameter sets that give an acceptable
difference between model outputs and measurements, (i} obtaining smaller ranges of
model parameter values, i.c. reducing parameter uncertainty, and (i) quantifying the
model error for both nominal and calibrated model results. The results of the present
study may in turn guide the gathering of additional information for further parameter
calibration and model improvement.

3.3.2 Model and data

Model

SMART2 (Kros ef al., 19952, see Chapter 2.3) predicts changes in pl, aluminium (Al),
base cation (BC), nitrate (NO4) and sulphate (SO4) concentrations in the soil solution,
and solid phase characteristics depicting the acidification status, 1.e. carbonate content,
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base saturation and readily available Al content. SMART2 extends the dynamic soil
acidification model SMART (De Vries ef af, 1989), by including nutrient cycling and
improved hydrology. The SMART2 model consists of a set of mass balance equations
describing the soil input-output relationships and a set of equations describing the
tate-limiting and equilibrium soil processes.

In the present study we considered only the modelled annual averaged Al and
NOj; concentrations at a depth of 1 m (i.e. below the root zone) below coniferous and
deciduous forest. Model outputs were first generated on a ‘point scale’ using a 1 X 1
km? grid, and including only those cells that contained (semi)-natural vegetation.
Model output for these point values was aggregated to block values for 5 X 5 km?
blocks, by (i) taking the block median concentration value from the points within the
block and (ii) taking the areal fraction where the individual concentration values
exceeded an environmental standard.

Input data and model patameters to be calibrated

Input data for the SMART2 application can be divided into system inputs and initial
values of variables and parameters. System inputs are atmospheric deposition,
hydrology and vegetation development. All input data are derived as a function of
location (grid cell) or soil type or vegetation type or the combination of vegetation
type and soil type. Input data refer to (i) a specific deposition scenario for each grid
cell, (i) model variables and parameters which are either related to a soil type or a
vegetation type or to a combination of both and (iif) a soil map and vegetation map.
For the application on a European scale, the gridded soil map and vegetation map,
representing the dominant soil type and vegetation type for a 1 X 1 km?® grid,
respectively, were generalised. Seven soil classes were distinguished and four
vegetation types. Model simulations were performed for the period 1985 to 1995,
using deposition values for the corresponding years. Although the original national
deposition values were available for a 1 X 1 km? grid, the original values were
aggregated to a 20 X 20 km?, because this is the resolution for which Europe-wide
scenarios may become available.

The number of parameters to be calibrated had to be restricted in order to Q)
restrict the computational load and {ii) avoid identification problems. We based our
selection of parameters to be calibrated on a sensitivity and an uncertainty analysis (cf.
Chapter 3.2 and Kros ¢f a/, 1999), using only the most sensitive and uncertain model
parameters. First parameters to which the model output was insensitive were fixed.
We then excluded those parameters which we considered relatively well-known (e.g.
growth and litter fall parameters). We also excluded those parameters which were
impossible to identify with this data set, because the calibration criterion was not
sensitive to changes in their values. Finally, we ended up with five vegetation-
dependent parameters and five soil-dependent parameters for calibration (Table 1).
The parameters not included in the calibration were set at their nominal value. The
nominal values were taken from Kros ef a/. (1995a).
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Table 1 Parameters calibrated

Code  Description Affectsd  Unit Dependent on desived from

MBO2 Forest filtering 50, Al - Vegetation literature

SN Forest fileering NTH NOs - Vegetation literature

SNO. Forese filtering NOy NQO;, - Vegetation literature

Jad Dry deposition factur Al - Vegetation literature

Ao Mincralisation fraction AL NQOs;  at Vegetation literature

Srui Nitrification fraction ALNQ; - Soil global calibration?

Jrae Denttrification fraction Al NQO; - Sonl global calibration®

KAl Al dissolution Al log(mol 217 Soil Denved from ca. 250
constant plots in NL,

KAL.  AV/BC2 exchange Al logimol 17 Soil Derived from ca. 250
constant plots in NI,

Kl H1/BC2 exchange Al Jogmol' ) Sail Derived from ca. 250
congtant plots in NI

b Refers to soit solution concentrations of Al and NOy; other modad output was not considered in the
present study
3 e, manual calibration, only focussing on the average concentrations

Calibration and validation data

Soil solution concentrations were sampled at 241 forest stands, including 147 non-
calcareous sandy soils, sampled durtng the spring of 1990 (De Vties of 2/, 1995h), 38
loess soils, sampled during the spring of 1992, 30 peat soils, sampled during the spring
of 1993 and 26 clay soils, sampled during the spring of 1993 (Klap ef aZ, 1999). The
soil solution was sampled during the period from February to May. Composite
samples, consisting of 20 subsamples, were taken from the mineral topsoil (0 to 30
cm} and the mineral subsoil {60 to 100 cm) in early spring. At this time of the year, the
composition of the soil solution corresponds reasonably well with the flux-weighted
average annual soil solution concentration. Soil solution was extracted by
centrifugation of soil samples. The locations were restricted to non-calcareous soils
throughout the country, because sampling was performed in the context of
acidification research (cf. De Vries ef @/, 1995b). The forest types included were Scots
pine, black pine, Douglas fir, Norway spruce, Japanese larch, oak and beech.

The observation sites were lumped into the same forest type classes and soil type
classes that were used for the model simulations. The tree species were lumped into
two forest type classes:

- Coniferous stands (Douglas fir, Norway spruce, Scots pine and black pine), i.e.
evergreen trees with moderate to high forest filtering capacity, growth rate and
transpiration rate (CON);

- Deciduous stands (Japanese larch, oak and beech), ie. needle- or leaf-shedding
trees with low forest filtering capacity, growth rate and transpiration rate (DEC).

The soil types were lumped into five classes (Table 2), based on parent material

(texture, mineralogical composition, organic matter). Moisture condition was not

taken into account as a separate criterion, since this information is not available on a

Furopean scale. Note, however, that previous applications of SMAR'12 (cf. Kros ef 4/,

1999) also included calcareous sandy soils (SC), calcareous clay soils, non-fertilised
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grassland (GRA) and heathland (FIEA). Since no observation data were available for
these soil and vegetation types, these categories were not included in the calibration
and validation.

Table 2 Overview of the soil type classes distinguished

Code Soil class Common soil types (FACY, 1988)
5P Sand Poor Carbic Podzols, Arenosols

SR Sand Rich Gleyie Podzols, Gleysols

CN Clay Non-calcareous [Muvisols

PN Peat Non-calcarcous Histosols

IN T.sess Non-calcarcous Tuvisols

SMART2 simulates averaged annual values, whereas the data set represents the
concentration of ions in early spring (February to May). Although average
concentrations in Aprl may be used as an estimate of the flux-weighted annual
average concentration (De Vries ¢f 4/, 1995b), our data set was sampled only once.
This influences the quality of the calibration because of extreme values due to specific,
temporary circumstances, such as weather conditions and deposition. Since upscaling
smoothes such extretne values, this is another important motivation for performing an
upscaling operation. The upscaling procedure use average information on e.g. annual
deposition in combination with a multiple regression equation, yielding a smoothing
of extreme values and outliers.

3.3.3 Methodology

Upscaling of observation data

In order to calibrate and validate the model it was necessary to bring observations and
model results to the same support. Several techniques are available to perform spatial
upscaling, including regression analysis (cf. Leeters of af, 1994), generalised additive
modelling (cf. Tiktak ef a/, 1998), ordinary block kriging (Journel and Huijbregts,
1978), stratified block krging (Pebesma and De Kwaadsteniet, 1997) and a
nonparametric distance-weighting procedure (Han ef 4/, 1993). Two disadvantages of
kriging are that (i) it spreads out sharp boundaries which do exist in reality, and (ii) it
assumes similar mean and variogram for all soil units (Brus ef 4/, 1996). Rately are
natural processes explained with an estimate of variability. Therefore, as stated by, e.g.
Heuvelink and Bierkens (1992), it is advisable to use all relevant additional
information, such as the relation between atmospheric deposition and soil solution
concentrations (Leetets ¢f 4/, 1994). It remains unlikely that this information alone can
fully explain the object variable, because (i) crucial additional information may not be
available and (&) soil parameters are often spatially correlated. The structure in spatial
data can usually be divided into a systematic part and a stochastic part (Han ¢ al,
1993). Therefore, we decided to use a hybrid of a systematic and a stochastic method.
However, the division between the systematic part and the stochastic part is rather
arbitrary. Multiple linear regression was used for the systematic behaviour, whereas
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ordinary block kriging was used for the stochastic behaviour. Here we derived nation
wide upscaled monitoring data from about 250 forest stands in the Netherlands (Mol-
Dijkstra and Kros, 1999).
Model results at a block support for 5 X 5 km? blocks were obtained by tal\mg
the block median value from the cotresponding point support model runs (see section
2.1). To use the observation data for 2 model calibration at a block support for 5 X 5
km? blocks, the observations must be aggregated to the same support. Therefore, a
map was gencrated with the major soil solution concentrations (Al, NOs, SO,
Ca+Mg, Cl and pH) for a 5 X 5 km? grid {cf. Mol-Dijkstra and Kros, 1999). To
account for both systematic and stochastic behaviour, the block values were detived in
three steps, according to the scheme in Figure 1
1. multiple regression analyses for a 250 X 250 m? grid, n order to estimate values at
unsampled locations by including all available additional information which may
explain the systematic effect;

2. aggrepation of the 250 X 250 m2 values to a 5 X 5 km? grid;

3. adjusting the 5 X 5 km? grid values by adding that part of the residual that can be
predicted from spatial correlated observations. This procedure was petformed
using restdual kriging on log-transformed data.

Data Modeloutput

250 points 1 x 1 km grid

Multiple linear regression

M248 H3.3 01

Ancilillary data
Phlasuioitind S

250 x 250 m grid
Aggregating Aggregating
5 x 5 km grid
Adjusting with kriging
y
5x 5 km grid 5 x 5 km grid

CALIBRATION
— (D

Figure 1 Upscaling procedure for available point observations and model results

Regression analysis and aggregation

Candidate predictor variables for the regression analysis were: land use, soil type, tree
species, total deposition of N and S, canopy closure, tree height, total area covered by

198



Chapter 3.3

the forest, nearest distance to the forest edge and principal land use at the nearest
forest edge (Mol-Dijkstra and Kros, 1999). These variables were used because they are
available on a national scale at a resolution of 250 X 250 m? and we assumed that they
might have a significant effect on soil solution concentrations. The use of national
data made it possible to split up the category of coniferous forest (CON), which was
used for the model calibration, into pine forest (PIN) and spruce forest (SPR).
Multiple lincar regression was used to fit the soil solution concentratons to the
candidate predictor variables, using the GENSTAT statistical package (Genstat 5, 1987).
Since the predictor variables are either quantitative (e.g. deposition) or qualitative {e.g.
soil type), the regression equations include both quantitative and qualitative variables.
The best regression models were obtained by means of the following procedure: (i)
find the best model with the SELECT option in GENSTAT, () investigate whether non-
linearities lead to improvements, using the SPLINII option in GENSTAT and (iif)
investigate whether the inclusion of interactions leads to a better model. To meet the
assumption of normally distributed regression residuals, the soil solution
concentrations (response variables) were log-transformed (using the log,). For the
presentation, results were transformed back to the original scale.

The ‘point maps’ thus derived at a resolution of 250 X 250 m? were aggregated
to 5 X 5 km? ‘block maps’, being the spatial scale of the model predictions, by taking
the median value within each of the 5 X 5 km? blocks.

Residual kriging

The non-explained part of the regression model (Le. the residual} consists of an
unstructured part, which originates from measurement errors, but also of a structural
part, which could be explained by known predictor vatiables, causing a spatially
correlated residual. The systematically explained part was described using predictor
variables, while the residuals are random and were treated stochastically. For this
stochastic part, we used ordinary block kriging. The stochastic part was included by
analysing the log-transformed residuals, based on the 250 X 250 m? map, for spatial
relationships. Residuals were estimated by:

¢, (B)= y,,(B)= 3, (k) _ )

where ¢,,(£) denotes the residual at a point support (denoted by the subscript ) for
the log-transformed observed concentration of constituent 1, at location £ (3, (£)) and
the estimated log-transformed concentration r for the 250 X 230 m? grid cell in which
location 4 is located (#£.{£)). These values are still treated as points. Experimental
semivariograms for é,, were fitted using an exponential model. Where necessary, the
nugget variance was adjusted manually. Subsequently, ordinary block kriging for 5 X 5
km? blocks was applied to the spatially correlated residuals. Finally, the upscaled
concentrations at the 5 X 5 km?2 block support (#s.{/) were calculated as:

In D=0, (D)4, () @
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where j/,':"r(l) denotes the upscaled concentration r for 3 X 5 km? blocks {denoted by

the subscript ) on a log-scale derived by multiple regression only and s, ()) the part
of the residual that was predicted by considering spatial correlation on a 5 X 5 km?
block scale.

Assuming independence of both terms in Eq. (2), the predicted variances of the
upscaled obsetvations thus derived for all 5 X 5 km? block support values were
estimated as:

a-fzi,r(l) = d‘R,r<!) + dlz(,r(/) (3)

with 5';‘:,,(/ ) being the block median regression vartance for the upscaled observation

r and 6',%,,(1) being the kriging variance of the predicted residuals (¢5, (), both for
5 X 5 km? blocks /and on the log-scale.

Model calibration

Calibration approach

The calibration was performed on a grid-to-grid basis using a 5 X 5 km? grid, which
was considered representative of application on the European scale. Because
observations were only available for forest, the calibration included only those 5 x §
km? grid cells that contained at least 20% of nature consetrvation area, of which at
least 50% consisted of forest. This means that the upscaled ‘observations’ fora 5 X 5
km? block, i.e. the block median values, originated from at least 40 cells (=202 X 0.2 X
0.5) from the 250 X 250 m? subgrid, whereas the upscaled model results originated
from at least 3 (z 82 % 0.2 X 05) subgrids of 1 X1km2 Asa l'f.'Sl.llt, 153 of the original
918 blocks were used for the calibration.

In general, two calibration methods are available for solute transport models, a
Monte Catlo based method (cf. Hornberger ¢ a/, 19806) and a mathematically based
method, the Bayesian approach (cf. Klepper and Hendrix, 1994). Tf several (say more
than 5) independent parameters have to be calibrated, the Monte Carlo method seems
to be rather inaccurate (cf. Scott, 1992). Therefore, we used the mathematically based
method,

Calibration steps

Because several model parameters do have the same overall effect on the soil solution
concentration, it was necessary to perform the calibration in sequential steps as
outlined in Table 3. Furthermore, where applicable, the calibration criterion was also
adapted per calibration step, as outlined below.
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Table 3 Overview of the consecutive calibration steps

Calibration  Parameters Criterion Plots included Process
step
Nitrogen parameters
1 Ko NQO+NITN Only dry sandy Mineralisation (internal N
soils input)
2 JNEL NG NO3+NILE Only dry sandy Forest filtering of NI and
soils NQ, {extemnal N input)
3 Jrui NOs+plT+Al All gid cclls Nitnfication
4 Jra NOs+pIT+A) Al grid cells Denitrification
Aluminium parameters
5 R0, SOy All grid cells Forest filtering of SO
(external S input)
6 St BC2 All grid cells Forest filtering of BC
(external BC input)
7 KAl Al+plI All grid cells Dissolution of secondary Al
precipitates
8 KAl Kl Al+plT+NO; Al prid cells Cation exchange

b Since no upscaled NI I concentrations were available, we used the average NI 4 concentration from
the individual plots, i.e. 0.1 mol. m3

2 Since the simultancous calibration of both filtering factors resulted in identification problems, the
filtering factors were fiest calibrated individually, The resulting optimal values were then used as the
initial values for the simultancous calibration of both filtering factors.

We first considered only the parameters affecting the N input, i.e. the forest
filtering factors for NO, and SO (fNO, f50,) and the mineralisation rate constant
(km). These parameters were calibrated using the total N concentration (NO3 + NIL)
at the bottom of the root zone of forest locations on dry sandy soils only, which
excludes the possibility of substantial N loss by denitrification. Apart from the growth
parameters and N contents in the various biomass compartments, which determine
the loss of N by uptake, and denitrification from this calibration step, no other
parameters affect the N leaching flux. Next, the nitrification parameter {f,) and the
denitrification parameter (fi) were calibrated using the entire data set. Because
nitrification leads to the formation and denitrification to the consumption of NO; and
H, which in turn results in dissolution or precipitation of Al, we used NOs, plH and Al
as criteria.

From the parameters that indirecdy influence the Al budget (viz through the
charge balance), those that directly influence the base cation concentrations (Le. the
dry deposition factor, fi and the weathering rates, BC2,) were calibrated first,
followed by the forest filtering factor for SOy (f503). This ensured that the base
cation and sulphur budgets were optimally simulated before the parameters that
directly influence the Al concentration (KAl,, KAl.) were adjusted.

Calibration criterion and optimisation algorithm

The model parameters considered were calibrated simultaneously for each calibration
step. The squared difference between the model outputs considered and the
cotresponding (upscaled) observations for all 5 X 5 km? grid cells was minimised.
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Candidate parameter values were selected from a priors specified uncertainty ranges.
Unlike the regression analysis and kriging, the calibration was performed with the
original data. The calibration criterion was based on the non-weighted summed squate
of the differences.

The model to be calibrated can be written as:

Su,(N)y=J0.6) S

where jos is the onginal (non log-transformed) model output for concentration
constituent » (r = 1, ... ,I) for a 5 X 5 km? block / (/=1, ... , J) and 8 denotes the p-
dimensional parameter vector reflecting the parameter constraints specified in Table 1.
The model parameters depend on either the vegetation type or the soil type. The
summed squared difference between model and data over all concentration
constituents for grid cell /was expressed as:

C0)= (e, (1:6)f ' (5)

r=1

where

e, (16)= 3y, (D)= I . (1:6) ©)

is the difference between the back-transformed upscaled observation of component r
at block /_ju () and the associated upscaled model prediction ju. (46} for the original
scale. Eventually, the various misfits per grid cell ({/f) were combined into one
overall criterion by summing over N blocks:

N
C(6)= C(;8) @
/=1

For each calibration step (cf. Table 3) an optimal parameter vector § was
determined by minimising the overall misfit function:

min,[C(6)] )

The optimisation was carried out with a constraint minimisation function using
the Gauss-Levenberg-Marquardt algorithm. Physical boundaries were used for the
constraints. The optimisation was carried by using a model-independent parameter
optimiser PEST (Doherty ef @/, 1994). The optimisation delivered the ,best linear
unbiased’ estimator of the set of true model parameters. Therefore, also the 95%
confidence limits of the optimised parameters was calculated from the covariance
matrix (cf. Doherty ef 2/, 1994).
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Model error quantification

The benefits of the model calibration procedure were assessed by quantifying the
model error for both the nominal and the calibrated model run. According to
Heuvelink and Pebesma (1999), the only way to quantify the model error is through a
model validation, achieved by comparing model results with independent
observations. Currently, however, no independent data set on a national scale is
available. Therefore, it was decided to ‘validate’ the model by quantifying the model
error before and after calibration. As with calibration, the model validation was
performed at a block support, taking into account the uncertainty due to the upscaling
of the observations. We used a procedure that takes this into account (see Heuvelink
and Pebesma (1999).

