Light Research in horticulture: use of supplementary light

Filip van Noort and Tom Dueck,
Wageningen UR Greenhouse Horticulture
June 13th, 2014

Plants use light for 2 things:

- Growth via photosynthesis → Grow light
 - PAR (400 700 nm)
 - Light intensity * duration = light sum
 - Tomato, rose
- Quality (plant shape, flowering) → Steer light
 - UV, purple, blue (300 450 nm)
 - Red (600 700 nm);
 - Far red (700 800 nm)
 - Day length (eg. SD plant)
 - Pot plants, cut flowers

Grow light – light for more biomass

- HPS

1.8 µmol/W

■ LED toplight 2.3 µmol/W

Hybrid HPS/LED1.9 µmol/W

Application of hybrid lighting

- Tune assimilation light to crop requirement
- Calculate light requirement according to crop (fruit) load in time
- Light requirement = sun light + lamp light
 - Sunlight is known (last 5 next 3 days)
 - Lamp light number of extra hours necessary is then known as well
- HPS lighting out at 200 W radiation
- LED lighting out at 400 W radiation (longer use in spring is possible)

Annual PAR sum in the greenhouse

Light to steer plant development

- Low light intensities
- Specific wave lengths
- Ratio's of wave lengths

Photoreceptors

- Phytochromes
 - Red:far red
 - Germination
 - flowering
- Cryptochromes
 - Blue
 - photoperiodism
- Phototropins
 - Blue
 - orientation

Phytochrome

Phytochrome changes in form and function in dependance of red:far red ratio

- Pr absorbs red light (660 nm) Etiolation, elongation, flowering
- Pfr absorbs far-red light (730 nm) Germination at low light, signal of day length

Phytochrome (2)

Flower reactions

LD en SD plants (daylength determined flowering); day neutral plants (cold of heat sum determined flowering)

Growth reactions

- Germination in ground, inhibits stretching seedling
- Chlorophyll production, leaf growth, upright growth

Red:Far red ratio

Elongatation ->

Germination

Lettuce Seed Germination Responds to Light

Blue light

Far red light

- Inhibits germination (deep under the ground or under crops)
- Stimulates elongation (in shadow of other plants)

Light quality influences...

		Wave length (nm)	Plant response
PAR	Blue	400-500	Stimulates stomatal opening,photosynthesis, leaf thicknessInhibits elongation
	Green	500-600	Stimulates photosynthesisIs most reflected
	Red	600-700	 Stimulates chlorophyll synthesis, auxillary shoot growth, leaf thickness, photosynthesis, germination, secundary metabolites Inhibits elongation Induces flowering (LDP) Influences photoperiodism

Light quality influences...

	Radiation	Wave length (nm)	Plant response
UV	UV C	0-280	<300nm does not reach earth
	UV B	280-320	 Stimulates secundary metabolites
	UV A	320-400	- Stimulates hardening
NIR	Far red	700-800	Stimulates elongation, leaf areaInhibits auxillary shoots, germination, flowering in LDP
	Near infrared	800-3000	Only heat radiation

Local leaf reaction → systemic resistence

- Biotrophic organisms: mildew, bacteria, virusses.
- Salicylic acid -> (SAR)
- Also effects of light or P-fertilizers, amino acids.

Use of steer light: quality and tomato

LED light on trusses increases vitamin C

Supplementary LED light Increases vitamin C content in tomato

Driever & Verkerke 2010

Intensive colouring by UV

Foto: onderzoek Beßler, LVG Ahlem

Innovation Demonstration Centre LED

Wageningen UR Glastuinbouw

Thanks for your attention