Consider the difference between the model prediction at the block support ju,
and the observation data (i.e. the validation data at the block support on the log-scale),

Far ‘
Psr=Virr— Vo, ©

This difference does not yield the real model error, because it also includes the
estimation error in Jar:

o= Ynr (10)

where ys, denotes the true block support value. The squared difference of Eq. (10) can
be simply derived from the model outputs and observation data at the block support
(cf. Eq. 9). It can be decomposed as follows:

(j’M,r -j}B,r)z =((yB,r -J;M,r)—(yﬂ,r —j}B,r))z

. . . ., D

= (yB,r ~Yur )2 + (yB,r - yg,,)z - Z(yB,r —VYum, )(yB,r .
In Eq. (11) (y8,-_ju,)? represents the true but unknown model error at a block support
and (y8, - §n,)? represents the estimation error of the upscaled observations, both on
the log-scale.

Heuvelink and Pebesma (1999) describe the situation in which the cross-
product in Eq. (11) is zero. In such a situation it can be seen from Eq. (11) that
evaluating the model ertot as (Jar-Jb,) results in an overestimation. In fact, the model
error should be judged by the term (fi-ys,), which of course gives smaller values. In
our situation, however, the cross-product in Eq. (11} was not zero. The upscaled
observations were based on multiple regression relations using ancillary information
such as vegetation type, soil type and deposition (see section 3.3.3), whereas the model
input data for the SMART2 application was partly based on the same ancillary
information (see section 2.1). This means that the errors in the ancillary information
yielded artificial similarities between the aggrepated validation data and the model
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results, so the cross-product in Eq. (11) between (ya, - fu.) and (33, - §&,) is not zero
but positive. Consequently, we have to evaluate Eq. (11) with a non-zero cross-term.

"The estimation error of the upscaled observations was estimated by Eq. (3), and
consisted of the block median estimation variance of the multiple linear regression
model and the kriging variance. Since the squared observable differences, (- J1.)2,
were only available in an average sense (we only had one value per block), it was
impossible to estimate the model error for individual blocks. Flowever, the model
error could be estimated as an average from the mean square error of prediction
{MSEP) for component r

.
MSEP(r)= -;—TZUM,,(!) = iy, (OF (12)
/

where /is the grid cell indicator and N the total number of grid cells. Using Eq. (3)
and (12), and averaging over all 5 X 5 km? blocks, Eq. (11} can be written as:

MSEP(r) =57, + 82, = 2Pp0, . _ (13

- —_ - — - .
with &2, being the average model error for output r, &5, the estimation error of

the upscaled observations averaged over all grid cells and p,,, the correlation
coefficient between the model error at the block support (Js- - jar,) and the estimation
error at the block support based on observation data (§i, - §n.).

Because it is not easy to estimate the correlation coefficient, three extremes
were evalnated, viz, —1, 0 and 1 Although it was obvious (see above) that the
correlation coefficient was positive, we also included —1, for the sake of completeness.
We assumed that p,,, was independent of the model output considered. Given a

known correlation coefficient, the only sensible solution to Eq. (13) is:

~ _ 2Puwp0s, +\!4Pim3§,r - 45, — MSEP(r))
o-M,r - 2

14

The average model error ('O_'f,_,) can be divided into a structural part (G, )

and a part that originates from input uncertainty (&, fm,r )5
=2 _ =2 —2
Orye =Oms, YO, (15)

Given the model error due to input error, which has been quantified by Kros ef
al. (1999}, and the model error derived from Fq. (14}, the structural part of the model
error can be quantified by:
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EMI:.\‘,r = EAm‘,r - EMH,r (16)

Note, however, that Ef,m, is only defined for values 2 0. The contribution of

the input error was quantified by performing Monte Carlo simulations. The sources of
uncertainty considered were (i) uncertainty/impurity in soil maps and vegetation maps
(categorical data) and (i) uncertainty in soil and vegetation related parameters
(continuous data). The uncertainty in categorical data was quantified by 2 comparison
between the cruder European Union soil and vegetation maps and the more detailed
maps from the Nethetlands. The uncertainty in the continuous data was derived from
various European databases and the literature. The resulting uncertainty was expressed
as variances of the block median Al and NOs concentrations for 5 X 5 km? blocks in
the year 1995, i.e. the year for which the model error was quantified (cf. Kros ef a/,
1999). Since the input etror was quantified for the non-calibrated model, we were only
able to quantify the model structure error for the nominal model run.

3.34 Results and discussion

Upscaled observed soil solution concentrations

Regression models

Stepwise selection process showed that significant predictive variables for the log,
NO; concentration included (i) soil type (i.e. SP, SR, LN, PN, CN), (i) tree species
(ie. SPR, PIN, DEC), (iif) deposition of NH, (NHy uyp), {iv) mean spring water table
depth (MSW), (v) area of contiguous forest (areq) and (vi) tree height. The inclusion of
non-linear relationships (for MSW and area) resulted in a loss of significance for tree
height. No significant interactions were discovered. Finally, the following multple
regression equation was derived for the NOj concentration at depths of 60-100 cm
{cf. Mol-Dijkstra and Kros, 1999):

In NO, = s0il (i) + reg( /) +0.33NH, ., —5.5-0.025™" —1.244rea"* - 0.1 (17

where NO; is the NO; concentration in mol. m3, sei/f7) and vegff) are constants that
differ per soil type ¢ and vegetation type 7, NHy & is the ammonium deposition in
kmol, ha! a1, MSW is the mean spring water table depth in m below the soil surface
and arza is the area of connected forest in ha. The percentage of varance accounted
for was 48%. There was a positive relation between NH, 4 and the NOs
concentration. NH, 4 affects the NO; concentration through nitrification, which is
generally complete in (dry) forest soils (cf. Tietema, 1992). Remarkably, there was no
significant contribution of the NOy deposition to the NO3 concentration. This was
most probably caused by the fact that NO, deposition in the Netherlands is
considerably lower than NH; deposition, with average values of about 750 and 2000
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mol: ha' a'l, respectively, for the period 1990-1995 (Bleeker and Erisman, 1996). The
relationship with MSW originated from a lower denitrification flux at deeper water
table depths. MSW < 1 m yields higher negative values for the whole term, whereas
MSW > 1 m yields lower negative values. The negative relation with ars of
contiguous forest was a result of the lower rate of forest filtering of atmospheric
deposition in larger contiguous forest areas. A larger contiguous forest area means
shorter forest edges, resulting in a smaller roughness length, which in turn yields a
lower rate of forest filtering (cf. Draayers ¢ af, 1988). The estimated constants for
s6illd) ranged from —1.2 for loess soils to 0.8 for rich sandy soils (SR). The constants
for veg)) ranged from 0 for deciducus to 1.4 for spruce forest.

The significant main effects for the Al concentration at depths of 60-100 cm
were found to be soil type, tree species and mean spring water table (MIW). Although
deposition was not significant as a main effect, the interaction between soil type and
NI, deposition was significant. Since some soil types showed a negative relationship
with deposition, which could not be explained, the relationship with N, deposition
was not included in the regression equation. Finally, the following multiple regression
equation was derived for Al {cf. Mol-Dijkstra and Kros, 1999):

In AL = s0il (i) + vea( /) - 2.0- 0.1 =13 ' (18)

where soi(i) and regfj) are constants that differ per soil type 7 and vegetation type j and
MSW is the mean spring water table. The percentage of variance accounted for was
50%. The estimated constants for sei{?} ranged from —2.6 for clay soils to 0.2 for rich
sandy soils (SR). The constants for zeg(j) ranged from 0 for deciduous to 1.5 for spruce
forest. The Al concentration was best explained by soil type and vegetation type, and
decreased with soil type in the following order: SP > SR > LN > PN > CN, which
coincides with an increase in weathering rate. Furthermore, the Al concentration
increased with the vegetation structute type, in the following order: SPR > PIN >
DEC, which coincides with a decrease in the input of {acid) atmospheric deposition.
The negative relation with the MSW stemmed from higher pH and base cation
concentrations under wet circumstances, which means low Al concentrations due to a
lower solubility. Ir was remarkable that no significant contribution of the atmospheric
deposition was found. However, this effect was partly included in the vegetation type,
since pine and spruce wees have higher filtering capacities, resulting in a higher input
(throughfall) flux. Furthermore, it is undetstandable that the effect of deposition was
overruled by the effect of soil type. ‘The soil types included ranged from clay soil
(CN), with negligible Al concentrations, to poor sandy soils (SP) with extremely high
Al concentrations.

Observation-based Maps

The regression equations 17 and 18 were used to calculate Al and NO; concentrations
for 250 X 250 m? grid cells followed by aggregation to 5 X 5 km? blocks (Figure 2).
Figure 2 also shows the map that was adjusted with ordinary block-kriged residuals for
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5 X 5km? blocks. Only those cells are presented that included more than 20% of
(semi) natural vegetation, of which more than 50% consisted of forest. The map of
NQ; concentrations clearly shows higher concentrations in the southern and to a
lesser extent in the central and eastern part of the country, which were the areas with
high nitrogen deposition rates. Lower concentrations were found in the northern and
central parts. The Al concentrations, however, were more evenly spread over the
country. This was caused by the absence of the deposition variable from the
regression equation (cf. Eq. 18). The addition of the kriged residuals yielded 2 much
more dynamic image. This effect was strongest in the northern part of the country.

Since the effect of kriging cannot be quantified in terms of the percentage of
variance accounted for, the consequences of the addition of the block-kriged residuals
is illustrated by the Normalised Mean Squared Error of Prediction (NMSEP) for all grid
cells (Table 4):

1 .
EZ[Jﬁ_r(/) - .)'x,r([)]z
NMSEP(r)=—1=!

(19)

For

where §.{) are the intermediate upscaled observation for either a 250 X 250 m? or 5 X
5 km? block / determined either with regression analysis or with regression analysis
combined with kriging. 34} represents the observed point-concentration of
component r within block / N the number of available observations and y,, the

mean of observations r on a point scale. Normalisation of the MSEP by the mean of

the observations yields a dimensionless measure, which makes it possible to compare

it across different model outputs.
The resulting NAISEP value was calculated for four situations (Table 4):

1. the original regression for a 250 X 250 m? grid using the complete data set of 241
point observations (cf. section 3.1) (Regression 250 X 250 m? with data);

2. the original regression for a 250 X 250 m? grid using only those 250 X 250 m?
cells that were situated within 5 X 5 km? blocks with more than 20% (semi)
natural vegetation, of which more than 50% consisted of forest. This subset
included about 8000 grid cells sized 250 X 250 m%

3. upscaled regression results for 5 X 5 km? blocks containing more than 20% (semi)
natural vegetation, of which more than 50% consisted of forest, and the
observation points situated within these blocks (Regression 5 X 5 km?);

4. like (i) but with the addition of the block-kriged residuals (Regression + kriging
5 X 5 km?).
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Regression + Kriging

Regression

™
b=
=]
v

(top) and NO; (bottom) in the subsoil (60-100 cm) for 5 % 5 km? block median values,
based on regression analysis alone (left) and regression analysis combined with block-

Al (mol.m?)
0.02-04
Figure 2 Maps of estimated upscaled observations of soil solution concentrations of Al
kriged residuals (right)
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Table 4 Narsr:p values for all 5 X 5 km? grid cells for the Al and NO,
concentrations predicted by regression analysis and regression analysis
combined with block-kriging. The NAISLP at a 250 X 250 m? paint support
is also given

Level of upscaling N Al Ny
Median® Mudian® xNasiie R, Mediant Median® NMSEP R,
Regr.  Obs. Repr.  Obs,
(mol, m-3) (=7 {mol. m) (df=02

Regression (only eclls wath obs} 241 020 020 1001 0.50 024 024 713 048
250 % 250 m?2, point support

Regression (all eclls) 7996 0.48 0.27

250 % 250m2, point support

Regression (only coells with obs) 85 051 0.31 10,22 - 040 028 774 -
5 x 5km?, block support

Regression+ Keging {only cclls 83 043 031 735 - 040 028 5.43 -
with obs.)

5 x 5km2, block support

% Rack-transformed average of the log.-transformed mean

3 Degrees of freedom of the regression, Le. number of predictive vanables. Note, however, that seif)
and zeg( ) in Iigs. 17 and 18 sefer to catepgorical variables consisting of 5 and 2 categories respectively
(cf. section 4.1)

Inspection of the NAISEP (Table 4) showed that the ‘regression + kriging’ map
was a better estimate than the map based on regression analysis alone, with the NASEP
decreasing &y 28% for both Al and NOs. It might be concluded from the NASEP that
the estimation of the NO; concentration was better than that of the Al concentration,
This was, however, not reflected in the percentage of variance accounted for (R%.4).
The R2,y, values were almost equal for Al and NOs: 50% and 48% respectively (see
section 4.1). This was because (i) the NO; regression equations include more degrees
of freedom (i.e. the number of predictive variables + 1) and (1) the variances of the Al
observations were larger. Both aspects yielded a reduced R2;. If we limit ourselves to
those grid cells that contain more than 20% (semi) natural vegetation, of which more
than 50% consists of forest, we find higher concentrations for both Al and NOs,

The maps derived by a combination of regression analysis and block-kriging of
the residuals were regarded as the maps with upscaled observations that can be used
for either model ealibration or model validation.

The effect of upscaling on the width of the distribution is illustrated by
cumulative distribution functions (CDF, Figure 3). Upscaling from point values to
block median values clearly results in a narrower distribution. The first step of the
upscaling process, i.e. from the original observation .points to values for all .25l.) X 250
m? cells containing (semi) natural vegetation, considerably narrows the distribution.
The reason was that the regression analysis was performed with averaged ancillary
information (i.e. on soil, land cover and deposition, cf. section 3.1} instead of site-
specific information. Averaged information was used, since we wanted to make
predictions on a national scale, and no site-specific information was available for the
country as a whole. Yet the resolution of the available ancillary information was still
wide. The resolution was lowest for atmospheric deposition: 1 X 1 km?, whereas that
for soil types was 125 X 125 m? (scale 1:50 000). The use of averaged information
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combined with a muliple regression equation resulted in a smoothing of extreme
values or outliers due to e.g. measurement errors or location-specific circumstances,
such as a farm being situated nearby, preferential water transport or upward seepage.
The second step of the upscaling process, from 250 X 250 m? to 5 X 5 km?, further
narrowed the distribution, though the reduction was less than the first step. The
narrowing was simply caused by averaging out the differences. Note that the CDF
value thus derived for NOs is much smoother than the CDF for Al This was due to
the fact that the regression equation for Al (Eq. 18) was explained purely by class
predictor variables, viz soil type and vegetation type, and the continuous predictor
variable MSW, for which only 5 values were used, whereas NO;3 (Eq. 17) was also
explained by the continuous predictor variables NI deposition and ara. The final
step, i.e. the addition of the kriged residuals, resulted in a smoother curve and more
variability among predicted values, an effect which was most pronounced for Al

Cumulative frequency (%)

100 e ~ PE Lt
.............. ' i g
80~ { o g
y g
6 | [ e leasured 3
Upscaled data:
40 | 7‘,‘ —— === 250 x 250m, regression
2 { / ....... 5 x 5km, regression
M § x 5km, regression + kriging
| I | ] | | J
o 1 2 3 4 0 1 2 3 4
Al (mol, m3} NO, (mol, m?)

Figure 3 Cumulative frequency distribution of Al concentration {left) and NO;
concentration {tight) for upscaled values for 5 X 5 km? blocks with knging, upscaled
values for 5 X 5 km? blocks without kriging, regression results for 250 X 250 m? grid
points and ¢ 250 point measurements in forest stands

Model calibration

Effect of model calibration on predicted NO; and Al concentrations

Both the nominal and the calibrated parameter values were used for the simulation of
maps with SMART2 (Figure 4). A comparison between the nominal and calibrated
maps showed that the simulated concentrations for both NO; and Al were
considerably lower when using calibrated model parameters. Model simulations with
the nominal parameter values clearly overestimate the observed Al and NO;
concentrations {compare Figure 2 and Figure 4).
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Callibrated

Nominal
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NO, (mol.m™)

Figure 4 Maps of simulated soil solution concentrations of Al (top) and NO; (bottom)

in the subsoil (60-100 c¢m) for 5 X 5 km? block median values, based on SMART2
simulations using nominal parameter values (left) and calibrated parameters (right)
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To evaluate the benefits of the calibration for the map as a whole, calibration
results were also compared with the upscaled observations using cumulative
distribution functions (CDF) (Figure 5). The upscaled observations were presented as
a 95% prediction interval. Assuming that the log-transformed observations were
normally distributed, approximate 95% prediction intervals were calculated by:

(Fs,(1) = 26,(/), 3y (1) + 263 ()] (20)

where jj, denotes the upscaled log-transformed concentration r for 5 X 5 km? block

/(Eq. 2) and G, () the standard error of the upscaled concentrations for 5 X 5 km?
block / (i.e. the standard error due to regression and kriging of the residuals, cf. Eq. 3).

Cumulative frequency (%)

100 — AAmmAn 8
80 s - g
60 Upscaled data E

-------------- SMARTZ nominal

SO R e SMART2 calibrated

95% confidence interval

| | | .f | | 1 |

0 1 2 3 4 0 1 2 3 4
Al (mol, m™®) NO, (mol, m~)

20

Figure 5 Cumulative frequency distribution of Al concentration (left) and NO;
concentration (right) for the upscaled observations; SMART2 results with nominal
parameters and calibrated parameters for 5 ¥ 5 km? block median values, together with
95% confidence intervals

The resulting prediction intervals appeared to be wide for both model outputs
(Figure 5), although the interval for NO; was much wider than that for Al

The benefits of the calibration were clearly illustrated by the shift in the CDF of
the nominal model run towards the CDF of the calibrated model run. Note, however,
that a comparison on the basis of CDFs may result in too optimistic a judgement,
because it means that the relation with geographical location was abandoned. The
CDF of the model results corresponded quite well with the CDF of the upscaled
observations for both model outputs, whereas the nominal model results were clearly
underestimated for both outputs. It was remarkable, however, that the nominal model
results for both Al and NO; were almost completely covered by the 95% confidence
interval of the upscaled observations.

Effect of calibration steps

The effect of the consecutive calibration steps was inspected by calculating the mean
square error of prediction (MSEP) (Table 5). The nominal MSEP for all three inspected
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model outputs appeared to be comparable, though it must be noted that the values
were not normalised by the mean, which makes comparisons between the three
inspected model outputs precarious. The first calibration step of the mineralisation
rate constant (&), considerably improved of the NOs performance, decreasing the
MSEP by 50%. The calibrated median values for &» were clearly lower than the
nominal values (Table 6), which resulted in lower mineralisation fluxes. The
calibration also profoundly narrowed the confidence interval for £s. The calibration |
of the filtering factors (fNH, fINO,) improved the MSEP only slightly (T'able 5). The
slight improvement of step 2 also resulted in a minor adaptation of the median
parameter values (Table 6). Only the calibrated median value for deciduous forest
ended up somewhat below the nominal values. Yet the 95% confidence interval for
NI (CON) was clearly compressed, while the confidence intervals for deciduous
forest were expanded. This last result was most likely due to a smaller number of 5 X
5 km? blocks with deciduous forest (24) than with coniferous forest (129). Although
the Al concentration was not considered during the first two calibration steps, its
petformance clearly improved. This was due to an overestimation of both Al and NOs
during the nominal run (cf. Figure 2 and Figure 4) and the positive relationship
between NOs; and Al Higher inputs of NOs; (either by mineralisation or by
throughfall) yicld a higher acid load and hence higher Al concentrations. At the same
time the performance of the model for the pH slightly deteriorated.

Table 5 Overview of the performance of the consecutive calibration steps

Calibration Step  Paramcter Mean squared error of predictiont Catenon

Al NO, pld
0 Nominal 0.17 0.18 016
1 b 0.13 0.09 017 NOs; + NH;
2 JINTT NGy 012 .08 0.17 NOj; + NH,
3 Srai 0.08 0.06 0.19 AL NO;, pH
4 Jrae 0.08 0.06 Q.19 AL NO;3, pll
5 50 0.07 0.06 .18 S0y
6 Ju 0.07 0.06 0.18 BC,
7 KAl 0.07 0.06 0.17 Al, pH
8 KAL KH.. 005 0.08 0.02 - ALNO;, pll

) Based on concentrations expressed in mol, m-?

The calibration of the nitrification fraction fr; profoundly improved the
prediction of both Al (33% reduction of the MSEP) and NO; (25% reduction of the
MSEP), whereas that of the pH deteriorated further. The calibration of f gave lower
median values of fr for sandy soils (SP and SR) and clay soils (CN) (Table 7). Those
for peat (PN) and loess (LN) did not changed, because the lack of data on these soil
types caused identification problems. Only 9 blocks of size 5 X 5 km? included PN
and LN, whereas there were 144 blocks for SP and SR. This also explains why the
confidence interval, was narrowed only for SP and SR. Although fr; directly influences
the NO; concentration, its effect on the Al concentration (in terms of MSEP values)
was much large than on the NO; concentration, which appeared to be negligible.
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The calibration of the denitrification fraction had no effect. This was also due
to identification problems, caused by a lack of information on the moisture condition.
Adjusting the filtering factor for SO, (fSO3) improved both the Al concentration and
the pIl. Remarkably, the calibration of f8O; resulted in a median value for deciduous
forest (DEC) that was considerably higher than for coniferous forest (CON) (Table
6). This was a rather unexpected result, because the filtering capacity of spruce forest
is higher than that of deciduous forest (De Vries e ¢/, 1995b). The anomaly was most
probably induced by the fact that the number of blocks with deciduous forest was
much smaller than the number of blocks with coniferous forest.

Table 6 Nominal (Nom.} and calibrated {Cal) 95% confidence intervals
and median values of the vegetation-related parameters

Tree  95% conf. ki {INH, INOx J50 a4
species interval  [a] [l {] [ Il
Nom. Cal Nom. (Cal Nom. (al. Nom. Cal Nom. Cal.
CON  P02.51 0.02 0.02 1.0 1.0 0.6 0.6 1.0 1.4 1.5 29
Median 0.05 0.03 13 1.3 0.9 1.0 L5 1.5 28 35
PY7.52 .10 0.03 1.8 1.6 1.2 1.3 1.8 1.6 35 4.1
DLEC P025 Q.02 0.01 0.8 0.9 05 05 0.8 1.7 15 20
Median  0.05 0.04 1.1 1.0 0.7 0.6 1.2 2.0 2.0 34
Pe7s 0.10 006 14 1.9 1.0 1.8 1.4 24 25 4.7

0 PO2.5 = 2.5 percentle, i.e. lower side of the 95% confidence interval
3 P97.5 = 97.5 percentile, i.e. upper side of the 95% confidence interval

The use of the dry deposition factor (fz) did not improve the performance of
Al, NOj3 and pll, although its calibration yielded higher median parameter values for
both DEC and CON (Table 6). This step resulted in increased BC2 and BC
concentrations, which were obviously underestimated by the nominal values. As with
the other filtering factors, the confidence interval was only narrowed for coniferous
forest.

The calibration of the dissolution constant of secondary Al precipitates (KAL)
resulted in a slight improvement of the pIl performance. The median values for SP,
SR and LN were reduced, whereas the values for CN and PN remained unchanged
(Table 7). Finally, the calibration of the exchange constants (KAl and KIL.) resulted
in a considerable performance improvement of the pH and to a lesser extent of the Al
concentration, whereas the performance of the NO; concentration worsened. The
latter must be attributed to feedbacks between pH and the N transformation
processes. The calibration was able to reduce the width of the confidence interval of
KAl considerably for all soil types, except for LN. Furthermore, slight improvements
were found for the exchange constants KAl. and KH.. for the soil types SR, CN and
PN. '

In conclusion, the calibration clearly improved of the model performance and
reduced uncertainty in the model input data. The model performance for the Al and
NO; concentrations was improved mostly by the calibration of the ‘N related” process
parameters, l.e. mineralisation (£.) and the nitrification (£}. The improvement due to
the calibration of the ‘Al related” parameters was clearly less successful. Of the ‘Al-
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related’ process parameters, it were especially the exchange constants which improved
the model performance.

Table 7 Nominal (Nom.) and calibrated (Cal.) 95% confidence intervals
and median values of the soil-related parameters

Soil  95% conf. fi Jie KAl KAl All,.
type inteeval ] H flog{mol 2 13 [log{mol 1-9) flogimolt ]
Nom. €al Nom. (Cal. Nom. Cal. Nom. Cal. Nom.  Cal
s pPo2sy 0.8 0.6 0.0 nod 7.6 7.6 -0.3 1.7 a6 5.7
Median 1.0 0.7 0.9 0.9 8.2 7.8 0.8 -0.1 39 37
197.52 1.0 08 1.0 .. 8.7 31 1.7 1.5 45 13.2
SR 025 0.8 0.6 0.0 n.o. 6.8 7.8 0.2 02 37 -0.1
Median 1.0 0.7 0.9 0.9 8.2 8.0 0.3 01 3.9 1.7
P97.5 1.0 0.8 1.0 n.0. 8.0 8.3 1.0 0.3 43 35
CN D025 0.6 0.6 0.5 n.o. 8.5 R7 -4.3 -49 38 22
Median 1.0 08 1.0 1.0 9.4 9.4 34 34 0607 24
1'97.5 1.0 1.1 1.0 no, 10.2 10.1 -2.9 -3.0 9.1 28
IN TP025 Q0.7 20 06 no. 7.1 58 -1.7 46 28 9.6
Mecdian 1.0 1.0 0.9 0.9 8.3 7.5 0.6 -04 4.2 38
1P97.5 1.0 4.0 1.0 no. 9.0 9.2 1.5 3o 7.1 17.2
N D025 0.5 —o0 0.0 no. 49 5.6 -4.0 -2.6 21 31
Median 1.0 1.0 1.0 1.0 4.5 6.5 =21 =21 35 35
197.5 1.0 oo 1.0 n.o. 92 71 -1.0 -1.7 5.7 3.0

1 Pp2.5 = 2.5 percentile, i.¢. Jower side of the 95% confidence nterval
3 1975 = 2.5 percentile, i.c. upper side of the 95% confidence interval
¥ p.o. = not optimised, due to identification problems

Of the vegetation-related parameters, narrowed confidence intervals and the
resulting reduction in the uncertainty level of the model input were found especially
for k. and the filtering factors in coniferous forests, except for fINOx. For deciduous
forest, however, it was only feasible to reduce the level of input uncertainty for £ and
B0

The calibration resulted in a reduction of the uncertainty of most soil-related
input data. This reduction was, however, limited to the SP and SR soil types. As was
the case for the vegetation-related parameters, the uncertainty in soil-related
parameters for CN, LN and PN was hardly improved, due to data limitations. Finally,
our data set did not allow us to reduce the uncertainty of the denitrification fraction

(fue)-

Model error quantification

Using the methodology described in section 3.3, the model was ‘validated” on a block
scale for 5 X 5 km? blocks. This was done by quantifying the model error for both the
nominal model results and the results of the calibrated model. Because the input ertor
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was only quantified for the nominal model (cf. section 3.3; Kros ez 4/, 1999), the
partidoning of the model etror into a structural part (62n:s) and an input part (%)
was only possible for the nominal model run. The model etrors thus quantified for Al
and NOs; are presented in Table 8.

Table 8 Model error (o?up) and relative contribution of the model
structure error (MS) to the model error for three correlation coefficients
of the cross-terms (cf. Eq. 13) for the block median Al and NO;
concentration for 5 X 5 km? blocks for different categories of vegetation

and soil types

Nominal Calibrated
Constituent  Category p=0 ip=1 p=0 p=1
o2yl MS (%) ot MS (%) | alyph Lo
Al CON 0701.0) <02 134 (5.4) 49 0.02(014) 2127
DEC 0.6(09) <02 13043 @ #4 013 (037) 122(28)
sp 0205 <03 125 (3.3) 41 3 1.6 (2.0)
SR 11(14) <02 14.0 (7.3) 53 02(051) :25(3.3)
CN - . 12,0 (2.6) 19 - 120 (2.5)
LN 03006 <@ 12,7 (3.7) 15 004 (019) {22(29)
PN -3 - '- . - - -
Overall  [07(1.0) <2 133(5.1) 48 0.04 (020 12127
NOs CON 2303.0) <03 i54(144) 45 -2 113 (1.6)
DEC 29(41) <02 59(19.) 52 - 1.6 (2.0)
3P 33060 24 16,6 (271) 63 - 1.5 (1.9)
SR 19 (24) <02 147 (104) 30 - P1.2(1.5)
CN 12(15) <02 13.8(66) 32 0.05 (023 1.9 (24)
IN 3.0(44) 43 164 (245 73 . 1.0 (1.3)
PN 3 - ' ) - '
Over all 2432 <0 5.4 (14.8) 46 - 1.4 (1.7

1 Values in brackets denote the coefficients of variation {CV) of the back-transformed data derived

* from the variance of the log-transformed data by: ¢/ = \f @ .. Concentration are given in mol, m-3
on the original scale.

2 <0 means input errot {o2u) > model error (02ug), resulting in a negative value for the modcl
structure error (cf. Eq, 16)

3 means no real solutton for Ilg. 14, discriminant < 0

It 1s obvious that the correlation coefficient in Eq. (13) must be positive. This
means that a realistic estimate of the average model etror lies between the results for o
=0 and o =1 (cf. section 3.3). Thus, the average model error for Al for the nominal
model run lies between 0.7 and 3.3, whereas for NO; the average model error was
considerably higher, between 2.4 and 5.4. The larger average model error for NO; is
supported by Figure 5, where the CDF of the nominal SMART2 run deviates more
from the CDF for upscaled data than was the case for Al. Model calibration obviously
lowered the model error for both Al and NO;3 concentrations.

Inspection of the model etror per soil and vegetation category showed that the
greatest model error for Al occurred for rich sandy soils (SR), whereas the greatest
model error for NOj3 was found for poor sandy soils (SP). It was for these categoties
that the calibration produced the preatest gain, confirming the findings reported in
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section 4.2, Again, this was caused by the fact that mote data were available for SP
and SR soils.

The differences in model error between the two forest types were small for
both compounds, although Al showed a slightly smaller error for DEC, whereas NO;
showed a slightly smaller error for CON. The differences for the five soil types,
however, were larger. The model error was relatively small for CN (both for Al and
NO3) and for LN (for Al). Relatively large model errors were found for SR (Al), LN
and SP (NOa).

The subdivision of the model error into an input error part and a structural
error part should ideally provide useful information on weak and strong aspects of the
model. A small structural part means that a large part of the model error is absorbed
by the input error or vice versa. A large structural error means that efforts should
concentrate on improving the process formulation of the model, whereas a large input
error indicates that the emphasis should be on both better and additional data
gathering,

Inspection of the relative contributions of the input error and the model
structure error to the total model error shows that there are no major differences
between Al and NOs. In the case of g = 1, the model error for both outputs is equally
distributed over both terms. However, these results depend greatly on the value of o.
As the correlation coefficient decreases, the relative contribution of the model
structure error increases, because the model error decreases while the input error
remains constant. At a certain point, the model error even exceeds the input error,
yvielding a negative model structure error. This indicates an unrealistic value of either
the correlation coefficient or the input error.

The present study has shown that the relative contribution of the model
structure error was remarkably small for the Al concentrations in CN and LN. For
these soil types, additional data gathering might be the most beneficial approach. To a
lesser extent, this was also true for the N3 concentrations in SR and CN.

3.3.5 Conclusions

Upscaling model outputs

The present study assessed the calibration and validation of a relatively simple soil
acidification model on a block scale. Although SMART2 was developed especially for
application on a national to European scale, it still runs on a point support. Heuvelink
and Pebesma (1999) showed that the most approptiate way to obtain results at a block
support is to run the model on a point scale for multiple point locations within the
block, followed by aggregation of the model output. ‘This avoids application of the
model on a larger scale, which is essential because application on a larger scale requires
block-averaged parameters, and it is hardly possible to aggregate point support inputs
in such a way that they yield the correct block-averaged model output (cf. Wen and
Gémez-Herndndez, 1996). Furthermore, this procedure has several additional
advantages since point support output is available, any linear or non-linear aggregation
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may be used (e.g. block mean, block median, areal fractions exceeding a threshold)
and any block size or shape may be chosen (cf. Heuvelink and Pebesma, 1999).

Upscaling monitoring data

To obtain calibration and validation data on a block scale, ¢ 250 point observations
have been extrapolated to points in a 250 X 250 m? grid, using multiple regression
analysis. The tegression analysis was able to explain 48% of the variance in the NO;
concentration, whereas the percentage of Al variance accounted for was 50%. The
NO3 concentration was best explained by soil type, vegetation type, NH, deposition,
mean spting water table and area of contiguous forest. The Al concentration could be
fully explained by soil type, vegetation type and mean spring water table. The
subsequent extrapolations of these point values to 5 X 5 km? blocks substantially
narrowed the distributions. The final step towards the upscaled observation, ie. the
addition of the kriged residuals at 5 X 5 km? blocks, clearly improved the predictions,
reducing the AMSEP by ¢ 15% for both compounds. We conclude that the procedure
used is well suited for the upscaling of observed soil solution concentrations of NO;
and Al from a point support to a block support.

Calibration

The SMART2 model was calibrated at a 5 X 5 km? block support using the upscaled
monitoring data. The used calibration procedure appeared to be a useful tool for
finding optimal parameter ranges, and for reducing input uncettainties. Although the
effects of reduced input uncertainty on the uncertainty in the model outputs remained
unquantified, our study provided useful results. The calibration appeared to be very
successful in correcting the overestimation of Al and NO; concentrations resulting
from the nominal parameter set. It seems likely that these overestimations were mainly
due to an overestimation of the mineralisation rate and the nitrification rate
parameters, although this result is biased by the sequence of the calibration steps.
When calibrating the forest filtering factors (fINH;, fNO,) prior to the mineralisation
rate, results would definitely have been different. However, it was assumed that the
filtering factors were more certain than the mineralisation rate, since the filtering
factors were derived from various individual throughfall measurements throughout
the country, whereas the mineralisation rates were roughly derived from various
literature sources (Kros ¢f al, 1995a). The calibration of the Al-related parameters only
resulted in a slight improvement of the model performance, with the exception of the
exchange constants, although this was only true for the Al concentration and plH. The
improvement in modelled pH was remarkable.

As already mentioned, it is most likely that calibration results generally depend
on the ordet of the calibration steps. However, in our case identification problems
made it absolutely necessary to perform a stepwise procedure, and we had good
reasons for the order of the consecutive calibration steps we used {cf. section 3.2).
Another important aspect is that data used for calibration, i.e. the upscaled monitoring
dara, introduce an additional uncertainty caused by upscaling (cf. section 3.3). Because
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this error was not included in the calibration procedure, the calibration may seem to
provide a level of accuracy that is not really substantiated. Analysis of this error shows
that the nominal run is already within the 95% confidence interval of the data,
Nevertheless, it can be concluded that calibration leads to an obvious improvement of
the model performance and a reduction of the uncertainty in the model input data.

Model error

It has been shown that it is possible to perform a model validation at a block support
using point suppott validation measurements. Quantification of the model error
showed that it was relatively large for the nominal run, whereas calibraton greatly
reduced the model error when focussing on the block median results.

Splitting the model error into an input error part and a structural error part
should ideally provide useful information on weak and strong aspects of the model. In
the present study, however, the model validation was impeded by a correlation
between the upscaled observations and the upscaled model results. Therefore, it was
not feasible to unambiguously split the model errors into a part originating from the
uncertainty in the model input data and the uncertainty due to the model structure.
Nevertheless, it can be concluded that the relative contribution of the model structure
error was rematkably small for the Al concentration in clay (CN) and loess (LN) soils.
For these soil types, therefore, additional data gathering might be beneficial. To a
lesser extent, this 1s also true for the NO5 concentration in rich sandy soils (SR) and
clay soils (CN).

Final remarks

We do believe there is a value in fitting patameters to data to be simulated, especially
when it is not a goal in itself but rather done in conjunction to comparing a non-
calibrated model simulation to these data (our nominal model simulation). Also, we do
not use validation in the sense of proving that the model is capable of producing the
results it was intended for. First of all no standards were defined ahead of the
validation procedure, second the data available were insufficient (small numbers, large
variations) to allow such a decision to be well-founded.

In plain terms, the most important result is that soit acidification modelling on a
regional scale is, despite all efforts, still prone to large uncertainties. To circumvent
these problems, more data would be required both in time and space. Lack of such
data can regarded as the principal bottleneck towards further improvement of the
model. Just as stated by Janssen and Ileuberger (1995), model validation is not a
‘once-and-for-all” activity leading to an absolute and definite judgement on the model’s
adequacy. This is especially true for this research since the remaining model error after
model calibration is still considerably high for both Al and NOs.
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3.4 Quantification of nitrate Ieaching from forest soils
on a national scale

Abstract

To evaluate the effects of IN emission policies it is necessary to bave a reliable information of nitrate
concentrations and leaching fluxes from fovest ecosysterns. It is specially desivable fo have insight into
the regional variability of nitrate concentrations, to support local policy on emission abatement
strategies.. In this paper, three methods for calewlation of a spatial distribution on soil mitrate
concentrations in Dutch forest ecosystems are compared We considered (i) a regression miodel based on
vhserved nitrate concentrations and additional data on explanatory variables (ii) a semvi-empirical
dynamic model WANDA, and (iii) a process-oriented model SMARTZ, The two dynamic models are
Jrequently used for the evaluation of effects of reductions in nitrogen deposition al a scale ranging from
region fo a country ar a whole. We considered the resulls of the regression model as a reference to
evaluate the performance of the fwo dynamic models. Furthermore, the resuits of the three methods are
alio compared with a steady-state approach that is currently nied for the derivation of critical loads on
N.

Results show that both dynamic models give similur resuits on a national scale, when inspected
in the form of cumulative distribution functions. The regional variability is predicted differently by
both models. Discrepancies are mainly caused by a difference in handling forest filtering. Al three
wiethods show that, despite the bigh N inputs, Dutch forest still accumutlate more N than they refease.
This implies that presently acceptable N deposition in view of groundwater quality are higher than the
(long-term) critical loads. Howeser, in areas with bigh atmospheric N input ail three methods predict
that the EU standard for nitrate in groundwater for (50 mg 1) is exveeded

3.41 Introduction

In large parts of western Europe, in particular the Netherlands, N input through
atmospheric deposition to forest ecosystems exceeds the long-term capacity of the
ecosystem to retain N (De Vries ¢f a/, 1995b; Dise ¢f «/, 1998; Gundersen, 1995). This
may have several adverse effects: (i) decrease in botanical diversity {cf. Bobbink ef al,
1998), (i) eutrophication of ground - and surface waters (cf. De Viies, 1994), (iii)
acidification (cf. Van Breemen ¢f 4/, 1982) and (iv) decreased tree vitality (cf. Boxman
and Van Dijk, 1988). For decades, governmental authorities have been busy with
policy and measurements aimed at reducing of N inputs in semi-natural ecosystems.
Notable examples are the NOx protocol (Sophia protocol, UN/ECE) and the multi-
pollutant-multi-effect protocol (Gothenburg protocol, UN/ECE). For the evaluation
of N emission policy it is desirable to have a reliable map at an appropriate spatial
scale, ranging from regional to national or even European scale, of the NO;
concentration in drainage water and N leaching fluxes from semi-natural ecosystems.
Various methodologies are available for the quantification of the extend and
geographical distribution of N leaching, They range from statistical methods based
directly on measurements, such as multiple regression (cf. Leeters ef al, 1994),
generalised additive modelling (cf. Tiktak e @/, 1998, though this refers to cadmium
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leaching), stratified block-kriging (Pebesma and De Kwaadsteniet, 1997) and process-
oriented models ranging from simple (cf. De Vries ef 4/, 1989, 1995a) to complex
models (cf. Boers ef af, 1995, used for agricultural soils). For large-scale analyses,
complex models are generally not appropriate, because of the huge data demand. At
large spatial scales these large amounts of data are not available or are at least
associated with large uncertainties. Therefore, the use of simpler models with a smaller
data demand is justified on a large spatial scale (cf. Chapter 2.4; De Vries ¢/ af, 1998).
Statistical methods have the disadvantage that they are generally not able to generate
future predictions, however, they have proven to be suitable for the generation of the
actual geographical distribution. Process-oriented dynamic models, however, have
been developed mainly to analyse temporal trends, either for a point application or an
application in a spatial context. They do suffer a high dependency on (usually) scarce
obsetvations.

In this research results from two simple dynamic models, which differ in degree
of complexity, are compared with NO3 concentrations based on statistically scaled-up
monitoring data in Dutch forest soils. In this way, we gave an indication of the
reliability of national scale assessment of NO; concentrations below the root zone.
We also discuss the implications of the results with respect to critical N loads.

342 Methodology

General

We compared three methods for the quantification of NOs concentrations below
forest ecosystems in the Netherlands: (1) regression analysis based on observations and
additional data on explanatory variables (cf. Mol-Dijkstra and Kros, 1999), (i) a semi-
empirical model WANDA (Tietema ef 4/, in prep.), and (i) a simple process oriented
model SMART2 (Kros ef @/, 1995a). The results of the regression analysis were used as
a reference, to quantify the performance of the two dynamic models, assuming that
those results are the best estimate of the actual peographical distribution of the NO;
concentration.

We investigated the yearly average NO; concentration at 1 m depth (i.e. below
the root zone). A common feature of the three methods is that they are based on
point information, Le. either modecl-input data or observed concentrations. In order to
derive a map with NO; concentrations, the available point information (point
support) must be transformed towards a plane (block support). We appregated ‘point
values’ to block values by taking the block median values of the underlying point
values (see Figure 1). All basic (point) calculations, were performed at a 250 X 250 m?
grid. These ‘point’ calculations where aggregated to 1 X 1 km? blocks by taken the
block median value. A 1 X 1 kin? grid was chosen as a reference, because deposition
estimates were available at that scale.
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Additional information
on a national scaie
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Figure 1 Diagram showing the procedure of model validation and up-scaling

Up-scaling point observations by regression analysis

Regression analysis was applied to generate 2 map with soil solution concentrations of
NO; for a 1 x 1 km? grid (cf. Mol-Dijkstra and Kros, 1999). First 2 muldple
regression analyses at a 250 X 250 m? grid was used to esttmate values at unsampled
locations by including all relevant additional information which may accounted for
systematic effects. Secondly, the 250 X 250 m? values were aggregated towards a 1 X 1
km? grid.

Regression analysis was based on a data set of about 150 measurements on soil
solution concentrations in forest stands on non calcareous sandy soils throughout the
Netherlands (De Vries ef 2/, 1995b). The soil solution was sampled between February
to May 1990. Composite samples, consisting of 20 sub samples were taken from the
mineral top soil (0 to 30 cm) and the mineral subsoil {60 to 100 ¢m) in early spring.
During this period the composition of the soil solution reasonably corresponds with
the flux weighted annual average soil solution concentration (De Vries ef 4/, 1995b).
Soil solution was extracted by centrifugation. The locations were restricted to non-
calcareous soils throughout the country. The tree species included were Scotch pine,
black pine, Douglas fir, Norway spruce, Norway spruce, Japanese larch, oak and
beech.

The observations sites were lumped into forest type classes, watertable classes
and soil type classes that were also used for the model simulations. The tree species
were lumped into tree forest type classes:
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- Coniferous stands (Scotch pine), i.e. evergreen trees with moderate forest filtering
capacity, growth rate and transpiration rate;

- Spruce stand (Douglas fir, Norway spruce and black pine), i.e. evergreen trees with
high forest filtering capacity, growth rate and transpiration rate

- Deciduous stands (Japanese larch, oak and beech), ie. needle or leaf sheddy trees
with low forest filtering capacity, growth rate and transpiration rate.

All soil types were lumped into one class, ie. non-calcareous sandy soils. A
distinction was made into five water table class (cf. Kros ¢f 2/, 1995a).

For the regression analysis candidate predictor variables were derived from
available national databases and maps at a resolution of 250 X 250 m? (cf. Mol-
Dijkstra and Kros, 1999). These variables include: land-use, soil type, tree species,
total deposition of N and S, canopy closure, tree height, total area of the forest,
nearest distance to the forest edge and the principal land-use at the nearest forest
edge. We selected these variables because they were available it was known from
previous research that they potentially have a significant effect on the soil solution
concentration and are available on a national scale (Leeters e 2/, 1994). With multiple
linear regression the soil solution concentrations were fitted to the candidate predictor
variables, using the statistical package GENSTAT {Genstat 5, 1987). Since the predictor
variables are either quantitative (e.g. deposition) or qualitative (e.g. tree type) the
regression equations includes both types of variables. The models with the best fit
were derived by the following procedure: (i) find the best model with the SELRCT
option from GINSTAT, (if) investigate whether non-linearity’s leads to improvements,
by using the SPLINE option from GENSTAT, (i} investigate whether the inclusions of
interactions leads to a better model. In order to meet the prerequisite of a normal
distribution, the explaining variables were log-transformed using the natural logarithm.
For the presentation, results were back-transformed towards the linear scale.

The WANDA Model

WANDA (regional model With Agpregated Nitrogen DynAmics) is a semi-empirical
process oriented model (Tietema, 1999). The basis of the modcl is the predictive
importance of the C/N ratio for NOjs leaching. A negative correlation between both
parameters has been found in various large data sets (McNulty e o/, 1991; Tietema
and Beier, 1995; Gundersen, 1995; Gundersen e 4/, 1998). WANDA consist of three
organic nitrogen pools: trees, labile organic matter (LOM) and refractory organic
matter (ROM) and two inorganic nitrogen pools: NH; and NOs. The sources of
inorganic nitrogen are atmospheric deposition and mineralisation of ROM. The sinks
are plant uptake, microbial immobilisation in LOM and NO; leaching. Net plant
uptake and ROM mineralisation are negative linear functions of tree age. Beyond a
certain tree age there is no plant uptake nor ROM mineralisation. Microbial
immobilisation is a function of C/N ratio of the organic layer. Below a certain critical
C/N rado no inorganic nitrogen is being immobilised, beyond a maximal feasible
C/N ratio all available inorganic nitrogen is immobilised. Between these two values,
the fraction taken up varies in a linear fashion with C/N.
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The net uptake of NIIs and NO; in the various pools is calculated in a certain
otder. Nil4 is taken up preferentally over NOs by both plants and microbes, and the
trees take up all required nitrogen before it becomes available for microbial uptake.
The NIy and NOj available in excess of the demand leaves as NOs, assuming a
complete nitrification and no denitrification. This assumption limits the use of
WANDA to well-drained soils.

Thete are only five unknown parameters in this relatively simple model. These
parameters are the four threshold C/N ratios for microbial immobilisation in LOM
(upper and lower limit for NI14 and NO; immobilisation) and the maximum rate of
ROM mineralisation at a theoretical tree age of zero. All other parameters could be
derived from available forestry information. The five unknown parameters were
identified by parameter optimalisation using the relationship between C/N ratio in the
organic layer and NO; leaching found by Gundersen (1995) in the ECOFEE data set
(Figure 1; Table 1). WANDA directly calculates NO; leaching. In order to calculate
NO; concentrations in drainage water, the drainage water flox is calculated as a
function of tree species and tree age.

The SMART2 Model

SMART2 (Kros ef al, 1995a) is a simple one-compartment soil acidification and
nutrient cycling model that includes the major hydrological and biogeochemical
processes in the vegetation, licter and mineral soil. Apart from nitrate (NOs) and
ammonium (NI} concentrations the model also predicts changes in aluminium (Al),
base cation (BC), and sulphate (SO,) concentrations and the pli, in the soil solution
and solid phase characteristics depicting the acidification status, i.e. carbonate content,
base saturation and readily available Al content. The SMAR1?2 model is an extension of
the dynamic soil acidification model SMART (De Vries e @, 1989). The major
extensions in SMART2 are the inclusion of a nutrient cycle and an improved modelling
of hydrology. The SMART2 model consists of a set of mass balance equations, des-
cribing the soil input-output relationships, and a set of equations descnbmg the rate-
limited and equilibrium soil processes.

The soil solution chemistry in SMART2 depends solely on the net element input
from the atmosphere (the product of deposition and filtering factor) and groundwater
(seepage), canopy interactions (foliar uptake, foliar exudation), geochemical
interactions in the soil (CO3 equilibria, weathering of carbonates, silicates and/or Al-
hydroxides, SO4 sorption and cation exchange) and a complete nutrient cycle
(litterfall, mineralisation, root uptake, nitrification and denitrification). Nitrogen The
adsorption of N, is not taken into account.

Growth of the vegetation and litterfall are modelled by a logistic growth
function, which acts as a forcing function. Nutrient uptake is only limited when there
is a shortage in the soil solution. Litterfall and root decay is the input to an organic
pool containing N, BC2 and K. Mineralisation of above-ground organic matter (litter,
including dead roots in the litter layer) a distinction is made between a rapidly
decomposing pool of fresh litter (less than one year old) and a slowly decomposing
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pool of old litter (more than one year). Nitrification and denitrification for the
complete soil layer are described in as a fraction of the net input. The mineralisation,
nitrification and denitrification rate constant are influenced by the mean water-table
and pllL

Soil-solute transfers are described by simple rate-limiting (zero-order) reactions
(e.g. uptake and silicate weathering) or by equilibrium reactions (e.g. carbonate and Al-
hydroxide weathering and cation exchange). Influence of environmental factors such
as pll on rate-limiting reactions and rate-limitation of weathering and exchange
reactions are ignored. Solute transport is described by assuming complete mixing of
the element input within one homogeneous soil compartment with a constant density
and a fixed depth (at least the root zone). Since SMART2 is a single layer soil model
neglecting vertical heterogeneity, it predicts the concentration of the soil water leaving
the root zone, The annual water flux percolating from this layer is taken equal to the
annual precipitation minus the annual evapotranspiration for the considered soil
depth. Both terms must be specified as model input. The time step of the model is
one yeat, so seasonal vadations are not considered.

National scale application and model comparison

Input data for the national scale application of WANDA and SMART2 can be divided in
system inputs and initial values of variables and parameters. System inputs for both
models are the atmospheric deposition, hydrology and vegetation development or tree
age. Input data included (i) a specific deposition scenario for each grid cell, (i1} model
variables and parameters which were either related to a soil type or a vegetation type
ot to a combination of both and (iii) a soil map and vegetation map relating variables
and parameters to grid cells. For the national scale application, a gridded soil map and
vegetation map, representing the distingnished dominant soil types and vegetation
types for a 250 X 250 km? grid respectively was made. In this map seven soil classes
were distinguished and four vegetation types. This study was confined to fotest on
sandy soils, which means that only one soil type (non-calcareous sandy soils} and three
vegetation types (DEC, SPR and CON) were used.

An essential system input for WANDA is the C/N ratio of the organic layer.
This ratio was calculated for each grid by using a multiple regression relation based on
measured C/N ratios in forest floor and additional data. For this relation the same
dataset (t.e. De Vries ez al, 1995b) was used as for the derivation of the NO,
concentration map, which also includes solid phase analyses. The derived multiple
regression relation (R2=0.44) contained as significant predictor variables, in decreasing
order of itnportance: tree-species, soil type, age of the trees.

The thus derived maps at a resolution of 250 X 250 m? still have a point
support, since they are based on point observations of soil solution concentrations. In
order to derive values at a block support, the 250 X 250 m? ‘point maps’ were
aggregated to a 1 X 1 km? ‘block map’, by taking the block median value.
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An important aspect to notice is that WANDA and SMART2 simulate yearly
averaged values, whereas the data set represents the concentration of ions in early
spring (February to May). This influences the quality of the validation.

34.3 Results and discussion

Comparison of maps

The upscaled spatial distribution as calculated with the three methods is given in
Figure 2A-C. The three methods show seriously different results. Compared to the
regression, SMART2 calculates rather high NO; concentrations for the Veluwe area, i.e.
a forested area in the centre of the country, whereas WANDA simulates rather low
concentrations for this area. This difference was mainly caused by the way in which
both models incorporates forest filtering induced by differences in roughness length.
Both the regression model and WANDA explicitly account for the total area of the
forest, assuming that a larger continuous area of dense forests results in lower forest
filtering and thus a lower input of atmosphetic deposition {cf. Draayers and Erisman,
1993). The SMART2 model, however, only includes forest filtering factors that depends
on forest type, independent of the forested area. These factors were large for spruce
forest and small deciduous forest. Taking into account that the Veluwe is a densely
forested with spruce, it is obviously that WANDA and the regression model calculates
lower NO; concentration for this area. Another remarkable difference between
SMART2 and WANDA, 1s that WANDA caleulates clearly higher NOs concentrations
under wet circumstances. This can be recognised in Figure 2C by the lowlands
(Gelderse Valley) in the middle of the country and the brook valleys in the southern
part of the country, where WANDA also calculates higher NOs concentrations than the
regression model. In fact this is an artefact of WANDA, which does not include
denitrification. Therefore, this model is only applicable for dry ecosystems.

When inspecting the spatial distribution for each method separately and
disregarding the above-mentioned omissions, the spatial images appeated to be rather
consistent, i.e. high NOs concentration in areas with high deposition and vice versa.

Comparison of cumutative distribution functions

When comparing the results as cumulative distribution functions (CDF), the
differences between the three methods seem to be much smaller (Fipure 3A). Figure
3A shows the corresponding results of the maps shown in Figure 2, i.e. 2 CDF of all
1x1 km? grid cell values. From this figure it is obvious that at high concentrations
(> 0.5 mol. m?) both WANDA and SMART2 under-estimated the NOj; concentrations.
At lower concentrations (< 04 mol. m?3) SMART2 over-estimated the NO;
concentrations., while WANDA over-estimated at low concentrations (< 0.3 mol. m).
The latter was connected to wet soils, which were not taken into account within
ANDA.,
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Figure 2 Maps of the upscaled NO; concentration as estimated with the regression
model (A) and via the dynamic models SMART2 ( B) en WANDA (C)

To investigate the role of spatial scale in the performance of the two models,
both model results as well as the regression data were also aggregated towards a larger
grid size, ie. 5, 10, 15, 20 and 25 km2 From Figure 3B and C it is clear that the
models perform best at a 5 km? grid, while the performance seems be worse at a 25
km? grid. This effect is only partly confirmed in terms of the calculated mean squared
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error of prediction (MSEP) (Table 1). When inspecting the MSEP a larger prid size
yields a better petformance for both models. Although, the performance in terms of
the MSEP is increasing, the spatial resolution of course decrease. Consequently, there is
a gain in reliability at the cost of spatial variability. This trade-off between spatial
resolution and reliability is, in fact, a well-known phenomenon. An important
consequence of the loss of detail, ie. averaging out of extremes, is a decreasing
capability to identify areas where a concentration standard is exceeded. It is, however,
precarious to draw conclusions on spatially explicit model results only based on CDFs.
Because large regional differences exist, also at a rather small distance (0.5-1 km).
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Figure 3 Cumulative distribution functions for a 1x1 km?, 5%5 km?, 15%15 km? and a
25x25 km? grid of the calculated NOj concentration by regression, SMART2 and
WANDA
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Table 1 Mean squared error of prediction (MSEP)) between WANDA results
and the regression data and SMART2 results and regression data for five
grid sizes

Modcl 1x1 km?2 5x5 km? 10x10 km2  15%x15km2  20X20km2  25x25 km?
SMART2 0.43 0.24 0.20 0.15 0.15 0.14
WANDA 0.49 0.30 0.25 0.18 0.18 0.19

Y Mstip= li{p"’ -p}
e 2l -

Impacts of used method on the exceedance of groundwater standards for
nitrate

A comparison with the EU groundwater standard for phreatic groundwater value for
NO; of 50 mg 11 (0.8 mol: m?3), shows that all three methods indicate substantial areas
where this standard has been exceeded. This area is ranging from 10 to 20% of the
considered area depending on the used method (see Figure 3A). These areas are
mainly located in the south-eastern part of the country, which corresponds with areas
with high NH; emission and deposition. In addition, all three methods show large
areas, ranging from 40 to 80% of the total area considered, where the guidance
concentration, Le. 25 mg 11 (0.4 mol m3) has been exceeded Note that this range is
much wider than where the groundwater standard is exceeded. This is caused by the
fact that 25 mg |1 lies around the median values, ie. in the middle of the distribution,
whereas 50 mg 11 lies in the tail of the distribution. In other words the uncertainty in
exceedance area is larger for the guidance concentration than for the EU standard.

Note also that the exceedance area highly depends on the used grid size. The
larger the grid size, the smaller the exceedance atea. It must be noted, however, that
the method used here, is not a proper way to derive the exceedance area. A cotrect
way is to start at the point scale data for a 250 X 250 m? grid and count the number of
250 X 250 m? cells within a 1 km? with a concentration higher than the standard
concentration (cf. Kros ¢f 4/, 1999).

Relation with critical loads

Results of a spatial distribution of NO; concentrations below the root zone of semi-
natural ecosystem are of special interest with respect to the exceedance of crtical
concentrations. Because critical loads are calculated with a steady-state method, they
do take into account N (im)mobilisation from the soil and litter layer. In reality,
however, dynamic processes play an important role also within the context of critical
loads (Tietema ef 4/, in prep.), especially, when inspecting the short-term (<50 year).

Posch and Hettelingh (2001} also address the relation between dynamics and
critical load (see Figure 4). During Stage 7 the deposition is above the critical load, but
the chemical variable is still below the critical value. Therefore, in this stage violation
of the criterion do not occur despite the exceedance of the critical load (Damage Deiay
Time = 1 — t;). During Stage 4 the deposition is below the critical load, but the criterion
1s still violated (Recovery Delay Time = 1, — 15).
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Figure 4 A typical temporal evolution of the deposition (top) and a soil chemical
variable (e.g. NOj concentration) (bottom). The delay between the (non-) exceedance
of the critical load and the (non-)violation of the critical chemical criterion: Damage
Delay Time (DDT) and Recovery Delay Time (RDT) (After: Posch and Hettelingh, 2001)

To quantify the difference between the NO; concentration calculated with the
dynamic models SMART2 and WANDA at one hand and a steady state method at the
other hand, we also calculated the potential NO; concentration while neglecting all
dynamic aspects. The steady state NO; concentration (in mol. m~) was calculated as:

N,-N,-N,

7 s de
[NO,J= = g M

where: Ny is the N deposition (mol. m3 at), N, is net long-term N uptake
(mol. m3 a'1), N, the denitrification (mol. m? a'), and PE the precipitation excess
(m a?).
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111 Evaluation on 2 regional scale
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Figure 5 Cumulative distribution functions of the calculated NOj concentration as
calculated with a steady state methods with de deposition for 1990 and the NO,
concentration as calculared with the three methods at a 1x1 km? grid

Figure 5 shows that the steady-state NOs concentration is usually much higher
than the actual concentration, indicating that still a lot of N is being immobilised in
forest ecosystems in the Netherlands. All three methods provide a consistent result.
Although some differences exists, esp. at high concentrations.

To get an impression about the short term and long-term effects in terms of
deposition, we compared our data with the recently published updated critical loads
for the Netherlands (De Vries ef 4/, 2000). For that purpose, we selected from the
model results those sites where the NOj concentration was between 25 * 0.56 mg 11
and 50 * 0.56 mg I'. The window of * 0.56 mg I'! (£ 0.04 mol. m™*) was determined
empirically, such that the window size does not disturb the distribution. At a wider
window the shape of the CDFs changes, whereas at a smaller window the CDFs
became less smooth. These results together with the derived critical N load related to
a critical NO3 concentration of 25 and 50 mg I are given in Figure 6. As already
noticed from Figure 5, Figure 6 also shows that the actual situation is far from steady
state, For all tree methods and both criteria, the forest soils can accept higher nitrogen
deposition loads than the long-term critical loads without violating the critical
concentrations. This means that many semi-natural terresirial ecosystems in the
Netherlands are immobilising N under the current circumstances. Also in this
situation all three methods provide quite comparable results. However, when most
systems will reach steady-state with respect to nitrogen saturation, the situation will be
rather setious (see Figure 5). Steady-state seems to have been reached in ca. 10 % of
area according to results of the up-scaled monitoring data (regression} for the 50 mg I
! criterion. That the models WANDA and SMAR12 do not simulate this, indicates that
the two modcls overestimate the capability to store N in the ecosystem in particular
cases.
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Figure 6 Percentage protecied area as a function of the total N deposition accotding to
a steady-state calculation and the three inspected methods at the target value on NOs of
25 mg I't (A) and the EU standard on NOj; of 30 mg 1! (B)

34.4 Conclusions

The NO3 maps as calculated by the three methods provided clearly different results.
Yet, the spatial distributions in the form of a cumulative distribution function
provided comparable results, especially at 5 X 5 km? grid. This grideell increase,
however, cost spatial resolution, and decrease the benefit for determining exceedance
areas.

The differences between the three approaches are mainly caused by the
differences in handling forest filtering and denitrification. To improve predictions for
densely forested areas, the SMART2 model must be extended with a spatial dependent
filtering factor, i.e. nearest distance to the forest edge. The incorporation of this effect
into the model is rather simple. The predictions of WANDA under wet circumstances,
can be improved by the incorporation of denitrification,

All results point to the fact that most forests in the Netherlands are still
accumulating N. The actual situation is still a long way from steady state. However, at
high atmospheric N input, all three methods indicate that the EU standard for
phreatic groundwater for NO3 (50 mg 11} is exceeded. So, dynamic models are useful
for quantifying the gap between the actual state of NO; leaching and the potential
NQO; leaching in case of a steady state. For this goal the models provide a rather
consistent result.
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IV General discussion and conclusions

Compared to the real world, the structure and processes of the considered

biogeochemical system is simplified in any biogeochemical model. Modelling implies

necessarily a reduction of complexity. The question is, however, to find the ‘optimal’

extent of simplification. In this final chapter the main results and conclusions are

discussed in view of the research hypotheses:

- Adequate simulation of temporal responses in soil solution chemistry on a daily
basis at various depths requites a detailed multi-layer biogeochemical model;

- Annual average responses in soil solution chemistry at the bottom of the root zone
can be adequately simulated with a simple, one-layer biogeochemical model;

- Simulation of soil solution chemistry on a regional scale requires a simplified
model; .

- Adequate simulation of soil solution chemistry on a regional scale requires
parameterisation, calibration, validation and uncertainty analysis on that scale.

The hypotheses were tested by the evaluation of various terrestrial biogeochemical

models through: (i) validation by comparing model results with measurements, (i)

assessment of model uncertainties and (i) companson of different models. Here the

validity of the hypotheses are discussed while answering the research questions raised

in Chapter 1. Section 4.1 concerns the applicability on a local scale, whereas section

4.2 addresses the regional scale applicability. Finally, the adequacy of a simple

biogeochemical model as a policy tool is addressed in Section 4.3.

4.1 Model application on a site scale

Adequacy of detailed soil solution chemistty modelling

Experience with a model such as NUCSAM showed that the model help to summarise
and mtegrate results from individual disciplines and provides a multldlscxphnary
petspectives of complex systems.

The detailed nutrient cycling and soil acidificaion model NUCSAM was built to
simulate effects of atmospheric deposition on soil solution chemistry on a site scale on
a daily basis at different depths. At the intensively monitored site Speuld the
agreement between observed and simulated changes in soil solution chemistry was
reasonably good. NUCSAM reproduced the magnitude and trends of measured
quantities, such as soil water contents and soil solution chemistry. Also the seasonal
trends and trends with soil depth could be reproduced rather well. However, there are
some exceptions. The pH was slightly overestimated in the topsoil and underestimated
in the subsoil. This indicated that the pH and Al behaviour was not described
adequately by rate-limited dissolution of Al-hydroxides. Most probably this
description can be improved by the inclusion of Al complexation with dissolved
organic matter (cf. Wesselink and Mulder, 1995).
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Applications of NUCSAM to the intensively monitored sites like Speuld was,
however, hampered by large spatial varability in throughfall, soil solution chemistry
and stand structure. Either the number of sampling replicates was too small to obtain
representative stand averages (soil chemistry), or it was impossible to select more or
less homogeneous subplots (hydrology and biomass inventory). It is important to
realise that in the Netherlands the Speuld experimental forest had provided one of the
most complete datasets available. This implies that the lack of pood quality data is a
crucial limiting factor for further validation and model improvement.

Despite its complexity, a model such as NUCSAM can be rather useful to
evaluate of pre-defined temporal deposition scenarios. Such analysis is, however, only
valid for a specific site and cannot be (quantitatively) applied at a larger spatial scale.
There is little hope to obtain a reasonable coverage for the Nethetlands as a whole, by
applying a2 model as NUCSAM at a sufficient number of intensively monitored sites
because of high costs involves and limited flexibility of the model (application time,
calculation time and processing time). Accordingly, for regional applications, model
simplification is inevitable.

Role of uncertainty analyses In simplifying a detailed terrestrial
biogeochiemical model

This thesis showed that uncertainty analysis help to decide how to simplify
biogeochemical models can contribute to model simplification. The relative
contribution of processes to the model outputs appeared to vary with time, model
input, depth and model output. The results of the uncertainty analysis indicated that
nutrient cycling processes and kinetics of Al dissolution need to be known properly to
simulate solute fluxes and concentrations in the topsoil, while in the subsoil they are
unimportant. In addition, the need to describe a particular processes also depends on
the constituent considered. E.g. pH is mainly influenced by the Al dissolution
processes, whereas concentrations of NO3 and NHy are mainly influenced by nutrient
uptake and (de)nitrification. Accordingly, a simplified model able to model all major
solutes in and below the root zone, must include almost all processes that are included
in the detailed model. Subsequently, results from an uncertainty analysis alone ate not
enough for the guidance of model simplification. Just as with the implementation of a
new model, common sense and expert judgement are indispensable for model
simplification. Model simplification, that is only based on statistical and/or
mathematical techniques would be delicate, because those do not take into account all
available information. This type of simplified models are only based within the
constraints of the model that is meant to be simplified (cf. section 4.3).

Adequacy of a simple one-Iayer terrestrial biogeochemical model to simulate
soil solution chemistry

A relatively simple biogeochemical model such as SMART2 proved to be a reliable tool
for the simulation of changes observed in a whole-ecosystem experiment, where
deposition was decreased and temperature increased, viz the Risdalsheia catchment. In
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contrast to the observations at Speuld, observations at the Risdalsheia catchments are
‘real’ annual average concentrations from the runoff of the whole catchment. This
means that model and observations have the same temporal and spatial resolution.
The observed time-series in runoff chemistry in response to deposition reduction and
temperature rise were well reproduced by SMART2. The observed increase in N-runoff
was reproduced well by the model, just like the observed increase in mineralisation
and nitrification. These results, as referring to a relatively long observation period
(more than 10 years), give confidence in applications of SMART2 on a regional scale
for the simulation of annual average concentrations.

Change in model performance due to model simplification

To study the influence of model simplifications the models where validated by
comparing simulated concentrations and leaching fluxes with measured values at the
Solling site during the period 1973-1989. Although differences in process description
exist between SMART2, RISAM and NUCSAM, all models were able to simulate most of
the concentrations reasonably well during the study period. Differences in the
description of e.g. the dissolution of Al-hydroxides and N cycling did not affect
modelled long-term annual average Al and N concentrations. The capability of
SMART2 to simulate the observed flux-weighted annual averaged concentrations {and
ratios) is, in fact, comparable or even better than that of NUCSAM.

Ignoring seasonal variations in weather conditions and nutrient dynamics does
not greatly affect the modelled long-term response of flux-weighted annual average
soll solution chemistry to acid depositon. The multi-layer models RESAM and
NUCSAM nicely reproduced the observed rise in SO concentration, between 1975 and
1980. However, the one-layer model SMARTZ tended to overestimate the initial rise in
SQO4 concentration, due to a larger dispersion of the SO, front. This artefact of a one
layer model should be born in mined when simulating leaching fluxes of adsorbing
solutes.

When considering annual average concentrations at a certain soil depth, this
research showed that the uncertainties in long-term predictions of soil solution
response induced by neglecting seasonal and vertical spatial variability and by
simplifying process description were rather small. So the simplified model SMART2
proved to be an adequate tool to evaluate long-term effects of environmental
abatement strategies.

4.2 Model application on a regional scale

Applicability of a simplified model on a regional scale in view of data
availability

SMART2 appeared to be a faitly pood model for simulating soil solution chemistry on
national scale. Results for the nitrogen availability (here defined as N mineralisation +
N deposition) were encouraging, but could not be validated adequately due to a lack
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of sufficient data. Nevertheless, SMART2 appeared to be a rather flexible and quick
tool to evaluate deposition and seepage scenarios.

Model predictions of the un-calibrated model of pIH and Al concentration for
deciduous forest on poor sandy soils show a reasonable to good agreement with
observations. The modelled concentrations of NO3 and NHs compare moderately
well with the observations. An indicative validation of N mineralisation fluxes, shows
generally a reasonable agreement berween calculated and measured fluxes available
from licerature. N mineralisation fluxes in forest were most likely underestimated. The
Al concentrations in poor sandy soils, however, were clearly overestimated.

Scenarios with reduced deposition of N and § deposition improved the abiotic
site factors, such as pH and base saturation (in non-calcareous soils) and N availability
in forest soils. Spatial variability in all investigated model outputs, ie. pll, base
saturation and N availability appeared to be large. The spatial variability in pH and
base saturation is linked with the spatial variability in soil type, whereas the spatial
vartability in N availability is linked with the spatial variability in N deposition and
vegetation/land-use. Therefore, it is clear that a support tool for decision-making
must be spatally explicit.

0

Impacts of the uncertainty in geographical data and model parameters on
regional scale predictions

Given the use of regional models such as SMART2 in decision-making, it is clear that
the reliability of spatial information and the consequences for the model predictions
must be quantified. Uncertainty at large spatial scales not only originated from
parameter uncertainty but also from the used maps. The relative uncertainty
contribution largely depended on the model output. For the Al concentration and the
exceedances of Al concentration thresholds, soil-related parameters contributed most
to the output uncertainty. For NOs, the uncertainty mainly stemmed from
geographical data.

Within the context of policy-making, two questions are crucial: (1) What is the
uncertainty in the (areal) exceedance of a critical indicator for a particular region? and
(i} Is the model able to predict (statistically) significant changes in exceedance areas in
response to a particular environmental scenario? Concerning these questions, it can be
concluded that the width of the prediction interval largely depend on whether block
median concentrations or block areal exceedances are considered. Furthermore,
despite the large prediction intervals due to uncertainty in model input data, changes
in the Al and NOs concentrations or exceedance areas could be predicted with
confidence.

Given the large costs associated with measures to prevent increased Al and
NO; concentrations, it is important to assess whethet collection of more data would
reduce of the prediction interval. From the present study useful information can be
derived to decide on different alternatives for reducing uncertainties associated with
long-term model predictions. In general it is concluded that most emphasis must put
on improvement the soil and vegetation related parameters and less on the
improvement of the soil and vegetation maps.
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Gain in model petformance on a regional scale through a regional calibration

The SMARTZ model was calibrated at a 5 X 5 km? block support using the up-scaled
monitoring data. The applied calibration procedure appeared to be a useful for finding
optimal parameter ranges, and for reducing input uncertainties. Even though the
effects of reduced input uncertainty on the uncertainty in the model outputs remained
un-quantified. The calibration appeared to be very successful in correcting the
overestimation of Al and NOs concentrations resulting from parameter values based
on site applications. These overestimates were mainly due to an overestimation of the
mineralisation and nitrification.

As with the site scale application, it must be stressed that the regional data-set
on about 200 forested sites, mainly on sandy soils, is the only available set for this type
of calibration studies in the Netherlands. This set, that was collected in view of the
modeclling needs, proved to be very useful for model calibration and the assessment of
the model error. However, this set, collected in the early nineties remains the only
useful set and for progress in regional scale modelling further sets are badly needed.

This thesis also showed that model performance strongly depends on the grid-
size used. Usually, increase in grid-size increases performance, This grid-cell increase,
however, costs spatial resolution, and decreases the benefit for determining
exceedance areas. Given large regional differences, even at a rather small distance,
high resolution data on actual soil solution concentration in semi-natural terrestrial
ecosystem are crucial to support of regional policy activities such as the regional NIHa
abatement plan in the Netherlands.

In conclusion, application of the SMAR1T2 model to the whole of the
Netherlands, while only parameterised and calibrated on a small number of intensive
monitored sites yields inadequate results. It is showed that model performance
seriously improved and the prediction uncertainties strongly decreased by model
calibration at the scale required for the ultimate output.

K

4.3 Adequacy of simple biogeochemical modcls as a
tool for policy makers

This research showed that a detailed biogeochemical model, such as NUCSAM, can not
be applied adequately at a large spatial scale. Even for the application at a single
research site the lack of good quality data appeared a serious constraint. This clearly
illustrates that models must be simplified for application at larger spatial and temporal
scales. Modelling with a complex model on a large regional scale which lacks data for
model parameterisation, calibration and validation would be pointless. Especially,
from the viewpoint of the considered policy questions optimal or smart adaptation of
the model to the available data is crucial. This also means that derivation of a meta-
model from a complex non-calibrated and validated model by statistical techniques
(Mol-Dijkstra ez a/, 1999) is bound to fail. This approach may lead to models that can
be ran more easily, but less reliable. Models for larger spatial and temporal scale must
be simplified as much as possible, while retamning a degree of process description so
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that model evaluation through calibraton, validation and uncertainty analysis is
feasible,

Models such as SMARTZ fit to the policy scate (see Chapter 1), but in some cases
are still too complex. For the sake of applicability and of adaptation to the palicy scale,
even more simplified models, e.g. steady state models, are needed. This is especially
true in integrated approaches such as NITROGENIUS (Erisman ef af, 2002), a spatial
decision support systems on the nitrogen problem for the whole of the Netherlands.
NITROGENIUS contains an agronomy/soil module (INITIATOR, De Vties e al, 2002)
that is less complex than SMARTZ, but still process-oriented.
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Summary

Evaluation of anthropogenic effects on the environment at local, regional and global
scales has become a key actvity in environmental research. It forms the basis for
emission reduction measures needed to achieve policy leading to a sustainable society.
Computer models play an increasing role in the evaluation of those environmental
effects. In the Netherlands, at the Environmental Policy Assessment Office
{MilieuPlanBureau: MPB) and Nature Policy Assessment Office (NatuurPlanBureau:
NPB) a large set of integrated predictive models are used to evaluate the effects of
policy scenarios on a wide range of environmental problems. These include
eutrophication, acidification, climate change and biodiversity decrease. Within these
themes, mechanistic dynamical models, which simulate biogeochemical processes in
ecosystems, play a crucial role.

Aims and hypotheses

In this thesis different nutrient cycling and soil acidification models, developed for use

at different scales, are presented and evalvated. The models considered are NUCSAM

(NUtrent Cycling and Soil Acidification Model), RESAM (REgional Soil Acidification

Model) and SMARTZ (an extended version of Simulation Model for Acidification’s

Regional Trends). These are mechanistic dynamic models, which simulate

biogeochemical processes in semi-natural terrestrial ecosystems at a varety of scales.

The research tool NUCSAM, which is specifically developed for application on a local

scale, includes simulation of the daily variability in biogeochemical processes in

various soil layers. RESAM and SMARTZ, tools to support policy makers, were
specifically developed to evaluate long-term soil responses to deposition scenarios on

a regional scale (national to continental, respectively). For that reason, the models

RrSAM and SMART2 are relative simple models and operate on a yearly time-scale.

These models were developed in view of following research hypotheses:

1. Adequate simulation of temporal responses in soil solution chemistry on a daily
basis at various depth requires a detailed multi-layer biogeochemical model
(NUCSAM);

2. Annual average responses in soil solution chemistry at the bottom of the root
zone can be adequately simulated with a simple, one-layer biogeochemical model
{SMART2);

3. Simulation of soil solution chemistry on a regional scale requires a simplified
model; :

4. Adequate simulation of soil solution chemistry on a tegional scale requires
parameterisation, calibration, validation and uncertainty analysis on that scale.
Therefore, this thesis primarily aims at testing these hypotheses by (i) validation and
calibration, (if) uncertainty analysis, and (iif) model comparison. More specifically, the
models NUCSAM (site scale), RESAM (site scale/regional scale) and SMART2 (regional
scale) will be evaluated with respect to the optimal balance between model complexity,

data availability and model aim. '
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Summary

Overview of the models

NUCSAM, RESAM and SMART2 are all based on the principle of ionic charge balance
and on a simplified solute transport description. All models assume that: (1) a soil layer
is a homogeneous compartment of constant density and (ii) the element input mixes
completely in a soil layer. NUCSAM is a detailed nutrient cycling and soil acidification
model for semi-natural ecosystems, especially developed for site scale applications.
Consisting of multi-layers and having a daily temporal resolution. NUCSAM integrates
the hydrological- and nutrient cycle and soil chemical processes, while including all
relevant processes in the forest canopy, organic sutface layer, mineral soil and soil
solution. The hydrological cycle is modelled by a separate Darcy-law-based
hydrological model. Nutrient cycling, involves nutrient uptake, litterfall, root turnover
and mineralisation. Forest growth is described by a logistic growth function.
Equilibrium and rate limiting chemical reactions are explicitly modelled in a chemical
module. Chemical reactions rates depend on temperature, whereas biochemical
processes depend on temperature, moisture content and pll.

Going into the direction NUCSAM, RISAM, SMART2, process aggregation is
achieved by (i) confining to annual averages, (i) confining to one soil layer, (i)
simpler descriptions of processes, (iv) ignoring or lumping elements, and (v} ignoring
several processes.. In RESAM and SMART2 the annual water flux percolating through a
soil layer is constant and equals the infiltration minus the transpiration, whereas
NUCSAM contains a separate hydrological model with a daily tmestep. SMART2 is
confined to one layer, whereas RESAM and NUCSAM are mult-layer models. Biological
processes are all described by rate-limited reactions, usually first-order reactions. In
SMARY2, geochemical reactions are described by equilibrium equations, except silicate
weathering, which is described by a zero-order reaction. So, unlike SAARTZ, NUCSAM
and RESAM account for the effect of mineral depletion on the weathering rate. In
NUCSAM and RESAM the geochemical reactions are either described by equilibrium
equations or first-order reactions.

Adequacy of simulation on a plot scale

Detailed modelling responses in soil solution chemistry

The detailed NUCSAM model was applied to the Speulderbos Douglas fir stand, and
validated using measured data on soil and soil solution chemistry. Applications of the
NUCSAM model to the intensively monitored site Speuld site was hampered by the
large spatial variability of throughfall, soil solution chemistry and stand structure. This
was mainly because separated ‘disciplinary’ subplots for hydrology, soil chemistry and
forest growth were used for monitoring. Either the number of sampling replicates was
too small to calculate stand averages (soil chemistry), ot it was impossible to select
more or less homogeneous subplots (hydrology and biomass inventoty). Nevertheless,
the agreement between observed and simulated changes in soil solution chemistry was
reasonably good. NUCSAM reproduced the magnitude and trends of measured
quantities, such as soil water contents and soil solution chemistry. Also the seasonal
trends and trends with soil depth could be reproduced rather well
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Scenario analyses, that were carried out for Douglas fir on a Cambic podzol and
Scots pine on an Haplic Arenosol showed that the model is a suitable instrument for
scenario analyses on a local scale. Model results showed that deposition reduction led
to: (i) a fast improvement of the SO4 and Al concentrations after a decrease in SOy
deposition, (i) time-delay for the NO; concentration following a decrease in nitrogen
deposition, and (iii) higher soil solution concentrations of all solutes in the soil below
Douglas fir. Despite its complexity, 2 model such as NUCSAM can be rather useful to
evaluate of pre-defined temporal deposition scenartos. Such analysis is, however, only
valid for a specific site and cannot be (quantitatively) applied at a larger spatial scale.
There is little hope to obtain a reasonable coverage for the Netherlands as a whole, by
applying a model as NUCSAM at a sufficient number of intensively monitored sites,
because of high costs involves and limited flexibility of the model (application time,
calculation time and processing time). Accordingly, for regional applications, model
simplification is inevitable.

Uncertainties in soil solution chemistry on a site scale

Besides the inevitable role of an uncertainty analysis with in the context of ecological
modelling, uncertainty analyses may also be helpful in finding guidelines for model
simplification. An uncertainty analyses on a site scale was performed with RISAM, an
already simplified version of NUCSAM. Results showed that the uncertainty strongly
depends on the considered model output, soil layer and time. The same is true for the
contribution of the uncertainty of varlous parameters to the uncertainty of the
considered output variables. The results of the uncertainty analysis indicated that
nutrient cycling processes and kinetics of Al dissolution need to be known properly to
simulate solute fluxes and concentrations in the topsoil, while in the subsoil they are
unimportant. In addition, the need to describe a particular processes also depends on
the constituent considered. E.g. pH is mainly influenced by the Al dissolution
processes, wheteas concentrations of NO; and NIH, are mainly influenced by nutrent
uptake and (dc)nitrification. Accordingly, a simplified model able to model all major
solutes in and below the root zone, must include almost all processes that are included
in the detailed model. Subsequently, results from an uncertainty analysis alone are not
enough for the guidance of model simplification.

Annual average responses in soil solution chemistry with a simple one-
layet biogeochemical model

The simplified model SMAR1T2 meant for application at larger spatial and temporal
scales was evaluated at the Risdalsheia catchment. On boreal forest ecosystems at
Risdalsheia (southern Notrway), catchment-scale experiments of the RAIN and
CLIMEX projects were conducted during a period of 15 years. These unique series of
experiments at the ecosystem scale provides information on the effects and
interactions of N deposition and increased temperature and COz on C and N cycling
and especially the runoff chemistry. The observations at the Risdalsheia catchments
are annual average concentrations from the runoff of the whole carchment, which
means that the time and space resolutions of measurements and modelling are similar.
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Summary

The inclusion of the climate change effect in SMART2 was restricted to the
temperature effect on mineralisation of old litter, (de)nitrification, weathering and Al
oxide dissolution constant.

The observed time-series in runoff chemistry in response to deposition
reduction and temperature rise were well reproduced. Although, SMART2 tended to
underestimate the concentrations of SOy, NOs3, NH4 and BC2. The observed increase
in N-runoff was reproduced well by the model, just like the observed increase in
mineralisation and nitrification. Still, there is a need to pay attention to the N-cycling
in SMART2, considering the adaptation of the pH influence on mineralisation in this
application, The temperature dependency of mineralisation was simulated adequately,
but the temperature effect on nitrification was slightly overestimated. This application,
with quite a long observation period, contributes to an increase in confidence in using
SMART2 on the regional scale, especially to evaluate deposition scenarios.

Model comparison on a local scale

The site applications of both NUCSAM and SMART2 gave hopeful results. However,
before accepting SMARTZ2 as suitable tool for regional applications, it is necessary to
analyse the influence of model simplifications, in terms of process detail, number of
soil layers and temporal variability, on the modelled of soil solution concentrations
and leaching fluxes. To that aim, all three models (NUCSAM, RESAM and SMARTZ)
where first validated by comparing simulated concentrations and leaching fluxes with
measured values at the Solling site during the period 1973-1989. Next, long-term soil
and soil solution response simulated with three models were compared using two
deposition scenarios for the period 1990-2090. Input paramneters were denived from
measured data at the Solling site. Qutputs from the one-layer model SMART2 were
compared with measured soil solution concentration averaged over depth.

Despite differences in their process descriptions, SMART2, RISAM and
NUCSAM simulate most of the solute concentrations reasonably well. Whether the
dissolution of Alhydroxides was modelled by a rate-limited reaction (NUCSAM,
RESAM) or by an equilibrum equation (SMART2) hardly affected modelled Al
concentrations. The differences in N cycling processes also hardly affect the quality of
the modelled NOj3; and NH4 concentrations. All models mimicked the observed a rise
in SO, concentration between 1975 and 1980, due to a decrease in sulphate
adsorption. However, the one-layer model, SMARTZ2, overestimated the initial rise in
dissolved SO, due to a large dispersion of the sulphur front in a one-layer system. On
the other hand for the simulation period as a whole SMART2 showed the best
performance for SO4 in the subsoil.

In the topsoil, NO; concentrations simulated by these models were in the same
range as the measurements. Subsoil NO; concentrations were slightly underestimated
by RESAM and SMART2, whereas these were slightly overestimated by NUCSAM. The
NH,; concentration in topsoil was best modelled by SMART2, the two other models
seriously modelled too high NH4 concentration in the topsoil. All three models
underestimated the NHi concentrations in the subsoil, but the observed NH,
concentration in subsoil are already very low.
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This implies that ignoring seasonal variations of weather conditions, ignoring of
different soil layers and simplifying process description simplification does not need to
greatly affect the modelled long-term response of flux-weighted annual average soil
solution chemistry to acid deposition. Consequently, it is concluded that the level of
aggregation/simplification as used in the model SMARI2 is acceptable for making
long-term predictions on a regional scale.

Adequacy of simulation on a regional scale

Annual average responses on soil solution chemistry on a regional scale
The model SMART2 has been incotporated in a framework to support national scale
applications using a 250 X 250 m? grid. However, adequate simulation of annual
average response at a particular soil depth on a plot scale does not necessarily imply
that the results are also acceptable on a regional scale. This requires testing and
validation on a regional scale. Therefore, SMART2 has been applied and validated for
the Netherlands as 2 whole using regionally available data. Furthermore, the model
was used to analyse the effects of upward seepage, atmospheric deposition and
nuttient cycling on changes in semi-natural terrestrial ecosystems. The model SMART2
was also linked with a vegetation effect model MOVE to quantify the effects on
floristic diversity.

SMART2 appeared to be a rather flexible and quick tool to evaluate deposition
and seepage scenarios. Model predictions for the NOs; and NH4 concentrations
showed a moderate relationship with the observations. Model predictions of pH and
Al concentration show a reasonable to good agreement with observations, but the Al
in concentration in poor sandy soils was overestimated. The (spatial) variability in all
investigated model outputs, i.e. pH, base saturation and N availability is large. The
spatial vanability in pH and base saturation is linked with the spatial variability in soi1l
type, whereas the spatial variability in N availability is linked with the spatial variability
in N deposition. N availability highly depends on the age of the vegeration.
Consequently, it is inevitable that spatially explicit modelling is needed.

Uncertainties in soil sohution chemistty on a regional scale
When modelling soil solution chemistry on a regional scale, it is inevitably that both
model and data have varying degrees of associated uncertainty. Therefore, SMART2
was subjected to an uncertainty analysis in a spatial context. Given the large costs
associated with measures to prevent increased Al and NO; concentrations, it is
important to assess whether the collection of more data would result in a reduction of
the prediction interval. From the present study useful information can be derived to
support decisions on different alternatives for reducing uncertainties associated with
long-term model predictions. Possible alternattves are either improving the soil and
vegetation maps or collecting additional input data in order to reduce the uncertainty
in parameters.

The analyses was focussed on the uncertainty in long-term large-scale
predictions of soil solution concentrations of Al and NOj; rfesulting from the
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uncertainty in low resolution European-scale maps (1:1000 000) and other tnput data.
Model outputs were considered as block median concentrations (for 5x5 km? grid
cells) and the block areal fractions (for 5x5 km? grid cells) in which concentrations
exceeded a critical level. As sources of uncertainty we considered (i) the soil and
vegetation maps (categorical data), and (i) the sotl and vegetation-related parameters
(continuous data). The uncertainty in categorical data was quantified by comparing
European soil and vegetation maps, and the more detailed maps of the Netherlands.
The uncertainty in continuous data was derived from various European databases and
literature. The uncertainty in model outputs was quantified by an efficient two-step
Monte Carlo simulatton approach, which takes spatial correlation into account.

It is showed that the width of the prediction interval largely depends on
whether block median concentrations or block areal exceedances are considered. The
Al concentration showed wide 90% prediction intervals both for areas with low Al
concentrations (i.e. calcareous and clay soils) and for areas with high concentrations
(mainly poor sandy soils). For the scenarios evaluated, the model was able to predict a
considerable decrease in Al concentration, despite the large prediction intervals due to
uncertainty in the model input data.

The relative uncertainty contribution largely depended on the model output
considered. For the Al concentration the soil-related parameters contributed most to
the output uncertainty, whereas the uncertainty contribution of the vegetation-related
parameters was negligible. By contrast, the results for the NOs concentration showed
that the average uncertainty contribution mainly stemmed from the soil and vegetation
maps, directly followed by the continuous vegetation-related parameters, whereas the
continuous soil-related parameters contributed least. In general it is concluded that
most emphasis must put on improvement the soil and vegetation related parameters
and less on the improvement of the soil and vegetation maps.

Reducing the uncertainty in regional model prediction by model
calibration
To quantify of the beneficial effect of model calibration at a large spatial scale, the
prediction error of SMART2 was assessed before and after calibration, for the median
Al and NO;s concentrations in a 5 X 5 km? grid cell. Because observations are available
only as point values, it was necessary to transfer thetn to representative values for a
5X 5 km? grid. For this purpose, about 250 point observations of soil solution
concentrations in forest soils were upscaled to a 5 X 5 km? grid map, using multiple
linear regression analysis combined with block kriging. The tesulting map with
upscaled observations was used for both validation and calibration. A comparison of
the map with model predictions using nominal parameter showed that the model
overestimated the predicted Al and NOj concentrations. The nominal model results
were stll in the 95% confidence interval of the upscaled observations, but calibration
improved the model predictions and strongly reduced the model error.

The used calibration procedure appeared to be a useful tool for finding optimal
parameter ranges, and for reducing input uncertainties. The calibration appeared to be
very successful in correcting the overestimation of Al and NQOs; concentrations
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resulting from the nominal parameter set. Flowever, the model error after calibration
remains rather large, but further improvement through calibration is hampeted from
the lack of good quality data.

Model comparison on a regional scale

A reliable spatial distribution of NOs concentrations below the root zone of semi-
natural ecosystem are of special interest with respect to the exceedance of critical
concentrations.

To gain additional insight into the uncertainty due to the model strucrure of
SMARTZ, the simulated spatial distribution on solute concentrations on NOj3 in Dutch
forest ecosystems were compared with: (i) a regression model based on observed NO;
concentrations and additional data on explanatory variables and (ii) a semi-empirical
dynamic model WANDA. The comparison was performed for the Netherlands as
whole, using a 250 X 250 km? grid. The NO; maps as calculated by the three methods
provided clearly different results. However, the spatial distributions in the form of a
cumulative distribution function provided comparable results, especially at 5 X 5 km?
gtid. This grid-cell increase, however, cost spatial resolution, and decrease the benefit
for determining exceedance areas.

Main findings

The detailed model NUCSAM reproduced the magnitude and trends of measured
quantities, such as soil water contents and soil solution chemistry. However, the
application on a site scale hampers from the lack of good quality data. Results showed
that it is inevitable that a model, such as NUCSAM, can not be applied at a large spatial
scale because of the lack of data availability. This makes it clear that the model must
be simplified for application at larger spatial and temporal scale. Results of the
uncertainty analysis indicated that a simplified model able to model all major solutes in
and below the root zone, must include almost all processes that are included in the
detailed model.

The capability of the simplified model SMART2 to simulate the observed flux-
weighted annual averaged concentrations is comparable ot even better than NUCSAM.
This implies that ignoring seasonal variations of weather conditions, ignoring of
different soil layers and simplifying process description simplification does not need to
greatly affect the modelled long-term response of flux-weighted annual average soil
solution chemistry to actd deposition. Accordingly, is concluded that a simplified
model, such as SMART2, is an acceptable tool for making long-term evaluation of
environmental abatement strategies.

Application of a regional model, such as SMART2, to the whole of the
Netherlands, while only parameterised and calibrated on a small number of intensive
monitored sites yields inadequate results. Model performance is seriously improved
and the prediction uncertainties strongly decreased by model calibration at the scale
required for the ultimate output. However, the model error after calibration remains
rather large, but further improvement through calibration is hampered from the lack
of good quality data on a national scale, It is concluded that most emphasis must put

247



Summary

on improvement the soil and vegetation related parameters and less on the
improvement of the soil and vegetation maps.

Models for larger spatial and temporal scale must be simplified as much as
possible, while retaining a degree of process description so that model evaluation
through calibration, validation and uncertainty analysis is feasible.
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Samenvatting

Zowel op de locale als regionale schaal staat het evalueren van effecten van het
menselijk handelen op het milien erg in de belangstelling binnen het milieuonderzoek.
Dit type onderzoek vormt de basis voor het beleid ten aanzien van emissiebeperkende
maatregelen ten behoeve van een duurzame samenleving. Bij het evalueren van
milieueffecten zijn computermodellen een steeds grotere rol gaan spelen. Zo wordt
binnen het Nederlandse Milieu- en Natuurplanbureau gebrutk gemaakt van diverse
geintegreerde  modellen, welke ingezet worden voor het evalueren van
beleidsscenario’s ten aanzien van een brede range van milieuproblemen, zoals:
eutrofiéring, verzuring, klimaatverandering en afnhame van biodiversiteit. Bnnen al
deze thema’s spelen procesgeoriénteerde dynamische modellen voor het simuleren
biogeochemische processen in ecosystemen, een belangnijke rol.

Doel en hypothesen

In dit proefschrift worden diverse nutriéntenkringloop- en bodemverzuringsmodellen,

die ontwikkeld zijn voor toepassing op verschillende schaalniveaus beschreven en

geévalueerd. Het gaat hierbij om de modellen NUCSAM (NUtrient Cycling and Soit

Acidificadon Model), RESAM (REgional Soil Acidification Model) en SMART2 (een

uitgebreide versie van het model Simulation Model for Acidification’s Regional

Trends). Dit zijn allen mechanistische dynamische modellen voor het simuleren van

biogeochemische processen in half-natuurlijke tetrestrische ecosystemen. IHet

onderzoeksmodel NUCSAM is speciaal ontwikkeld is voor toepassing op de locale
schaal. Daarom zijn in dit model ondet andere de biogeochemische processen op
dagbasis gemodelleerd en wordt er ook onderscheid gemaakt in diverse bodemlagen.

De modellen RESAM en SMART2 zijn speciaal ontwikkeld als beleidsondersteunende

modellen. In het bijjzonder voor de evaluatie van lange-termijn veranderingen in de

bodem op regionale schaal (variérend van nationaal tot continentaal) ten gevolge van
atmosferische depositie- en hydrologische- scenatio’s. Daarom zijn de modellen

RESAM en SMARTZ relatief eenvoudige modellen die op jaarbasts rekenen. Deze

modellen zijn ontwikkeld uitgaande van de volgende onderzoekshypothesen:

1. het op dagbasis adequaat stmuleren van temporele veranderingen in
bodemvochtchemie vereist een gedetailleerd meerlagig biogeochemisch model
(NUCSAM);

2. jaargemiddelde veranderingen in bodemvochtchemie aan de onderkant van de
wortelzone zijn adequaat te modelleren met een eenvoudig eenlagig
biogeochemisch model (SMART2);

3. het simuleren van de bodemvochtchemie op een regionale schaal vereist een
cenvoudig model;

4. het adequaat simuleren van de bodemvochtchemie op een regionale schaal vereist
parameterisatie, calibratie, validatie en een onzekerheidsanalyse op datzelfde
schaalniveau.
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Dit proefschrift heeft met name tot doel om deze hypothesen te toetsen middels: (i)
validatie en calibratie, (i) onzekerheidsanalyse en (iii) modelvergelijking. Meer
specifieck houdt dit in dat de modellen NUCSAM (plotschaal), RESAM
(plotschaal/regionale schaal) en SMART2 (regionale schaal) geévalueerd zullen worden
met het cog op een optimale balans tussen modelcomplexiteit, databeschikbaacheid en

doel van het model.

Overzicht van de modellen

NUCSAM, RESAM en SMART2 zijn allen gebaseerd op het ladingsbalansprincipe en een
genvoudige beschrijving voor het transport van bodemvocht. Alle modellen
veronderstellen dat: (i) een bodemlaag homogeen is en een constante dichtheid heeft,
en (i) de stoffen in een bodemlaag volledig gemengd worden. NUCSAM betreft een
gedetailleerd nutriéntenkringloop- en bodemverzuringsmodel voor half-natuutlijke
terrestrische ecosystemen, special bedoeld voor toepassing op een plotschaal. IHet
model bevat meerdere bodemlagen en rekent met tijdresolutie van een dag. In
NUCSAM worden hydrologische -, nutriéntenkringloop - en bodemchemische
processen geintegreerd. Hierbij zijn alle relevante processen in het kronendak, de
strooisellaag, de minerale bodem en het bodemvocht meegenomen. De hydrologische
kringloop is gemodelleerd middels een apart hydrologisch-model gebaseerd op de wet
van Darcy. De gemodelleerde nutriéntenkringloop omvat nutriéntopname, bladval,
wortelsterfte en mineralisatie. Bosgroei is beschreven met een logistische gtoeicurve.
Chemische-evenwichten en snelheidsprocessen worden in een aparte chemische-
evenwichtsmodule gemodelleerd. Chemische-reacties zijn binnen het model
afhankelijk van de temperatuur, terwill de biochemische-processen naast de
temperatuur ook afhankelijk zijn van het bodemvochtgehalte en de pH.

Gaande in de richting van NUCSAM, RESAM, SMART2, is er sprake van
vereenvoudiping en aggrepatie door (1) het rekenen met jaarlijks gemiddelde waarden,
(1) het beperken tot een bodemcompartiment, (iif) het eenvoudige beschrijven van
processen, (1v) het negeren of lumpen van element, en (v) het negeren van diverse
processen. Zo wordt in RESAM en SMART2 de jaarlijkse waterflux door een bodemlaag
bepaald door de opgelegde jaarlijkse waterbalans: infiltratie minus transpiratie, terwijl
de hydrologie in NUCSAM door een apart hydrologisch-model met een dagelijkse
tijdstap wordt berekend. SMART2 is bestaat uit slechts een bodemlaag, terwijl RESAM
en NUCSAM meerdere bodemlagen bevatten. Biologische-processen zijn als
snelheidsprocessen gemodelleerd, meestal als eerste-orde processen. In SMART2 zijn
de meeste geochemische processen beschreven als evenwichten. De verwering van
silicaten is opgenomen als een 0%-orde proces. In tegenstelling tot SMART2, houden
NUCSAM en RESAM rekening met het effect van uitloging van mineralen gehalten op
de verweringssnelheid. ITn NUCSAM en RESAM zijn de geochemische-reacties of
middels evenwichtsvergelijkingen of middels 1=-orde reacties beschreven.
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Het adequaat simuleten op plotschaal

Gedetailleerd modelleren van veranderingen in bodemvochtchemie
Het gedetailleerde NUCSAM model is toegepast op een intensief doorgemeten
onderzoekslocatie in het Speulderbos bestaande uit douglassparren. Het model is
gevalideerd aan de hand van bodem- en bodemvochtmetingen. De toepassing van
NUCSAM op de douglassparrenopstand in het Speulderbos werd echter belemmerd
door een grote rutmtelike varabiliteit van doorval, bodemvochtchemie en de
structuur van de opstand. Dit was met name problematisch omdat de metingen
plaatsvonden in afzonderlijke discipline-georiénteerde subplots: één voor de
hydrologie, één voor de bodemchemie en een voor de bosgroel. Met als gevolg dat of
het aantal replica’s te klein was om een opstandsgemiddelde grootheden te bepalen (in
het geval van de bodemchemieplot), of het onmogelijk was om een voldoende
homogene subplot te vinden (in het geval van de hydrologie - en bosgroeiplot).
Desondanks, was er sprake van een goede overcenkomst tussen de gemeten en de
gesimuleerde veranderingen in de bodemvochtchemie. NUCSAM bleek in staat om
zowel de mate als de trend van de gemeten grootheden, zoals vochtgehalten en
bodemvochtconcentraties, goed te reproduceren. Ook de seizoenstrend en de trend
met de diepte werden goed gesimuleerd

Scenario-analysen, die zijn uitgevoerd voor genericke combinaties van een
douglassparrenopstand op een holtpodzolgrond en een grove-dennenopstand op een
duinvaaggrond, laten zien dat het model een hanteerbaar en geschikt instrument is
voor het uitvoeren van scenario-analysen op de locale schaal. Modelresultaten laten
zien dat depositie-reductie leidt tot (i) een snelle afname van de SO en Al-
concentraties als gevolg reducties in de SO,-depositie, (i} een naijliing in de afname
van de NO;s-concentraties als gevolg van de afname in de N-depositie, en (jif) hogere
bodemvochtconcentraties in  de douglasspartenopstand dan in de grove-
dennenopstand. Ondanks de hoge mate van complexiteit, is een model zoals NUCSAM
bijzonder geschikt voor het evalueren van te voren vastgestelde tjdsathankelijke
depositie-scenario’s. Een dergelijke analyse kan echter niet gerbuikt worden uttspraken
op regionale - of nationale schaal, omdat de resultaten van een specificke
plottoepassing niet (kwantitatief) vertaald kunnen worden naar grotere ruimtelijke
schaal. Er is echter weinig hoop op het verkrijgen van een acceptabele dekkingsgraad
met NUCSAM-toepassingen voor geheel Nedetland. Als gevolg van de hoge kosten die
daarmee gemoeid zijn, is er cen gebrek aan intensief doorgemeten locaties en is een
model als NUCSAM niet flexibel genoeg voor toepassing op een grotere ruimtelijke
schaal (hoge tijdsinvestering voor het uitvoeren van veel tocpassingen en lange
rekentijden). Daarom is het voor regionale — of nationale toepassingen noodzakelijk
om het model te vereenvoudigen.

Onzeketheid in bodemvochtchemie op locale schaal

Naast de reguliere rol die een onzekerheidsanalyse speelt bij het modelleren van
biogeochemische processen, kan een onzekerheidsanalyse ook een bijdrage leveren bij
het vinden van richtlijnen die kunnen leiden tot modelvereenvoudigingen. Fen
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onzekerhetdsanalyse op de locale schaal is uvitgevoerd met het model RESAM, een al
reeds vereenvoudigde versie van NUCSAM. De resultaten laten zien dat de onzekerheid
sterk afhankelijk 1s van de beschouwde modeluitgang, bodemlaag en tijd. Datzelfde
geldt ook voor de onzekerheidsbijdrage van de modelpatameters aan de onzekerheid
van de beschouwde medeluvitgangen. De onzekerheidsanalyse geeft aan dat de
nutriéntenkringloopprocessen en de kinetick van het oplossen van Al-precipitaten in
belangrijke mate bepalend zijn voor het adequaat simuleren van bodemvochtfluxen en
— concentraties in de bovengrond, terwijl deze processen voor de ondergrond relatief
onbelangrijk zijn. Daarnaast hangt de noodzaak om een proces wel of niet mee te
nemen ook af van het beschouwde modeluitgang. Zo wordt de pll met name
beinvloed door het oplossen van Al-precipitaten, terwijl de NO3- en NHy-
concentraties met name beinvloedt worden door nutriéntopname en (de)nitrificatie.
Een vereenvoudigd model dat in staat moet zijn om alle belangrjke
bodemvochtcomponenten te modelleren, zowel in als aan de onderrand van de
wortelzone, dient daarom vrjwel alle processen in zich te hebben die ook in het
complexe model zitten. Het gevolg hiervan is dat een onzekerheidsanalyse maar een
beperkte bijdrage kan leveren bij het verstrekken van richtlijnen voor het
vereenvoudigen van modellen.

Jaargemiddelde veranderingen in bodemvochtchemie gemodelleerd met
een eenvoudig eenlagig biogeochemisch modet

Het vereenvoudigde model, SMART2, dat ontwikkeld is voor lange-termijn
toepassingen op regionale schaal is eerst toegepast op een experimenteel vanggebied in
Risdalsheia, zuidelijk Noorwegen. In een vanggebied nabij Risdalsheia begroeid met
een boreaal bos zijn gedurende 15 jaar experimenten uitgevoerd op het schaalniveau
een vanggebied. Deze experimenten zijn uitgevoerd in het kader van de EU-
onderzoeksprojecten RAIN (manipulatie-experimenten met depositie) en CLIMEX
(manipulatie-experimenten met klimaat). Het betreft een unicke serie van
experimenten op ecosysteemschaal, dat informatie verschaft over de effecten van de
interactie tussen N depositie en toename in temperatuur en CO2 op C- en N-
kringloop en bovenal op de concentraties in het afstromende water. De metingen in
het Risdalsheia-vanggebied zijn eenvoudig te herleiden tot jaargemiddelde
concentraties in het afstromende water. Dit betekent dat de numtelijke - en temporele
schaalniveaus van metingen en model goed overecenkomen. Voor deze toepassing is
SMART2 voorzien van klimaatsveranderingsprocessen te weten, temperatuureffect op
mineralisatie van oud strooisel, (de)nitrificatie en de verwering van Al-precipitaten.

De gemeten tijdrecks van concentraties in het afstromende water, dat
gemanipuleerd werd door depostie-reductie en temperatuur toename, werd door het
model goed gereproduceerd. De dootr SMARTZ gemodelleerde concentraties van SOy,
NOs, NH, en BC2, werden echter enigszins onderschat. De gemeten toename in N-
afvoerflux werd door het model goed gereproduceerd, evenals de waargenomen
toename in mineralisatie en nitrificatie. Desondanks is er aanleiding om de N-
kringloop processen in het model te verbeteren. Het gaat hierbij met name om het
ingebouwde effect van de pHl op de mineralisatie. De gemodelleerde temperatuur
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afthankelijkheid van de mineralisatie leverde goede resultaten op, maar het temperatuur
effect op de nitrificatie werd enigszins overschat. De bevredigende resultaten van deze
validatiestudie op basis van een relatief lange dataset, laten zien dat het model SMART2
een adequaat model is om in te zetten bij regionale - en nationale toepassingen. In het
bijzonder wanneer het gaat om de evaluatie van depositie-scenario’s.

Model vergelijking op locale schaal

Plotschaal toepassingen van zowel NUCSAM als SMART2 hebben hoopvolle resultaten
opgeleverd. Maar voordat we een model als SMART2 kunnen accepteren als een
geschikt model voor regionale — en nationale toepassingen, is het noodzakelijk om de
effecten van modelvereenvoudigingen in meer detail te analyseren. Het gaat hierbij om
de effecten van vereenvoudigingen in procesbeschrijvingen, reductie in het aantal
bodemlagen en reductie in de temporele vanabiliteit op de gemodelleerde
bodemvochtconcentraties en uitspoelingsfluxen. [Hiertoe zijn de dre modellen
(NUCSAM, RESAM en SMART2) eerst gevalideerd middels een vergelijking tussen de
gemeten en gemodelleerde concentraties en uitspoelingsfluxen. Hierbij is gebruik
gemaakt van gegevens van de onderzoekslocatie Solling (midden Duitsland), die
gedurende de periode 1973-1989 zijn verzameld. Vervolgens zijn de resultaten van
lange-termijn (1990-2090} simulaties, uitgevoerd met de drie modellen, onderling
vergeleken 1990-2090. De uitvoer van het eenlaagmodel SMARTZ werd vergeleken met
de laagdikte gewogen gemiddelde van de gemeten bodemvochtconcentraties in de
corresponderende lagen.

Ondanks de verschillen in procesbeschnjvingen, worden de meeste
bodemvochtconcentrattes door de modellen SMART2, RESAM en NUCSAM redelijk
goed gesimuleerd. Of het oplossen van Al-precipitaten nu gemodelleerd wordt met
een snelheidsreactie (NUCSAM, RESAM) of met een evenwichtsvergelijking (SMART2),
beinvioedt de gemodelleerde Al-concentraties niet of nauwelijks. De verschillen in N-
kringloopprocessen beinvloedt ook nauwelifks de gemodelleerde NOs- en NHy-
concentraties. Alle modellen simuleren ook de waargenomen toename in SOs-
concentratie in de periode tussen 1975 en 1980, als gevolg van een afname in
sulfaatadsorptie, hoewel het eenlagige SMART2 de initiéle toename in opgelost SO,
overschat. Dit laatste als gevolg van de grote mate van dispersie van het sulfaatfront in
een eenlagigsysteem. Desondanks laat SMART2 over de gehele simulatieperiode de
beste performance zien voor de SOs-concentratie in de ondergrond.

In de bovengrond vallen de gesimuleerde NOjs-concentraties van alle modellen
binnen de range van de gemeten concentraties. In de ondergrond, werden de NOs-
concentraties enigszins onderschat door RESAM en SMARTZ, terwijl deze door
NUCSAM iets overschat werden. De NHy-concentraties in de bovengrond werden het
best gemodelleerd door SMART2, De twee andere modellen berekende duidelijk te
hoge NHi-concentraties in de bovengrond. Alle drie modellen onderschatten de NH,-
concentraties in de ondergrond, maar het gaat hierbij wel om zeer lage gemeten
concentraties.

Uit deze vergelijkende studie volgt dat het negeren van seizoensvariatie in
weerscondities en nutriéntendynamiek, het lumpen tot een bodemcompartiment en
het vereenvoudigen van procesbeschrijvingen, niet of nauwelijks de kwaliteit van de
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gesimuleerde jaarlijksgemiddelde bodemvochtconcentraties — en fluxen beinvloedt.
Het aggregatieniveau en de mate van detaillering van procesheschrijvingen zoals dat in
het model SMART2 is toegepast is dus acceptabel voor het maken van lange-termijn
simulaties op regionale schaal.

Het adequaat simuleren op regionale schaal

Jaargemiddelde verandetingen in bodemvochtchemie op regionale
schaal

Het model SMART2 is ondergebracht in een raamwerk voor het uitvoeren van
landelijke toepassingen op basis van een 230 X 250 m? grid. Omdat het adequaat
simuleren van jaargemiddelde bodemvochtconcentraties op een bepaalde diepte voor
een specifieke plot nog geen garantie biedt voor adequate simulatie op een regionale
schaal, dient het model ook getest en gevalideerd te worden op de regionale schaal.
Hiertoe is SMART2 toegepast en gevalideerd voor geheel Nederland met
gebrutkmaking van een landelijke datasets. Vervolgens is het landelijke model gebruikt
om effecten te kwantificeren van veranderingen in de hydrologie (kwelflux),
atmosferische depositie en  vegetatiesuccessie in  half-natuurlijke  terrestrische
ecosystemen. Het model SMART2 is tevens gekoppeld met het vegetatie-effectmodel
MOVE om een uitspraak te kunnen doen omtrent veranderingen in floristische
diversiteit.

SMART2 onder gebracht in een landelifk-raamwerk, blijkt een flexibel en snel
instrument voor het evalueren van depositie - en hydrologie (kwel} scenario’s.
Gemodelleerde NO;- en NH;-concentraties komen goed overeen met waarnemingen
uit een landelijke dataset. Gemodelleerde pH en Al-concentraties laten ook
bevredigende resultaten zien, maar de gemodelleerde Al-concentraties in arme
zandgronden blcken te hoog. De resultaten laten ook een grote mate van ruimtelijke
variabiliteit zien in de gemodelleerde pH, basenverzadiging en N-beschikbaarheid. De
ruimtelijke variabiliteit in pH en basenverzadiging hangt nauw samen met de variatie
in bodemtype, terwijl dic van de N-beschikbaarheid nauw samenhangt met de
ruimtelijke variabiliteit in N-depositie. Daarnaast hangt de N-beschikbaarheid ook in
hoge mate af van het successiestadium van de vegetatie. Deze resultaten geven aan dat
voor het uitvoeren van landelijke evaluaties ruimtelijk expliciet gemodelleerd dient te
worden.,

Onzekerheid in bodemvochtchemie op locale schaal

Bij het modelleren van de bodemvochtchemie op regionale schaal dient zowel
rekening te worden gehouden met de onzekerheden gerelateerd aan de modelstructuur
en aan de onzekerheid in de gebruikte data. Hiertoe is met SMARI2 een
onzekerheidsanalyse uitgevoerd in een ruimtelijke context. Gegeven de hoge kosten
die gemoeid zijn met maatregelen om Al en NOs-concentraties in bodem- en
grondwater te reduceren, is het van belang om na te gaan of met aanvullende
dataverzameling een reductie in de onzekerheid van de modeluitkomsten is te
bewerkstelligen. Een dergelijk onderzoek levert belangrijke informatie op basis
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waarvan een beslut kan worden genomen over de te volgen strategie om
onzekerheden in lange-termijn modelvoorspelling te reduceren. Mogelijk alternatieven
zijn het verbeteren van de betrouwbaarheid van de gebruikte bodem- en
vegetatickaarten of het verzamelen aanvullende gegevens ten behoeve van de
modclparameterisatie.

De in dit proefschrift uitgevoerde analyse richt zich op de onzekerheid in lange-
termijn voorspellingen van de Al- en NO;s-concentraties in het bodemvocht als gevolg
van de onzekerheid in grootschalige bodem- en vegetatie-kaarten (bijv. de EU-
bodemkaart van 1:1000 000) en andere niet kaartgebonden gegevens. Gekeken is naar
de mediane concentraties per gridcel (5X5 km?) en de areale fractie per gridcel (5X5
km?) waar sprake is van overschrijding van een kritische concentratie. Beschouwde
onzekerheidsbronnen zijn () de gebruikte bodem- en vepgetatiekaarten (categorische
data) en (i) de bodem- en vegetatie-gerelateerde modelparameters (continue data). De
onzekerheid in de categonische data is bepaald door het vergelijken van de Europese
bodem- en vegetatickaarten met de gedetailleerde Nederlandse kaarten. De
onzekerheid in de continue data is bepaald aan de hand van diverse Europese
databases en literatuurgegevens. De onzekerheid in de modeluitgangen is bepaald
middels een efficiénte tweetraps Monte-Carlo-simulatie, waarbij rekening is gehouden
met ruimtelijke correlatie.

Resultaten laten zien dat de onzekerheid in hoge mate afhangt van de
beschouwde modeluitgang, zoals de medianeconcentraties per gridcel en de areale
overschrijdingen per gridcel. Voot de Al-concentratie worden brede 90%
voorspellingsintervallen berekend, zowel in gebieden met lage Al-concentraties
(kalkrijke — en kleigronden) als in gebieden met hoge concentraties (met name arme
zandgronden). Ondanks de grote onzekerheid in de modeluitkomsten, was het model
in staat om significante reductie in de gemodelleerde Al-concentraties te voorspellen
als gevolg van de geévalueerde depositie-scenario’s.

De relatieve onzekerheidsbijdrage hangt eveneens in hoge mate af van de
beschouwde modeluitgang. Aan de onzekerheid in de Al-concentratie dragen de
bodemgerelateerde parameters het meeste bij, terwijl de onzekerheidsbijdrage van de
vegetatie-gerelateerde parameters verwaarloosbaar klein bleek. Voor de NO;-
concentratie daarentegen, leverende gebruikte bodem- en vegetatickaart de grootste
onzckerheidsbijdrage, direct gevolgd door de continue vegetatie-gerelateerde
parameters, terwijl de continue bodemgerelateerde parameters het minst bijdroegen.
In het algemeen kan geconcludeerd worden dat de meeste nadruk gelegd dient te
worden op het verbeteren van de bodem- en vegetatie-gerelateerde parameters en
minder nadruk op het verbeteren van de bodem- en vegetatiekaarten.

Reductie van de onzekerheid bij regionale modelstudies middels
modelcalibratie

Voor het kwantificeren van het effect van modelcalibratie op nationale schaal is de
fout in de modeluitkomsten van SMART2 voor en na calibratie bepaald. Dit is gedaan
voor de mediane Al- en NO;-concentraties in een 5 X 5 km? gridcel. Omdat er alleen
metingen beschikbaar zijn op puntschaal, zijn deze gegeven eerst opgeschaald naar
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Samenvatting

hetzelfde schaalniveau als waarop de modcluitkomsten worden berekend. Hiertoe zijn
ongeveer 250 punt-waarnemingen van gemeten bodemvochtconcentraties in
bosbodems opgeschaald naar een 5 X 5 km? gridkaart. Hierbij is gebruik gemaake van
een combinatie van multiple-lineaire-regressieanalyse en blockkriging, De daardoor
verkregen opgeschaalde kaarten met waarnemingen zijn zowel gebruikt voor de
validatie als de calibratie. Fen vergelijking tussen de kaart met modelvoorspellingen op
basis van nominale parameter-instellingen met de kaart met opgeschaalde
waarnemingen laat zien dat het model zowel de Al- als de NOs-concentraties
overschat. De nominale modelresultaten lagen weliswaar binnen het 95%
betrouwbaarheidinterval van de opgeschaalde waarnemingen, maar de calibratie levert
wel een duidelijke reductie van de modelfout op.

De gebruikte calibratie-procedure blijkt een bruikbare methodick om op
nationale schaal te komen tot optimale parameterranges en voor het reduceren van
onzekerheden. De calibratie blijkt tevens succesvol in het corrigeren van de
overschattingen van de Al- en NOs-concentraties. Ondanks deze verbeteringen blijft
de modelfout na calibratie nog steeds relatief groot. Verdere verbeteringen zijn echter
niet mogelijk door het gebrek aan de juiste gegevens.

Modelvergelijking op regionale schaal

Een betrouwbaar ruimtelijk beeld van NOs-concentraties in onder de wortelzone van
half-natuurlijke ecosysternen is met name van belang voor het bepalen van de
overschrijding van kritische concentraties. Om nader inzicht te krijgen in de
onzekerheid ten gevolge van de modelstructuur van SMART2, zijn met SMART2
gestmuleerde kaarten met NOs-concentraties in het bodemvocht van Nedetlandse
bossen vergeleken met NOj-concentratickaarten gebaseerd op: (1) een multple-
regresstemodel op basis van gemeten bodemvochtconcentraties en aanvullend data,
zoals bodemtype en depositie, als verklarende variabelen en (ii} een half-empirisch
dynamisch model WANDA. De vergelijking 1s vitgevoerd voor geheel Nederland, voor
een 250 X 250 km? grid. De met de drie methoden bepaalde NOs-kaarten laten
duidelijk verschillende resultaten zien. Wanneer echter alleen maar vergleken wordt op
basis van een cumulatieve frequentieverdeling, zijn de resultaten behoorlijk
verglijkbaar, in het bijzonder op het aggregatieniveau van een 5 X 5 km? grid. Een
dergelijke opschaling gaat uiteraard ten koste van de ruimtelijke resolutie, en daarmee
neemt ook de functionaliteit af om overschrijdingsarealen te bepalen.

Belangrijkste conclusies

Het gedetailleerde model NUCSAM is goed in staat om zowel het niveau als de trend in
gemeten grootheden zoals bodemvochtgehaltes en bodemvochtconcentraties te
simuleren. De modeltoepassingen worden echter belemmerd door het gebrek aan
gegevens van een goede kwaliteit. Resultaten laten zien dat het onmogelijk is om een
model zoals NUCSAM toe te passen op regionale schaal, met name als gevolg van het
gebrek aan gegevens. Dit maakt het noodzakelijk om het model te vereenvoudigen ten
hoeve van de regionale en nationale toepasbaarheid. De onzekerheidsanalyse laat zien
dat een vereenvoudigd model vrijwel alle processen inzicht moet hebben als het
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gedetailleerde model bevat, om zodoende instaat te zijn om alle belangrijke
componenten in en aan de onderkant van de wortelzone te kunnen simuleren.

Ilet vereenvoudigde model SMARTZ is goed in staat om de fluxgewogen
jaargemiddelde bodemvochtconcentraties te simuleren. De resultaten zijn vergelijkbaar
of zelfs beter dan de resultaten verkregen met het complexe model NUCSAM. Dit
houdt in dat het negeren van de seizoensdynamiek, het niet onderscheiden van
verschillende bodemlagen en het vereenvoudigen van procesbeschrijvingen niet of
nauwelijks van invloed is op de gemodelleerde lange-termijn veranderingen in de
jaargemiddelde bodemvochtconcentraties. Een vereenvoudigd model, zoals SMART2,
kan dan ook beschouwd worden als een bruikbaar en adequaat instrument voor het
maken van lange-termijnvoorspellingen ten behoeve van het beleid ten aanzien van
bestrijdingsmaatregelen.

Het toepassen voor geheel Nederland van een regionaal model, zoals SMART2,
terwijl het alleen geparameteriseerd en gecalibreerd is op een klein aantal intensief
gemonitoorde locaties leidt tot niet adequate resultaten. Middels een calibratie op
nationale schaal is de modelpetformance te verbeteren en de onzekerheid in de
modelresultaten te verkleinen. Na calibrade blijft de uiteindelijke modelfout echter
groot. Deze is ook niet verder te reduceren middels aanvullende calibratie-
experimenten als gevolg van het gebrek aan de juiste data op nationale schaal. Ten
aanzien van aanvullende dataverzameling kan geconcludeerd worden dat de meeste
nadruk gelegd dient te worden op het verzamelen van gegevens ten behoeve van de
bodem- en vegetatie-gerelateerde parameters en minder op het verbeteren van de
gebruikte bodem- en vegetatiekaarten.

Modellen voor toepassing op grotere ruimtelijke schaalniveaus dienen zo
eenvoudige mogelijk van opzet te zijn. Hierbij is wel zaak dat ze een bepaald niveau
van procesgedrienteerdheid behouden, zodat modelevaluatie middels calibratie,
validatie en een onzekerheidsanalyse mogelijk bljjtt.
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Annex 1 List of symbols used in the process descriptions in
the SMARTZ model

Symbol Iixplanation Unit

4 volumetric moisture content of the soil md m?

or bulk density of the mincral soil kg m?

oy bulk density of the soil in the root zone kg m

apey age of the site a

agey age of the vegetation a

Ay amount of litter kg hat

Amy actual amount of litterfall kg ha? a?

Aty maximum amount of litterfatl kg hatat

AmNi amount of nitrogen in the zone where N immobilisation occurs mol. kg?

Ay actual amount of stems and branches kg ha!

Anteme maximum amount of stems and branches kg ha!

CEC cation exchange capacity mol, kgt

CN., catical C/N ratio of the soil gg!

CN minimum C/N ratio of the soid gg!

CNow C/N ratio of the soil gg!

At content of Al in secondary Al compounds in the soi mol, kg?

otCasz amount of Ca in carbonates in the soil mol, kgt

G organic carbon content in the zone where N immobilisation mol, kg
occurs

N maximum N content in leaves mol, kgt or %

N minimum N content in leaves mol kg or %

Xy nutricnt content in leaves of ion X (N, K, BC2 mole kgt or %

X nutrient content in shoot of ion X (N, K, BC2) mol. kg or %

C. half-saturation constant for sulphate sorption mol, m3

DA,, dissimilation to assimilation ratio of decomposing microbes -

dt time step a

Jdd dry deposition factor -

Jrie actual denitrification fraction -

Srdeams maximum denitrification fraction -

S interception fraction -

Jrwi actual mineralisation fraction fresh litter -

Sraime maximum mincralisation fraction fresh littee -

Sru actual nitrification fraction -

Sroime maximum nitrification fraction -

JNw reallocation of N fraction before litterfall -

Srus fraction roots in the litter layer -

S cumulative transpiration fraction N

fXa fraction of ion X (BC2, A, 1) on the adsorption complex -

JriX foliar exudation fraction -

X foliar uptake fraction -

g2 leaching fraction from fresh litter of jon K and BC2 -

X leaching fraction from fresh litter of ion K and BC2 -

K, dissociation constant for organic acids mol. m3

KAL, sclectivity constant for Al/BC2 exchange mol1 m?

KAl dissolution constant for Al-hydroxide mol. 2 mé

KBCy dissolution constant for calcium carbonate (mol. m3)3 hPat

RC0, dissociation constant for COz mol2 mé hPat

ks growth rate constant for logistic growth kg hal '
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Annex 1

Symbal Fxplanation Linit

KH,. sclectivity constant for 11/BC2 exchange mol, m?3

R actual mineralisation rate constant old litier al

J T~ maximum mineralisation rate constant old litter a1

MHW mean highest water-table m

MLW mean lowest water-table m

nf nutricnt cycling factor (ratio above ground N cycle/below -
ground N cycle)

N denitrification flux mole m2al

Niw N immobilisation flux mol, m? 2!

N Minimum N leaching flux mol, m2at

Ny nitrification flux mol. m2a!

Nigme totat N deposition above which aNy = @Ny p mol, m?at

Nidon total N deposition below which Ny = ¢Np mol. m2 a!

OM organic matter content ge!

P precipitation mat

pC0; partial COa pressure in the soil hPa

PE precipitation excess ma!

o miMsi reduction fraction of the mincralisation rate for the water-table -

HomitN reduction fraction of the mincralisation rate for N content -

HLrintsw reduction fraction of the mineralisation rate for the water-table -

1 2 MW minimum denitrification reducrion fraction for the warer-table -

ipH reduction fraction of the denitrification fraction for pH -

et reduction fraction of the demitnfication tracton for the water- -
table

thuipk reduction fraction of the nitrification fraction for pll -

1 i ASW mn minimum nitrification reduction fraction for the water-table -

fmiph) reduction fraction of the mineralisation rate for pI1 -

Tiesp toot uptake exponent -

Se upward scepage flux ma?l

SOy 4 Sulphate content at the adsorption complex mmol; kg!

AR Sulphate adsorption capacity mmol. kg!

? time a

I half-life time parameter of logistic growth function a

Ty thickness of the zone where N mobilisation occurs m

Tr transpiration flux ma’

Tx thickness of the root zone ‘m

X foliar exudation flux of ion X (K, BC2) mol, m2at

Xa foliar uptake flux of ion X (NI, 1) maol. m2a!

Ky growth uptake flux of element X (N, K, BC2) mol m2al

X input flux of jon X (SO, NOs, NH,, CL, RCOO, K, Na, BC2, mole m2a?!
HCO;, Al)

Kow interaction flux of 1on X (830,, NQj, NIT,, Cl, RCOO, K, Na, mol. m2 3!
BC2, HCOs, Al

X lateral output flux of ion X (S04, NOs, NIL, €, RCOO, K, mol, m2 2t
Na, BC2, HCO:, Al

Xy Liteeefall flux of fon X (NIL;, RCOO, K, BC2 mol. m2a!

X i mineralisation flux fresh litter, old litter and the root decay in mol, m2 a1
the litter layer of ion X (NI, RCOO, K, BC2)

Komitr mineralisation flux old hiuer of ion X (NI;, RCOOQ, K, BC2) mol. m2al

Xoifi mineralisation flux fresh litter of ion X (NI, RCOO, K, BC2)  mok m2a?!

X sat mineralisation flux fresh litter, old litter and the total root decay  mole m?2 2!
of ion X (NI1y, RCOO, K, BC2)

XKt root decay flux in the mineral soil of ton X (NI1, RCOO, K, mol, m2 a1
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Symbaol lixplanation Linit

KXot root decay flux in the liteer fayer of ion X (N1, RCOO, K, mol, m2at
BC2)

X seepage flux of jon X (8O, NOjs, N1, CL K, Na, BC2, 1{CO;,  mol, m2a'
Al

Kion net seepage flux of ion X (8O, NOs, NI, CL RCOO, K, Na,  mol. m2a?
BC2, T1CO;, AT

Xt total deposition of cement X (8O, N, K, Na, B(2) mol. m2a-l

Xar weathering fux of base cation X (Na, K, BC2) mol; m? a!

{*1 concentration of jon X (SO4, NO;3, K, Na, BC2, [1C0O;, Aland  mok m?3
D) in soil solution

z depth m

Lt soil dependent depth of MSW for determination of 5, s m

w2 soil dependent depth of ALSH determination of f, asw m

2 soil dependent depth of MSW for determination of #f v m
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